1 /* 2 * linux/kernel/profile.c 3 * Simple profiling. Manages a direct-mapped profile hit count buffer, 4 * with configurable resolution, support for restricting the cpus on 5 * which profiling is done, and switching between cpu time and 6 * schedule() calls via kernel command line parameters passed at boot. 7 * 8 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, 9 * Red Hat, July 2004 10 * Consolidation of architecture support code for profiling, 11 * William Irwin, Oracle, July 2004 12 * Amortized hit count accounting via per-cpu open-addressed hashtables 13 * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 14 */ 15 16 #include <linux/module.h> 17 #include <linux/profile.h> 18 #include <linux/bootmem.h> 19 #include <linux/notifier.h> 20 #include <linux/mm.h> 21 #include <linux/cpumask.h> 22 #include <linux/cpu.h> 23 #include <linux/profile.h> 24 #include <linux/highmem.h> 25 #include <linux/mutex.h> 26 #include <asm/sections.h> 27 #include <asm/semaphore.h> 28 29 struct profile_hit { 30 u32 pc, hits; 31 }; 32 #define PROFILE_GRPSHIFT 3 33 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) 34 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) 35 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) 36 37 /* Oprofile timer tick hook */ 38 int (*timer_hook)(struct pt_regs *) __read_mostly; 39 40 static atomic_t *prof_buffer; 41 static unsigned long prof_len, prof_shift; 42 static int prof_on __read_mostly; 43 static cpumask_t prof_cpu_mask = CPU_MASK_ALL; 44 #ifdef CONFIG_SMP 45 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); 46 static DEFINE_PER_CPU(int, cpu_profile_flip); 47 static DEFINE_MUTEX(profile_flip_mutex); 48 #endif /* CONFIG_SMP */ 49 50 static int __init profile_setup(char * str) 51 { 52 static char __initdata schedstr[] = "schedule"; 53 int par; 54 55 if (!strncmp(str, schedstr, strlen(schedstr))) { 56 prof_on = SCHED_PROFILING; 57 if (str[strlen(schedstr)] == ',') 58 str += strlen(schedstr) + 1; 59 if (get_option(&str, &par)) 60 prof_shift = par; 61 printk(KERN_INFO 62 "kernel schedule profiling enabled (shift: %ld)\n", 63 prof_shift); 64 } else if (get_option(&str, &par)) { 65 prof_shift = par; 66 prof_on = CPU_PROFILING; 67 printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", 68 prof_shift); 69 } 70 return 1; 71 } 72 __setup("profile=", profile_setup); 73 74 75 void __init profile_init(void) 76 { 77 if (!prof_on) 78 return; 79 80 /* only text is profiled */ 81 prof_len = (_etext - _stext) >> prof_shift; 82 prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); 83 } 84 85 /* Profile event notifications */ 86 87 #ifdef CONFIG_PROFILING 88 89 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); 90 static ATOMIC_NOTIFIER_HEAD(task_free_notifier); 91 static BLOCKING_NOTIFIER_HEAD(munmap_notifier); 92 93 void profile_task_exit(struct task_struct * task) 94 { 95 blocking_notifier_call_chain(&task_exit_notifier, 0, task); 96 } 97 98 int profile_handoff_task(struct task_struct * task) 99 { 100 int ret; 101 ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); 102 return (ret == NOTIFY_OK) ? 1 : 0; 103 } 104 105 void profile_munmap(unsigned long addr) 106 { 107 blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); 108 } 109 110 int task_handoff_register(struct notifier_block * n) 111 { 112 return atomic_notifier_chain_register(&task_free_notifier, n); 113 } 114 115 int task_handoff_unregister(struct notifier_block * n) 116 { 117 return atomic_notifier_chain_unregister(&task_free_notifier, n); 118 } 119 120 int profile_event_register(enum profile_type type, struct notifier_block * n) 121 { 122 int err = -EINVAL; 123 124 switch (type) { 125 case PROFILE_TASK_EXIT: 126 err = blocking_notifier_chain_register( 127 &task_exit_notifier, n); 128 break; 129 case PROFILE_MUNMAP: 130 err = blocking_notifier_chain_register( 131 &munmap_notifier, n); 132 break; 133 } 134 135 return err; 136 } 137 138 139 int profile_event_unregister(enum profile_type type, struct notifier_block * n) 140 { 141 int err = -EINVAL; 142 143 switch (type) { 144 case PROFILE_TASK_EXIT: 145 err = blocking_notifier_chain_unregister( 146 &task_exit_notifier, n); 147 break; 148 case PROFILE_MUNMAP: 149 err = blocking_notifier_chain_unregister( 150 &munmap_notifier, n); 151 break; 152 } 153 154 return err; 155 } 156 157 int register_timer_hook(int (*hook)(struct pt_regs *)) 158 { 159 if (timer_hook) 160 return -EBUSY; 161 timer_hook = hook; 162 return 0; 163 } 164 165 void unregister_timer_hook(int (*hook)(struct pt_regs *)) 166 { 167 WARN_ON(hook != timer_hook); 168 timer_hook = NULL; 169 /* make sure all CPUs see the NULL hook */ 170 synchronize_sched(); /* Allow ongoing interrupts to complete. */ 171 } 172 173 EXPORT_SYMBOL_GPL(register_timer_hook); 174 EXPORT_SYMBOL_GPL(unregister_timer_hook); 175 EXPORT_SYMBOL_GPL(task_handoff_register); 176 EXPORT_SYMBOL_GPL(task_handoff_unregister); 177 178 #endif /* CONFIG_PROFILING */ 179 180 EXPORT_SYMBOL_GPL(profile_event_register); 181 EXPORT_SYMBOL_GPL(profile_event_unregister); 182 183 #ifdef CONFIG_SMP 184 /* 185 * Each cpu has a pair of open-addressed hashtables for pending 186 * profile hits. read_profile() IPI's all cpus to request them 187 * to flip buffers and flushes their contents to prof_buffer itself. 188 * Flip requests are serialized by the profile_flip_mutex. The sole 189 * use of having a second hashtable is for avoiding cacheline 190 * contention that would otherwise happen during flushes of pending 191 * profile hits required for the accuracy of reported profile hits 192 * and so resurrect the interrupt livelock issue. 193 * 194 * The open-addressed hashtables are indexed by profile buffer slot 195 * and hold the number of pending hits to that profile buffer slot on 196 * a cpu in an entry. When the hashtable overflows, all pending hits 197 * are accounted to their corresponding profile buffer slots with 198 * atomic_add() and the hashtable emptied. As numerous pending hits 199 * may be accounted to a profile buffer slot in a hashtable entry, 200 * this amortizes a number of atomic profile buffer increments likely 201 * to be far larger than the number of entries in the hashtable, 202 * particularly given that the number of distinct profile buffer 203 * positions to which hits are accounted during short intervals (e.g. 204 * several seconds) is usually very small. Exclusion from buffer 205 * flipping is provided by interrupt disablement (note that for 206 * SCHED_PROFILING profile_hit() may be called from process context). 207 * The hash function is meant to be lightweight as opposed to strong, 208 * and was vaguely inspired by ppc64 firmware-supported inverted 209 * pagetable hash functions, but uses a full hashtable full of finite 210 * collision chains, not just pairs of them. 211 * 212 * -- wli 213 */ 214 static void __profile_flip_buffers(void *unused) 215 { 216 int cpu = smp_processor_id(); 217 218 per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); 219 } 220 221 static void profile_flip_buffers(void) 222 { 223 int i, j, cpu; 224 225 mutex_lock(&profile_flip_mutex); 226 j = per_cpu(cpu_profile_flip, get_cpu()); 227 put_cpu(); 228 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 229 for_each_online_cpu(cpu) { 230 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; 231 for (i = 0; i < NR_PROFILE_HIT; ++i) { 232 if (!hits[i].hits) { 233 if (hits[i].pc) 234 hits[i].pc = 0; 235 continue; 236 } 237 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 238 hits[i].hits = hits[i].pc = 0; 239 } 240 } 241 mutex_unlock(&profile_flip_mutex); 242 } 243 244 static void profile_discard_flip_buffers(void) 245 { 246 int i, cpu; 247 248 mutex_lock(&profile_flip_mutex); 249 i = per_cpu(cpu_profile_flip, get_cpu()); 250 put_cpu(); 251 on_each_cpu(__profile_flip_buffers, NULL, 0, 1); 252 for_each_online_cpu(cpu) { 253 struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; 254 memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); 255 } 256 mutex_unlock(&profile_flip_mutex); 257 } 258 259 void profile_hit(int type, void *__pc) 260 { 261 unsigned long primary, secondary, flags, pc = (unsigned long)__pc; 262 int i, j, cpu; 263 struct profile_hit *hits; 264 265 if (prof_on != type || !prof_buffer) 266 return; 267 pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); 268 i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 269 secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; 270 cpu = get_cpu(); 271 hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; 272 if (!hits) { 273 put_cpu(); 274 return; 275 } 276 local_irq_save(flags); 277 do { 278 for (j = 0; j < PROFILE_GRPSZ; ++j) { 279 if (hits[i + j].pc == pc) { 280 hits[i + j].hits++; 281 goto out; 282 } else if (!hits[i + j].hits) { 283 hits[i + j].pc = pc; 284 hits[i + j].hits = 1; 285 goto out; 286 } 287 } 288 i = (i + secondary) & (NR_PROFILE_HIT - 1); 289 } while (i != primary); 290 atomic_inc(&prof_buffer[pc]); 291 for (i = 0; i < NR_PROFILE_HIT; ++i) { 292 atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); 293 hits[i].pc = hits[i].hits = 0; 294 } 295 out: 296 local_irq_restore(flags); 297 put_cpu(); 298 } 299 300 #ifdef CONFIG_HOTPLUG_CPU 301 static int __devinit profile_cpu_callback(struct notifier_block *info, 302 unsigned long action, void *__cpu) 303 { 304 int node, cpu = (unsigned long)__cpu; 305 struct page *page; 306 307 switch (action) { 308 case CPU_UP_PREPARE: 309 node = cpu_to_node(cpu); 310 per_cpu(cpu_profile_flip, cpu) = 0; 311 if (!per_cpu(cpu_profile_hits, cpu)[1]) { 312 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 313 if (!page) 314 return NOTIFY_BAD; 315 per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); 316 } 317 if (!per_cpu(cpu_profile_hits, cpu)[0]) { 318 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 319 if (!page) 320 goto out_free; 321 per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); 322 } 323 break; 324 out_free: 325 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 326 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 327 __free_page(page); 328 return NOTIFY_BAD; 329 case CPU_ONLINE: 330 cpu_set(cpu, prof_cpu_mask); 331 break; 332 case CPU_UP_CANCELED: 333 case CPU_DEAD: 334 cpu_clear(cpu, prof_cpu_mask); 335 if (per_cpu(cpu_profile_hits, cpu)[0]) { 336 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 337 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 338 __free_page(page); 339 } 340 if (per_cpu(cpu_profile_hits, cpu)[1]) { 341 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 342 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 343 __free_page(page); 344 } 345 break; 346 } 347 return NOTIFY_OK; 348 } 349 #endif /* CONFIG_HOTPLUG_CPU */ 350 #else /* !CONFIG_SMP */ 351 #define profile_flip_buffers() do { } while (0) 352 #define profile_discard_flip_buffers() do { } while (0) 353 354 void profile_hit(int type, void *__pc) 355 { 356 unsigned long pc; 357 358 if (prof_on != type || !prof_buffer) 359 return; 360 pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; 361 atomic_inc(&prof_buffer[min(pc, prof_len - 1)]); 362 } 363 #endif /* !CONFIG_SMP */ 364 365 void profile_tick(int type, struct pt_regs *regs) 366 { 367 if (type == CPU_PROFILING && timer_hook) 368 timer_hook(regs); 369 if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) 370 profile_hit(type, (void *)profile_pc(regs)); 371 } 372 373 #ifdef CONFIG_PROC_FS 374 #include <linux/proc_fs.h> 375 #include <asm/uaccess.h> 376 #include <asm/ptrace.h> 377 378 static int prof_cpu_mask_read_proc (char *page, char **start, off_t off, 379 int count, int *eof, void *data) 380 { 381 int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); 382 if (count - len < 2) 383 return -EINVAL; 384 len += sprintf(page + len, "\n"); 385 return len; 386 } 387 388 static int prof_cpu_mask_write_proc (struct file *file, const char __user *buffer, 389 unsigned long count, void *data) 390 { 391 cpumask_t *mask = (cpumask_t *)data; 392 unsigned long full_count = count, err; 393 cpumask_t new_value; 394 395 err = cpumask_parse(buffer, count, new_value); 396 if (err) 397 return err; 398 399 *mask = new_value; 400 return full_count; 401 } 402 403 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) 404 { 405 struct proc_dir_entry *entry; 406 407 /* create /proc/irq/prof_cpu_mask */ 408 if (!(entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir))) 409 return; 410 entry->nlink = 1; 411 entry->data = (void *)&prof_cpu_mask; 412 entry->read_proc = prof_cpu_mask_read_proc; 413 entry->write_proc = prof_cpu_mask_write_proc; 414 } 415 416 /* 417 * This function accesses profiling information. The returned data is 418 * binary: the sampling step and the actual contents of the profile 419 * buffer. Use of the program readprofile is recommended in order to 420 * get meaningful info out of these data. 421 */ 422 static ssize_t 423 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) 424 { 425 unsigned long p = *ppos; 426 ssize_t read; 427 char * pnt; 428 unsigned int sample_step = 1 << prof_shift; 429 430 profile_flip_buffers(); 431 if (p >= (prof_len+1)*sizeof(unsigned int)) 432 return 0; 433 if (count > (prof_len+1)*sizeof(unsigned int) - p) 434 count = (prof_len+1)*sizeof(unsigned int) - p; 435 read = 0; 436 437 while (p < sizeof(unsigned int) && count > 0) { 438 put_user(*((char *)(&sample_step)+p),buf); 439 buf++; p++; count--; read++; 440 } 441 pnt = (char *)prof_buffer + p - sizeof(atomic_t); 442 if (copy_to_user(buf,(void *)pnt,count)) 443 return -EFAULT; 444 read += count; 445 *ppos += read; 446 return read; 447 } 448 449 /* 450 * Writing to /proc/profile resets the counters 451 * 452 * Writing a 'profiling multiplier' value into it also re-sets the profiling 453 * interrupt frequency, on architectures that support this. 454 */ 455 static ssize_t write_profile(struct file *file, const char __user *buf, 456 size_t count, loff_t *ppos) 457 { 458 #ifdef CONFIG_SMP 459 extern int setup_profiling_timer (unsigned int multiplier); 460 461 if (count == sizeof(int)) { 462 unsigned int multiplier; 463 464 if (copy_from_user(&multiplier, buf, sizeof(int))) 465 return -EFAULT; 466 467 if (setup_profiling_timer(multiplier)) 468 return -EINVAL; 469 } 470 #endif 471 profile_discard_flip_buffers(); 472 memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); 473 return count; 474 } 475 476 static struct file_operations proc_profile_operations = { 477 .read = read_profile, 478 .write = write_profile, 479 }; 480 481 #ifdef CONFIG_SMP 482 static void __init profile_nop(void *unused) 483 { 484 } 485 486 static int __init create_hash_tables(void) 487 { 488 int cpu; 489 490 for_each_online_cpu(cpu) { 491 int node = cpu_to_node(cpu); 492 struct page *page; 493 494 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 495 if (!page) 496 goto out_cleanup; 497 per_cpu(cpu_profile_hits, cpu)[1] 498 = (struct profile_hit *)page_address(page); 499 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); 500 if (!page) 501 goto out_cleanup; 502 per_cpu(cpu_profile_hits, cpu)[0] 503 = (struct profile_hit *)page_address(page); 504 } 505 return 0; 506 out_cleanup: 507 prof_on = 0; 508 smp_mb(); 509 on_each_cpu(profile_nop, NULL, 0, 1); 510 for_each_online_cpu(cpu) { 511 struct page *page; 512 513 if (per_cpu(cpu_profile_hits, cpu)[0]) { 514 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); 515 per_cpu(cpu_profile_hits, cpu)[0] = NULL; 516 __free_page(page); 517 } 518 if (per_cpu(cpu_profile_hits, cpu)[1]) { 519 page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); 520 per_cpu(cpu_profile_hits, cpu)[1] = NULL; 521 __free_page(page); 522 } 523 } 524 return -1; 525 } 526 #else 527 #define create_hash_tables() ({ 0; }) 528 #endif 529 530 static int __init create_proc_profile(void) 531 { 532 struct proc_dir_entry *entry; 533 534 if (!prof_on) 535 return 0; 536 if (create_hash_tables()) 537 return -1; 538 if (!(entry = create_proc_entry("profile", S_IWUSR | S_IRUGO, NULL))) 539 return 0; 540 entry->proc_fops = &proc_profile_operations; 541 entry->size = (1+prof_len) * sizeof(atomic_t); 542 hotcpu_notifier(profile_cpu_callback, 0); 543 return 0; 544 } 545 module_init(create_proc_profile); 546 #endif /* CONFIG_PROC_FS */ 547