1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/profile.c 4 * Simple profiling. Manages a direct-mapped profile hit count buffer, 5 * with configurable resolution, support for restricting the cpus on 6 * which profiling is done, and switching between cpu time and 7 * schedule() calls via kernel command line parameters passed at boot. 8 * 9 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 10 * Red Hat, July 2004 11 * Consolidation of architecture support code for profiling, 12 * Nadia Yvette Chambers, Oracle, July 2004 13 * Amortized hit count accounting via per-cpu open-addressed hashtables 14 * to resolve timer interrupt livelocks, Nadia Yvette Chambers, 15 * Oracle, 2004 16 */ 17 18 #include <linux/export.h> 19 #include <linux/profile.h> 20 #include <linux/memblock.h> 21 #include <linux/notifier.h> 22 #include <linux/mm.h> 23 #include <linux/cpumask.h> 24 #include <linux/cpu.h> 25 #include <linux/highmem.h> 26 #include <linux/mutex.h> 27 #include <linux/slab.h> 28 #include <linux/vmalloc.h> 29 #include <linux/sched/stat.h> 30 31 #include <asm/sections.h> 32 #include <asm/irq_regs.h> 33 #include <asm/ptrace.h> 34 35 struct profile_hit { 36 u32 pc, hits; 37 }; 38 #define PROFILE_GRPSHIFT 3 39 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 40 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 41 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 42 43 static atomic_t *prof_buffer; 44 static unsigned long prof_len; 45 static unsigned short int prof_shift; 46 47 int prof_on __read_mostly; 48 EXPORT_SYMBOL_GPL(prof_on); 49 50 static cpumask_var_t prof_cpu_mask; 51 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 52 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 53 static DEFINE_PER_CPU(int, cpu_profile_flip); 54 static DEFINE_MUTEX(profile_flip_mutex); 55 #endif /* CONFIG_SMP */ 56 57 int profile_setup(char *str) 58 { 59 static const char schedstr[] = "schedule"; 60 static const char sleepstr[] = "sleep"; 61 static const char kvmstr[] = "kvm"; 62 int par; 63 64 if (!strncmp(str, sleepstr, strlen(sleepstr))) { 65 #ifdef CONFIG_SCHEDSTATS 66 force_schedstat_enabled(); 67 prof_on = SLEEP_PROFILING; 68 if (str[strlen(sleepstr)] == ',') 69 str += strlen(sleepstr) + 1; 70 if (get_option(&str, &par)) 71 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 72 pr_info("kernel sleep profiling enabled (shift: %u)\n", 73 prof_shift); 74 #else 75 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); 76 #endif /* CONFIG_SCHEDSTATS */ 77 } else if (!strncmp(str, schedstr, strlen(schedstr))) { 78 prof_on = SCHED_PROFILING; 79 if (str[strlen(schedstr)] == ',') 80 str += strlen(schedstr) + 1; 81 if (get_option(&str, &par)) 82 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 83 pr_info("kernel schedule profiling enabled (shift: %u)\n", 84 prof_shift); 85 } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { 86 prof_on = KVM_PROFILING; 87 if (str[strlen(kvmstr)] == ',') 88 str += strlen(kvmstr) + 1; 89 if (get_option(&str, &par)) 90 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 91 pr_info("kernel KVM profiling enabled (shift: %u)\n", 92 prof_shift); 93 } else if (get_option(&str, &par)) { 94 prof_shift = clamp(par, 0, BITS_PER_LONG - 1); 95 prof_on = CPU_PROFILING; 96 pr_info("kernel profiling enabled (shift: %u)\n", 97 prof_shift); 98 } 99 return 1; 100 } 101 __setup("profile=", profile_setup); 102 103 104 int __ref profile_init(void) 105 { 106 int buffer_bytes; 107 if (!prof_on) 108 return 0; 109 110 /* only text is profiled */ 111 prof_len = (_etext - _stext) >> prof_shift; 112 buffer_bytes = prof_len*sizeof(atomic_t); 113 114 if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) 115 return -ENOMEM; 116 117 cpumask_copy(prof_cpu_mask, cpu_possible_mask); 118 119 prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); 120 if (prof_buffer) 121 return 0; 122 123 prof_buffer = alloc_pages_exact(buffer_bytes, 124 GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); 125 if (prof_buffer) 126 return 0; 127 128 prof_buffer = vzalloc(buffer_bytes); 129 if (prof_buffer) 130 return 0; 131 132 free_cpumask_var(prof_cpu_mask); 133 return -ENOMEM; 134 } 135 136 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) 137 /* 138 * Each cpu has a pair of open-addressed hashtables for pending 139 * profile hits. read_profile() IPI's all cpus to request them 140 * to flip buffers and flushes their contents to prof_buffer itself. 141 * Flip requests are serialized by the profile_flip_mutex. The sole 142 * use of having a second hashtable is for avoiding cacheline 143 * contention that would otherwise happen during flushes of pending 144 * profile hits required for the accuracy of reported profile hits 145 * and so resurrect the interrupt livelock issue. 146 * 147 * The open-addressed hashtables are indexed by profile buffer slot 148 * and hold the number of pending hits to that profile buffer slot on 149 * a cpu in an entry. When the hashtable overflows, all pending hits 150 * are accounted to their corresponding profile buffer slots with 151 * atomic_add() and the hashtable emptied. As numerous pending hits 152 * may be accounted to a profile buffer slot in a hashtable entry, 153 * this amortizes a number of atomic profile buffer increments likely 154 * to be far larger than the number of entries in the hashtable, 155 * particularly given that the number of distinct profile buffer 156 * positions to which hits are accounted during short intervals (e.g. 157 * several seconds) is usually very small. Exclusion from buffer 158 * flipping is provided by interrupt disablement (note that for 159 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from 160 * process context). 161 * The hash function is meant to be lightweight as opposed to strong, 162 * and was vaguely inspired by ppc64 firmware-supported inverted 163 * pagetable hash functions, but uses a full hashtable full of finite 164 * collision chains, not just pairs of them. 165 * 166 * -- nyc 167 */ 168 static void __profile_flip_buffers(void *unused) 169 { 170 int cpu = smp_processor_id(); 171 172 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 173 } 174 175 static void profile_flip_buffers(void) 176 { 177 int i, j, cpu; 178 179 mutex_lock(&profile_flip_mutex); 180 j = per_cpu(cpu_profile_flip, get_cpu()); 181 put_cpu(); 182 on_each_cpu(__profile_flip_buffers, NULL, 1); 183 for_each_online_cpu(cpu) { 184 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 185 for (i = 0; i < NR_PROFILE_HIT; ++i) { 186 if (!hits[i].hits) { 187 if (hits[i].pc) 188 hits[i].pc = 0; 189 continue; 190 } 191 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 192 hits[i].hits = hits[i].pc = 0; 193 } 194 } 195 mutex_unlock(&profile_flip_mutex); 196 } 197 198 static void profile_discard_flip_buffers(void) 199 { 200 int i, cpu; 201 202 mutex_lock(&profile_flip_mutex); 203 i = per_cpu(cpu_profile_flip, get_cpu()); 204 put_cpu(); 205 on_each_cpu(__profile_flip_buffers, NULL, 1); 206 for_each_online_cpu(cpu) { 207 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 208 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 209 } 210 mutex_unlock(&profile_flip_mutex); 211 } 212 213 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 214 { 215 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 216 int i, j, cpu; 217 struct profile_hit *hits; 218 219 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 220 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 221 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 222 cpu = get_cpu(); 223 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 224 if (!hits) { 225 put_cpu(); 226 return; 227 } 228 /* 229 * We buffer the global profiler buffer into a per-CPU 230 * queue and thus reduce the number of global (and possibly 231 * NUMA-alien) accesses. The write-queue is self-coalescing: 232 */ 233 local_irq_save(flags); 234 do { 235 for (j = 0; j < PROFILE_GRPSZ; ++j) { 236 if (hits[i + j].pc == pc) { 237 hits[i + j].hits += nr_hits; 238 goto out; 239 } else if (!hits[i + j].hits) { 240 hits[i + j].pc = pc; 241 hits[i + j].hits = nr_hits; 242 goto out; 243 } 244 } 245 i = (i + secondary) & (NR_PROFILE_HIT - 1); 246 } while (i != primary); 247 248 /* 249 * Add the current hit(s) and flush the write-queue out 250 * to the global buffer: 251 */ 252 atomic_add(nr_hits, &prof_buffer[pc]); 253 for (i = 0; i < NR_PROFILE_HIT; ++i) { 254 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 255 hits[i].pc = hits[i].hits = 0; 256 } 257 out: 258 local_irq_restore(flags); 259 put_cpu(); 260 } 261 262 static int profile_dead_cpu(unsigned int cpu) 263 { 264 struct page *page; 265 int i; 266 267 if (cpumask_available(prof_cpu_mask)) 268 cpumask_clear_cpu(cpu, prof_cpu_mask); 269 270 for (i = 0; i < 2; i++) { 271 if (per_cpu(cpu_profile_hits, cpu)[i]) { 272 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); 273 per_cpu(cpu_profile_hits, cpu)[i] = NULL; 274 __free_page(page); 275 } 276 } 277 return 0; 278 } 279 280 static int profile_prepare_cpu(unsigned int cpu) 281 { 282 int i, node = cpu_to_mem(cpu); 283 struct page *page; 284 285 per_cpu(cpu_profile_flip, cpu) = 0; 286 287 for (i = 0; i < 2; i++) { 288 if (per_cpu(cpu_profile_hits, cpu)[i]) 289 continue; 290 291 page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 292 if (!page) { 293 profile_dead_cpu(cpu); 294 return -ENOMEM; 295 } 296 per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); 297 298 } 299 return 0; 300 } 301 302 static int profile_online_cpu(unsigned int cpu) 303 { 304 if (cpumask_available(prof_cpu_mask)) 305 cpumask_set_cpu(cpu, prof_cpu_mask); 306 307 return 0; 308 } 309 310 #else /* !CONFIG_SMP */ 311 #define profile_flip_buffers() do { } while (0) 312 #define profile_discard_flip_buffers() do { } while (0) 313 314 static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) 315 { 316 unsigned long pc; 317 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 318 atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); 319 } 320 #endif /* !CONFIG_SMP */ 321 322 void profile_hits(int type, void *__pc, unsigned int nr_hits) 323 { 324 if (prof_on != type || !prof_buffer) 325 return; 326 do_profile_hits(type, __pc, nr_hits); 327 } 328 EXPORT_SYMBOL_GPL(profile_hits); 329 330 void profile_tick(int type) 331 { 332 struct pt_regs *regs = get_irq_regs(); 333 334 if (!user_mode(regs) && cpumask_available(prof_cpu_mask) && 335 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) 336 profile_hit(type, (void *)profile_pc(regs)); 337 } 338 339 #ifdef CONFIG_PROC_FS 340 #include <linux/proc_fs.h> 341 #include <linux/seq_file.h> 342 #include <linux/uaccess.h> 343 344 static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) 345 { 346 seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); 347 return 0; 348 } 349 350 static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) 351 { 352 return single_open(file, prof_cpu_mask_proc_show, NULL); 353 } 354 355 static ssize_t prof_cpu_mask_proc_write(struct file *file, 356 const char __user *buffer, size_t count, loff_t *pos) 357 { 358 cpumask_var_t new_value; 359 int err; 360 361 if (!zalloc_cpumask_var(&new_value, GFP_KERNEL)) 362 return -ENOMEM; 363 364 err = cpumask_parse_user(buffer, count, new_value); 365 if (!err) { 366 cpumask_copy(prof_cpu_mask, new_value); 367 err = count; 368 } 369 free_cpumask_var(new_value); 370 return err; 371 } 372 373 static const struct proc_ops prof_cpu_mask_proc_ops = { 374 .proc_open = prof_cpu_mask_proc_open, 375 .proc_read = seq_read, 376 .proc_lseek = seq_lseek, 377 .proc_release = single_release, 378 .proc_write = prof_cpu_mask_proc_write, 379 }; 380 381 void create_prof_cpu_mask(void) 382 { 383 /* create /proc/irq/prof_cpu_mask */ 384 proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_ops); 385 } 386 387 /* 388 * This function accesses profiling information. The returned data is 389 * binary: the sampling step and the actual contents of the profile 390 * buffer. Use of the program readprofile is recommended in order to 391 * get meaningful info out of these data. 392 */ 393 static ssize_t 394 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 395 { 396 unsigned long p = *ppos; 397 ssize_t read; 398 char *pnt; 399 unsigned long sample_step = 1UL << prof_shift; 400 401 profile_flip_buffers(); 402 if (p >= (prof_len+1)*sizeof(unsigned int)) 403 return 0; 404 if (count > (prof_len+1)*sizeof(unsigned int) - p) 405 count = (prof_len+1)*sizeof(unsigned int) - p; 406 read = 0; 407 408 while (p < sizeof(unsigned int) && count > 0) { 409 if (put_user(*((char *)(&sample_step)+p), buf)) 410 return -EFAULT; 411 buf++; p++; count--; read++; 412 } 413 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 414 if (copy_to_user(buf, (void *)pnt, count)) 415 return -EFAULT; 416 read += count; 417 *ppos += read; 418 return read; 419 } 420 421 /* 422 * Writing to /proc/profile resets the counters 423 * 424 * Writing a 'profiling multiplier' value into it also re-sets the profiling 425 * interrupt frequency, on architectures that support this. 426 */ 427 static ssize_t write_profile(struct file *file, const char __user *buf, 428 size_t count, loff_t *ppos) 429 { 430 #ifdef CONFIG_SMP 431 extern int setup_profiling_timer(unsigned int multiplier); 432 433 if (count == sizeof(int)) { 434 unsigned int multiplier; 435 436 if (copy_from_user(&multiplier, buf, sizeof(int))) 437 return -EFAULT; 438 439 if (setup_profiling_timer(multiplier)) 440 return -EINVAL; 441 } 442 #endif 443 profile_discard_flip_buffers(); 444 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 445 return count; 446 } 447 448 static const struct proc_ops profile_proc_ops = { 449 .proc_read = read_profile, 450 .proc_write = write_profile, 451 .proc_lseek = default_llseek, 452 }; 453 454 int __ref create_proc_profile(void) 455 { 456 struct proc_dir_entry *entry; 457 #ifdef CONFIG_SMP 458 enum cpuhp_state online_state; 459 #endif 460 461 int err = 0; 462 463 if (!prof_on) 464 return 0; 465 #ifdef CONFIG_SMP 466 err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", 467 profile_prepare_cpu, profile_dead_cpu); 468 if (err) 469 return err; 470 471 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", 472 profile_online_cpu, NULL); 473 if (err < 0) 474 goto err_state_prep; 475 online_state = err; 476 err = 0; 477 #endif 478 entry = proc_create("profile", S_IWUSR | S_IRUGO, 479 NULL, &profile_proc_ops); 480 if (!entry) 481 goto err_state_onl; 482 proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); 483 484 return err; 485 err_state_onl: 486 #ifdef CONFIG_SMP 487 cpuhp_remove_state(online_state); 488 err_state_prep: 489 cpuhp_remove_state(CPUHP_PROFILE_PREPARE); 490 #endif 491 return err; 492 } 493 subsys_initcall(create_proc_profile); 494 #endif /* CONFIG_PROC_FS */ 495