xref: /linux/kernel/profile.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/profile.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
32 	u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT	3
35 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 static int __init profile_setup(char *str)
56 {
57 	static char __initdata schedstr[] = "schedule";
58 	static char __initdata sleepstr[] = "sleep";
59 	static char __initdata kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 		prof_on = SLEEP_PROFILING;
65 		if (str[strlen(sleepstr)] == ',')
66 			str += strlen(sleepstr) + 1;
67 		if (get_option(&str, &par))
68 			prof_shift = par;
69 		printk(KERN_INFO
70 			"kernel sleep profiling enabled (shift: %ld)\n",
71 			prof_shift);
72 #else
73 		printk(KERN_WARNING
74 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 		prof_on = SCHED_PROFILING;
78 		if (str[strlen(schedstr)] == ',')
79 			str += strlen(schedstr) + 1;
80 		if (get_option(&str, &par))
81 			prof_shift = par;
82 		printk(KERN_INFO
83 			"kernel schedule profiling enabled (shift: %ld)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = par;
91 		printk(KERN_INFO
92 			"kernel KVM profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	} else if (get_option(&str, &par)) {
95 		prof_shift = par;
96 		prof_on = CPU_PROFILING;
97 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 			prof_shift);
99 	}
100 	return 1;
101 }
102 __setup("profile=", profile_setup);
103 
104 
105 void __init profile_init(void)
106 {
107 	if (!prof_on)
108 		return;
109 
110 	/* only text is profiled */
111 	prof_len = (_etext - _stext) >> prof_shift;
112 	prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
113 }
114 
115 /* Profile event notifications */
116 
117 #ifdef CONFIG_PROFILING
118 
119 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
120 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
121 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
122 
123 void profile_task_exit(struct task_struct *task)
124 {
125 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
126 }
127 
128 int profile_handoff_task(struct task_struct *task)
129 {
130 	int ret;
131 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
132 	return (ret == NOTIFY_OK) ? 1 : 0;
133 }
134 
135 void profile_munmap(unsigned long addr)
136 {
137 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
138 }
139 
140 int task_handoff_register(struct notifier_block *n)
141 {
142 	return atomic_notifier_chain_register(&task_free_notifier, n);
143 }
144 EXPORT_SYMBOL_GPL(task_handoff_register);
145 
146 int task_handoff_unregister(struct notifier_block *n)
147 {
148 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
149 }
150 EXPORT_SYMBOL_GPL(task_handoff_unregister);
151 
152 int profile_event_register(enum profile_type type, struct notifier_block *n)
153 {
154 	int err = -EINVAL;
155 
156 	switch (type) {
157 	case PROFILE_TASK_EXIT:
158 		err = blocking_notifier_chain_register(
159 				&task_exit_notifier, n);
160 		break;
161 	case PROFILE_MUNMAP:
162 		err = blocking_notifier_chain_register(
163 				&munmap_notifier, n);
164 		break;
165 	}
166 
167 	return err;
168 }
169 EXPORT_SYMBOL_GPL(profile_event_register);
170 
171 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
172 {
173 	int err = -EINVAL;
174 
175 	switch (type) {
176 	case PROFILE_TASK_EXIT:
177 		err = blocking_notifier_chain_unregister(
178 				&task_exit_notifier, n);
179 		break;
180 	case PROFILE_MUNMAP:
181 		err = blocking_notifier_chain_unregister(
182 				&munmap_notifier, n);
183 		break;
184 	}
185 
186 	return err;
187 }
188 EXPORT_SYMBOL_GPL(profile_event_unregister);
189 
190 int register_timer_hook(int (*hook)(struct pt_regs *))
191 {
192 	if (timer_hook)
193 		return -EBUSY;
194 	timer_hook = hook;
195 	return 0;
196 }
197 EXPORT_SYMBOL_GPL(register_timer_hook);
198 
199 void unregister_timer_hook(int (*hook)(struct pt_regs *))
200 {
201 	WARN_ON(hook != timer_hook);
202 	timer_hook = NULL;
203 	/* make sure all CPUs see the NULL hook */
204 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
205 }
206 EXPORT_SYMBOL_GPL(unregister_timer_hook);
207 
208 #endif /* CONFIG_PROFILING */
209 
210 
211 #ifdef CONFIG_SMP
212 /*
213  * Each cpu has a pair of open-addressed hashtables for pending
214  * profile hits. read_profile() IPI's all cpus to request them
215  * to flip buffers and flushes their contents to prof_buffer itself.
216  * Flip requests are serialized by the profile_flip_mutex. The sole
217  * use of having a second hashtable is for avoiding cacheline
218  * contention that would otherwise happen during flushes of pending
219  * profile hits required for the accuracy of reported profile hits
220  * and so resurrect the interrupt livelock issue.
221  *
222  * The open-addressed hashtables are indexed by profile buffer slot
223  * and hold the number of pending hits to that profile buffer slot on
224  * a cpu in an entry. When the hashtable overflows, all pending hits
225  * are accounted to their corresponding profile buffer slots with
226  * atomic_add() and the hashtable emptied. As numerous pending hits
227  * may be accounted to a profile buffer slot in a hashtable entry,
228  * this amortizes a number of atomic profile buffer increments likely
229  * to be far larger than the number of entries in the hashtable,
230  * particularly given that the number of distinct profile buffer
231  * positions to which hits are accounted during short intervals (e.g.
232  * several seconds) is usually very small. Exclusion from buffer
233  * flipping is provided by interrupt disablement (note that for
234  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
235  * process context).
236  * The hash function is meant to be lightweight as opposed to strong,
237  * and was vaguely inspired by ppc64 firmware-supported inverted
238  * pagetable hash functions, but uses a full hashtable full of finite
239  * collision chains, not just pairs of them.
240  *
241  * -- wli
242  */
243 static void __profile_flip_buffers(void *unused)
244 {
245 	int cpu = smp_processor_id();
246 
247 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
248 }
249 
250 static void profile_flip_buffers(void)
251 {
252 	int i, j, cpu;
253 
254 	mutex_lock(&profile_flip_mutex);
255 	j = per_cpu(cpu_profile_flip, get_cpu());
256 	put_cpu();
257 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
258 	for_each_online_cpu(cpu) {
259 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
260 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
261 			if (!hits[i].hits) {
262 				if (hits[i].pc)
263 					hits[i].pc = 0;
264 				continue;
265 			}
266 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
267 			hits[i].hits = hits[i].pc = 0;
268 		}
269 	}
270 	mutex_unlock(&profile_flip_mutex);
271 }
272 
273 static void profile_discard_flip_buffers(void)
274 {
275 	int i, cpu;
276 
277 	mutex_lock(&profile_flip_mutex);
278 	i = per_cpu(cpu_profile_flip, get_cpu());
279 	put_cpu();
280 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
281 	for_each_online_cpu(cpu) {
282 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
283 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
284 	}
285 	mutex_unlock(&profile_flip_mutex);
286 }
287 
288 void profile_hits(int type, void *__pc, unsigned int nr_hits)
289 {
290 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
291 	int i, j, cpu;
292 	struct profile_hit *hits;
293 
294 	if (prof_on != type || !prof_buffer)
295 		return;
296 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
297 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
298 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
299 	cpu = get_cpu();
300 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
301 	if (!hits) {
302 		put_cpu();
303 		return;
304 	}
305 	/*
306 	 * We buffer the global profiler buffer into a per-CPU
307 	 * queue and thus reduce the number of global (and possibly
308 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
309 	 */
310 	local_irq_save(flags);
311 	do {
312 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
313 			if (hits[i + j].pc == pc) {
314 				hits[i + j].hits += nr_hits;
315 				goto out;
316 			} else if (!hits[i + j].hits) {
317 				hits[i + j].pc = pc;
318 				hits[i + j].hits = nr_hits;
319 				goto out;
320 			}
321 		}
322 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
323 	} while (i != primary);
324 
325 	/*
326 	 * Add the current hit(s) and flush the write-queue out
327 	 * to the global buffer:
328 	 */
329 	atomic_add(nr_hits, &prof_buffer[pc]);
330 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
331 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
332 		hits[i].pc = hits[i].hits = 0;
333 	}
334 out:
335 	local_irq_restore(flags);
336 	put_cpu();
337 }
338 
339 static int __devinit profile_cpu_callback(struct notifier_block *info,
340 					unsigned long action, void *__cpu)
341 {
342 	int node, cpu = (unsigned long)__cpu;
343 	struct page *page;
344 
345 	switch (action) {
346 	case CPU_UP_PREPARE:
347 	case CPU_UP_PREPARE_FROZEN:
348 		node = cpu_to_node(cpu);
349 		per_cpu(cpu_profile_flip, cpu) = 0;
350 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
351 			page = alloc_pages_node(node,
352 					GFP_KERNEL | __GFP_ZERO,
353 					0);
354 			if (!page)
355 				return NOTIFY_BAD;
356 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
357 		}
358 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
359 			page = alloc_pages_node(node,
360 					GFP_KERNEL | __GFP_ZERO,
361 					0);
362 			if (!page)
363 				goto out_free;
364 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
365 		}
366 		break;
367 out_free:
368 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
369 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
370 		__free_page(page);
371 		return NOTIFY_BAD;
372 	case CPU_ONLINE:
373 	case CPU_ONLINE_FROZEN:
374 		cpu_set(cpu, prof_cpu_mask);
375 		break;
376 	case CPU_UP_CANCELED:
377 	case CPU_UP_CANCELED_FROZEN:
378 	case CPU_DEAD:
379 	case CPU_DEAD_FROZEN:
380 		cpu_clear(cpu, prof_cpu_mask);
381 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
382 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
383 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
384 			__free_page(page);
385 		}
386 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
387 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
388 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
389 			__free_page(page);
390 		}
391 		break;
392 	}
393 	return NOTIFY_OK;
394 }
395 #else /* !CONFIG_SMP */
396 #define profile_flip_buffers()		do { } while (0)
397 #define profile_discard_flip_buffers()	do { } while (0)
398 #define profile_cpu_callback		NULL
399 
400 void profile_hits(int type, void *__pc, unsigned int nr_hits)
401 {
402 	unsigned long pc;
403 
404 	if (prof_on != type || !prof_buffer)
405 		return;
406 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
407 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
408 }
409 #endif /* !CONFIG_SMP */
410 EXPORT_SYMBOL_GPL(profile_hits);
411 
412 void profile_tick(int type)
413 {
414 	struct pt_regs *regs = get_irq_regs();
415 
416 	if (type == CPU_PROFILING && timer_hook)
417 		timer_hook(regs);
418 	if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
419 		profile_hit(type, (void *)profile_pc(regs));
420 }
421 
422 #ifdef CONFIG_PROC_FS
423 #include <linux/proc_fs.h>
424 #include <asm/uaccess.h>
425 #include <asm/ptrace.h>
426 
427 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
428 			int count, int *eof, void *data)
429 {
430 	int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
431 	if (count - len < 2)
432 		return -EINVAL;
433 	len += sprintf(page + len, "\n");
434 	return len;
435 }
436 
437 static int prof_cpu_mask_write_proc(struct file *file,
438 	const char __user *buffer,  unsigned long count, void *data)
439 {
440 	cpumask_t *mask = (cpumask_t *)data;
441 	unsigned long full_count = count, err;
442 	cpumask_t new_value;
443 
444 	err = cpumask_parse_user(buffer, count, new_value);
445 	if (err)
446 		return err;
447 
448 	*mask = new_value;
449 	return full_count;
450 }
451 
452 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
453 {
454 	struct proc_dir_entry *entry;
455 
456 	/* create /proc/irq/prof_cpu_mask */
457 	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
458 	if (!entry)
459 		return;
460 	entry->data = (void *)&prof_cpu_mask;
461 	entry->read_proc = prof_cpu_mask_read_proc;
462 	entry->write_proc = prof_cpu_mask_write_proc;
463 }
464 
465 /*
466  * This function accesses profiling information. The returned data is
467  * binary: the sampling step and the actual contents of the profile
468  * buffer. Use of the program readprofile is recommended in order to
469  * get meaningful info out of these data.
470  */
471 static ssize_t
472 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
473 {
474 	unsigned long p = *ppos;
475 	ssize_t read;
476 	char *pnt;
477 	unsigned int sample_step = 1 << prof_shift;
478 
479 	profile_flip_buffers();
480 	if (p >= (prof_len+1)*sizeof(unsigned int))
481 		return 0;
482 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
483 		count = (prof_len+1)*sizeof(unsigned int) - p;
484 	read = 0;
485 
486 	while (p < sizeof(unsigned int) && count > 0) {
487 		if (put_user(*((char *)(&sample_step)+p), buf))
488 			return -EFAULT;
489 		buf++; p++; count--; read++;
490 	}
491 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
492 	if (copy_to_user(buf, (void *)pnt, count))
493 		return -EFAULT;
494 	read += count;
495 	*ppos += read;
496 	return read;
497 }
498 
499 /*
500  * Writing to /proc/profile resets the counters
501  *
502  * Writing a 'profiling multiplier' value into it also re-sets the profiling
503  * interrupt frequency, on architectures that support this.
504  */
505 static ssize_t write_profile(struct file *file, const char __user *buf,
506 			     size_t count, loff_t *ppos)
507 {
508 #ifdef CONFIG_SMP
509 	extern int setup_profiling_timer(unsigned int multiplier);
510 
511 	if (count == sizeof(int)) {
512 		unsigned int multiplier;
513 
514 		if (copy_from_user(&multiplier, buf, sizeof(int)))
515 			return -EFAULT;
516 
517 		if (setup_profiling_timer(multiplier))
518 			return -EINVAL;
519 	}
520 #endif
521 	profile_discard_flip_buffers();
522 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
523 	return count;
524 }
525 
526 static const struct file_operations proc_profile_operations = {
527 	.read		= read_profile,
528 	.write		= write_profile,
529 };
530 
531 #ifdef CONFIG_SMP
532 static void __init profile_nop(void *unused)
533 {
534 }
535 
536 static int __init create_hash_tables(void)
537 {
538 	int cpu;
539 
540 	for_each_online_cpu(cpu) {
541 		int node = cpu_to_node(cpu);
542 		struct page *page;
543 
544 		page = alloc_pages_node(node,
545 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
546 				0);
547 		if (!page)
548 			goto out_cleanup;
549 		per_cpu(cpu_profile_hits, cpu)[1]
550 				= (struct profile_hit *)page_address(page);
551 		page = alloc_pages_node(node,
552 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
553 				0);
554 		if (!page)
555 			goto out_cleanup;
556 		per_cpu(cpu_profile_hits, cpu)[0]
557 				= (struct profile_hit *)page_address(page);
558 	}
559 	return 0;
560 out_cleanup:
561 	prof_on = 0;
562 	smp_mb();
563 	on_each_cpu(profile_nop, NULL, 0, 1);
564 	for_each_online_cpu(cpu) {
565 		struct page *page;
566 
567 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
568 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
569 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
570 			__free_page(page);
571 		}
572 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
573 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
574 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
575 			__free_page(page);
576 		}
577 	}
578 	return -1;
579 }
580 #else
581 #define create_hash_tables()			({ 0; })
582 #endif
583 
584 static int __init create_proc_profile(void)
585 {
586 	struct proc_dir_entry *entry;
587 
588 	if (!prof_on)
589 		return 0;
590 	if (create_hash_tables())
591 		return -1;
592 	entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL);
593 	if (!entry)
594 		return 0;
595 	entry->proc_fops = &proc_profile_operations;
596 	entry->size = (1+prof_len) * sizeof(atomic_t);
597 	hotcpu_notifier(profile_cpu_callback, 0);
598 	return 0;
599 }
600 module_init(create_proc_profile);
601 #endif /* CONFIG_PROC_FS */
602