1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/module.h> 17 #include <linux/profile.h> 18 #include <linux/bootmem.h> 19 #include <linux/notifier.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/profile.h> 24 #include <linux/highmem.h> 25 #include <linux/mutex.h> 26 #include <asm/sections.h> 27 #include <asm/semaphore.h> 28 #include <asm/irq_regs.h> 29 #include <asm/ptrace.h> 30 31 struct profile_hit { 32 u32 pc, hits; 33 }; 34 #define PROFILE_GRPSHIFT 3 35 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 36 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 37 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 38 39 /* Oprofile timer tick hook */ 40 static int (*timer_hook)(struct pt_regs *) __read_mostly; 41 42 static atomic_t *prof_buffer; 43 static unsigned long prof_len, prof_shift; 44 45 int prof_on __read_mostly; 46 EXPORT_SYMBOL_GPL(prof_on); 47 48 static cpumask_t prof_cpu_mask = CPU_MASK_ALL; 49 #ifdef CONFIG_SMP 50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 51 static DEFINE_PER_CPU(int, cpu_profile_flip); 52 static DEFINE_MUTEX(profile_flip_mutex); 53 #endif /* CONFIG_SMP */ 54 55 static int __init profile_setup(char *str) 56 { 57 static char __initdata schedstr[] = "schedule"; 58 static char __initdata sleepstr[] = "sleep"; 59 static char __initdata kvmstr[] = "kvm"; 60 int par; 61 62 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 63 #ifdef CONFIG_SCHEDSTATS 64 prof_on = SLEEP_PROFILING; 65 if (str[strlen(sleepstr)] == ',') 66 str += strlen(sleepstr) + 1; 67 if (get_option(&str, &par)) 68 prof_shift = par; 69 printk(KERN_INFO 70 "kernel sleep profiling enabled (shift: %ld)\n", 71 prof_shift); 72 #else 73 printk(KERN_WARNING 74 "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 75 #endif /* CONFIG_SCHEDSTATS */ 76 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 77 prof_on = SCHED_PROFILING; 78 if (str[strlen(schedstr)] == ',') 79 str += strlen(schedstr) + 1; 80 if (get_option(&str, &par)) 81 prof_shift = par; 82 printk(KERN_INFO 83 "kernel schedule profiling enabled (shift: %ld)\n", 84 prof_shift); 85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 86 prof_on = KVM_PROFILING; 87 if (str[strlen(kvmstr)] == ',') 88 str += strlen(kvmstr) + 1; 89 if (get_option(&str, &par)) 90 prof_shift = par; 91 printk(KERN_INFO 92 "kernel KVM profiling enabled (shift: %ld)\n", 93 prof_shift); 94 } else if (get_option(&str, &par)) { 95 prof_shift = par; 96 prof_on = CPU_PROFILING; 97 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 98 prof_shift); 99 } 100 return 1; 101 } 102 __setup("profile=", profile_setup); 103 104 105 void __init profile_init(void) 106 { 107 if (!prof_on) 108 return; 109 110 /* only text is profiled */ 111 prof_len = (_etext - _stext) >> prof_shift; 112 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); 113 } 114 115 /* Profile event notifications */ 116 117 #ifdef CONFIG_PROFILING 118 119 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 120 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 121 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 122 123 void profile_task_exit(struct task_struct *task) 124 { 125 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 126 } 127 128 int profile_handoff_task(struct task_struct *task) 129 { 130 int ret; 131 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 132 return (ret == NOTIFY_OK) ? 1 : 0; 133 } 134 135 void profile_munmap(unsigned long addr) 136 { 137 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 138 } 139 140 int task_handoff_register(struct notifier_block *n) 141 { 142 return atomic_notifier_chain_register(&task_free_notifier, n); 143 } 144 EXPORT_SYMBOL_GPL(task_handoff_register); 145 146 int task_handoff_unregister(struct notifier_block *n) 147 { 148 return atomic_notifier_chain_unregister(&task_free_notifier, n); 149 } 150 EXPORT_SYMBOL_GPL(task_handoff_unregister); 151 152 int profile_event_register(enum profile_type type, struct notifier_block *n) 153 { 154 int err = -EINVAL; 155 156 switch (type) { 157 case PROFILE_TASK_EXIT: 158 err = blocking_notifier_chain_register( 159 &task_exit_notifier, n); 160 break; 161 case PROFILE_MUNMAP: 162 err = blocking_notifier_chain_register( 163 &munmap_notifier, n); 164 break; 165 } 166 167 return err; 168 } 169 EXPORT_SYMBOL_GPL(profile_event_register); 170 171 int profile_event_unregister(enum profile_type type, struct notifier_block *n) 172 { 173 int err = -EINVAL; 174 175 switch (type) { 176 case PROFILE_TASK_EXIT: 177 err = blocking_notifier_chain_unregister( 178 &task_exit_notifier, n); 179 break; 180 case PROFILE_MUNMAP: 181 err = blocking_notifier_chain_unregister( 182 &munmap_notifier, n); 183 break; 184 } 185 186 return err; 187 } 188 EXPORT_SYMBOL_GPL(profile_event_unregister); 189 190 int register_timer_hook(int (*hook)(struct pt_regs *)) 191 { 192 if (timer_hook) 193 return -EBUSY; 194 timer_hook = hook; 195 return 0; 196 } 197 EXPORT_SYMBOL_GPL(register_timer_hook); 198 199 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 200 { 201 WARN_ON(hook != timer_hook); 202 timer_hook = NULL; 203 /* make sure all CPUs see the NULL hook */ 204 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 205 } 206 EXPORT_SYMBOL_GPL(unregister_timer_hook); 207 208 #endif /* CONFIG_PROFILING */ 209 210 211 #ifdef CONFIG_SMP 212 /* 213 * Each cpu has a pair of open-addressed hashtables for pending 214 * profile hits. read_profile() IPI's all cpus to request them 215 * to flip buffers and flushes their contents to prof_buffer itself. 216 * Flip requests are serialized by the profile_flip_mutex. The sole 217 * use of having a second hashtable is for avoiding cacheline 218 * contention that would otherwise happen during flushes of pending 219 * profile hits required for the accuracy of reported profile hits 220 * and so resurrect the interrupt livelock issue. 221 * 222 * The open-addressed hashtables are indexed by profile buffer slot 223 * and hold the number of pending hits to that profile buffer slot on 224 * a cpu in an entry. When the hashtable overflows, all pending hits 225 * are accounted to their corresponding profile buffer slots with 226 * atomic_add() and the hashtable emptied. As numerous pending hits 227 * may be accounted to a profile buffer slot in a hashtable entry, 228 * this amortizes a number of atomic profile buffer increments likely 229 * to be far larger than the number of entries in the hashtable, 230 * particularly given that the number of distinct profile buffer 231 * positions to which hits are accounted during short intervals (e.g. 232 * several seconds) is usually very small. Exclusion from buffer 233 * flipping is provided by interrupt disablement (note that for 234 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 235 * process context). 236 * The hash function is meant to be lightweight as opposed to strong, 237 * and was vaguely inspired by ppc64 firmware-supported inverted 238 * pagetable hash functions, but uses a full hashtable full of finite 239 * collision chains, not just pairs of them. 240 * 241 * -- wli 242 */ 243 static void __profile_flip_buffers(void *unused) 244 { 245 int cpu = smp_processor_id(); 246 247 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 248 } 249 250 static void profile_flip_buffers(void) 251 { 252 int i, j, cpu; 253 254 mutex_lock(&profile_flip_mutex); 255 j = per_cpu(cpu_profile_flip, get_cpu()); 256 put_cpu(); 257 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 258 for_each_online_cpu(cpu) { 259 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 260 for (i = 0; i < NR_PROFILE_HIT; ++i) { 261 if (!hits[i].hits) { 262 if (hits[i].pc) 263 hits[i].pc = 0; 264 continue; 265 } 266 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 267 hits[i].hits = hits[i].pc = 0; 268 } 269 } 270 mutex_unlock(&profile_flip_mutex); 271 } 272 273 static void profile_discard_flip_buffers(void) 274 { 275 int i, cpu; 276 277 mutex_lock(&profile_flip_mutex); 278 i = per_cpu(cpu_profile_flip, get_cpu()); 279 put_cpu(); 280 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 281 for_each_online_cpu(cpu) { 282 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 283 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 284 } 285 mutex_unlock(&profile_flip_mutex); 286 } 287 288 void profile_hits(int type, void *__pc, unsigned int nr_hits) 289 { 290 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 291 int i, j, cpu; 292 struct profile_hit *hits; 293 294 if (prof_on != type || !prof_buffer) 295 return; 296 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 297 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 298 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 299 cpu = get_cpu(); 300 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 301 if (!hits) { 302 put_cpu(); 303 return; 304 } 305 /* 306 * We buffer the global profiler buffer into a per-CPU 307 * queue and thus reduce the number of global (and possibly 308 * NUMA-alien) accesses. The write-queue is self-coalescing: 309 */ 310 local_irq_save(flags); 311 do { 312 for (j = 0; j < PROFILE_GRPSZ; ++j) { 313 if (hits[i + j].pc == pc) { 314 hits[i + j].hits += nr_hits; 315 goto out; 316 } else if (!hits[i + j].hits) { 317 hits[i + j].pc = pc; 318 hits[i + j].hits = nr_hits; 319 goto out; 320 } 321 } 322 i = (i + secondary) & (NR_PROFILE_HIT - 1); 323 } while (i != primary); 324 325 /* 326 * Add the current hit(s) and flush the write-queue out 327 * to the global buffer: 328 */ 329 atomic_add(nr_hits, &prof_buffer[pc]); 330 for (i = 0; i < NR_PROFILE_HIT; ++i) { 331 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 332 hits[i].pc = hits[i].hits = 0; 333 } 334 out: 335 local_irq_restore(flags); 336 put_cpu(); 337 } 338 339 static int __devinit profile_cpu_callback(struct notifier_block *info, 340 unsigned long action, void *__cpu) 341 { 342 int node, cpu = (unsigned long)__cpu; 343 struct page *page; 344 345 switch (action) { 346 case CPU_UP_PREPARE: 347 case CPU_UP_PREPARE_FROZEN: 348 node = cpu_to_node(cpu); 349 per_cpu(cpu_profile_flip, cpu) = 0; 350 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 351 page = alloc_pages_node(node, 352 GFP_KERNEL | __GFP_ZERO, 353 0); 354 if (!page) 355 return NOTIFY_BAD; 356 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 357 } 358 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 359 page = alloc_pages_node(node, 360 GFP_KERNEL | __GFP_ZERO, 361 0); 362 if (!page) 363 goto out_free; 364 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 365 } 366 break; 367 out_free: 368 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 369 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 370 __free_page(page); 371 return NOTIFY_BAD; 372 case CPU_ONLINE: 373 case CPU_ONLINE_FROZEN: 374 cpu_set(cpu, prof_cpu_mask); 375 break; 376 case CPU_UP_CANCELED: 377 case CPU_UP_CANCELED_FROZEN: 378 case CPU_DEAD: 379 case CPU_DEAD_FROZEN: 380 cpu_clear(cpu, prof_cpu_mask); 381 if (per_cpu(cpu_profile_hits, cpu)[0]) { 382 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 383 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 384 __free_page(page); 385 } 386 if (per_cpu(cpu_profile_hits, cpu)[1]) { 387 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 388 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 389 __free_page(page); 390 } 391 break; 392 } 393 return NOTIFY_OK; 394 } 395 #else /* !CONFIG_SMP */ 396 #define profile_flip_buffers() do { } while (0) 397 #define profile_discard_flip_buffers() do { } while (0) 398 #define profile_cpu_callback NULL 399 400 void profile_hits(int type, void *__pc, unsigned int nr_hits) 401 { 402 unsigned long pc; 403 404 if (prof_on != type || !prof_buffer) 405 return; 406 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 407 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 408 } 409 #endif /* !CONFIG_SMP */ 410 EXPORT_SYMBOL_GPL(profile_hits); 411 412 void profile_tick(int type) 413 { 414 struct pt_regs *regs = get_irq_regs(); 415 416 if (type == CPU_PROFILING && timer_hook) 417 timer_hook(regs); 418 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) 419 profile_hit(type, (void *)profile_pc(regs)); 420 } 421 422 #ifdef CONFIG_PROC_FS 423 #include <linux/proc_fs.h> 424 #include <asm/uaccess.h> 425 #include <asm/ptrace.h> 426 427 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, 428 int count, int *eof, void *data) 429 { 430 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); 431 if (count - len < 2) 432 return -EINVAL; 433 len += sprintf(page + len, "\n"); 434 return len; 435 } 436 437 static int prof_cpu_mask_write_proc(struct file *file, 438 const char __user *buffer, unsigned long count, void *data) 439 { 440 cpumask_t *mask = (cpumask_t *)data; 441 unsigned long full_count = count, err; 442 cpumask_t new_value; 443 444 err = cpumask_parse_user(buffer, count, new_value); 445 if (err) 446 return err; 447 448 *mask = new_value; 449 return full_count; 450 } 451 452 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 453 { 454 struct proc_dir_entry *entry; 455 456 /* create /proc/irq/prof_cpu_mask */ 457 entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); 458 if (!entry) 459 return; 460 entry->data = (void *)&prof_cpu_mask; 461 entry->read_proc = prof_cpu_mask_read_proc; 462 entry->write_proc = prof_cpu_mask_write_proc; 463 } 464 465 /* 466 * This function accesses profiling information. The returned data is 467 * binary: the sampling step and the actual contents of the profile 468 * buffer. Use of the program readprofile is recommended in order to 469 * get meaningful info out of these data. 470 */ 471 static ssize_t 472 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 473 { 474 unsigned long p = *ppos; 475 ssize_t read; 476 char *pnt; 477 unsigned int sample_step = 1 << prof_shift; 478 479 profile_flip_buffers(); 480 if (p >= (prof_len+1)*sizeof(unsigned int)) 481 return 0; 482 if (count > (prof_len+1)*sizeof(unsigned int) - p) 483 count = (prof_len+1)*sizeof(unsigned int) - p; 484 read = 0; 485 486 while (p < sizeof(unsigned int) && count > 0) { 487 if (put_user(*((char *)(&sample_step)+p), buf)) 488 return -EFAULT; 489 buf++; p++; count--; read++; 490 } 491 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 492 if (copy_to_user(buf, (void *)pnt, count)) 493 return -EFAULT; 494 read += count; 495 *ppos += read; 496 return read; 497 } 498 499 /* 500 * Writing to /proc/profile resets the counters 501 * 502 * Writing a 'profiling multiplier' value into it also re-sets the profiling 503 * interrupt frequency, on architectures that support this. 504 */ 505 static ssize_t write_profile(struct file *file, const char __user *buf, 506 size_t count, loff_t *ppos) 507 { 508 #ifdef CONFIG_SMP 509 extern int setup_profiling_timer(unsigned int multiplier); 510 511 if (count == sizeof(int)) { 512 unsigned int multiplier; 513 514 if (copy_from_user(&multiplier, buf, sizeof(int))) 515 return -EFAULT; 516 517 if (setup_profiling_timer(multiplier)) 518 return -EINVAL; 519 } 520 #endif 521 profile_discard_flip_buffers(); 522 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 523 return count; 524 } 525 526 static const struct file_operations proc_profile_operations = { 527 .read = read_profile, 528 .write = write_profile, 529 }; 530 531 #ifdef CONFIG_SMP 532 static void __init profile_nop(void *unused) 533 { 534 } 535 536 static int __init create_hash_tables(void) 537 { 538 int cpu; 539 540 for_each_online_cpu(cpu) { 541 int node = cpu_to_node(cpu); 542 struct page *page; 543 544 page = alloc_pages_node(node, 545 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 546 0); 547 if (!page) 548 goto out_cleanup; 549 per_cpu(cpu_profile_hits, cpu)[1] 550 = (struct profile_hit *)page_address(page); 551 page = alloc_pages_node(node, 552 GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, 553 0); 554 if (!page) 555 goto out_cleanup; 556 per_cpu(cpu_profile_hits, cpu)[0] 557 = (struct profile_hit *)page_address(page); 558 } 559 return 0; 560 out_cleanup: 561 prof_on = 0; 562 smp_mb(); 563 on_each_cpu(profile_nop, NULL, 0, 1); 564 for_each_online_cpu(cpu) { 565 struct page *page; 566 567 if (per_cpu(cpu_profile_hits, cpu)[0]) { 568 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 569 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 570 __free_page(page); 571 } 572 if (per_cpu(cpu_profile_hits, cpu)[1]) { 573 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 574 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 575 __free_page(page); 576 } 577 } 578 return -1; 579 } 580 #else 581 #define create_hash_tables() ({ 0; }) 582 #endif 583 584 static int __init create_proc_profile(void) 585 { 586 struct proc_dir_entry *entry; 587 588 if (!prof_on) 589 return 0; 590 if (create_hash_tables()) 591 return -1; 592 entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL); 593 if (!entry) 594 return 0; 595 entry->proc_fops = &proc_profile_operations; 596 entry->size = (1+prof_len) * sizeof(atomic_t); 597 hotcpu_notifier(profile_cpu_callback, 0); 598 return 0; 599 } 600 module_init(create_proc_profile); 601 #endif /* CONFIG_PROC_FS */ 602