1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/kexec.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/notifier.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/utsname.h> 47 #include <linux/ctype.h> 48 #include <linux/uio.h> 49 50 #include <asm/uaccess.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 58 int console_printk[4] = { 59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 63 }; 64 65 /* 66 * Low level drivers may need that to know if they can schedule in 67 * their unblank() callback or not. So let's export it. 68 */ 69 int oops_in_progress; 70 EXPORT_SYMBOL(oops_in_progress); 71 72 /* 73 * console_sem protects the console_drivers list, and also 74 * provides serialisation for access to the entire console 75 * driver system. 76 */ 77 static DEFINE_SEMAPHORE(console_sem); 78 struct console *console_drivers; 79 EXPORT_SYMBOL_GPL(console_drivers); 80 81 #ifdef CONFIG_LOCKDEP 82 static struct lockdep_map console_lock_dep_map = { 83 .name = "console_lock" 84 }; 85 #endif 86 87 /* 88 * Number of registered extended console drivers. 89 * 90 * If extended consoles are present, in-kernel cont reassembly is disabled 91 * and each fragment is stored as a separate log entry with proper 92 * continuation flag so that every emitted message has full metadata. This 93 * doesn't change the result for regular consoles or /proc/kmsg. For 94 * /dev/kmsg, as long as the reader concatenates messages according to 95 * consecutive continuation flags, the end result should be the same too. 96 */ 97 static int nr_ext_console_drivers; 98 99 /* 100 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 101 * macros instead of functions so that _RET_IP_ contains useful information. 102 */ 103 #define down_console_sem() do { \ 104 down(&console_sem);\ 105 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 106 } while (0) 107 108 static int __down_trylock_console_sem(unsigned long ip) 109 { 110 if (down_trylock(&console_sem)) 111 return 1; 112 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 113 return 0; 114 } 115 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 116 117 #define up_console_sem() do { \ 118 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 119 up(&console_sem);\ 120 } while (0) 121 122 /* 123 * This is used for debugging the mess that is the VT code by 124 * keeping track if we have the console semaphore held. It's 125 * definitely not the perfect debug tool (we don't know if _WE_ 126 * hold it and are racing, but it helps tracking those weird code 127 * paths in the console code where we end up in places I want 128 * locked without the console sempahore held). 129 */ 130 static int console_locked, console_suspended; 131 132 /* 133 * If exclusive_console is non-NULL then only this console is to be printed to. 134 */ 135 static struct console *exclusive_console; 136 137 /* 138 * Array of consoles built from command line options (console=) 139 */ 140 141 #define MAX_CMDLINECONSOLES 8 142 143 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 144 145 static int selected_console = -1; 146 static int preferred_console = -1; 147 int console_set_on_cmdline; 148 EXPORT_SYMBOL(console_set_on_cmdline); 149 150 /* Flag: console code may call schedule() */ 151 static int console_may_schedule; 152 153 /* 154 * The printk log buffer consists of a chain of concatenated variable 155 * length records. Every record starts with a record header, containing 156 * the overall length of the record. 157 * 158 * The heads to the first and last entry in the buffer, as well as the 159 * sequence numbers of these entries are maintained when messages are 160 * stored. 161 * 162 * If the heads indicate available messages, the length in the header 163 * tells the start next message. A length == 0 for the next message 164 * indicates a wrap-around to the beginning of the buffer. 165 * 166 * Every record carries the monotonic timestamp in microseconds, as well as 167 * the standard userspace syslog level and syslog facility. The usual 168 * kernel messages use LOG_KERN; userspace-injected messages always carry 169 * a matching syslog facility, by default LOG_USER. The origin of every 170 * message can be reliably determined that way. 171 * 172 * The human readable log message directly follows the message header. The 173 * length of the message text is stored in the header, the stored message 174 * is not terminated. 175 * 176 * Optionally, a message can carry a dictionary of properties (key/value pairs), 177 * to provide userspace with a machine-readable message context. 178 * 179 * Examples for well-defined, commonly used property names are: 180 * DEVICE=b12:8 device identifier 181 * b12:8 block dev_t 182 * c127:3 char dev_t 183 * n8 netdev ifindex 184 * +sound:card0 subsystem:devname 185 * SUBSYSTEM=pci driver-core subsystem name 186 * 187 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 188 * follows directly after a '=' character. Every property is terminated by 189 * a '\0' character. The last property is not terminated. 190 * 191 * Example of a message structure: 192 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 193 * 0008 34 00 record is 52 bytes long 194 * 000a 0b 00 text is 11 bytes long 195 * 000c 1f 00 dictionary is 23 bytes long 196 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 197 * 0010 69 74 27 73 20 61 20 6c "it's a l" 198 * 69 6e 65 "ine" 199 * 001b 44 45 56 49 43 "DEVIC" 200 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 201 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 202 * 67 "g" 203 * 0032 00 00 00 padding to next message header 204 * 205 * The 'struct printk_log' buffer header must never be directly exported to 206 * userspace, it is a kernel-private implementation detail that might 207 * need to be changed in the future, when the requirements change. 208 * 209 * /dev/kmsg exports the structured data in the following line format: 210 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 211 * 212 * Users of the export format should ignore possible additional values 213 * separated by ',', and find the message after the ';' character. 214 * 215 * The optional key/value pairs are attached as continuation lines starting 216 * with a space character and terminated by a newline. All possible 217 * non-prinatable characters are escaped in the "\xff" notation. 218 */ 219 220 enum log_flags { 221 LOG_NOCONS = 1, /* already flushed, do not print to console */ 222 LOG_NEWLINE = 2, /* text ended with a newline */ 223 LOG_PREFIX = 4, /* text started with a prefix */ 224 LOG_CONT = 8, /* text is a fragment of a continuation line */ 225 }; 226 227 struct printk_log { 228 u64 ts_nsec; /* timestamp in nanoseconds */ 229 u16 len; /* length of entire record */ 230 u16 text_len; /* length of text buffer */ 231 u16 dict_len; /* length of dictionary buffer */ 232 u8 facility; /* syslog facility */ 233 u8 flags:5; /* internal record flags */ 234 u8 level:3; /* syslog level */ 235 }; 236 237 /* 238 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 239 * within the scheduler's rq lock. It must be released before calling 240 * console_unlock() or anything else that might wake up a process. 241 */ 242 static DEFINE_RAW_SPINLOCK(logbuf_lock); 243 244 #ifdef CONFIG_PRINTK 245 DECLARE_WAIT_QUEUE_HEAD(log_wait); 246 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 247 static u64 syslog_seq; 248 static u32 syslog_idx; 249 static enum log_flags syslog_prev; 250 static size_t syslog_partial; 251 252 /* index and sequence number of the first record stored in the buffer */ 253 static u64 log_first_seq; 254 static u32 log_first_idx; 255 256 /* index and sequence number of the next record to store in the buffer */ 257 static u64 log_next_seq; 258 static u32 log_next_idx; 259 260 /* the next printk record to write to the console */ 261 static u64 console_seq; 262 static u32 console_idx; 263 static enum log_flags console_prev; 264 265 /* the next printk record to read after the last 'clear' command */ 266 static u64 clear_seq; 267 static u32 clear_idx; 268 269 #define PREFIX_MAX 32 270 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 271 272 /* record buffer */ 273 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 274 #define LOG_ALIGN 4 275 #else 276 #define LOG_ALIGN __alignof__(struct printk_log) 277 #endif 278 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 279 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 280 static char *log_buf = __log_buf; 281 static u32 log_buf_len = __LOG_BUF_LEN; 282 283 /* Return log buffer address */ 284 char *log_buf_addr_get(void) 285 { 286 return log_buf; 287 } 288 289 /* Return log buffer size */ 290 u32 log_buf_len_get(void) 291 { 292 return log_buf_len; 293 } 294 295 /* human readable text of the record */ 296 static char *log_text(const struct printk_log *msg) 297 { 298 return (char *)msg + sizeof(struct printk_log); 299 } 300 301 /* optional key/value pair dictionary attached to the record */ 302 static char *log_dict(const struct printk_log *msg) 303 { 304 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 305 } 306 307 /* get record by index; idx must point to valid msg */ 308 static struct printk_log *log_from_idx(u32 idx) 309 { 310 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 311 312 /* 313 * A length == 0 record is the end of buffer marker. Wrap around and 314 * read the message at the start of the buffer. 315 */ 316 if (!msg->len) 317 return (struct printk_log *)log_buf; 318 return msg; 319 } 320 321 /* get next record; idx must point to valid msg */ 322 static u32 log_next(u32 idx) 323 { 324 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 325 326 /* length == 0 indicates the end of the buffer; wrap */ 327 /* 328 * A length == 0 record is the end of buffer marker. Wrap around and 329 * read the message at the start of the buffer as *this* one, and 330 * return the one after that. 331 */ 332 if (!msg->len) { 333 msg = (struct printk_log *)log_buf; 334 return msg->len; 335 } 336 return idx + msg->len; 337 } 338 339 /* 340 * Check whether there is enough free space for the given message. 341 * 342 * The same values of first_idx and next_idx mean that the buffer 343 * is either empty or full. 344 * 345 * If the buffer is empty, we must respect the position of the indexes. 346 * They cannot be reset to the beginning of the buffer. 347 */ 348 static int logbuf_has_space(u32 msg_size, bool empty) 349 { 350 u32 free; 351 352 if (log_next_idx > log_first_idx || empty) 353 free = max(log_buf_len - log_next_idx, log_first_idx); 354 else 355 free = log_first_idx - log_next_idx; 356 357 /* 358 * We need space also for an empty header that signalizes wrapping 359 * of the buffer. 360 */ 361 return free >= msg_size + sizeof(struct printk_log); 362 } 363 364 static int log_make_free_space(u32 msg_size) 365 { 366 while (log_first_seq < log_next_seq) { 367 if (logbuf_has_space(msg_size, false)) 368 return 0; 369 /* drop old messages until we have enough contiguous space */ 370 log_first_idx = log_next(log_first_idx); 371 log_first_seq++; 372 } 373 374 /* sequence numbers are equal, so the log buffer is empty */ 375 if (logbuf_has_space(msg_size, true)) 376 return 0; 377 378 return -ENOMEM; 379 } 380 381 /* compute the message size including the padding bytes */ 382 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 383 { 384 u32 size; 385 386 size = sizeof(struct printk_log) + text_len + dict_len; 387 *pad_len = (-size) & (LOG_ALIGN - 1); 388 size += *pad_len; 389 390 return size; 391 } 392 393 /* 394 * Define how much of the log buffer we could take at maximum. The value 395 * must be greater than two. Note that only half of the buffer is available 396 * when the index points to the middle. 397 */ 398 #define MAX_LOG_TAKE_PART 4 399 static const char trunc_msg[] = "<truncated>"; 400 401 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 402 u16 *dict_len, u32 *pad_len) 403 { 404 /* 405 * The message should not take the whole buffer. Otherwise, it might 406 * get removed too soon. 407 */ 408 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 409 if (*text_len > max_text_len) 410 *text_len = max_text_len; 411 /* enable the warning message */ 412 *trunc_msg_len = strlen(trunc_msg); 413 /* disable the "dict" completely */ 414 *dict_len = 0; 415 /* compute the size again, count also the warning message */ 416 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 417 } 418 419 /* insert record into the buffer, discard old ones, update heads */ 420 static int log_store(int facility, int level, 421 enum log_flags flags, u64 ts_nsec, 422 const char *dict, u16 dict_len, 423 const char *text, u16 text_len) 424 { 425 struct printk_log *msg; 426 u32 size, pad_len; 427 u16 trunc_msg_len = 0; 428 429 /* number of '\0' padding bytes to next message */ 430 size = msg_used_size(text_len, dict_len, &pad_len); 431 432 if (log_make_free_space(size)) { 433 /* truncate the message if it is too long for empty buffer */ 434 size = truncate_msg(&text_len, &trunc_msg_len, 435 &dict_len, &pad_len); 436 /* survive when the log buffer is too small for trunc_msg */ 437 if (log_make_free_space(size)) 438 return 0; 439 } 440 441 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 442 /* 443 * This message + an additional empty header does not fit 444 * at the end of the buffer. Add an empty header with len == 0 445 * to signify a wrap around. 446 */ 447 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 448 log_next_idx = 0; 449 } 450 451 /* fill message */ 452 msg = (struct printk_log *)(log_buf + log_next_idx); 453 memcpy(log_text(msg), text, text_len); 454 msg->text_len = text_len; 455 if (trunc_msg_len) { 456 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 457 msg->text_len += trunc_msg_len; 458 } 459 memcpy(log_dict(msg), dict, dict_len); 460 msg->dict_len = dict_len; 461 msg->facility = facility; 462 msg->level = level & 7; 463 msg->flags = flags & 0x1f; 464 if (ts_nsec > 0) 465 msg->ts_nsec = ts_nsec; 466 else 467 msg->ts_nsec = local_clock(); 468 memset(log_dict(msg) + dict_len, 0, pad_len); 469 msg->len = size; 470 471 /* insert message */ 472 log_next_idx += msg->len; 473 log_next_seq++; 474 475 return msg->text_len; 476 } 477 478 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 479 480 static int syslog_action_restricted(int type) 481 { 482 if (dmesg_restrict) 483 return 1; 484 /* 485 * Unless restricted, we allow "read all" and "get buffer size" 486 * for everybody. 487 */ 488 return type != SYSLOG_ACTION_READ_ALL && 489 type != SYSLOG_ACTION_SIZE_BUFFER; 490 } 491 492 int check_syslog_permissions(int type, int source) 493 { 494 /* 495 * If this is from /proc/kmsg and we've already opened it, then we've 496 * already done the capabilities checks at open time. 497 */ 498 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 499 goto ok; 500 501 if (syslog_action_restricted(type)) { 502 if (capable(CAP_SYSLOG)) 503 goto ok; 504 /* 505 * For historical reasons, accept CAP_SYS_ADMIN too, with 506 * a warning. 507 */ 508 if (capable(CAP_SYS_ADMIN)) { 509 pr_warn_once("%s (%d): Attempt to access syslog with " 510 "CAP_SYS_ADMIN but no CAP_SYSLOG " 511 "(deprecated).\n", 512 current->comm, task_pid_nr(current)); 513 goto ok; 514 } 515 return -EPERM; 516 } 517 ok: 518 return security_syslog(type); 519 } 520 EXPORT_SYMBOL_GPL(check_syslog_permissions); 521 522 static void append_char(char **pp, char *e, char c) 523 { 524 if (*pp < e) 525 *(*pp)++ = c; 526 } 527 528 static ssize_t msg_print_ext_header(char *buf, size_t size, 529 struct printk_log *msg, u64 seq, 530 enum log_flags prev_flags) 531 { 532 u64 ts_usec = msg->ts_nsec; 533 char cont = '-'; 534 535 do_div(ts_usec, 1000); 536 537 /* 538 * If we couldn't merge continuation line fragments during the print, 539 * export the stored flags to allow an optional external merge of the 540 * records. Merging the records isn't always neccessarily correct, like 541 * when we hit a race during printing. In most cases though, it produces 542 * better readable output. 'c' in the record flags mark the first 543 * fragment of a line, '+' the following. 544 */ 545 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT)) 546 cont = 'c'; 547 else if ((msg->flags & LOG_CONT) || 548 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 549 cont = '+'; 550 551 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 552 (msg->facility << 3) | msg->level, seq, ts_usec, cont); 553 } 554 555 static ssize_t msg_print_ext_body(char *buf, size_t size, 556 char *dict, size_t dict_len, 557 char *text, size_t text_len) 558 { 559 char *p = buf, *e = buf + size; 560 size_t i; 561 562 /* escape non-printable characters */ 563 for (i = 0; i < text_len; i++) { 564 unsigned char c = text[i]; 565 566 if (c < ' ' || c >= 127 || c == '\\') 567 p += scnprintf(p, e - p, "\\x%02x", c); 568 else 569 append_char(&p, e, c); 570 } 571 append_char(&p, e, '\n'); 572 573 if (dict_len) { 574 bool line = true; 575 576 for (i = 0; i < dict_len; i++) { 577 unsigned char c = dict[i]; 578 579 if (line) { 580 append_char(&p, e, ' '); 581 line = false; 582 } 583 584 if (c == '\0') { 585 append_char(&p, e, '\n'); 586 line = true; 587 continue; 588 } 589 590 if (c < ' ' || c >= 127 || c == '\\') { 591 p += scnprintf(p, e - p, "\\x%02x", c); 592 continue; 593 } 594 595 append_char(&p, e, c); 596 } 597 append_char(&p, e, '\n'); 598 } 599 600 return p - buf; 601 } 602 603 /* /dev/kmsg - userspace message inject/listen interface */ 604 struct devkmsg_user { 605 u64 seq; 606 u32 idx; 607 enum log_flags prev; 608 struct mutex lock; 609 char buf[CONSOLE_EXT_LOG_MAX]; 610 }; 611 612 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 613 { 614 char *buf, *line; 615 int i; 616 int level = default_message_loglevel; 617 int facility = 1; /* LOG_USER */ 618 size_t len = iov_iter_count(from); 619 ssize_t ret = len; 620 621 if (len > LOG_LINE_MAX) 622 return -EINVAL; 623 buf = kmalloc(len+1, GFP_KERNEL); 624 if (buf == NULL) 625 return -ENOMEM; 626 627 buf[len] = '\0'; 628 if (copy_from_iter(buf, len, from) != len) { 629 kfree(buf); 630 return -EFAULT; 631 } 632 633 /* 634 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 635 * the decimal value represents 32bit, the lower 3 bit are the log 636 * level, the rest are the log facility. 637 * 638 * If no prefix or no userspace facility is specified, we 639 * enforce LOG_USER, to be able to reliably distinguish 640 * kernel-generated messages from userspace-injected ones. 641 */ 642 line = buf; 643 if (line[0] == '<') { 644 char *endp = NULL; 645 646 i = simple_strtoul(line+1, &endp, 10); 647 if (endp && endp[0] == '>') { 648 level = i & 7; 649 if (i >> 3) 650 facility = i >> 3; 651 endp++; 652 len -= endp - line; 653 line = endp; 654 } 655 } 656 657 printk_emit(facility, level, NULL, 0, "%s", line); 658 kfree(buf); 659 return ret; 660 } 661 662 static ssize_t devkmsg_read(struct file *file, char __user *buf, 663 size_t count, loff_t *ppos) 664 { 665 struct devkmsg_user *user = file->private_data; 666 struct printk_log *msg; 667 size_t len; 668 ssize_t ret; 669 670 if (!user) 671 return -EBADF; 672 673 ret = mutex_lock_interruptible(&user->lock); 674 if (ret) 675 return ret; 676 raw_spin_lock_irq(&logbuf_lock); 677 while (user->seq == log_next_seq) { 678 if (file->f_flags & O_NONBLOCK) { 679 ret = -EAGAIN; 680 raw_spin_unlock_irq(&logbuf_lock); 681 goto out; 682 } 683 684 raw_spin_unlock_irq(&logbuf_lock); 685 ret = wait_event_interruptible(log_wait, 686 user->seq != log_next_seq); 687 if (ret) 688 goto out; 689 raw_spin_lock_irq(&logbuf_lock); 690 } 691 692 if (user->seq < log_first_seq) { 693 /* our last seen message is gone, return error and reset */ 694 user->idx = log_first_idx; 695 user->seq = log_first_seq; 696 ret = -EPIPE; 697 raw_spin_unlock_irq(&logbuf_lock); 698 goto out; 699 } 700 701 msg = log_from_idx(user->idx); 702 len = msg_print_ext_header(user->buf, sizeof(user->buf), 703 msg, user->seq, user->prev); 704 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 705 log_dict(msg), msg->dict_len, 706 log_text(msg), msg->text_len); 707 708 user->prev = msg->flags; 709 user->idx = log_next(user->idx); 710 user->seq++; 711 raw_spin_unlock_irq(&logbuf_lock); 712 713 if (len > count) { 714 ret = -EINVAL; 715 goto out; 716 } 717 718 if (copy_to_user(buf, user->buf, len)) { 719 ret = -EFAULT; 720 goto out; 721 } 722 ret = len; 723 out: 724 mutex_unlock(&user->lock); 725 return ret; 726 } 727 728 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 729 { 730 struct devkmsg_user *user = file->private_data; 731 loff_t ret = 0; 732 733 if (!user) 734 return -EBADF; 735 if (offset) 736 return -ESPIPE; 737 738 raw_spin_lock_irq(&logbuf_lock); 739 switch (whence) { 740 case SEEK_SET: 741 /* the first record */ 742 user->idx = log_first_idx; 743 user->seq = log_first_seq; 744 break; 745 case SEEK_DATA: 746 /* 747 * The first record after the last SYSLOG_ACTION_CLEAR, 748 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 749 * changes no global state, and does not clear anything. 750 */ 751 user->idx = clear_idx; 752 user->seq = clear_seq; 753 break; 754 case SEEK_END: 755 /* after the last record */ 756 user->idx = log_next_idx; 757 user->seq = log_next_seq; 758 break; 759 default: 760 ret = -EINVAL; 761 } 762 raw_spin_unlock_irq(&logbuf_lock); 763 return ret; 764 } 765 766 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 767 { 768 struct devkmsg_user *user = file->private_data; 769 int ret = 0; 770 771 if (!user) 772 return POLLERR|POLLNVAL; 773 774 poll_wait(file, &log_wait, wait); 775 776 raw_spin_lock_irq(&logbuf_lock); 777 if (user->seq < log_next_seq) { 778 /* return error when data has vanished underneath us */ 779 if (user->seq < log_first_seq) 780 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 781 else 782 ret = POLLIN|POLLRDNORM; 783 } 784 raw_spin_unlock_irq(&logbuf_lock); 785 786 return ret; 787 } 788 789 static int devkmsg_open(struct inode *inode, struct file *file) 790 { 791 struct devkmsg_user *user; 792 int err; 793 794 /* write-only does not need any file context */ 795 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 796 return 0; 797 798 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 799 SYSLOG_FROM_READER); 800 if (err) 801 return err; 802 803 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 804 if (!user) 805 return -ENOMEM; 806 807 mutex_init(&user->lock); 808 809 raw_spin_lock_irq(&logbuf_lock); 810 user->idx = log_first_idx; 811 user->seq = log_first_seq; 812 raw_spin_unlock_irq(&logbuf_lock); 813 814 file->private_data = user; 815 return 0; 816 } 817 818 static int devkmsg_release(struct inode *inode, struct file *file) 819 { 820 struct devkmsg_user *user = file->private_data; 821 822 if (!user) 823 return 0; 824 825 mutex_destroy(&user->lock); 826 kfree(user); 827 return 0; 828 } 829 830 const struct file_operations kmsg_fops = { 831 .open = devkmsg_open, 832 .read = devkmsg_read, 833 .write_iter = devkmsg_write, 834 .llseek = devkmsg_llseek, 835 .poll = devkmsg_poll, 836 .release = devkmsg_release, 837 }; 838 839 #ifdef CONFIG_KEXEC_CORE 840 /* 841 * This appends the listed symbols to /proc/vmcore 842 * 843 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 844 * obtain access to symbols that are otherwise very difficult to locate. These 845 * symbols are specifically used so that utilities can access and extract the 846 * dmesg log from a vmcore file after a crash. 847 */ 848 void log_buf_kexec_setup(void) 849 { 850 VMCOREINFO_SYMBOL(log_buf); 851 VMCOREINFO_SYMBOL(log_buf_len); 852 VMCOREINFO_SYMBOL(log_first_idx); 853 VMCOREINFO_SYMBOL(log_next_idx); 854 /* 855 * Export struct printk_log size and field offsets. User space tools can 856 * parse it and detect any changes to structure down the line. 857 */ 858 VMCOREINFO_STRUCT_SIZE(printk_log); 859 VMCOREINFO_OFFSET(printk_log, ts_nsec); 860 VMCOREINFO_OFFSET(printk_log, len); 861 VMCOREINFO_OFFSET(printk_log, text_len); 862 VMCOREINFO_OFFSET(printk_log, dict_len); 863 } 864 #endif 865 866 /* requested log_buf_len from kernel cmdline */ 867 static unsigned long __initdata new_log_buf_len; 868 869 /* we practice scaling the ring buffer by powers of 2 */ 870 static void __init log_buf_len_update(unsigned size) 871 { 872 if (size) 873 size = roundup_pow_of_two(size); 874 if (size > log_buf_len) 875 new_log_buf_len = size; 876 } 877 878 /* save requested log_buf_len since it's too early to process it */ 879 static int __init log_buf_len_setup(char *str) 880 { 881 unsigned size = memparse(str, &str); 882 883 log_buf_len_update(size); 884 885 return 0; 886 } 887 early_param("log_buf_len", log_buf_len_setup); 888 889 #ifdef CONFIG_SMP 890 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 891 892 static void __init log_buf_add_cpu(void) 893 { 894 unsigned int cpu_extra; 895 896 /* 897 * archs should set up cpu_possible_bits properly with 898 * set_cpu_possible() after setup_arch() but just in 899 * case lets ensure this is valid. 900 */ 901 if (num_possible_cpus() == 1) 902 return; 903 904 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 905 906 /* by default this will only continue through for large > 64 CPUs */ 907 if (cpu_extra <= __LOG_BUF_LEN / 2) 908 return; 909 910 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 911 __LOG_CPU_MAX_BUF_LEN); 912 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 913 cpu_extra); 914 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 915 916 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 917 } 918 #else /* !CONFIG_SMP */ 919 static inline void log_buf_add_cpu(void) {} 920 #endif /* CONFIG_SMP */ 921 922 void __init setup_log_buf(int early) 923 { 924 unsigned long flags; 925 char *new_log_buf; 926 int free; 927 928 if (log_buf != __log_buf) 929 return; 930 931 if (!early && !new_log_buf_len) 932 log_buf_add_cpu(); 933 934 if (!new_log_buf_len) 935 return; 936 937 if (early) { 938 new_log_buf = 939 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 940 } else { 941 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 942 LOG_ALIGN); 943 } 944 945 if (unlikely(!new_log_buf)) { 946 pr_err("log_buf_len: %ld bytes not available\n", 947 new_log_buf_len); 948 return; 949 } 950 951 raw_spin_lock_irqsave(&logbuf_lock, flags); 952 log_buf_len = new_log_buf_len; 953 log_buf = new_log_buf; 954 new_log_buf_len = 0; 955 free = __LOG_BUF_LEN - log_next_idx; 956 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 957 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 958 959 pr_info("log_buf_len: %d bytes\n", log_buf_len); 960 pr_info("early log buf free: %d(%d%%)\n", 961 free, (free * 100) / __LOG_BUF_LEN); 962 } 963 964 static bool __read_mostly ignore_loglevel; 965 966 static int __init ignore_loglevel_setup(char *str) 967 { 968 ignore_loglevel = true; 969 pr_info("debug: ignoring loglevel setting.\n"); 970 971 return 0; 972 } 973 974 early_param("ignore_loglevel", ignore_loglevel_setup); 975 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 976 MODULE_PARM_DESC(ignore_loglevel, 977 "ignore loglevel setting (prints all kernel messages to the console)"); 978 979 #ifdef CONFIG_BOOT_PRINTK_DELAY 980 981 static int boot_delay; /* msecs delay after each printk during bootup */ 982 static unsigned long long loops_per_msec; /* based on boot_delay */ 983 984 static int __init boot_delay_setup(char *str) 985 { 986 unsigned long lpj; 987 988 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 989 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 990 991 get_option(&str, &boot_delay); 992 if (boot_delay > 10 * 1000) 993 boot_delay = 0; 994 995 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 996 "HZ: %d, loops_per_msec: %llu\n", 997 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 998 return 0; 999 } 1000 early_param("boot_delay", boot_delay_setup); 1001 1002 static void boot_delay_msec(int level) 1003 { 1004 unsigned long long k; 1005 unsigned long timeout; 1006 1007 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1008 || (level >= console_loglevel && !ignore_loglevel)) { 1009 return; 1010 } 1011 1012 k = (unsigned long long)loops_per_msec * boot_delay; 1013 1014 timeout = jiffies + msecs_to_jiffies(boot_delay); 1015 while (k) { 1016 k--; 1017 cpu_relax(); 1018 /* 1019 * use (volatile) jiffies to prevent 1020 * compiler reduction; loop termination via jiffies 1021 * is secondary and may or may not happen. 1022 */ 1023 if (time_after(jiffies, timeout)) 1024 break; 1025 touch_nmi_watchdog(); 1026 } 1027 } 1028 #else 1029 static inline void boot_delay_msec(int level) 1030 { 1031 } 1032 #endif 1033 1034 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1035 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1036 1037 static size_t print_time(u64 ts, char *buf) 1038 { 1039 unsigned long rem_nsec; 1040 1041 if (!printk_time) 1042 return 0; 1043 1044 rem_nsec = do_div(ts, 1000000000); 1045 1046 if (!buf) 1047 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1048 1049 return sprintf(buf, "[%5lu.%06lu] ", 1050 (unsigned long)ts, rem_nsec / 1000); 1051 } 1052 1053 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1054 { 1055 size_t len = 0; 1056 unsigned int prefix = (msg->facility << 3) | msg->level; 1057 1058 if (syslog) { 1059 if (buf) { 1060 len += sprintf(buf, "<%u>", prefix); 1061 } else { 1062 len += 3; 1063 if (prefix > 999) 1064 len += 3; 1065 else if (prefix > 99) 1066 len += 2; 1067 else if (prefix > 9) 1068 len++; 1069 } 1070 } 1071 1072 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1073 return len; 1074 } 1075 1076 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1077 bool syslog, char *buf, size_t size) 1078 { 1079 const char *text = log_text(msg); 1080 size_t text_size = msg->text_len; 1081 bool prefix = true; 1082 bool newline = true; 1083 size_t len = 0; 1084 1085 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1086 prefix = false; 1087 1088 if (msg->flags & LOG_CONT) { 1089 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1090 prefix = false; 1091 1092 if (!(msg->flags & LOG_NEWLINE)) 1093 newline = false; 1094 } 1095 1096 do { 1097 const char *next = memchr(text, '\n', text_size); 1098 size_t text_len; 1099 1100 if (next) { 1101 text_len = next - text; 1102 next++; 1103 text_size -= next - text; 1104 } else { 1105 text_len = text_size; 1106 } 1107 1108 if (buf) { 1109 if (print_prefix(msg, syslog, NULL) + 1110 text_len + 1 >= size - len) 1111 break; 1112 1113 if (prefix) 1114 len += print_prefix(msg, syslog, buf + len); 1115 memcpy(buf + len, text, text_len); 1116 len += text_len; 1117 if (next || newline) 1118 buf[len++] = '\n'; 1119 } else { 1120 /* SYSLOG_ACTION_* buffer size only calculation */ 1121 if (prefix) 1122 len += print_prefix(msg, syslog, NULL); 1123 len += text_len; 1124 if (next || newline) 1125 len++; 1126 } 1127 1128 prefix = true; 1129 text = next; 1130 } while (text); 1131 1132 return len; 1133 } 1134 1135 static int syslog_print(char __user *buf, int size) 1136 { 1137 char *text; 1138 struct printk_log *msg; 1139 int len = 0; 1140 1141 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1142 if (!text) 1143 return -ENOMEM; 1144 1145 while (size > 0) { 1146 size_t n; 1147 size_t skip; 1148 1149 raw_spin_lock_irq(&logbuf_lock); 1150 if (syslog_seq < log_first_seq) { 1151 /* messages are gone, move to first one */ 1152 syslog_seq = log_first_seq; 1153 syslog_idx = log_first_idx; 1154 syslog_prev = 0; 1155 syslog_partial = 0; 1156 } 1157 if (syslog_seq == log_next_seq) { 1158 raw_spin_unlock_irq(&logbuf_lock); 1159 break; 1160 } 1161 1162 skip = syslog_partial; 1163 msg = log_from_idx(syslog_idx); 1164 n = msg_print_text(msg, syslog_prev, true, text, 1165 LOG_LINE_MAX + PREFIX_MAX); 1166 if (n - syslog_partial <= size) { 1167 /* message fits into buffer, move forward */ 1168 syslog_idx = log_next(syslog_idx); 1169 syslog_seq++; 1170 syslog_prev = msg->flags; 1171 n -= syslog_partial; 1172 syslog_partial = 0; 1173 } else if (!len){ 1174 /* partial read(), remember position */ 1175 n = size; 1176 syslog_partial += n; 1177 } else 1178 n = 0; 1179 raw_spin_unlock_irq(&logbuf_lock); 1180 1181 if (!n) 1182 break; 1183 1184 if (copy_to_user(buf, text + skip, n)) { 1185 if (!len) 1186 len = -EFAULT; 1187 break; 1188 } 1189 1190 len += n; 1191 size -= n; 1192 buf += n; 1193 } 1194 1195 kfree(text); 1196 return len; 1197 } 1198 1199 static int syslog_print_all(char __user *buf, int size, bool clear) 1200 { 1201 char *text; 1202 int len = 0; 1203 1204 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1205 if (!text) 1206 return -ENOMEM; 1207 1208 raw_spin_lock_irq(&logbuf_lock); 1209 if (buf) { 1210 u64 next_seq; 1211 u64 seq; 1212 u32 idx; 1213 enum log_flags prev; 1214 1215 if (clear_seq < log_first_seq) { 1216 /* messages are gone, move to first available one */ 1217 clear_seq = log_first_seq; 1218 clear_idx = log_first_idx; 1219 } 1220 1221 /* 1222 * Find first record that fits, including all following records, 1223 * into the user-provided buffer for this dump. 1224 */ 1225 seq = clear_seq; 1226 idx = clear_idx; 1227 prev = 0; 1228 while (seq < log_next_seq) { 1229 struct printk_log *msg = log_from_idx(idx); 1230 1231 len += msg_print_text(msg, prev, true, NULL, 0); 1232 prev = msg->flags; 1233 idx = log_next(idx); 1234 seq++; 1235 } 1236 1237 /* move first record forward until length fits into the buffer */ 1238 seq = clear_seq; 1239 idx = clear_idx; 1240 prev = 0; 1241 while (len > size && seq < log_next_seq) { 1242 struct printk_log *msg = log_from_idx(idx); 1243 1244 len -= msg_print_text(msg, prev, true, NULL, 0); 1245 prev = msg->flags; 1246 idx = log_next(idx); 1247 seq++; 1248 } 1249 1250 /* last message fitting into this dump */ 1251 next_seq = log_next_seq; 1252 1253 len = 0; 1254 while (len >= 0 && seq < next_seq) { 1255 struct printk_log *msg = log_from_idx(idx); 1256 int textlen; 1257 1258 textlen = msg_print_text(msg, prev, true, text, 1259 LOG_LINE_MAX + PREFIX_MAX); 1260 if (textlen < 0) { 1261 len = textlen; 1262 break; 1263 } 1264 idx = log_next(idx); 1265 seq++; 1266 prev = msg->flags; 1267 1268 raw_spin_unlock_irq(&logbuf_lock); 1269 if (copy_to_user(buf + len, text, textlen)) 1270 len = -EFAULT; 1271 else 1272 len += textlen; 1273 raw_spin_lock_irq(&logbuf_lock); 1274 1275 if (seq < log_first_seq) { 1276 /* messages are gone, move to next one */ 1277 seq = log_first_seq; 1278 idx = log_first_idx; 1279 prev = 0; 1280 } 1281 } 1282 } 1283 1284 if (clear) { 1285 clear_seq = log_next_seq; 1286 clear_idx = log_next_idx; 1287 } 1288 raw_spin_unlock_irq(&logbuf_lock); 1289 1290 kfree(text); 1291 return len; 1292 } 1293 1294 int do_syslog(int type, char __user *buf, int len, int source) 1295 { 1296 bool clear = false; 1297 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1298 int error; 1299 1300 error = check_syslog_permissions(type, source); 1301 if (error) 1302 goto out; 1303 1304 switch (type) { 1305 case SYSLOG_ACTION_CLOSE: /* Close log */ 1306 break; 1307 case SYSLOG_ACTION_OPEN: /* Open log */ 1308 break; 1309 case SYSLOG_ACTION_READ: /* Read from log */ 1310 error = -EINVAL; 1311 if (!buf || len < 0) 1312 goto out; 1313 error = 0; 1314 if (!len) 1315 goto out; 1316 if (!access_ok(VERIFY_WRITE, buf, len)) { 1317 error = -EFAULT; 1318 goto out; 1319 } 1320 error = wait_event_interruptible(log_wait, 1321 syslog_seq != log_next_seq); 1322 if (error) 1323 goto out; 1324 error = syslog_print(buf, len); 1325 break; 1326 /* Read/clear last kernel messages */ 1327 case SYSLOG_ACTION_READ_CLEAR: 1328 clear = true; 1329 /* FALL THRU */ 1330 /* Read last kernel messages */ 1331 case SYSLOG_ACTION_READ_ALL: 1332 error = -EINVAL; 1333 if (!buf || len < 0) 1334 goto out; 1335 error = 0; 1336 if (!len) 1337 goto out; 1338 if (!access_ok(VERIFY_WRITE, buf, len)) { 1339 error = -EFAULT; 1340 goto out; 1341 } 1342 error = syslog_print_all(buf, len, clear); 1343 break; 1344 /* Clear ring buffer */ 1345 case SYSLOG_ACTION_CLEAR: 1346 syslog_print_all(NULL, 0, true); 1347 break; 1348 /* Disable logging to console */ 1349 case SYSLOG_ACTION_CONSOLE_OFF: 1350 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1351 saved_console_loglevel = console_loglevel; 1352 console_loglevel = minimum_console_loglevel; 1353 break; 1354 /* Enable logging to console */ 1355 case SYSLOG_ACTION_CONSOLE_ON: 1356 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1357 console_loglevel = saved_console_loglevel; 1358 saved_console_loglevel = LOGLEVEL_DEFAULT; 1359 } 1360 break; 1361 /* Set level of messages printed to console */ 1362 case SYSLOG_ACTION_CONSOLE_LEVEL: 1363 error = -EINVAL; 1364 if (len < 1 || len > 8) 1365 goto out; 1366 if (len < minimum_console_loglevel) 1367 len = minimum_console_loglevel; 1368 console_loglevel = len; 1369 /* Implicitly re-enable logging to console */ 1370 saved_console_loglevel = LOGLEVEL_DEFAULT; 1371 error = 0; 1372 break; 1373 /* Number of chars in the log buffer */ 1374 case SYSLOG_ACTION_SIZE_UNREAD: 1375 raw_spin_lock_irq(&logbuf_lock); 1376 if (syslog_seq < log_first_seq) { 1377 /* messages are gone, move to first one */ 1378 syslog_seq = log_first_seq; 1379 syslog_idx = log_first_idx; 1380 syslog_prev = 0; 1381 syslog_partial = 0; 1382 } 1383 if (source == SYSLOG_FROM_PROC) { 1384 /* 1385 * Short-cut for poll(/"proc/kmsg") which simply checks 1386 * for pending data, not the size; return the count of 1387 * records, not the length. 1388 */ 1389 error = log_next_seq - syslog_seq; 1390 } else { 1391 u64 seq = syslog_seq; 1392 u32 idx = syslog_idx; 1393 enum log_flags prev = syslog_prev; 1394 1395 error = 0; 1396 while (seq < log_next_seq) { 1397 struct printk_log *msg = log_from_idx(idx); 1398 1399 error += msg_print_text(msg, prev, true, NULL, 0); 1400 idx = log_next(idx); 1401 seq++; 1402 prev = msg->flags; 1403 } 1404 error -= syslog_partial; 1405 } 1406 raw_spin_unlock_irq(&logbuf_lock); 1407 break; 1408 /* Size of the log buffer */ 1409 case SYSLOG_ACTION_SIZE_BUFFER: 1410 error = log_buf_len; 1411 break; 1412 default: 1413 error = -EINVAL; 1414 break; 1415 } 1416 out: 1417 return error; 1418 } 1419 1420 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1421 { 1422 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1423 } 1424 1425 /* 1426 * Call the console drivers, asking them to write out 1427 * log_buf[start] to log_buf[end - 1]. 1428 * The console_lock must be held. 1429 */ 1430 static void call_console_drivers(int level, 1431 const char *ext_text, size_t ext_len, 1432 const char *text, size_t len) 1433 { 1434 struct console *con; 1435 1436 trace_console(text, len); 1437 1438 if (level >= console_loglevel && !ignore_loglevel) 1439 return; 1440 if (!console_drivers) 1441 return; 1442 1443 for_each_console(con) { 1444 if (exclusive_console && con != exclusive_console) 1445 continue; 1446 if (!(con->flags & CON_ENABLED)) 1447 continue; 1448 if (!con->write) 1449 continue; 1450 if (!cpu_online(smp_processor_id()) && 1451 !(con->flags & CON_ANYTIME)) 1452 continue; 1453 if (con->flags & CON_EXTENDED) 1454 con->write(con, ext_text, ext_len); 1455 else 1456 con->write(con, text, len); 1457 } 1458 } 1459 1460 /* 1461 * Zap console related locks when oopsing. 1462 * To leave time for slow consoles to print a full oops, 1463 * only zap at most once every 30 seconds. 1464 */ 1465 static void zap_locks(void) 1466 { 1467 static unsigned long oops_timestamp; 1468 1469 if (time_after_eq(jiffies, oops_timestamp) && 1470 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1471 return; 1472 1473 oops_timestamp = jiffies; 1474 1475 debug_locks_off(); 1476 /* If a crash is occurring, make sure we can't deadlock */ 1477 raw_spin_lock_init(&logbuf_lock); 1478 /* And make sure that we print immediately */ 1479 sema_init(&console_sem, 1); 1480 } 1481 1482 /* 1483 * Check if we have any console that is capable of printing while cpu is 1484 * booting or shutting down. Requires console_sem. 1485 */ 1486 static int have_callable_console(void) 1487 { 1488 struct console *con; 1489 1490 for_each_console(con) 1491 if (con->flags & CON_ANYTIME) 1492 return 1; 1493 1494 return 0; 1495 } 1496 1497 /* 1498 * Can we actually use the console at this time on this cpu? 1499 * 1500 * Console drivers may assume that per-cpu resources have been allocated. So 1501 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1502 * call them until this CPU is officially up. 1503 */ 1504 static inline int can_use_console(unsigned int cpu) 1505 { 1506 return cpu_online(cpu) || have_callable_console(); 1507 } 1508 1509 /* 1510 * Try to get console ownership to actually show the kernel 1511 * messages from a 'printk'. Return true (and with the 1512 * console_lock held, and 'console_locked' set) if it 1513 * is successful, false otherwise. 1514 */ 1515 static int console_trylock_for_printk(void) 1516 { 1517 unsigned int cpu = smp_processor_id(); 1518 1519 if (!console_trylock()) 1520 return 0; 1521 /* 1522 * If we can't use the console, we need to release the console 1523 * semaphore by hand to avoid flushing the buffer. We need to hold the 1524 * console semaphore in order to do this test safely. 1525 */ 1526 if (!can_use_console(cpu)) { 1527 console_locked = 0; 1528 up_console_sem(); 1529 return 0; 1530 } 1531 return 1; 1532 } 1533 1534 int printk_delay_msec __read_mostly; 1535 1536 static inline void printk_delay(void) 1537 { 1538 if (unlikely(printk_delay_msec)) { 1539 int m = printk_delay_msec; 1540 1541 while (m--) { 1542 mdelay(1); 1543 touch_nmi_watchdog(); 1544 } 1545 } 1546 } 1547 1548 /* 1549 * Continuation lines are buffered, and not committed to the record buffer 1550 * until the line is complete, or a race forces it. The line fragments 1551 * though, are printed immediately to the consoles to ensure everything has 1552 * reached the console in case of a kernel crash. 1553 */ 1554 static struct cont { 1555 char buf[LOG_LINE_MAX]; 1556 size_t len; /* length == 0 means unused buffer */ 1557 size_t cons; /* bytes written to console */ 1558 struct task_struct *owner; /* task of first print*/ 1559 u64 ts_nsec; /* time of first print */ 1560 u8 level; /* log level of first message */ 1561 u8 facility; /* log facility of first message */ 1562 enum log_flags flags; /* prefix, newline flags */ 1563 bool flushed:1; /* buffer sealed and committed */ 1564 } cont; 1565 1566 static void cont_flush(enum log_flags flags) 1567 { 1568 if (cont.flushed) 1569 return; 1570 if (cont.len == 0) 1571 return; 1572 1573 if (cont.cons) { 1574 /* 1575 * If a fragment of this line was directly flushed to the 1576 * console; wait for the console to pick up the rest of the 1577 * line. LOG_NOCONS suppresses a duplicated output. 1578 */ 1579 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1580 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1581 cont.flags = flags; 1582 cont.flushed = true; 1583 } else { 1584 /* 1585 * If no fragment of this line ever reached the console, 1586 * just submit it to the store and free the buffer. 1587 */ 1588 log_store(cont.facility, cont.level, flags, 0, 1589 NULL, 0, cont.buf, cont.len); 1590 cont.len = 0; 1591 } 1592 } 1593 1594 static bool cont_add(int facility, int level, const char *text, size_t len) 1595 { 1596 if (cont.len && cont.flushed) 1597 return false; 1598 1599 /* 1600 * If ext consoles are present, flush and skip in-kernel 1601 * continuation. See nr_ext_console_drivers definition. Also, if 1602 * the line gets too long, split it up in separate records. 1603 */ 1604 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1605 cont_flush(LOG_CONT); 1606 return false; 1607 } 1608 1609 if (!cont.len) { 1610 cont.facility = facility; 1611 cont.level = level; 1612 cont.owner = current; 1613 cont.ts_nsec = local_clock(); 1614 cont.flags = 0; 1615 cont.cons = 0; 1616 cont.flushed = false; 1617 } 1618 1619 memcpy(cont.buf + cont.len, text, len); 1620 cont.len += len; 1621 1622 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1623 cont_flush(LOG_CONT); 1624 1625 return true; 1626 } 1627 1628 static size_t cont_print_text(char *text, size_t size) 1629 { 1630 size_t textlen = 0; 1631 size_t len; 1632 1633 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1634 textlen += print_time(cont.ts_nsec, text); 1635 size -= textlen; 1636 } 1637 1638 len = cont.len - cont.cons; 1639 if (len > 0) { 1640 if (len+1 > size) 1641 len = size-1; 1642 memcpy(text + textlen, cont.buf + cont.cons, len); 1643 textlen += len; 1644 cont.cons = cont.len; 1645 } 1646 1647 if (cont.flushed) { 1648 if (cont.flags & LOG_NEWLINE) 1649 text[textlen++] = '\n'; 1650 /* got everything, release buffer */ 1651 cont.len = 0; 1652 } 1653 return textlen; 1654 } 1655 1656 asmlinkage int vprintk_emit(int facility, int level, 1657 const char *dict, size_t dictlen, 1658 const char *fmt, va_list args) 1659 { 1660 static int recursion_bug; 1661 static char textbuf[LOG_LINE_MAX]; 1662 char *text = textbuf; 1663 size_t text_len = 0; 1664 enum log_flags lflags = 0; 1665 unsigned long flags; 1666 int this_cpu; 1667 int printed_len = 0; 1668 bool in_sched = false; 1669 /* cpu currently holding logbuf_lock in this function */ 1670 static unsigned int logbuf_cpu = UINT_MAX; 1671 1672 if (level == LOGLEVEL_SCHED) { 1673 level = LOGLEVEL_DEFAULT; 1674 in_sched = true; 1675 } 1676 1677 boot_delay_msec(level); 1678 printk_delay(); 1679 1680 /* This stops the holder of console_sem just where we want him */ 1681 local_irq_save(flags); 1682 this_cpu = smp_processor_id(); 1683 1684 /* 1685 * Ouch, printk recursed into itself! 1686 */ 1687 if (unlikely(logbuf_cpu == this_cpu)) { 1688 /* 1689 * If a crash is occurring during printk() on this CPU, 1690 * then try to get the crash message out but make sure 1691 * we can't deadlock. Otherwise just return to avoid the 1692 * recursion and return - but flag the recursion so that 1693 * it can be printed at the next appropriate moment: 1694 */ 1695 if (!oops_in_progress && !lockdep_recursing(current)) { 1696 recursion_bug = 1; 1697 local_irq_restore(flags); 1698 return 0; 1699 } 1700 zap_locks(); 1701 } 1702 1703 lockdep_off(); 1704 raw_spin_lock(&logbuf_lock); 1705 logbuf_cpu = this_cpu; 1706 1707 if (unlikely(recursion_bug)) { 1708 static const char recursion_msg[] = 1709 "BUG: recent printk recursion!"; 1710 1711 recursion_bug = 0; 1712 /* emit KERN_CRIT message */ 1713 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1714 NULL, 0, recursion_msg, 1715 strlen(recursion_msg)); 1716 } 1717 1718 /* 1719 * The printf needs to come first; we need the syslog 1720 * prefix which might be passed-in as a parameter. 1721 */ 1722 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1723 1724 /* mark and strip a trailing newline */ 1725 if (text_len && text[text_len-1] == '\n') { 1726 text_len--; 1727 lflags |= LOG_NEWLINE; 1728 } 1729 1730 /* strip kernel syslog prefix and extract log level or control flags */ 1731 if (facility == 0) { 1732 int kern_level = printk_get_level(text); 1733 1734 if (kern_level) { 1735 const char *end_of_header = printk_skip_level(text); 1736 switch (kern_level) { 1737 case '0' ... '7': 1738 if (level == LOGLEVEL_DEFAULT) 1739 level = kern_level - '0'; 1740 /* fallthrough */ 1741 case 'd': /* KERN_DEFAULT */ 1742 lflags |= LOG_PREFIX; 1743 } 1744 /* 1745 * No need to check length here because vscnprintf 1746 * put '\0' at the end of the string. Only valid and 1747 * newly printed level is detected. 1748 */ 1749 text_len -= end_of_header - text; 1750 text = (char *)end_of_header; 1751 } 1752 } 1753 1754 if (level == LOGLEVEL_DEFAULT) 1755 level = default_message_loglevel; 1756 1757 if (dict) 1758 lflags |= LOG_PREFIX|LOG_NEWLINE; 1759 1760 if (!(lflags & LOG_NEWLINE)) { 1761 /* 1762 * Flush the conflicting buffer. An earlier newline was missing, 1763 * or another task also prints continuation lines. 1764 */ 1765 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1766 cont_flush(LOG_NEWLINE); 1767 1768 /* buffer line if possible, otherwise store it right away */ 1769 if (cont_add(facility, level, text, text_len)) 1770 printed_len += text_len; 1771 else 1772 printed_len += log_store(facility, level, 1773 lflags | LOG_CONT, 0, 1774 dict, dictlen, text, text_len); 1775 } else { 1776 bool stored = false; 1777 1778 /* 1779 * If an earlier newline was missing and it was the same task, 1780 * either merge it with the current buffer and flush, or if 1781 * there was a race with interrupts (prefix == true) then just 1782 * flush it out and store this line separately. 1783 * If the preceding printk was from a different task and missed 1784 * a newline, flush and append the newline. 1785 */ 1786 if (cont.len) { 1787 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1788 stored = cont_add(facility, level, text, 1789 text_len); 1790 cont_flush(LOG_NEWLINE); 1791 } 1792 1793 if (stored) 1794 printed_len += text_len; 1795 else 1796 printed_len += log_store(facility, level, lflags, 0, 1797 dict, dictlen, text, text_len); 1798 } 1799 1800 logbuf_cpu = UINT_MAX; 1801 raw_spin_unlock(&logbuf_lock); 1802 lockdep_on(); 1803 local_irq_restore(flags); 1804 1805 /* If called from the scheduler, we can not call up(). */ 1806 if (!in_sched) { 1807 lockdep_off(); 1808 /* 1809 * Disable preemption to avoid being preempted while holding 1810 * console_sem which would prevent anyone from printing to 1811 * console 1812 */ 1813 preempt_disable(); 1814 1815 /* 1816 * Try to acquire and then immediately release the console 1817 * semaphore. The release will print out buffers and wake up 1818 * /dev/kmsg and syslog() users. 1819 */ 1820 if (console_trylock_for_printk()) 1821 console_unlock(); 1822 preempt_enable(); 1823 lockdep_on(); 1824 } 1825 1826 return printed_len; 1827 } 1828 EXPORT_SYMBOL(vprintk_emit); 1829 1830 asmlinkage int vprintk(const char *fmt, va_list args) 1831 { 1832 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1833 } 1834 EXPORT_SYMBOL(vprintk); 1835 1836 asmlinkage int printk_emit(int facility, int level, 1837 const char *dict, size_t dictlen, 1838 const char *fmt, ...) 1839 { 1840 va_list args; 1841 int r; 1842 1843 va_start(args, fmt); 1844 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1845 va_end(args); 1846 1847 return r; 1848 } 1849 EXPORT_SYMBOL(printk_emit); 1850 1851 int vprintk_default(const char *fmt, va_list args) 1852 { 1853 int r; 1854 1855 #ifdef CONFIG_KGDB_KDB 1856 if (unlikely(kdb_trap_printk)) { 1857 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1858 return r; 1859 } 1860 #endif 1861 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1862 1863 return r; 1864 } 1865 EXPORT_SYMBOL_GPL(vprintk_default); 1866 1867 /* 1868 * This allows printk to be diverted to another function per cpu. 1869 * This is useful for calling printk functions from within NMI 1870 * without worrying about race conditions that can lock up the 1871 * box. 1872 */ 1873 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default; 1874 1875 /** 1876 * printk - print a kernel message 1877 * @fmt: format string 1878 * 1879 * This is printk(). It can be called from any context. We want it to work. 1880 * 1881 * We try to grab the console_lock. If we succeed, it's easy - we log the 1882 * output and call the console drivers. If we fail to get the semaphore, we 1883 * place the output into the log buffer and return. The current holder of 1884 * the console_sem will notice the new output in console_unlock(); and will 1885 * send it to the consoles before releasing the lock. 1886 * 1887 * One effect of this deferred printing is that code which calls printk() and 1888 * then changes console_loglevel may break. This is because console_loglevel 1889 * is inspected when the actual printing occurs. 1890 * 1891 * See also: 1892 * printf(3) 1893 * 1894 * See the vsnprintf() documentation for format string extensions over C99. 1895 */ 1896 asmlinkage __visible int printk(const char *fmt, ...) 1897 { 1898 printk_func_t vprintk_func; 1899 va_list args; 1900 int r; 1901 1902 va_start(args, fmt); 1903 1904 /* 1905 * If a caller overrides the per_cpu printk_func, then it needs 1906 * to disable preemption when calling printk(). Otherwise 1907 * the printk_func should be set to the default. No need to 1908 * disable preemption here. 1909 */ 1910 vprintk_func = this_cpu_read(printk_func); 1911 r = vprintk_func(fmt, args); 1912 1913 va_end(args); 1914 1915 return r; 1916 } 1917 EXPORT_SYMBOL(printk); 1918 1919 #else /* CONFIG_PRINTK */ 1920 1921 #define LOG_LINE_MAX 0 1922 #define PREFIX_MAX 0 1923 1924 static u64 syslog_seq; 1925 static u32 syslog_idx; 1926 static u64 console_seq; 1927 static u32 console_idx; 1928 static enum log_flags syslog_prev; 1929 static u64 log_first_seq; 1930 static u32 log_first_idx; 1931 static u64 log_next_seq; 1932 static enum log_flags console_prev; 1933 static struct cont { 1934 size_t len; 1935 size_t cons; 1936 u8 level; 1937 bool flushed:1; 1938 } cont; 1939 static char *log_text(const struct printk_log *msg) { return NULL; } 1940 static char *log_dict(const struct printk_log *msg) { return NULL; } 1941 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1942 static u32 log_next(u32 idx) { return 0; } 1943 static ssize_t msg_print_ext_header(char *buf, size_t size, 1944 struct printk_log *msg, u64 seq, 1945 enum log_flags prev_flags) { return 0; } 1946 static ssize_t msg_print_ext_body(char *buf, size_t size, 1947 char *dict, size_t dict_len, 1948 char *text, size_t text_len) { return 0; } 1949 static void call_console_drivers(int level, 1950 const char *ext_text, size_t ext_len, 1951 const char *text, size_t len) {} 1952 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1953 bool syslog, char *buf, size_t size) { return 0; } 1954 static size_t cont_print_text(char *text, size_t size) { return 0; } 1955 1956 /* Still needs to be defined for users */ 1957 DEFINE_PER_CPU(printk_func_t, printk_func); 1958 1959 #endif /* CONFIG_PRINTK */ 1960 1961 #ifdef CONFIG_EARLY_PRINTK 1962 struct console *early_console; 1963 1964 asmlinkage __visible void early_printk(const char *fmt, ...) 1965 { 1966 va_list ap; 1967 char buf[512]; 1968 int n; 1969 1970 if (!early_console) 1971 return; 1972 1973 va_start(ap, fmt); 1974 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1975 va_end(ap); 1976 1977 early_console->write(early_console, buf, n); 1978 } 1979 #endif 1980 1981 static int __add_preferred_console(char *name, int idx, char *options, 1982 char *brl_options) 1983 { 1984 struct console_cmdline *c; 1985 int i; 1986 1987 /* 1988 * See if this tty is not yet registered, and 1989 * if we have a slot free. 1990 */ 1991 for (i = 0, c = console_cmdline; 1992 i < MAX_CMDLINECONSOLES && c->name[0]; 1993 i++, c++) { 1994 if (strcmp(c->name, name) == 0 && c->index == idx) { 1995 if (!brl_options) 1996 selected_console = i; 1997 return 0; 1998 } 1999 } 2000 if (i == MAX_CMDLINECONSOLES) 2001 return -E2BIG; 2002 if (!brl_options) 2003 selected_console = i; 2004 strlcpy(c->name, name, sizeof(c->name)); 2005 c->options = options; 2006 braille_set_options(c, brl_options); 2007 2008 c->index = idx; 2009 return 0; 2010 } 2011 /* 2012 * Set up a console. Called via do_early_param() in init/main.c 2013 * for each "console=" parameter in the boot command line. 2014 */ 2015 static int __init console_setup(char *str) 2016 { 2017 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2018 char *s, *options, *brl_options = NULL; 2019 int idx; 2020 2021 if (_braille_console_setup(&str, &brl_options)) 2022 return 1; 2023 2024 /* 2025 * Decode str into name, index, options. 2026 */ 2027 if (str[0] >= '0' && str[0] <= '9') { 2028 strcpy(buf, "ttyS"); 2029 strncpy(buf + 4, str, sizeof(buf) - 5); 2030 } else { 2031 strncpy(buf, str, sizeof(buf) - 1); 2032 } 2033 buf[sizeof(buf) - 1] = 0; 2034 options = strchr(str, ','); 2035 if (options) 2036 *(options++) = 0; 2037 #ifdef __sparc__ 2038 if (!strcmp(str, "ttya")) 2039 strcpy(buf, "ttyS0"); 2040 if (!strcmp(str, "ttyb")) 2041 strcpy(buf, "ttyS1"); 2042 #endif 2043 for (s = buf; *s; s++) 2044 if (isdigit(*s) || *s == ',') 2045 break; 2046 idx = simple_strtoul(s, NULL, 10); 2047 *s = 0; 2048 2049 __add_preferred_console(buf, idx, options, brl_options); 2050 console_set_on_cmdline = 1; 2051 return 1; 2052 } 2053 __setup("console=", console_setup); 2054 2055 /** 2056 * add_preferred_console - add a device to the list of preferred consoles. 2057 * @name: device name 2058 * @idx: device index 2059 * @options: options for this console 2060 * 2061 * The last preferred console added will be used for kernel messages 2062 * and stdin/out/err for init. Normally this is used by console_setup 2063 * above to handle user-supplied console arguments; however it can also 2064 * be used by arch-specific code either to override the user or more 2065 * commonly to provide a default console (ie from PROM variables) when 2066 * the user has not supplied one. 2067 */ 2068 int add_preferred_console(char *name, int idx, char *options) 2069 { 2070 return __add_preferred_console(name, idx, options, NULL); 2071 } 2072 2073 bool console_suspend_enabled = true; 2074 EXPORT_SYMBOL(console_suspend_enabled); 2075 2076 static int __init console_suspend_disable(char *str) 2077 { 2078 console_suspend_enabled = false; 2079 return 1; 2080 } 2081 __setup("no_console_suspend", console_suspend_disable); 2082 module_param_named(console_suspend, console_suspend_enabled, 2083 bool, S_IRUGO | S_IWUSR); 2084 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2085 " and hibernate operations"); 2086 2087 /** 2088 * suspend_console - suspend the console subsystem 2089 * 2090 * This disables printk() while we go into suspend states 2091 */ 2092 void suspend_console(void) 2093 { 2094 if (!console_suspend_enabled) 2095 return; 2096 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2097 console_lock(); 2098 console_suspended = 1; 2099 up_console_sem(); 2100 } 2101 2102 void resume_console(void) 2103 { 2104 if (!console_suspend_enabled) 2105 return; 2106 down_console_sem(); 2107 console_suspended = 0; 2108 console_unlock(); 2109 } 2110 2111 /** 2112 * console_cpu_notify - print deferred console messages after CPU hotplug 2113 * @self: notifier struct 2114 * @action: CPU hotplug event 2115 * @hcpu: unused 2116 * 2117 * If printk() is called from a CPU that is not online yet, the messages 2118 * will be spooled but will not show up on the console. This function is 2119 * called when a new CPU comes online (or fails to come up), and ensures 2120 * that any such output gets printed. 2121 */ 2122 static int console_cpu_notify(struct notifier_block *self, 2123 unsigned long action, void *hcpu) 2124 { 2125 switch (action) { 2126 case CPU_ONLINE: 2127 case CPU_DEAD: 2128 case CPU_DOWN_FAILED: 2129 case CPU_UP_CANCELED: 2130 console_lock(); 2131 console_unlock(); 2132 } 2133 return NOTIFY_OK; 2134 } 2135 2136 /** 2137 * console_lock - lock the console system for exclusive use. 2138 * 2139 * Acquires a lock which guarantees that the caller has 2140 * exclusive access to the console system and the console_drivers list. 2141 * 2142 * Can sleep, returns nothing. 2143 */ 2144 void console_lock(void) 2145 { 2146 might_sleep(); 2147 2148 down_console_sem(); 2149 if (console_suspended) 2150 return; 2151 console_locked = 1; 2152 console_may_schedule = 1; 2153 } 2154 EXPORT_SYMBOL(console_lock); 2155 2156 /** 2157 * console_trylock - try to lock the console system for exclusive use. 2158 * 2159 * Try to acquire a lock which guarantees that the caller has exclusive 2160 * access to the console system and the console_drivers list. 2161 * 2162 * returns 1 on success, and 0 on failure to acquire the lock. 2163 */ 2164 int console_trylock(void) 2165 { 2166 if (down_trylock_console_sem()) 2167 return 0; 2168 if (console_suspended) { 2169 up_console_sem(); 2170 return 0; 2171 } 2172 console_locked = 1; 2173 console_may_schedule = 0; 2174 return 1; 2175 } 2176 EXPORT_SYMBOL(console_trylock); 2177 2178 int is_console_locked(void) 2179 { 2180 return console_locked; 2181 } 2182 2183 static void console_cont_flush(char *text, size_t size) 2184 { 2185 unsigned long flags; 2186 size_t len; 2187 2188 raw_spin_lock_irqsave(&logbuf_lock, flags); 2189 2190 if (!cont.len) 2191 goto out; 2192 2193 /* 2194 * We still queue earlier records, likely because the console was 2195 * busy. The earlier ones need to be printed before this one, we 2196 * did not flush any fragment so far, so just let it queue up. 2197 */ 2198 if (console_seq < log_next_seq && !cont.cons) 2199 goto out; 2200 2201 len = cont_print_text(text, size); 2202 raw_spin_unlock(&logbuf_lock); 2203 stop_critical_timings(); 2204 call_console_drivers(cont.level, NULL, 0, text, len); 2205 start_critical_timings(); 2206 local_irq_restore(flags); 2207 return; 2208 out: 2209 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2210 } 2211 2212 /** 2213 * console_unlock - unlock the console system 2214 * 2215 * Releases the console_lock which the caller holds on the console system 2216 * and the console driver list. 2217 * 2218 * While the console_lock was held, console output may have been buffered 2219 * by printk(). If this is the case, console_unlock(); emits 2220 * the output prior to releasing the lock. 2221 * 2222 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2223 * 2224 * console_unlock(); may be called from any context. 2225 */ 2226 void console_unlock(void) 2227 { 2228 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2229 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2230 static u64 seen_seq; 2231 unsigned long flags; 2232 bool wake_klogd = false; 2233 bool retry; 2234 2235 if (console_suspended) { 2236 up_console_sem(); 2237 return; 2238 } 2239 2240 console_may_schedule = 0; 2241 2242 /* flush buffered message fragment immediately to console */ 2243 console_cont_flush(text, sizeof(text)); 2244 again: 2245 for (;;) { 2246 struct printk_log *msg; 2247 size_t ext_len = 0; 2248 size_t len; 2249 int level; 2250 2251 raw_spin_lock_irqsave(&logbuf_lock, flags); 2252 if (seen_seq != log_next_seq) { 2253 wake_klogd = true; 2254 seen_seq = log_next_seq; 2255 } 2256 2257 if (console_seq < log_first_seq) { 2258 len = sprintf(text, "** %u printk messages dropped ** ", 2259 (unsigned)(log_first_seq - console_seq)); 2260 2261 /* messages are gone, move to first one */ 2262 console_seq = log_first_seq; 2263 console_idx = log_first_idx; 2264 console_prev = 0; 2265 } else { 2266 len = 0; 2267 } 2268 skip: 2269 if (console_seq == log_next_seq) 2270 break; 2271 2272 msg = log_from_idx(console_idx); 2273 if (msg->flags & LOG_NOCONS) { 2274 /* 2275 * Skip record we have buffered and already printed 2276 * directly to the console when we received it. 2277 */ 2278 console_idx = log_next(console_idx); 2279 console_seq++; 2280 /* 2281 * We will get here again when we register a new 2282 * CON_PRINTBUFFER console. Clear the flag so we 2283 * will properly dump everything later. 2284 */ 2285 msg->flags &= ~LOG_NOCONS; 2286 console_prev = msg->flags; 2287 goto skip; 2288 } 2289 2290 level = msg->level; 2291 len += msg_print_text(msg, console_prev, false, 2292 text + len, sizeof(text) - len); 2293 if (nr_ext_console_drivers) { 2294 ext_len = msg_print_ext_header(ext_text, 2295 sizeof(ext_text), 2296 msg, console_seq, console_prev); 2297 ext_len += msg_print_ext_body(ext_text + ext_len, 2298 sizeof(ext_text) - ext_len, 2299 log_dict(msg), msg->dict_len, 2300 log_text(msg), msg->text_len); 2301 } 2302 console_idx = log_next(console_idx); 2303 console_seq++; 2304 console_prev = msg->flags; 2305 raw_spin_unlock(&logbuf_lock); 2306 2307 stop_critical_timings(); /* don't trace print latency */ 2308 call_console_drivers(level, ext_text, ext_len, text, len); 2309 start_critical_timings(); 2310 local_irq_restore(flags); 2311 } 2312 console_locked = 0; 2313 2314 /* Release the exclusive_console once it is used */ 2315 if (unlikely(exclusive_console)) 2316 exclusive_console = NULL; 2317 2318 raw_spin_unlock(&logbuf_lock); 2319 2320 up_console_sem(); 2321 2322 /* 2323 * Someone could have filled up the buffer again, so re-check if there's 2324 * something to flush. In case we cannot trylock the console_sem again, 2325 * there's a new owner and the console_unlock() from them will do the 2326 * flush, no worries. 2327 */ 2328 raw_spin_lock(&logbuf_lock); 2329 retry = console_seq != log_next_seq; 2330 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2331 2332 if (retry && console_trylock()) 2333 goto again; 2334 2335 if (wake_klogd) 2336 wake_up_klogd(); 2337 } 2338 EXPORT_SYMBOL(console_unlock); 2339 2340 /** 2341 * console_conditional_schedule - yield the CPU if required 2342 * 2343 * If the console code is currently allowed to sleep, and 2344 * if this CPU should yield the CPU to another task, do 2345 * so here. 2346 * 2347 * Must be called within console_lock();. 2348 */ 2349 void __sched console_conditional_schedule(void) 2350 { 2351 if (console_may_schedule) 2352 cond_resched(); 2353 } 2354 EXPORT_SYMBOL(console_conditional_schedule); 2355 2356 void console_unblank(void) 2357 { 2358 struct console *c; 2359 2360 /* 2361 * console_unblank can no longer be called in interrupt context unless 2362 * oops_in_progress is set to 1.. 2363 */ 2364 if (oops_in_progress) { 2365 if (down_trylock_console_sem() != 0) 2366 return; 2367 } else 2368 console_lock(); 2369 2370 console_locked = 1; 2371 console_may_schedule = 0; 2372 for_each_console(c) 2373 if ((c->flags & CON_ENABLED) && c->unblank) 2374 c->unblank(); 2375 console_unlock(); 2376 } 2377 2378 /* 2379 * Return the console tty driver structure and its associated index 2380 */ 2381 struct tty_driver *console_device(int *index) 2382 { 2383 struct console *c; 2384 struct tty_driver *driver = NULL; 2385 2386 console_lock(); 2387 for_each_console(c) { 2388 if (!c->device) 2389 continue; 2390 driver = c->device(c, index); 2391 if (driver) 2392 break; 2393 } 2394 console_unlock(); 2395 return driver; 2396 } 2397 2398 /* 2399 * Prevent further output on the passed console device so that (for example) 2400 * serial drivers can disable console output before suspending a port, and can 2401 * re-enable output afterwards. 2402 */ 2403 void console_stop(struct console *console) 2404 { 2405 console_lock(); 2406 console->flags &= ~CON_ENABLED; 2407 console_unlock(); 2408 } 2409 EXPORT_SYMBOL(console_stop); 2410 2411 void console_start(struct console *console) 2412 { 2413 console_lock(); 2414 console->flags |= CON_ENABLED; 2415 console_unlock(); 2416 } 2417 EXPORT_SYMBOL(console_start); 2418 2419 static int __read_mostly keep_bootcon; 2420 2421 static int __init keep_bootcon_setup(char *str) 2422 { 2423 keep_bootcon = 1; 2424 pr_info("debug: skip boot console de-registration.\n"); 2425 2426 return 0; 2427 } 2428 2429 early_param("keep_bootcon", keep_bootcon_setup); 2430 2431 /* 2432 * The console driver calls this routine during kernel initialization 2433 * to register the console printing procedure with printk() and to 2434 * print any messages that were printed by the kernel before the 2435 * console driver was initialized. 2436 * 2437 * This can happen pretty early during the boot process (because of 2438 * early_printk) - sometimes before setup_arch() completes - be careful 2439 * of what kernel features are used - they may not be initialised yet. 2440 * 2441 * There are two types of consoles - bootconsoles (early_printk) and 2442 * "real" consoles (everything which is not a bootconsole) which are 2443 * handled differently. 2444 * - Any number of bootconsoles can be registered at any time. 2445 * - As soon as a "real" console is registered, all bootconsoles 2446 * will be unregistered automatically. 2447 * - Once a "real" console is registered, any attempt to register a 2448 * bootconsoles will be rejected 2449 */ 2450 void register_console(struct console *newcon) 2451 { 2452 int i; 2453 unsigned long flags; 2454 struct console *bcon = NULL; 2455 struct console_cmdline *c; 2456 2457 if (console_drivers) 2458 for_each_console(bcon) 2459 if (WARN(bcon == newcon, 2460 "console '%s%d' already registered\n", 2461 bcon->name, bcon->index)) 2462 return; 2463 2464 /* 2465 * before we register a new CON_BOOT console, make sure we don't 2466 * already have a valid console 2467 */ 2468 if (console_drivers && newcon->flags & CON_BOOT) { 2469 /* find the last or real console */ 2470 for_each_console(bcon) { 2471 if (!(bcon->flags & CON_BOOT)) { 2472 pr_info("Too late to register bootconsole %s%d\n", 2473 newcon->name, newcon->index); 2474 return; 2475 } 2476 } 2477 } 2478 2479 if (console_drivers && console_drivers->flags & CON_BOOT) 2480 bcon = console_drivers; 2481 2482 if (preferred_console < 0 || bcon || !console_drivers) 2483 preferred_console = selected_console; 2484 2485 /* 2486 * See if we want to use this console driver. If we 2487 * didn't select a console we take the first one 2488 * that registers here. 2489 */ 2490 if (preferred_console < 0) { 2491 if (newcon->index < 0) 2492 newcon->index = 0; 2493 if (newcon->setup == NULL || 2494 newcon->setup(newcon, NULL) == 0) { 2495 newcon->flags |= CON_ENABLED; 2496 if (newcon->device) { 2497 newcon->flags |= CON_CONSDEV; 2498 preferred_console = 0; 2499 } 2500 } 2501 } 2502 2503 /* 2504 * See if this console matches one we selected on 2505 * the command line. 2506 */ 2507 for (i = 0, c = console_cmdline; 2508 i < MAX_CMDLINECONSOLES && c->name[0]; 2509 i++, c++) { 2510 if (!newcon->match || 2511 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2512 /* default matching */ 2513 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2514 if (strcmp(c->name, newcon->name) != 0) 2515 continue; 2516 if (newcon->index >= 0 && 2517 newcon->index != c->index) 2518 continue; 2519 if (newcon->index < 0) 2520 newcon->index = c->index; 2521 2522 if (_braille_register_console(newcon, c)) 2523 return; 2524 2525 if (newcon->setup && 2526 newcon->setup(newcon, c->options) != 0) 2527 break; 2528 } 2529 2530 newcon->flags |= CON_ENABLED; 2531 if (i == selected_console) { 2532 newcon->flags |= CON_CONSDEV; 2533 preferred_console = selected_console; 2534 } 2535 break; 2536 } 2537 2538 if (!(newcon->flags & CON_ENABLED)) 2539 return; 2540 2541 /* 2542 * If we have a bootconsole, and are switching to a real console, 2543 * don't print everything out again, since when the boot console, and 2544 * the real console are the same physical device, it's annoying to 2545 * see the beginning boot messages twice 2546 */ 2547 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2548 newcon->flags &= ~CON_PRINTBUFFER; 2549 2550 /* 2551 * Put this console in the list - keep the 2552 * preferred driver at the head of the list. 2553 */ 2554 console_lock(); 2555 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2556 newcon->next = console_drivers; 2557 console_drivers = newcon; 2558 if (newcon->next) 2559 newcon->next->flags &= ~CON_CONSDEV; 2560 } else { 2561 newcon->next = console_drivers->next; 2562 console_drivers->next = newcon; 2563 } 2564 2565 if (newcon->flags & CON_EXTENDED) 2566 if (!nr_ext_console_drivers++) 2567 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2568 2569 if (newcon->flags & CON_PRINTBUFFER) { 2570 /* 2571 * console_unlock(); will print out the buffered messages 2572 * for us. 2573 */ 2574 raw_spin_lock_irqsave(&logbuf_lock, flags); 2575 console_seq = syslog_seq; 2576 console_idx = syslog_idx; 2577 console_prev = syslog_prev; 2578 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2579 /* 2580 * We're about to replay the log buffer. Only do this to the 2581 * just-registered console to avoid excessive message spam to 2582 * the already-registered consoles. 2583 */ 2584 exclusive_console = newcon; 2585 } 2586 console_unlock(); 2587 console_sysfs_notify(); 2588 2589 /* 2590 * By unregistering the bootconsoles after we enable the real console 2591 * we get the "console xxx enabled" message on all the consoles - 2592 * boot consoles, real consoles, etc - this is to ensure that end 2593 * users know there might be something in the kernel's log buffer that 2594 * went to the bootconsole (that they do not see on the real console) 2595 */ 2596 pr_info("%sconsole [%s%d] enabled\n", 2597 (newcon->flags & CON_BOOT) ? "boot" : "" , 2598 newcon->name, newcon->index); 2599 if (bcon && 2600 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2601 !keep_bootcon) { 2602 /* We need to iterate through all boot consoles, to make 2603 * sure we print everything out, before we unregister them. 2604 */ 2605 for_each_console(bcon) 2606 if (bcon->flags & CON_BOOT) 2607 unregister_console(bcon); 2608 } 2609 } 2610 EXPORT_SYMBOL(register_console); 2611 2612 int unregister_console(struct console *console) 2613 { 2614 struct console *a, *b; 2615 int res; 2616 2617 pr_info("%sconsole [%s%d] disabled\n", 2618 (console->flags & CON_BOOT) ? "boot" : "" , 2619 console->name, console->index); 2620 2621 res = _braille_unregister_console(console); 2622 if (res) 2623 return res; 2624 2625 res = 1; 2626 console_lock(); 2627 if (console_drivers == console) { 2628 console_drivers=console->next; 2629 res = 0; 2630 } else if (console_drivers) { 2631 for (a=console_drivers->next, b=console_drivers ; 2632 a; b=a, a=b->next) { 2633 if (a == console) { 2634 b->next = a->next; 2635 res = 0; 2636 break; 2637 } 2638 } 2639 } 2640 2641 if (!res && (console->flags & CON_EXTENDED)) 2642 nr_ext_console_drivers--; 2643 2644 /* 2645 * If this isn't the last console and it has CON_CONSDEV set, we 2646 * need to set it on the next preferred console. 2647 */ 2648 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2649 console_drivers->flags |= CON_CONSDEV; 2650 2651 console->flags &= ~CON_ENABLED; 2652 console_unlock(); 2653 console_sysfs_notify(); 2654 return res; 2655 } 2656 EXPORT_SYMBOL(unregister_console); 2657 2658 static int __init printk_late_init(void) 2659 { 2660 struct console *con; 2661 2662 for_each_console(con) { 2663 if (!keep_bootcon && con->flags & CON_BOOT) { 2664 unregister_console(con); 2665 } 2666 } 2667 hotcpu_notifier(console_cpu_notify, 0); 2668 return 0; 2669 } 2670 late_initcall(printk_late_init); 2671 2672 #if defined CONFIG_PRINTK 2673 /* 2674 * Delayed printk version, for scheduler-internal messages: 2675 */ 2676 #define PRINTK_PENDING_WAKEUP 0x01 2677 #define PRINTK_PENDING_OUTPUT 0x02 2678 2679 static DEFINE_PER_CPU(int, printk_pending); 2680 2681 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2682 { 2683 int pending = __this_cpu_xchg(printk_pending, 0); 2684 2685 if (pending & PRINTK_PENDING_OUTPUT) { 2686 /* If trylock fails, someone else is doing the printing */ 2687 if (console_trylock()) 2688 console_unlock(); 2689 } 2690 2691 if (pending & PRINTK_PENDING_WAKEUP) 2692 wake_up_interruptible(&log_wait); 2693 } 2694 2695 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2696 .func = wake_up_klogd_work_func, 2697 .flags = IRQ_WORK_LAZY, 2698 }; 2699 2700 void wake_up_klogd(void) 2701 { 2702 preempt_disable(); 2703 if (waitqueue_active(&log_wait)) { 2704 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2705 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2706 } 2707 preempt_enable(); 2708 } 2709 2710 int printk_deferred(const char *fmt, ...) 2711 { 2712 va_list args; 2713 int r; 2714 2715 preempt_disable(); 2716 va_start(args, fmt); 2717 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2718 va_end(args); 2719 2720 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2721 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2722 preempt_enable(); 2723 2724 return r; 2725 } 2726 2727 /* 2728 * printk rate limiting, lifted from the networking subsystem. 2729 * 2730 * This enforces a rate limit: not more than 10 kernel messages 2731 * every 5s to make a denial-of-service attack impossible. 2732 */ 2733 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2734 2735 int __printk_ratelimit(const char *func) 2736 { 2737 return ___ratelimit(&printk_ratelimit_state, func); 2738 } 2739 EXPORT_SYMBOL(__printk_ratelimit); 2740 2741 /** 2742 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2743 * @caller_jiffies: pointer to caller's state 2744 * @interval_msecs: minimum interval between prints 2745 * 2746 * printk_timed_ratelimit() returns true if more than @interval_msecs 2747 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2748 * returned true. 2749 */ 2750 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2751 unsigned int interval_msecs) 2752 { 2753 unsigned long elapsed = jiffies - *caller_jiffies; 2754 2755 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2756 return false; 2757 2758 *caller_jiffies = jiffies; 2759 return true; 2760 } 2761 EXPORT_SYMBOL(printk_timed_ratelimit); 2762 2763 static DEFINE_SPINLOCK(dump_list_lock); 2764 static LIST_HEAD(dump_list); 2765 2766 /** 2767 * kmsg_dump_register - register a kernel log dumper. 2768 * @dumper: pointer to the kmsg_dumper structure 2769 * 2770 * Adds a kernel log dumper to the system. The dump callback in the 2771 * structure will be called when the kernel oopses or panics and must be 2772 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2773 */ 2774 int kmsg_dump_register(struct kmsg_dumper *dumper) 2775 { 2776 unsigned long flags; 2777 int err = -EBUSY; 2778 2779 /* The dump callback needs to be set */ 2780 if (!dumper->dump) 2781 return -EINVAL; 2782 2783 spin_lock_irqsave(&dump_list_lock, flags); 2784 /* Don't allow registering multiple times */ 2785 if (!dumper->registered) { 2786 dumper->registered = 1; 2787 list_add_tail_rcu(&dumper->list, &dump_list); 2788 err = 0; 2789 } 2790 spin_unlock_irqrestore(&dump_list_lock, flags); 2791 2792 return err; 2793 } 2794 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2795 2796 /** 2797 * kmsg_dump_unregister - unregister a kmsg dumper. 2798 * @dumper: pointer to the kmsg_dumper structure 2799 * 2800 * Removes a dump device from the system. Returns zero on success and 2801 * %-EINVAL otherwise. 2802 */ 2803 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2804 { 2805 unsigned long flags; 2806 int err = -EINVAL; 2807 2808 spin_lock_irqsave(&dump_list_lock, flags); 2809 if (dumper->registered) { 2810 dumper->registered = 0; 2811 list_del_rcu(&dumper->list); 2812 err = 0; 2813 } 2814 spin_unlock_irqrestore(&dump_list_lock, flags); 2815 synchronize_rcu(); 2816 2817 return err; 2818 } 2819 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2820 2821 static bool always_kmsg_dump; 2822 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2823 2824 /** 2825 * kmsg_dump - dump kernel log to kernel message dumpers. 2826 * @reason: the reason (oops, panic etc) for dumping 2827 * 2828 * Call each of the registered dumper's dump() callback, which can 2829 * retrieve the kmsg records with kmsg_dump_get_line() or 2830 * kmsg_dump_get_buffer(). 2831 */ 2832 void kmsg_dump(enum kmsg_dump_reason reason) 2833 { 2834 struct kmsg_dumper *dumper; 2835 unsigned long flags; 2836 2837 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2838 return; 2839 2840 rcu_read_lock(); 2841 list_for_each_entry_rcu(dumper, &dump_list, list) { 2842 if (dumper->max_reason && reason > dumper->max_reason) 2843 continue; 2844 2845 /* initialize iterator with data about the stored records */ 2846 dumper->active = true; 2847 2848 raw_spin_lock_irqsave(&logbuf_lock, flags); 2849 dumper->cur_seq = clear_seq; 2850 dumper->cur_idx = clear_idx; 2851 dumper->next_seq = log_next_seq; 2852 dumper->next_idx = log_next_idx; 2853 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2854 2855 /* invoke dumper which will iterate over records */ 2856 dumper->dump(dumper, reason); 2857 2858 /* reset iterator */ 2859 dumper->active = false; 2860 } 2861 rcu_read_unlock(); 2862 } 2863 2864 /** 2865 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2866 * @dumper: registered kmsg dumper 2867 * @syslog: include the "<4>" prefixes 2868 * @line: buffer to copy the line to 2869 * @size: maximum size of the buffer 2870 * @len: length of line placed into buffer 2871 * 2872 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2873 * record, and copy one record into the provided buffer. 2874 * 2875 * Consecutive calls will return the next available record moving 2876 * towards the end of the buffer with the youngest messages. 2877 * 2878 * A return value of FALSE indicates that there are no more records to 2879 * read. 2880 * 2881 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2882 */ 2883 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2884 char *line, size_t size, size_t *len) 2885 { 2886 struct printk_log *msg; 2887 size_t l = 0; 2888 bool ret = false; 2889 2890 if (!dumper->active) 2891 goto out; 2892 2893 if (dumper->cur_seq < log_first_seq) { 2894 /* messages are gone, move to first available one */ 2895 dumper->cur_seq = log_first_seq; 2896 dumper->cur_idx = log_first_idx; 2897 } 2898 2899 /* last entry */ 2900 if (dumper->cur_seq >= log_next_seq) 2901 goto out; 2902 2903 msg = log_from_idx(dumper->cur_idx); 2904 l = msg_print_text(msg, 0, syslog, line, size); 2905 2906 dumper->cur_idx = log_next(dumper->cur_idx); 2907 dumper->cur_seq++; 2908 ret = true; 2909 out: 2910 if (len) 2911 *len = l; 2912 return ret; 2913 } 2914 2915 /** 2916 * kmsg_dump_get_line - retrieve one kmsg log line 2917 * @dumper: registered kmsg dumper 2918 * @syslog: include the "<4>" prefixes 2919 * @line: buffer to copy the line to 2920 * @size: maximum size of the buffer 2921 * @len: length of line placed into buffer 2922 * 2923 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2924 * record, and copy one record into the provided buffer. 2925 * 2926 * Consecutive calls will return the next available record moving 2927 * towards the end of the buffer with the youngest messages. 2928 * 2929 * A return value of FALSE indicates that there are no more records to 2930 * read. 2931 */ 2932 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2933 char *line, size_t size, size_t *len) 2934 { 2935 unsigned long flags; 2936 bool ret; 2937 2938 raw_spin_lock_irqsave(&logbuf_lock, flags); 2939 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2940 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2941 2942 return ret; 2943 } 2944 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2945 2946 /** 2947 * kmsg_dump_get_buffer - copy kmsg log lines 2948 * @dumper: registered kmsg dumper 2949 * @syslog: include the "<4>" prefixes 2950 * @buf: buffer to copy the line to 2951 * @size: maximum size of the buffer 2952 * @len: length of line placed into buffer 2953 * 2954 * Start at the end of the kmsg buffer and fill the provided buffer 2955 * with as many of the the *youngest* kmsg records that fit into it. 2956 * If the buffer is large enough, all available kmsg records will be 2957 * copied with a single call. 2958 * 2959 * Consecutive calls will fill the buffer with the next block of 2960 * available older records, not including the earlier retrieved ones. 2961 * 2962 * A return value of FALSE indicates that there are no more records to 2963 * read. 2964 */ 2965 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2966 char *buf, size_t size, size_t *len) 2967 { 2968 unsigned long flags; 2969 u64 seq; 2970 u32 idx; 2971 u64 next_seq; 2972 u32 next_idx; 2973 enum log_flags prev; 2974 size_t l = 0; 2975 bool ret = false; 2976 2977 if (!dumper->active) 2978 goto out; 2979 2980 raw_spin_lock_irqsave(&logbuf_lock, flags); 2981 if (dumper->cur_seq < log_first_seq) { 2982 /* messages are gone, move to first available one */ 2983 dumper->cur_seq = log_first_seq; 2984 dumper->cur_idx = log_first_idx; 2985 } 2986 2987 /* last entry */ 2988 if (dumper->cur_seq >= dumper->next_seq) { 2989 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2990 goto out; 2991 } 2992 2993 /* calculate length of entire buffer */ 2994 seq = dumper->cur_seq; 2995 idx = dumper->cur_idx; 2996 prev = 0; 2997 while (seq < dumper->next_seq) { 2998 struct printk_log *msg = log_from_idx(idx); 2999 3000 l += msg_print_text(msg, prev, true, NULL, 0); 3001 idx = log_next(idx); 3002 seq++; 3003 prev = msg->flags; 3004 } 3005 3006 /* move first record forward until length fits into the buffer */ 3007 seq = dumper->cur_seq; 3008 idx = dumper->cur_idx; 3009 prev = 0; 3010 while (l > size && seq < dumper->next_seq) { 3011 struct printk_log *msg = log_from_idx(idx); 3012 3013 l -= msg_print_text(msg, prev, true, NULL, 0); 3014 idx = log_next(idx); 3015 seq++; 3016 prev = msg->flags; 3017 } 3018 3019 /* last message in next interation */ 3020 next_seq = seq; 3021 next_idx = idx; 3022 3023 l = 0; 3024 while (seq < dumper->next_seq) { 3025 struct printk_log *msg = log_from_idx(idx); 3026 3027 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 3028 idx = log_next(idx); 3029 seq++; 3030 prev = msg->flags; 3031 } 3032 3033 dumper->next_seq = next_seq; 3034 dumper->next_idx = next_idx; 3035 ret = true; 3036 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3037 out: 3038 if (len) 3039 *len = l; 3040 return ret; 3041 } 3042 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3043 3044 /** 3045 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3046 * @dumper: registered kmsg dumper 3047 * 3048 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3049 * kmsg_dump_get_buffer() can be called again and used multiple 3050 * times within the same dumper.dump() callback. 3051 * 3052 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3053 */ 3054 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3055 { 3056 dumper->cur_seq = clear_seq; 3057 dumper->cur_idx = clear_idx; 3058 dumper->next_seq = log_next_seq; 3059 dumper->next_idx = log_next_idx; 3060 } 3061 3062 /** 3063 * kmsg_dump_rewind - reset the interator 3064 * @dumper: registered kmsg dumper 3065 * 3066 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3067 * kmsg_dump_get_buffer() can be called again and used multiple 3068 * times within the same dumper.dump() callback. 3069 */ 3070 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3071 { 3072 unsigned long flags; 3073 3074 raw_spin_lock_irqsave(&logbuf_lock, flags); 3075 kmsg_dump_rewind_nolock(dumper); 3076 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3077 } 3078 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3079 3080 static char dump_stack_arch_desc_str[128]; 3081 3082 /** 3083 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3084 * @fmt: printf-style format string 3085 * @...: arguments for the format string 3086 * 3087 * The configured string will be printed right after utsname during task 3088 * dumps. Usually used to add arch-specific system identifiers. If an 3089 * arch wants to make use of such an ID string, it should initialize this 3090 * as soon as possible during boot. 3091 */ 3092 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3093 { 3094 va_list args; 3095 3096 va_start(args, fmt); 3097 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3098 fmt, args); 3099 va_end(args); 3100 } 3101 3102 /** 3103 * dump_stack_print_info - print generic debug info for dump_stack() 3104 * @log_lvl: log level 3105 * 3106 * Arch-specific dump_stack() implementations can use this function to 3107 * print out the same debug information as the generic dump_stack(). 3108 */ 3109 void dump_stack_print_info(const char *log_lvl) 3110 { 3111 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3112 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3113 print_tainted(), init_utsname()->release, 3114 (int)strcspn(init_utsname()->version, " "), 3115 init_utsname()->version); 3116 3117 if (dump_stack_arch_desc_str[0] != '\0') 3118 printk("%sHardware name: %s\n", 3119 log_lvl, dump_stack_arch_desc_str); 3120 3121 print_worker_info(log_lvl, current); 3122 } 3123 3124 /** 3125 * show_regs_print_info - print generic debug info for show_regs() 3126 * @log_lvl: log level 3127 * 3128 * show_regs() implementations can use this function to print out generic 3129 * debug information. 3130 */ 3131 void show_regs_print_info(const char *log_lvl) 3132 { 3133 dump_stack_print_info(log_lvl); 3134 3135 printk("%stask: %p ti: %p task.ti: %p\n", 3136 log_lvl, current, current_thread_info(), 3137 task_thread_info(current)); 3138 } 3139 3140 #endif 3141