1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/crash_core.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/rculist.h> 42 #include <linux/poll.h> 43 #include <linux/irq_work.h> 44 #include <linux/ctype.h> 45 #include <linux/uio.h> 46 #include <linux/sched/clock.h> 47 #include <linux/sched/debug.h> 48 #include <linux/sched/task_stack.h> 49 50 #include <linux/uaccess.h> 51 #include <asm/sections.h> 52 53 #include <trace/events/initcall.h> 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/printk.h> 56 57 #include "console_cmdline.h" 58 #include "braille.h" 59 #include "internal.h" 60 61 int console_printk[4] = { 62 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 63 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 64 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 65 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 66 }; 67 68 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 69 EXPORT_SYMBOL(ignore_console_lock_warning); 70 71 /* 72 * Low level drivers may need that to know if they can schedule in 73 * their unblank() callback or not. So let's export it. 74 */ 75 int oops_in_progress; 76 EXPORT_SYMBOL(oops_in_progress); 77 78 /* 79 * console_sem protects the console_drivers list, and also 80 * provides serialisation for access to the entire console 81 * driver system. 82 */ 83 static DEFINE_SEMAPHORE(console_sem); 84 struct console *console_drivers; 85 EXPORT_SYMBOL_GPL(console_drivers); 86 87 #ifdef CONFIG_LOCKDEP 88 static struct lockdep_map console_lock_dep_map = { 89 .name = "console_lock" 90 }; 91 #endif 92 93 enum devkmsg_log_bits { 94 __DEVKMSG_LOG_BIT_ON = 0, 95 __DEVKMSG_LOG_BIT_OFF, 96 __DEVKMSG_LOG_BIT_LOCK, 97 }; 98 99 enum devkmsg_log_masks { 100 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 101 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 102 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 103 }; 104 105 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 106 #define DEVKMSG_LOG_MASK_DEFAULT 0 107 108 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 109 110 static int __control_devkmsg(char *str) 111 { 112 if (!str) 113 return -EINVAL; 114 115 if (!strncmp(str, "on", 2)) { 116 devkmsg_log = DEVKMSG_LOG_MASK_ON; 117 return 2; 118 } else if (!strncmp(str, "off", 3)) { 119 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 120 return 3; 121 } else if (!strncmp(str, "ratelimit", 9)) { 122 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 123 return 9; 124 } 125 return -EINVAL; 126 } 127 128 static int __init control_devkmsg(char *str) 129 { 130 if (__control_devkmsg(str) < 0) 131 return 1; 132 133 /* 134 * Set sysctl string accordingly: 135 */ 136 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 137 strcpy(devkmsg_log_str, "on"); 138 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 139 strcpy(devkmsg_log_str, "off"); 140 /* else "ratelimit" which is set by default. */ 141 142 /* 143 * Sysctl cannot change it anymore. The kernel command line setting of 144 * this parameter is to force the setting to be permanent throughout the 145 * runtime of the system. This is a precation measure against userspace 146 * trying to be a smarta** and attempting to change it up on us. 147 */ 148 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 149 150 return 0; 151 } 152 __setup("printk.devkmsg=", control_devkmsg); 153 154 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 155 156 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 157 void __user *buffer, size_t *lenp, loff_t *ppos) 158 { 159 char old_str[DEVKMSG_STR_MAX_SIZE]; 160 unsigned int old; 161 int err; 162 163 if (write) { 164 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 165 return -EINVAL; 166 167 old = devkmsg_log; 168 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 169 } 170 171 err = proc_dostring(table, write, buffer, lenp, ppos); 172 if (err) 173 return err; 174 175 if (write) { 176 err = __control_devkmsg(devkmsg_log_str); 177 178 /* 179 * Do not accept an unknown string OR a known string with 180 * trailing crap... 181 */ 182 if (err < 0 || (err + 1 != *lenp)) { 183 184 /* ... and restore old setting. */ 185 devkmsg_log = old; 186 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 187 188 return -EINVAL; 189 } 190 } 191 192 return 0; 193 } 194 195 /* 196 * Number of registered extended console drivers. 197 * 198 * If extended consoles are present, in-kernel cont reassembly is disabled 199 * and each fragment is stored as a separate log entry with proper 200 * continuation flag so that every emitted message has full metadata. This 201 * doesn't change the result for regular consoles or /proc/kmsg. For 202 * /dev/kmsg, as long as the reader concatenates messages according to 203 * consecutive continuation flags, the end result should be the same too. 204 */ 205 static int nr_ext_console_drivers; 206 207 /* 208 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 209 * macros instead of functions so that _RET_IP_ contains useful information. 210 */ 211 #define down_console_sem() do { \ 212 down(&console_sem);\ 213 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 214 } while (0) 215 216 static int __down_trylock_console_sem(unsigned long ip) 217 { 218 int lock_failed; 219 unsigned long flags; 220 221 /* 222 * Here and in __up_console_sem() we need to be in safe mode, 223 * because spindump/WARN/etc from under console ->lock will 224 * deadlock in printk()->down_trylock_console_sem() otherwise. 225 */ 226 printk_safe_enter_irqsave(flags); 227 lock_failed = down_trylock(&console_sem); 228 printk_safe_exit_irqrestore(flags); 229 230 if (lock_failed) 231 return 1; 232 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 233 return 0; 234 } 235 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 236 237 static void __up_console_sem(unsigned long ip) 238 { 239 unsigned long flags; 240 241 mutex_release(&console_lock_dep_map, 1, ip); 242 243 printk_safe_enter_irqsave(flags); 244 up(&console_sem); 245 printk_safe_exit_irqrestore(flags); 246 } 247 #define up_console_sem() __up_console_sem(_RET_IP_) 248 249 /* 250 * This is used for debugging the mess that is the VT code by 251 * keeping track if we have the console semaphore held. It's 252 * definitely not the perfect debug tool (we don't know if _WE_ 253 * hold it and are racing, but it helps tracking those weird code 254 * paths in the console code where we end up in places I want 255 * locked without the console sempahore held). 256 */ 257 static int console_locked, console_suspended; 258 259 /* 260 * If exclusive_console is non-NULL then only this console is to be printed to. 261 */ 262 static struct console *exclusive_console; 263 264 /* 265 * Array of consoles built from command line options (console=) 266 */ 267 268 #define MAX_CMDLINECONSOLES 8 269 270 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 271 272 static int preferred_console = -1; 273 int console_set_on_cmdline; 274 EXPORT_SYMBOL(console_set_on_cmdline); 275 276 /* Flag: console code may call schedule() */ 277 static int console_may_schedule; 278 279 enum con_msg_format_flags { 280 MSG_FORMAT_DEFAULT = 0, 281 MSG_FORMAT_SYSLOG = (1 << 0), 282 }; 283 284 static int console_msg_format = MSG_FORMAT_DEFAULT; 285 286 /* 287 * The printk log buffer consists of a chain of concatenated variable 288 * length records. Every record starts with a record header, containing 289 * the overall length of the record. 290 * 291 * The heads to the first and last entry in the buffer, as well as the 292 * sequence numbers of these entries are maintained when messages are 293 * stored. 294 * 295 * If the heads indicate available messages, the length in the header 296 * tells the start next message. A length == 0 for the next message 297 * indicates a wrap-around to the beginning of the buffer. 298 * 299 * Every record carries the monotonic timestamp in microseconds, as well as 300 * the standard userspace syslog level and syslog facility. The usual 301 * kernel messages use LOG_KERN; userspace-injected messages always carry 302 * a matching syslog facility, by default LOG_USER. The origin of every 303 * message can be reliably determined that way. 304 * 305 * The human readable log message directly follows the message header. The 306 * length of the message text is stored in the header, the stored message 307 * is not terminated. 308 * 309 * Optionally, a message can carry a dictionary of properties (key/value pairs), 310 * to provide userspace with a machine-readable message context. 311 * 312 * Examples for well-defined, commonly used property names are: 313 * DEVICE=b12:8 device identifier 314 * b12:8 block dev_t 315 * c127:3 char dev_t 316 * n8 netdev ifindex 317 * +sound:card0 subsystem:devname 318 * SUBSYSTEM=pci driver-core subsystem name 319 * 320 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 321 * follows directly after a '=' character. Every property is terminated by 322 * a '\0' character. The last property is not terminated. 323 * 324 * Example of a message structure: 325 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 326 * 0008 34 00 record is 52 bytes long 327 * 000a 0b 00 text is 11 bytes long 328 * 000c 1f 00 dictionary is 23 bytes long 329 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 330 * 0010 69 74 27 73 20 61 20 6c "it's a l" 331 * 69 6e 65 "ine" 332 * 001b 44 45 56 49 43 "DEVIC" 333 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 334 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 335 * 67 "g" 336 * 0032 00 00 00 padding to next message header 337 * 338 * The 'struct printk_log' buffer header must never be directly exported to 339 * userspace, it is a kernel-private implementation detail that might 340 * need to be changed in the future, when the requirements change. 341 * 342 * /dev/kmsg exports the structured data in the following line format: 343 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 344 * 345 * Users of the export format should ignore possible additional values 346 * separated by ',', and find the message after the ';' character. 347 * 348 * The optional key/value pairs are attached as continuation lines starting 349 * with a space character and terminated by a newline. All possible 350 * non-prinatable characters are escaped in the "\xff" notation. 351 */ 352 353 enum log_flags { 354 LOG_NOCONS = 1, /* suppress print, do not print to console */ 355 LOG_NEWLINE = 2, /* text ended with a newline */ 356 LOG_PREFIX = 4, /* text started with a prefix */ 357 LOG_CONT = 8, /* text is a fragment of a continuation line */ 358 }; 359 360 struct printk_log { 361 u64 ts_nsec; /* timestamp in nanoseconds */ 362 u16 len; /* length of entire record */ 363 u16 text_len; /* length of text buffer */ 364 u16 dict_len; /* length of dictionary buffer */ 365 u8 facility; /* syslog facility */ 366 u8 flags:5; /* internal record flags */ 367 u8 level:3; /* syslog level */ 368 } 369 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 370 __packed __aligned(4) 371 #endif 372 ; 373 374 /* 375 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 376 * within the scheduler's rq lock. It must be released before calling 377 * console_unlock() or anything else that might wake up a process. 378 */ 379 DEFINE_RAW_SPINLOCK(logbuf_lock); 380 381 /* 382 * Helper macros to lock/unlock logbuf_lock and switch between 383 * printk-safe/unsafe modes. 384 */ 385 #define logbuf_lock_irq() \ 386 do { \ 387 printk_safe_enter_irq(); \ 388 raw_spin_lock(&logbuf_lock); \ 389 } while (0) 390 391 #define logbuf_unlock_irq() \ 392 do { \ 393 raw_spin_unlock(&logbuf_lock); \ 394 printk_safe_exit_irq(); \ 395 } while (0) 396 397 #define logbuf_lock_irqsave(flags) \ 398 do { \ 399 printk_safe_enter_irqsave(flags); \ 400 raw_spin_lock(&logbuf_lock); \ 401 } while (0) 402 403 #define logbuf_unlock_irqrestore(flags) \ 404 do { \ 405 raw_spin_unlock(&logbuf_lock); \ 406 printk_safe_exit_irqrestore(flags); \ 407 } while (0) 408 409 #ifdef CONFIG_PRINTK 410 DECLARE_WAIT_QUEUE_HEAD(log_wait); 411 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 412 static u64 syslog_seq; 413 static u32 syslog_idx; 414 static size_t syslog_partial; 415 416 /* index and sequence number of the first record stored in the buffer */ 417 static u64 log_first_seq; 418 static u32 log_first_idx; 419 420 /* index and sequence number of the next record to store in the buffer */ 421 static u64 log_next_seq; 422 static u32 log_next_idx; 423 424 /* the next printk record to write to the console */ 425 static u64 console_seq; 426 static u32 console_idx; 427 428 /* the next printk record to read after the last 'clear' command */ 429 static u64 clear_seq; 430 static u32 clear_idx; 431 432 #define PREFIX_MAX 32 433 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 434 435 #define LOG_LEVEL(v) ((v) & 0x07) 436 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 437 438 /* record buffer */ 439 #define LOG_ALIGN __alignof__(struct printk_log) 440 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 441 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 442 static char *log_buf = __log_buf; 443 static u32 log_buf_len = __LOG_BUF_LEN; 444 445 /* Return log buffer address */ 446 char *log_buf_addr_get(void) 447 { 448 return log_buf; 449 } 450 451 /* Return log buffer size */ 452 u32 log_buf_len_get(void) 453 { 454 return log_buf_len; 455 } 456 457 /* human readable text of the record */ 458 static char *log_text(const struct printk_log *msg) 459 { 460 return (char *)msg + sizeof(struct printk_log); 461 } 462 463 /* optional key/value pair dictionary attached to the record */ 464 static char *log_dict(const struct printk_log *msg) 465 { 466 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 467 } 468 469 /* get record by index; idx must point to valid msg */ 470 static struct printk_log *log_from_idx(u32 idx) 471 { 472 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 473 474 /* 475 * A length == 0 record is the end of buffer marker. Wrap around and 476 * read the message at the start of the buffer. 477 */ 478 if (!msg->len) 479 return (struct printk_log *)log_buf; 480 return msg; 481 } 482 483 /* get next record; idx must point to valid msg */ 484 static u32 log_next(u32 idx) 485 { 486 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 487 488 /* length == 0 indicates the end of the buffer; wrap */ 489 /* 490 * A length == 0 record is the end of buffer marker. Wrap around and 491 * read the message at the start of the buffer as *this* one, and 492 * return the one after that. 493 */ 494 if (!msg->len) { 495 msg = (struct printk_log *)log_buf; 496 return msg->len; 497 } 498 return idx + msg->len; 499 } 500 501 /* 502 * Check whether there is enough free space for the given message. 503 * 504 * The same values of first_idx and next_idx mean that the buffer 505 * is either empty or full. 506 * 507 * If the buffer is empty, we must respect the position of the indexes. 508 * They cannot be reset to the beginning of the buffer. 509 */ 510 static int logbuf_has_space(u32 msg_size, bool empty) 511 { 512 u32 free; 513 514 if (log_next_idx > log_first_idx || empty) 515 free = max(log_buf_len - log_next_idx, log_first_idx); 516 else 517 free = log_first_idx - log_next_idx; 518 519 /* 520 * We need space also for an empty header that signalizes wrapping 521 * of the buffer. 522 */ 523 return free >= msg_size + sizeof(struct printk_log); 524 } 525 526 static int log_make_free_space(u32 msg_size) 527 { 528 while (log_first_seq < log_next_seq && 529 !logbuf_has_space(msg_size, false)) { 530 /* drop old messages until we have enough contiguous space */ 531 log_first_idx = log_next(log_first_idx); 532 log_first_seq++; 533 } 534 535 if (clear_seq < log_first_seq) { 536 clear_seq = log_first_seq; 537 clear_idx = log_first_idx; 538 } 539 540 /* sequence numbers are equal, so the log buffer is empty */ 541 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 542 return 0; 543 544 return -ENOMEM; 545 } 546 547 /* compute the message size including the padding bytes */ 548 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 549 { 550 u32 size; 551 552 size = sizeof(struct printk_log) + text_len + dict_len; 553 *pad_len = (-size) & (LOG_ALIGN - 1); 554 size += *pad_len; 555 556 return size; 557 } 558 559 /* 560 * Define how much of the log buffer we could take at maximum. The value 561 * must be greater than two. Note that only half of the buffer is available 562 * when the index points to the middle. 563 */ 564 #define MAX_LOG_TAKE_PART 4 565 static const char trunc_msg[] = "<truncated>"; 566 567 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 568 u16 *dict_len, u32 *pad_len) 569 { 570 /* 571 * The message should not take the whole buffer. Otherwise, it might 572 * get removed too soon. 573 */ 574 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 575 if (*text_len > max_text_len) 576 *text_len = max_text_len; 577 /* enable the warning message */ 578 *trunc_msg_len = strlen(trunc_msg); 579 /* disable the "dict" completely */ 580 *dict_len = 0; 581 /* compute the size again, count also the warning message */ 582 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 583 } 584 585 /* insert record into the buffer, discard old ones, update heads */ 586 static int log_store(int facility, int level, 587 enum log_flags flags, u64 ts_nsec, 588 const char *dict, u16 dict_len, 589 const char *text, u16 text_len) 590 { 591 struct printk_log *msg; 592 u32 size, pad_len; 593 u16 trunc_msg_len = 0; 594 595 /* number of '\0' padding bytes to next message */ 596 size = msg_used_size(text_len, dict_len, &pad_len); 597 598 if (log_make_free_space(size)) { 599 /* truncate the message if it is too long for empty buffer */ 600 size = truncate_msg(&text_len, &trunc_msg_len, 601 &dict_len, &pad_len); 602 /* survive when the log buffer is too small for trunc_msg */ 603 if (log_make_free_space(size)) 604 return 0; 605 } 606 607 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 608 /* 609 * This message + an additional empty header does not fit 610 * at the end of the buffer. Add an empty header with len == 0 611 * to signify a wrap around. 612 */ 613 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 614 log_next_idx = 0; 615 } 616 617 /* fill message */ 618 msg = (struct printk_log *)(log_buf + log_next_idx); 619 memcpy(log_text(msg), text, text_len); 620 msg->text_len = text_len; 621 if (trunc_msg_len) { 622 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 623 msg->text_len += trunc_msg_len; 624 } 625 memcpy(log_dict(msg), dict, dict_len); 626 msg->dict_len = dict_len; 627 msg->facility = facility; 628 msg->level = level & 7; 629 msg->flags = flags & 0x1f; 630 if (ts_nsec > 0) 631 msg->ts_nsec = ts_nsec; 632 else 633 msg->ts_nsec = local_clock(); 634 memset(log_dict(msg) + dict_len, 0, pad_len); 635 msg->len = size; 636 637 /* insert message */ 638 log_next_idx += msg->len; 639 log_next_seq++; 640 641 return msg->text_len; 642 } 643 644 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 645 646 static int syslog_action_restricted(int type) 647 { 648 if (dmesg_restrict) 649 return 1; 650 /* 651 * Unless restricted, we allow "read all" and "get buffer size" 652 * for everybody. 653 */ 654 return type != SYSLOG_ACTION_READ_ALL && 655 type != SYSLOG_ACTION_SIZE_BUFFER; 656 } 657 658 static int check_syslog_permissions(int type, int source) 659 { 660 /* 661 * If this is from /proc/kmsg and we've already opened it, then we've 662 * already done the capabilities checks at open time. 663 */ 664 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 665 goto ok; 666 667 if (syslog_action_restricted(type)) { 668 if (capable(CAP_SYSLOG)) 669 goto ok; 670 /* 671 * For historical reasons, accept CAP_SYS_ADMIN too, with 672 * a warning. 673 */ 674 if (capable(CAP_SYS_ADMIN)) { 675 pr_warn_once("%s (%d): Attempt to access syslog with " 676 "CAP_SYS_ADMIN but no CAP_SYSLOG " 677 "(deprecated).\n", 678 current->comm, task_pid_nr(current)); 679 goto ok; 680 } 681 return -EPERM; 682 } 683 ok: 684 return security_syslog(type); 685 } 686 687 static void append_char(char **pp, char *e, char c) 688 { 689 if (*pp < e) 690 *(*pp)++ = c; 691 } 692 693 static ssize_t msg_print_ext_header(char *buf, size_t size, 694 struct printk_log *msg, u64 seq) 695 { 696 u64 ts_usec = msg->ts_nsec; 697 698 do_div(ts_usec, 1000); 699 700 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 701 (msg->facility << 3) | msg->level, seq, ts_usec, 702 msg->flags & LOG_CONT ? 'c' : '-'); 703 } 704 705 static ssize_t msg_print_ext_body(char *buf, size_t size, 706 char *dict, size_t dict_len, 707 char *text, size_t text_len) 708 { 709 char *p = buf, *e = buf + size; 710 size_t i; 711 712 /* escape non-printable characters */ 713 for (i = 0; i < text_len; i++) { 714 unsigned char c = text[i]; 715 716 if (c < ' ' || c >= 127 || c == '\\') 717 p += scnprintf(p, e - p, "\\x%02x", c); 718 else 719 append_char(&p, e, c); 720 } 721 append_char(&p, e, '\n'); 722 723 if (dict_len) { 724 bool line = true; 725 726 for (i = 0; i < dict_len; i++) { 727 unsigned char c = dict[i]; 728 729 if (line) { 730 append_char(&p, e, ' '); 731 line = false; 732 } 733 734 if (c == '\0') { 735 append_char(&p, e, '\n'); 736 line = true; 737 continue; 738 } 739 740 if (c < ' ' || c >= 127 || c == '\\') { 741 p += scnprintf(p, e - p, "\\x%02x", c); 742 continue; 743 } 744 745 append_char(&p, e, c); 746 } 747 append_char(&p, e, '\n'); 748 } 749 750 return p - buf; 751 } 752 753 /* /dev/kmsg - userspace message inject/listen interface */ 754 struct devkmsg_user { 755 u64 seq; 756 u32 idx; 757 struct ratelimit_state rs; 758 struct mutex lock; 759 char buf[CONSOLE_EXT_LOG_MAX]; 760 }; 761 762 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 763 { 764 char *buf, *line; 765 int level = default_message_loglevel; 766 int facility = 1; /* LOG_USER */ 767 struct file *file = iocb->ki_filp; 768 struct devkmsg_user *user = file->private_data; 769 size_t len = iov_iter_count(from); 770 ssize_t ret = len; 771 772 if (!user || len > LOG_LINE_MAX) 773 return -EINVAL; 774 775 /* Ignore when user logging is disabled. */ 776 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 777 return len; 778 779 /* Ratelimit when not explicitly enabled. */ 780 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 781 if (!___ratelimit(&user->rs, current->comm)) 782 return ret; 783 } 784 785 buf = kmalloc(len+1, GFP_KERNEL); 786 if (buf == NULL) 787 return -ENOMEM; 788 789 buf[len] = '\0'; 790 if (!copy_from_iter_full(buf, len, from)) { 791 kfree(buf); 792 return -EFAULT; 793 } 794 795 /* 796 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 797 * the decimal value represents 32bit, the lower 3 bit are the log 798 * level, the rest are the log facility. 799 * 800 * If no prefix or no userspace facility is specified, we 801 * enforce LOG_USER, to be able to reliably distinguish 802 * kernel-generated messages from userspace-injected ones. 803 */ 804 line = buf; 805 if (line[0] == '<') { 806 char *endp = NULL; 807 unsigned int u; 808 809 u = simple_strtoul(line + 1, &endp, 10); 810 if (endp && endp[0] == '>') { 811 level = LOG_LEVEL(u); 812 if (LOG_FACILITY(u) != 0) 813 facility = LOG_FACILITY(u); 814 endp++; 815 len -= endp - line; 816 line = endp; 817 } 818 } 819 820 printk_emit(facility, level, NULL, 0, "%s", line); 821 kfree(buf); 822 return ret; 823 } 824 825 static ssize_t devkmsg_read(struct file *file, char __user *buf, 826 size_t count, loff_t *ppos) 827 { 828 struct devkmsg_user *user = file->private_data; 829 struct printk_log *msg; 830 size_t len; 831 ssize_t ret; 832 833 if (!user) 834 return -EBADF; 835 836 ret = mutex_lock_interruptible(&user->lock); 837 if (ret) 838 return ret; 839 840 logbuf_lock_irq(); 841 while (user->seq == log_next_seq) { 842 if (file->f_flags & O_NONBLOCK) { 843 ret = -EAGAIN; 844 logbuf_unlock_irq(); 845 goto out; 846 } 847 848 logbuf_unlock_irq(); 849 ret = wait_event_interruptible(log_wait, 850 user->seq != log_next_seq); 851 if (ret) 852 goto out; 853 logbuf_lock_irq(); 854 } 855 856 if (user->seq < log_first_seq) { 857 /* our last seen message is gone, return error and reset */ 858 user->idx = log_first_idx; 859 user->seq = log_first_seq; 860 ret = -EPIPE; 861 logbuf_unlock_irq(); 862 goto out; 863 } 864 865 msg = log_from_idx(user->idx); 866 len = msg_print_ext_header(user->buf, sizeof(user->buf), 867 msg, user->seq); 868 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 869 log_dict(msg), msg->dict_len, 870 log_text(msg), msg->text_len); 871 872 user->idx = log_next(user->idx); 873 user->seq++; 874 logbuf_unlock_irq(); 875 876 if (len > count) { 877 ret = -EINVAL; 878 goto out; 879 } 880 881 if (copy_to_user(buf, user->buf, len)) { 882 ret = -EFAULT; 883 goto out; 884 } 885 ret = len; 886 out: 887 mutex_unlock(&user->lock); 888 return ret; 889 } 890 891 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 892 { 893 struct devkmsg_user *user = file->private_data; 894 loff_t ret = 0; 895 896 if (!user) 897 return -EBADF; 898 if (offset) 899 return -ESPIPE; 900 901 logbuf_lock_irq(); 902 switch (whence) { 903 case SEEK_SET: 904 /* the first record */ 905 user->idx = log_first_idx; 906 user->seq = log_first_seq; 907 break; 908 case SEEK_DATA: 909 /* 910 * The first record after the last SYSLOG_ACTION_CLEAR, 911 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 912 * changes no global state, and does not clear anything. 913 */ 914 user->idx = clear_idx; 915 user->seq = clear_seq; 916 break; 917 case SEEK_END: 918 /* after the last record */ 919 user->idx = log_next_idx; 920 user->seq = log_next_seq; 921 break; 922 default: 923 ret = -EINVAL; 924 } 925 logbuf_unlock_irq(); 926 return ret; 927 } 928 929 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 930 { 931 struct devkmsg_user *user = file->private_data; 932 __poll_t ret = 0; 933 934 if (!user) 935 return EPOLLERR|EPOLLNVAL; 936 937 poll_wait(file, &log_wait, wait); 938 939 logbuf_lock_irq(); 940 if (user->seq < log_next_seq) { 941 /* return error when data has vanished underneath us */ 942 if (user->seq < log_first_seq) 943 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 944 else 945 ret = EPOLLIN|EPOLLRDNORM; 946 } 947 logbuf_unlock_irq(); 948 949 return ret; 950 } 951 952 static int devkmsg_open(struct inode *inode, struct file *file) 953 { 954 struct devkmsg_user *user; 955 int err; 956 957 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 958 return -EPERM; 959 960 /* write-only does not need any file context */ 961 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 962 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 963 SYSLOG_FROM_READER); 964 if (err) 965 return err; 966 } 967 968 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 969 if (!user) 970 return -ENOMEM; 971 972 ratelimit_default_init(&user->rs); 973 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 974 975 mutex_init(&user->lock); 976 977 logbuf_lock_irq(); 978 user->idx = log_first_idx; 979 user->seq = log_first_seq; 980 logbuf_unlock_irq(); 981 982 file->private_data = user; 983 return 0; 984 } 985 986 static int devkmsg_release(struct inode *inode, struct file *file) 987 { 988 struct devkmsg_user *user = file->private_data; 989 990 if (!user) 991 return 0; 992 993 ratelimit_state_exit(&user->rs); 994 995 mutex_destroy(&user->lock); 996 kfree(user); 997 return 0; 998 } 999 1000 const struct file_operations kmsg_fops = { 1001 .open = devkmsg_open, 1002 .read = devkmsg_read, 1003 .write_iter = devkmsg_write, 1004 .llseek = devkmsg_llseek, 1005 .poll = devkmsg_poll, 1006 .release = devkmsg_release, 1007 }; 1008 1009 #ifdef CONFIG_CRASH_CORE 1010 /* 1011 * This appends the listed symbols to /proc/vmcore 1012 * 1013 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1014 * obtain access to symbols that are otherwise very difficult to locate. These 1015 * symbols are specifically used so that utilities can access and extract the 1016 * dmesg log from a vmcore file after a crash. 1017 */ 1018 void log_buf_vmcoreinfo_setup(void) 1019 { 1020 VMCOREINFO_SYMBOL(log_buf); 1021 VMCOREINFO_SYMBOL(log_buf_len); 1022 VMCOREINFO_SYMBOL(log_first_idx); 1023 VMCOREINFO_SYMBOL(clear_idx); 1024 VMCOREINFO_SYMBOL(log_next_idx); 1025 /* 1026 * Export struct printk_log size and field offsets. User space tools can 1027 * parse it and detect any changes to structure down the line. 1028 */ 1029 VMCOREINFO_STRUCT_SIZE(printk_log); 1030 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1031 VMCOREINFO_OFFSET(printk_log, len); 1032 VMCOREINFO_OFFSET(printk_log, text_len); 1033 VMCOREINFO_OFFSET(printk_log, dict_len); 1034 } 1035 #endif 1036 1037 /* requested log_buf_len from kernel cmdline */ 1038 static unsigned long __initdata new_log_buf_len; 1039 1040 /* we practice scaling the ring buffer by powers of 2 */ 1041 static void __init log_buf_len_update(unsigned size) 1042 { 1043 if (size) 1044 size = roundup_pow_of_two(size); 1045 if (size > log_buf_len) 1046 new_log_buf_len = size; 1047 } 1048 1049 /* save requested log_buf_len since it's too early to process it */ 1050 static int __init log_buf_len_setup(char *str) 1051 { 1052 unsigned size = memparse(str, &str); 1053 1054 log_buf_len_update(size); 1055 1056 return 0; 1057 } 1058 early_param("log_buf_len", log_buf_len_setup); 1059 1060 #ifdef CONFIG_SMP 1061 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1062 1063 static void __init log_buf_add_cpu(void) 1064 { 1065 unsigned int cpu_extra; 1066 1067 /* 1068 * archs should set up cpu_possible_bits properly with 1069 * set_cpu_possible() after setup_arch() but just in 1070 * case lets ensure this is valid. 1071 */ 1072 if (num_possible_cpus() == 1) 1073 return; 1074 1075 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1076 1077 /* by default this will only continue through for large > 64 CPUs */ 1078 if (cpu_extra <= __LOG_BUF_LEN / 2) 1079 return; 1080 1081 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1082 __LOG_CPU_MAX_BUF_LEN); 1083 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1084 cpu_extra); 1085 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1086 1087 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1088 } 1089 #else /* !CONFIG_SMP */ 1090 static inline void log_buf_add_cpu(void) {} 1091 #endif /* CONFIG_SMP */ 1092 1093 void __init setup_log_buf(int early) 1094 { 1095 unsigned long flags; 1096 char *new_log_buf; 1097 int free; 1098 1099 if (log_buf != __log_buf) 1100 return; 1101 1102 if (!early && !new_log_buf_len) 1103 log_buf_add_cpu(); 1104 1105 if (!new_log_buf_len) 1106 return; 1107 1108 if (early) { 1109 new_log_buf = 1110 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1111 } else { 1112 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1113 LOG_ALIGN); 1114 } 1115 1116 if (unlikely(!new_log_buf)) { 1117 pr_err("log_buf_len: %ld bytes not available\n", 1118 new_log_buf_len); 1119 return; 1120 } 1121 1122 logbuf_lock_irqsave(flags); 1123 log_buf_len = new_log_buf_len; 1124 log_buf = new_log_buf; 1125 new_log_buf_len = 0; 1126 free = __LOG_BUF_LEN - log_next_idx; 1127 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1128 logbuf_unlock_irqrestore(flags); 1129 1130 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1131 pr_info("early log buf free: %d(%d%%)\n", 1132 free, (free * 100) / __LOG_BUF_LEN); 1133 } 1134 1135 static bool __read_mostly ignore_loglevel; 1136 1137 static int __init ignore_loglevel_setup(char *str) 1138 { 1139 ignore_loglevel = true; 1140 pr_info("debug: ignoring loglevel setting.\n"); 1141 1142 return 0; 1143 } 1144 1145 early_param("ignore_loglevel", ignore_loglevel_setup); 1146 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1147 MODULE_PARM_DESC(ignore_loglevel, 1148 "ignore loglevel setting (prints all kernel messages to the console)"); 1149 1150 static bool suppress_message_printing(int level) 1151 { 1152 return (level >= console_loglevel && !ignore_loglevel); 1153 } 1154 1155 #ifdef CONFIG_BOOT_PRINTK_DELAY 1156 1157 static int boot_delay; /* msecs delay after each printk during bootup */ 1158 static unsigned long long loops_per_msec; /* based on boot_delay */ 1159 1160 static int __init boot_delay_setup(char *str) 1161 { 1162 unsigned long lpj; 1163 1164 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1165 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1166 1167 get_option(&str, &boot_delay); 1168 if (boot_delay > 10 * 1000) 1169 boot_delay = 0; 1170 1171 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1172 "HZ: %d, loops_per_msec: %llu\n", 1173 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1174 return 0; 1175 } 1176 early_param("boot_delay", boot_delay_setup); 1177 1178 static void boot_delay_msec(int level) 1179 { 1180 unsigned long long k; 1181 unsigned long timeout; 1182 1183 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1184 || suppress_message_printing(level)) { 1185 return; 1186 } 1187 1188 k = (unsigned long long)loops_per_msec * boot_delay; 1189 1190 timeout = jiffies + msecs_to_jiffies(boot_delay); 1191 while (k) { 1192 k--; 1193 cpu_relax(); 1194 /* 1195 * use (volatile) jiffies to prevent 1196 * compiler reduction; loop termination via jiffies 1197 * is secondary and may or may not happen. 1198 */ 1199 if (time_after(jiffies, timeout)) 1200 break; 1201 touch_nmi_watchdog(); 1202 } 1203 } 1204 #else 1205 static inline void boot_delay_msec(int level) 1206 { 1207 } 1208 #endif 1209 1210 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1211 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1212 1213 static size_t print_time(u64 ts, char *buf) 1214 { 1215 unsigned long rem_nsec; 1216 1217 if (!printk_time) 1218 return 0; 1219 1220 rem_nsec = do_div(ts, 1000000000); 1221 1222 if (!buf) 1223 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1224 1225 return sprintf(buf, "[%5lu.%06lu] ", 1226 (unsigned long)ts, rem_nsec / 1000); 1227 } 1228 1229 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1230 { 1231 size_t len = 0; 1232 unsigned int prefix = (msg->facility << 3) | msg->level; 1233 1234 if (syslog) { 1235 if (buf) { 1236 len += sprintf(buf, "<%u>", prefix); 1237 } else { 1238 len += 3; 1239 if (prefix > 999) 1240 len += 3; 1241 else if (prefix > 99) 1242 len += 2; 1243 else if (prefix > 9) 1244 len++; 1245 } 1246 } 1247 1248 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1249 return len; 1250 } 1251 1252 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1253 { 1254 const char *text = log_text(msg); 1255 size_t text_size = msg->text_len; 1256 size_t len = 0; 1257 1258 do { 1259 const char *next = memchr(text, '\n', text_size); 1260 size_t text_len; 1261 1262 if (next) { 1263 text_len = next - text; 1264 next++; 1265 text_size -= next - text; 1266 } else { 1267 text_len = text_size; 1268 } 1269 1270 if (buf) { 1271 if (print_prefix(msg, syslog, NULL) + 1272 text_len + 1 >= size - len) 1273 break; 1274 1275 len += print_prefix(msg, syslog, buf + len); 1276 memcpy(buf + len, text, text_len); 1277 len += text_len; 1278 buf[len++] = '\n'; 1279 } else { 1280 /* SYSLOG_ACTION_* buffer size only calculation */ 1281 len += print_prefix(msg, syslog, NULL); 1282 len += text_len; 1283 len++; 1284 } 1285 1286 text = next; 1287 } while (text); 1288 1289 return len; 1290 } 1291 1292 static int syslog_print(char __user *buf, int size) 1293 { 1294 char *text; 1295 struct printk_log *msg; 1296 int len = 0; 1297 1298 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1299 if (!text) 1300 return -ENOMEM; 1301 1302 while (size > 0) { 1303 size_t n; 1304 size_t skip; 1305 1306 logbuf_lock_irq(); 1307 if (syslog_seq < log_first_seq) { 1308 /* messages are gone, move to first one */ 1309 syslog_seq = log_first_seq; 1310 syslog_idx = log_first_idx; 1311 syslog_partial = 0; 1312 } 1313 if (syslog_seq == log_next_seq) { 1314 logbuf_unlock_irq(); 1315 break; 1316 } 1317 1318 skip = syslog_partial; 1319 msg = log_from_idx(syslog_idx); 1320 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1321 if (n - syslog_partial <= size) { 1322 /* message fits into buffer, move forward */ 1323 syslog_idx = log_next(syslog_idx); 1324 syslog_seq++; 1325 n -= syslog_partial; 1326 syslog_partial = 0; 1327 } else if (!len){ 1328 /* partial read(), remember position */ 1329 n = size; 1330 syslog_partial += n; 1331 } else 1332 n = 0; 1333 logbuf_unlock_irq(); 1334 1335 if (!n) 1336 break; 1337 1338 if (copy_to_user(buf, text + skip, n)) { 1339 if (!len) 1340 len = -EFAULT; 1341 break; 1342 } 1343 1344 len += n; 1345 size -= n; 1346 buf += n; 1347 } 1348 1349 kfree(text); 1350 return len; 1351 } 1352 1353 static int syslog_print_all(char __user *buf, int size, bool clear) 1354 { 1355 char *text; 1356 int len = 0; 1357 u64 next_seq; 1358 u64 seq; 1359 u32 idx; 1360 1361 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1362 if (!text) 1363 return -ENOMEM; 1364 1365 logbuf_lock_irq(); 1366 /* 1367 * Find first record that fits, including all following records, 1368 * into the user-provided buffer for this dump. 1369 */ 1370 seq = clear_seq; 1371 idx = clear_idx; 1372 while (seq < log_next_seq) { 1373 struct printk_log *msg = log_from_idx(idx); 1374 1375 len += msg_print_text(msg, true, NULL, 0); 1376 idx = log_next(idx); 1377 seq++; 1378 } 1379 1380 /* move first record forward until length fits into the buffer */ 1381 seq = clear_seq; 1382 idx = clear_idx; 1383 while (len > size && seq < log_next_seq) { 1384 struct printk_log *msg = log_from_idx(idx); 1385 1386 len -= msg_print_text(msg, true, NULL, 0); 1387 idx = log_next(idx); 1388 seq++; 1389 } 1390 1391 /* last message fitting into this dump */ 1392 next_seq = log_next_seq; 1393 1394 len = 0; 1395 while (len >= 0 && seq < next_seq) { 1396 struct printk_log *msg = log_from_idx(idx); 1397 int textlen; 1398 1399 textlen = msg_print_text(msg, true, text, 1400 LOG_LINE_MAX + PREFIX_MAX); 1401 if (textlen < 0) { 1402 len = textlen; 1403 break; 1404 } 1405 idx = log_next(idx); 1406 seq++; 1407 1408 logbuf_unlock_irq(); 1409 if (copy_to_user(buf + len, text, textlen)) 1410 len = -EFAULT; 1411 else 1412 len += textlen; 1413 logbuf_lock_irq(); 1414 1415 if (seq < log_first_seq) { 1416 /* messages are gone, move to next one */ 1417 seq = log_first_seq; 1418 idx = log_first_idx; 1419 } 1420 } 1421 1422 if (clear) { 1423 clear_seq = log_next_seq; 1424 clear_idx = log_next_idx; 1425 } 1426 logbuf_unlock_irq(); 1427 1428 kfree(text); 1429 return len; 1430 } 1431 1432 static void syslog_clear(void) 1433 { 1434 logbuf_lock_irq(); 1435 clear_seq = log_next_seq; 1436 clear_idx = log_next_idx; 1437 logbuf_unlock_irq(); 1438 } 1439 1440 int do_syslog(int type, char __user *buf, int len, int source) 1441 { 1442 bool clear = false; 1443 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1444 int error; 1445 1446 error = check_syslog_permissions(type, source); 1447 if (error) 1448 return error; 1449 1450 switch (type) { 1451 case SYSLOG_ACTION_CLOSE: /* Close log */ 1452 break; 1453 case SYSLOG_ACTION_OPEN: /* Open log */ 1454 break; 1455 case SYSLOG_ACTION_READ: /* Read from log */ 1456 if (!buf || len < 0) 1457 return -EINVAL; 1458 if (!len) 1459 return 0; 1460 if (!access_ok(VERIFY_WRITE, buf, len)) 1461 return -EFAULT; 1462 error = wait_event_interruptible(log_wait, 1463 syslog_seq != log_next_seq); 1464 if (error) 1465 return error; 1466 error = syslog_print(buf, len); 1467 break; 1468 /* Read/clear last kernel messages */ 1469 case SYSLOG_ACTION_READ_CLEAR: 1470 clear = true; 1471 /* FALL THRU */ 1472 /* Read last kernel messages */ 1473 case SYSLOG_ACTION_READ_ALL: 1474 if (!buf || len < 0) 1475 return -EINVAL; 1476 if (!len) 1477 return 0; 1478 if (!access_ok(VERIFY_WRITE, buf, len)) 1479 return -EFAULT; 1480 error = syslog_print_all(buf, len, clear); 1481 break; 1482 /* Clear ring buffer */ 1483 case SYSLOG_ACTION_CLEAR: 1484 syslog_clear(); 1485 break; 1486 /* Disable logging to console */ 1487 case SYSLOG_ACTION_CONSOLE_OFF: 1488 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1489 saved_console_loglevel = console_loglevel; 1490 console_loglevel = minimum_console_loglevel; 1491 break; 1492 /* Enable logging to console */ 1493 case SYSLOG_ACTION_CONSOLE_ON: 1494 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1495 console_loglevel = saved_console_loglevel; 1496 saved_console_loglevel = LOGLEVEL_DEFAULT; 1497 } 1498 break; 1499 /* Set level of messages printed to console */ 1500 case SYSLOG_ACTION_CONSOLE_LEVEL: 1501 if (len < 1 || len > 8) 1502 return -EINVAL; 1503 if (len < minimum_console_loglevel) 1504 len = minimum_console_loglevel; 1505 console_loglevel = len; 1506 /* Implicitly re-enable logging to console */ 1507 saved_console_loglevel = LOGLEVEL_DEFAULT; 1508 break; 1509 /* Number of chars in the log buffer */ 1510 case SYSLOG_ACTION_SIZE_UNREAD: 1511 logbuf_lock_irq(); 1512 if (syslog_seq < log_first_seq) { 1513 /* messages are gone, move to first one */ 1514 syslog_seq = log_first_seq; 1515 syslog_idx = log_first_idx; 1516 syslog_partial = 0; 1517 } 1518 if (source == SYSLOG_FROM_PROC) { 1519 /* 1520 * Short-cut for poll(/"proc/kmsg") which simply checks 1521 * for pending data, not the size; return the count of 1522 * records, not the length. 1523 */ 1524 error = log_next_seq - syslog_seq; 1525 } else { 1526 u64 seq = syslog_seq; 1527 u32 idx = syslog_idx; 1528 1529 while (seq < log_next_seq) { 1530 struct printk_log *msg = log_from_idx(idx); 1531 1532 error += msg_print_text(msg, true, NULL, 0); 1533 idx = log_next(idx); 1534 seq++; 1535 } 1536 error -= syslog_partial; 1537 } 1538 logbuf_unlock_irq(); 1539 break; 1540 /* Size of the log buffer */ 1541 case SYSLOG_ACTION_SIZE_BUFFER: 1542 error = log_buf_len; 1543 break; 1544 default: 1545 error = -EINVAL; 1546 break; 1547 } 1548 1549 return error; 1550 } 1551 1552 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1553 { 1554 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1555 } 1556 1557 /* 1558 * Special console_lock variants that help to reduce the risk of soft-lockups. 1559 * They allow to pass console_lock to another printk() call using a busy wait. 1560 */ 1561 1562 #ifdef CONFIG_LOCKDEP 1563 static struct lockdep_map console_owner_dep_map = { 1564 .name = "console_owner" 1565 }; 1566 #endif 1567 1568 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1569 static struct task_struct *console_owner; 1570 static bool console_waiter; 1571 1572 /** 1573 * console_lock_spinning_enable - mark beginning of code where another 1574 * thread might safely busy wait 1575 * 1576 * This basically converts console_lock into a spinlock. This marks 1577 * the section where the console_lock owner can not sleep, because 1578 * there may be a waiter spinning (like a spinlock). Also it must be 1579 * ready to hand over the lock at the end of the section. 1580 */ 1581 static void console_lock_spinning_enable(void) 1582 { 1583 raw_spin_lock(&console_owner_lock); 1584 console_owner = current; 1585 raw_spin_unlock(&console_owner_lock); 1586 1587 /* The waiter may spin on us after setting console_owner */ 1588 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1589 } 1590 1591 /** 1592 * console_lock_spinning_disable_and_check - mark end of code where another 1593 * thread was able to busy wait and check if there is a waiter 1594 * 1595 * This is called at the end of the section where spinning is allowed. 1596 * It has two functions. First, it is a signal that it is no longer 1597 * safe to start busy waiting for the lock. Second, it checks if 1598 * there is a busy waiter and passes the lock rights to her. 1599 * 1600 * Important: Callers lose the lock if there was a busy waiter. 1601 * They must not touch items synchronized by console_lock 1602 * in this case. 1603 * 1604 * Return: 1 if the lock rights were passed, 0 otherwise. 1605 */ 1606 static int console_lock_spinning_disable_and_check(void) 1607 { 1608 int waiter; 1609 1610 raw_spin_lock(&console_owner_lock); 1611 waiter = READ_ONCE(console_waiter); 1612 console_owner = NULL; 1613 raw_spin_unlock(&console_owner_lock); 1614 1615 if (!waiter) { 1616 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1617 return 0; 1618 } 1619 1620 /* The waiter is now free to continue */ 1621 WRITE_ONCE(console_waiter, false); 1622 1623 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1624 1625 /* 1626 * Hand off console_lock to waiter. The waiter will perform 1627 * the up(). After this, the waiter is the console_lock owner. 1628 */ 1629 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1630 return 1; 1631 } 1632 1633 /** 1634 * console_trylock_spinning - try to get console_lock by busy waiting 1635 * 1636 * This allows to busy wait for the console_lock when the current 1637 * owner is running in specially marked sections. It means that 1638 * the current owner is running and cannot reschedule until it 1639 * is ready to lose the lock. 1640 * 1641 * Return: 1 if we got the lock, 0 othrewise 1642 */ 1643 static int console_trylock_spinning(void) 1644 { 1645 struct task_struct *owner = NULL; 1646 bool waiter; 1647 bool spin = false; 1648 unsigned long flags; 1649 1650 if (console_trylock()) 1651 return 1; 1652 1653 printk_safe_enter_irqsave(flags); 1654 1655 raw_spin_lock(&console_owner_lock); 1656 owner = READ_ONCE(console_owner); 1657 waiter = READ_ONCE(console_waiter); 1658 if (!waiter && owner && owner != current) { 1659 WRITE_ONCE(console_waiter, true); 1660 spin = true; 1661 } 1662 raw_spin_unlock(&console_owner_lock); 1663 1664 /* 1665 * If there is an active printk() writing to the 1666 * consoles, instead of having it write our data too, 1667 * see if we can offload that load from the active 1668 * printer, and do some printing ourselves. 1669 * Go into a spin only if there isn't already a waiter 1670 * spinning, and there is an active printer, and 1671 * that active printer isn't us (recursive printk?). 1672 */ 1673 if (!spin) { 1674 printk_safe_exit_irqrestore(flags); 1675 return 0; 1676 } 1677 1678 /* We spin waiting for the owner to release us */ 1679 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1680 /* Owner will clear console_waiter on hand off */ 1681 while (READ_ONCE(console_waiter)) 1682 cpu_relax(); 1683 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1684 1685 printk_safe_exit_irqrestore(flags); 1686 /* 1687 * The owner passed the console lock to us. 1688 * Since we did not spin on console lock, annotate 1689 * this as a trylock. Otherwise lockdep will 1690 * complain. 1691 */ 1692 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1693 1694 return 1; 1695 } 1696 1697 /* 1698 * Call the console drivers, asking them to write out 1699 * log_buf[start] to log_buf[end - 1]. 1700 * The console_lock must be held. 1701 */ 1702 static void call_console_drivers(const char *ext_text, size_t ext_len, 1703 const char *text, size_t len) 1704 { 1705 struct console *con; 1706 1707 trace_console_rcuidle(text, len); 1708 1709 if (!console_drivers) 1710 return; 1711 1712 for_each_console(con) { 1713 if (exclusive_console && con != exclusive_console) 1714 continue; 1715 if (!(con->flags & CON_ENABLED)) 1716 continue; 1717 if (!con->write) 1718 continue; 1719 if (!cpu_online(smp_processor_id()) && 1720 !(con->flags & CON_ANYTIME)) 1721 continue; 1722 if (con->flags & CON_EXTENDED) 1723 con->write(con, ext_text, ext_len); 1724 else 1725 con->write(con, text, len); 1726 } 1727 } 1728 1729 int printk_delay_msec __read_mostly; 1730 1731 static inline void printk_delay(void) 1732 { 1733 if (unlikely(printk_delay_msec)) { 1734 int m = printk_delay_msec; 1735 1736 while (m--) { 1737 mdelay(1); 1738 touch_nmi_watchdog(); 1739 } 1740 } 1741 } 1742 1743 /* 1744 * Continuation lines are buffered, and not committed to the record buffer 1745 * until the line is complete, or a race forces it. The line fragments 1746 * though, are printed immediately to the consoles to ensure everything has 1747 * reached the console in case of a kernel crash. 1748 */ 1749 static struct cont { 1750 char buf[LOG_LINE_MAX]; 1751 size_t len; /* length == 0 means unused buffer */ 1752 struct task_struct *owner; /* task of first print*/ 1753 u64 ts_nsec; /* time of first print */ 1754 u8 level; /* log level of first message */ 1755 u8 facility; /* log facility of first message */ 1756 enum log_flags flags; /* prefix, newline flags */ 1757 } cont; 1758 1759 static void cont_flush(void) 1760 { 1761 if (cont.len == 0) 1762 return; 1763 1764 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1765 NULL, 0, cont.buf, cont.len); 1766 cont.len = 0; 1767 } 1768 1769 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1770 { 1771 /* 1772 * If ext consoles are present, flush and skip in-kernel 1773 * continuation. See nr_ext_console_drivers definition. Also, if 1774 * the line gets too long, split it up in separate records. 1775 */ 1776 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1777 cont_flush(); 1778 return false; 1779 } 1780 1781 if (!cont.len) { 1782 cont.facility = facility; 1783 cont.level = level; 1784 cont.owner = current; 1785 cont.ts_nsec = local_clock(); 1786 cont.flags = flags; 1787 } 1788 1789 memcpy(cont.buf + cont.len, text, len); 1790 cont.len += len; 1791 1792 // The original flags come from the first line, 1793 // but later continuations can add a newline. 1794 if (flags & LOG_NEWLINE) { 1795 cont.flags |= LOG_NEWLINE; 1796 cont_flush(); 1797 } 1798 1799 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1800 cont_flush(); 1801 1802 return true; 1803 } 1804 1805 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1806 { 1807 /* 1808 * If an earlier line was buffered, and we're a continuation 1809 * write from the same process, try to add it to the buffer. 1810 */ 1811 if (cont.len) { 1812 if (cont.owner == current && (lflags & LOG_CONT)) { 1813 if (cont_add(facility, level, lflags, text, text_len)) 1814 return text_len; 1815 } 1816 /* Otherwise, make sure it's flushed */ 1817 cont_flush(); 1818 } 1819 1820 /* Skip empty continuation lines that couldn't be added - they just flush */ 1821 if (!text_len && (lflags & LOG_CONT)) 1822 return 0; 1823 1824 /* If it doesn't end in a newline, try to buffer the current line */ 1825 if (!(lflags & LOG_NEWLINE)) { 1826 if (cont_add(facility, level, lflags, text, text_len)) 1827 return text_len; 1828 } 1829 1830 /* Store it in the record log */ 1831 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1832 } 1833 1834 /* Must be called under logbuf_lock. */ 1835 int vprintk_store(int facility, int level, 1836 const char *dict, size_t dictlen, 1837 const char *fmt, va_list args) 1838 { 1839 static char textbuf[LOG_LINE_MAX]; 1840 char *text = textbuf; 1841 size_t text_len; 1842 enum log_flags lflags = 0; 1843 1844 /* 1845 * The printf needs to come first; we need the syslog 1846 * prefix which might be passed-in as a parameter. 1847 */ 1848 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1849 1850 /* mark and strip a trailing newline */ 1851 if (text_len && text[text_len-1] == '\n') { 1852 text_len--; 1853 lflags |= LOG_NEWLINE; 1854 } 1855 1856 /* strip kernel syslog prefix and extract log level or control flags */ 1857 if (facility == 0) { 1858 int kern_level; 1859 1860 while ((kern_level = printk_get_level(text)) != 0) { 1861 switch (kern_level) { 1862 case '0' ... '7': 1863 if (level == LOGLEVEL_DEFAULT) 1864 level = kern_level - '0'; 1865 /* fallthrough */ 1866 case 'd': /* KERN_DEFAULT */ 1867 lflags |= LOG_PREFIX; 1868 break; 1869 case 'c': /* KERN_CONT */ 1870 lflags |= LOG_CONT; 1871 } 1872 1873 text_len -= 2; 1874 text += 2; 1875 } 1876 } 1877 1878 if (level == LOGLEVEL_DEFAULT) 1879 level = default_message_loglevel; 1880 1881 if (dict) 1882 lflags |= LOG_PREFIX|LOG_NEWLINE; 1883 1884 if (suppress_message_printing(level)) 1885 lflags |= LOG_NOCONS; 1886 1887 return log_output(facility, level, lflags, 1888 dict, dictlen, text, text_len); 1889 } 1890 1891 asmlinkage int vprintk_emit(int facility, int level, 1892 const char *dict, size_t dictlen, 1893 const char *fmt, va_list args) 1894 { 1895 int printed_len; 1896 bool in_sched = false; 1897 unsigned long flags; 1898 1899 if (level == LOGLEVEL_SCHED) { 1900 level = LOGLEVEL_DEFAULT; 1901 in_sched = true; 1902 } 1903 1904 boot_delay_msec(level); 1905 printk_delay(); 1906 1907 /* This stops the holder of console_sem just where we want him */ 1908 logbuf_lock_irqsave(flags); 1909 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1910 logbuf_unlock_irqrestore(flags); 1911 1912 /* If called from the scheduler, we can not call up(). */ 1913 if (!in_sched) { 1914 /* 1915 * Disable preemption to avoid being preempted while holding 1916 * console_sem which would prevent anyone from printing to 1917 * console 1918 */ 1919 preempt_disable(); 1920 /* 1921 * Try to acquire and then immediately release the console 1922 * semaphore. The release will print out buffers and wake up 1923 * /dev/kmsg and syslog() users. 1924 */ 1925 if (console_trylock_spinning()) 1926 console_unlock(); 1927 preempt_enable(); 1928 } 1929 1930 wake_up_klogd(); 1931 return printed_len; 1932 } 1933 EXPORT_SYMBOL(vprintk_emit); 1934 1935 asmlinkage int vprintk(const char *fmt, va_list args) 1936 { 1937 return vprintk_func(fmt, args); 1938 } 1939 EXPORT_SYMBOL(vprintk); 1940 1941 asmlinkage int printk_emit(int facility, int level, 1942 const char *dict, size_t dictlen, 1943 const char *fmt, ...) 1944 { 1945 va_list args; 1946 int r; 1947 1948 va_start(args, fmt); 1949 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1950 va_end(args); 1951 1952 return r; 1953 } 1954 EXPORT_SYMBOL(printk_emit); 1955 1956 int vprintk_default(const char *fmt, va_list args) 1957 { 1958 int r; 1959 1960 #ifdef CONFIG_KGDB_KDB 1961 /* Allow to pass printk() to kdb but avoid a recursion. */ 1962 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1963 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1964 return r; 1965 } 1966 #endif 1967 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1968 1969 return r; 1970 } 1971 EXPORT_SYMBOL_GPL(vprintk_default); 1972 1973 /** 1974 * printk - print a kernel message 1975 * @fmt: format string 1976 * 1977 * This is printk(). It can be called from any context. We want it to work. 1978 * 1979 * We try to grab the console_lock. If we succeed, it's easy - we log the 1980 * output and call the console drivers. If we fail to get the semaphore, we 1981 * place the output into the log buffer and return. The current holder of 1982 * the console_sem will notice the new output in console_unlock(); and will 1983 * send it to the consoles before releasing the lock. 1984 * 1985 * One effect of this deferred printing is that code which calls printk() and 1986 * then changes console_loglevel may break. This is because console_loglevel 1987 * is inspected when the actual printing occurs. 1988 * 1989 * See also: 1990 * printf(3) 1991 * 1992 * See the vsnprintf() documentation for format string extensions over C99. 1993 */ 1994 asmlinkage __visible int printk(const char *fmt, ...) 1995 { 1996 va_list args; 1997 int r; 1998 1999 va_start(args, fmt); 2000 r = vprintk_func(fmt, args); 2001 va_end(args); 2002 2003 return r; 2004 } 2005 EXPORT_SYMBOL(printk); 2006 2007 #else /* CONFIG_PRINTK */ 2008 2009 #define LOG_LINE_MAX 0 2010 #define PREFIX_MAX 0 2011 2012 static u64 syslog_seq; 2013 static u32 syslog_idx; 2014 static u64 console_seq; 2015 static u32 console_idx; 2016 static u64 log_first_seq; 2017 static u32 log_first_idx; 2018 static u64 log_next_seq; 2019 static char *log_text(const struct printk_log *msg) { return NULL; } 2020 static char *log_dict(const struct printk_log *msg) { return NULL; } 2021 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2022 static u32 log_next(u32 idx) { return 0; } 2023 static ssize_t msg_print_ext_header(char *buf, size_t size, 2024 struct printk_log *msg, 2025 u64 seq) { return 0; } 2026 static ssize_t msg_print_ext_body(char *buf, size_t size, 2027 char *dict, size_t dict_len, 2028 char *text, size_t text_len) { return 0; } 2029 static void console_lock_spinning_enable(void) { } 2030 static int console_lock_spinning_disable_and_check(void) { return 0; } 2031 static void call_console_drivers(const char *ext_text, size_t ext_len, 2032 const char *text, size_t len) {} 2033 static size_t msg_print_text(const struct printk_log *msg, 2034 bool syslog, char *buf, size_t size) { return 0; } 2035 2036 #endif /* CONFIG_PRINTK */ 2037 2038 #ifdef CONFIG_EARLY_PRINTK 2039 struct console *early_console; 2040 2041 asmlinkage __visible void early_printk(const char *fmt, ...) 2042 { 2043 va_list ap; 2044 char buf[512]; 2045 int n; 2046 2047 if (!early_console) 2048 return; 2049 2050 va_start(ap, fmt); 2051 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2052 va_end(ap); 2053 2054 early_console->write(early_console, buf, n); 2055 } 2056 #endif 2057 2058 static int __add_preferred_console(char *name, int idx, char *options, 2059 char *brl_options) 2060 { 2061 struct console_cmdline *c; 2062 int i; 2063 2064 /* 2065 * See if this tty is not yet registered, and 2066 * if we have a slot free. 2067 */ 2068 for (i = 0, c = console_cmdline; 2069 i < MAX_CMDLINECONSOLES && c->name[0]; 2070 i++, c++) { 2071 if (strcmp(c->name, name) == 0 && c->index == idx) { 2072 if (!brl_options) 2073 preferred_console = i; 2074 return 0; 2075 } 2076 } 2077 if (i == MAX_CMDLINECONSOLES) 2078 return -E2BIG; 2079 if (!brl_options) 2080 preferred_console = i; 2081 strlcpy(c->name, name, sizeof(c->name)); 2082 c->options = options; 2083 braille_set_options(c, brl_options); 2084 2085 c->index = idx; 2086 return 0; 2087 } 2088 2089 static int __init console_msg_format_setup(char *str) 2090 { 2091 if (!strcmp(str, "syslog")) 2092 console_msg_format = MSG_FORMAT_SYSLOG; 2093 if (!strcmp(str, "default")) 2094 console_msg_format = MSG_FORMAT_DEFAULT; 2095 return 1; 2096 } 2097 __setup("console_msg_format=", console_msg_format_setup); 2098 2099 /* 2100 * Set up a console. Called via do_early_param() in init/main.c 2101 * for each "console=" parameter in the boot command line. 2102 */ 2103 static int __init console_setup(char *str) 2104 { 2105 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2106 char *s, *options, *brl_options = NULL; 2107 int idx; 2108 2109 if (_braille_console_setup(&str, &brl_options)) 2110 return 1; 2111 2112 /* 2113 * Decode str into name, index, options. 2114 */ 2115 if (str[0] >= '0' && str[0] <= '9') { 2116 strcpy(buf, "ttyS"); 2117 strncpy(buf + 4, str, sizeof(buf) - 5); 2118 } else { 2119 strncpy(buf, str, sizeof(buf) - 1); 2120 } 2121 buf[sizeof(buf) - 1] = 0; 2122 options = strchr(str, ','); 2123 if (options) 2124 *(options++) = 0; 2125 #ifdef __sparc__ 2126 if (!strcmp(str, "ttya")) 2127 strcpy(buf, "ttyS0"); 2128 if (!strcmp(str, "ttyb")) 2129 strcpy(buf, "ttyS1"); 2130 #endif 2131 for (s = buf; *s; s++) 2132 if (isdigit(*s) || *s == ',') 2133 break; 2134 idx = simple_strtoul(s, NULL, 10); 2135 *s = 0; 2136 2137 __add_preferred_console(buf, idx, options, brl_options); 2138 console_set_on_cmdline = 1; 2139 return 1; 2140 } 2141 __setup("console=", console_setup); 2142 2143 /** 2144 * add_preferred_console - add a device to the list of preferred consoles. 2145 * @name: device name 2146 * @idx: device index 2147 * @options: options for this console 2148 * 2149 * The last preferred console added will be used for kernel messages 2150 * and stdin/out/err for init. Normally this is used by console_setup 2151 * above to handle user-supplied console arguments; however it can also 2152 * be used by arch-specific code either to override the user or more 2153 * commonly to provide a default console (ie from PROM variables) when 2154 * the user has not supplied one. 2155 */ 2156 int add_preferred_console(char *name, int idx, char *options) 2157 { 2158 return __add_preferred_console(name, idx, options, NULL); 2159 } 2160 2161 bool console_suspend_enabled = true; 2162 EXPORT_SYMBOL(console_suspend_enabled); 2163 2164 static int __init console_suspend_disable(char *str) 2165 { 2166 console_suspend_enabled = false; 2167 return 1; 2168 } 2169 __setup("no_console_suspend", console_suspend_disable); 2170 module_param_named(console_suspend, console_suspend_enabled, 2171 bool, S_IRUGO | S_IWUSR); 2172 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2173 " and hibernate operations"); 2174 2175 /** 2176 * suspend_console - suspend the console subsystem 2177 * 2178 * This disables printk() while we go into suspend states 2179 */ 2180 void suspend_console(void) 2181 { 2182 if (!console_suspend_enabled) 2183 return; 2184 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2185 console_lock(); 2186 console_suspended = 1; 2187 up_console_sem(); 2188 } 2189 2190 void resume_console(void) 2191 { 2192 if (!console_suspend_enabled) 2193 return; 2194 down_console_sem(); 2195 console_suspended = 0; 2196 console_unlock(); 2197 } 2198 2199 /** 2200 * console_cpu_notify - print deferred console messages after CPU hotplug 2201 * @cpu: unused 2202 * 2203 * If printk() is called from a CPU that is not online yet, the messages 2204 * will be printed on the console only if there are CON_ANYTIME consoles. 2205 * This function is called when a new CPU comes online (or fails to come 2206 * up) or goes offline. 2207 */ 2208 static int console_cpu_notify(unsigned int cpu) 2209 { 2210 if (!cpuhp_tasks_frozen) { 2211 /* If trylock fails, someone else is doing the printing */ 2212 if (console_trylock()) 2213 console_unlock(); 2214 } 2215 return 0; 2216 } 2217 2218 /** 2219 * console_lock - lock the console system for exclusive use. 2220 * 2221 * Acquires a lock which guarantees that the caller has 2222 * exclusive access to the console system and the console_drivers list. 2223 * 2224 * Can sleep, returns nothing. 2225 */ 2226 void console_lock(void) 2227 { 2228 might_sleep(); 2229 2230 down_console_sem(); 2231 if (console_suspended) 2232 return; 2233 console_locked = 1; 2234 console_may_schedule = 1; 2235 } 2236 EXPORT_SYMBOL(console_lock); 2237 2238 /** 2239 * console_trylock - try to lock the console system for exclusive use. 2240 * 2241 * Try to acquire a lock which guarantees that the caller has exclusive 2242 * access to the console system and the console_drivers list. 2243 * 2244 * returns 1 on success, and 0 on failure to acquire the lock. 2245 */ 2246 int console_trylock(void) 2247 { 2248 if (down_trylock_console_sem()) 2249 return 0; 2250 if (console_suspended) { 2251 up_console_sem(); 2252 return 0; 2253 } 2254 console_locked = 1; 2255 console_may_schedule = 0; 2256 return 1; 2257 } 2258 EXPORT_SYMBOL(console_trylock); 2259 2260 int is_console_locked(void) 2261 { 2262 return console_locked; 2263 } 2264 EXPORT_SYMBOL(is_console_locked); 2265 2266 /* 2267 * Check if we have any console that is capable of printing while cpu is 2268 * booting or shutting down. Requires console_sem. 2269 */ 2270 static int have_callable_console(void) 2271 { 2272 struct console *con; 2273 2274 for_each_console(con) 2275 if ((con->flags & CON_ENABLED) && 2276 (con->flags & CON_ANYTIME)) 2277 return 1; 2278 2279 return 0; 2280 } 2281 2282 /* 2283 * Can we actually use the console at this time on this cpu? 2284 * 2285 * Console drivers may assume that per-cpu resources have been allocated. So 2286 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2287 * call them until this CPU is officially up. 2288 */ 2289 static inline int can_use_console(void) 2290 { 2291 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2292 } 2293 2294 /** 2295 * console_unlock - unlock the console system 2296 * 2297 * Releases the console_lock which the caller holds on the console system 2298 * and the console driver list. 2299 * 2300 * While the console_lock was held, console output may have been buffered 2301 * by printk(). If this is the case, console_unlock(); emits 2302 * the output prior to releasing the lock. 2303 * 2304 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2305 * 2306 * console_unlock(); may be called from any context. 2307 */ 2308 void console_unlock(void) 2309 { 2310 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2311 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2312 unsigned long flags; 2313 bool do_cond_resched, retry; 2314 2315 if (console_suspended) { 2316 up_console_sem(); 2317 return; 2318 } 2319 2320 /* 2321 * Console drivers are called with interrupts disabled, so 2322 * @console_may_schedule should be cleared before; however, we may 2323 * end up dumping a lot of lines, for example, if called from 2324 * console registration path, and should invoke cond_resched() 2325 * between lines if allowable. Not doing so can cause a very long 2326 * scheduling stall on a slow console leading to RCU stall and 2327 * softlockup warnings which exacerbate the issue with more 2328 * messages practically incapacitating the system. 2329 * 2330 * console_trylock() is not able to detect the preemptive 2331 * context reliably. Therefore the value must be stored before 2332 * and cleared after the the "again" goto label. 2333 */ 2334 do_cond_resched = console_may_schedule; 2335 again: 2336 console_may_schedule = 0; 2337 2338 /* 2339 * We released the console_sem lock, so we need to recheck if 2340 * cpu is online and (if not) is there at least one CON_ANYTIME 2341 * console. 2342 */ 2343 if (!can_use_console()) { 2344 console_locked = 0; 2345 up_console_sem(); 2346 return; 2347 } 2348 2349 for (;;) { 2350 struct printk_log *msg; 2351 size_t ext_len = 0; 2352 size_t len; 2353 2354 printk_safe_enter_irqsave(flags); 2355 raw_spin_lock(&logbuf_lock); 2356 if (console_seq < log_first_seq) { 2357 len = sprintf(text, "** %u printk messages dropped **\n", 2358 (unsigned)(log_first_seq - console_seq)); 2359 2360 /* messages are gone, move to first one */ 2361 console_seq = log_first_seq; 2362 console_idx = log_first_idx; 2363 } else { 2364 len = 0; 2365 } 2366 skip: 2367 if (console_seq == log_next_seq) 2368 break; 2369 2370 msg = log_from_idx(console_idx); 2371 if (msg->flags & LOG_NOCONS) { 2372 /* 2373 * Skip record if !ignore_loglevel, and 2374 * record has level above the console loglevel. 2375 */ 2376 console_idx = log_next(console_idx); 2377 console_seq++; 2378 goto skip; 2379 } 2380 2381 len += msg_print_text(msg, 2382 console_msg_format & MSG_FORMAT_SYSLOG, 2383 text + len, 2384 sizeof(text) - len); 2385 if (nr_ext_console_drivers) { 2386 ext_len = msg_print_ext_header(ext_text, 2387 sizeof(ext_text), 2388 msg, console_seq); 2389 ext_len += msg_print_ext_body(ext_text + ext_len, 2390 sizeof(ext_text) - ext_len, 2391 log_dict(msg), msg->dict_len, 2392 log_text(msg), msg->text_len); 2393 } 2394 console_idx = log_next(console_idx); 2395 console_seq++; 2396 raw_spin_unlock(&logbuf_lock); 2397 2398 /* 2399 * While actively printing out messages, if another printk() 2400 * were to occur on another CPU, it may wait for this one to 2401 * finish. This task can not be preempted if there is a 2402 * waiter waiting to take over. 2403 */ 2404 console_lock_spinning_enable(); 2405 2406 stop_critical_timings(); /* don't trace print latency */ 2407 call_console_drivers(ext_text, ext_len, text, len); 2408 start_critical_timings(); 2409 2410 if (console_lock_spinning_disable_and_check()) { 2411 printk_safe_exit_irqrestore(flags); 2412 return; 2413 } 2414 2415 printk_safe_exit_irqrestore(flags); 2416 2417 if (do_cond_resched) 2418 cond_resched(); 2419 } 2420 2421 console_locked = 0; 2422 2423 /* Release the exclusive_console once it is used */ 2424 if (unlikely(exclusive_console)) 2425 exclusive_console = NULL; 2426 2427 raw_spin_unlock(&logbuf_lock); 2428 2429 up_console_sem(); 2430 2431 /* 2432 * Someone could have filled up the buffer again, so re-check if there's 2433 * something to flush. In case we cannot trylock the console_sem again, 2434 * there's a new owner and the console_unlock() from them will do the 2435 * flush, no worries. 2436 */ 2437 raw_spin_lock(&logbuf_lock); 2438 retry = console_seq != log_next_seq; 2439 raw_spin_unlock(&logbuf_lock); 2440 printk_safe_exit_irqrestore(flags); 2441 2442 if (retry && console_trylock()) 2443 goto again; 2444 } 2445 EXPORT_SYMBOL(console_unlock); 2446 2447 /** 2448 * console_conditional_schedule - yield the CPU if required 2449 * 2450 * If the console code is currently allowed to sleep, and 2451 * if this CPU should yield the CPU to another task, do 2452 * so here. 2453 * 2454 * Must be called within console_lock();. 2455 */ 2456 void __sched console_conditional_schedule(void) 2457 { 2458 if (console_may_schedule) 2459 cond_resched(); 2460 } 2461 EXPORT_SYMBOL(console_conditional_schedule); 2462 2463 void console_unblank(void) 2464 { 2465 struct console *c; 2466 2467 /* 2468 * console_unblank can no longer be called in interrupt context unless 2469 * oops_in_progress is set to 1.. 2470 */ 2471 if (oops_in_progress) { 2472 if (down_trylock_console_sem() != 0) 2473 return; 2474 } else 2475 console_lock(); 2476 2477 console_locked = 1; 2478 console_may_schedule = 0; 2479 for_each_console(c) 2480 if ((c->flags & CON_ENABLED) && c->unblank) 2481 c->unblank(); 2482 console_unlock(); 2483 } 2484 2485 /** 2486 * console_flush_on_panic - flush console content on panic 2487 * 2488 * Immediately output all pending messages no matter what. 2489 */ 2490 void console_flush_on_panic(void) 2491 { 2492 /* 2493 * If someone else is holding the console lock, trylock will fail 2494 * and may_schedule may be set. Ignore and proceed to unlock so 2495 * that messages are flushed out. As this can be called from any 2496 * context and we don't want to get preempted while flushing, 2497 * ensure may_schedule is cleared. 2498 */ 2499 console_trylock(); 2500 console_may_schedule = 0; 2501 console_unlock(); 2502 } 2503 2504 /* 2505 * Return the console tty driver structure and its associated index 2506 */ 2507 struct tty_driver *console_device(int *index) 2508 { 2509 struct console *c; 2510 struct tty_driver *driver = NULL; 2511 2512 console_lock(); 2513 for_each_console(c) { 2514 if (!c->device) 2515 continue; 2516 driver = c->device(c, index); 2517 if (driver) 2518 break; 2519 } 2520 console_unlock(); 2521 return driver; 2522 } 2523 2524 /* 2525 * Prevent further output on the passed console device so that (for example) 2526 * serial drivers can disable console output before suspending a port, and can 2527 * re-enable output afterwards. 2528 */ 2529 void console_stop(struct console *console) 2530 { 2531 console_lock(); 2532 console->flags &= ~CON_ENABLED; 2533 console_unlock(); 2534 } 2535 EXPORT_SYMBOL(console_stop); 2536 2537 void console_start(struct console *console) 2538 { 2539 console_lock(); 2540 console->flags |= CON_ENABLED; 2541 console_unlock(); 2542 } 2543 EXPORT_SYMBOL(console_start); 2544 2545 static int __read_mostly keep_bootcon; 2546 2547 static int __init keep_bootcon_setup(char *str) 2548 { 2549 keep_bootcon = 1; 2550 pr_info("debug: skip boot console de-registration.\n"); 2551 2552 return 0; 2553 } 2554 2555 early_param("keep_bootcon", keep_bootcon_setup); 2556 2557 /* 2558 * The console driver calls this routine during kernel initialization 2559 * to register the console printing procedure with printk() and to 2560 * print any messages that were printed by the kernel before the 2561 * console driver was initialized. 2562 * 2563 * This can happen pretty early during the boot process (because of 2564 * early_printk) - sometimes before setup_arch() completes - be careful 2565 * of what kernel features are used - they may not be initialised yet. 2566 * 2567 * There are two types of consoles - bootconsoles (early_printk) and 2568 * "real" consoles (everything which is not a bootconsole) which are 2569 * handled differently. 2570 * - Any number of bootconsoles can be registered at any time. 2571 * - As soon as a "real" console is registered, all bootconsoles 2572 * will be unregistered automatically. 2573 * - Once a "real" console is registered, any attempt to register a 2574 * bootconsoles will be rejected 2575 */ 2576 void register_console(struct console *newcon) 2577 { 2578 int i; 2579 unsigned long flags; 2580 struct console *bcon = NULL; 2581 struct console_cmdline *c; 2582 static bool has_preferred; 2583 2584 if (console_drivers) 2585 for_each_console(bcon) 2586 if (WARN(bcon == newcon, 2587 "console '%s%d' already registered\n", 2588 bcon->name, bcon->index)) 2589 return; 2590 2591 /* 2592 * before we register a new CON_BOOT console, make sure we don't 2593 * already have a valid console 2594 */ 2595 if (console_drivers && newcon->flags & CON_BOOT) { 2596 /* find the last or real console */ 2597 for_each_console(bcon) { 2598 if (!(bcon->flags & CON_BOOT)) { 2599 pr_info("Too late to register bootconsole %s%d\n", 2600 newcon->name, newcon->index); 2601 return; 2602 } 2603 } 2604 } 2605 2606 if (console_drivers && console_drivers->flags & CON_BOOT) 2607 bcon = console_drivers; 2608 2609 if (!has_preferred || bcon || !console_drivers) 2610 has_preferred = preferred_console >= 0; 2611 2612 /* 2613 * See if we want to use this console driver. If we 2614 * didn't select a console we take the first one 2615 * that registers here. 2616 */ 2617 if (!has_preferred) { 2618 if (newcon->index < 0) 2619 newcon->index = 0; 2620 if (newcon->setup == NULL || 2621 newcon->setup(newcon, NULL) == 0) { 2622 newcon->flags |= CON_ENABLED; 2623 if (newcon->device) { 2624 newcon->flags |= CON_CONSDEV; 2625 has_preferred = true; 2626 } 2627 } 2628 } 2629 2630 /* 2631 * See if this console matches one we selected on 2632 * the command line. 2633 */ 2634 for (i = 0, c = console_cmdline; 2635 i < MAX_CMDLINECONSOLES && c->name[0]; 2636 i++, c++) { 2637 if (!newcon->match || 2638 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2639 /* default matching */ 2640 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2641 if (strcmp(c->name, newcon->name) != 0) 2642 continue; 2643 if (newcon->index >= 0 && 2644 newcon->index != c->index) 2645 continue; 2646 if (newcon->index < 0) 2647 newcon->index = c->index; 2648 2649 if (_braille_register_console(newcon, c)) 2650 return; 2651 2652 if (newcon->setup && 2653 newcon->setup(newcon, c->options) != 0) 2654 break; 2655 } 2656 2657 newcon->flags |= CON_ENABLED; 2658 if (i == preferred_console) { 2659 newcon->flags |= CON_CONSDEV; 2660 has_preferred = true; 2661 } 2662 break; 2663 } 2664 2665 if (!(newcon->flags & CON_ENABLED)) 2666 return; 2667 2668 /* 2669 * If we have a bootconsole, and are switching to a real console, 2670 * don't print everything out again, since when the boot console, and 2671 * the real console are the same physical device, it's annoying to 2672 * see the beginning boot messages twice 2673 */ 2674 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2675 newcon->flags &= ~CON_PRINTBUFFER; 2676 2677 /* 2678 * Put this console in the list - keep the 2679 * preferred driver at the head of the list. 2680 */ 2681 console_lock(); 2682 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2683 newcon->next = console_drivers; 2684 console_drivers = newcon; 2685 if (newcon->next) 2686 newcon->next->flags &= ~CON_CONSDEV; 2687 } else { 2688 newcon->next = console_drivers->next; 2689 console_drivers->next = newcon; 2690 } 2691 2692 if (newcon->flags & CON_EXTENDED) 2693 if (!nr_ext_console_drivers++) 2694 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2695 2696 if (newcon->flags & CON_PRINTBUFFER) { 2697 /* 2698 * console_unlock(); will print out the buffered messages 2699 * for us. 2700 */ 2701 logbuf_lock_irqsave(flags); 2702 console_seq = syslog_seq; 2703 console_idx = syslog_idx; 2704 logbuf_unlock_irqrestore(flags); 2705 /* 2706 * We're about to replay the log buffer. Only do this to the 2707 * just-registered console to avoid excessive message spam to 2708 * the already-registered consoles. 2709 */ 2710 exclusive_console = newcon; 2711 } 2712 console_unlock(); 2713 console_sysfs_notify(); 2714 2715 /* 2716 * By unregistering the bootconsoles after we enable the real console 2717 * we get the "console xxx enabled" message on all the consoles - 2718 * boot consoles, real consoles, etc - this is to ensure that end 2719 * users know there might be something in the kernel's log buffer that 2720 * went to the bootconsole (that they do not see on the real console) 2721 */ 2722 pr_info("%sconsole [%s%d] enabled\n", 2723 (newcon->flags & CON_BOOT) ? "boot" : "" , 2724 newcon->name, newcon->index); 2725 if (bcon && 2726 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2727 !keep_bootcon) { 2728 /* We need to iterate through all boot consoles, to make 2729 * sure we print everything out, before we unregister them. 2730 */ 2731 for_each_console(bcon) 2732 if (bcon->flags & CON_BOOT) 2733 unregister_console(bcon); 2734 } 2735 } 2736 EXPORT_SYMBOL(register_console); 2737 2738 int unregister_console(struct console *console) 2739 { 2740 struct console *a, *b; 2741 int res; 2742 2743 pr_info("%sconsole [%s%d] disabled\n", 2744 (console->flags & CON_BOOT) ? "boot" : "" , 2745 console->name, console->index); 2746 2747 res = _braille_unregister_console(console); 2748 if (res) 2749 return res; 2750 2751 res = 1; 2752 console_lock(); 2753 if (console_drivers == console) { 2754 console_drivers=console->next; 2755 res = 0; 2756 } else if (console_drivers) { 2757 for (a=console_drivers->next, b=console_drivers ; 2758 a; b=a, a=b->next) { 2759 if (a == console) { 2760 b->next = a->next; 2761 res = 0; 2762 break; 2763 } 2764 } 2765 } 2766 2767 if (!res && (console->flags & CON_EXTENDED)) 2768 nr_ext_console_drivers--; 2769 2770 /* 2771 * If this isn't the last console and it has CON_CONSDEV set, we 2772 * need to set it on the next preferred console. 2773 */ 2774 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2775 console_drivers->flags |= CON_CONSDEV; 2776 2777 console->flags &= ~CON_ENABLED; 2778 console_unlock(); 2779 console_sysfs_notify(); 2780 return res; 2781 } 2782 EXPORT_SYMBOL(unregister_console); 2783 2784 /* 2785 * Initialize the console device. This is called *early*, so 2786 * we can't necessarily depend on lots of kernel help here. 2787 * Just do some early initializations, and do the complex setup 2788 * later. 2789 */ 2790 void __init console_init(void) 2791 { 2792 int ret; 2793 initcall_t call; 2794 initcall_entry_t *ce; 2795 2796 /* Setup the default TTY line discipline. */ 2797 n_tty_init(); 2798 2799 /* 2800 * set up the console device so that later boot sequences can 2801 * inform about problems etc.. 2802 */ 2803 ce = __con_initcall_start; 2804 trace_initcall_level("console"); 2805 while (ce < __con_initcall_end) { 2806 call = initcall_from_entry(ce); 2807 trace_initcall_start(call); 2808 ret = call(); 2809 trace_initcall_finish(call, ret); 2810 ce++; 2811 } 2812 } 2813 2814 /* 2815 * Some boot consoles access data that is in the init section and which will 2816 * be discarded after the initcalls have been run. To make sure that no code 2817 * will access this data, unregister the boot consoles in a late initcall. 2818 * 2819 * If for some reason, such as deferred probe or the driver being a loadable 2820 * module, the real console hasn't registered yet at this point, there will 2821 * be a brief interval in which no messages are logged to the console, which 2822 * makes it difficult to diagnose problems that occur during this time. 2823 * 2824 * To mitigate this problem somewhat, only unregister consoles whose memory 2825 * intersects with the init section. Note that all other boot consoles will 2826 * get unregistred when the real preferred console is registered. 2827 */ 2828 static int __init printk_late_init(void) 2829 { 2830 struct console *con; 2831 int ret; 2832 2833 for_each_console(con) { 2834 if (!(con->flags & CON_BOOT)) 2835 continue; 2836 2837 /* Check addresses that might be used for enabled consoles. */ 2838 if (init_section_intersects(con, sizeof(*con)) || 2839 init_section_contains(con->write, 0) || 2840 init_section_contains(con->read, 0) || 2841 init_section_contains(con->device, 0) || 2842 init_section_contains(con->unblank, 0) || 2843 init_section_contains(con->data, 0)) { 2844 /* 2845 * Please, consider moving the reported consoles out 2846 * of the init section. 2847 */ 2848 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2849 con->name, con->index); 2850 unregister_console(con); 2851 } 2852 } 2853 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2854 console_cpu_notify); 2855 WARN_ON(ret < 0); 2856 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2857 console_cpu_notify, NULL); 2858 WARN_ON(ret < 0); 2859 return 0; 2860 } 2861 late_initcall(printk_late_init); 2862 2863 #if defined CONFIG_PRINTK 2864 /* 2865 * Delayed printk version, for scheduler-internal messages: 2866 */ 2867 #define PRINTK_PENDING_WAKEUP 0x01 2868 #define PRINTK_PENDING_OUTPUT 0x02 2869 2870 static DEFINE_PER_CPU(int, printk_pending); 2871 2872 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2873 { 2874 int pending = __this_cpu_xchg(printk_pending, 0); 2875 2876 if (pending & PRINTK_PENDING_OUTPUT) { 2877 /* If trylock fails, someone else is doing the printing */ 2878 if (console_trylock()) 2879 console_unlock(); 2880 } 2881 2882 if (pending & PRINTK_PENDING_WAKEUP) 2883 wake_up_interruptible(&log_wait); 2884 } 2885 2886 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2887 .func = wake_up_klogd_work_func, 2888 .flags = IRQ_WORK_LAZY, 2889 }; 2890 2891 void wake_up_klogd(void) 2892 { 2893 preempt_disable(); 2894 if (waitqueue_active(&log_wait)) { 2895 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2896 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2897 } 2898 preempt_enable(); 2899 } 2900 2901 void defer_console_output(void) 2902 { 2903 preempt_disable(); 2904 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2905 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2906 preempt_enable(); 2907 } 2908 2909 int vprintk_deferred(const char *fmt, va_list args) 2910 { 2911 int r; 2912 2913 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2914 defer_console_output(); 2915 2916 return r; 2917 } 2918 2919 int printk_deferred(const char *fmt, ...) 2920 { 2921 va_list args; 2922 int r; 2923 2924 va_start(args, fmt); 2925 r = vprintk_deferred(fmt, args); 2926 va_end(args); 2927 2928 return r; 2929 } 2930 2931 /* 2932 * printk rate limiting, lifted from the networking subsystem. 2933 * 2934 * This enforces a rate limit: not more than 10 kernel messages 2935 * every 5s to make a denial-of-service attack impossible. 2936 */ 2937 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2938 2939 int __printk_ratelimit(const char *func) 2940 { 2941 return ___ratelimit(&printk_ratelimit_state, func); 2942 } 2943 EXPORT_SYMBOL(__printk_ratelimit); 2944 2945 /** 2946 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2947 * @caller_jiffies: pointer to caller's state 2948 * @interval_msecs: minimum interval between prints 2949 * 2950 * printk_timed_ratelimit() returns true if more than @interval_msecs 2951 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2952 * returned true. 2953 */ 2954 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2955 unsigned int interval_msecs) 2956 { 2957 unsigned long elapsed = jiffies - *caller_jiffies; 2958 2959 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2960 return false; 2961 2962 *caller_jiffies = jiffies; 2963 return true; 2964 } 2965 EXPORT_SYMBOL(printk_timed_ratelimit); 2966 2967 static DEFINE_SPINLOCK(dump_list_lock); 2968 static LIST_HEAD(dump_list); 2969 2970 /** 2971 * kmsg_dump_register - register a kernel log dumper. 2972 * @dumper: pointer to the kmsg_dumper structure 2973 * 2974 * Adds a kernel log dumper to the system. The dump callback in the 2975 * structure will be called when the kernel oopses or panics and must be 2976 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2977 */ 2978 int kmsg_dump_register(struct kmsg_dumper *dumper) 2979 { 2980 unsigned long flags; 2981 int err = -EBUSY; 2982 2983 /* The dump callback needs to be set */ 2984 if (!dumper->dump) 2985 return -EINVAL; 2986 2987 spin_lock_irqsave(&dump_list_lock, flags); 2988 /* Don't allow registering multiple times */ 2989 if (!dumper->registered) { 2990 dumper->registered = 1; 2991 list_add_tail_rcu(&dumper->list, &dump_list); 2992 err = 0; 2993 } 2994 spin_unlock_irqrestore(&dump_list_lock, flags); 2995 2996 return err; 2997 } 2998 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2999 3000 /** 3001 * kmsg_dump_unregister - unregister a kmsg dumper. 3002 * @dumper: pointer to the kmsg_dumper structure 3003 * 3004 * Removes a dump device from the system. Returns zero on success and 3005 * %-EINVAL otherwise. 3006 */ 3007 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3008 { 3009 unsigned long flags; 3010 int err = -EINVAL; 3011 3012 spin_lock_irqsave(&dump_list_lock, flags); 3013 if (dumper->registered) { 3014 dumper->registered = 0; 3015 list_del_rcu(&dumper->list); 3016 err = 0; 3017 } 3018 spin_unlock_irqrestore(&dump_list_lock, flags); 3019 synchronize_rcu(); 3020 3021 return err; 3022 } 3023 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3024 3025 static bool always_kmsg_dump; 3026 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3027 3028 /** 3029 * kmsg_dump - dump kernel log to kernel message dumpers. 3030 * @reason: the reason (oops, panic etc) for dumping 3031 * 3032 * Call each of the registered dumper's dump() callback, which can 3033 * retrieve the kmsg records with kmsg_dump_get_line() or 3034 * kmsg_dump_get_buffer(). 3035 */ 3036 void kmsg_dump(enum kmsg_dump_reason reason) 3037 { 3038 struct kmsg_dumper *dumper; 3039 unsigned long flags; 3040 3041 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3042 return; 3043 3044 rcu_read_lock(); 3045 list_for_each_entry_rcu(dumper, &dump_list, list) { 3046 if (dumper->max_reason && reason > dumper->max_reason) 3047 continue; 3048 3049 /* initialize iterator with data about the stored records */ 3050 dumper->active = true; 3051 3052 logbuf_lock_irqsave(flags); 3053 dumper->cur_seq = clear_seq; 3054 dumper->cur_idx = clear_idx; 3055 dumper->next_seq = log_next_seq; 3056 dumper->next_idx = log_next_idx; 3057 logbuf_unlock_irqrestore(flags); 3058 3059 /* invoke dumper which will iterate over records */ 3060 dumper->dump(dumper, reason); 3061 3062 /* reset iterator */ 3063 dumper->active = false; 3064 } 3065 rcu_read_unlock(); 3066 } 3067 3068 /** 3069 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3070 * @dumper: registered kmsg dumper 3071 * @syslog: include the "<4>" prefixes 3072 * @line: buffer to copy the line to 3073 * @size: maximum size of the buffer 3074 * @len: length of line placed into buffer 3075 * 3076 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3077 * record, and copy one record into the provided buffer. 3078 * 3079 * Consecutive calls will return the next available record moving 3080 * towards the end of the buffer with the youngest messages. 3081 * 3082 * A return value of FALSE indicates that there are no more records to 3083 * read. 3084 * 3085 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3086 */ 3087 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3088 char *line, size_t size, size_t *len) 3089 { 3090 struct printk_log *msg; 3091 size_t l = 0; 3092 bool ret = false; 3093 3094 if (!dumper->active) 3095 goto out; 3096 3097 if (dumper->cur_seq < log_first_seq) { 3098 /* messages are gone, move to first available one */ 3099 dumper->cur_seq = log_first_seq; 3100 dumper->cur_idx = log_first_idx; 3101 } 3102 3103 /* last entry */ 3104 if (dumper->cur_seq >= log_next_seq) 3105 goto out; 3106 3107 msg = log_from_idx(dumper->cur_idx); 3108 l = msg_print_text(msg, syslog, line, size); 3109 3110 dumper->cur_idx = log_next(dumper->cur_idx); 3111 dumper->cur_seq++; 3112 ret = true; 3113 out: 3114 if (len) 3115 *len = l; 3116 return ret; 3117 } 3118 3119 /** 3120 * kmsg_dump_get_line - retrieve one kmsg log line 3121 * @dumper: registered kmsg dumper 3122 * @syslog: include the "<4>" prefixes 3123 * @line: buffer to copy the line to 3124 * @size: maximum size of the buffer 3125 * @len: length of line placed into buffer 3126 * 3127 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3128 * record, and copy one record into the provided buffer. 3129 * 3130 * Consecutive calls will return the next available record moving 3131 * towards the end of the buffer with the youngest messages. 3132 * 3133 * A return value of FALSE indicates that there are no more records to 3134 * read. 3135 */ 3136 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3137 char *line, size_t size, size_t *len) 3138 { 3139 unsigned long flags; 3140 bool ret; 3141 3142 logbuf_lock_irqsave(flags); 3143 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3144 logbuf_unlock_irqrestore(flags); 3145 3146 return ret; 3147 } 3148 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3149 3150 /** 3151 * kmsg_dump_get_buffer - copy kmsg log lines 3152 * @dumper: registered kmsg dumper 3153 * @syslog: include the "<4>" prefixes 3154 * @buf: buffer to copy the line to 3155 * @size: maximum size of the buffer 3156 * @len: length of line placed into buffer 3157 * 3158 * Start at the end of the kmsg buffer and fill the provided buffer 3159 * with as many of the the *youngest* kmsg records that fit into it. 3160 * If the buffer is large enough, all available kmsg records will be 3161 * copied with a single call. 3162 * 3163 * Consecutive calls will fill the buffer with the next block of 3164 * available older records, not including the earlier retrieved ones. 3165 * 3166 * A return value of FALSE indicates that there are no more records to 3167 * read. 3168 */ 3169 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3170 char *buf, size_t size, size_t *len) 3171 { 3172 unsigned long flags; 3173 u64 seq; 3174 u32 idx; 3175 u64 next_seq; 3176 u32 next_idx; 3177 size_t l = 0; 3178 bool ret = false; 3179 3180 if (!dumper->active) 3181 goto out; 3182 3183 logbuf_lock_irqsave(flags); 3184 if (dumper->cur_seq < log_first_seq) { 3185 /* messages are gone, move to first available one */ 3186 dumper->cur_seq = log_first_seq; 3187 dumper->cur_idx = log_first_idx; 3188 } 3189 3190 /* last entry */ 3191 if (dumper->cur_seq >= dumper->next_seq) { 3192 logbuf_unlock_irqrestore(flags); 3193 goto out; 3194 } 3195 3196 /* calculate length of entire buffer */ 3197 seq = dumper->cur_seq; 3198 idx = dumper->cur_idx; 3199 while (seq < dumper->next_seq) { 3200 struct printk_log *msg = log_from_idx(idx); 3201 3202 l += msg_print_text(msg, true, NULL, 0); 3203 idx = log_next(idx); 3204 seq++; 3205 } 3206 3207 /* move first record forward until length fits into the buffer */ 3208 seq = dumper->cur_seq; 3209 idx = dumper->cur_idx; 3210 while (l > size && seq < dumper->next_seq) { 3211 struct printk_log *msg = log_from_idx(idx); 3212 3213 l -= msg_print_text(msg, true, NULL, 0); 3214 idx = log_next(idx); 3215 seq++; 3216 } 3217 3218 /* last message in next interation */ 3219 next_seq = seq; 3220 next_idx = idx; 3221 3222 l = 0; 3223 while (seq < dumper->next_seq) { 3224 struct printk_log *msg = log_from_idx(idx); 3225 3226 l += msg_print_text(msg, syslog, buf + l, size - l); 3227 idx = log_next(idx); 3228 seq++; 3229 } 3230 3231 dumper->next_seq = next_seq; 3232 dumper->next_idx = next_idx; 3233 ret = true; 3234 logbuf_unlock_irqrestore(flags); 3235 out: 3236 if (len) 3237 *len = l; 3238 return ret; 3239 } 3240 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3241 3242 /** 3243 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3244 * @dumper: registered kmsg dumper 3245 * 3246 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3247 * kmsg_dump_get_buffer() can be called again and used multiple 3248 * times within the same dumper.dump() callback. 3249 * 3250 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3251 */ 3252 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3253 { 3254 dumper->cur_seq = clear_seq; 3255 dumper->cur_idx = clear_idx; 3256 dumper->next_seq = log_next_seq; 3257 dumper->next_idx = log_next_idx; 3258 } 3259 3260 /** 3261 * kmsg_dump_rewind - reset the interator 3262 * @dumper: registered kmsg dumper 3263 * 3264 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3265 * kmsg_dump_get_buffer() can be called again and used multiple 3266 * times within the same dumper.dump() callback. 3267 */ 3268 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3269 { 3270 unsigned long flags; 3271 3272 logbuf_lock_irqsave(flags); 3273 kmsg_dump_rewind_nolock(dumper); 3274 logbuf_unlock_irqrestore(flags); 3275 } 3276 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3277 3278 #endif 3279