1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/profile.c 4 * Simple profiling. Manages a direct-mapped profile hit count buffer, 5 * with configurable resolution, support for restricting the cpus on 6 * which profiling is done, and switching between cpu time and 7 * schedule() calls via kernel command line parameters passed at boot. 8 * 9 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 10 * Red Hat, July 2004 11 * Consolidation of architecture support code for profiling, 12 * Nadia Yvette Chambers, Oracle, July 2004 13 * Amortized hit count accounting via per-cpu open-addressed hashtables 14 * to resolve timer interrupt livelocks, Nadia Yvette Chambers, 15 * Oracle, 2004 16 */ 17 18 #include <linux/export.h> 19 #include <linux/profile.h> 20 #include <linux/memblock.h> 21 #include <linux/notifier.h> 22 #include <linux/mm.h> 23 #include <linux/cpumask.h> 24 #include <linux/cpu.h> 25 #include <linux/highmem.h> 26 #include <linux/mutex.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched/stat.h> 30 31 #include <asm/sections.h> 32 #include <asm/irq_regs.h> 33 #include <asm/ptrace.h> 34 35 struct profile_hit { 36 u32 pc, hits; 37 }; 38 #define PROFILE_GRPSHIFT 3 39 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 40 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 41 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 42 43 static atomic_t *prof_buffer; 44 static unsigned long prof_len, prof_shift; 45 46 int prof_on __read_mostly; 47 EXPORT_SYMBOL_GPL(prof_on); 48 49 static cpumask_var_t prof_cpu_mask; 50 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 51 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 52 static DEFINE_PER_CPU(int, cpu_profile_flip); 53 static DEFINE_MUTEX(profile_flip_mutex); 54 #endif /* CONFIG_SMP */ 55 56 int profile_setup(char *str) 57 { 58 static const char schedstr[] = "schedule"; 59 static const char sleepstr[] = "sleep"; 60 static const char kvmstr[] = "kvm"; 61 int par; 62 63 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 64 #ifdef CONFIG_SCHEDSTATS 65 force_schedstat_enabled(); 66 prof_on = SLEEP_PROFILING; 67 if (str[strlen(sleepstr)] == ',') 68 str += strlen(sleepstr) + 1; 69 if (get_option(&str, &par)) 70 prof_shift = par; 71 pr_info("kernel sleep profiling enabled (shift: %ld)\n", 72 prof_shift); 73 #else 74 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 75 #endif /* CONFIG_SCHEDSTATS */ 76 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 77 prof_on = SCHED_PROFILING; 78 if (str[strlen(schedstr)] == ',') 79 str += strlen(schedstr) + 1; 80 if (get_option(&str, &par)) 81 prof_shift = par; 82 pr_info("kernel schedule profiling enabled (shift: %ld)\n", 83 prof_shift); 84 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 85 prof_on = KVM_PROFILING; 86 if (str[strlen(kvmstr)] == ',') 87 str += strlen(kvmstr) + 1; 88 if (get_option(&str, &par)) 89 prof_shift = par; 90 pr_info("kernel KVM profiling enabled (shift: %ld)\n", 91 prof_shift); 92 } else if (get_option(&str, &par)) { 93 prof_shift = par; 94 prof_on = CPU_PROFILING; 95 pr_info("kernel profiling enabled (shift: %ld)\n", 96 prof_shift); 97 } 98 return 1; 99 } 100 __setup("profile=", profile_setup); 101 102 103 int __ref profile_init(void) 104 { 105 int buffer_bytes; 106 if (!prof_on) 107 return 0; 108 109 /* only text is profiled */ 110 prof_len = (_etext - _stext) >> prof_shift; 111 buffer_bytes = prof_len*sizeof(atomic_t); 112 113 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 114 return -ENOMEM; 115 116 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 117 118 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); 119 if (prof_buffer) 120 return 0; 121 122 prof_buffer = alloc_pages_exact(buffer_bytes, 123 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); 124 if (prof_buffer) 125 return 0; 126 127 prof_buffer = vzalloc(buffer_bytes); 128 if (prof_buffer) 129 return 0; 130 131 free_cpumask_var(prof_cpu_mask); 132 return -ENOMEM; 133 } 134 135 /* Profile event notifications */ 136 137 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 138 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 139 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 140 141 void profile_task_exit(struct task_struct *task) 142 { 143 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 144 } 145 146 int profile_handoff_task(struct task_struct *task) 147 { 148 int ret; 149 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 150 return (ret == NOTIFY_OK) ? 1 : 0; 151 } 152 153 void profile_munmap(unsigned long addr) 154 { 155 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 156 } 157 158 int task_handoff_register(struct notifier_block *n) 159 { 160 return atomic_notifier_chain_register(&task_free_notifier, n); 161 } 162 EXPORT_SYMBOL_GPL(task_handoff_register); 163 164 int task_handoff_unregister(struct notifier_block *n) 165 { 166 return atomic_notifier_chain_unregister(&task_free_notifier, n); 167 } 168 EXPORT_SYMBOL_GPL(task_handoff_unregister); 169 170 int profile_event_register(enum profile_type type, struct notifier_block *n) 171 { 172 int err = -EINVAL; 173 174 switch (type) { 175 case PROFILE_TASK_EXIT: 176 err = blocking_notifier_chain_register( 177 &task_exit_notifier, n); 178 break; 179 case PROFILE_MUNMAP: 180 err = blocking_notifier_chain_register( 181 &munmap_notifier, n); 182 break; 183 } 184 185 return err; 186 } 187 EXPORT_SYMBOL_GPL(profile_event_register); 188 189 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 190 { 191 int err = -EINVAL; 192 193 switch (type) { 194 case PROFILE_TASK_EXIT: 195 err = blocking_notifier_chain_unregister( 196 &task_exit_notifier, n); 197 break; 198 case PROFILE_MUNMAP: 199 err = blocking_notifier_chain_unregister( 200 &munmap_notifier, n); 201 break; 202 } 203 204 return err; 205 } 206 EXPORT_SYMBOL_GPL(profile_event_unregister); 207 208 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 209 /* 210 * Each cpu has a pair of open-addressed hashtables for pending 211 * profile hits. read_profile() IPI's all cpus to request them 212 * to flip buffers and flushes their contents to prof_buffer itself. 213 * Flip requests are serialized by the profile_flip_mutex. The sole 214 * use of having a second hashtable is for avoiding cacheline 215 * contention that would otherwise happen during flushes of pending 216 * profile hits required for the accuracy of reported profile hits 217 * and so resurrect the interrupt livelock issue. 218 * 219 * The open-addressed hashtables are indexed by profile buffer slot 220 * and hold the number of pending hits to that profile buffer slot on 221 * a cpu in an entry. When the hashtable overflows, all pending hits 222 * are accounted to their corresponding profile buffer slots with 223 * atomic_add() and the hashtable emptied. As numerous pending hits 224 * may be accounted to a profile buffer slot in a hashtable entry, 225 * this amortizes a number of atomic profile buffer increments likely 226 * to be far larger than the number of entries in the hashtable, 227 * particularly given that the number of distinct profile buffer 228 * positions to which hits are accounted during short intervals (e.g. 229 * several seconds) is usually very small. Exclusion from buffer 230 * flipping is provided by interrupt disablement (note that for 231 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 232 * process context). 233 * The hash function is meant to be lightweight as opposed to strong, 234 * and was vaguely inspired by ppc64 firmware-supported inverted 235 * pagetable hash functions, but uses a full hashtable full of finite 236 * collision chains, not just pairs of them. 237 * 238 * -- nyc 239 */ 240 static void __profile_flip_buffers(void *unused) 241 { 242 int cpu = smp_processor_id(); 243 244 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 245 } 246 247 static void profile_flip_buffers(void) 248 { 249 int i, j, cpu; 250 251 mutex_lock(&profile_flip_mutex); 252 j = per_cpu(cpu_profile_flip, get_cpu()); 253 put_cpu(); 254 on_each_cpu(__profile_flip_buffers, NULL, 1); 255 for_each_online_cpu(cpu) { 256 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 257 for (i = 0; i < NR_PROFILE_HIT; ++i) { 258 if (!hits[i].hits) { 259 if (hits[i].pc) 260 hits[i].pc = 0; 261 continue; 262 } 263 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 264 hits[i].hits = hits[i].pc = 0; 265 } 266 } 267 mutex_unlock(&profile_flip_mutex); 268 } 269 270 static void profile_discard_flip_buffers(void) 271 { 272 int i, cpu; 273 274 mutex_lock(&profile_flip_mutex); 275 i = per_cpu(cpu_profile_flip, get_cpu()); 276 put_cpu(); 277 on_each_cpu(__profile_flip_buffers, NULL, 1); 278 for_each_online_cpu(cpu) { 279 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 280 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 281 } 282 mutex_unlock(&profile_flip_mutex); 283 } 284 285 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 286 { 287 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 288 int i, j, cpu; 289 struct profile_hit *hits; 290 291 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 292 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 293 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 294 cpu = get_cpu(); 295 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 296 if (!hits) { 297 put_cpu(); 298 return; 299 } 300 /* 301 * We buffer the global profiler buffer into a per-CPU 302 * queue and thus reduce the number of global (and possibly 303 * NUMA-alien) accesses. The write-queue is self-coalescing: 304 */ 305 local_irq_save(flags); 306 do { 307 for (j = 0; j < PROFILE_GRPSZ; ++j) { 308 if (hits[i + j].pc == pc) { 309 hits[i + j].hits += nr_hits; 310 goto out; 311 } else if (!hits[i + j].hits) { 312 hits[i + j].pc = pc; 313 hits[i + j].hits = nr_hits; 314 goto out; 315 } 316 } 317 i = (i + secondary) & (NR_PROFILE_HIT - 1); 318 } while (i != primary); 319 320 /* 321 * Add the current hit(s) and flush the write-queue out 322 * to the global buffer: 323 */ 324 atomic_add(nr_hits, &prof_buffer[pc]); 325 for (i = 0; i < NR_PROFILE_HIT; ++i) { 326 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 327 hits[i].pc = hits[i].hits = 0; 328 } 329 out: 330 local_irq_restore(flags); 331 put_cpu(); 332 } 333 334 static int profile_dead_cpu(unsigned int cpu) 335 { 336 struct page *page; 337 int i; 338 339 if (cpumask_available(prof_cpu_mask)) 340 cpumask_clear_cpu(cpu, prof_cpu_mask); 341 342 for (i = 0; i < 2; i++) { 343 if (per_cpu(cpu_profile_hits, cpu)[i]) { 344 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); 345 per_cpu(cpu_profile_hits, cpu)[i] = NULL; 346 __free_page(page); 347 } 348 } 349 return 0; 350 } 351 352 static int profile_prepare_cpu(unsigned int cpu) 353 { 354 int i, node = cpu_to_mem(cpu); 355 struct page *page; 356 357 per_cpu(cpu_profile_flip, cpu) = 0; 358 359 for (i = 0; i < 2; i++) { 360 if (per_cpu(cpu_profile_hits, cpu)[i]) 361 continue; 362 363 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 364 if (!page) { 365 profile_dead_cpu(cpu); 366 return -ENOMEM; 367 } 368 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); 369 370 } 371 return 0; 372 } 373 374 static int profile_online_cpu(unsigned int cpu) 375 { 376 if (cpumask_available(prof_cpu_mask)) 377 cpumask_set_cpu(cpu, prof_cpu_mask); 378 379 return 0; 380 } 381 382 #else /* !CONFIG_SMP */ 383 #define profile_flip_buffers() do { } while (0) 384 #define profile_discard_flip_buffers() do { } while (0) 385 386 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 387 { 388 unsigned long pc; 389 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 390 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 391 } 392 #endif /* !CONFIG_SMP */ 393 394 void profile_hits(int type, void *__pc, unsigned int nr_hits) 395 { 396 if (prof_on != type || !prof_buffer) 397 return; 398 do_profile_hits(type, __pc, nr_hits); 399 } 400 EXPORT_SYMBOL_GPL(profile_hits); 401 402 void profile_tick(int type) 403 { 404 struct pt_regs *regs = get_irq_regs(); 405 406 if (!user_mode(regs) && cpumask_available(prof_cpu_mask) && 407 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 408 profile_hit(type, (void *)profile_pc(regs)); 409 } 410 411 #ifdef CONFIG_PROC_FS 412 #include <linux/proc_fs.h> 413 #include <linux/seq_file.h> 414 #include <linux/uaccess.h> 415 416 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) 417 { 418 seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); 419 return 0; 420 } 421 422 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) 423 { 424 return single_open(file, prof_cpu_mask_proc_show, NULL); 425 } 426 427 static ssize_t prof_cpu_mask_proc_write(struct file *file, 428 const char __user *buffer, size_t count, loff_t *pos) 429 { 430 cpumask_var_t new_value; 431 int err; 432 433 if (!zalloc_cpumask_var(&new_value, GFP_KERNEL)) 434 return -ENOMEM; 435 436 err = cpumask_parse_user(buffer, count, new_value); 437 if (!err) { 438 cpumask_copy(prof_cpu_mask, new_value); 439 err = count; 440 } 441 free_cpumask_var(new_value); 442 return err; 443 } 444 445 static const struct proc_ops prof_cpu_mask_proc_ops = { 446 .proc_open = prof_cpu_mask_proc_open, 447 .proc_read = seq_read, 448 .proc_lseek = seq_lseek, 449 .proc_release = single_release, 450 .proc_write = prof_cpu_mask_proc_write, 451 }; 452 453 void create_prof_cpu_mask(void) 454 { 455 /* create /proc/irq/prof_cpu_mask */ 456 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops); 457 } 458 459 /* 460 * This function accesses profiling information. The returned data is 461 * binary: the sampling step and the actual contents of the profile 462 * buffer. Use of the program readprofile is recommended in order to 463 * get meaningful info out of these data. 464 */ 465 static ssize_t 466 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 467 { 468 unsigned long p = *ppos; 469 ssize_t read; 470 char *pnt; 471 unsigned int sample_step = 1 << prof_shift; 472 473 profile_flip_buffers(); 474 if (p >= (prof_len+1)*sizeof(unsigned int)) 475 return 0; 476 if (count > (prof_len+1)*sizeof(unsigned int) - p) 477 count = (prof_len+1)*sizeof(unsigned int) - p; 478 read = 0; 479 480 while (p < sizeof(unsigned int) && count > 0) { 481 if (put_user(*((char *)(&sample_step)+p), buf)) 482 return -EFAULT; 483 buf++; p++; count--; read++; 484 } 485 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 486 if (copy_to_user(buf, (void *)pnt, count)) 487 return -EFAULT; 488 read += count; 489 *ppos += read; 490 return read; 491 } 492 493 /* 494 * Writing to /proc/profile resets the counters 495 * 496 * Writing a 'profiling multiplier' value into it also re-sets the profiling 497 * interrupt frequency, on architectures that support this. 498 */ 499 static ssize_t write_profile(struct file *file, const char __user *buf, 500 size_t count, loff_t *ppos) 501 { 502 #ifdef CONFIG_SMP 503 extern int setup_profiling_timer(unsigned int multiplier); 504 505 if (count == sizeof(int)) { 506 unsigned int multiplier; 507 508 if (copy_from_user(&multiplier, buf, sizeof(int))) 509 return -EFAULT; 510 511 if (setup_profiling_timer(multiplier)) 512 return -EINVAL; 513 } 514 #endif 515 profile_discard_flip_buffers(); 516 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 517 return count; 518 } 519 520 static const struct proc_ops profile_proc_ops = { 521 .proc_read = read_profile, 522 .proc_write = write_profile, 523 .proc_lseek = default_llseek, 524 }; 525 526 int __ref create_proc_profile(void) 527 { 528 struct proc_dir_entry *entry; 529 #ifdef CONFIG_SMP 530 enum cpuhp_state online_state; 531 #endif 532 533 int err = 0; 534 535 if (!prof_on) 536 return 0; 537 #ifdef CONFIG_SMP 538 err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", 539 profile_prepare_cpu, profile_dead_cpu); 540 if (err) 541 return err; 542 543 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", 544 profile_online_cpu, NULL); 545 if (err < 0) 546 goto err_state_prep; 547 online_state = err; 548 err = 0; 549 #endif 550 entry = proc_create("profile", S_IWUSR | S_IRUGO, 551 NULL, &profile_proc_ops); 552 if (!entry) 553 goto err_state_onl; 554 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); 555 556 return err; 557 err_state_onl: 558 #ifdef CONFIG_SMP 559 cpuhp_remove_state(online_state); 560 err_state_prep: 561 cpuhp_remove_state(CPUHP_PROFILE_PREPARE); 562 #endif 563 return err; 564 } 565 subsys_initcall(create_proc_profile); 566 #endif /* CONFIG_PROC_FS */ 567