1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 75 76 /* 77 * Low level drivers may need that to know if they can schedule in 78 * their unblank() callback or not. So let's export it. 79 */ 80 int oops_in_progress; 81 EXPORT_SYMBOL(oops_in_progress); 82 83 /* 84 * console_mutex protects console_list updates and console->flags updates. 85 * The flags are synchronized only for consoles that are registered, i.e. 86 * accessible via the console list. 87 */ 88 static DEFINE_MUTEX(console_mutex); 89 90 /* 91 * console_sem protects updates to console->seq 92 * and also provides serialization for console printing. 93 */ 94 static DEFINE_SEMAPHORE(console_sem, 1); 95 HLIST_HEAD(console_list); 96 EXPORT_SYMBOL_GPL(console_list); 97 DEFINE_STATIC_SRCU(console_srcu); 98 99 /* 100 * System may need to suppress printk message under certain 101 * circumstances, like after kernel panic happens. 102 */ 103 int __read_mostly suppress_printk; 104 105 #ifdef CONFIG_LOCKDEP 106 static struct lockdep_map console_lock_dep_map = { 107 .name = "console_lock" 108 }; 109 110 void lockdep_assert_console_list_lock_held(void) 111 { 112 lockdep_assert_held(&console_mutex); 113 } 114 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 115 #endif 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 bool console_srcu_read_lock_is_held(void) 119 { 120 return srcu_read_lock_held(&console_srcu); 121 } 122 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 123 #endif 124 125 enum devkmsg_log_bits { 126 __DEVKMSG_LOG_BIT_ON = 0, 127 __DEVKMSG_LOG_BIT_OFF, 128 __DEVKMSG_LOG_BIT_LOCK, 129 }; 130 131 enum devkmsg_log_masks { 132 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 133 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 134 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 135 }; 136 137 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 138 #define DEVKMSG_LOG_MASK_DEFAULT 0 139 140 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 142 static int __control_devkmsg(char *str) 143 { 144 size_t len; 145 146 if (!str) 147 return -EINVAL; 148 149 len = str_has_prefix(str, "on"); 150 if (len) { 151 devkmsg_log = DEVKMSG_LOG_MASK_ON; 152 return len; 153 } 154 155 len = str_has_prefix(str, "off"); 156 if (len) { 157 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 158 return len; 159 } 160 161 len = str_has_prefix(str, "ratelimit"); 162 if (len) { 163 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 164 return len; 165 } 166 167 return -EINVAL; 168 } 169 170 static int __init control_devkmsg(char *str) 171 { 172 if (__control_devkmsg(str) < 0) { 173 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 174 return 1; 175 } 176 177 /* 178 * Set sysctl string accordingly: 179 */ 180 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 181 strcpy(devkmsg_log_str, "on"); 182 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 183 strcpy(devkmsg_log_str, "off"); 184 /* else "ratelimit" which is set by default. */ 185 186 /* 187 * Sysctl cannot change it anymore. The kernel command line setting of 188 * this parameter is to force the setting to be permanent throughout the 189 * runtime of the system. This is a precation measure against userspace 190 * trying to be a smarta** and attempting to change it up on us. 191 */ 192 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 193 194 return 1; 195 } 196 __setup("printk.devkmsg=", control_devkmsg); 197 198 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 199 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 200 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 201 void *buffer, size_t *lenp, loff_t *ppos) 202 { 203 char old_str[DEVKMSG_STR_MAX_SIZE]; 204 unsigned int old; 205 int err; 206 207 if (write) { 208 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 209 return -EINVAL; 210 211 old = devkmsg_log; 212 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 213 } 214 215 err = proc_dostring(table, write, buffer, lenp, ppos); 216 if (err) 217 return err; 218 219 if (write) { 220 err = __control_devkmsg(devkmsg_log_str); 221 222 /* 223 * Do not accept an unknown string OR a known string with 224 * trailing crap... 225 */ 226 if (err < 0 || (err + 1 != *lenp)) { 227 228 /* ... and restore old setting. */ 229 devkmsg_log = old; 230 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 231 232 return -EINVAL; 233 } 234 } 235 236 return 0; 237 } 238 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 239 240 /** 241 * console_list_lock - Lock the console list 242 * 243 * For console list or console->flags updates 244 */ 245 void console_list_lock(void) 246 { 247 /* 248 * In unregister_console() and console_force_preferred_locked(), 249 * synchronize_srcu() is called with the console_list_lock held. 250 * Therefore it is not allowed that the console_list_lock is taken 251 * with the srcu_lock held. 252 * 253 * Detecting if this context is really in the read-side critical 254 * section is only possible if the appropriate debug options are 255 * enabled. 256 */ 257 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 258 srcu_read_lock_held(&console_srcu)); 259 260 mutex_lock(&console_mutex); 261 } 262 EXPORT_SYMBOL(console_list_lock); 263 264 /** 265 * console_list_unlock - Unlock the console list 266 * 267 * Counterpart to console_list_lock() 268 */ 269 void console_list_unlock(void) 270 { 271 mutex_unlock(&console_mutex); 272 } 273 EXPORT_SYMBOL(console_list_unlock); 274 275 /** 276 * console_srcu_read_lock - Register a new reader for the 277 * SRCU-protected console list 278 * 279 * Use for_each_console_srcu() to iterate the console list 280 * 281 * Context: Any context. 282 * Return: A cookie to pass to console_srcu_read_unlock(). 283 */ 284 int console_srcu_read_lock(void) 285 { 286 return srcu_read_lock_nmisafe(&console_srcu); 287 } 288 EXPORT_SYMBOL(console_srcu_read_lock); 289 290 /** 291 * console_srcu_read_unlock - Unregister an old reader from 292 * the SRCU-protected console list 293 * @cookie: cookie returned from console_srcu_read_lock() 294 * 295 * Counterpart to console_srcu_read_lock() 296 */ 297 void console_srcu_read_unlock(int cookie) 298 { 299 srcu_read_unlock_nmisafe(&console_srcu, cookie); 300 } 301 EXPORT_SYMBOL(console_srcu_read_unlock); 302 303 /* 304 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 305 * macros instead of functions so that _RET_IP_ contains useful information. 306 */ 307 #define down_console_sem() do { \ 308 down(&console_sem);\ 309 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 310 } while (0) 311 312 static int __down_trylock_console_sem(unsigned long ip) 313 { 314 int lock_failed; 315 unsigned long flags; 316 317 /* 318 * Here and in __up_console_sem() we need to be in safe mode, 319 * because spindump/WARN/etc from under console ->lock will 320 * deadlock in printk()->down_trylock_console_sem() otherwise. 321 */ 322 printk_safe_enter_irqsave(flags); 323 lock_failed = down_trylock(&console_sem); 324 printk_safe_exit_irqrestore(flags); 325 326 if (lock_failed) 327 return 1; 328 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 329 return 0; 330 } 331 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 332 333 static void __up_console_sem(unsigned long ip) 334 { 335 unsigned long flags; 336 337 mutex_release(&console_lock_dep_map, ip); 338 339 printk_safe_enter_irqsave(flags); 340 up(&console_sem); 341 printk_safe_exit_irqrestore(flags); 342 } 343 #define up_console_sem() __up_console_sem(_RET_IP_) 344 345 static bool panic_in_progress(void) 346 { 347 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 348 } 349 350 /* 351 * This is used for debugging the mess that is the VT code by 352 * keeping track if we have the console semaphore held. It's 353 * definitely not the perfect debug tool (we don't know if _WE_ 354 * hold it and are racing, but it helps tracking those weird code 355 * paths in the console code where we end up in places I want 356 * locked without the console semaphore held). 357 */ 358 static int console_locked; 359 360 /* 361 * Array of consoles built from command line options (console=) 362 */ 363 364 #define MAX_CMDLINECONSOLES 8 365 366 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 367 368 static int preferred_console = -1; 369 int console_set_on_cmdline; 370 EXPORT_SYMBOL(console_set_on_cmdline); 371 372 /* Flag: console code may call schedule() */ 373 static int console_may_schedule; 374 375 enum con_msg_format_flags { 376 MSG_FORMAT_DEFAULT = 0, 377 MSG_FORMAT_SYSLOG = (1 << 0), 378 }; 379 380 static int console_msg_format = MSG_FORMAT_DEFAULT; 381 382 /* 383 * The printk log buffer consists of a sequenced collection of records, each 384 * containing variable length message text. Every record also contains its 385 * own meta-data (@info). 386 * 387 * Every record meta-data carries the timestamp in microseconds, as well as 388 * the standard userspace syslog level and syslog facility. The usual kernel 389 * messages use LOG_KERN; userspace-injected messages always carry a matching 390 * syslog facility, by default LOG_USER. The origin of every message can be 391 * reliably determined that way. 392 * 393 * The human readable log message of a record is available in @text, the 394 * length of the message text in @text_len. The stored message is not 395 * terminated. 396 * 397 * Optionally, a record can carry a dictionary of properties (key/value 398 * pairs), to provide userspace with a machine-readable message context. 399 * 400 * Examples for well-defined, commonly used property names are: 401 * DEVICE=b12:8 device identifier 402 * b12:8 block dev_t 403 * c127:3 char dev_t 404 * n8 netdev ifindex 405 * +sound:card0 subsystem:devname 406 * SUBSYSTEM=pci driver-core subsystem name 407 * 408 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 409 * and values are terminated by a '\0' character. 410 * 411 * Example of record values: 412 * record.text_buf = "it's a line" (unterminated) 413 * record.info.seq = 56 414 * record.info.ts_nsec = 36863 415 * record.info.text_len = 11 416 * record.info.facility = 0 (LOG_KERN) 417 * record.info.flags = 0 418 * record.info.level = 3 (LOG_ERR) 419 * record.info.caller_id = 299 (task 299) 420 * record.info.dev_info.subsystem = "pci" (terminated) 421 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 422 * 423 * The 'struct printk_info' buffer must never be directly exported to 424 * userspace, it is a kernel-private implementation detail that might 425 * need to be changed in the future, when the requirements change. 426 * 427 * /dev/kmsg exports the structured data in the following line format: 428 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 429 * 430 * Users of the export format should ignore possible additional values 431 * separated by ',', and find the message after the ';' character. 432 * 433 * The optional key/value pairs are attached as continuation lines starting 434 * with a space character and terminated by a newline. All possible 435 * non-prinatable characters are escaped in the "\xff" notation. 436 */ 437 438 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 439 static DEFINE_MUTEX(syslog_lock); 440 441 #ifdef CONFIG_PRINTK 442 /* 443 * During panic, heavy printk by other CPUs can delay the 444 * panic and risk deadlock on console resources. 445 */ 446 static int __read_mostly suppress_panic_printk; 447 448 DECLARE_WAIT_QUEUE_HEAD(log_wait); 449 /* All 3 protected by @syslog_lock. */ 450 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 451 static u64 syslog_seq; 452 static size_t syslog_partial; 453 static bool syslog_time; 454 455 struct latched_seq { 456 seqcount_latch_t latch; 457 u64 val[2]; 458 }; 459 460 /* 461 * The next printk record to read after the last 'clear' command. There are 462 * two copies (updated with seqcount_latch) so that reads can locklessly 463 * access a valid value. Writers are synchronized by @syslog_lock. 464 */ 465 static struct latched_seq clear_seq = { 466 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 467 .val[0] = 0, 468 .val[1] = 0, 469 }; 470 471 #define LOG_LEVEL(v) ((v) & 0x07) 472 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 473 474 /* record buffer */ 475 #define LOG_ALIGN __alignof__(unsigned long) 476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 477 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 479 static char *log_buf = __log_buf; 480 static u32 log_buf_len = __LOG_BUF_LEN; 481 482 /* 483 * Define the average message size. This only affects the number of 484 * descriptors that will be available. Underestimating is better than 485 * overestimating (too many available descriptors is better than not enough). 486 */ 487 #define PRB_AVGBITS 5 /* 32 character average length */ 488 489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 490 #error CONFIG_LOG_BUF_SHIFT value too small. 491 #endif 492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 493 PRB_AVGBITS, &__log_buf[0]); 494 495 static struct printk_ringbuffer printk_rb_dynamic; 496 497 struct printk_ringbuffer *prb = &printk_rb_static; 498 499 /* 500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 501 * per_cpu_areas are initialised. This variable is set to true when 502 * it's safe to access per-CPU data. 503 */ 504 static bool __printk_percpu_data_ready __ro_after_init; 505 506 bool printk_percpu_data_ready(void) 507 { 508 return __printk_percpu_data_ready; 509 } 510 511 /* Must be called under syslog_lock. */ 512 static void latched_seq_write(struct latched_seq *ls, u64 val) 513 { 514 raw_write_seqcount_latch(&ls->latch); 515 ls->val[0] = val; 516 raw_write_seqcount_latch(&ls->latch); 517 ls->val[1] = val; 518 } 519 520 /* Can be called from any context. */ 521 static u64 latched_seq_read_nolock(struct latched_seq *ls) 522 { 523 unsigned int seq; 524 unsigned int idx; 525 u64 val; 526 527 do { 528 seq = raw_read_seqcount_latch(&ls->latch); 529 idx = seq & 0x1; 530 val = ls->val[idx]; 531 } while (raw_read_seqcount_latch_retry(&ls->latch, seq)); 532 533 return val; 534 } 535 536 /* Return log buffer address */ 537 char *log_buf_addr_get(void) 538 { 539 return log_buf; 540 } 541 542 /* Return log buffer size */ 543 u32 log_buf_len_get(void) 544 { 545 return log_buf_len; 546 } 547 548 /* 549 * Define how much of the log buffer we could take at maximum. The value 550 * must be greater than two. Note that only half of the buffer is available 551 * when the index points to the middle. 552 */ 553 #define MAX_LOG_TAKE_PART 4 554 static const char trunc_msg[] = "<truncated>"; 555 556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 557 { 558 /* 559 * The message should not take the whole buffer. Otherwise, it might 560 * get removed too soon. 561 */ 562 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 563 564 if (*text_len > max_text_len) 565 *text_len = max_text_len; 566 567 /* enable the warning message (if there is room) */ 568 *trunc_msg_len = strlen(trunc_msg); 569 if (*text_len >= *trunc_msg_len) 570 *text_len -= *trunc_msg_len; 571 else 572 *trunc_msg_len = 0; 573 } 574 575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 576 577 static int syslog_action_restricted(int type) 578 { 579 if (dmesg_restrict) 580 return 1; 581 /* 582 * Unless restricted, we allow "read all" and "get buffer size" 583 * for everybody. 584 */ 585 return type != SYSLOG_ACTION_READ_ALL && 586 type != SYSLOG_ACTION_SIZE_BUFFER; 587 } 588 589 static int check_syslog_permissions(int type, int source) 590 { 591 /* 592 * If this is from /proc/kmsg and we've already opened it, then we've 593 * already done the capabilities checks at open time. 594 */ 595 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 596 goto ok; 597 598 if (syslog_action_restricted(type)) { 599 if (capable(CAP_SYSLOG)) 600 goto ok; 601 return -EPERM; 602 } 603 ok: 604 return security_syslog(type); 605 } 606 607 static void append_char(char **pp, char *e, char c) 608 { 609 if (*pp < e) 610 *(*pp)++ = c; 611 } 612 613 static ssize_t info_print_ext_header(char *buf, size_t size, 614 struct printk_info *info) 615 { 616 u64 ts_usec = info->ts_nsec; 617 char caller[20]; 618 #ifdef CONFIG_PRINTK_CALLER 619 u32 id = info->caller_id; 620 621 snprintf(caller, sizeof(caller), ",caller=%c%u", 622 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 623 #else 624 caller[0] = '\0'; 625 #endif 626 627 do_div(ts_usec, 1000); 628 629 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 630 (info->facility << 3) | info->level, info->seq, 631 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 632 } 633 634 static ssize_t msg_add_ext_text(char *buf, size_t size, 635 const char *text, size_t text_len, 636 unsigned char endc) 637 { 638 char *p = buf, *e = buf + size; 639 size_t i; 640 641 /* escape non-printable characters */ 642 for (i = 0; i < text_len; i++) { 643 unsigned char c = text[i]; 644 645 if (c < ' ' || c >= 127 || c == '\\') 646 p += scnprintf(p, e - p, "\\x%02x", c); 647 else 648 append_char(&p, e, c); 649 } 650 append_char(&p, e, endc); 651 652 return p - buf; 653 } 654 655 static ssize_t msg_add_dict_text(char *buf, size_t size, 656 const char *key, const char *val) 657 { 658 size_t val_len = strlen(val); 659 ssize_t len; 660 661 if (!val_len) 662 return 0; 663 664 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 665 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 666 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 667 668 return len; 669 } 670 671 static ssize_t msg_print_ext_body(char *buf, size_t size, 672 char *text, size_t text_len, 673 struct dev_printk_info *dev_info) 674 { 675 ssize_t len; 676 677 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 678 679 if (!dev_info) 680 goto out; 681 682 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 683 dev_info->subsystem); 684 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 685 dev_info->device); 686 out: 687 return len; 688 } 689 690 /* /dev/kmsg - userspace message inject/listen interface */ 691 struct devkmsg_user { 692 atomic64_t seq; 693 struct ratelimit_state rs; 694 struct mutex lock; 695 struct printk_buffers pbufs; 696 }; 697 698 static __printf(3, 4) __cold 699 int devkmsg_emit(int facility, int level, const char *fmt, ...) 700 { 701 va_list args; 702 int r; 703 704 va_start(args, fmt); 705 r = vprintk_emit(facility, level, NULL, fmt, args); 706 va_end(args); 707 708 return r; 709 } 710 711 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 712 { 713 char *buf, *line; 714 int level = default_message_loglevel; 715 int facility = 1; /* LOG_USER */ 716 struct file *file = iocb->ki_filp; 717 struct devkmsg_user *user = file->private_data; 718 size_t len = iov_iter_count(from); 719 ssize_t ret = len; 720 721 if (len > PRINTKRB_RECORD_MAX) 722 return -EINVAL; 723 724 /* Ignore when user logging is disabled. */ 725 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 726 return len; 727 728 /* Ratelimit when not explicitly enabled. */ 729 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 730 if (!___ratelimit(&user->rs, current->comm)) 731 return ret; 732 } 733 734 buf = kmalloc(len+1, GFP_KERNEL); 735 if (buf == NULL) 736 return -ENOMEM; 737 738 buf[len] = '\0'; 739 if (!copy_from_iter_full(buf, len, from)) { 740 kfree(buf); 741 return -EFAULT; 742 } 743 744 /* 745 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 746 * the decimal value represents 32bit, the lower 3 bit are the log 747 * level, the rest are the log facility. 748 * 749 * If no prefix or no userspace facility is specified, we 750 * enforce LOG_USER, to be able to reliably distinguish 751 * kernel-generated messages from userspace-injected ones. 752 */ 753 line = buf; 754 if (line[0] == '<') { 755 char *endp = NULL; 756 unsigned int u; 757 758 u = simple_strtoul(line + 1, &endp, 10); 759 if (endp && endp[0] == '>') { 760 level = LOG_LEVEL(u); 761 if (LOG_FACILITY(u) != 0) 762 facility = LOG_FACILITY(u); 763 endp++; 764 line = endp; 765 } 766 } 767 768 devkmsg_emit(facility, level, "%s", line); 769 kfree(buf); 770 return ret; 771 } 772 773 static ssize_t devkmsg_read(struct file *file, char __user *buf, 774 size_t count, loff_t *ppos) 775 { 776 struct devkmsg_user *user = file->private_data; 777 char *outbuf = &user->pbufs.outbuf[0]; 778 struct printk_message pmsg = { 779 .pbufs = &user->pbufs, 780 }; 781 ssize_t ret; 782 783 ret = mutex_lock_interruptible(&user->lock); 784 if (ret) 785 return ret; 786 787 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 788 if (file->f_flags & O_NONBLOCK) { 789 ret = -EAGAIN; 790 goto out; 791 } 792 793 /* 794 * Guarantee this task is visible on the waitqueue before 795 * checking the wake condition. 796 * 797 * The full memory barrier within set_current_state() of 798 * prepare_to_wait_event() pairs with the full memory barrier 799 * within wq_has_sleeper(). 800 * 801 * This pairs with __wake_up_klogd:A. 802 */ 803 ret = wait_event_interruptible(log_wait, 804 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 805 false)); /* LMM(devkmsg_read:A) */ 806 if (ret) 807 goto out; 808 } 809 810 if (pmsg.dropped) { 811 /* our last seen message is gone, return error and reset */ 812 atomic64_set(&user->seq, pmsg.seq); 813 ret = -EPIPE; 814 goto out; 815 } 816 817 atomic64_set(&user->seq, pmsg.seq + 1); 818 819 if (pmsg.outbuf_len > count) { 820 ret = -EINVAL; 821 goto out; 822 } 823 824 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 825 ret = -EFAULT; 826 goto out; 827 } 828 ret = pmsg.outbuf_len; 829 out: 830 mutex_unlock(&user->lock); 831 return ret; 832 } 833 834 /* 835 * Be careful when modifying this function!!! 836 * 837 * Only few operations are supported because the device works only with the 838 * entire variable length messages (records). Non-standard values are 839 * returned in the other cases and has been this way for quite some time. 840 * User space applications might depend on this behavior. 841 */ 842 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 843 { 844 struct devkmsg_user *user = file->private_data; 845 loff_t ret = 0; 846 847 if (offset) 848 return -ESPIPE; 849 850 switch (whence) { 851 case SEEK_SET: 852 /* the first record */ 853 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 854 break; 855 case SEEK_DATA: 856 /* 857 * The first record after the last SYSLOG_ACTION_CLEAR, 858 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 859 * changes no global state, and does not clear anything. 860 */ 861 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 862 break; 863 case SEEK_END: 864 /* after the last record */ 865 atomic64_set(&user->seq, prb_next_seq(prb)); 866 break; 867 default: 868 ret = -EINVAL; 869 } 870 return ret; 871 } 872 873 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 874 { 875 struct devkmsg_user *user = file->private_data; 876 struct printk_info info; 877 __poll_t ret = 0; 878 879 poll_wait(file, &log_wait, wait); 880 881 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 882 /* return error when data has vanished underneath us */ 883 if (info.seq != atomic64_read(&user->seq)) 884 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 885 else 886 ret = EPOLLIN|EPOLLRDNORM; 887 } 888 889 return ret; 890 } 891 892 static int devkmsg_open(struct inode *inode, struct file *file) 893 { 894 struct devkmsg_user *user; 895 int err; 896 897 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 898 return -EPERM; 899 900 /* write-only does not need any file context */ 901 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 902 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 903 SYSLOG_FROM_READER); 904 if (err) 905 return err; 906 } 907 908 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 909 if (!user) 910 return -ENOMEM; 911 912 ratelimit_default_init(&user->rs); 913 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 914 915 mutex_init(&user->lock); 916 917 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 918 919 file->private_data = user; 920 return 0; 921 } 922 923 static int devkmsg_release(struct inode *inode, struct file *file) 924 { 925 struct devkmsg_user *user = file->private_data; 926 927 ratelimit_state_exit(&user->rs); 928 929 mutex_destroy(&user->lock); 930 kvfree(user); 931 return 0; 932 } 933 934 const struct file_operations kmsg_fops = { 935 .open = devkmsg_open, 936 .read = devkmsg_read, 937 .write_iter = devkmsg_write, 938 .llseek = devkmsg_llseek, 939 .poll = devkmsg_poll, 940 .release = devkmsg_release, 941 }; 942 943 #ifdef CONFIG_CRASH_CORE 944 /* 945 * This appends the listed symbols to /proc/vmcore 946 * 947 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 948 * obtain access to symbols that are otherwise very difficult to locate. These 949 * symbols are specifically used so that utilities can access and extract the 950 * dmesg log from a vmcore file after a crash. 951 */ 952 void log_buf_vmcoreinfo_setup(void) 953 { 954 struct dev_printk_info *dev_info = NULL; 955 956 VMCOREINFO_SYMBOL(prb); 957 VMCOREINFO_SYMBOL(printk_rb_static); 958 VMCOREINFO_SYMBOL(clear_seq); 959 960 /* 961 * Export struct size and field offsets. User space tools can 962 * parse it and detect any changes to structure down the line. 963 */ 964 965 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 966 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 967 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 968 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 969 970 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 971 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 972 VMCOREINFO_OFFSET(prb_desc_ring, descs); 973 VMCOREINFO_OFFSET(prb_desc_ring, infos); 974 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 975 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 976 977 VMCOREINFO_STRUCT_SIZE(prb_desc); 978 VMCOREINFO_OFFSET(prb_desc, state_var); 979 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 980 981 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 982 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 983 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 984 985 VMCOREINFO_STRUCT_SIZE(printk_info); 986 VMCOREINFO_OFFSET(printk_info, seq); 987 VMCOREINFO_OFFSET(printk_info, ts_nsec); 988 VMCOREINFO_OFFSET(printk_info, text_len); 989 VMCOREINFO_OFFSET(printk_info, caller_id); 990 VMCOREINFO_OFFSET(printk_info, dev_info); 991 992 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 993 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 994 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 995 VMCOREINFO_OFFSET(dev_printk_info, device); 996 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 997 998 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 999 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1000 VMCOREINFO_OFFSET(prb_data_ring, data); 1001 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1002 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1003 1004 VMCOREINFO_SIZE(atomic_long_t); 1005 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1006 1007 VMCOREINFO_STRUCT_SIZE(latched_seq); 1008 VMCOREINFO_OFFSET(latched_seq, val); 1009 } 1010 #endif 1011 1012 /* requested log_buf_len from kernel cmdline */ 1013 static unsigned long __initdata new_log_buf_len; 1014 1015 /* we practice scaling the ring buffer by powers of 2 */ 1016 static void __init log_buf_len_update(u64 size) 1017 { 1018 if (size > (u64)LOG_BUF_LEN_MAX) { 1019 size = (u64)LOG_BUF_LEN_MAX; 1020 pr_err("log_buf over 2G is not supported.\n"); 1021 } 1022 1023 if (size) 1024 size = roundup_pow_of_two(size); 1025 if (size > log_buf_len) 1026 new_log_buf_len = (unsigned long)size; 1027 } 1028 1029 /* save requested log_buf_len since it's too early to process it */ 1030 static int __init log_buf_len_setup(char *str) 1031 { 1032 u64 size; 1033 1034 if (!str) 1035 return -EINVAL; 1036 1037 size = memparse(str, &str); 1038 1039 log_buf_len_update(size); 1040 1041 return 0; 1042 } 1043 early_param("log_buf_len", log_buf_len_setup); 1044 1045 #ifdef CONFIG_SMP 1046 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1047 1048 static void __init log_buf_add_cpu(void) 1049 { 1050 unsigned int cpu_extra; 1051 1052 /* 1053 * archs should set up cpu_possible_bits properly with 1054 * set_cpu_possible() after setup_arch() but just in 1055 * case lets ensure this is valid. 1056 */ 1057 if (num_possible_cpus() == 1) 1058 return; 1059 1060 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1061 1062 /* by default this will only continue through for large > 64 CPUs */ 1063 if (cpu_extra <= __LOG_BUF_LEN / 2) 1064 return; 1065 1066 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1067 __LOG_CPU_MAX_BUF_LEN); 1068 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1069 cpu_extra); 1070 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1071 1072 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1073 } 1074 #else /* !CONFIG_SMP */ 1075 static inline void log_buf_add_cpu(void) {} 1076 #endif /* CONFIG_SMP */ 1077 1078 static void __init set_percpu_data_ready(void) 1079 { 1080 __printk_percpu_data_ready = true; 1081 } 1082 1083 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1084 struct printk_record *r) 1085 { 1086 struct prb_reserved_entry e; 1087 struct printk_record dest_r; 1088 1089 prb_rec_init_wr(&dest_r, r->info->text_len); 1090 1091 if (!prb_reserve(&e, rb, &dest_r)) 1092 return 0; 1093 1094 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1095 dest_r.info->text_len = r->info->text_len; 1096 dest_r.info->facility = r->info->facility; 1097 dest_r.info->level = r->info->level; 1098 dest_r.info->flags = r->info->flags; 1099 dest_r.info->ts_nsec = r->info->ts_nsec; 1100 dest_r.info->caller_id = r->info->caller_id; 1101 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1102 1103 prb_final_commit(&e); 1104 1105 return prb_record_text_space(&e); 1106 } 1107 1108 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1109 1110 void __init setup_log_buf(int early) 1111 { 1112 struct printk_info *new_infos; 1113 unsigned int new_descs_count; 1114 struct prb_desc *new_descs; 1115 struct printk_info info; 1116 struct printk_record r; 1117 unsigned int text_size; 1118 size_t new_descs_size; 1119 size_t new_infos_size; 1120 unsigned long flags; 1121 char *new_log_buf; 1122 unsigned int free; 1123 u64 seq; 1124 1125 /* 1126 * Some archs call setup_log_buf() multiple times - first is very 1127 * early, e.g. from setup_arch(), and second - when percpu_areas 1128 * are initialised. 1129 */ 1130 if (!early) 1131 set_percpu_data_ready(); 1132 1133 if (log_buf != __log_buf) 1134 return; 1135 1136 if (!early && !new_log_buf_len) 1137 log_buf_add_cpu(); 1138 1139 if (!new_log_buf_len) 1140 return; 1141 1142 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1143 if (new_descs_count == 0) { 1144 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1145 return; 1146 } 1147 1148 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1149 if (unlikely(!new_log_buf)) { 1150 pr_err("log_buf_len: %lu text bytes not available\n", 1151 new_log_buf_len); 1152 return; 1153 } 1154 1155 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1156 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1157 if (unlikely(!new_descs)) { 1158 pr_err("log_buf_len: %zu desc bytes not available\n", 1159 new_descs_size); 1160 goto err_free_log_buf; 1161 } 1162 1163 new_infos_size = new_descs_count * sizeof(struct printk_info); 1164 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1165 if (unlikely(!new_infos)) { 1166 pr_err("log_buf_len: %zu info bytes not available\n", 1167 new_infos_size); 1168 goto err_free_descs; 1169 } 1170 1171 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1172 1173 prb_init(&printk_rb_dynamic, 1174 new_log_buf, ilog2(new_log_buf_len), 1175 new_descs, ilog2(new_descs_count), 1176 new_infos); 1177 1178 local_irq_save(flags); 1179 1180 log_buf_len = new_log_buf_len; 1181 log_buf = new_log_buf; 1182 new_log_buf_len = 0; 1183 1184 free = __LOG_BUF_LEN; 1185 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1186 text_size = add_to_rb(&printk_rb_dynamic, &r); 1187 if (text_size > free) 1188 free = 0; 1189 else 1190 free -= text_size; 1191 } 1192 1193 prb = &printk_rb_dynamic; 1194 1195 local_irq_restore(flags); 1196 1197 /* 1198 * Copy any remaining messages that might have appeared from 1199 * NMI context after copying but before switching to the 1200 * dynamic buffer. 1201 */ 1202 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1203 text_size = add_to_rb(&printk_rb_dynamic, &r); 1204 if (text_size > free) 1205 free = 0; 1206 else 1207 free -= text_size; 1208 } 1209 1210 if (seq != prb_next_seq(&printk_rb_static)) { 1211 pr_err("dropped %llu messages\n", 1212 prb_next_seq(&printk_rb_static) - seq); 1213 } 1214 1215 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1216 pr_info("early log buf free: %u(%u%%)\n", 1217 free, (free * 100) / __LOG_BUF_LEN); 1218 return; 1219 1220 err_free_descs: 1221 memblock_free(new_descs, new_descs_size); 1222 err_free_log_buf: 1223 memblock_free(new_log_buf, new_log_buf_len); 1224 } 1225 1226 static bool __read_mostly ignore_loglevel; 1227 1228 static int __init ignore_loglevel_setup(char *str) 1229 { 1230 ignore_loglevel = true; 1231 pr_info("debug: ignoring loglevel setting.\n"); 1232 1233 return 0; 1234 } 1235 1236 early_param("ignore_loglevel", ignore_loglevel_setup); 1237 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1238 MODULE_PARM_DESC(ignore_loglevel, 1239 "ignore loglevel setting (prints all kernel messages to the console)"); 1240 1241 static bool suppress_message_printing(int level) 1242 { 1243 return (level >= console_loglevel && !ignore_loglevel); 1244 } 1245 1246 #ifdef CONFIG_BOOT_PRINTK_DELAY 1247 1248 static int boot_delay; /* msecs delay after each printk during bootup */ 1249 static unsigned long long loops_per_msec; /* based on boot_delay */ 1250 1251 static int __init boot_delay_setup(char *str) 1252 { 1253 unsigned long lpj; 1254 1255 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1256 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1257 1258 get_option(&str, &boot_delay); 1259 if (boot_delay > 10 * 1000) 1260 boot_delay = 0; 1261 1262 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1263 "HZ: %d, loops_per_msec: %llu\n", 1264 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1265 return 0; 1266 } 1267 early_param("boot_delay", boot_delay_setup); 1268 1269 static void boot_delay_msec(int level) 1270 { 1271 unsigned long long k; 1272 unsigned long timeout; 1273 1274 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1275 || suppress_message_printing(level)) { 1276 return; 1277 } 1278 1279 k = (unsigned long long)loops_per_msec * boot_delay; 1280 1281 timeout = jiffies + msecs_to_jiffies(boot_delay); 1282 while (k) { 1283 k--; 1284 cpu_relax(); 1285 /* 1286 * use (volatile) jiffies to prevent 1287 * compiler reduction; loop termination via jiffies 1288 * is secondary and may or may not happen. 1289 */ 1290 if (time_after(jiffies, timeout)) 1291 break; 1292 touch_nmi_watchdog(); 1293 } 1294 } 1295 #else 1296 static inline void boot_delay_msec(int level) 1297 { 1298 } 1299 #endif 1300 1301 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1302 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1303 1304 static size_t print_syslog(unsigned int level, char *buf) 1305 { 1306 return sprintf(buf, "<%u>", level); 1307 } 1308 1309 static size_t print_time(u64 ts, char *buf) 1310 { 1311 unsigned long rem_nsec = do_div(ts, 1000000000); 1312 1313 return sprintf(buf, "[%5lu.%06lu]", 1314 (unsigned long)ts, rem_nsec / 1000); 1315 } 1316 1317 #ifdef CONFIG_PRINTK_CALLER 1318 static size_t print_caller(u32 id, char *buf) 1319 { 1320 char caller[12]; 1321 1322 snprintf(caller, sizeof(caller), "%c%u", 1323 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1324 return sprintf(buf, "[%6s]", caller); 1325 } 1326 #else 1327 #define print_caller(id, buf) 0 1328 #endif 1329 1330 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1331 bool time, char *buf) 1332 { 1333 size_t len = 0; 1334 1335 if (syslog) 1336 len = print_syslog((info->facility << 3) | info->level, buf); 1337 1338 if (time) 1339 len += print_time(info->ts_nsec, buf + len); 1340 1341 len += print_caller(info->caller_id, buf + len); 1342 1343 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1344 buf[len++] = ' '; 1345 buf[len] = '\0'; 1346 } 1347 1348 return len; 1349 } 1350 1351 /* 1352 * Prepare the record for printing. The text is shifted within the given 1353 * buffer to avoid a need for another one. The following operations are 1354 * done: 1355 * 1356 * - Add prefix for each line. 1357 * - Drop truncated lines that no longer fit into the buffer. 1358 * - Add the trailing newline that has been removed in vprintk_store(). 1359 * - Add a string terminator. 1360 * 1361 * Since the produced string is always terminated, the maximum possible 1362 * return value is @r->text_buf_size - 1; 1363 * 1364 * Return: The length of the updated/prepared text, including the added 1365 * prefixes and the newline. The terminator is not counted. The dropped 1366 * line(s) are not counted. 1367 */ 1368 static size_t record_print_text(struct printk_record *r, bool syslog, 1369 bool time) 1370 { 1371 size_t text_len = r->info->text_len; 1372 size_t buf_size = r->text_buf_size; 1373 char *text = r->text_buf; 1374 char prefix[PRINTK_PREFIX_MAX]; 1375 bool truncated = false; 1376 size_t prefix_len; 1377 size_t line_len; 1378 size_t len = 0; 1379 char *next; 1380 1381 /* 1382 * If the message was truncated because the buffer was not large 1383 * enough, treat the available text as if it were the full text. 1384 */ 1385 if (text_len > buf_size) 1386 text_len = buf_size; 1387 1388 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1389 1390 /* 1391 * @text_len: bytes of unprocessed text 1392 * @line_len: bytes of current line _without_ newline 1393 * @text: pointer to beginning of current line 1394 * @len: number of bytes prepared in r->text_buf 1395 */ 1396 for (;;) { 1397 next = memchr(text, '\n', text_len); 1398 if (next) { 1399 line_len = next - text; 1400 } else { 1401 /* Drop truncated line(s). */ 1402 if (truncated) 1403 break; 1404 line_len = text_len; 1405 } 1406 1407 /* 1408 * Truncate the text if there is not enough space to add the 1409 * prefix and a trailing newline and a terminator. 1410 */ 1411 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1412 /* Drop even the current line if no space. */ 1413 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1414 break; 1415 1416 text_len = buf_size - len - prefix_len - 1 - 1; 1417 truncated = true; 1418 } 1419 1420 memmove(text + prefix_len, text, text_len); 1421 memcpy(text, prefix, prefix_len); 1422 1423 /* 1424 * Increment the prepared length to include the text and 1425 * prefix that were just moved+copied. Also increment for the 1426 * newline at the end of this line. If this is the last line, 1427 * there is no newline, but it will be added immediately below. 1428 */ 1429 len += prefix_len + line_len + 1; 1430 if (text_len == line_len) { 1431 /* 1432 * This is the last line. Add the trailing newline 1433 * removed in vprintk_store(). 1434 */ 1435 text[prefix_len + line_len] = '\n'; 1436 break; 1437 } 1438 1439 /* 1440 * Advance beyond the added prefix and the related line with 1441 * its newline. 1442 */ 1443 text += prefix_len + line_len + 1; 1444 1445 /* 1446 * The remaining text has only decreased by the line with its 1447 * newline. 1448 * 1449 * Note that @text_len can become zero. It happens when @text 1450 * ended with a newline (either due to truncation or the 1451 * original string ending with "\n\n"). The loop is correctly 1452 * repeated and (if not truncated) an empty line with a prefix 1453 * will be prepared. 1454 */ 1455 text_len -= line_len + 1; 1456 } 1457 1458 /* 1459 * If a buffer was provided, it will be terminated. Space for the 1460 * string terminator is guaranteed to be available. The terminator is 1461 * not counted in the return value. 1462 */ 1463 if (buf_size > 0) 1464 r->text_buf[len] = 0; 1465 1466 return len; 1467 } 1468 1469 static size_t get_record_print_text_size(struct printk_info *info, 1470 unsigned int line_count, 1471 bool syslog, bool time) 1472 { 1473 char prefix[PRINTK_PREFIX_MAX]; 1474 size_t prefix_len; 1475 1476 prefix_len = info_print_prefix(info, syslog, time, prefix); 1477 1478 /* 1479 * Each line will be preceded with a prefix. The intermediate 1480 * newlines are already within the text, but a final trailing 1481 * newline will be added. 1482 */ 1483 return ((prefix_len * line_count) + info->text_len + 1); 1484 } 1485 1486 /* 1487 * Beginning with @start_seq, find the first record where it and all following 1488 * records up to (but not including) @max_seq fit into @size. 1489 * 1490 * @max_seq is simply an upper bound and does not need to exist. If the caller 1491 * does not require an upper bound, -1 can be used for @max_seq. 1492 */ 1493 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1494 bool syslog, bool time) 1495 { 1496 struct printk_info info; 1497 unsigned int line_count; 1498 size_t len = 0; 1499 u64 seq; 1500 1501 /* Determine the size of the records up to @max_seq. */ 1502 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1503 if (info.seq >= max_seq) 1504 break; 1505 len += get_record_print_text_size(&info, line_count, syslog, time); 1506 } 1507 1508 /* 1509 * Adjust the upper bound for the next loop to avoid subtracting 1510 * lengths that were never added. 1511 */ 1512 if (seq < max_seq) 1513 max_seq = seq; 1514 1515 /* 1516 * Move first record forward until length fits into the buffer. Ignore 1517 * newest messages that were not counted in the above cycle. Messages 1518 * might appear and get lost in the meantime. This is a best effort 1519 * that prevents an infinite loop that could occur with a retry. 1520 */ 1521 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1522 if (len <= size || info.seq >= max_seq) 1523 break; 1524 len -= get_record_print_text_size(&info, line_count, syslog, time); 1525 } 1526 1527 return seq; 1528 } 1529 1530 /* The caller is responsible for making sure @size is greater than 0. */ 1531 static int syslog_print(char __user *buf, int size) 1532 { 1533 struct printk_info info; 1534 struct printk_record r; 1535 char *text; 1536 int len = 0; 1537 u64 seq; 1538 1539 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1540 if (!text) 1541 return -ENOMEM; 1542 1543 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1544 1545 mutex_lock(&syslog_lock); 1546 1547 /* 1548 * Wait for the @syslog_seq record to be available. @syslog_seq may 1549 * change while waiting. 1550 */ 1551 do { 1552 seq = syslog_seq; 1553 1554 mutex_unlock(&syslog_lock); 1555 /* 1556 * Guarantee this task is visible on the waitqueue before 1557 * checking the wake condition. 1558 * 1559 * The full memory barrier within set_current_state() of 1560 * prepare_to_wait_event() pairs with the full memory barrier 1561 * within wq_has_sleeper(). 1562 * 1563 * This pairs with __wake_up_klogd:A. 1564 */ 1565 len = wait_event_interruptible(log_wait, 1566 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1567 mutex_lock(&syslog_lock); 1568 1569 if (len) 1570 goto out; 1571 } while (syslog_seq != seq); 1572 1573 /* 1574 * Copy records that fit into the buffer. The above cycle makes sure 1575 * that the first record is always available. 1576 */ 1577 do { 1578 size_t n; 1579 size_t skip; 1580 int err; 1581 1582 if (!prb_read_valid(prb, syslog_seq, &r)) 1583 break; 1584 1585 if (r.info->seq != syslog_seq) { 1586 /* message is gone, move to next valid one */ 1587 syslog_seq = r.info->seq; 1588 syslog_partial = 0; 1589 } 1590 1591 /* 1592 * To keep reading/counting partial line consistent, 1593 * use printk_time value as of the beginning of a line. 1594 */ 1595 if (!syslog_partial) 1596 syslog_time = printk_time; 1597 1598 skip = syslog_partial; 1599 n = record_print_text(&r, true, syslog_time); 1600 if (n - syslog_partial <= size) { 1601 /* message fits into buffer, move forward */ 1602 syslog_seq = r.info->seq + 1; 1603 n -= syslog_partial; 1604 syslog_partial = 0; 1605 } else if (!len){ 1606 /* partial read(), remember position */ 1607 n = size; 1608 syslog_partial += n; 1609 } else 1610 n = 0; 1611 1612 if (!n) 1613 break; 1614 1615 mutex_unlock(&syslog_lock); 1616 err = copy_to_user(buf, text + skip, n); 1617 mutex_lock(&syslog_lock); 1618 1619 if (err) { 1620 if (!len) 1621 len = -EFAULT; 1622 break; 1623 } 1624 1625 len += n; 1626 size -= n; 1627 buf += n; 1628 } while (size); 1629 out: 1630 mutex_unlock(&syslog_lock); 1631 kfree(text); 1632 return len; 1633 } 1634 1635 static int syslog_print_all(char __user *buf, int size, bool clear) 1636 { 1637 struct printk_info info; 1638 struct printk_record r; 1639 char *text; 1640 int len = 0; 1641 u64 seq; 1642 bool time; 1643 1644 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1645 if (!text) 1646 return -ENOMEM; 1647 1648 time = printk_time; 1649 /* 1650 * Find first record that fits, including all following records, 1651 * into the user-provided buffer for this dump. 1652 */ 1653 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1654 size, true, time); 1655 1656 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1657 1658 prb_for_each_record(seq, prb, seq, &r) { 1659 int textlen; 1660 1661 textlen = record_print_text(&r, true, time); 1662 1663 if (len + textlen > size) { 1664 seq--; 1665 break; 1666 } 1667 1668 if (copy_to_user(buf + len, text, textlen)) 1669 len = -EFAULT; 1670 else 1671 len += textlen; 1672 1673 if (len < 0) 1674 break; 1675 } 1676 1677 if (clear) { 1678 mutex_lock(&syslog_lock); 1679 latched_seq_write(&clear_seq, seq); 1680 mutex_unlock(&syslog_lock); 1681 } 1682 1683 kfree(text); 1684 return len; 1685 } 1686 1687 static void syslog_clear(void) 1688 { 1689 mutex_lock(&syslog_lock); 1690 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1691 mutex_unlock(&syslog_lock); 1692 } 1693 1694 int do_syslog(int type, char __user *buf, int len, int source) 1695 { 1696 struct printk_info info; 1697 bool clear = false; 1698 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1699 int error; 1700 1701 error = check_syslog_permissions(type, source); 1702 if (error) 1703 return error; 1704 1705 switch (type) { 1706 case SYSLOG_ACTION_CLOSE: /* Close log */ 1707 break; 1708 case SYSLOG_ACTION_OPEN: /* Open log */ 1709 break; 1710 case SYSLOG_ACTION_READ: /* Read from log */ 1711 if (!buf || len < 0) 1712 return -EINVAL; 1713 if (!len) 1714 return 0; 1715 if (!access_ok(buf, len)) 1716 return -EFAULT; 1717 error = syslog_print(buf, len); 1718 break; 1719 /* Read/clear last kernel messages */ 1720 case SYSLOG_ACTION_READ_CLEAR: 1721 clear = true; 1722 fallthrough; 1723 /* Read last kernel messages */ 1724 case SYSLOG_ACTION_READ_ALL: 1725 if (!buf || len < 0) 1726 return -EINVAL; 1727 if (!len) 1728 return 0; 1729 if (!access_ok(buf, len)) 1730 return -EFAULT; 1731 error = syslog_print_all(buf, len, clear); 1732 break; 1733 /* Clear ring buffer */ 1734 case SYSLOG_ACTION_CLEAR: 1735 syslog_clear(); 1736 break; 1737 /* Disable logging to console */ 1738 case SYSLOG_ACTION_CONSOLE_OFF: 1739 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1740 saved_console_loglevel = console_loglevel; 1741 console_loglevel = minimum_console_loglevel; 1742 break; 1743 /* Enable logging to console */ 1744 case SYSLOG_ACTION_CONSOLE_ON: 1745 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1746 console_loglevel = saved_console_loglevel; 1747 saved_console_loglevel = LOGLEVEL_DEFAULT; 1748 } 1749 break; 1750 /* Set level of messages printed to console */ 1751 case SYSLOG_ACTION_CONSOLE_LEVEL: 1752 if (len < 1 || len > 8) 1753 return -EINVAL; 1754 if (len < minimum_console_loglevel) 1755 len = minimum_console_loglevel; 1756 console_loglevel = len; 1757 /* Implicitly re-enable logging to console */ 1758 saved_console_loglevel = LOGLEVEL_DEFAULT; 1759 break; 1760 /* Number of chars in the log buffer */ 1761 case SYSLOG_ACTION_SIZE_UNREAD: 1762 mutex_lock(&syslog_lock); 1763 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1764 /* No unread messages. */ 1765 mutex_unlock(&syslog_lock); 1766 return 0; 1767 } 1768 if (info.seq != syslog_seq) { 1769 /* messages are gone, move to first one */ 1770 syslog_seq = info.seq; 1771 syslog_partial = 0; 1772 } 1773 if (source == SYSLOG_FROM_PROC) { 1774 /* 1775 * Short-cut for poll(/"proc/kmsg") which simply checks 1776 * for pending data, not the size; return the count of 1777 * records, not the length. 1778 */ 1779 error = prb_next_seq(prb) - syslog_seq; 1780 } else { 1781 bool time = syslog_partial ? syslog_time : printk_time; 1782 unsigned int line_count; 1783 u64 seq; 1784 1785 prb_for_each_info(syslog_seq, prb, seq, &info, 1786 &line_count) { 1787 error += get_record_print_text_size(&info, line_count, 1788 true, time); 1789 time = printk_time; 1790 } 1791 error -= syslog_partial; 1792 } 1793 mutex_unlock(&syslog_lock); 1794 break; 1795 /* Size of the log buffer */ 1796 case SYSLOG_ACTION_SIZE_BUFFER: 1797 error = log_buf_len; 1798 break; 1799 default: 1800 error = -EINVAL; 1801 break; 1802 } 1803 1804 return error; 1805 } 1806 1807 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1808 { 1809 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1810 } 1811 1812 /* 1813 * Special console_lock variants that help to reduce the risk of soft-lockups. 1814 * They allow to pass console_lock to another printk() call using a busy wait. 1815 */ 1816 1817 #ifdef CONFIG_LOCKDEP 1818 static struct lockdep_map console_owner_dep_map = { 1819 .name = "console_owner" 1820 }; 1821 #endif 1822 1823 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1824 static struct task_struct *console_owner; 1825 static bool console_waiter; 1826 1827 /** 1828 * console_lock_spinning_enable - mark beginning of code where another 1829 * thread might safely busy wait 1830 * 1831 * This basically converts console_lock into a spinlock. This marks 1832 * the section where the console_lock owner can not sleep, because 1833 * there may be a waiter spinning (like a spinlock). Also it must be 1834 * ready to hand over the lock at the end of the section. 1835 */ 1836 static void console_lock_spinning_enable(void) 1837 { 1838 raw_spin_lock(&console_owner_lock); 1839 console_owner = current; 1840 raw_spin_unlock(&console_owner_lock); 1841 1842 /* The waiter may spin on us after setting console_owner */ 1843 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1844 } 1845 1846 /** 1847 * console_lock_spinning_disable_and_check - mark end of code where another 1848 * thread was able to busy wait and check if there is a waiter 1849 * @cookie: cookie returned from console_srcu_read_lock() 1850 * 1851 * This is called at the end of the section where spinning is allowed. 1852 * It has two functions. First, it is a signal that it is no longer 1853 * safe to start busy waiting for the lock. Second, it checks if 1854 * there is a busy waiter and passes the lock rights to her. 1855 * 1856 * Important: Callers lose both the console_lock and the SRCU read lock if 1857 * there was a busy waiter. They must not touch items synchronized by 1858 * console_lock or SRCU read lock in this case. 1859 * 1860 * Return: 1 if the lock rights were passed, 0 otherwise. 1861 */ 1862 static int console_lock_spinning_disable_and_check(int cookie) 1863 { 1864 int waiter; 1865 1866 raw_spin_lock(&console_owner_lock); 1867 waiter = READ_ONCE(console_waiter); 1868 console_owner = NULL; 1869 raw_spin_unlock(&console_owner_lock); 1870 1871 if (!waiter) { 1872 spin_release(&console_owner_dep_map, _THIS_IP_); 1873 return 0; 1874 } 1875 1876 /* The waiter is now free to continue */ 1877 WRITE_ONCE(console_waiter, false); 1878 1879 spin_release(&console_owner_dep_map, _THIS_IP_); 1880 1881 /* 1882 * Preserve lockdep lock ordering. Release the SRCU read lock before 1883 * releasing the console_lock. 1884 */ 1885 console_srcu_read_unlock(cookie); 1886 1887 /* 1888 * Hand off console_lock to waiter. The waiter will perform 1889 * the up(). After this, the waiter is the console_lock owner. 1890 */ 1891 mutex_release(&console_lock_dep_map, _THIS_IP_); 1892 return 1; 1893 } 1894 1895 /** 1896 * console_trylock_spinning - try to get console_lock by busy waiting 1897 * 1898 * This allows to busy wait for the console_lock when the current 1899 * owner is running in specially marked sections. It means that 1900 * the current owner is running and cannot reschedule until it 1901 * is ready to lose the lock. 1902 * 1903 * Return: 1 if we got the lock, 0 othrewise 1904 */ 1905 static int console_trylock_spinning(void) 1906 { 1907 struct task_struct *owner = NULL; 1908 bool waiter; 1909 bool spin = false; 1910 unsigned long flags; 1911 1912 if (console_trylock()) 1913 return 1; 1914 1915 /* 1916 * It's unsafe to spin once a panic has begun. If we are the 1917 * panic CPU, we may have already halted the owner of the 1918 * console_sem. If we are not the panic CPU, then we should 1919 * avoid taking console_sem, so the panic CPU has a better 1920 * chance of cleanly acquiring it later. 1921 */ 1922 if (panic_in_progress()) 1923 return 0; 1924 1925 printk_safe_enter_irqsave(flags); 1926 1927 raw_spin_lock(&console_owner_lock); 1928 owner = READ_ONCE(console_owner); 1929 waiter = READ_ONCE(console_waiter); 1930 if (!waiter && owner && owner != current) { 1931 WRITE_ONCE(console_waiter, true); 1932 spin = true; 1933 } 1934 raw_spin_unlock(&console_owner_lock); 1935 1936 /* 1937 * If there is an active printk() writing to the 1938 * consoles, instead of having it write our data too, 1939 * see if we can offload that load from the active 1940 * printer, and do some printing ourselves. 1941 * Go into a spin only if there isn't already a waiter 1942 * spinning, and there is an active printer, and 1943 * that active printer isn't us (recursive printk?). 1944 */ 1945 if (!spin) { 1946 printk_safe_exit_irqrestore(flags); 1947 return 0; 1948 } 1949 1950 /* We spin waiting for the owner to release us */ 1951 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1952 /* Owner will clear console_waiter on hand off */ 1953 while (READ_ONCE(console_waiter)) 1954 cpu_relax(); 1955 spin_release(&console_owner_dep_map, _THIS_IP_); 1956 1957 printk_safe_exit_irqrestore(flags); 1958 /* 1959 * The owner passed the console lock to us. 1960 * Since we did not spin on console lock, annotate 1961 * this as a trylock. Otherwise lockdep will 1962 * complain. 1963 */ 1964 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1965 1966 return 1; 1967 } 1968 1969 /* 1970 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1971 * additional NMI context per CPU is also separately tracked. Until per-CPU 1972 * is available, a separate "early tracking" is performed. 1973 */ 1974 static DEFINE_PER_CPU(u8, printk_count); 1975 static u8 printk_count_early; 1976 #ifdef CONFIG_HAVE_NMI 1977 static DEFINE_PER_CPU(u8, printk_count_nmi); 1978 static u8 printk_count_nmi_early; 1979 #endif 1980 1981 /* 1982 * Recursion is limited to keep the output sane. printk() should not require 1983 * more than 1 level of recursion (allowing, for example, printk() to trigger 1984 * a WARN), but a higher value is used in case some printk-internal errors 1985 * exist, such as the ringbuffer validation checks failing. 1986 */ 1987 #define PRINTK_MAX_RECURSION 3 1988 1989 /* 1990 * Return a pointer to the dedicated counter for the CPU+context of the 1991 * caller. 1992 */ 1993 static u8 *__printk_recursion_counter(void) 1994 { 1995 #ifdef CONFIG_HAVE_NMI 1996 if (in_nmi()) { 1997 if (printk_percpu_data_ready()) 1998 return this_cpu_ptr(&printk_count_nmi); 1999 return &printk_count_nmi_early; 2000 } 2001 #endif 2002 if (printk_percpu_data_ready()) 2003 return this_cpu_ptr(&printk_count); 2004 return &printk_count_early; 2005 } 2006 2007 /* 2008 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2009 * The caller must check the boolean return value to see if the recursion is 2010 * allowed. On failure, interrupts are not disabled. 2011 * 2012 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2013 * that is passed to printk_exit_irqrestore(). 2014 */ 2015 #define printk_enter_irqsave(recursion_ptr, flags) \ 2016 ({ \ 2017 bool success = true; \ 2018 \ 2019 typecheck(u8 *, recursion_ptr); \ 2020 local_irq_save(flags); \ 2021 (recursion_ptr) = __printk_recursion_counter(); \ 2022 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2023 local_irq_restore(flags); \ 2024 success = false; \ 2025 } else { \ 2026 (*(recursion_ptr))++; \ 2027 } \ 2028 success; \ 2029 }) 2030 2031 /* Exit recursion tracking, restoring interrupts. */ 2032 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2033 do { \ 2034 typecheck(u8 *, recursion_ptr); \ 2035 (*(recursion_ptr))--; \ 2036 local_irq_restore(flags); \ 2037 } while (0) 2038 2039 int printk_delay_msec __read_mostly; 2040 2041 static inline void printk_delay(int level) 2042 { 2043 boot_delay_msec(level); 2044 2045 if (unlikely(printk_delay_msec)) { 2046 int m = printk_delay_msec; 2047 2048 while (m--) { 2049 mdelay(1); 2050 touch_nmi_watchdog(); 2051 } 2052 } 2053 } 2054 2055 static inline u32 printk_caller_id(void) 2056 { 2057 return in_task() ? task_pid_nr(current) : 2058 0x80000000 + smp_processor_id(); 2059 } 2060 2061 /** 2062 * printk_parse_prefix - Parse level and control flags. 2063 * 2064 * @text: The terminated text message. 2065 * @level: A pointer to the current level value, will be updated. 2066 * @flags: A pointer to the current printk_info flags, will be updated. 2067 * 2068 * @level may be NULL if the caller is not interested in the parsed value. 2069 * Otherwise the variable pointed to by @level must be set to 2070 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2071 * 2072 * @flags may be NULL if the caller is not interested in the parsed value. 2073 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2074 * value. 2075 * 2076 * Return: The length of the parsed level and control flags. 2077 */ 2078 u16 printk_parse_prefix(const char *text, int *level, 2079 enum printk_info_flags *flags) 2080 { 2081 u16 prefix_len = 0; 2082 int kern_level; 2083 2084 while (*text) { 2085 kern_level = printk_get_level(text); 2086 if (!kern_level) 2087 break; 2088 2089 switch (kern_level) { 2090 case '0' ... '7': 2091 if (level && *level == LOGLEVEL_DEFAULT) 2092 *level = kern_level - '0'; 2093 break; 2094 case 'c': /* KERN_CONT */ 2095 if (flags) 2096 *flags |= LOG_CONT; 2097 } 2098 2099 prefix_len += 2; 2100 text += 2; 2101 } 2102 2103 return prefix_len; 2104 } 2105 2106 __printf(5, 0) 2107 static u16 printk_sprint(char *text, u16 size, int facility, 2108 enum printk_info_flags *flags, const char *fmt, 2109 va_list args) 2110 { 2111 u16 text_len; 2112 2113 text_len = vscnprintf(text, size, fmt, args); 2114 2115 /* Mark and strip a trailing newline. */ 2116 if (text_len && text[text_len - 1] == '\n') { 2117 text_len--; 2118 *flags |= LOG_NEWLINE; 2119 } 2120 2121 /* Strip log level and control flags. */ 2122 if (facility == 0) { 2123 u16 prefix_len; 2124 2125 prefix_len = printk_parse_prefix(text, NULL, NULL); 2126 if (prefix_len) { 2127 text_len -= prefix_len; 2128 memmove(text, text + prefix_len, text_len); 2129 } 2130 } 2131 2132 trace_console(text, text_len); 2133 2134 return text_len; 2135 } 2136 2137 __printf(4, 0) 2138 int vprintk_store(int facility, int level, 2139 const struct dev_printk_info *dev_info, 2140 const char *fmt, va_list args) 2141 { 2142 struct prb_reserved_entry e; 2143 enum printk_info_flags flags = 0; 2144 struct printk_record r; 2145 unsigned long irqflags; 2146 u16 trunc_msg_len = 0; 2147 char prefix_buf[8]; 2148 u8 *recursion_ptr; 2149 u16 reserve_size; 2150 va_list args2; 2151 u32 caller_id; 2152 u16 text_len; 2153 int ret = 0; 2154 u64 ts_nsec; 2155 2156 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2157 return 0; 2158 2159 /* 2160 * Since the duration of printk() can vary depending on the message 2161 * and state of the ringbuffer, grab the timestamp now so that it is 2162 * close to the call of printk(). This provides a more deterministic 2163 * timestamp with respect to the caller. 2164 */ 2165 ts_nsec = local_clock(); 2166 2167 caller_id = printk_caller_id(); 2168 2169 /* 2170 * The sprintf needs to come first since the syslog prefix might be 2171 * passed in as a parameter. An extra byte must be reserved so that 2172 * later the vscnprintf() into the reserved buffer has room for the 2173 * terminating '\0', which is not counted by vsnprintf(). 2174 */ 2175 va_copy(args2, args); 2176 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2177 va_end(args2); 2178 2179 if (reserve_size > PRINTKRB_RECORD_MAX) 2180 reserve_size = PRINTKRB_RECORD_MAX; 2181 2182 /* Extract log level or control flags. */ 2183 if (facility == 0) 2184 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2185 2186 if (level == LOGLEVEL_DEFAULT) 2187 level = default_message_loglevel; 2188 2189 if (dev_info) 2190 flags |= LOG_NEWLINE; 2191 2192 if (flags & LOG_CONT) { 2193 prb_rec_init_wr(&r, reserve_size); 2194 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2195 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2196 facility, &flags, fmt, args); 2197 r.info->text_len += text_len; 2198 2199 if (flags & LOG_NEWLINE) { 2200 r.info->flags |= LOG_NEWLINE; 2201 prb_final_commit(&e); 2202 } else { 2203 prb_commit(&e); 2204 } 2205 2206 ret = text_len; 2207 goto out; 2208 } 2209 } 2210 2211 /* 2212 * Explicitly initialize the record before every prb_reserve() call. 2213 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2214 * structure when they fail. 2215 */ 2216 prb_rec_init_wr(&r, reserve_size); 2217 if (!prb_reserve(&e, prb, &r)) { 2218 /* truncate the message if it is too long for empty buffer */ 2219 truncate_msg(&reserve_size, &trunc_msg_len); 2220 2221 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2222 if (!prb_reserve(&e, prb, &r)) 2223 goto out; 2224 } 2225 2226 /* fill message */ 2227 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2228 if (trunc_msg_len) 2229 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2230 r.info->text_len = text_len + trunc_msg_len; 2231 r.info->facility = facility; 2232 r.info->level = level & 7; 2233 r.info->flags = flags & 0x1f; 2234 r.info->ts_nsec = ts_nsec; 2235 r.info->caller_id = caller_id; 2236 if (dev_info) 2237 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2238 2239 /* A message without a trailing newline can be continued. */ 2240 if (!(flags & LOG_NEWLINE)) 2241 prb_commit(&e); 2242 else 2243 prb_final_commit(&e); 2244 2245 ret = text_len + trunc_msg_len; 2246 out: 2247 printk_exit_irqrestore(recursion_ptr, irqflags); 2248 return ret; 2249 } 2250 2251 asmlinkage int vprintk_emit(int facility, int level, 2252 const struct dev_printk_info *dev_info, 2253 const char *fmt, va_list args) 2254 { 2255 int printed_len; 2256 bool in_sched = false; 2257 2258 /* Suppress unimportant messages after panic happens */ 2259 if (unlikely(suppress_printk)) 2260 return 0; 2261 2262 if (unlikely(suppress_panic_printk) && 2263 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2264 return 0; 2265 2266 if (level == LOGLEVEL_SCHED) { 2267 level = LOGLEVEL_DEFAULT; 2268 in_sched = true; 2269 } 2270 2271 printk_delay(level); 2272 2273 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2274 2275 /* If called from the scheduler, we can not call up(). */ 2276 if (!in_sched) { 2277 /* 2278 * The caller may be holding system-critical or 2279 * timing-sensitive locks. Disable preemption during 2280 * printing of all remaining records to all consoles so that 2281 * this context can return as soon as possible. Hopefully 2282 * another printk() caller will take over the printing. 2283 */ 2284 preempt_disable(); 2285 /* 2286 * Try to acquire and then immediately release the console 2287 * semaphore. The release will print out buffers. With the 2288 * spinning variant, this context tries to take over the 2289 * printing from another printing context. 2290 */ 2291 if (console_trylock_spinning()) 2292 console_unlock(); 2293 preempt_enable(); 2294 } 2295 2296 if (in_sched) 2297 defer_console_output(); 2298 else 2299 wake_up_klogd(); 2300 2301 return printed_len; 2302 } 2303 EXPORT_SYMBOL(vprintk_emit); 2304 2305 int vprintk_default(const char *fmt, va_list args) 2306 { 2307 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2308 } 2309 EXPORT_SYMBOL_GPL(vprintk_default); 2310 2311 asmlinkage __visible int _printk(const char *fmt, ...) 2312 { 2313 va_list args; 2314 int r; 2315 2316 va_start(args, fmt); 2317 r = vprintk(fmt, args); 2318 va_end(args); 2319 2320 return r; 2321 } 2322 EXPORT_SYMBOL(_printk); 2323 2324 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2325 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2326 2327 #else /* CONFIG_PRINTK */ 2328 2329 #define printk_time false 2330 2331 #define prb_read_valid(rb, seq, r) false 2332 #define prb_first_valid_seq(rb) 0 2333 #define prb_next_seq(rb) 0 2334 2335 static u64 syslog_seq; 2336 2337 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2338 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2339 2340 #endif /* CONFIG_PRINTK */ 2341 2342 #ifdef CONFIG_EARLY_PRINTK 2343 struct console *early_console; 2344 2345 asmlinkage __visible void early_printk(const char *fmt, ...) 2346 { 2347 va_list ap; 2348 char buf[512]; 2349 int n; 2350 2351 if (!early_console) 2352 return; 2353 2354 va_start(ap, fmt); 2355 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2356 va_end(ap); 2357 2358 early_console->write(early_console, buf, n); 2359 } 2360 #endif 2361 2362 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2363 { 2364 if (!user_specified) 2365 return; 2366 2367 /* 2368 * @c console was defined by the user on the command line. 2369 * Do not clear when added twice also by SPCR or the device tree. 2370 */ 2371 c->user_specified = true; 2372 /* At least one console defined by the user on the command line. */ 2373 console_set_on_cmdline = 1; 2374 } 2375 2376 static int __add_preferred_console(const char *name, const short idx, char *options, 2377 char *brl_options, bool user_specified) 2378 { 2379 struct console_cmdline *c; 2380 int i; 2381 2382 /* 2383 * We use a signed short index for struct console for device drivers to 2384 * indicate a not yet assigned index or port. However, a negative index 2385 * value is not valid for preferred console. 2386 */ 2387 if (idx < 0) 2388 return -EINVAL; 2389 2390 /* 2391 * See if this tty is not yet registered, and 2392 * if we have a slot free. 2393 */ 2394 for (i = 0, c = console_cmdline; 2395 i < MAX_CMDLINECONSOLES && c->name[0]; 2396 i++, c++) { 2397 if (strcmp(c->name, name) == 0 && c->index == idx) { 2398 if (!brl_options) 2399 preferred_console = i; 2400 set_user_specified(c, user_specified); 2401 return 0; 2402 } 2403 } 2404 if (i == MAX_CMDLINECONSOLES) 2405 return -E2BIG; 2406 if (!brl_options) 2407 preferred_console = i; 2408 strscpy(c->name, name, sizeof(c->name)); 2409 c->options = options; 2410 set_user_specified(c, user_specified); 2411 braille_set_options(c, brl_options); 2412 2413 c->index = idx; 2414 return 0; 2415 } 2416 2417 static int __init console_msg_format_setup(char *str) 2418 { 2419 if (!strcmp(str, "syslog")) 2420 console_msg_format = MSG_FORMAT_SYSLOG; 2421 if (!strcmp(str, "default")) 2422 console_msg_format = MSG_FORMAT_DEFAULT; 2423 return 1; 2424 } 2425 __setup("console_msg_format=", console_msg_format_setup); 2426 2427 /* 2428 * Set up a console. Called via do_early_param() in init/main.c 2429 * for each "console=" parameter in the boot command line. 2430 */ 2431 static int __init console_setup(char *str) 2432 { 2433 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2434 char *s, *options, *brl_options = NULL; 2435 int idx; 2436 2437 /* 2438 * console="" or console=null have been suggested as a way to 2439 * disable console output. Use ttynull that has been created 2440 * for exactly this purpose. 2441 */ 2442 if (str[0] == 0 || strcmp(str, "null") == 0) { 2443 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2444 return 1; 2445 } 2446 2447 if (_braille_console_setup(&str, &brl_options)) 2448 return 1; 2449 2450 /* 2451 * Decode str into name, index, options. 2452 */ 2453 if (str[0] >= '0' && str[0] <= '9') { 2454 strcpy(buf, "ttyS"); 2455 strncpy(buf + 4, str, sizeof(buf) - 5); 2456 } else { 2457 strncpy(buf, str, sizeof(buf) - 1); 2458 } 2459 buf[sizeof(buf) - 1] = 0; 2460 options = strchr(str, ','); 2461 if (options) 2462 *(options++) = 0; 2463 #ifdef __sparc__ 2464 if (!strcmp(str, "ttya")) 2465 strcpy(buf, "ttyS0"); 2466 if (!strcmp(str, "ttyb")) 2467 strcpy(buf, "ttyS1"); 2468 #endif 2469 for (s = buf; *s; s++) 2470 if (isdigit(*s) || *s == ',') 2471 break; 2472 idx = simple_strtoul(s, NULL, 10); 2473 *s = 0; 2474 2475 __add_preferred_console(buf, idx, options, brl_options, true); 2476 return 1; 2477 } 2478 __setup("console=", console_setup); 2479 2480 /** 2481 * add_preferred_console - add a device to the list of preferred consoles. 2482 * @name: device name 2483 * @idx: device index 2484 * @options: options for this console 2485 * 2486 * The last preferred console added will be used for kernel messages 2487 * and stdin/out/err for init. Normally this is used by console_setup 2488 * above to handle user-supplied console arguments; however it can also 2489 * be used by arch-specific code either to override the user or more 2490 * commonly to provide a default console (ie from PROM variables) when 2491 * the user has not supplied one. 2492 */ 2493 int add_preferred_console(const char *name, const short idx, char *options) 2494 { 2495 return __add_preferred_console(name, idx, options, NULL, false); 2496 } 2497 2498 bool console_suspend_enabled = true; 2499 EXPORT_SYMBOL(console_suspend_enabled); 2500 2501 static int __init console_suspend_disable(char *str) 2502 { 2503 console_suspend_enabled = false; 2504 return 1; 2505 } 2506 __setup("no_console_suspend", console_suspend_disable); 2507 module_param_named(console_suspend, console_suspend_enabled, 2508 bool, S_IRUGO | S_IWUSR); 2509 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2510 " and hibernate operations"); 2511 2512 static bool printk_console_no_auto_verbose; 2513 2514 void console_verbose(void) 2515 { 2516 if (console_loglevel && !printk_console_no_auto_verbose) 2517 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2518 } 2519 EXPORT_SYMBOL_GPL(console_verbose); 2520 2521 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2522 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2523 2524 /** 2525 * suspend_console - suspend the console subsystem 2526 * 2527 * This disables printk() while we go into suspend states 2528 */ 2529 void suspend_console(void) 2530 { 2531 struct console *con; 2532 2533 if (!console_suspend_enabled) 2534 return; 2535 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2536 pr_flush(1000, true); 2537 2538 console_list_lock(); 2539 for_each_console(con) 2540 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2541 console_list_unlock(); 2542 2543 /* 2544 * Ensure that all SRCU list walks have completed. All printing 2545 * contexts must be able to see that they are suspended so that it 2546 * is guaranteed that all printing has stopped when this function 2547 * completes. 2548 */ 2549 synchronize_srcu(&console_srcu); 2550 } 2551 2552 void resume_console(void) 2553 { 2554 struct console *con; 2555 2556 if (!console_suspend_enabled) 2557 return; 2558 2559 console_list_lock(); 2560 for_each_console(con) 2561 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2562 console_list_unlock(); 2563 2564 /* 2565 * Ensure that all SRCU list walks have completed. All printing 2566 * contexts must be able to see they are no longer suspended so 2567 * that they are guaranteed to wake up and resume printing. 2568 */ 2569 synchronize_srcu(&console_srcu); 2570 2571 pr_flush(1000, true); 2572 } 2573 2574 /** 2575 * console_cpu_notify - print deferred console messages after CPU hotplug 2576 * @cpu: unused 2577 * 2578 * If printk() is called from a CPU that is not online yet, the messages 2579 * will be printed on the console only if there are CON_ANYTIME consoles. 2580 * This function is called when a new CPU comes online (or fails to come 2581 * up) or goes offline. 2582 */ 2583 static int console_cpu_notify(unsigned int cpu) 2584 { 2585 if (!cpuhp_tasks_frozen) { 2586 /* If trylock fails, someone else is doing the printing */ 2587 if (console_trylock()) 2588 console_unlock(); 2589 } 2590 return 0; 2591 } 2592 2593 /* 2594 * Return true if a panic is in progress on a remote CPU. 2595 * 2596 * On true, the local CPU should immediately release any printing resources 2597 * that may be needed by the panic CPU. 2598 */ 2599 bool other_cpu_in_panic(void) 2600 { 2601 if (!panic_in_progress()) 2602 return false; 2603 2604 /* 2605 * We can use raw_smp_processor_id() here because it is impossible for 2606 * the task to be migrated to the panic_cpu, or away from it. If 2607 * panic_cpu has already been set, and we're not currently executing on 2608 * that CPU, then we never will be. 2609 */ 2610 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2611 } 2612 2613 /** 2614 * console_lock - block the console subsystem from printing 2615 * 2616 * Acquires a lock which guarantees that no consoles will 2617 * be in or enter their write() callback. 2618 * 2619 * Can sleep, returns nothing. 2620 */ 2621 void console_lock(void) 2622 { 2623 might_sleep(); 2624 2625 /* On panic, the console_lock must be left to the panic cpu. */ 2626 while (other_cpu_in_panic()) 2627 msleep(1000); 2628 2629 down_console_sem(); 2630 console_locked = 1; 2631 console_may_schedule = 1; 2632 } 2633 EXPORT_SYMBOL(console_lock); 2634 2635 /** 2636 * console_trylock - try to block the console subsystem from printing 2637 * 2638 * Try to acquire a lock which guarantees that no consoles will 2639 * be in or enter their write() callback. 2640 * 2641 * returns 1 on success, and 0 on failure to acquire the lock. 2642 */ 2643 int console_trylock(void) 2644 { 2645 /* On panic, the console_lock must be left to the panic cpu. */ 2646 if (other_cpu_in_panic()) 2647 return 0; 2648 if (down_trylock_console_sem()) 2649 return 0; 2650 console_locked = 1; 2651 console_may_schedule = 0; 2652 return 1; 2653 } 2654 EXPORT_SYMBOL(console_trylock); 2655 2656 int is_console_locked(void) 2657 { 2658 return console_locked; 2659 } 2660 EXPORT_SYMBOL(is_console_locked); 2661 2662 /* 2663 * Check if the given console is currently capable and allowed to print 2664 * records. 2665 * 2666 * Requires the console_srcu_read_lock. 2667 */ 2668 static inline bool console_is_usable(struct console *con) 2669 { 2670 short flags = console_srcu_read_flags(con); 2671 2672 if (!(flags & CON_ENABLED)) 2673 return false; 2674 2675 if ((flags & CON_SUSPENDED)) 2676 return false; 2677 2678 if (!con->write) 2679 return false; 2680 2681 /* 2682 * Console drivers may assume that per-cpu resources have been 2683 * allocated. So unless they're explicitly marked as being able to 2684 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2685 */ 2686 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2687 return false; 2688 2689 return true; 2690 } 2691 2692 static void __console_unlock(void) 2693 { 2694 console_locked = 0; 2695 up_console_sem(); 2696 } 2697 2698 #ifdef CONFIG_PRINTK 2699 2700 /* 2701 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2702 * is achieved by shifting the existing message over and inserting the dropped 2703 * message. 2704 * 2705 * @pmsg is the printk message to prepend. 2706 * 2707 * @dropped is the dropped count to report in the dropped message. 2708 * 2709 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2710 * the dropped message, the message text will be sufficiently truncated. 2711 * 2712 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2713 */ 2714 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2715 { 2716 struct printk_buffers *pbufs = pmsg->pbufs; 2717 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2718 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2719 char *scratchbuf = &pbufs->scratchbuf[0]; 2720 char *outbuf = &pbufs->outbuf[0]; 2721 size_t len; 2722 2723 len = scnprintf(scratchbuf, scratchbuf_sz, 2724 "** %lu printk messages dropped **\n", dropped); 2725 2726 /* 2727 * Make sure outbuf is sufficiently large before prepending. 2728 * Keep at least the prefix when the message must be truncated. 2729 * It is a rather theoretical problem when someone tries to 2730 * use a minimalist buffer. 2731 */ 2732 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2733 return; 2734 2735 if (pmsg->outbuf_len + len >= outbuf_sz) { 2736 /* Truncate the message, but keep it terminated. */ 2737 pmsg->outbuf_len = outbuf_sz - (len + 1); 2738 outbuf[pmsg->outbuf_len] = 0; 2739 } 2740 2741 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2742 memcpy(outbuf, scratchbuf, len); 2743 pmsg->outbuf_len += len; 2744 } 2745 2746 /* 2747 * Read and format the specified record (or a later record if the specified 2748 * record is not available). 2749 * 2750 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2751 * struct printk_buffers. 2752 * 2753 * @seq is the record to read and format. If it is not available, the next 2754 * valid record is read. 2755 * 2756 * @is_extended specifies if the message should be formatted for extended 2757 * console output. 2758 * 2759 * @may_supress specifies if records may be skipped based on loglevel. 2760 * 2761 * Returns false if no record is available. Otherwise true and all fields 2762 * of @pmsg are valid. (See the documentation of struct printk_message 2763 * for information about the @pmsg fields.) 2764 */ 2765 bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2766 bool is_extended, bool may_suppress) 2767 { 2768 static int panic_console_dropped; 2769 2770 struct printk_buffers *pbufs = pmsg->pbufs; 2771 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2772 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2773 char *scratchbuf = &pbufs->scratchbuf[0]; 2774 char *outbuf = &pbufs->outbuf[0]; 2775 struct printk_info info; 2776 struct printk_record r; 2777 size_t len = 0; 2778 2779 /* 2780 * Formatting extended messages requires a separate buffer, so use the 2781 * scratch buffer to read in the ringbuffer text. 2782 * 2783 * Formatting normal messages is done in-place, so read the ringbuffer 2784 * text directly into the output buffer. 2785 */ 2786 if (is_extended) 2787 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2788 else 2789 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2790 2791 if (!prb_read_valid(prb, seq, &r)) 2792 return false; 2793 2794 pmsg->seq = r.info->seq; 2795 pmsg->dropped = r.info->seq - seq; 2796 2797 /* 2798 * Check for dropped messages in panic here so that printk 2799 * suppression can occur as early as possible if necessary. 2800 */ 2801 if (pmsg->dropped && 2802 panic_in_progress() && 2803 panic_console_dropped++ > 10) { 2804 suppress_panic_printk = 1; 2805 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2806 } 2807 2808 /* Skip record that has level above the console loglevel. */ 2809 if (may_suppress && suppress_message_printing(r.info->level)) 2810 goto out; 2811 2812 if (is_extended) { 2813 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2814 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2815 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2816 } else { 2817 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2818 } 2819 out: 2820 pmsg->outbuf_len = len; 2821 return true; 2822 } 2823 2824 /* 2825 * Used as the printk buffers for non-panic, serialized console printing. 2826 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles. 2827 * Its usage requires the console_lock held. 2828 */ 2829 struct printk_buffers printk_shared_pbufs; 2830 2831 /* 2832 * Print one record for the given console. The record printed is whatever 2833 * record is the next available record for the given console. 2834 * 2835 * @handover will be set to true if a printk waiter has taken over the 2836 * console_lock, in which case the caller is no longer holding both the 2837 * console_lock and the SRCU read lock. Otherwise it is set to false. 2838 * 2839 * @cookie is the cookie from the SRCU read lock. 2840 * 2841 * Returns false if the given console has no next record to print, otherwise 2842 * true. 2843 * 2844 * Requires the console_lock and the SRCU read lock. 2845 */ 2846 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2847 { 2848 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2849 char *outbuf = &printk_shared_pbufs.outbuf[0]; 2850 struct printk_message pmsg = { 2851 .pbufs = &printk_shared_pbufs, 2852 }; 2853 unsigned long flags; 2854 2855 *handover = false; 2856 2857 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2858 return false; 2859 2860 con->dropped += pmsg.dropped; 2861 2862 /* Skip messages of formatted length 0. */ 2863 if (pmsg.outbuf_len == 0) { 2864 con->seq = pmsg.seq + 1; 2865 goto skip; 2866 } 2867 2868 if (con->dropped && !is_extended) { 2869 console_prepend_dropped(&pmsg, con->dropped); 2870 con->dropped = 0; 2871 } 2872 2873 /* 2874 * While actively printing out messages, if another printk() 2875 * were to occur on another CPU, it may wait for this one to 2876 * finish. This task can not be preempted if there is a 2877 * waiter waiting to take over. 2878 * 2879 * Interrupts are disabled because the hand over to a waiter 2880 * must not be interrupted until the hand over is completed 2881 * (@console_waiter is cleared). 2882 */ 2883 printk_safe_enter_irqsave(flags); 2884 console_lock_spinning_enable(); 2885 2886 /* Do not trace print latency. */ 2887 stop_critical_timings(); 2888 2889 /* Write everything out to the hardware. */ 2890 con->write(con, outbuf, pmsg.outbuf_len); 2891 2892 start_critical_timings(); 2893 2894 con->seq = pmsg.seq + 1; 2895 2896 *handover = console_lock_spinning_disable_and_check(cookie); 2897 printk_safe_exit_irqrestore(flags); 2898 skip: 2899 return true; 2900 } 2901 2902 #else 2903 2904 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2905 { 2906 *handover = false; 2907 return false; 2908 } 2909 2910 #endif /* CONFIG_PRINTK */ 2911 2912 /* 2913 * Print out all remaining records to all consoles. 2914 * 2915 * @do_cond_resched is set by the caller. It can be true only in schedulable 2916 * context. 2917 * 2918 * @next_seq is set to the sequence number after the last available record. 2919 * The value is valid only when this function returns true. It means that all 2920 * usable consoles are completely flushed. 2921 * 2922 * @handover will be set to true if a printk waiter has taken over the 2923 * console_lock, in which case the caller is no longer holding the 2924 * console_lock. Otherwise it is set to false. 2925 * 2926 * Returns true when there was at least one usable console and all messages 2927 * were flushed to all usable consoles. A returned false informs the caller 2928 * that everything was not flushed (either there were no usable consoles or 2929 * another context has taken over printing or it is a panic situation and this 2930 * is not the panic CPU). Regardless the reason, the caller should assume it 2931 * is not useful to immediately try again. 2932 * 2933 * Requires the console_lock. 2934 */ 2935 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2936 { 2937 bool any_usable = false; 2938 struct console *con; 2939 bool any_progress; 2940 int cookie; 2941 2942 *next_seq = 0; 2943 *handover = false; 2944 2945 do { 2946 any_progress = false; 2947 2948 cookie = console_srcu_read_lock(); 2949 for_each_console_srcu(con) { 2950 bool progress; 2951 2952 if (!console_is_usable(con)) 2953 continue; 2954 any_usable = true; 2955 2956 progress = console_emit_next_record(con, handover, cookie); 2957 2958 /* 2959 * If a handover has occurred, the SRCU read lock 2960 * is already released. 2961 */ 2962 if (*handover) 2963 return false; 2964 2965 /* Track the next of the highest seq flushed. */ 2966 if (con->seq > *next_seq) 2967 *next_seq = con->seq; 2968 2969 if (!progress) 2970 continue; 2971 any_progress = true; 2972 2973 /* Allow panic_cpu to take over the consoles safely. */ 2974 if (other_cpu_in_panic()) 2975 goto abandon; 2976 2977 if (do_cond_resched) 2978 cond_resched(); 2979 } 2980 console_srcu_read_unlock(cookie); 2981 } while (any_progress); 2982 2983 return any_usable; 2984 2985 abandon: 2986 console_srcu_read_unlock(cookie); 2987 return false; 2988 } 2989 2990 /** 2991 * console_unlock - unblock the console subsystem from printing 2992 * 2993 * Releases the console_lock which the caller holds to block printing of 2994 * the console subsystem. 2995 * 2996 * While the console_lock was held, console output may have been buffered 2997 * by printk(). If this is the case, console_unlock(); emits 2998 * the output prior to releasing the lock. 2999 * 3000 * console_unlock(); may be called from any context. 3001 */ 3002 void console_unlock(void) 3003 { 3004 bool do_cond_resched; 3005 bool handover; 3006 bool flushed; 3007 u64 next_seq; 3008 3009 /* 3010 * Console drivers are called with interrupts disabled, so 3011 * @console_may_schedule should be cleared before; however, we may 3012 * end up dumping a lot of lines, for example, if called from 3013 * console registration path, and should invoke cond_resched() 3014 * between lines if allowable. Not doing so can cause a very long 3015 * scheduling stall on a slow console leading to RCU stall and 3016 * softlockup warnings which exacerbate the issue with more 3017 * messages practically incapacitating the system. Therefore, create 3018 * a local to use for the printing loop. 3019 */ 3020 do_cond_resched = console_may_schedule; 3021 3022 do { 3023 console_may_schedule = 0; 3024 3025 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3026 if (!handover) 3027 __console_unlock(); 3028 3029 /* 3030 * Abort if there was a failure to flush all messages to all 3031 * usable consoles. Either it is not possible to flush (in 3032 * which case it would be an infinite loop of retrying) or 3033 * another context has taken over printing. 3034 */ 3035 if (!flushed) 3036 break; 3037 3038 /* 3039 * Some context may have added new records after 3040 * console_flush_all() but before unlocking the console. 3041 * Re-check if there is a new record to flush. If the trylock 3042 * fails, another context is already handling the printing. 3043 */ 3044 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3045 } 3046 EXPORT_SYMBOL(console_unlock); 3047 3048 /** 3049 * console_conditional_schedule - yield the CPU if required 3050 * 3051 * If the console code is currently allowed to sleep, and 3052 * if this CPU should yield the CPU to another task, do 3053 * so here. 3054 * 3055 * Must be called within console_lock();. 3056 */ 3057 void __sched console_conditional_schedule(void) 3058 { 3059 if (console_may_schedule) 3060 cond_resched(); 3061 } 3062 EXPORT_SYMBOL(console_conditional_schedule); 3063 3064 void console_unblank(void) 3065 { 3066 bool found_unblank = false; 3067 struct console *c; 3068 int cookie; 3069 3070 /* 3071 * First check if there are any consoles implementing the unblank() 3072 * callback. If not, there is no reason to continue and take the 3073 * console lock, which in particular can be dangerous if 3074 * @oops_in_progress is set. 3075 */ 3076 cookie = console_srcu_read_lock(); 3077 for_each_console_srcu(c) { 3078 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) { 3079 found_unblank = true; 3080 break; 3081 } 3082 } 3083 console_srcu_read_unlock(cookie); 3084 if (!found_unblank) 3085 return; 3086 3087 /* 3088 * Stop console printing because the unblank() callback may 3089 * assume the console is not within its write() callback. 3090 * 3091 * If @oops_in_progress is set, this may be an atomic context. 3092 * In that case, attempt a trylock as best-effort. 3093 */ 3094 if (oops_in_progress) { 3095 /* Semaphores are not NMI-safe. */ 3096 if (in_nmi()) 3097 return; 3098 3099 /* 3100 * Attempting to trylock the console lock can deadlock 3101 * if another CPU was stopped while modifying the 3102 * semaphore. "Hope and pray" that this is not the 3103 * current situation. 3104 */ 3105 if (down_trylock_console_sem() != 0) 3106 return; 3107 } else 3108 console_lock(); 3109 3110 console_locked = 1; 3111 console_may_schedule = 0; 3112 3113 cookie = console_srcu_read_lock(); 3114 for_each_console_srcu(c) { 3115 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3116 c->unblank(); 3117 } 3118 console_srcu_read_unlock(cookie); 3119 3120 console_unlock(); 3121 3122 if (!oops_in_progress) 3123 pr_flush(1000, true); 3124 } 3125 3126 /** 3127 * console_flush_on_panic - flush console content on panic 3128 * @mode: flush all messages in buffer or just the pending ones 3129 * 3130 * Immediately output all pending messages no matter what. 3131 */ 3132 void console_flush_on_panic(enum con_flush_mode mode) 3133 { 3134 bool handover; 3135 u64 next_seq; 3136 3137 /* 3138 * Ignore the console lock and flush out the messages. Attempting a 3139 * trylock would not be useful because: 3140 * 3141 * - if it is contended, it must be ignored anyway 3142 * - console_lock() and console_trylock() block and fail 3143 * respectively in panic for non-panic CPUs 3144 * - semaphores are not NMI-safe 3145 */ 3146 3147 /* 3148 * If another context is holding the console lock, 3149 * @console_may_schedule might be set. Clear it so that 3150 * this context does not call cond_resched() while flushing. 3151 */ 3152 console_may_schedule = 0; 3153 3154 if (mode == CONSOLE_REPLAY_ALL) { 3155 struct console *c; 3156 short flags; 3157 int cookie; 3158 u64 seq; 3159 3160 seq = prb_first_valid_seq(prb); 3161 3162 cookie = console_srcu_read_lock(); 3163 for_each_console_srcu(c) { 3164 flags = console_srcu_read_flags(c); 3165 3166 if (flags & CON_NBCON) { 3167 nbcon_seq_force(c, seq); 3168 } else { 3169 /* 3170 * This is an unsynchronized assignment. On 3171 * panic legacy consoles are only best effort. 3172 */ 3173 c->seq = seq; 3174 } 3175 } 3176 console_srcu_read_unlock(cookie); 3177 } 3178 3179 console_flush_all(false, &next_seq, &handover); 3180 } 3181 3182 /* 3183 * Return the console tty driver structure and its associated index 3184 */ 3185 struct tty_driver *console_device(int *index) 3186 { 3187 struct console *c; 3188 struct tty_driver *driver = NULL; 3189 int cookie; 3190 3191 /* 3192 * Take console_lock to serialize device() callback with 3193 * other console operations. For example, fg_console is 3194 * modified under console_lock when switching vt. 3195 */ 3196 console_lock(); 3197 3198 cookie = console_srcu_read_lock(); 3199 for_each_console_srcu(c) { 3200 if (!c->device) 3201 continue; 3202 driver = c->device(c, index); 3203 if (driver) 3204 break; 3205 } 3206 console_srcu_read_unlock(cookie); 3207 3208 console_unlock(); 3209 return driver; 3210 } 3211 3212 /* 3213 * Prevent further output on the passed console device so that (for example) 3214 * serial drivers can disable console output before suspending a port, and can 3215 * re-enable output afterwards. 3216 */ 3217 void console_stop(struct console *console) 3218 { 3219 __pr_flush(console, 1000, true); 3220 console_list_lock(); 3221 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3222 console_list_unlock(); 3223 3224 /* 3225 * Ensure that all SRCU list walks have completed. All contexts must 3226 * be able to see that this console is disabled so that (for example) 3227 * the caller can suspend the port without risk of another context 3228 * using the port. 3229 */ 3230 synchronize_srcu(&console_srcu); 3231 } 3232 EXPORT_SYMBOL(console_stop); 3233 3234 void console_start(struct console *console) 3235 { 3236 console_list_lock(); 3237 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3238 console_list_unlock(); 3239 __pr_flush(console, 1000, true); 3240 } 3241 EXPORT_SYMBOL(console_start); 3242 3243 static int __read_mostly keep_bootcon; 3244 3245 static int __init keep_bootcon_setup(char *str) 3246 { 3247 keep_bootcon = 1; 3248 pr_info("debug: skip boot console de-registration.\n"); 3249 3250 return 0; 3251 } 3252 3253 early_param("keep_bootcon", keep_bootcon_setup); 3254 3255 /* 3256 * This is called by register_console() to try to match 3257 * the newly registered console with any of the ones selected 3258 * by either the command line or add_preferred_console() and 3259 * setup/enable it. 3260 * 3261 * Care need to be taken with consoles that are statically 3262 * enabled such as netconsole 3263 */ 3264 static int try_enable_preferred_console(struct console *newcon, 3265 bool user_specified) 3266 { 3267 struct console_cmdline *c; 3268 int i, err; 3269 3270 for (i = 0, c = console_cmdline; 3271 i < MAX_CMDLINECONSOLES && c->name[0]; 3272 i++, c++) { 3273 if (c->user_specified != user_specified) 3274 continue; 3275 if (!newcon->match || 3276 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3277 /* default matching */ 3278 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3279 if (strcmp(c->name, newcon->name) != 0) 3280 continue; 3281 if (newcon->index >= 0 && 3282 newcon->index != c->index) 3283 continue; 3284 if (newcon->index < 0) 3285 newcon->index = c->index; 3286 3287 if (_braille_register_console(newcon, c)) 3288 return 0; 3289 3290 if (newcon->setup && 3291 (err = newcon->setup(newcon, c->options)) != 0) 3292 return err; 3293 } 3294 newcon->flags |= CON_ENABLED; 3295 if (i == preferred_console) 3296 newcon->flags |= CON_CONSDEV; 3297 return 0; 3298 } 3299 3300 /* 3301 * Some consoles, such as pstore and netconsole, can be enabled even 3302 * without matching. Accept the pre-enabled consoles only when match() 3303 * and setup() had a chance to be called. 3304 */ 3305 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3306 return 0; 3307 3308 return -ENOENT; 3309 } 3310 3311 /* Try to enable the console unconditionally */ 3312 static void try_enable_default_console(struct console *newcon) 3313 { 3314 if (newcon->index < 0) 3315 newcon->index = 0; 3316 3317 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 3318 return; 3319 3320 newcon->flags |= CON_ENABLED; 3321 3322 if (newcon->device) 3323 newcon->flags |= CON_CONSDEV; 3324 } 3325 3326 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3327 { 3328 struct console *con; 3329 bool handover; 3330 3331 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3332 /* Get a consistent copy of @syslog_seq. */ 3333 mutex_lock(&syslog_lock); 3334 newcon->seq = syslog_seq; 3335 mutex_unlock(&syslog_lock); 3336 } else { 3337 /* Begin with next message added to ringbuffer. */ 3338 newcon->seq = prb_next_seq(prb); 3339 3340 /* 3341 * If any enabled boot consoles are due to be unregistered 3342 * shortly, some may not be caught up and may be the same 3343 * device as @newcon. Since it is not known which boot console 3344 * is the same device, flush all consoles and, if necessary, 3345 * start with the message of the enabled boot console that is 3346 * the furthest behind. 3347 */ 3348 if (bootcon_registered && !keep_bootcon) { 3349 /* 3350 * Hold the console_lock to stop console printing and 3351 * guarantee safe access to console->seq. 3352 */ 3353 console_lock(); 3354 3355 /* 3356 * Flush all consoles and set the console to start at 3357 * the next unprinted sequence number. 3358 */ 3359 if (!console_flush_all(true, &newcon->seq, &handover)) { 3360 /* 3361 * Flushing failed. Just choose the lowest 3362 * sequence of the enabled boot consoles. 3363 */ 3364 3365 /* 3366 * If there was a handover, this context no 3367 * longer holds the console_lock. 3368 */ 3369 if (handover) 3370 console_lock(); 3371 3372 newcon->seq = prb_next_seq(prb); 3373 for_each_console(con) { 3374 if ((con->flags & CON_BOOT) && 3375 (con->flags & CON_ENABLED) && 3376 con->seq < newcon->seq) { 3377 newcon->seq = con->seq; 3378 } 3379 } 3380 } 3381 3382 console_unlock(); 3383 } 3384 } 3385 } 3386 3387 #define console_first() \ 3388 hlist_entry(console_list.first, struct console, node) 3389 3390 static int unregister_console_locked(struct console *console); 3391 3392 /* 3393 * The console driver calls this routine during kernel initialization 3394 * to register the console printing procedure with printk() and to 3395 * print any messages that were printed by the kernel before the 3396 * console driver was initialized. 3397 * 3398 * This can happen pretty early during the boot process (because of 3399 * early_printk) - sometimes before setup_arch() completes - be careful 3400 * of what kernel features are used - they may not be initialised yet. 3401 * 3402 * There are two types of consoles - bootconsoles (early_printk) and 3403 * "real" consoles (everything which is not a bootconsole) which are 3404 * handled differently. 3405 * - Any number of bootconsoles can be registered at any time. 3406 * - As soon as a "real" console is registered, all bootconsoles 3407 * will be unregistered automatically. 3408 * - Once a "real" console is registered, any attempt to register a 3409 * bootconsoles will be rejected 3410 */ 3411 void register_console(struct console *newcon) 3412 { 3413 struct console *con; 3414 bool bootcon_registered = false; 3415 bool realcon_registered = false; 3416 int err; 3417 3418 console_list_lock(); 3419 3420 for_each_console(con) { 3421 if (WARN(con == newcon, "console '%s%d' already registered\n", 3422 con->name, con->index)) { 3423 goto unlock; 3424 } 3425 3426 if (con->flags & CON_BOOT) 3427 bootcon_registered = true; 3428 else 3429 realcon_registered = true; 3430 } 3431 3432 /* Do not register boot consoles when there already is a real one. */ 3433 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3434 pr_info("Too late to register bootconsole %s%d\n", 3435 newcon->name, newcon->index); 3436 goto unlock; 3437 } 3438 3439 if (newcon->flags & CON_NBCON) { 3440 /* 3441 * Ensure the nbcon console buffers can be allocated 3442 * before modifying any global data. 3443 */ 3444 if (!nbcon_alloc(newcon)) 3445 goto unlock; 3446 } 3447 3448 /* 3449 * See if we want to enable this console driver by default. 3450 * 3451 * Nope when a console is preferred by the command line, device 3452 * tree, or SPCR. 3453 * 3454 * The first real console with tty binding (driver) wins. More 3455 * consoles might get enabled before the right one is found. 3456 * 3457 * Note that a console with tty binding will have CON_CONSDEV 3458 * flag set and will be first in the list. 3459 */ 3460 if (preferred_console < 0) { 3461 if (hlist_empty(&console_list) || !console_first()->device || 3462 console_first()->flags & CON_BOOT) { 3463 try_enable_default_console(newcon); 3464 } 3465 } 3466 3467 /* See if this console matches one we selected on the command line */ 3468 err = try_enable_preferred_console(newcon, true); 3469 3470 /* If not, try to match against the platform default(s) */ 3471 if (err == -ENOENT) 3472 err = try_enable_preferred_console(newcon, false); 3473 3474 /* printk() messages are not printed to the Braille console. */ 3475 if (err || newcon->flags & CON_BRL) { 3476 if (newcon->flags & CON_NBCON) 3477 nbcon_free(newcon); 3478 goto unlock; 3479 } 3480 3481 /* 3482 * If we have a bootconsole, and are switching to a real console, 3483 * don't print everything out again, since when the boot console, and 3484 * the real console are the same physical device, it's annoying to 3485 * see the beginning boot messages twice 3486 */ 3487 if (bootcon_registered && 3488 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3489 newcon->flags &= ~CON_PRINTBUFFER; 3490 } 3491 3492 newcon->dropped = 0; 3493 console_init_seq(newcon, bootcon_registered); 3494 3495 if (newcon->flags & CON_NBCON) 3496 nbcon_init(newcon); 3497 3498 /* 3499 * Put this console in the list - keep the 3500 * preferred driver at the head of the list. 3501 */ 3502 if (hlist_empty(&console_list)) { 3503 /* Ensure CON_CONSDEV is always set for the head. */ 3504 newcon->flags |= CON_CONSDEV; 3505 hlist_add_head_rcu(&newcon->node, &console_list); 3506 3507 } else if (newcon->flags & CON_CONSDEV) { 3508 /* Only the new head can have CON_CONSDEV set. */ 3509 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3510 hlist_add_head_rcu(&newcon->node, &console_list); 3511 3512 } else { 3513 hlist_add_behind_rcu(&newcon->node, console_list.first); 3514 } 3515 3516 /* 3517 * No need to synchronize SRCU here! The caller does not rely 3518 * on all contexts being able to see the new console before 3519 * register_console() completes. 3520 */ 3521 3522 console_sysfs_notify(); 3523 3524 /* 3525 * By unregistering the bootconsoles after we enable the real console 3526 * we get the "console xxx enabled" message on all the consoles - 3527 * boot consoles, real consoles, etc - this is to ensure that end 3528 * users know there might be something in the kernel's log buffer that 3529 * went to the bootconsole (that they do not see on the real console) 3530 */ 3531 con_printk(KERN_INFO, newcon, "enabled\n"); 3532 if (bootcon_registered && 3533 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3534 !keep_bootcon) { 3535 struct hlist_node *tmp; 3536 3537 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3538 if (con->flags & CON_BOOT) 3539 unregister_console_locked(con); 3540 } 3541 } 3542 unlock: 3543 console_list_unlock(); 3544 } 3545 EXPORT_SYMBOL(register_console); 3546 3547 /* Must be called under console_list_lock(). */ 3548 static int unregister_console_locked(struct console *console) 3549 { 3550 int res; 3551 3552 lockdep_assert_console_list_lock_held(); 3553 3554 con_printk(KERN_INFO, console, "disabled\n"); 3555 3556 res = _braille_unregister_console(console); 3557 if (res < 0) 3558 return res; 3559 if (res > 0) 3560 return 0; 3561 3562 /* Disable it unconditionally */ 3563 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3564 3565 if (!console_is_registered_locked(console)) 3566 return -ENODEV; 3567 3568 hlist_del_init_rcu(&console->node); 3569 3570 /* 3571 * <HISTORICAL> 3572 * If this isn't the last console and it has CON_CONSDEV set, we 3573 * need to set it on the next preferred console. 3574 * </HISTORICAL> 3575 * 3576 * The above makes no sense as there is no guarantee that the next 3577 * console has any device attached. Oh well.... 3578 */ 3579 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3580 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3581 3582 /* 3583 * Ensure that all SRCU list walks have completed. All contexts 3584 * must not be able to see this console in the list so that any 3585 * exit/cleanup routines can be performed safely. 3586 */ 3587 synchronize_srcu(&console_srcu); 3588 3589 if (console->flags & CON_NBCON) 3590 nbcon_free(console); 3591 3592 console_sysfs_notify(); 3593 3594 if (console->exit) 3595 res = console->exit(console); 3596 3597 return res; 3598 } 3599 3600 int unregister_console(struct console *console) 3601 { 3602 int res; 3603 3604 console_list_lock(); 3605 res = unregister_console_locked(console); 3606 console_list_unlock(); 3607 return res; 3608 } 3609 EXPORT_SYMBOL(unregister_console); 3610 3611 /** 3612 * console_force_preferred_locked - force a registered console preferred 3613 * @con: The registered console to force preferred. 3614 * 3615 * Must be called under console_list_lock(). 3616 */ 3617 void console_force_preferred_locked(struct console *con) 3618 { 3619 struct console *cur_pref_con; 3620 3621 if (!console_is_registered_locked(con)) 3622 return; 3623 3624 cur_pref_con = console_first(); 3625 3626 /* Already preferred? */ 3627 if (cur_pref_con == con) 3628 return; 3629 3630 /* 3631 * Delete, but do not re-initialize the entry. This allows the console 3632 * to continue to appear registered (via any hlist_unhashed_lockless() 3633 * checks), even though it was briefly removed from the console list. 3634 */ 3635 hlist_del_rcu(&con->node); 3636 3637 /* 3638 * Ensure that all SRCU list walks have completed so that the console 3639 * can be added to the beginning of the console list and its forward 3640 * list pointer can be re-initialized. 3641 */ 3642 synchronize_srcu(&console_srcu); 3643 3644 con->flags |= CON_CONSDEV; 3645 WARN_ON(!con->device); 3646 3647 /* Only the new head can have CON_CONSDEV set. */ 3648 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3649 hlist_add_head_rcu(&con->node, &console_list); 3650 } 3651 EXPORT_SYMBOL(console_force_preferred_locked); 3652 3653 /* 3654 * Initialize the console device. This is called *early*, so 3655 * we can't necessarily depend on lots of kernel help here. 3656 * Just do some early initializations, and do the complex setup 3657 * later. 3658 */ 3659 void __init console_init(void) 3660 { 3661 int ret; 3662 initcall_t call; 3663 initcall_entry_t *ce; 3664 3665 /* Setup the default TTY line discipline. */ 3666 n_tty_init(); 3667 3668 /* 3669 * set up the console device so that later boot sequences can 3670 * inform about problems etc.. 3671 */ 3672 ce = __con_initcall_start; 3673 trace_initcall_level("console"); 3674 while (ce < __con_initcall_end) { 3675 call = initcall_from_entry(ce); 3676 trace_initcall_start(call); 3677 ret = call(); 3678 trace_initcall_finish(call, ret); 3679 ce++; 3680 } 3681 } 3682 3683 /* 3684 * Some boot consoles access data that is in the init section and which will 3685 * be discarded after the initcalls have been run. To make sure that no code 3686 * will access this data, unregister the boot consoles in a late initcall. 3687 * 3688 * If for some reason, such as deferred probe or the driver being a loadable 3689 * module, the real console hasn't registered yet at this point, there will 3690 * be a brief interval in which no messages are logged to the console, which 3691 * makes it difficult to diagnose problems that occur during this time. 3692 * 3693 * To mitigate this problem somewhat, only unregister consoles whose memory 3694 * intersects with the init section. Note that all other boot consoles will 3695 * get unregistered when the real preferred console is registered. 3696 */ 3697 static int __init printk_late_init(void) 3698 { 3699 struct hlist_node *tmp; 3700 struct console *con; 3701 int ret; 3702 3703 console_list_lock(); 3704 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3705 if (!(con->flags & CON_BOOT)) 3706 continue; 3707 3708 /* Check addresses that might be used for enabled consoles. */ 3709 if (init_section_intersects(con, sizeof(*con)) || 3710 init_section_contains(con->write, 0) || 3711 init_section_contains(con->read, 0) || 3712 init_section_contains(con->device, 0) || 3713 init_section_contains(con->unblank, 0) || 3714 init_section_contains(con->data, 0)) { 3715 /* 3716 * Please, consider moving the reported consoles out 3717 * of the init section. 3718 */ 3719 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3720 con->name, con->index); 3721 unregister_console_locked(con); 3722 } 3723 } 3724 console_list_unlock(); 3725 3726 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3727 console_cpu_notify); 3728 WARN_ON(ret < 0); 3729 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3730 console_cpu_notify, NULL); 3731 WARN_ON(ret < 0); 3732 printk_sysctl_init(); 3733 return 0; 3734 } 3735 late_initcall(printk_late_init); 3736 3737 #if defined CONFIG_PRINTK 3738 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3739 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3740 { 3741 unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms); 3742 unsigned long remaining_jiffies = timeout_jiffies; 3743 struct console *c; 3744 u64 last_diff = 0; 3745 u64 printk_seq; 3746 short flags; 3747 int cookie; 3748 u64 diff; 3749 u64 seq; 3750 3751 might_sleep(); 3752 3753 seq = prb_next_seq(prb); 3754 3755 /* Flush the consoles so that records up to @seq are printed. */ 3756 console_lock(); 3757 console_unlock(); 3758 3759 for (;;) { 3760 unsigned long begin_jiffies; 3761 unsigned long slept_jiffies; 3762 3763 diff = 0; 3764 3765 /* 3766 * Hold the console_lock to guarantee safe access to 3767 * console->seq. Releasing console_lock flushes more 3768 * records in case @seq is still not printed on all 3769 * usable consoles. 3770 */ 3771 console_lock(); 3772 3773 cookie = console_srcu_read_lock(); 3774 for_each_console_srcu(c) { 3775 if (con && con != c) 3776 continue; 3777 3778 flags = console_srcu_read_flags(c); 3779 3780 /* 3781 * If consoles are not usable, it cannot be expected 3782 * that they make forward progress, so only increment 3783 * @diff for usable consoles. 3784 */ 3785 if (!console_is_usable(c)) 3786 continue; 3787 3788 if (flags & CON_NBCON) { 3789 printk_seq = nbcon_seq_read(c); 3790 } else { 3791 printk_seq = c->seq; 3792 } 3793 3794 if (printk_seq < seq) 3795 diff += seq - printk_seq; 3796 } 3797 console_srcu_read_unlock(cookie); 3798 3799 if (diff != last_diff && reset_on_progress) 3800 remaining_jiffies = timeout_jiffies; 3801 3802 console_unlock(); 3803 3804 /* Note: @diff is 0 if there are no usable consoles. */ 3805 if (diff == 0 || remaining_jiffies == 0) 3806 break; 3807 3808 /* msleep(1) might sleep much longer. Check time by jiffies. */ 3809 begin_jiffies = jiffies; 3810 msleep(1); 3811 slept_jiffies = jiffies - begin_jiffies; 3812 3813 remaining_jiffies -= min(slept_jiffies, remaining_jiffies); 3814 3815 last_diff = diff; 3816 } 3817 3818 return (diff == 0); 3819 } 3820 3821 /** 3822 * pr_flush() - Wait for printing threads to catch up. 3823 * 3824 * @timeout_ms: The maximum time (in ms) to wait. 3825 * @reset_on_progress: Reset the timeout if forward progress is seen. 3826 * 3827 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3828 * represents infinite waiting. 3829 * 3830 * If @reset_on_progress is true, the timeout will be reset whenever any 3831 * printer has been seen to make some forward progress. 3832 * 3833 * Context: Process context. May sleep while acquiring console lock. 3834 * Return: true if all usable printers are caught up. 3835 */ 3836 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3837 { 3838 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3839 } 3840 3841 /* 3842 * Delayed printk version, for scheduler-internal messages: 3843 */ 3844 #define PRINTK_PENDING_WAKEUP 0x01 3845 #define PRINTK_PENDING_OUTPUT 0x02 3846 3847 static DEFINE_PER_CPU(int, printk_pending); 3848 3849 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3850 { 3851 int pending = this_cpu_xchg(printk_pending, 0); 3852 3853 if (pending & PRINTK_PENDING_OUTPUT) { 3854 /* If trylock fails, someone else is doing the printing */ 3855 if (console_trylock()) 3856 console_unlock(); 3857 } 3858 3859 if (pending & PRINTK_PENDING_WAKEUP) 3860 wake_up_interruptible(&log_wait); 3861 } 3862 3863 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3864 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3865 3866 static void __wake_up_klogd(int val) 3867 { 3868 if (!printk_percpu_data_ready()) 3869 return; 3870 3871 preempt_disable(); 3872 /* 3873 * Guarantee any new records can be seen by tasks preparing to wait 3874 * before this context checks if the wait queue is empty. 3875 * 3876 * The full memory barrier within wq_has_sleeper() pairs with the full 3877 * memory barrier within set_current_state() of 3878 * prepare_to_wait_event(), which is called after ___wait_event() adds 3879 * the waiter but before it has checked the wait condition. 3880 * 3881 * This pairs with devkmsg_read:A and syslog_print:A. 3882 */ 3883 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3884 (val & PRINTK_PENDING_OUTPUT)) { 3885 this_cpu_or(printk_pending, val); 3886 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3887 } 3888 preempt_enable(); 3889 } 3890 3891 /** 3892 * wake_up_klogd - Wake kernel logging daemon 3893 * 3894 * Use this function when new records have been added to the ringbuffer 3895 * and the console printing of those records has already occurred or is 3896 * known to be handled by some other context. This function will only 3897 * wake the logging daemon. 3898 * 3899 * Context: Any context. 3900 */ 3901 void wake_up_klogd(void) 3902 { 3903 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3904 } 3905 3906 /** 3907 * defer_console_output - Wake kernel logging daemon and trigger 3908 * console printing in a deferred context 3909 * 3910 * Use this function when new records have been added to the ringbuffer, 3911 * this context is responsible for console printing those records, but 3912 * the current context is not allowed to perform the console printing. 3913 * Trigger an irq_work context to perform the console printing. This 3914 * function also wakes the logging daemon. 3915 * 3916 * Context: Any context. 3917 */ 3918 void defer_console_output(void) 3919 { 3920 /* 3921 * New messages may have been added directly to the ringbuffer 3922 * using vprintk_store(), so wake any waiters as well. 3923 */ 3924 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3925 } 3926 3927 void printk_trigger_flush(void) 3928 { 3929 defer_console_output(); 3930 } 3931 3932 int vprintk_deferred(const char *fmt, va_list args) 3933 { 3934 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3935 } 3936 3937 int _printk_deferred(const char *fmt, ...) 3938 { 3939 va_list args; 3940 int r; 3941 3942 va_start(args, fmt); 3943 r = vprintk_deferred(fmt, args); 3944 va_end(args); 3945 3946 return r; 3947 } 3948 3949 /* 3950 * printk rate limiting, lifted from the networking subsystem. 3951 * 3952 * This enforces a rate limit: not more than 10 kernel messages 3953 * every 5s to make a denial-of-service attack impossible. 3954 */ 3955 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3956 3957 int __printk_ratelimit(const char *func) 3958 { 3959 return ___ratelimit(&printk_ratelimit_state, func); 3960 } 3961 EXPORT_SYMBOL(__printk_ratelimit); 3962 3963 /** 3964 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3965 * @caller_jiffies: pointer to caller's state 3966 * @interval_msecs: minimum interval between prints 3967 * 3968 * printk_timed_ratelimit() returns true if more than @interval_msecs 3969 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3970 * returned true. 3971 */ 3972 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3973 unsigned int interval_msecs) 3974 { 3975 unsigned long elapsed = jiffies - *caller_jiffies; 3976 3977 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3978 return false; 3979 3980 *caller_jiffies = jiffies; 3981 return true; 3982 } 3983 EXPORT_SYMBOL(printk_timed_ratelimit); 3984 3985 static DEFINE_SPINLOCK(dump_list_lock); 3986 static LIST_HEAD(dump_list); 3987 3988 /** 3989 * kmsg_dump_register - register a kernel log dumper. 3990 * @dumper: pointer to the kmsg_dumper structure 3991 * 3992 * Adds a kernel log dumper to the system. The dump callback in the 3993 * structure will be called when the kernel oopses or panics and must be 3994 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3995 */ 3996 int kmsg_dump_register(struct kmsg_dumper *dumper) 3997 { 3998 unsigned long flags; 3999 int err = -EBUSY; 4000 4001 /* The dump callback needs to be set */ 4002 if (!dumper->dump) 4003 return -EINVAL; 4004 4005 spin_lock_irqsave(&dump_list_lock, flags); 4006 /* Don't allow registering multiple times */ 4007 if (!dumper->registered) { 4008 dumper->registered = 1; 4009 list_add_tail_rcu(&dumper->list, &dump_list); 4010 err = 0; 4011 } 4012 spin_unlock_irqrestore(&dump_list_lock, flags); 4013 4014 return err; 4015 } 4016 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4017 4018 /** 4019 * kmsg_dump_unregister - unregister a kmsg dumper. 4020 * @dumper: pointer to the kmsg_dumper structure 4021 * 4022 * Removes a dump device from the system. Returns zero on success and 4023 * %-EINVAL otherwise. 4024 */ 4025 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4026 { 4027 unsigned long flags; 4028 int err = -EINVAL; 4029 4030 spin_lock_irqsave(&dump_list_lock, flags); 4031 if (dumper->registered) { 4032 dumper->registered = 0; 4033 list_del_rcu(&dumper->list); 4034 err = 0; 4035 } 4036 spin_unlock_irqrestore(&dump_list_lock, flags); 4037 synchronize_rcu(); 4038 4039 return err; 4040 } 4041 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4042 4043 static bool always_kmsg_dump; 4044 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4045 4046 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4047 { 4048 switch (reason) { 4049 case KMSG_DUMP_PANIC: 4050 return "Panic"; 4051 case KMSG_DUMP_OOPS: 4052 return "Oops"; 4053 case KMSG_DUMP_EMERG: 4054 return "Emergency"; 4055 case KMSG_DUMP_SHUTDOWN: 4056 return "Shutdown"; 4057 default: 4058 return "Unknown"; 4059 } 4060 } 4061 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4062 4063 /** 4064 * kmsg_dump - dump kernel log to kernel message dumpers. 4065 * @reason: the reason (oops, panic etc) for dumping 4066 * 4067 * Call each of the registered dumper's dump() callback, which can 4068 * retrieve the kmsg records with kmsg_dump_get_line() or 4069 * kmsg_dump_get_buffer(). 4070 */ 4071 void kmsg_dump(enum kmsg_dump_reason reason) 4072 { 4073 struct kmsg_dumper *dumper; 4074 4075 rcu_read_lock(); 4076 list_for_each_entry_rcu(dumper, &dump_list, list) { 4077 enum kmsg_dump_reason max_reason = dumper->max_reason; 4078 4079 /* 4080 * If client has not provided a specific max_reason, default 4081 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4082 */ 4083 if (max_reason == KMSG_DUMP_UNDEF) { 4084 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4085 KMSG_DUMP_OOPS; 4086 } 4087 if (reason > max_reason) 4088 continue; 4089 4090 /* invoke dumper which will iterate over records */ 4091 dumper->dump(dumper, reason); 4092 } 4093 rcu_read_unlock(); 4094 } 4095 4096 /** 4097 * kmsg_dump_get_line - retrieve one kmsg log line 4098 * @iter: kmsg dump iterator 4099 * @syslog: include the "<4>" prefixes 4100 * @line: buffer to copy the line to 4101 * @size: maximum size of the buffer 4102 * @len: length of line placed into buffer 4103 * 4104 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4105 * record, and copy one record into the provided buffer. 4106 * 4107 * Consecutive calls will return the next available record moving 4108 * towards the end of the buffer with the youngest messages. 4109 * 4110 * A return value of FALSE indicates that there are no more records to 4111 * read. 4112 */ 4113 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4114 char *line, size_t size, size_t *len) 4115 { 4116 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4117 struct printk_info info; 4118 unsigned int line_count; 4119 struct printk_record r; 4120 size_t l = 0; 4121 bool ret = false; 4122 4123 if (iter->cur_seq < min_seq) 4124 iter->cur_seq = min_seq; 4125 4126 prb_rec_init_rd(&r, &info, line, size); 4127 4128 /* Read text or count text lines? */ 4129 if (line) { 4130 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4131 goto out; 4132 l = record_print_text(&r, syslog, printk_time); 4133 } else { 4134 if (!prb_read_valid_info(prb, iter->cur_seq, 4135 &info, &line_count)) { 4136 goto out; 4137 } 4138 l = get_record_print_text_size(&info, line_count, syslog, 4139 printk_time); 4140 4141 } 4142 4143 iter->cur_seq = r.info->seq + 1; 4144 ret = true; 4145 out: 4146 if (len) 4147 *len = l; 4148 return ret; 4149 } 4150 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4151 4152 /** 4153 * kmsg_dump_get_buffer - copy kmsg log lines 4154 * @iter: kmsg dump iterator 4155 * @syslog: include the "<4>" prefixes 4156 * @buf: buffer to copy the line to 4157 * @size: maximum size of the buffer 4158 * @len_out: length of line placed into buffer 4159 * 4160 * Start at the end of the kmsg buffer and fill the provided buffer 4161 * with as many of the *youngest* kmsg records that fit into it. 4162 * If the buffer is large enough, all available kmsg records will be 4163 * copied with a single call. 4164 * 4165 * Consecutive calls will fill the buffer with the next block of 4166 * available older records, not including the earlier retrieved ones. 4167 * 4168 * A return value of FALSE indicates that there are no more records to 4169 * read. 4170 */ 4171 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4172 char *buf, size_t size, size_t *len_out) 4173 { 4174 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4175 struct printk_info info; 4176 struct printk_record r; 4177 u64 seq; 4178 u64 next_seq; 4179 size_t len = 0; 4180 bool ret = false; 4181 bool time = printk_time; 4182 4183 if (!buf || !size) 4184 goto out; 4185 4186 if (iter->cur_seq < min_seq) 4187 iter->cur_seq = min_seq; 4188 4189 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4190 if (info.seq != iter->cur_seq) { 4191 /* messages are gone, move to first available one */ 4192 iter->cur_seq = info.seq; 4193 } 4194 } 4195 4196 /* last entry */ 4197 if (iter->cur_seq >= iter->next_seq) 4198 goto out; 4199 4200 /* 4201 * Find first record that fits, including all following records, 4202 * into the user-provided buffer for this dump. Pass in size-1 4203 * because this function (by way of record_print_text()) will 4204 * not write more than size-1 bytes of text into @buf. 4205 */ 4206 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4207 size - 1, syslog, time); 4208 4209 /* 4210 * Next kmsg_dump_get_buffer() invocation will dump block of 4211 * older records stored right before this one. 4212 */ 4213 next_seq = seq; 4214 4215 prb_rec_init_rd(&r, &info, buf, size); 4216 4217 prb_for_each_record(seq, prb, seq, &r) { 4218 if (r.info->seq >= iter->next_seq) 4219 break; 4220 4221 len += record_print_text(&r, syslog, time); 4222 4223 /* Adjust record to store to remaining buffer space. */ 4224 prb_rec_init_rd(&r, &info, buf + len, size - len); 4225 } 4226 4227 iter->next_seq = next_seq; 4228 ret = true; 4229 out: 4230 if (len_out) 4231 *len_out = len; 4232 return ret; 4233 } 4234 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4235 4236 /** 4237 * kmsg_dump_rewind - reset the iterator 4238 * @iter: kmsg dump iterator 4239 * 4240 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4241 * kmsg_dump_get_buffer() can be called again and used multiple 4242 * times within the same dumper.dump() callback. 4243 */ 4244 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4245 { 4246 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4247 iter->next_seq = prb_next_seq(prb); 4248 } 4249 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4250 4251 #endif 4252 4253 #ifdef CONFIG_SMP 4254 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4255 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4256 4257 /** 4258 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4259 * spinning lock is not owned by any CPU. 4260 * 4261 * Context: Any context. 4262 */ 4263 void __printk_cpu_sync_wait(void) 4264 { 4265 do { 4266 cpu_relax(); 4267 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4268 } 4269 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4270 4271 /** 4272 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4273 * spinning lock. 4274 * 4275 * If no processor has the lock, the calling processor takes the lock and 4276 * becomes the owner. If the calling processor is already the owner of the 4277 * lock, this function succeeds immediately. 4278 * 4279 * Context: Any context. Expects interrupts to be disabled. 4280 * Return: 1 on success, otherwise 0. 4281 */ 4282 int __printk_cpu_sync_try_get(void) 4283 { 4284 int cpu; 4285 int old; 4286 4287 cpu = smp_processor_id(); 4288 4289 /* 4290 * Guarantee loads and stores from this CPU when it is the lock owner 4291 * are _not_ visible to the previous lock owner. This pairs with 4292 * __printk_cpu_sync_put:B. 4293 * 4294 * Memory barrier involvement: 4295 * 4296 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4297 * then __printk_cpu_sync_put:A can never read from 4298 * __printk_cpu_sync_try_get:B. 4299 * 4300 * Relies on: 4301 * 4302 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4303 * of the previous CPU 4304 * matching 4305 * ACQUIRE from __printk_cpu_sync_try_get:A to 4306 * __printk_cpu_sync_try_get:B of this CPU 4307 */ 4308 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4309 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4310 if (old == -1) { 4311 /* 4312 * This CPU is now the owner and begins loading/storing 4313 * data: LMM(__printk_cpu_sync_try_get:B) 4314 */ 4315 return 1; 4316 4317 } else if (old == cpu) { 4318 /* This CPU is already the owner. */ 4319 atomic_inc(&printk_cpu_sync_nested); 4320 return 1; 4321 } 4322 4323 return 0; 4324 } 4325 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4326 4327 /** 4328 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4329 * 4330 * The calling processor must be the owner of the lock. 4331 * 4332 * Context: Any context. Expects interrupts to be disabled. 4333 */ 4334 void __printk_cpu_sync_put(void) 4335 { 4336 if (atomic_read(&printk_cpu_sync_nested)) { 4337 atomic_dec(&printk_cpu_sync_nested); 4338 return; 4339 } 4340 4341 /* 4342 * This CPU is finished loading/storing data: 4343 * LMM(__printk_cpu_sync_put:A) 4344 */ 4345 4346 /* 4347 * Guarantee loads and stores from this CPU when it was the 4348 * lock owner are visible to the next lock owner. This pairs 4349 * with __printk_cpu_sync_try_get:A. 4350 * 4351 * Memory barrier involvement: 4352 * 4353 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4354 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4355 * 4356 * Relies on: 4357 * 4358 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4359 * of this CPU 4360 * matching 4361 * ACQUIRE from __printk_cpu_sync_try_get:A to 4362 * __printk_cpu_sync_try_get:B of the next CPU 4363 */ 4364 atomic_set_release(&printk_cpu_sync_owner, 4365 -1); /* LMM(__printk_cpu_sync_put:B) */ 4366 } 4367 EXPORT_SYMBOL(__printk_cpu_sync_put); 4368 #endif /* CONFIG_SMP */ 4369