1 /* 2 * printk_safe.c - Safe printk for printk-deadlock-prone contexts 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 2 7 * of the License, or (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, see <http://www.gnu.org/licenses/>. 16 */ 17 18 #include <linux/preempt.h> 19 #include <linux/spinlock.h> 20 #include <linux/debug_locks.h> 21 #include <linux/smp.h> 22 #include <linux/cpumask.h> 23 #include <linux/irq_work.h> 24 #include <linux/printk.h> 25 26 #include "internal.h" 27 28 /* 29 * printk() could not take logbuf_lock in NMI context. Instead, 30 * it uses an alternative implementation that temporary stores 31 * the strings into a per-CPU buffer. The content of the buffer 32 * is later flushed into the main ring buffer via IRQ work. 33 * 34 * The alternative implementation is chosen transparently 35 * by examinig current printk() context mask stored in @printk_context 36 * per-CPU variable. 37 * 38 * The implementation allows to flush the strings also from another CPU. 39 * There are situations when we want to make sure that all buffers 40 * were handled or when IRQs are blocked. 41 */ 42 static int printk_safe_irq_ready __read_mostly; 43 44 #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \ 45 sizeof(atomic_t) - \ 46 sizeof(atomic_t) - \ 47 sizeof(struct irq_work)) 48 49 struct printk_safe_seq_buf { 50 atomic_t len; /* length of written data */ 51 atomic_t message_lost; 52 struct irq_work work; /* IRQ work that flushes the buffer */ 53 unsigned char buffer[SAFE_LOG_BUF_LEN]; 54 }; 55 56 static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq); 57 static DEFINE_PER_CPU(int, printk_context); 58 59 #ifdef CONFIG_PRINTK_NMI 60 static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq); 61 #endif 62 63 /* Get flushed in a more safe context. */ 64 static void queue_flush_work(struct printk_safe_seq_buf *s) 65 { 66 if (printk_safe_irq_ready) 67 irq_work_queue(&s->work); 68 } 69 70 /* 71 * Add a message to per-CPU context-dependent buffer. NMI and printk-safe 72 * have dedicated buffers, because otherwise printk-safe preempted by 73 * NMI-printk would have overwritten the NMI messages. 74 * 75 * The messages are flushed from irq work (or from panic()), possibly, 76 * from other CPU, concurrently with printk_safe_log_store(). Should this 77 * happen, printk_safe_log_store() will notice the buffer->len mismatch 78 * and repeat the write. 79 */ 80 static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s, 81 const char *fmt, va_list args) 82 { 83 int add; 84 size_t len; 85 va_list ap; 86 87 again: 88 len = atomic_read(&s->len); 89 90 /* The trailing '\0' is not counted into len. */ 91 if (len >= sizeof(s->buffer) - 1) { 92 atomic_inc(&s->message_lost); 93 queue_flush_work(s); 94 return 0; 95 } 96 97 /* 98 * Make sure that all old data have been read before the buffer 99 * was reset. This is not needed when we just append data. 100 */ 101 if (!len) 102 smp_rmb(); 103 104 va_copy(ap, args); 105 add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap); 106 va_end(ap); 107 if (!add) 108 return 0; 109 110 /* 111 * Do it once again if the buffer has been flushed in the meantime. 112 * Note that atomic_cmpxchg() is an implicit memory barrier that 113 * makes sure that the data were written before updating s->len. 114 */ 115 if (atomic_cmpxchg(&s->len, len, len + add) != len) 116 goto again; 117 118 queue_flush_work(s); 119 return add; 120 } 121 122 static inline void printk_safe_flush_line(const char *text, int len) 123 { 124 /* 125 * Avoid any console drivers calls from here, because we may be 126 * in NMI or printk_safe context (when in panic). The messages 127 * must go only into the ring buffer at this stage. Consoles will 128 * get explicitly called later when a crashdump is not generated. 129 */ 130 printk_deferred("%.*s", len, text); 131 } 132 133 /* printk part of the temporary buffer line by line */ 134 static int printk_safe_flush_buffer(const char *start, size_t len) 135 { 136 const char *c, *end; 137 bool header; 138 139 c = start; 140 end = start + len; 141 header = true; 142 143 /* Print line by line. */ 144 while (c < end) { 145 if (*c == '\n') { 146 printk_safe_flush_line(start, c - start + 1); 147 start = ++c; 148 header = true; 149 continue; 150 } 151 152 /* Handle continuous lines or missing new line. */ 153 if ((c + 1 < end) && printk_get_level(c)) { 154 if (header) { 155 c = printk_skip_level(c); 156 continue; 157 } 158 159 printk_safe_flush_line(start, c - start); 160 start = c++; 161 header = true; 162 continue; 163 } 164 165 header = false; 166 c++; 167 } 168 169 /* Check if there was a partial line. Ignore pure header. */ 170 if (start < end && !header) { 171 static const char newline[] = KERN_CONT "\n"; 172 173 printk_safe_flush_line(start, end - start); 174 printk_safe_flush_line(newline, strlen(newline)); 175 } 176 177 return len; 178 } 179 180 static void report_message_lost(struct printk_safe_seq_buf *s) 181 { 182 int lost = atomic_xchg(&s->message_lost, 0); 183 184 if (lost) 185 printk_deferred("Lost %d message(s)!\n", lost); 186 } 187 188 /* 189 * Flush data from the associated per-CPU buffer. The function 190 * can be called either via IRQ work or independently. 191 */ 192 static void __printk_safe_flush(struct irq_work *work) 193 { 194 static raw_spinlock_t read_lock = 195 __RAW_SPIN_LOCK_INITIALIZER(read_lock); 196 struct printk_safe_seq_buf *s = 197 container_of(work, struct printk_safe_seq_buf, work); 198 unsigned long flags; 199 size_t len; 200 int i; 201 202 /* 203 * The lock has two functions. First, one reader has to flush all 204 * available message to make the lockless synchronization with 205 * writers easier. Second, we do not want to mix messages from 206 * different CPUs. This is especially important when printing 207 * a backtrace. 208 */ 209 raw_spin_lock_irqsave(&read_lock, flags); 210 211 i = 0; 212 more: 213 len = atomic_read(&s->len); 214 215 /* 216 * This is just a paranoid check that nobody has manipulated 217 * the buffer an unexpected way. If we printed something then 218 * @len must only increase. Also it should never overflow the 219 * buffer size. 220 */ 221 if ((i && i >= len) || len > sizeof(s->buffer)) { 222 const char *msg = "printk_safe_flush: internal error\n"; 223 224 printk_safe_flush_line(msg, strlen(msg)); 225 len = 0; 226 } 227 228 if (!len) 229 goto out; /* Someone else has already flushed the buffer. */ 230 231 /* Make sure that data has been written up to the @len */ 232 smp_rmb(); 233 i += printk_safe_flush_buffer(s->buffer + i, len - i); 234 235 /* 236 * Check that nothing has got added in the meantime and truncate 237 * the buffer. Note that atomic_cmpxchg() is an implicit memory 238 * barrier that makes sure that the data were copied before 239 * updating s->len. 240 */ 241 if (atomic_cmpxchg(&s->len, len, 0) != len) 242 goto more; 243 244 out: 245 report_message_lost(s); 246 raw_spin_unlock_irqrestore(&read_lock, flags); 247 } 248 249 /** 250 * printk_safe_flush - flush all per-cpu nmi buffers. 251 * 252 * The buffers are flushed automatically via IRQ work. This function 253 * is useful only when someone wants to be sure that all buffers have 254 * been flushed at some point. 255 */ 256 void printk_safe_flush(void) 257 { 258 int cpu; 259 260 for_each_possible_cpu(cpu) { 261 #ifdef CONFIG_PRINTK_NMI 262 __printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work); 263 #endif 264 __printk_safe_flush(&per_cpu(safe_print_seq, cpu).work); 265 } 266 } 267 268 /** 269 * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system 270 * goes down. 271 * 272 * Similar to printk_safe_flush() but it can be called even in NMI context when 273 * the system goes down. It does the best effort to get NMI messages into 274 * the main ring buffer. 275 * 276 * Note that it could try harder when there is only one CPU online. 277 */ 278 void printk_safe_flush_on_panic(void) 279 { 280 /* 281 * Make sure that we could access the main ring buffer. 282 * Do not risk a double release when more CPUs are up. 283 */ 284 if (raw_spin_is_locked(&logbuf_lock)) { 285 if (num_online_cpus() > 1) 286 return; 287 288 debug_locks_off(); 289 raw_spin_lock_init(&logbuf_lock); 290 } 291 292 printk_safe_flush(); 293 } 294 295 #ifdef CONFIG_PRINTK_NMI 296 /* 297 * Safe printk() for NMI context. It uses a per-CPU buffer to 298 * store the message. NMIs are not nested, so there is always only 299 * one writer running. But the buffer might get flushed from another 300 * CPU, so we need to be careful. 301 */ 302 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) 303 { 304 struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq); 305 306 return printk_safe_log_store(s, fmt, args); 307 } 308 309 void printk_nmi_enter(void) 310 { 311 /* 312 * The size of the extra per-CPU buffer is limited. Use it only when 313 * the main one is locked. If this CPU is not in the safe context, 314 * the lock must be taken on another CPU and we could wait for it. 315 */ 316 if ((this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK) && 317 raw_spin_is_locked(&logbuf_lock)) { 318 this_cpu_or(printk_context, PRINTK_NMI_CONTEXT_MASK); 319 } else { 320 this_cpu_or(printk_context, PRINTK_NMI_DEFERRED_CONTEXT_MASK); 321 } 322 } 323 324 void printk_nmi_exit(void) 325 { 326 this_cpu_and(printk_context, 327 ~(PRINTK_NMI_CONTEXT_MASK | 328 PRINTK_NMI_DEFERRED_CONTEXT_MASK)); 329 } 330 331 #else 332 333 static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) 334 { 335 return 0; 336 } 337 338 #endif /* CONFIG_PRINTK_NMI */ 339 340 /* 341 * Lock-less printk(), to avoid deadlocks should the printk() recurse 342 * into itself. It uses a per-CPU buffer to store the message, just like 343 * NMI. 344 */ 345 static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args) 346 { 347 struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq); 348 349 return printk_safe_log_store(s, fmt, args); 350 } 351 352 /* Can be preempted by NMI. */ 353 void __printk_safe_enter(void) 354 { 355 this_cpu_inc(printk_context); 356 } 357 358 /* Can be preempted by NMI. */ 359 void __printk_safe_exit(void) 360 { 361 this_cpu_dec(printk_context); 362 } 363 364 __printf(1, 0) int vprintk_func(const char *fmt, va_list args) 365 { 366 /* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */ 367 if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) 368 return vprintk_nmi(fmt, args); 369 370 /* Use extra buffer to prevent a recursion deadlock in safe mode. */ 371 if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK) 372 return vprintk_safe(fmt, args); 373 374 /* 375 * Use the main logbuf when logbuf_lock is available in NMI. 376 * But avoid calling console drivers that might have their own locks. 377 */ 378 if (this_cpu_read(printk_context) & PRINTK_NMI_DEFERRED_CONTEXT_MASK) 379 return vprintk_deferred(fmt, args); 380 381 /* No obstacles. */ 382 return vprintk_default(fmt, args); 383 } 384 385 void __init printk_safe_init(void) 386 { 387 int cpu; 388 389 for_each_possible_cpu(cpu) { 390 struct printk_safe_seq_buf *s; 391 392 s = &per_cpu(safe_print_seq, cpu); 393 init_irq_work(&s->work, __printk_safe_flush); 394 395 #ifdef CONFIG_PRINTK_NMI 396 s = &per_cpu(nmi_print_seq, cpu); 397 init_irq_work(&s->work, __printk_safe_flush); 398 #endif 399 } 400 401 /* 402 * In the highly unlikely event that a NMI were to trigger at 403 * this moment. Make sure IRQ work is set up before this 404 * variable is set. 405 */ 406 barrier(); 407 printk_safe_irq_ready = 1; 408 409 /* Flush pending messages that did not have scheduled IRQ works. */ 410 printk_safe_flush(); 411 } 412