xref: /linux/kernel/printk/printk.c (revision fc4fa6e112c0f999fab022a4eb7f6614bb47c7ab)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/kexec.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/notifier.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/utsname.h>
47 #include <linux/ctype.h>
48 #include <linux/uio.h>
49 
50 #include <asm/uaccess.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 
58 int console_printk[4] = {
59 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63 };
64 
65 /*
66  * Low level drivers may need that to know if they can schedule in
67  * their unblank() callback or not. So let's export it.
68  */
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
71 
72 /*
73  * console_sem protects the console_drivers list, and also
74  * provides serialisation for access to the entire console
75  * driver system.
76  */
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
80 
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 	.name = "console_lock"
84 };
85 #endif
86 
87 /*
88  * Number of registered extended console drivers.
89  *
90  * If extended consoles are present, in-kernel cont reassembly is disabled
91  * and each fragment is stored as a separate log entry with proper
92  * continuation flag so that every emitted message has full metadata.  This
93  * doesn't change the result for regular consoles or /proc/kmsg.  For
94  * /dev/kmsg, as long as the reader concatenates messages according to
95  * consecutive continuation flags, the end result should be the same too.
96  */
97 static int nr_ext_console_drivers;
98 
99 /*
100  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
101  * macros instead of functions so that _RET_IP_ contains useful information.
102  */
103 #define down_console_sem() do { \
104 	down(&console_sem);\
105 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
106 } while (0)
107 
108 static int __down_trylock_console_sem(unsigned long ip)
109 {
110 	if (down_trylock(&console_sem))
111 		return 1;
112 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
113 	return 0;
114 }
115 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
116 
117 #define up_console_sem() do { \
118 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
119 	up(&console_sem);\
120 } while (0)
121 
122 /*
123  * This is used for debugging the mess that is the VT code by
124  * keeping track if we have the console semaphore held. It's
125  * definitely not the perfect debug tool (we don't know if _WE_
126  * hold it and are racing, but it helps tracking those weird code
127  * paths in the console code where we end up in places I want
128  * locked without the console sempahore held).
129  */
130 static int console_locked, console_suspended;
131 
132 /*
133  * If exclusive_console is non-NULL then only this console is to be printed to.
134  */
135 static struct console *exclusive_console;
136 
137 /*
138  *	Array of consoles built from command line options (console=)
139  */
140 
141 #define MAX_CMDLINECONSOLES 8
142 
143 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
144 
145 static int selected_console = -1;
146 static int preferred_console = -1;
147 int console_set_on_cmdline;
148 EXPORT_SYMBOL(console_set_on_cmdline);
149 
150 /* Flag: console code may call schedule() */
151 static int console_may_schedule;
152 
153 /*
154  * The printk log buffer consists of a chain of concatenated variable
155  * length records. Every record starts with a record header, containing
156  * the overall length of the record.
157  *
158  * The heads to the first and last entry in the buffer, as well as the
159  * sequence numbers of these entries are maintained when messages are
160  * stored.
161  *
162  * If the heads indicate available messages, the length in the header
163  * tells the start next message. A length == 0 for the next message
164  * indicates a wrap-around to the beginning of the buffer.
165  *
166  * Every record carries the monotonic timestamp in microseconds, as well as
167  * the standard userspace syslog level and syslog facility. The usual
168  * kernel messages use LOG_KERN; userspace-injected messages always carry
169  * a matching syslog facility, by default LOG_USER. The origin of every
170  * message can be reliably determined that way.
171  *
172  * The human readable log message directly follows the message header. The
173  * length of the message text is stored in the header, the stored message
174  * is not terminated.
175  *
176  * Optionally, a message can carry a dictionary of properties (key/value pairs),
177  * to provide userspace with a machine-readable message context.
178  *
179  * Examples for well-defined, commonly used property names are:
180  *   DEVICE=b12:8               device identifier
181  *                                b12:8         block dev_t
182  *                                c127:3        char dev_t
183  *                                n8            netdev ifindex
184  *                                +sound:card0  subsystem:devname
185  *   SUBSYSTEM=pci              driver-core subsystem name
186  *
187  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
188  * follows directly after a '=' character. Every property is terminated by
189  * a '\0' character. The last property is not terminated.
190  *
191  * Example of a message structure:
192  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
193  *   0008  34 00                        record is 52 bytes long
194  *   000a        0b 00                  text is 11 bytes long
195  *   000c              1f 00            dictionary is 23 bytes long
196  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
197  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
198  *         69 6e 65                     "ine"
199  *   001b           44 45 56 49 43      "DEVIC"
200  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
201  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
202  *         67                           "g"
203  *   0032     00 00 00                  padding to next message header
204  *
205  * The 'struct printk_log' buffer header must never be directly exported to
206  * userspace, it is a kernel-private implementation detail that might
207  * need to be changed in the future, when the requirements change.
208  *
209  * /dev/kmsg exports the structured data in the following line format:
210  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
211  *
212  * Users of the export format should ignore possible additional values
213  * separated by ',', and find the message after the ';' character.
214  *
215  * The optional key/value pairs are attached as continuation lines starting
216  * with a space character and terminated by a newline. All possible
217  * non-prinatable characters are escaped in the "\xff" notation.
218  */
219 
220 enum log_flags {
221 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
222 	LOG_NEWLINE	= 2,	/* text ended with a newline */
223 	LOG_PREFIX	= 4,	/* text started with a prefix */
224 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
225 };
226 
227 struct printk_log {
228 	u64 ts_nsec;		/* timestamp in nanoseconds */
229 	u16 len;		/* length of entire record */
230 	u16 text_len;		/* length of text buffer */
231 	u16 dict_len;		/* length of dictionary buffer */
232 	u8 facility;		/* syslog facility */
233 	u8 flags:5;		/* internal record flags */
234 	u8 level:3;		/* syslog level */
235 };
236 
237 /*
238  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
239  * within the scheduler's rq lock. It must be released before calling
240  * console_unlock() or anything else that might wake up a process.
241  */
242 static DEFINE_RAW_SPINLOCK(logbuf_lock);
243 
244 #ifdef CONFIG_PRINTK
245 DECLARE_WAIT_QUEUE_HEAD(log_wait);
246 /* the next printk record to read by syslog(READ) or /proc/kmsg */
247 static u64 syslog_seq;
248 static u32 syslog_idx;
249 static enum log_flags syslog_prev;
250 static size_t syslog_partial;
251 
252 /* index and sequence number of the first record stored in the buffer */
253 static u64 log_first_seq;
254 static u32 log_first_idx;
255 
256 /* index and sequence number of the next record to store in the buffer */
257 static u64 log_next_seq;
258 static u32 log_next_idx;
259 
260 /* the next printk record to write to the console */
261 static u64 console_seq;
262 static u32 console_idx;
263 static enum log_flags console_prev;
264 
265 /* the next printk record to read after the last 'clear' command */
266 static u64 clear_seq;
267 static u32 clear_idx;
268 
269 #define PREFIX_MAX		32
270 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
271 
272 /* record buffer */
273 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
274 #define LOG_ALIGN 4
275 #else
276 #define LOG_ALIGN __alignof__(struct printk_log)
277 #endif
278 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
279 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
280 static char *log_buf = __log_buf;
281 static u32 log_buf_len = __LOG_BUF_LEN;
282 
283 /* Return log buffer address */
284 char *log_buf_addr_get(void)
285 {
286 	return log_buf;
287 }
288 
289 /* Return log buffer size */
290 u32 log_buf_len_get(void)
291 {
292 	return log_buf_len;
293 }
294 
295 /* human readable text of the record */
296 static char *log_text(const struct printk_log *msg)
297 {
298 	return (char *)msg + sizeof(struct printk_log);
299 }
300 
301 /* optional key/value pair dictionary attached to the record */
302 static char *log_dict(const struct printk_log *msg)
303 {
304 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
305 }
306 
307 /* get record by index; idx must point to valid msg */
308 static struct printk_log *log_from_idx(u32 idx)
309 {
310 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
311 
312 	/*
313 	 * A length == 0 record is the end of buffer marker. Wrap around and
314 	 * read the message at the start of the buffer.
315 	 */
316 	if (!msg->len)
317 		return (struct printk_log *)log_buf;
318 	return msg;
319 }
320 
321 /* get next record; idx must point to valid msg */
322 static u32 log_next(u32 idx)
323 {
324 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
325 
326 	/* length == 0 indicates the end of the buffer; wrap */
327 	/*
328 	 * A length == 0 record is the end of buffer marker. Wrap around and
329 	 * read the message at the start of the buffer as *this* one, and
330 	 * return the one after that.
331 	 */
332 	if (!msg->len) {
333 		msg = (struct printk_log *)log_buf;
334 		return msg->len;
335 	}
336 	return idx + msg->len;
337 }
338 
339 /*
340  * Check whether there is enough free space for the given message.
341  *
342  * The same values of first_idx and next_idx mean that the buffer
343  * is either empty or full.
344  *
345  * If the buffer is empty, we must respect the position of the indexes.
346  * They cannot be reset to the beginning of the buffer.
347  */
348 static int logbuf_has_space(u32 msg_size, bool empty)
349 {
350 	u32 free;
351 
352 	if (log_next_idx > log_first_idx || empty)
353 		free = max(log_buf_len - log_next_idx, log_first_idx);
354 	else
355 		free = log_first_idx - log_next_idx;
356 
357 	/*
358 	 * We need space also for an empty header that signalizes wrapping
359 	 * of the buffer.
360 	 */
361 	return free >= msg_size + sizeof(struct printk_log);
362 }
363 
364 static int log_make_free_space(u32 msg_size)
365 {
366 	while (log_first_seq < log_next_seq) {
367 		if (logbuf_has_space(msg_size, false))
368 			return 0;
369 		/* drop old messages until we have enough contiguous space */
370 		log_first_idx = log_next(log_first_idx);
371 		log_first_seq++;
372 	}
373 
374 	/* sequence numbers are equal, so the log buffer is empty */
375 	if (logbuf_has_space(msg_size, true))
376 		return 0;
377 
378 	return -ENOMEM;
379 }
380 
381 /* compute the message size including the padding bytes */
382 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
383 {
384 	u32 size;
385 
386 	size = sizeof(struct printk_log) + text_len + dict_len;
387 	*pad_len = (-size) & (LOG_ALIGN - 1);
388 	size += *pad_len;
389 
390 	return size;
391 }
392 
393 /*
394  * Define how much of the log buffer we could take at maximum. The value
395  * must be greater than two. Note that only half of the buffer is available
396  * when the index points to the middle.
397  */
398 #define MAX_LOG_TAKE_PART 4
399 static const char trunc_msg[] = "<truncated>";
400 
401 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
402 			u16 *dict_len, u32 *pad_len)
403 {
404 	/*
405 	 * The message should not take the whole buffer. Otherwise, it might
406 	 * get removed too soon.
407 	 */
408 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
409 	if (*text_len > max_text_len)
410 		*text_len = max_text_len;
411 	/* enable the warning message */
412 	*trunc_msg_len = strlen(trunc_msg);
413 	/* disable the "dict" completely */
414 	*dict_len = 0;
415 	/* compute the size again, count also the warning message */
416 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
417 }
418 
419 /* insert record into the buffer, discard old ones, update heads */
420 static int log_store(int facility, int level,
421 		     enum log_flags flags, u64 ts_nsec,
422 		     const char *dict, u16 dict_len,
423 		     const char *text, u16 text_len)
424 {
425 	struct printk_log *msg;
426 	u32 size, pad_len;
427 	u16 trunc_msg_len = 0;
428 
429 	/* number of '\0' padding bytes to next message */
430 	size = msg_used_size(text_len, dict_len, &pad_len);
431 
432 	if (log_make_free_space(size)) {
433 		/* truncate the message if it is too long for empty buffer */
434 		size = truncate_msg(&text_len, &trunc_msg_len,
435 				    &dict_len, &pad_len);
436 		/* survive when the log buffer is too small for trunc_msg */
437 		if (log_make_free_space(size))
438 			return 0;
439 	}
440 
441 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
442 		/*
443 		 * This message + an additional empty header does not fit
444 		 * at the end of the buffer. Add an empty header with len == 0
445 		 * to signify a wrap around.
446 		 */
447 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
448 		log_next_idx = 0;
449 	}
450 
451 	/* fill message */
452 	msg = (struct printk_log *)(log_buf + log_next_idx);
453 	memcpy(log_text(msg), text, text_len);
454 	msg->text_len = text_len;
455 	if (trunc_msg_len) {
456 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
457 		msg->text_len += trunc_msg_len;
458 	}
459 	memcpy(log_dict(msg), dict, dict_len);
460 	msg->dict_len = dict_len;
461 	msg->facility = facility;
462 	msg->level = level & 7;
463 	msg->flags = flags & 0x1f;
464 	if (ts_nsec > 0)
465 		msg->ts_nsec = ts_nsec;
466 	else
467 		msg->ts_nsec = local_clock();
468 	memset(log_dict(msg) + dict_len, 0, pad_len);
469 	msg->len = size;
470 
471 	/* insert message */
472 	log_next_idx += msg->len;
473 	log_next_seq++;
474 
475 	return msg->text_len;
476 }
477 
478 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
479 
480 static int syslog_action_restricted(int type)
481 {
482 	if (dmesg_restrict)
483 		return 1;
484 	/*
485 	 * Unless restricted, we allow "read all" and "get buffer size"
486 	 * for everybody.
487 	 */
488 	return type != SYSLOG_ACTION_READ_ALL &&
489 	       type != SYSLOG_ACTION_SIZE_BUFFER;
490 }
491 
492 int check_syslog_permissions(int type, int source)
493 {
494 	/*
495 	 * If this is from /proc/kmsg and we've already opened it, then we've
496 	 * already done the capabilities checks at open time.
497 	 */
498 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
499 		goto ok;
500 
501 	if (syslog_action_restricted(type)) {
502 		if (capable(CAP_SYSLOG))
503 			goto ok;
504 		/*
505 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
506 		 * a warning.
507 		 */
508 		if (capable(CAP_SYS_ADMIN)) {
509 			pr_warn_once("%s (%d): Attempt to access syslog with "
510 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
511 				     "(deprecated).\n",
512 				 current->comm, task_pid_nr(current));
513 			goto ok;
514 		}
515 		return -EPERM;
516 	}
517 ok:
518 	return security_syslog(type);
519 }
520 EXPORT_SYMBOL_GPL(check_syslog_permissions);
521 
522 static void append_char(char **pp, char *e, char c)
523 {
524 	if (*pp < e)
525 		*(*pp)++ = c;
526 }
527 
528 static ssize_t msg_print_ext_header(char *buf, size_t size,
529 				    struct printk_log *msg, u64 seq,
530 				    enum log_flags prev_flags)
531 {
532 	u64 ts_usec = msg->ts_nsec;
533 	char cont = '-';
534 
535 	do_div(ts_usec, 1000);
536 
537 	/*
538 	 * If we couldn't merge continuation line fragments during the print,
539 	 * export the stored flags to allow an optional external merge of the
540 	 * records. Merging the records isn't always neccessarily correct, like
541 	 * when we hit a race during printing. In most cases though, it produces
542 	 * better readable output. 'c' in the record flags mark the first
543 	 * fragment of a line, '+' the following.
544 	 */
545 	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
546 		cont = 'c';
547 	else if ((msg->flags & LOG_CONT) ||
548 		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
549 		cont = '+';
550 
551 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
552 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
553 }
554 
555 static ssize_t msg_print_ext_body(char *buf, size_t size,
556 				  char *dict, size_t dict_len,
557 				  char *text, size_t text_len)
558 {
559 	char *p = buf, *e = buf + size;
560 	size_t i;
561 
562 	/* escape non-printable characters */
563 	for (i = 0; i < text_len; i++) {
564 		unsigned char c = text[i];
565 
566 		if (c < ' ' || c >= 127 || c == '\\')
567 			p += scnprintf(p, e - p, "\\x%02x", c);
568 		else
569 			append_char(&p, e, c);
570 	}
571 	append_char(&p, e, '\n');
572 
573 	if (dict_len) {
574 		bool line = true;
575 
576 		for (i = 0; i < dict_len; i++) {
577 			unsigned char c = dict[i];
578 
579 			if (line) {
580 				append_char(&p, e, ' ');
581 				line = false;
582 			}
583 
584 			if (c == '\0') {
585 				append_char(&p, e, '\n');
586 				line = true;
587 				continue;
588 			}
589 
590 			if (c < ' ' || c >= 127 || c == '\\') {
591 				p += scnprintf(p, e - p, "\\x%02x", c);
592 				continue;
593 			}
594 
595 			append_char(&p, e, c);
596 		}
597 		append_char(&p, e, '\n');
598 	}
599 
600 	return p - buf;
601 }
602 
603 /* /dev/kmsg - userspace message inject/listen interface */
604 struct devkmsg_user {
605 	u64 seq;
606 	u32 idx;
607 	enum log_flags prev;
608 	struct mutex lock;
609 	char buf[CONSOLE_EXT_LOG_MAX];
610 };
611 
612 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
613 {
614 	char *buf, *line;
615 	int i;
616 	int level = default_message_loglevel;
617 	int facility = 1;	/* LOG_USER */
618 	size_t len = iov_iter_count(from);
619 	ssize_t ret = len;
620 
621 	if (len > LOG_LINE_MAX)
622 		return -EINVAL;
623 	buf = kmalloc(len+1, GFP_KERNEL);
624 	if (buf == NULL)
625 		return -ENOMEM;
626 
627 	buf[len] = '\0';
628 	if (copy_from_iter(buf, len, from) != len) {
629 		kfree(buf);
630 		return -EFAULT;
631 	}
632 
633 	/*
634 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
635 	 * the decimal value represents 32bit, the lower 3 bit are the log
636 	 * level, the rest are the log facility.
637 	 *
638 	 * If no prefix or no userspace facility is specified, we
639 	 * enforce LOG_USER, to be able to reliably distinguish
640 	 * kernel-generated messages from userspace-injected ones.
641 	 */
642 	line = buf;
643 	if (line[0] == '<') {
644 		char *endp = NULL;
645 
646 		i = simple_strtoul(line+1, &endp, 10);
647 		if (endp && endp[0] == '>') {
648 			level = i & 7;
649 			if (i >> 3)
650 				facility = i >> 3;
651 			endp++;
652 			len -= endp - line;
653 			line = endp;
654 		}
655 	}
656 
657 	printk_emit(facility, level, NULL, 0, "%s", line);
658 	kfree(buf);
659 	return ret;
660 }
661 
662 static ssize_t devkmsg_read(struct file *file, char __user *buf,
663 			    size_t count, loff_t *ppos)
664 {
665 	struct devkmsg_user *user = file->private_data;
666 	struct printk_log *msg;
667 	size_t len;
668 	ssize_t ret;
669 
670 	if (!user)
671 		return -EBADF;
672 
673 	ret = mutex_lock_interruptible(&user->lock);
674 	if (ret)
675 		return ret;
676 	raw_spin_lock_irq(&logbuf_lock);
677 	while (user->seq == log_next_seq) {
678 		if (file->f_flags & O_NONBLOCK) {
679 			ret = -EAGAIN;
680 			raw_spin_unlock_irq(&logbuf_lock);
681 			goto out;
682 		}
683 
684 		raw_spin_unlock_irq(&logbuf_lock);
685 		ret = wait_event_interruptible(log_wait,
686 					       user->seq != log_next_seq);
687 		if (ret)
688 			goto out;
689 		raw_spin_lock_irq(&logbuf_lock);
690 	}
691 
692 	if (user->seq < log_first_seq) {
693 		/* our last seen message is gone, return error and reset */
694 		user->idx = log_first_idx;
695 		user->seq = log_first_seq;
696 		ret = -EPIPE;
697 		raw_spin_unlock_irq(&logbuf_lock);
698 		goto out;
699 	}
700 
701 	msg = log_from_idx(user->idx);
702 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
703 				   msg, user->seq, user->prev);
704 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
705 				  log_dict(msg), msg->dict_len,
706 				  log_text(msg), msg->text_len);
707 
708 	user->prev = msg->flags;
709 	user->idx = log_next(user->idx);
710 	user->seq++;
711 	raw_spin_unlock_irq(&logbuf_lock);
712 
713 	if (len > count) {
714 		ret = -EINVAL;
715 		goto out;
716 	}
717 
718 	if (copy_to_user(buf, user->buf, len)) {
719 		ret = -EFAULT;
720 		goto out;
721 	}
722 	ret = len;
723 out:
724 	mutex_unlock(&user->lock);
725 	return ret;
726 }
727 
728 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
729 {
730 	struct devkmsg_user *user = file->private_data;
731 	loff_t ret = 0;
732 
733 	if (!user)
734 		return -EBADF;
735 	if (offset)
736 		return -ESPIPE;
737 
738 	raw_spin_lock_irq(&logbuf_lock);
739 	switch (whence) {
740 	case SEEK_SET:
741 		/* the first record */
742 		user->idx = log_first_idx;
743 		user->seq = log_first_seq;
744 		break;
745 	case SEEK_DATA:
746 		/*
747 		 * The first record after the last SYSLOG_ACTION_CLEAR,
748 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
749 		 * changes no global state, and does not clear anything.
750 		 */
751 		user->idx = clear_idx;
752 		user->seq = clear_seq;
753 		break;
754 	case SEEK_END:
755 		/* after the last record */
756 		user->idx = log_next_idx;
757 		user->seq = log_next_seq;
758 		break;
759 	default:
760 		ret = -EINVAL;
761 	}
762 	raw_spin_unlock_irq(&logbuf_lock);
763 	return ret;
764 }
765 
766 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
767 {
768 	struct devkmsg_user *user = file->private_data;
769 	int ret = 0;
770 
771 	if (!user)
772 		return POLLERR|POLLNVAL;
773 
774 	poll_wait(file, &log_wait, wait);
775 
776 	raw_spin_lock_irq(&logbuf_lock);
777 	if (user->seq < log_next_seq) {
778 		/* return error when data has vanished underneath us */
779 		if (user->seq < log_first_seq)
780 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
781 		else
782 			ret = POLLIN|POLLRDNORM;
783 	}
784 	raw_spin_unlock_irq(&logbuf_lock);
785 
786 	return ret;
787 }
788 
789 static int devkmsg_open(struct inode *inode, struct file *file)
790 {
791 	struct devkmsg_user *user;
792 	int err;
793 
794 	/* write-only does not need any file context */
795 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
796 		return 0;
797 
798 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
799 				       SYSLOG_FROM_READER);
800 	if (err)
801 		return err;
802 
803 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
804 	if (!user)
805 		return -ENOMEM;
806 
807 	mutex_init(&user->lock);
808 
809 	raw_spin_lock_irq(&logbuf_lock);
810 	user->idx = log_first_idx;
811 	user->seq = log_first_seq;
812 	raw_spin_unlock_irq(&logbuf_lock);
813 
814 	file->private_data = user;
815 	return 0;
816 }
817 
818 static int devkmsg_release(struct inode *inode, struct file *file)
819 {
820 	struct devkmsg_user *user = file->private_data;
821 
822 	if (!user)
823 		return 0;
824 
825 	mutex_destroy(&user->lock);
826 	kfree(user);
827 	return 0;
828 }
829 
830 const struct file_operations kmsg_fops = {
831 	.open = devkmsg_open,
832 	.read = devkmsg_read,
833 	.write_iter = devkmsg_write,
834 	.llseek = devkmsg_llseek,
835 	.poll = devkmsg_poll,
836 	.release = devkmsg_release,
837 };
838 
839 #ifdef CONFIG_KEXEC_CORE
840 /*
841  * This appends the listed symbols to /proc/vmcore
842  *
843  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
844  * obtain access to symbols that are otherwise very difficult to locate.  These
845  * symbols are specifically used so that utilities can access and extract the
846  * dmesg log from a vmcore file after a crash.
847  */
848 void log_buf_kexec_setup(void)
849 {
850 	VMCOREINFO_SYMBOL(log_buf);
851 	VMCOREINFO_SYMBOL(log_buf_len);
852 	VMCOREINFO_SYMBOL(log_first_idx);
853 	VMCOREINFO_SYMBOL(log_next_idx);
854 	/*
855 	 * Export struct printk_log size and field offsets. User space tools can
856 	 * parse it and detect any changes to structure down the line.
857 	 */
858 	VMCOREINFO_STRUCT_SIZE(printk_log);
859 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
860 	VMCOREINFO_OFFSET(printk_log, len);
861 	VMCOREINFO_OFFSET(printk_log, text_len);
862 	VMCOREINFO_OFFSET(printk_log, dict_len);
863 }
864 #endif
865 
866 /* requested log_buf_len from kernel cmdline */
867 static unsigned long __initdata new_log_buf_len;
868 
869 /* we practice scaling the ring buffer by powers of 2 */
870 static void __init log_buf_len_update(unsigned size)
871 {
872 	if (size)
873 		size = roundup_pow_of_two(size);
874 	if (size > log_buf_len)
875 		new_log_buf_len = size;
876 }
877 
878 /* save requested log_buf_len since it's too early to process it */
879 static int __init log_buf_len_setup(char *str)
880 {
881 	unsigned size = memparse(str, &str);
882 
883 	log_buf_len_update(size);
884 
885 	return 0;
886 }
887 early_param("log_buf_len", log_buf_len_setup);
888 
889 #ifdef CONFIG_SMP
890 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
891 
892 static void __init log_buf_add_cpu(void)
893 {
894 	unsigned int cpu_extra;
895 
896 	/*
897 	 * archs should set up cpu_possible_bits properly with
898 	 * set_cpu_possible() after setup_arch() but just in
899 	 * case lets ensure this is valid.
900 	 */
901 	if (num_possible_cpus() == 1)
902 		return;
903 
904 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
905 
906 	/* by default this will only continue through for large > 64 CPUs */
907 	if (cpu_extra <= __LOG_BUF_LEN / 2)
908 		return;
909 
910 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
911 		__LOG_CPU_MAX_BUF_LEN);
912 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
913 		cpu_extra);
914 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
915 
916 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
917 }
918 #else /* !CONFIG_SMP */
919 static inline void log_buf_add_cpu(void) {}
920 #endif /* CONFIG_SMP */
921 
922 void __init setup_log_buf(int early)
923 {
924 	unsigned long flags;
925 	char *new_log_buf;
926 	int free;
927 
928 	if (log_buf != __log_buf)
929 		return;
930 
931 	if (!early && !new_log_buf_len)
932 		log_buf_add_cpu();
933 
934 	if (!new_log_buf_len)
935 		return;
936 
937 	if (early) {
938 		new_log_buf =
939 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
940 	} else {
941 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
942 							  LOG_ALIGN);
943 	}
944 
945 	if (unlikely(!new_log_buf)) {
946 		pr_err("log_buf_len: %ld bytes not available\n",
947 			new_log_buf_len);
948 		return;
949 	}
950 
951 	raw_spin_lock_irqsave(&logbuf_lock, flags);
952 	log_buf_len = new_log_buf_len;
953 	log_buf = new_log_buf;
954 	new_log_buf_len = 0;
955 	free = __LOG_BUF_LEN - log_next_idx;
956 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
957 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
958 
959 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
960 	pr_info("early log buf free: %d(%d%%)\n",
961 		free, (free * 100) / __LOG_BUF_LEN);
962 }
963 
964 static bool __read_mostly ignore_loglevel;
965 
966 static int __init ignore_loglevel_setup(char *str)
967 {
968 	ignore_loglevel = true;
969 	pr_info("debug: ignoring loglevel setting.\n");
970 
971 	return 0;
972 }
973 
974 early_param("ignore_loglevel", ignore_loglevel_setup);
975 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
976 MODULE_PARM_DESC(ignore_loglevel,
977 		 "ignore loglevel setting (prints all kernel messages to the console)");
978 
979 #ifdef CONFIG_BOOT_PRINTK_DELAY
980 
981 static int boot_delay; /* msecs delay after each printk during bootup */
982 static unsigned long long loops_per_msec;	/* based on boot_delay */
983 
984 static int __init boot_delay_setup(char *str)
985 {
986 	unsigned long lpj;
987 
988 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
989 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
990 
991 	get_option(&str, &boot_delay);
992 	if (boot_delay > 10 * 1000)
993 		boot_delay = 0;
994 
995 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
996 		"HZ: %d, loops_per_msec: %llu\n",
997 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
998 	return 0;
999 }
1000 early_param("boot_delay", boot_delay_setup);
1001 
1002 static void boot_delay_msec(int level)
1003 {
1004 	unsigned long long k;
1005 	unsigned long timeout;
1006 
1007 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1008 		|| (level >= console_loglevel && !ignore_loglevel)) {
1009 		return;
1010 	}
1011 
1012 	k = (unsigned long long)loops_per_msec * boot_delay;
1013 
1014 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1015 	while (k) {
1016 		k--;
1017 		cpu_relax();
1018 		/*
1019 		 * use (volatile) jiffies to prevent
1020 		 * compiler reduction; loop termination via jiffies
1021 		 * is secondary and may or may not happen.
1022 		 */
1023 		if (time_after(jiffies, timeout))
1024 			break;
1025 		touch_nmi_watchdog();
1026 	}
1027 }
1028 #else
1029 static inline void boot_delay_msec(int level)
1030 {
1031 }
1032 #endif
1033 
1034 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1035 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1036 
1037 static size_t print_time(u64 ts, char *buf)
1038 {
1039 	unsigned long rem_nsec;
1040 
1041 	if (!printk_time)
1042 		return 0;
1043 
1044 	rem_nsec = do_div(ts, 1000000000);
1045 
1046 	if (!buf)
1047 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1048 
1049 	return sprintf(buf, "[%5lu.%06lu] ",
1050 		       (unsigned long)ts, rem_nsec / 1000);
1051 }
1052 
1053 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1054 {
1055 	size_t len = 0;
1056 	unsigned int prefix = (msg->facility << 3) | msg->level;
1057 
1058 	if (syslog) {
1059 		if (buf) {
1060 			len += sprintf(buf, "<%u>", prefix);
1061 		} else {
1062 			len += 3;
1063 			if (prefix > 999)
1064 				len += 3;
1065 			else if (prefix > 99)
1066 				len += 2;
1067 			else if (prefix > 9)
1068 				len++;
1069 		}
1070 	}
1071 
1072 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1073 	return len;
1074 }
1075 
1076 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1077 			     bool syslog, char *buf, size_t size)
1078 {
1079 	const char *text = log_text(msg);
1080 	size_t text_size = msg->text_len;
1081 	bool prefix = true;
1082 	bool newline = true;
1083 	size_t len = 0;
1084 
1085 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1086 		prefix = false;
1087 
1088 	if (msg->flags & LOG_CONT) {
1089 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1090 			prefix = false;
1091 
1092 		if (!(msg->flags & LOG_NEWLINE))
1093 			newline = false;
1094 	}
1095 
1096 	do {
1097 		const char *next = memchr(text, '\n', text_size);
1098 		size_t text_len;
1099 
1100 		if (next) {
1101 			text_len = next - text;
1102 			next++;
1103 			text_size -= next - text;
1104 		} else {
1105 			text_len = text_size;
1106 		}
1107 
1108 		if (buf) {
1109 			if (print_prefix(msg, syslog, NULL) +
1110 			    text_len + 1 >= size - len)
1111 				break;
1112 
1113 			if (prefix)
1114 				len += print_prefix(msg, syslog, buf + len);
1115 			memcpy(buf + len, text, text_len);
1116 			len += text_len;
1117 			if (next || newline)
1118 				buf[len++] = '\n';
1119 		} else {
1120 			/* SYSLOG_ACTION_* buffer size only calculation */
1121 			if (prefix)
1122 				len += print_prefix(msg, syslog, NULL);
1123 			len += text_len;
1124 			if (next || newline)
1125 				len++;
1126 		}
1127 
1128 		prefix = true;
1129 		text = next;
1130 	} while (text);
1131 
1132 	return len;
1133 }
1134 
1135 static int syslog_print(char __user *buf, int size)
1136 {
1137 	char *text;
1138 	struct printk_log *msg;
1139 	int len = 0;
1140 
1141 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1142 	if (!text)
1143 		return -ENOMEM;
1144 
1145 	while (size > 0) {
1146 		size_t n;
1147 		size_t skip;
1148 
1149 		raw_spin_lock_irq(&logbuf_lock);
1150 		if (syslog_seq < log_first_seq) {
1151 			/* messages are gone, move to first one */
1152 			syslog_seq = log_first_seq;
1153 			syslog_idx = log_first_idx;
1154 			syslog_prev = 0;
1155 			syslog_partial = 0;
1156 		}
1157 		if (syslog_seq == log_next_seq) {
1158 			raw_spin_unlock_irq(&logbuf_lock);
1159 			break;
1160 		}
1161 
1162 		skip = syslog_partial;
1163 		msg = log_from_idx(syslog_idx);
1164 		n = msg_print_text(msg, syslog_prev, true, text,
1165 				   LOG_LINE_MAX + PREFIX_MAX);
1166 		if (n - syslog_partial <= size) {
1167 			/* message fits into buffer, move forward */
1168 			syslog_idx = log_next(syslog_idx);
1169 			syslog_seq++;
1170 			syslog_prev = msg->flags;
1171 			n -= syslog_partial;
1172 			syslog_partial = 0;
1173 		} else if (!len){
1174 			/* partial read(), remember position */
1175 			n = size;
1176 			syslog_partial += n;
1177 		} else
1178 			n = 0;
1179 		raw_spin_unlock_irq(&logbuf_lock);
1180 
1181 		if (!n)
1182 			break;
1183 
1184 		if (copy_to_user(buf, text + skip, n)) {
1185 			if (!len)
1186 				len = -EFAULT;
1187 			break;
1188 		}
1189 
1190 		len += n;
1191 		size -= n;
1192 		buf += n;
1193 	}
1194 
1195 	kfree(text);
1196 	return len;
1197 }
1198 
1199 static int syslog_print_all(char __user *buf, int size, bool clear)
1200 {
1201 	char *text;
1202 	int len = 0;
1203 
1204 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1205 	if (!text)
1206 		return -ENOMEM;
1207 
1208 	raw_spin_lock_irq(&logbuf_lock);
1209 	if (buf) {
1210 		u64 next_seq;
1211 		u64 seq;
1212 		u32 idx;
1213 		enum log_flags prev;
1214 
1215 		if (clear_seq < log_first_seq) {
1216 			/* messages are gone, move to first available one */
1217 			clear_seq = log_first_seq;
1218 			clear_idx = log_first_idx;
1219 		}
1220 
1221 		/*
1222 		 * Find first record that fits, including all following records,
1223 		 * into the user-provided buffer for this dump.
1224 		 */
1225 		seq = clear_seq;
1226 		idx = clear_idx;
1227 		prev = 0;
1228 		while (seq < log_next_seq) {
1229 			struct printk_log *msg = log_from_idx(idx);
1230 
1231 			len += msg_print_text(msg, prev, true, NULL, 0);
1232 			prev = msg->flags;
1233 			idx = log_next(idx);
1234 			seq++;
1235 		}
1236 
1237 		/* move first record forward until length fits into the buffer */
1238 		seq = clear_seq;
1239 		idx = clear_idx;
1240 		prev = 0;
1241 		while (len > size && seq < log_next_seq) {
1242 			struct printk_log *msg = log_from_idx(idx);
1243 
1244 			len -= msg_print_text(msg, prev, true, NULL, 0);
1245 			prev = msg->flags;
1246 			idx = log_next(idx);
1247 			seq++;
1248 		}
1249 
1250 		/* last message fitting into this dump */
1251 		next_seq = log_next_seq;
1252 
1253 		len = 0;
1254 		while (len >= 0 && seq < next_seq) {
1255 			struct printk_log *msg = log_from_idx(idx);
1256 			int textlen;
1257 
1258 			textlen = msg_print_text(msg, prev, true, text,
1259 						 LOG_LINE_MAX + PREFIX_MAX);
1260 			if (textlen < 0) {
1261 				len = textlen;
1262 				break;
1263 			}
1264 			idx = log_next(idx);
1265 			seq++;
1266 			prev = msg->flags;
1267 
1268 			raw_spin_unlock_irq(&logbuf_lock);
1269 			if (copy_to_user(buf + len, text, textlen))
1270 				len = -EFAULT;
1271 			else
1272 				len += textlen;
1273 			raw_spin_lock_irq(&logbuf_lock);
1274 
1275 			if (seq < log_first_seq) {
1276 				/* messages are gone, move to next one */
1277 				seq = log_first_seq;
1278 				idx = log_first_idx;
1279 				prev = 0;
1280 			}
1281 		}
1282 	}
1283 
1284 	if (clear) {
1285 		clear_seq = log_next_seq;
1286 		clear_idx = log_next_idx;
1287 	}
1288 	raw_spin_unlock_irq(&logbuf_lock);
1289 
1290 	kfree(text);
1291 	return len;
1292 }
1293 
1294 int do_syslog(int type, char __user *buf, int len, int source)
1295 {
1296 	bool clear = false;
1297 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1298 	int error;
1299 
1300 	error = check_syslog_permissions(type, source);
1301 	if (error)
1302 		goto out;
1303 
1304 	switch (type) {
1305 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1306 		break;
1307 	case SYSLOG_ACTION_OPEN:	/* Open log */
1308 		break;
1309 	case SYSLOG_ACTION_READ:	/* Read from log */
1310 		error = -EINVAL;
1311 		if (!buf || len < 0)
1312 			goto out;
1313 		error = 0;
1314 		if (!len)
1315 			goto out;
1316 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1317 			error = -EFAULT;
1318 			goto out;
1319 		}
1320 		error = wait_event_interruptible(log_wait,
1321 						 syslog_seq != log_next_seq);
1322 		if (error)
1323 			goto out;
1324 		error = syslog_print(buf, len);
1325 		break;
1326 	/* Read/clear last kernel messages */
1327 	case SYSLOG_ACTION_READ_CLEAR:
1328 		clear = true;
1329 		/* FALL THRU */
1330 	/* Read last kernel messages */
1331 	case SYSLOG_ACTION_READ_ALL:
1332 		error = -EINVAL;
1333 		if (!buf || len < 0)
1334 			goto out;
1335 		error = 0;
1336 		if (!len)
1337 			goto out;
1338 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1339 			error = -EFAULT;
1340 			goto out;
1341 		}
1342 		error = syslog_print_all(buf, len, clear);
1343 		break;
1344 	/* Clear ring buffer */
1345 	case SYSLOG_ACTION_CLEAR:
1346 		syslog_print_all(NULL, 0, true);
1347 		break;
1348 	/* Disable logging to console */
1349 	case SYSLOG_ACTION_CONSOLE_OFF:
1350 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1351 			saved_console_loglevel = console_loglevel;
1352 		console_loglevel = minimum_console_loglevel;
1353 		break;
1354 	/* Enable logging to console */
1355 	case SYSLOG_ACTION_CONSOLE_ON:
1356 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1357 			console_loglevel = saved_console_loglevel;
1358 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1359 		}
1360 		break;
1361 	/* Set level of messages printed to console */
1362 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1363 		error = -EINVAL;
1364 		if (len < 1 || len > 8)
1365 			goto out;
1366 		if (len < minimum_console_loglevel)
1367 			len = minimum_console_loglevel;
1368 		console_loglevel = len;
1369 		/* Implicitly re-enable logging to console */
1370 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1371 		error = 0;
1372 		break;
1373 	/* Number of chars in the log buffer */
1374 	case SYSLOG_ACTION_SIZE_UNREAD:
1375 		raw_spin_lock_irq(&logbuf_lock);
1376 		if (syslog_seq < log_first_seq) {
1377 			/* messages are gone, move to first one */
1378 			syslog_seq = log_first_seq;
1379 			syslog_idx = log_first_idx;
1380 			syslog_prev = 0;
1381 			syslog_partial = 0;
1382 		}
1383 		if (source == SYSLOG_FROM_PROC) {
1384 			/*
1385 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1386 			 * for pending data, not the size; return the count of
1387 			 * records, not the length.
1388 			 */
1389 			error = log_next_seq - syslog_seq;
1390 		} else {
1391 			u64 seq = syslog_seq;
1392 			u32 idx = syslog_idx;
1393 			enum log_flags prev = syslog_prev;
1394 
1395 			error = 0;
1396 			while (seq < log_next_seq) {
1397 				struct printk_log *msg = log_from_idx(idx);
1398 
1399 				error += msg_print_text(msg, prev, true, NULL, 0);
1400 				idx = log_next(idx);
1401 				seq++;
1402 				prev = msg->flags;
1403 			}
1404 			error -= syslog_partial;
1405 		}
1406 		raw_spin_unlock_irq(&logbuf_lock);
1407 		break;
1408 	/* Size of the log buffer */
1409 	case SYSLOG_ACTION_SIZE_BUFFER:
1410 		error = log_buf_len;
1411 		break;
1412 	default:
1413 		error = -EINVAL;
1414 		break;
1415 	}
1416 out:
1417 	return error;
1418 }
1419 
1420 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1421 {
1422 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1423 }
1424 
1425 /*
1426  * Call the console drivers, asking them to write out
1427  * log_buf[start] to log_buf[end - 1].
1428  * The console_lock must be held.
1429  */
1430 static void call_console_drivers(int level,
1431 				 const char *ext_text, size_t ext_len,
1432 				 const char *text, size_t len)
1433 {
1434 	struct console *con;
1435 
1436 	trace_console(text, len);
1437 
1438 	if (level >= console_loglevel && !ignore_loglevel)
1439 		return;
1440 	if (!console_drivers)
1441 		return;
1442 
1443 	for_each_console(con) {
1444 		if (exclusive_console && con != exclusive_console)
1445 			continue;
1446 		if (!(con->flags & CON_ENABLED))
1447 			continue;
1448 		if (!con->write)
1449 			continue;
1450 		if (!cpu_online(smp_processor_id()) &&
1451 		    !(con->flags & CON_ANYTIME))
1452 			continue;
1453 		if (con->flags & CON_EXTENDED)
1454 			con->write(con, ext_text, ext_len);
1455 		else
1456 			con->write(con, text, len);
1457 	}
1458 }
1459 
1460 /*
1461  * Zap console related locks when oopsing.
1462  * To leave time for slow consoles to print a full oops,
1463  * only zap at most once every 30 seconds.
1464  */
1465 static void zap_locks(void)
1466 {
1467 	static unsigned long oops_timestamp;
1468 
1469 	if (time_after_eq(jiffies, oops_timestamp) &&
1470 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1471 		return;
1472 
1473 	oops_timestamp = jiffies;
1474 
1475 	debug_locks_off();
1476 	/* If a crash is occurring, make sure we can't deadlock */
1477 	raw_spin_lock_init(&logbuf_lock);
1478 	/* And make sure that we print immediately */
1479 	sema_init(&console_sem, 1);
1480 }
1481 
1482 /*
1483  * Check if we have any console that is capable of printing while cpu is
1484  * booting or shutting down. Requires console_sem.
1485  */
1486 static int have_callable_console(void)
1487 {
1488 	struct console *con;
1489 
1490 	for_each_console(con)
1491 		if (con->flags & CON_ANYTIME)
1492 			return 1;
1493 
1494 	return 0;
1495 }
1496 
1497 /*
1498  * Can we actually use the console at this time on this cpu?
1499  *
1500  * Console drivers may assume that per-cpu resources have been allocated. So
1501  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1502  * call them until this CPU is officially up.
1503  */
1504 static inline int can_use_console(unsigned int cpu)
1505 {
1506 	return cpu_online(cpu) || have_callable_console();
1507 }
1508 
1509 /*
1510  * Try to get console ownership to actually show the kernel
1511  * messages from a 'printk'. Return true (and with the
1512  * console_lock held, and 'console_locked' set) if it
1513  * is successful, false otherwise.
1514  */
1515 static int console_trylock_for_printk(void)
1516 {
1517 	unsigned int cpu = smp_processor_id();
1518 
1519 	if (!console_trylock())
1520 		return 0;
1521 	/*
1522 	 * If we can't use the console, we need to release the console
1523 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1524 	 * console semaphore in order to do this test safely.
1525 	 */
1526 	if (!can_use_console(cpu)) {
1527 		console_locked = 0;
1528 		up_console_sem();
1529 		return 0;
1530 	}
1531 	return 1;
1532 }
1533 
1534 int printk_delay_msec __read_mostly;
1535 
1536 static inline void printk_delay(void)
1537 {
1538 	if (unlikely(printk_delay_msec)) {
1539 		int m = printk_delay_msec;
1540 
1541 		while (m--) {
1542 			mdelay(1);
1543 			touch_nmi_watchdog();
1544 		}
1545 	}
1546 }
1547 
1548 /*
1549  * Continuation lines are buffered, and not committed to the record buffer
1550  * until the line is complete, or a race forces it. The line fragments
1551  * though, are printed immediately to the consoles to ensure everything has
1552  * reached the console in case of a kernel crash.
1553  */
1554 static struct cont {
1555 	char buf[LOG_LINE_MAX];
1556 	size_t len;			/* length == 0 means unused buffer */
1557 	size_t cons;			/* bytes written to console */
1558 	struct task_struct *owner;	/* task of first print*/
1559 	u64 ts_nsec;			/* time of first print */
1560 	u8 level;			/* log level of first message */
1561 	u8 facility;			/* log facility of first message */
1562 	enum log_flags flags;		/* prefix, newline flags */
1563 	bool flushed:1;			/* buffer sealed and committed */
1564 } cont;
1565 
1566 static void cont_flush(enum log_flags flags)
1567 {
1568 	if (cont.flushed)
1569 		return;
1570 	if (cont.len == 0)
1571 		return;
1572 
1573 	if (cont.cons) {
1574 		/*
1575 		 * If a fragment of this line was directly flushed to the
1576 		 * console; wait for the console to pick up the rest of the
1577 		 * line. LOG_NOCONS suppresses a duplicated output.
1578 		 */
1579 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1580 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1581 		cont.flags = flags;
1582 		cont.flushed = true;
1583 	} else {
1584 		/*
1585 		 * If no fragment of this line ever reached the console,
1586 		 * just submit it to the store and free the buffer.
1587 		 */
1588 		log_store(cont.facility, cont.level, flags, 0,
1589 			  NULL, 0, cont.buf, cont.len);
1590 		cont.len = 0;
1591 	}
1592 }
1593 
1594 static bool cont_add(int facility, int level, const char *text, size_t len)
1595 {
1596 	if (cont.len && cont.flushed)
1597 		return false;
1598 
1599 	/*
1600 	 * If ext consoles are present, flush and skip in-kernel
1601 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1602 	 * the line gets too long, split it up in separate records.
1603 	 */
1604 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1605 		cont_flush(LOG_CONT);
1606 		return false;
1607 	}
1608 
1609 	if (!cont.len) {
1610 		cont.facility = facility;
1611 		cont.level = level;
1612 		cont.owner = current;
1613 		cont.ts_nsec = local_clock();
1614 		cont.flags = 0;
1615 		cont.cons = 0;
1616 		cont.flushed = false;
1617 	}
1618 
1619 	memcpy(cont.buf + cont.len, text, len);
1620 	cont.len += len;
1621 
1622 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1623 		cont_flush(LOG_CONT);
1624 
1625 	return true;
1626 }
1627 
1628 static size_t cont_print_text(char *text, size_t size)
1629 {
1630 	size_t textlen = 0;
1631 	size_t len;
1632 
1633 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1634 		textlen += print_time(cont.ts_nsec, text);
1635 		size -= textlen;
1636 	}
1637 
1638 	len = cont.len - cont.cons;
1639 	if (len > 0) {
1640 		if (len+1 > size)
1641 			len = size-1;
1642 		memcpy(text + textlen, cont.buf + cont.cons, len);
1643 		textlen += len;
1644 		cont.cons = cont.len;
1645 	}
1646 
1647 	if (cont.flushed) {
1648 		if (cont.flags & LOG_NEWLINE)
1649 			text[textlen++] = '\n';
1650 		/* got everything, release buffer */
1651 		cont.len = 0;
1652 	}
1653 	return textlen;
1654 }
1655 
1656 asmlinkage int vprintk_emit(int facility, int level,
1657 			    const char *dict, size_t dictlen,
1658 			    const char *fmt, va_list args)
1659 {
1660 	static int recursion_bug;
1661 	static char textbuf[LOG_LINE_MAX];
1662 	char *text = textbuf;
1663 	size_t text_len = 0;
1664 	enum log_flags lflags = 0;
1665 	unsigned long flags;
1666 	int this_cpu;
1667 	int printed_len = 0;
1668 	bool in_sched = false;
1669 	/* cpu currently holding logbuf_lock in this function */
1670 	static unsigned int logbuf_cpu = UINT_MAX;
1671 
1672 	if (level == LOGLEVEL_SCHED) {
1673 		level = LOGLEVEL_DEFAULT;
1674 		in_sched = true;
1675 	}
1676 
1677 	boot_delay_msec(level);
1678 	printk_delay();
1679 
1680 	/* This stops the holder of console_sem just where we want him */
1681 	local_irq_save(flags);
1682 	this_cpu = smp_processor_id();
1683 
1684 	/*
1685 	 * Ouch, printk recursed into itself!
1686 	 */
1687 	if (unlikely(logbuf_cpu == this_cpu)) {
1688 		/*
1689 		 * If a crash is occurring during printk() on this CPU,
1690 		 * then try to get the crash message out but make sure
1691 		 * we can't deadlock. Otherwise just return to avoid the
1692 		 * recursion and return - but flag the recursion so that
1693 		 * it can be printed at the next appropriate moment:
1694 		 */
1695 		if (!oops_in_progress && !lockdep_recursing(current)) {
1696 			recursion_bug = 1;
1697 			local_irq_restore(flags);
1698 			return 0;
1699 		}
1700 		zap_locks();
1701 	}
1702 
1703 	lockdep_off();
1704 	raw_spin_lock(&logbuf_lock);
1705 	logbuf_cpu = this_cpu;
1706 
1707 	if (unlikely(recursion_bug)) {
1708 		static const char recursion_msg[] =
1709 			"BUG: recent printk recursion!";
1710 
1711 		recursion_bug = 0;
1712 		/* emit KERN_CRIT message */
1713 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1714 					 NULL, 0, recursion_msg,
1715 					 strlen(recursion_msg));
1716 	}
1717 
1718 	/*
1719 	 * The printf needs to come first; we need the syslog
1720 	 * prefix which might be passed-in as a parameter.
1721 	 */
1722 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1723 
1724 	/* mark and strip a trailing newline */
1725 	if (text_len && text[text_len-1] == '\n') {
1726 		text_len--;
1727 		lflags |= LOG_NEWLINE;
1728 	}
1729 
1730 	/* strip kernel syslog prefix and extract log level or control flags */
1731 	if (facility == 0) {
1732 		int kern_level = printk_get_level(text);
1733 
1734 		if (kern_level) {
1735 			const char *end_of_header = printk_skip_level(text);
1736 			switch (kern_level) {
1737 			case '0' ... '7':
1738 				if (level == LOGLEVEL_DEFAULT)
1739 					level = kern_level - '0';
1740 				/* fallthrough */
1741 			case 'd':	/* KERN_DEFAULT */
1742 				lflags |= LOG_PREFIX;
1743 			}
1744 			/*
1745 			 * No need to check length here because vscnprintf
1746 			 * put '\0' at the end of the string. Only valid and
1747 			 * newly printed level is detected.
1748 			 */
1749 			text_len -= end_of_header - text;
1750 			text = (char *)end_of_header;
1751 		}
1752 	}
1753 
1754 	if (level == LOGLEVEL_DEFAULT)
1755 		level = default_message_loglevel;
1756 
1757 	if (dict)
1758 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1759 
1760 	if (!(lflags & LOG_NEWLINE)) {
1761 		/*
1762 		 * Flush the conflicting buffer. An earlier newline was missing,
1763 		 * or another task also prints continuation lines.
1764 		 */
1765 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1766 			cont_flush(LOG_NEWLINE);
1767 
1768 		/* buffer line if possible, otherwise store it right away */
1769 		if (cont_add(facility, level, text, text_len))
1770 			printed_len += text_len;
1771 		else
1772 			printed_len += log_store(facility, level,
1773 						 lflags | LOG_CONT, 0,
1774 						 dict, dictlen, text, text_len);
1775 	} else {
1776 		bool stored = false;
1777 
1778 		/*
1779 		 * If an earlier newline was missing and it was the same task,
1780 		 * either merge it with the current buffer and flush, or if
1781 		 * there was a race with interrupts (prefix == true) then just
1782 		 * flush it out and store this line separately.
1783 		 * If the preceding printk was from a different task and missed
1784 		 * a newline, flush and append the newline.
1785 		 */
1786 		if (cont.len) {
1787 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1788 				stored = cont_add(facility, level, text,
1789 						  text_len);
1790 			cont_flush(LOG_NEWLINE);
1791 		}
1792 
1793 		if (stored)
1794 			printed_len += text_len;
1795 		else
1796 			printed_len += log_store(facility, level, lflags, 0,
1797 						 dict, dictlen, text, text_len);
1798 	}
1799 
1800 	logbuf_cpu = UINT_MAX;
1801 	raw_spin_unlock(&logbuf_lock);
1802 	lockdep_on();
1803 	local_irq_restore(flags);
1804 
1805 	/* If called from the scheduler, we can not call up(). */
1806 	if (!in_sched) {
1807 		lockdep_off();
1808 		/*
1809 		 * Disable preemption to avoid being preempted while holding
1810 		 * console_sem which would prevent anyone from printing to
1811 		 * console
1812 		 */
1813 		preempt_disable();
1814 
1815 		/*
1816 		 * Try to acquire and then immediately release the console
1817 		 * semaphore.  The release will print out buffers and wake up
1818 		 * /dev/kmsg and syslog() users.
1819 		 */
1820 		if (console_trylock_for_printk())
1821 			console_unlock();
1822 		preempt_enable();
1823 		lockdep_on();
1824 	}
1825 
1826 	return printed_len;
1827 }
1828 EXPORT_SYMBOL(vprintk_emit);
1829 
1830 asmlinkage int vprintk(const char *fmt, va_list args)
1831 {
1832 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1833 }
1834 EXPORT_SYMBOL(vprintk);
1835 
1836 asmlinkage int printk_emit(int facility, int level,
1837 			   const char *dict, size_t dictlen,
1838 			   const char *fmt, ...)
1839 {
1840 	va_list args;
1841 	int r;
1842 
1843 	va_start(args, fmt);
1844 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1845 	va_end(args);
1846 
1847 	return r;
1848 }
1849 EXPORT_SYMBOL(printk_emit);
1850 
1851 int vprintk_default(const char *fmt, va_list args)
1852 {
1853 	int r;
1854 
1855 #ifdef CONFIG_KGDB_KDB
1856 	if (unlikely(kdb_trap_printk)) {
1857 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1858 		return r;
1859 	}
1860 #endif
1861 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1862 
1863 	return r;
1864 }
1865 EXPORT_SYMBOL_GPL(vprintk_default);
1866 
1867 /*
1868  * This allows printk to be diverted to another function per cpu.
1869  * This is useful for calling printk functions from within NMI
1870  * without worrying about race conditions that can lock up the
1871  * box.
1872  */
1873 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1874 
1875 /**
1876  * printk - print a kernel message
1877  * @fmt: format string
1878  *
1879  * This is printk(). It can be called from any context. We want it to work.
1880  *
1881  * We try to grab the console_lock. If we succeed, it's easy - we log the
1882  * output and call the console drivers.  If we fail to get the semaphore, we
1883  * place the output into the log buffer and return. The current holder of
1884  * the console_sem will notice the new output in console_unlock(); and will
1885  * send it to the consoles before releasing the lock.
1886  *
1887  * One effect of this deferred printing is that code which calls printk() and
1888  * then changes console_loglevel may break. This is because console_loglevel
1889  * is inspected when the actual printing occurs.
1890  *
1891  * See also:
1892  * printf(3)
1893  *
1894  * See the vsnprintf() documentation for format string extensions over C99.
1895  */
1896 asmlinkage __visible int printk(const char *fmt, ...)
1897 {
1898 	printk_func_t vprintk_func;
1899 	va_list args;
1900 	int r;
1901 
1902 	va_start(args, fmt);
1903 
1904 	/*
1905 	 * If a caller overrides the per_cpu printk_func, then it needs
1906 	 * to disable preemption when calling printk(). Otherwise
1907 	 * the printk_func should be set to the default. No need to
1908 	 * disable preemption here.
1909 	 */
1910 	vprintk_func = this_cpu_read(printk_func);
1911 	r = vprintk_func(fmt, args);
1912 
1913 	va_end(args);
1914 
1915 	return r;
1916 }
1917 EXPORT_SYMBOL(printk);
1918 
1919 #else /* CONFIG_PRINTK */
1920 
1921 #define LOG_LINE_MAX		0
1922 #define PREFIX_MAX		0
1923 
1924 static u64 syslog_seq;
1925 static u32 syslog_idx;
1926 static u64 console_seq;
1927 static u32 console_idx;
1928 static enum log_flags syslog_prev;
1929 static u64 log_first_seq;
1930 static u32 log_first_idx;
1931 static u64 log_next_seq;
1932 static enum log_flags console_prev;
1933 static struct cont {
1934 	size_t len;
1935 	size_t cons;
1936 	u8 level;
1937 	bool flushed:1;
1938 } cont;
1939 static char *log_text(const struct printk_log *msg) { return NULL; }
1940 static char *log_dict(const struct printk_log *msg) { return NULL; }
1941 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1942 static u32 log_next(u32 idx) { return 0; }
1943 static ssize_t msg_print_ext_header(char *buf, size_t size,
1944 				    struct printk_log *msg, u64 seq,
1945 				    enum log_flags prev_flags) { return 0; }
1946 static ssize_t msg_print_ext_body(char *buf, size_t size,
1947 				  char *dict, size_t dict_len,
1948 				  char *text, size_t text_len) { return 0; }
1949 static void call_console_drivers(int level,
1950 				 const char *ext_text, size_t ext_len,
1951 				 const char *text, size_t len) {}
1952 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1953 			     bool syslog, char *buf, size_t size) { return 0; }
1954 static size_t cont_print_text(char *text, size_t size) { return 0; }
1955 
1956 /* Still needs to be defined for users */
1957 DEFINE_PER_CPU(printk_func_t, printk_func);
1958 
1959 #endif /* CONFIG_PRINTK */
1960 
1961 #ifdef CONFIG_EARLY_PRINTK
1962 struct console *early_console;
1963 
1964 asmlinkage __visible void early_printk(const char *fmt, ...)
1965 {
1966 	va_list ap;
1967 	char buf[512];
1968 	int n;
1969 
1970 	if (!early_console)
1971 		return;
1972 
1973 	va_start(ap, fmt);
1974 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1975 	va_end(ap);
1976 
1977 	early_console->write(early_console, buf, n);
1978 }
1979 #endif
1980 
1981 static int __add_preferred_console(char *name, int idx, char *options,
1982 				   char *brl_options)
1983 {
1984 	struct console_cmdline *c;
1985 	int i;
1986 
1987 	/*
1988 	 *	See if this tty is not yet registered, and
1989 	 *	if we have a slot free.
1990 	 */
1991 	for (i = 0, c = console_cmdline;
1992 	     i < MAX_CMDLINECONSOLES && c->name[0];
1993 	     i++, c++) {
1994 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1995 			if (!brl_options)
1996 				selected_console = i;
1997 			return 0;
1998 		}
1999 	}
2000 	if (i == MAX_CMDLINECONSOLES)
2001 		return -E2BIG;
2002 	if (!brl_options)
2003 		selected_console = i;
2004 	strlcpy(c->name, name, sizeof(c->name));
2005 	c->options = options;
2006 	braille_set_options(c, brl_options);
2007 
2008 	c->index = idx;
2009 	return 0;
2010 }
2011 /*
2012  * Set up a console.  Called via do_early_param() in init/main.c
2013  * for each "console=" parameter in the boot command line.
2014  */
2015 static int __init console_setup(char *str)
2016 {
2017 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2018 	char *s, *options, *brl_options = NULL;
2019 	int idx;
2020 
2021 	if (_braille_console_setup(&str, &brl_options))
2022 		return 1;
2023 
2024 	/*
2025 	 * Decode str into name, index, options.
2026 	 */
2027 	if (str[0] >= '0' && str[0] <= '9') {
2028 		strcpy(buf, "ttyS");
2029 		strncpy(buf + 4, str, sizeof(buf) - 5);
2030 	} else {
2031 		strncpy(buf, str, sizeof(buf) - 1);
2032 	}
2033 	buf[sizeof(buf) - 1] = 0;
2034 	options = strchr(str, ',');
2035 	if (options)
2036 		*(options++) = 0;
2037 #ifdef __sparc__
2038 	if (!strcmp(str, "ttya"))
2039 		strcpy(buf, "ttyS0");
2040 	if (!strcmp(str, "ttyb"))
2041 		strcpy(buf, "ttyS1");
2042 #endif
2043 	for (s = buf; *s; s++)
2044 		if (isdigit(*s) || *s == ',')
2045 			break;
2046 	idx = simple_strtoul(s, NULL, 10);
2047 	*s = 0;
2048 
2049 	__add_preferred_console(buf, idx, options, brl_options);
2050 	console_set_on_cmdline = 1;
2051 	return 1;
2052 }
2053 __setup("console=", console_setup);
2054 
2055 /**
2056  * add_preferred_console - add a device to the list of preferred consoles.
2057  * @name: device name
2058  * @idx: device index
2059  * @options: options for this console
2060  *
2061  * The last preferred console added will be used for kernel messages
2062  * and stdin/out/err for init.  Normally this is used by console_setup
2063  * above to handle user-supplied console arguments; however it can also
2064  * be used by arch-specific code either to override the user or more
2065  * commonly to provide a default console (ie from PROM variables) when
2066  * the user has not supplied one.
2067  */
2068 int add_preferred_console(char *name, int idx, char *options)
2069 {
2070 	return __add_preferred_console(name, idx, options, NULL);
2071 }
2072 
2073 bool console_suspend_enabled = true;
2074 EXPORT_SYMBOL(console_suspend_enabled);
2075 
2076 static int __init console_suspend_disable(char *str)
2077 {
2078 	console_suspend_enabled = false;
2079 	return 1;
2080 }
2081 __setup("no_console_suspend", console_suspend_disable);
2082 module_param_named(console_suspend, console_suspend_enabled,
2083 		bool, S_IRUGO | S_IWUSR);
2084 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2085 	" and hibernate operations");
2086 
2087 /**
2088  * suspend_console - suspend the console subsystem
2089  *
2090  * This disables printk() while we go into suspend states
2091  */
2092 void suspend_console(void)
2093 {
2094 	if (!console_suspend_enabled)
2095 		return;
2096 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2097 	console_lock();
2098 	console_suspended = 1;
2099 	up_console_sem();
2100 }
2101 
2102 void resume_console(void)
2103 {
2104 	if (!console_suspend_enabled)
2105 		return;
2106 	down_console_sem();
2107 	console_suspended = 0;
2108 	console_unlock();
2109 }
2110 
2111 /**
2112  * console_cpu_notify - print deferred console messages after CPU hotplug
2113  * @self: notifier struct
2114  * @action: CPU hotplug event
2115  * @hcpu: unused
2116  *
2117  * If printk() is called from a CPU that is not online yet, the messages
2118  * will be spooled but will not show up on the console.  This function is
2119  * called when a new CPU comes online (or fails to come up), and ensures
2120  * that any such output gets printed.
2121  */
2122 static int console_cpu_notify(struct notifier_block *self,
2123 	unsigned long action, void *hcpu)
2124 {
2125 	switch (action) {
2126 	case CPU_ONLINE:
2127 	case CPU_DEAD:
2128 	case CPU_DOWN_FAILED:
2129 	case CPU_UP_CANCELED:
2130 		console_lock();
2131 		console_unlock();
2132 	}
2133 	return NOTIFY_OK;
2134 }
2135 
2136 /**
2137  * console_lock - lock the console system for exclusive use.
2138  *
2139  * Acquires a lock which guarantees that the caller has
2140  * exclusive access to the console system and the console_drivers list.
2141  *
2142  * Can sleep, returns nothing.
2143  */
2144 void console_lock(void)
2145 {
2146 	might_sleep();
2147 
2148 	down_console_sem();
2149 	if (console_suspended)
2150 		return;
2151 	console_locked = 1;
2152 	console_may_schedule = 1;
2153 }
2154 EXPORT_SYMBOL(console_lock);
2155 
2156 /**
2157  * console_trylock - try to lock the console system for exclusive use.
2158  *
2159  * Try to acquire a lock which guarantees that the caller has exclusive
2160  * access to the console system and the console_drivers list.
2161  *
2162  * returns 1 on success, and 0 on failure to acquire the lock.
2163  */
2164 int console_trylock(void)
2165 {
2166 	if (down_trylock_console_sem())
2167 		return 0;
2168 	if (console_suspended) {
2169 		up_console_sem();
2170 		return 0;
2171 	}
2172 	console_locked = 1;
2173 	console_may_schedule = 0;
2174 	return 1;
2175 }
2176 EXPORT_SYMBOL(console_trylock);
2177 
2178 int is_console_locked(void)
2179 {
2180 	return console_locked;
2181 }
2182 
2183 static void console_cont_flush(char *text, size_t size)
2184 {
2185 	unsigned long flags;
2186 	size_t len;
2187 
2188 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2189 
2190 	if (!cont.len)
2191 		goto out;
2192 
2193 	/*
2194 	 * We still queue earlier records, likely because the console was
2195 	 * busy. The earlier ones need to be printed before this one, we
2196 	 * did not flush any fragment so far, so just let it queue up.
2197 	 */
2198 	if (console_seq < log_next_seq && !cont.cons)
2199 		goto out;
2200 
2201 	len = cont_print_text(text, size);
2202 	raw_spin_unlock(&logbuf_lock);
2203 	stop_critical_timings();
2204 	call_console_drivers(cont.level, NULL, 0, text, len);
2205 	start_critical_timings();
2206 	local_irq_restore(flags);
2207 	return;
2208 out:
2209 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2210 }
2211 
2212 /**
2213  * console_unlock - unlock the console system
2214  *
2215  * Releases the console_lock which the caller holds on the console system
2216  * and the console driver list.
2217  *
2218  * While the console_lock was held, console output may have been buffered
2219  * by printk().  If this is the case, console_unlock(); emits
2220  * the output prior to releasing the lock.
2221  *
2222  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2223  *
2224  * console_unlock(); may be called from any context.
2225  */
2226 void console_unlock(void)
2227 {
2228 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2229 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2230 	static u64 seen_seq;
2231 	unsigned long flags;
2232 	bool wake_klogd = false;
2233 	bool retry;
2234 
2235 	if (console_suspended) {
2236 		up_console_sem();
2237 		return;
2238 	}
2239 
2240 	console_may_schedule = 0;
2241 
2242 	/* flush buffered message fragment immediately to console */
2243 	console_cont_flush(text, sizeof(text));
2244 again:
2245 	for (;;) {
2246 		struct printk_log *msg;
2247 		size_t ext_len = 0;
2248 		size_t len;
2249 		int level;
2250 
2251 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2252 		if (seen_seq != log_next_seq) {
2253 			wake_klogd = true;
2254 			seen_seq = log_next_seq;
2255 		}
2256 
2257 		if (console_seq < log_first_seq) {
2258 			len = sprintf(text, "** %u printk messages dropped ** ",
2259 				      (unsigned)(log_first_seq - console_seq));
2260 
2261 			/* messages are gone, move to first one */
2262 			console_seq = log_first_seq;
2263 			console_idx = log_first_idx;
2264 			console_prev = 0;
2265 		} else {
2266 			len = 0;
2267 		}
2268 skip:
2269 		if (console_seq == log_next_seq)
2270 			break;
2271 
2272 		msg = log_from_idx(console_idx);
2273 		if (msg->flags & LOG_NOCONS) {
2274 			/*
2275 			 * Skip record we have buffered and already printed
2276 			 * directly to the console when we received it.
2277 			 */
2278 			console_idx = log_next(console_idx);
2279 			console_seq++;
2280 			/*
2281 			 * We will get here again when we register a new
2282 			 * CON_PRINTBUFFER console. Clear the flag so we
2283 			 * will properly dump everything later.
2284 			 */
2285 			msg->flags &= ~LOG_NOCONS;
2286 			console_prev = msg->flags;
2287 			goto skip;
2288 		}
2289 
2290 		level = msg->level;
2291 		len += msg_print_text(msg, console_prev, false,
2292 				      text + len, sizeof(text) - len);
2293 		if (nr_ext_console_drivers) {
2294 			ext_len = msg_print_ext_header(ext_text,
2295 						sizeof(ext_text),
2296 						msg, console_seq, console_prev);
2297 			ext_len += msg_print_ext_body(ext_text + ext_len,
2298 						sizeof(ext_text) - ext_len,
2299 						log_dict(msg), msg->dict_len,
2300 						log_text(msg), msg->text_len);
2301 		}
2302 		console_idx = log_next(console_idx);
2303 		console_seq++;
2304 		console_prev = msg->flags;
2305 		raw_spin_unlock(&logbuf_lock);
2306 
2307 		stop_critical_timings();	/* don't trace print latency */
2308 		call_console_drivers(level, ext_text, ext_len, text, len);
2309 		start_critical_timings();
2310 		local_irq_restore(flags);
2311 	}
2312 	console_locked = 0;
2313 
2314 	/* Release the exclusive_console once it is used */
2315 	if (unlikely(exclusive_console))
2316 		exclusive_console = NULL;
2317 
2318 	raw_spin_unlock(&logbuf_lock);
2319 
2320 	up_console_sem();
2321 
2322 	/*
2323 	 * Someone could have filled up the buffer again, so re-check if there's
2324 	 * something to flush. In case we cannot trylock the console_sem again,
2325 	 * there's a new owner and the console_unlock() from them will do the
2326 	 * flush, no worries.
2327 	 */
2328 	raw_spin_lock(&logbuf_lock);
2329 	retry = console_seq != log_next_seq;
2330 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2331 
2332 	if (retry && console_trylock())
2333 		goto again;
2334 
2335 	if (wake_klogd)
2336 		wake_up_klogd();
2337 }
2338 EXPORT_SYMBOL(console_unlock);
2339 
2340 /**
2341  * console_conditional_schedule - yield the CPU if required
2342  *
2343  * If the console code is currently allowed to sleep, and
2344  * if this CPU should yield the CPU to another task, do
2345  * so here.
2346  *
2347  * Must be called within console_lock();.
2348  */
2349 void __sched console_conditional_schedule(void)
2350 {
2351 	if (console_may_schedule)
2352 		cond_resched();
2353 }
2354 EXPORT_SYMBOL(console_conditional_schedule);
2355 
2356 void console_unblank(void)
2357 {
2358 	struct console *c;
2359 
2360 	/*
2361 	 * console_unblank can no longer be called in interrupt context unless
2362 	 * oops_in_progress is set to 1..
2363 	 */
2364 	if (oops_in_progress) {
2365 		if (down_trylock_console_sem() != 0)
2366 			return;
2367 	} else
2368 		console_lock();
2369 
2370 	console_locked = 1;
2371 	console_may_schedule = 0;
2372 	for_each_console(c)
2373 		if ((c->flags & CON_ENABLED) && c->unblank)
2374 			c->unblank();
2375 	console_unlock();
2376 }
2377 
2378 /*
2379  * Return the console tty driver structure and its associated index
2380  */
2381 struct tty_driver *console_device(int *index)
2382 {
2383 	struct console *c;
2384 	struct tty_driver *driver = NULL;
2385 
2386 	console_lock();
2387 	for_each_console(c) {
2388 		if (!c->device)
2389 			continue;
2390 		driver = c->device(c, index);
2391 		if (driver)
2392 			break;
2393 	}
2394 	console_unlock();
2395 	return driver;
2396 }
2397 
2398 /*
2399  * Prevent further output on the passed console device so that (for example)
2400  * serial drivers can disable console output before suspending a port, and can
2401  * re-enable output afterwards.
2402  */
2403 void console_stop(struct console *console)
2404 {
2405 	console_lock();
2406 	console->flags &= ~CON_ENABLED;
2407 	console_unlock();
2408 }
2409 EXPORT_SYMBOL(console_stop);
2410 
2411 void console_start(struct console *console)
2412 {
2413 	console_lock();
2414 	console->flags |= CON_ENABLED;
2415 	console_unlock();
2416 }
2417 EXPORT_SYMBOL(console_start);
2418 
2419 static int __read_mostly keep_bootcon;
2420 
2421 static int __init keep_bootcon_setup(char *str)
2422 {
2423 	keep_bootcon = 1;
2424 	pr_info("debug: skip boot console de-registration.\n");
2425 
2426 	return 0;
2427 }
2428 
2429 early_param("keep_bootcon", keep_bootcon_setup);
2430 
2431 /*
2432  * The console driver calls this routine during kernel initialization
2433  * to register the console printing procedure with printk() and to
2434  * print any messages that were printed by the kernel before the
2435  * console driver was initialized.
2436  *
2437  * This can happen pretty early during the boot process (because of
2438  * early_printk) - sometimes before setup_arch() completes - be careful
2439  * of what kernel features are used - they may not be initialised yet.
2440  *
2441  * There are two types of consoles - bootconsoles (early_printk) and
2442  * "real" consoles (everything which is not a bootconsole) which are
2443  * handled differently.
2444  *  - Any number of bootconsoles can be registered at any time.
2445  *  - As soon as a "real" console is registered, all bootconsoles
2446  *    will be unregistered automatically.
2447  *  - Once a "real" console is registered, any attempt to register a
2448  *    bootconsoles will be rejected
2449  */
2450 void register_console(struct console *newcon)
2451 {
2452 	int i;
2453 	unsigned long flags;
2454 	struct console *bcon = NULL;
2455 	struct console_cmdline *c;
2456 
2457 	if (console_drivers)
2458 		for_each_console(bcon)
2459 			if (WARN(bcon == newcon,
2460 					"console '%s%d' already registered\n",
2461 					bcon->name, bcon->index))
2462 				return;
2463 
2464 	/*
2465 	 * before we register a new CON_BOOT console, make sure we don't
2466 	 * already have a valid console
2467 	 */
2468 	if (console_drivers && newcon->flags & CON_BOOT) {
2469 		/* find the last or real console */
2470 		for_each_console(bcon) {
2471 			if (!(bcon->flags & CON_BOOT)) {
2472 				pr_info("Too late to register bootconsole %s%d\n",
2473 					newcon->name, newcon->index);
2474 				return;
2475 			}
2476 		}
2477 	}
2478 
2479 	if (console_drivers && console_drivers->flags & CON_BOOT)
2480 		bcon = console_drivers;
2481 
2482 	if (preferred_console < 0 || bcon || !console_drivers)
2483 		preferred_console = selected_console;
2484 
2485 	/*
2486 	 *	See if we want to use this console driver. If we
2487 	 *	didn't select a console we take the first one
2488 	 *	that registers here.
2489 	 */
2490 	if (preferred_console < 0) {
2491 		if (newcon->index < 0)
2492 			newcon->index = 0;
2493 		if (newcon->setup == NULL ||
2494 		    newcon->setup(newcon, NULL) == 0) {
2495 			newcon->flags |= CON_ENABLED;
2496 			if (newcon->device) {
2497 				newcon->flags |= CON_CONSDEV;
2498 				preferred_console = 0;
2499 			}
2500 		}
2501 	}
2502 
2503 	/*
2504 	 *	See if this console matches one we selected on
2505 	 *	the command line.
2506 	 */
2507 	for (i = 0, c = console_cmdline;
2508 	     i < MAX_CMDLINECONSOLES && c->name[0];
2509 	     i++, c++) {
2510 		if (!newcon->match ||
2511 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2512 			/* default matching */
2513 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2514 			if (strcmp(c->name, newcon->name) != 0)
2515 				continue;
2516 			if (newcon->index >= 0 &&
2517 			    newcon->index != c->index)
2518 				continue;
2519 			if (newcon->index < 0)
2520 				newcon->index = c->index;
2521 
2522 			if (_braille_register_console(newcon, c))
2523 				return;
2524 
2525 			if (newcon->setup &&
2526 			    newcon->setup(newcon, c->options) != 0)
2527 				break;
2528 		}
2529 
2530 		newcon->flags |= CON_ENABLED;
2531 		if (i == selected_console) {
2532 			newcon->flags |= CON_CONSDEV;
2533 			preferred_console = selected_console;
2534 		}
2535 		break;
2536 	}
2537 
2538 	if (!(newcon->flags & CON_ENABLED))
2539 		return;
2540 
2541 	/*
2542 	 * If we have a bootconsole, and are switching to a real console,
2543 	 * don't print everything out again, since when the boot console, and
2544 	 * the real console are the same physical device, it's annoying to
2545 	 * see the beginning boot messages twice
2546 	 */
2547 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2548 		newcon->flags &= ~CON_PRINTBUFFER;
2549 
2550 	/*
2551 	 *	Put this console in the list - keep the
2552 	 *	preferred driver at the head of the list.
2553 	 */
2554 	console_lock();
2555 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2556 		newcon->next = console_drivers;
2557 		console_drivers = newcon;
2558 		if (newcon->next)
2559 			newcon->next->flags &= ~CON_CONSDEV;
2560 	} else {
2561 		newcon->next = console_drivers->next;
2562 		console_drivers->next = newcon;
2563 	}
2564 
2565 	if (newcon->flags & CON_EXTENDED)
2566 		if (!nr_ext_console_drivers++)
2567 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2568 
2569 	if (newcon->flags & CON_PRINTBUFFER) {
2570 		/*
2571 		 * console_unlock(); will print out the buffered messages
2572 		 * for us.
2573 		 */
2574 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2575 		console_seq = syslog_seq;
2576 		console_idx = syslog_idx;
2577 		console_prev = syslog_prev;
2578 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2579 		/*
2580 		 * We're about to replay the log buffer.  Only do this to the
2581 		 * just-registered console to avoid excessive message spam to
2582 		 * the already-registered consoles.
2583 		 */
2584 		exclusive_console = newcon;
2585 	}
2586 	console_unlock();
2587 	console_sysfs_notify();
2588 
2589 	/*
2590 	 * By unregistering the bootconsoles after we enable the real console
2591 	 * we get the "console xxx enabled" message on all the consoles -
2592 	 * boot consoles, real consoles, etc - this is to ensure that end
2593 	 * users know there might be something in the kernel's log buffer that
2594 	 * went to the bootconsole (that they do not see on the real console)
2595 	 */
2596 	pr_info("%sconsole [%s%d] enabled\n",
2597 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2598 		newcon->name, newcon->index);
2599 	if (bcon &&
2600 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2601 	    !keep_bootcon) {
2602 		/* We need to iterate through all boot consoles, to make
2603 		 * sure we print everything out, before we unregister them.
2604 		 */
2605 		for_each_console(bcon)
2606 			if (bcon->flags & CON_BOOT)
2607 				unregister_console(bcon);
2608 	}
2609 }
2610 EXPORT_SYMBOL(register_console);
2611 
2612 int unregister_console(struct console *console)
2613 {
2614         struct console *a, *b;
2615 	int res;
2616 
2617 	pr_info("%sconsole [%s%d] disabled\n",
2618 		(console->flags & CON_BOOT) ? "boot" : "" ,
2619 		console->name, console->index);
2620 
2621 	res = _braille_unregister_console(console);
2622 	if (res)
2623 		return res;
2624 
2625 	res = 1;
2626 	console_lock();
2627 	if (console_drivers == console) {
2628 		console_drivers=console->next;
2629 		res = 0;
2630 	} else if (console_drivers) {
2631 		for (a=console_drivers->next, b=console_drivers ;
2632 		     a; b=a, a=b->next) {
2633 			if (a == console) {
2634 				b->next = a->next;
2635 				res = 0;
2636 				break;
2637 			}
2638 		}
2639 	}
2640 
2641 	if (!res && (console->flags & CON_EXTENDED))
2642 		nr_ext_console_drivers--;
2643 
2644 	/*
2645 	 * If this isn't the last console and it has CON_CONSDEV set, we
2646 	 * need to set it on the next preferred console.
2647 	 */
2648 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2649 		console_drivers->flags |= CON_CONSDEV;
2650 
2651 	console->flags &= ~CON_ENABLED;
2652 	console_unlock();
2653 	console_sysfs_notify();
2654 	return res;
2655 }
2656 EXPORT_SYMBOL(unregister_console);
2657 
2658 static int __init printk_late_init(void)
2659 {
2660 	struct console *con;
2661 
2662 	for_each_console(con) {
2663 		if (!keep_bootcon && con->flags & CON_BOOT) {
2664 			unregister_console(con);
2665 		}
2666 	}
2667 	hotcpu_notifier(console_cpu_notify, 0);
2668 	return 0;
2669 }
2670 late_initcall(printk_late_init);
2671 
2672 #if defined CONFIG_PRINTK
2673 /*
2674  * Delayed printk version, for scheduler-internal messages:
2675  */
2676 #define PRINTK_PENDING_WAKEUP	0x01
2677 #define PRINTK_PENDING_OUTPUT	0x02
2678 
2679 static DEFINE_PER_CPU(int, printk_pending);
2680 
2681 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2682 {
2683 	int pending = __this_cpu_xchg(printk_pending, 0);
2684 
2685 	if (pending & PRINTK_PENDING_OUTPUT) {
2686 		/* If trylock fails, someone else is doing the printing */
2687 		if (console_trylock())
2688 			console_unlock();
2689 	}
2690 
2691 	if (pending & PRINTK_PENDING_WAKEUP)
2692 		wake_up_interruptible(&log_wait);
2693 }
2694 
2695 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2696 	.func = wake_up_klogd_work_func,
2697 	.flags = IRQ_WORK_LAZY,
2698 };
2699 
2700 void wake_up_klogd(void)
2701 {
2702 	preempt_disable();
2703 	if (waitqueue_active(&log_wait)) {
2704 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2705 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2706 	}
2707 	preempt_enable();
2708 }
2709 
2710 int printk_deferred(const char *fmt, ...)
2711 {
2712 	va_list args;
2713 	int r;
2714 
2715 	preempt_disable();
2716 	va_start(args, fmt);
2717 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2718 	va_end(args);
2719 
2720 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2721 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2722 	preempt_enable();
2723 
2724 	return r;
2725 }
2726 
2727 /*
2728  * printk rate limiting, lifted from the networking subsystem.
2729  *
2730  * This enforces a rate limit: not more than 10 kernel messages
2731  * every 5s to make a denial-of-service attack impossible.
2732  */
2733 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2734 
2735 int __printk_ratelimit(const char *func)
2736 {
2737 	return ___ratelimit(&printk_ratelimit_state, func);
2738 }
2739 EXPORT_SYMBOL(__printk_ratelimit);
2740 
2741 /**
2742  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2743  * @caller_jiffies: pointer to caller's state
2744  * @interval_msecs: minimum interval between prints
2745  *
2746  * printk_timed_ratelimit() returns true if more than @interval_msecs
2747  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2748  * returned true.
2749  */
2750 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2751 			unsigned int interval_msecs)
2752 {
2753 	unsigned long elapsed = jiffies - *caller_jiffies;
2754 
2755 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2756 		return false;
2757 
2758 	*caller_jiffies = jiffies;
2759 	return true;
2760 }
2761 EXPORT_SYMBOL(printk_timed_ratelimit);
2762 
2763 static DEFINE_SPINLOCK(dump_list_lock);
2764 static LIST_HEAD(dump_list);
2765 
2766 /**
2767  * kmsg_dump_register - register a kernel log dumper.
2768  * @dumper: pointer to the kmsg_dumper structure
2769  *
2770  * Adds a kernel log dumper to the system. The dump callback in the
2771  * structure will be called when the kernel oopses or panics and must be
2772  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2773  */
2774 int kmsg_dump_register(struct kmsg_dumper *dumper)
2775 {
2776 	unsigned long flags;
2777 	int err = -EBUSY;
2778 
2779 	/* The dump callback needs to be set */
2780 	if (!dumper->dump)
2781 		return -EINVAL;
2782 
2783 	spin_lock_irqsave(&dump_list_lock, flags);
2784 	/* Don't allow registering multiple times */
2785 	if (!dumper->registered) {
2786 		dumper->registered = 1;
2787 		list_add_tail_rcu(&dumper->list, &dump_list);
2788 		err = 0;
2789 	}
2790 	spin_unlock_irqrestore(&dump_list_lock, flags);
2791 
2792 	return err;
2793 }
2794 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2795 
2796 /**
2797  * kmsg_dump_unregister - unregister a kmsg dumper.
2798  * @dumper: pointer to the kmsg_dumper structure
2799  *
2800  * Removes a dump device from the system. Returns zero on success and
2801  * %-EINVAL otherwise.
2802  */
2803 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2804 {
2805 	unsigned long flags;
2806 	int err = -EINVAL;
2807 
2808 	spin_lock_irqsave(&dump_list_lock, flags);
2809 	if (dumper->registered) {
2810 		dumper->registered = 0;
2811 		list_del_rcu(&dumper->list);
2812 		err = 0;
2813 	}
2814 	spin_unlock_irqrestore(&dump_list_lock, flags);
2815 	synchronize_rcu();
2816 
2817 	return err;
2818 }
2819 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2820 
2821 static bool always_kmsg_dump;
2822 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2823 
2824 /**
2825  * kmsg_dump - dump kernel log to kernel message dumpers.
2826  * @reason: the reason (oops, panic etc) for dumping
2827  *
2828  * Call each of the registered dumper's dump() callback, which can
2829  * retrieve the kmsg records with kmsg_dump_get_line() or
2830  * kmsg_dump_get_buffer().
2831  */
2832 void kmsg_dump(enum kmsg_dump_reason reason)
2833 {
2834 	struct kmsg_dumper *dumper;
2835 	unsigned long flags;
2836 
2837 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2838 		return;
2839 
2840 	rcu_read_lock();
2841 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2842 		if (dumper->max_reason && reason > dumper->max_reason)
2843 			continue;
2844 
2845 		/* initialize iterator with data about the stored records */
2846 		dumper->active = true;
2847 
2848 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2849 		dumper->cur_seq = clear_seq;
2850 		dumper->cur_idx = clear_idx;
2851 		dumper->next_seq = log_next_seq;
2852 		dumper->next_idx = log_next_idx;
2853 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2854 
2855 		/* invoke dumper which will iterate over records */
2856 		dumper->dump(dumper, reason);
2857 
2858 		/* reset iterator */
2859 		dumper->active = false;
2860 	}
2861 	rcu_read_unlock();
2862 }
2863 
2864 /**
2865  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2866  * @dumper: registered kmsg dumper
2867  * @syslog: include the "<4>" prefixes
2868  * @line: buffer to copy the line to
2869  * @size: maximum size of the buffer
2870  * @len: length of line placed into buffer
2871  *
2872  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2873  * record, and copy one record into the provided buffer.
2874  *
2875  * Consecutive calls will return the next available record moving
2876  * towards the end of the buffer with the youngest messages.
2877  *
2878  * A return value of FALSE indicates that there are no more records to
2879  * read.
2880  *
2881  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2882  */
2883 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2884 			       char *line, size_t size, size_t *len)
2885 {
2886 	struct printk_log *msg;
2887 	size_t l = 0;
2888 	bool ret = false;
2889 
2890 	if (!dumper->active)
2891 		goto out;
2892 
2893 	if (dumper->cur_seq < log_first_seq) {
2894 		/* messages are gone, move to first available one */
2895 		dumper->cur_seq = log_first_seq;
2896 		dumper->cur_idx = log_first_idx;
2897 	}
2898 
2899 	/* last entry */
2900 	if (dumper->cur_seq >= log_next_seq)
2901 		goto out;
2902 
2903 	msg = log_from_idx(dumper->cur_idx);
2904 	l = msg_print_text(msg, 0, syslog, line, size);
2905 
2906 	dumper->cur_idx = log_next(dumper->cur_idx);
2907 	dumper->cur_seq++;
2908 	ret = true;
2909 out:
2910 	if (len)
2911 		*len = l;
2912 	return ret;
2913 }
2914 
2915 /**
2916  * kmsg_dump_get_line - retrieve one kmsg log line
2917  * @dumper: registered kmsg dumper
2918  * @syslog: include the "<4>" prefixes
2919  * @line: buffer to copy the line to
2920  * @size: maximum size of the buffer
2921  * @len: length of line placed into buffer
2922  *
2923  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2924  * record, and copy one record into the provided buffer.
2925  *
2926  * Consecutive calls will return the next available record moving
2927  * towards the end of the buffer with the youngest messages.
2928  *
2929  * A return value of FALSE indicates that there are no more records to
2930  * read.
2931  */
2932 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2933 			char *line, size_t size, size_t *len)
2934 {
2935 	unsigned long flags;
2936 	bool ret;
2937 
2938 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2939 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2940 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2941 
2942 	return ret;
2943 }
2944 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2945 
2946 /**
2947  * kmsg_dump_get_buffer - copy kmsg log lines
2948  * @dumper: registered kmsg dumper
2949  * @syslog: include the "<4>" prefixes
2950  * @buf: buffer to copy the line to
2951  * @size: maximum size of the buffer
2952  * @len: length of line placed into buffer
2953  *
2954  * Start at the end of the kmsg buffer and fill the provided buffer
2955  * with as many of the the *youngest* kmsg records that fit into it.
2956  * If the buffer is large enough, all available kmsg records will be
2957  * copied with a single call.
2958  *
2959  * Consecutive calls will fill the buffer with the next block of
2960  * available older records, not including the earlier retrieved ones.
2961  *
2962  * A return value of FALSE indicates that there are no more records to
2963  * read.
2964  */
2965 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2966 			  char *buf, size_t size, size_t *len)
2967 {
2968 	unsigned long flags;
2969 	u64 seq;
2970 	u32 idx;
2971 	u64 next_seq;
2972 	u32 next_idx;
2973 	enum log_flags prev;
2974 	size_t l = 0;
2975 	bool ret = false;
2976 
2977 	if (!dumper->active)
2978 		goto out;
2979 
2980 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2981 	if (dumper->cur_seq < log_first_seq) {
2982 		/* messages are gone, move to first available one */
2983 		dumper->cur_seq = log_first_seq;
2984 		dumper->cur_idx = log_first_idx;
2985 	}
2986 
2987 	/* last entry */
2988 	if (dumper->cur_seq >= dumper->next_seq) {
2989 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2990 		goto out;
2991 	}
2992 
2993 	/* calculate length of entire buffer */
2994 	seq = dumper->cur_seq;
2995 	idx = dumper->cur_idx;
2996 	prev = 0;
2997 	while (seq < dumper->next_seq) {
2998 		struct printk_log *msg = log_from_idx(idx);
2999 
3000 		l += msg_print_text(msg, prev, true, NULL, 0);
3001 		idx = log_next(idx);
3002 		seq++;
3003 		prev = msg->flags;
3004 	}
3005 
3006 	/* move first record forward until length fits into the buffer */
3007 	seq = dumper->cur_seq;
3008 	idx = dumper->cur_idx;
3009 	prev = 0;
3010 	while (l > size && seq < dumper->next_seq) {
3011 		struct printk_log *msg = log_from_idx(idx);
3012 
3013 		l -= msg_print_text(msg, prev, true, NULL, 0);
3014 		idx = log_next(idx);
3015 		seq++;
3016 		prev = msg->flags;
3017 	}
3018 
3019 	/* last message in next interation */
3020 	next_seq = seq;
3021 	next_idx = idx;
3022 
3023 	l = 0;
3024 	while (seq < dumper->next_seq) {
3025 		struct printk_log *msg = log_from_idx(idx);
3026 
3027 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3028 		idx = log_next(idx);
3029 		seq++;
3030 		prev = msg->flags;
3031 	}
3032 
3033 	dumper->next_seq = next_seq;
3034 	dumper->next_idx = next_idx;
3035 	ret = true;
3036 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3037 out:
3038 	if (len)
3039 		*len = l;
3040 	return ret;
3041 }
3042 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3043 
3044 /**
3045  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3046  * @dumper: registered kmsg dumper
3047  *
3048  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3049  * kmsg_dump_get_buffer() can be called again and used multiple
3050  * times within the same dumper.dump() callback.
3051  *
3052  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3053  */
3054 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3055 {
3056 	dumper->cur_seq = clear_seq;
3057 	dumper->cur_idx = clear_idx;
3058 	dumper->next_seq = log_next_seq;
3059 	dumper->next_idx = log_next_idx;
3060 }
3061 
3062 /**
3063  * kmsg_dump_rewind - reset the interator
3064  * @dumper: registered kmsg dumper
3065  *
3066  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3067  * kmsg_dump_get_buffer() can be called again and used multiple
3068  * times within the same dumper.dump() callback.
3069  */
3070 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3071 {
3072 	unsigned long flags;
3073 
3074 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3075 	kmsg_dump_rewind_nolock(dumper);
3076 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3077 }
3078 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3079 
3080 static char dump_stack_arch_desc_str[128];
3081 
3082 /**
3083  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3084  * @fmt: printf-style format string
3085  * @...: arguments for the format string
3086  *
3087  * The configured string will be printed right after utsname during task
3088  * dumps.  Usually used to add arch-specific system identifiers.  If an
3089  * arch wants to make use of such an ID string, it should initialize this
3090  * as soon as possible during boot.
3091  */
3092 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3093 {
3094 	va_list args;
3095 
3096 	va_start(args, fmt);
3097 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3098 		  fmt, args);
3099 	va_end(args);
3100 }
3101 
3102 /**
3103  * dump_stack_print_info - print generic debug info for dump_stack()
3104  * @log_lvl: log level
3105  *
3106  * Arch-specific dump_stack() implementations can use this function to
3107  * print out the same debug information as the generic dump_stack().
3108  */
3109 void dump_stack_print_info(const char *log_lvl)
3110 {
3111 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3112 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3113 	       print_tainted(), init_utsname()->release,
3114 	       (int)strcspn(init_utsname()->version, " "),
3115 	       init_utsname()->version);
3116 
3117 	if (dump_stack_arch_desc_str[0] != '\0')
3118 		printk("%sHardware name: %s\n",
3119 		       log_lvl, dump_stack_arch_desc_str);
3120 
3121 	print_worker_info(log_lvl, current);
3122 }
3123 
3124 /**
3125  * show_regs_print_info - print generic debug info for show_regs()
3126  * @log_lvl: log level
3127  *
3128  * show_regs() implementations can use this function to print out generic
3129  * debug information.
3130  */
3131 void show_regs_print_info(const char *log_lvl)
3132 {
3133 	dump_stack_print_info(log_lvl);
3134 
3135 	printk("%stask: %p ti: %p task.ti: %p\n",
3136 	       log_lvl, current, current_thread_info(),
3137 	       task_thread_info(current));
3138 }
3139 
3140 #endif
3141