xref: /linux/kernel/profile.c (revision 6b2d2cec1081a979e0efd6a1e9559e5a01a3c10e)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/profile.h>
24 #include <linux/highmem.h>
25 #include <linux/mutex.h>
26 #include <asm/sections.h>
27 #include <asm/semaphore.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
32 	u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT	3
35 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 static int __init profile_setup(char * str)
56 {
57 	static char __initdata schedstr[] = "schedule";
58 	static char __initdata sleepstr[] = "sleep";
59 	static char __initdata kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 		prof_on = SLEEP_PROFILING;
65 		if (str[strlen(sleepstr)] == ',')
66 			str += strlen(sleepstr) + 1;
67 		if (get_option(&str, &par))
68 			prof_shift = par;
69 		printk(KERN_INFO
70 			"kernel sleep profiling enabled (shift: %ld)\n",
71 			prof_shift);
72 #else
73 		printk(KERN_WARNING
74 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 		prof_on = SCHED_PROFILING;
78 		if (str[strlen(schedstr)] == ',')
79 			str += strlen(schedstr) + 1;
80 		if (get_option(&str, &par))
81 			prof_shift = par;
82 		printk(KERN_INFO
83 			"kernel schedule profiling enabled (shift: %ld)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = par;
91 		printk(KERN_INFO
92 			"kernel KVM profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	} else if (get_option(&str, &par)) {
95 		prof_shift = par;
96 		prof_on = CPU_PROFILING;
97 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 			prof_shift);
99 	}
100 	return 1;
101 }
102 __setup("profile=", profile_setup);
103 
104 
105 void __init profile_init(void)
106 {
107 	if (!prof_on)
108 		return;
109 
110 	/* only text is profiled */
111 	prof_len = (_etext - _stext) >> prof_shift;
112 	prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
113 }
114 
115 /* Profile event notifications */
116 
117 #ifdef CONFIG_PROFILING
118 
119 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
120 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
121 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
122 
123 void profile_task_exit(struct task_struct * task)
124 {
125 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
126 }
127 
128 int profile_handoff_task(struct task_struct * task)
129 {
130 	int ret;
131 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
132 	return (ret == NOTIFY_OK) ? 1 : 0;
133 }
134 
135 void profile_munmap(unsigned long addr)
136 {
137 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
138 }
139 
140 int task_handoff_register(struct notifier_block * n)
141 {
142 	return atomic_notifier_chain_register(&task_free_notifier, n);
143 }
144 
145 int task_handoff_unregister(struct notifier_block * n)
146 {
147 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
148 }
149 
150 int profile_event_register(enum profile_type type, struct notifier_block * n)
151 {
152 	int err = -EINVAL;
153 
154 	switch (type) {
155 		case PROFILE_TASK_EXIT:
156 			err = blocking_notifier_chain_register(
157 					&task_exit_notifier, n);
158 			break;
159 		case PROFILE_MUNMAP:
160 			err = blocking_notifier_chain_register(
161 					&munmap_notifier, n);
162 			break;
163 	}
164 
165 	return err;
166 }
167 
168 
169 int profile_event_unregister(enum profile_type type, struct notifier_block * n)
170 {
171 	int err = -EINVAL;
172 
173 	switch (type) {
174 		case PROFILE_TASK_EXIT:
175 			err = blocking_notifier_chain_unregister(
176 					&task_exit_notifier, n);
177 			break;
178 		case PROFILE_MUNMAP:
179 			err = blocking_notifier_chain_unregister(
180 					&munmap_notifier, n);
181 			break;
182 	}
183 
184 	return err;
185 }
186 
187 int register_timer_hook(int (*hook)(struct pt_regs *))
188 {
189 	if (timer_hook)
190 		return -EBUSY;
191 	timer_hook = hook;
192 	return 0;
193 }
194 
195 void unregister_timer_hook(int (*hook)(struct pt_regs *))
196 {
197 	WARN_ON(hook != timer_hook);
198 	timer_hook = NULL;
199 	/* make sure all CPUs see the NULL hook */
200 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
201 }
202 
203 EXPORT_SYMBOL_GPL(register_timer_hook);
204 EXPORT_SYMBOL_GPL(unregister_timer_hook);
205 EXPORT_SYMBOL_GPL(task_handoff_register);
206 EXPORT_SYMBOL_GPL(task_handoff_unregister);
207 EXPORT_SYMBOL_GPL(profile_event_register);
208 EXPORT_SYMBOL_GPL(profile_event_unregister);
209 
210 #endif /* CONFIG_PROFILING */
211 
212 
213 #ifdef CONFIG_SMP
214 /*
215  * Each cpu has a pair of open-addressed hashtables for pending
216  * profile hits. read_profile() IPI's all cpus to request them
217  * to flip buffers and flushes their contents to prof_buffer itself.
218  * Flip requests are serialized by the profile_flip_mutex. The sole
219  * use of having a second hashtable is for avoiding cacheline
220  * contention that would otherwise happen during flushes of pending
221  * profile hits required for the accuracy of reported profile hits
222  * and so resurrect the interrupt livelock issue.
223  *
224  * The open-addressed hashtables are indexed by profile buffer slot
225  * and hold the number of pending hits to that profile buffer slot on
226  * a cpu in an entry. When the hashtable overflows, all pending hits
227  * are accounted to their corresponding profile buffer slots with
228  * atomic_add() and the hashtable emptied. As numerous pending hits
229  * may be accounted to a profile buffer slot in a hashtable entry,
230  * this amortizes a number of atomic profile buffer increments likely
231  * to be far larger than the number of entries in the hashtable,
232  * particularly given that the number of distinct profile buffer
233  * positions to which hits are accounted during short intervals (e.g.
234  * several seconds) is usually very small. Exclusion from buffer
235  * flipping is provided by interrupt disablement (note that for
236  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
237  * process context).
238  * The hash function is meant to be lightweight as opposed to strong,
239  * and was vaguely inspired by ppc64 firmware-supported inverted
240  * pagetable hash functions, but uses a full hashtable full of finite
241  * collision chains, not just pairs of them.
242  *
243  * -- wli
244  */
245 static void __profile_flip_buffers(void *unused)
246 {
247 	int cpu = smp_processor_id();
248 
249 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
250 }
251 
252 static void profile_flip_buffers(void)
253 {
254 	int i, j, cpu;
255 
256 	mutex_lock(&profile_flip_mutex);
257 	j = per_cpu(cpu_profile_flip, get_cpu());
258 	put_cpu();
259 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
260 	for_each_online_cpu(cpu) {
261 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
262 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
263 			if (!hits[i].hits) {
264 				if (hits[i].pc)
265 					hits[i].pc = 0;
266 				continue;
267 			}
268 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
269 			hits[i].hits = hits[i].pc = 0;
270 		}
271 	}
272 	mutex_unlock(&profile_flip_mutex);
273 }
274 
275 static void profile_discard_flip_buffers(void)
276 {
277 	int i, cpu;
278 
279 	mutex_lock(&profile_flip_mutex);
280 	i = per_cpu(cpu_profile_flip, get_cpu());
281 	put_cpu();
282 	on_each_cpu(__profile_flip_buffers, NULL, 0, 1);
283 	for_each_online_cpu(cpu) {
284 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
285 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
286 	}
287 	mutex_unlock(&profile_flip_mutex);
288 }
289 
290 void profile_hits(int type, void *__pc, unsigned int nr_hits)
291 {
292 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
293 	int i, j, cpu;
294 	struct profile_hit *hits;
295 
296 	if (prof_on != type || !prof_buffer)
297 		return;
298 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
299 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
300 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
301 	cpu = get_cpu();
302 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
303 	if (!hits) {
304 		put_cpu();
305 		return;
306 	}
307 	/*
308 	 * We buffer the global profiler buffer into a per-CPU
309 	 * queue and thus reduce the number of global (and possibly
310 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
311 	 */
312 	local_irq_save(flags);
313 	do {
314 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
315 			if (hits[i + j].pc == pc) {
316 				hits[i + j].hits += nr_hits;
317 				goto out;
318 			} else if (!hits[i + j].hits) {
319 				hits[i + j].pc = pc;
320 				hits[i + j].hits = nr_hits;
321 				goto out;
322 			}
323 		}
324 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
325 	} while (i != primary);
326 
327 	/*
328 	 * Add the current hit(s) and flush the write-queue out
329 	 * to the global buffer:
330 	 */
331 	atomic_add(nr_hits, &prof_buffer[pc]);
332 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
333 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
334 		hits[i].pc = hits[i].hits = 0;
335 	}
336 out:
337 	local_irq_restore(flags);
338 	put_cpu();
339 }
340 
341 static int __devinit profile_cpu_callback(struct notifier_block *info,
342 					unsigned long action, void *__cpu)
343 {
344 	int node, cpu = (unsigned long)__cpu;
345 	struct page *page;
346 
347 	switch (action) {
348 	case CPU_UP_PREPARE:
349 	case CPU_UP_PREPARE_FROZEN:
350 		node = cpu_to_node(cpu);
351 		per_cpu(cpu_profile_flip, cpu) = 0;
352 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
353 			page = alloc_pages_node(node,
354 					GFP_KERNEL | __GFP_ZERO,
355 					0);
356 			if (!page)
357 				return NOTIFY_BAD;
358 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
359 		}
360 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
361 			page = alloc_pages_node(node,
362 					GFP_KERNEL | __GFP_ZERO,
363 					0);
364 			if (!page)
365 				goto out_free;
366 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
367 		}
368 		break;
369 	out_free:
370 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
371 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
372 		__free_page(page);
373 		return NOTIFY_BAD;
374 	case CPU_ONLINE:
375 	case CPU_ONLINE_FROZEN:
376 		cpu_set(cpu, prof_cpu_mask);
377 		break;
378 	case CPU_UP_CANCELED:
379 	case CPU_UP_CANCELED_FROZEN:
380 	case CPU_DEAD:
381 	case CPU_DEAD_FROZEN:
382 		cpu_clear(cpu, prof_cpu_mask);
383 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
384 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
385 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
386 			__free_page(page);
387 		}
388 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
389 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
390 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
391 			__free_page(page);
392 		}
393 		break;
394 	}
395 	return NOTIFY_OK;
396 }
397 #else /* !CONFIG_SMP */
398 #define profile_flip_buffers()		do { } while (0)
399 #define profile_discard_flip_buffers()	do { } while (0)
400 #define profile_cpu_callback		NULL
401 
402 void profile_hits(int type, void *__pc, unsigned int nr_hits)
403 {
404 	unsigned long pc;
405 
406 	if (prof_on != type || !prof_buffer)
407 		return;
408 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
409 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
410 }
411 #endif /* !CONFIG_SMP */
412 
413 EXPORT_SYMBOL_GPL(profile_hits);
414 
415 void profile_tick(int type)
416 {
417 	struct pt_regs *regs = get_irq_regs();
418 
419 	if (type == CPU_PROFILING && timer_hook)
420 		timer_hook(regs);
421 	if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
422 		profile_hit(type, (void *)profile_pc(regs));
423 }
424 
425 #ifdef CONFIG_PROC_FS
426 #include <linux/proc_fs.h>
427 #include <asm/uaccess.h>
428 #include <asm/ptrace.h>
429 
430 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off,
431 			int count, int *eof, void *data)
432 {
433 	int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
434 	if (count - len < 2)
435 		return -EINVAL;
436 	len += sprintf(page + len, "\n");
437 	return len;
438 }
439 
440 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer,
441 					unsigned long count, void *data)
442 {
443 	cpumask_t *mask = (cpumask_t *)data;
444 	unsigned long full_count = count, err;
445 	cpumask_t new_value;
446 
447 	err = cpumask_parse_user(buffer, count, new_value);
448 	if (err)
449 		return err;
450 
451 	*mask = new_value;
452 	return full_count;
453 }
454 
455 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
456 {
457 	struct proc_dir_entry *entry;
458 
459 	/* create /proc/irq/prof_cpu_mask */
460 	if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir)))
461 		return;
462 	entry->data = (void *)&prof_cpu_mask;
463 	entry->read_proc = prof_cpu_mask_read_proc;
464 	entry->write_proc = prof_cpu_mask_write_proc;
465 }
466 
467 /*
468  * This function accesses profiling information. The returned data is
469  * binary: the sampling step and the actual contents of the profile
470  * buffer. Use of the program readprofile is recommended in order to
471  * get meaningful info out of these data.
472  */
473 static ssize_t
474 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
475 {
476 	unsigned long p = *ppos;
477 	ssize_t read;
478 	char * pnt;
479 	unsigned int sample_step = 1 << prof_shift;
480 
481 	profile_flip_buffers();
482 	if (p >= (prof_len+1)*sizeof(unsigned int))
483 		return 0;
484 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
485 		count = (prof_len+1)*sizeof(unsigned int) - p;
486 	read = 0;
487 
488 	while (p < sizeof(unsigned int) && count > 0) {
489 		if (put_user(*((char *)(&sample_step)+p),buf))
490 			return -EFAULT;
491 		buf++; p++; count--; read++;
492 	}
493 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
494 	if (copy_to_user(buf,(void *)pnt,count))
495 		return -EFAULT;
496 	read += count;
497 	*ppos += read;
498 	return read;
499 }
500 
501 /*
502  * Writing to /proc/profile resets the counters
503  *
504  * Writing a 'profiling multiplier' value into it also re-sets the profiling
505  * interrupt frequency, on architectures that support this.
506  */
507 static ssize_t write_profile(struct file *file, const char __user *buf,
508 			     size_t count, loff_t *ppos)
509 {
510 #ifdef CONFIG_SMP
511 	extern int setup_profiling_timer (unsigned int multiplier);
512 
513 	if (count == sizeof(int)) {
514 		unsigned int multiplier;
515 
516 		if (copy_from_user(&multiplier, buf, sizeof(int)))
517 			return -EFAULT;
518 
519 		if (setup_profiling_timer(multiplier))
520 			return -EINVAL;
521 	}
522 #endif
523 	profile_discard_flip_buffers();
524 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
525 	return count;
526 }
527 
528 static const struct file_operations proc_profile_operations = {
529 	.read		= read_profile,
530 	.write		= write_profile,
531 };
532 
533 #ifdef CONFIG_SMP
534 static void __init profile_nop(void *unused)
535 {
536 }
537 
538 static int __init create_hash_tables(void)
539 {
540 	int cpu;
541 
542 	for_each_online_cpu(cpu) {
543 		int node = cpu_to_node(cpu);
544 		struct page *page;
545 
546 		page = alloc_pages_node(node,
547 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
548 				0);
549 		if (!page)
550 			goto out_cleanup;
551 		per_cpu(cpu_profile_hits, cpu)[1]
552 				= (struct profile_hit *)page_address(page);
553 		page = alloc_pages_node(node,
554 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
555 				0);
556 		if (!page)
557 			goto out_cleanup;
558 		per_cpu(cpu_profile_hits, cpu)[0]
559 				= (struct profile_hit *)page_address(page);
560 	}
561 	return 0;
562 out_cleanup:
563 	prof_on = 0;
564 	smp_mb();
565 	on_each_cpu(profile_nop, NULL, 0, 1);
566 	for_each_online_cpu(cpu) {
567 		struct page *page;
568 
569 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
570 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
571 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
572 			__free_page(page);
573 		}
574 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
575 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
576 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
577 			__free_page(page);
578 		}
579 	}
580 	return -1;
581 }
582 #else
583 #define create_hash_tables()			({ 0; })
584 #endif
585 
586 static int __init create_proc_profile(void)
587 {
588 	struct proc_dir_entry *entry;
589 
590 	if (!prof_on)
591 		return 0;
592 	if (create_hash_tables())
593 		return -1;
594 	if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL)))
595 		return 0;
596 	entry->proc_fops = &proc_profile_operations;
597 	entry->size = (1+prof_len) * sizeof(atomic_t);
598 	hotcpu_notifier(profile_cpu_callback, 0);
599 	return 0;
600 }
601 module_init(create_proc_profile);
602 #endif /* CONFIG_PROC_FS */
603