xref: /linux/kernel/printk/printk.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/rculist.h>
42 #include <linux/poll.h>
43 #include <linux/irq_work.h>
44 #include <linux/ctype.h>
45 #include <linux/uio.h>
46 #include <linux/sched/clock.h>
47 #include <linux/sched/debug.h>
48 #include <linux/sched/task_stack.h>
49 
50 #include <linux/uaccess.h>
51 #include <asm/sections.h>
52 
53 #include <trace/events/initcall.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/printk.h>
56 
57 #include "console_cmdline.h"
58 #include "braille.h"
59 #include "internal.h"
60 
61 int console_printk[4] = {
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
63 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
64 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
65 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
66 };
67 
68 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
69 EXPORT_SYMBOL(ignore_console_lock_warning);
70 
71 /*
72  * Low level drivers may need that to know if they can schedule in
73  * their unblank() callback or not. So let's export it.
74  */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77 
78 /*
79  * console_sem protects the console_drivers list, and also
80  * provides serialisation for access to the entire console
81  * driver system.
82  */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86 
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 	.name = "console_lock"
90 };
91 #endif
92 
93 enum devkmsg_log_bits {
94 	__DEVKMSG_LOG_BIT_ON = 0,
95 	__DEVKMSG_LOG_BIT_OFF,
96 	__DEVKMSG_LOG_BIT_LOCK,
97 };
98 
99 enum devkmsg_log_masks {
100 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
101 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
102 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
103 };
104 
105 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
106 #define DEVKMSG_LOG_MASK_DEFAULT	0
107 
108 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
109 
110 static int __control_devkmsg(char *str)
111 {
112 	if (!str)
113 		return -EINVAL;
114 
115 	if (!strncmp(str, "on", 2)) {
116 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
117 		return 2;
118 	} else if (!strncmp(str, "off", 3)) {
119 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
120 		return 3;
121 	} else if (!strncmp(str, "ratelimit", 9)) {
122 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
123 		return 9;
124 	}
125 	return -EINVAL;
126 }
127 
128 static int __init control_devkmsg(char *str)
129 {
130 	if (__control_devkmsg(str) < 0)
131 		return 1;
132 
133 	/*
134 	 * Set sysctl string accordingly:
135 	 */
136 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
137 		strcpy(devkmsg_log_str, "on");
138 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
139 		strcpy(devkmsg_log_str, "off");
140 	/* else "ratelimit" which is set by default. */
141 
142 	/*
143 	 * Sysctl cannot change it anymore. The kernel command line setting of
144 	 * this parameter is to force the setting to be permanent throughout the
145 	 * runtime of the system. This is a precation measure against userspace
146 	 * trying to be a smarta** and attempting to change it up on us.
147 	 */
148 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
149 
150 	return 0;
151 }
152 __setup("printk.devkmsg=", control_devkmsg);
153 
154 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
155 
156 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
157 			      void __user *buffer, size_t *lenp, loff_t *ppos)
158 {
159 	char old_str[DEVKMSG_STR_MAX_SIZE];
160 	unsigned int old;
161 	int err;
162 
163 	if (write) {
164 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
165 			return -EINVAL;
166 
167 		old = devkmsg_log;
168 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
169 	}
170 
171 	err = proc_dostring(table, write, buffer, lenp, ppos);
172 	if (err)
173 		return err;
174 
175 	if (write) {
176 		err = __control_devkmsg(devkmsg_log_str);
177 
178 		/*
179 		 * Do not accept an unknown string OR a known string with
180 		 * trailing crap...
181 		 */
182 		if (err < 0 || (err + 1 != *lenp)) {
183 
184 			/* ... and restore old setting. */
185 			devkmsg_log = old;
186 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
187 
188 			return -EINVAL;
189 		}
190 	}
191 
192 	return 0;
193 }
194 
195 /*
196  * Number of registered extended console drivers.
197  *
198  * If extended consoles are present, in-kernel cont reassembly is disabled
199  * and each fragment is stored as a separate log entry with proper
200  * continuation flag so that every emitted message has full metadata.  This
201  * doesn't change the result for regular consoles or /proc/kmsg.  For
202  * /dev/kmsg, as long as the reader concatenates messages according to
203  * consecutive continuation flags, the end result should be the same too.
204  */
205 static int nr_ext_console_drivers;
206 
207 /*
208  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
209  * macros instead of functions so that _RET_IP_ contains useful information.
210  */
211 #define down_console_sem() do { \
212 	down(&console_sem);\
213 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
214 } while (0)
215 
216 static int __down_trylock_console_sem(unsigned long ip)
217 {
218 	int lock_failed;
219 	unsigned long flags;
220 
221 	/*
222 	 * Here and in __up_console_sem() we need to be in safe mode,
223 	 * because spindump/WARN/etc from under console ->lock will
224 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
225 	 */
226 	printk_safe_enter_irqsave(flags);
227 	lock_failed = down_trylock(&console_sem);
228 	printk_safe_exit_irqrestore(flags);
229 
230 	if (lock_failed)
231 		return 1;
232 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
233 	return 0;
234 }
235 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
236 
237 static void __up_console_sem(unsigned long ip)
238 {
239 	unsigned long flags;
240 
241 	mutex_release(&console_lock_dep_map, 1, ip);
242 
243 	printk_safe_enter_irqsave(flags);
244 	up(&console_sem);
245 	printk_safe_exit_irqrestore(flags);
246 }
247 #define up_console_sem() __up_console_sem(_RET_IP_)
248 
249 /*
250  * This is used for debugging the mess that is the VT code by
251  * keeping track if we have the console semaphore held. It's
252  * definitely not the perfect debug tool (we don't know if _WE_
253  * hold it and are racing, but it helps tracking those weird code
254  * paths in the console code where we end up in places I want
255  * locked without the console sempahore held).
256  */
257 static int console_locked, console_suspended;
258 
259 /*
260  * If exclusive_console is non-NULL then only this console is to be printed to.
261  */
262 static struct console *exclusive_console;
263 
264 /*
265  *	Array of consoles built from command line options (console=)
266  */
267 
268 #define MAX_CMDLINECONSOLES 8
269 
270 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
271 
272 static int preferred_console = -1;
273 int console_set_on_cmdline;
274 EXPORT_SYMBOL(console_set_on_cmdline);
275 
276 /* Flag: console code may call schedule() */
277 static int console_may_schedule;
278 
279 enum con_msg_format_flags {
280 	MSG_FORMAT_DEFAULT	= 0,
281 	MSG_FORMAT_SYSLOG	= (1 << 0),
282 };
283 
284 static int console_msg_format = MSG_FORMAT_DEFAULT;
285 
286 /*
287  * The printk log buffer consists of a chain of concatenated variable
288  * length records. Every record starts with a record header, containing
289  * the overall length of the record.
290  *
291  * The heads to the first and last entry in the buffer, as well as the
292  * sequence numbers of these entries are maintained when messages are
293  * stored.
294  *
295  * If the heads indicate available messages, the length in the header
296  * tells the start next message. A length == 0 for the next message
297  * indicates a wrap-around to the beginning of the buffer.
298  *
299  * Every record carries the monotonic timestamp in microseconds, as well as
300  * the standard userspace syslog level and syslog facility. The usual
301  * kernel messages use LOG_KERN; userspace-injected messages always carry
302  * a matching syslog facility, by default LOG_USER. The origin of every
303  * message can be reliably determined that way.
304  *
305  * The human readable log message directly follows the message header. The
306  * length of the message text is stored in the header, the stored message
307  * is not terminated.
308  *
309  * Optionally, a message can carry a dictionary of properties (key/value pairs),
310  * to provide userspace with a machine-readable message context.
311  *
312  * Examples for well-defined, commonly used property names are:
313  *   DEVICE=b12:8               device identifier
314  *                                b12:8         block dev_t
315  *                                c127:3        char dev_t
316  *                                n8            netdev ifindex
317  *                                +sound:card0  subsystem:devname
318  *   SUBSYSTEM=pci              driver-core subsystem name
319  *
320  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
321  * follows directly after a '=' character. Every property is terminated by
322  * a '\0' character. The last property is not terminated.
323  *
324  * Example of a message structure:
325  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
326  *   0008  34 00                        record is 52 bytes long
327  *   000a        0b 00                  text is 11 bytes long
328  *   000c              1f 00            dictionary is 23 bytes long
329  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
330  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
331  *         69 6e 65                     "ine"
332  *   001b           44 45 56 49 43      "DEVIC"
333  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
334  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
335  *         67                           "g"
336  *   0032     00 00 00                  padding to next message header
337  *
338  * The 'struct printk_log' buffer header must never be directly exported to
339  * userspace, it is a kernel-private implementation detail that might
340  * need to be changed in the future, when the requirements change.
341  *
342  * /dev/kmsg exports the structured data in the following line format:
343  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344  *
345  * Users of the export format should ignore possible additional values
346  * separated by ',', and find the message after the ';' character.
347  *
348  * The optional key/value pairs are attached as continuation lines starting
349  * with a space character and terminated by a newline. All possible
350  * non-prinatable characters are escaped in the "\xff" notation.
351  */
352 
353 enum log_flags {
354 	LOG_NOCONS	= 1,	/* suppress print, do not print to console */
355 	LOG_NEWLINE	= 2,	/* text ended with a newline */
356 	LOG_PREFIX	= 4,	/* text started with a prefix */
357 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
358 };
359 
360 struct printk_log {
361 	u64 ts_nsec;		/* timestamp in nanoseconds */
362 	u16 len;		/* length of entire record */
363 	u16 text_len;		/* length of text buffer */
364 	u16 dict_len;		/* length of dictionary buffer */
365 	u8 facility;		/* syslog facility */
366 	u8 flags:5;		/* internal record flags */
367 	u8 level:3;		/* syslog level */
368 }
369 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
370 __packed __aligned(4)
371 #endif
372 ;
373 
374 /*
375  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
376  * within the scheduler's rq lock. It must be released before calling
377  * console_unlock() or anything else that might wake up a process.
378  */
379 DEFINE_RAW_SPINLOCK(logbuf_lock);
380 
381 /*
382  * Helper macros to lock/unlock logbuf_lock and switch between
383  * printk-safe/unsafe modes.
384  */
385 #define logbuf_lock_irq()				\
386 	do {						\
387 		printk_safe_enter_irq();		\
388 		raw_spin_lock(&logbuf_lock);		\
389 	} while (0)
390 
391 #define logbuf_unlock_irq()				\
392 	do {						\
393 		raw_spin_unlock(&logbuf_lock);		\
394 		printk_safe_exit_irq();			\
395 	} while (0)
396 
397 #define logbuf_lock_irqsave(flags)			\
398 	do {						\
399 		printk_safe_enter_irqsave(flags);	\
400 		raw_spin_lock(&logbuf_lock);		\
401 	} while (0)
402 
403 #define logbuf_unlock_irqrestore(flags)		\
404 	do {						\
405 		raw_spin_unlock(&logbuf_lock);		\
406 		printk_safe_exit_irqrestore(flags);	\
407 	} while (0)
408 
409 #ifdef CONFIG_PRINTK
410 DECLARE_WAIT_QUEUE_HEAD(log_wait);
411 /* the next printk record to read by syslog(READ) or /proc/kmsg */
412 static u64 syslog_seq;
413 static u32 syslog_idx;
414 static size_t syslog_partial;
415 
416 /* index and sequence number of the first record stored in the buffer */
417 static u64 log_first_seq;
418 static u32 log_first_idx;
419 
420 /* index and sequence number of the next record to store in the buffer */
421 static u64 log_next_seq;
422 static u32 log_next_idx;
423 
424 /* the next printk record to write to the console */
425 static u64 console_seq;
426 static u32 console_idx;
427 
428 /* the next printk record to read after the last 'clear' command */
429 static u64 clear_seq;
430 static u32 clear_idx;
431 
432 #define PREFIX_MAX		32
433 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
434 
435 #define LOG_LEVEL(v)		((v) & 0x07)
436 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
437 
438 /* record buffer */
439 #define LOG_ALIGN __alignof__(struct printk_log)
440 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
441 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
442 static char *log_buf = __log_buf;
443 static u32 log_buf_len = __LOG_BUF_LEN;
444 
445 /* Return log buffer address */
446 char *log_buf_addr_get(void)
447 {
448 	return log_buf;
449 }
450 
451 /* Return log buffer size */
452 u32 log_buf_len_get(void)
453 {
454 	return log_buf_len;
455 }
456 
457 /* human readable text of the record */
458 static char *log_text(const struct printk_log *msg)
459 {
460 	return (char *)msg + sizeof(struct printk_log);
461 }
462 
463 /* optional key/value pair dictionary attached to the record */
464 static char *log_dict(const struct printk_log *msg)
465 {
466 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
467 }
468 
469 /* get record by index; idx must point to valid msg */
470 static struct printk_log *log_from_idx(u32 idx)
471 {
472 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
473 
474 	/*
475 	 * A length == 0 record is the end of buffer marker. Wrap around and
476 	 * read the message at the start of the buffer.
477 	 */
478 	if (!msg->len)
479 		return (struct printk_log *)log_buf;
480 	return msg;
481 }
482 
483 /* get next record; idx must point to valid msg */
484 static u32 log_next(u32 idx)
485 {
486 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
487 
488 	/* length == 0 indicates the end of the buffer; wrap */
489 	/*
490 	 * A length == 0 record is the end of buffer marker. Wrap around and
491 	 * read the message at the start of the buffer as *this* one, and
492 	 * return the one after that.
493 	 */
494 	if (!msg->len) {
495 		msg = (struct printk_log *)log_buf;
496 		return msg->len;
497 	}
498 	return idx + msg->len;
499 }
500 
501 /*
502  * Check whether there is enough free space for the given message.
503  *
504  * The same values of first_idx and next_idx mean that the buffer
505  * is either empty or full.
506  *
507  * If the buffer is empty, we must respect the position of the indexes.
508  * They cannot be reset to the beginning of the buffer.
509  */
510 static int logbuf_has_space(u32 msg_size, bool empty)
511 {
512 	u32 free;
513 
514 	if (log_next_idx > log_first_idx || empty)
515 		free = max(log_buf_len - log_next_idx, log_first_idx);
516 	else
517 		free = log_first_idx - log_next_idx;
518 
519 	/*
520 	 * We need space also for an empty header that signalizes wrapping
521 	 * of the buffer.
522 	 */
523 	return free >= msg_size + sizeof(struct printk_log);
524 }
525 
526 static int log_make_free_space(u32 msg_size)
527 {
528 	while (log_first_seq < log_next_seq &&
529 	       !logbuf_has_space(msg_size, false)) {
530 		/* drop old messages until we have enough contiguous space */
531 		log_first_idx = log_next(log_first_idx);
532 		log_first_seq++;
533 	}
534 
535 	if (clear_seq < log_first_seq) {
536 		clear_seq = log_first_seq;
537 		clear_idx = log_first_idx;
538 	}
539 
540 	/* sequence numbers are equal, so the log buffer is empty */
541 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
542 		return 0;
543 
544 	return -ENOMEM;
545 }
546 
547 /* compute the message size including the padding bytes */
548 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
549 {
550 	u32 size;
551 
552 	size = sizeof(struct printk_log) + text_len + dict_len;
553 	*pad_len = (-size) & (LOG_ALIGN - 1);
554 	size += *pad_len;
555 
556 	return size;
557 }
558 
559 /*
560  * Define how much of the log buffer we could take at maximum. The value
561  * must be greater than two. Note that only half of the buffer is available
562  * when the index points to the middle.
563  */
564 #define MAX_LOG_TAKE_PART 4
565 static const char trunc_msg[] = "<truncated>";
566 
567 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
568 			u16 *dict_len, u32 *pad_len)
569 {
570 	/*
571 	 * The message should not take the whole buffer. Otherwise, it might
572 	 * get removed too soon.
573 	 */
574 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
575 	if (*text_len > max_text_len)
576 		*text_len = max_text_len;
577 	/* enable the warning message */
578 	*trunc_msg_len = strlen(trunc_msg);
579 	/* disable the "dict" completely */
580 	*dict_len = 0;
581 	/* compute the size again, count also the warning message */
582 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
583 }
584 
585 /* insert record into the buffer, discard old ones, update heads */
586 static int log_store(int facility, int level,
587 		     enum log_flags flags, u64 ts_nsec,
588 		     const char *dict, u16 dict_len,
589 		     const char *text, u16 text_len)
590 {
591 	struct printk_log *msg;
592 	u32 size, pad_len;
593 	u16 trunc_msg_len = 0;
594 
595 	/* number of '\0' padding bytes to next message */
596 	size = msg_used_size(text_len, dict_len, &pad_len);
597 
598 	if (log_make_free_space(size)) {
599 		/* truncate the message if it is too long for empty buffer */
600 		size = truncate_msg(&text_len, &trunc_msg_len,
601 				    &dict_len, &pad_len);
602 		/* survive when the log buffer is too small for trunc_msg */
603 		if (log_make_free_space(size))
604 			return 0;
605 	}
606 
607 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
608 		/*
609 		 * This message + an additional empty header does not fit
610 		 * at the end of the buffer. Add an empty header with len == 0
611 		 * to signify a wrap around.
612 		 */
613 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
614 		log_next_idx = 0;
615 	}
616 
617 	/* fill message */
618 	msg = (struct printk_log *)(log_buf + log_next_idx);
619 	memcpy(log_text(msg), text, text_len);
620 	msg->text_len = text_len;
621 	if (trunc_msg_len) {
622 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
623 		msg->text_len += trunc_msg_len;
624 	}
625 	memcpy(log_dict(msg), dict, dict_len);
626 	msg->dict_len = dict_len;
627 	msg->facility = facility;
628 	msg->level = level & 7;
629 	msg->flags = flags & 0x1f;
630 	if (ts_nsec > 0)
631 		msg->ts_nsec = ts_nsec;
632 	else
633 		msg->ts_nsec = local_clock();
634 	memset(log_dict(msg) + dict_len, 0, pad_len);
635 	msg->len = size;
636 
637 	/* insert message */
638 	log_next_idx += msg->len;
639 	log_next_seq++;
640 
641 	return msg->text_len;
642 }
643 
644 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
645 
646 static int syslog_action_restricted(int type)
647 {
648 	if (dmesg_restrict)
649 		return 1;
650 	/*
651 	 * Unless restricted, we allow "read all" and "get buffer size"
652 	 * for everybody.
653 	 */
654 	return type != SYSLOG_ACTION_READ_ALL &&
655 	       type != SYSLOG_ACTION_SIZE_BUFFER;
656 }
657 
658 static int check_syslog_permissions(int type, int source)
659 {
660 	/*
661 	 * If this is from /proc/kmsg and we've already opened it, then we've
662 	 * already done the capabilities checks at open time.
663 	 */
664 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
665 		goto ok;
666 
667 	if (syslog_action_restricted(type)) {
668 		if (capable(CAP_SYSLOG))
669 			goto ok;
670 		/*
671 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
672 		 * a warning.
673 		 */
674 		if (capable(CAP_SYS_ADMIN)) {
675 			pr_warn_once("%s (%d): Attempt to access syslog with "
676 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
677 				     "(deprecated).\n",
678 				 current->comm, task_pid_nr(current));
679 			goto ok;
680 		}
681 		return -EPERM;
682 	}
683 ok:
684 	return security_syslog(type);
685 }
686 
687 static void append_char(char **pp, char *e, char c)
688 {
689 	if (*pp < e)
690 		*(*pp)++ = c;
691 }
692 
693 static ssize_t msg_print_ext_header(char *buf, size_t size,
694 				    struct printk_log *msg, u64 seq)
695 {
696 	u64 ts_usec = msg->ts_nsec;
697 
698 	do_div(ts_usec, 1000);
699 
700 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
701 		       (msg->facility << 3) | msg->level, seq, ts_usec,
702 		       msg->flags & LOG_CONT ? 'c' : '-');
703 }
704 
705 static ssize_t msg_print_ext_body(char *buf, size_t size,
706 				  char *dict, size_t dict_len,
707 				  char *text, size_t text_len)
708 {
709 	char *p = buf, *e = buf + size;
710 	size_t i;
711 
712 	/* escape non-printable characters */
713 	for (i = 0; i < text_len; i++) {
714 		unsigned char c = text[i];
715 
716 		if (c < ' ' || c >= 127 || c == '\\')
717 			p += scnprintf(p, e - p, "\\x%02x", c);
718 		else
719 			append_char(&p, e, c);
720 	}
721 	append_char(&p, e, '\n');
722 
723 	if (dict_len) {
724 		bool line = true;
725 
726 		for (i = 0; i < dict_len; i++) {
727 			unsigned char c = dict[i];
728 
729 			if (line) {
730 				append_char(&p, e, ' ');
731 				line = false;
732 			}
733 
734 			if (c == '\0') {
735 				append_char(&p, e, '\n');
736 				line = true;
737 				continue;
738 			}
739 
740 			if (c < ' ' || c >= 127 || c == '\\') {
741 				p += scnprintf(p, e - p, "\\x%02x", c);
742 				continue;
743 			}
744 
745 			append_char(&p, e, c);
746 		}
747 		append_char(&p, e, '\n');
748 	}
749 
750 	return p - buf;
751 }
752 
753 /* /dev/kmsg - userspace message inject/listen interface */
754 struct devkmsg_user {
755 	u64 seq;
756 	u32 idx;
757 	struct ratelimit_state rs;
758 	struct mutex lock;
759 	char buf[CONSOLE_EXT_LOG_MAX];
760 };
761 
762 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
763 {
764 	char *buf, *line;
765 	int level = default_message_loglevel;
766 	int facility = 1;	/* LOG_USER */
767 	struct file *file = iocb->ki_filp;
768 	struct devkmsg_user *user = file->private_data;
769 	size_t len = iov_iter_count(from);
770 	ssize_t ret = len;
771 
772 	if (!user || len > LOG_LINE_MAX)
773 		return -EINVAL;
774 
775 	/* Ignore when user logging is disabled. */
776 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
777 		return len;
778 
779 	/* Ratelimit when not explicitly enabled. */
780 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
781 		if (!___ratelimit(&user->rs, current->comm))
782 			return ret;
783 	}
784 
785 	buf = kmalloc(len+1, GFP_KERNEL);
786 	if (buf == NULL)
787 		return -ENOMEM;
788 
789 	buf[len] = '\0';
790 	if (!copy_from_iter_full(buf, len, from)) {
791 		kfree(buf);
792 		return -EFAULT;
793 	}
794 
795 	/*
796 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
797 	 * the decimal value represents 32bit, the lower 3 bit are the log
798 	 * level, the rest are the log facility.
799 	 *
800 	 * If no prefix or no userspace facility is specified, we
801 	 * enforce LOG_USER, to be able to reliably distinguish
802 	 * kernel-generated messages from userspace-injected ones.
803 	 */
804 	line = buf;
805 	if (line[0] == '<') {
806 		char *endp = NULL;
807 		unsigned int u;
808 
809 		u = simple_strtoul(line + 1, &endp, 10);
810 		if (endp && endp[0] == '>') {
811 			level = LOG_LEVEL(u);
812 			if (LOG_FACILITY(u) != 0)
813 				facility = LOG_FACILITY(u);
814 			endp++;
815 			len -= endp - line;
816 			line = endp;
817 		}
818 	}
819 
820 	printk_emit(facility, level, NULL, 0, "%s", line);
821 	kfree(buf);
822 	return ret;
823 }
824 
825 static ssize_t devkmsg_read(struct file *file, char __user *buf,
826 			    size_t count, loff_t *ppos)
827 {
828 	struct devkmsg_user *user = file->private_data;
829 	struct printk_log *msg;
830 	size_t len;
831 	ssize_t ret;
832 
833 	if (!user)
834 		return -EBADF;
835 
836 	ret = mutex_lock_interruptible(&user->lock);
837 	if (ret)
838 		return ret;
839 
840 	logbuf_lock_irq();
841 	while (user->seq == log_next_seq) {
842 		if (file->f_flags & O_NONBLOCK) {
843 			ret = -EAGAIN;
844 			logbuf_unlock_irq();
845 			goto out;
846 		}
847 
848 		logbuf_unlock_irq();
849 		ret = wait_event_interruptible(log_wait,
850 					       user->seq != log_next_seq);
851 		if (ret)
852 			goto out;
853 		logbuf_lock_irq();
854 	}
855 
856 	if (user->seq < log_first_seq) {
857 		/* our last seen message is gone, return error and reset */
858 		user->idx = log_first_idx;
859 		user->seq = log_first_seq;
860 		ret = -EPIPE;
861 		logbuf_unlock_irq();
862 		goto out;
863 	}
864 
865 	msg = log_from_idx(user->idx);
866 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
867 				   msg, user->seq);
868 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
869 				  log_dict(msg), msg->dict_len,
870 				  log_text(msg), msg->text_len);
871 
872 	user->idx = log_next(user->idx);
873 	user->seq++;
874 	logbuf_unlock_irq();
875 
876 	if (len > count) {
877 		ret = -EINVAL;
878 		goto out;
879 	}
880 
881 	if (copy_to_user(buf, user->buf, len)) {
882 		ret = -EFAULT;
883 		goto out;
884 	}
885 	ret = len;
886 out:
887 	mutex_unlock(&user->lock);
888 	return ret;
889 }
890 
891 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
892 {
893 	struct devkmsg_user *user = file->private_data;
894 	loff_t ret = 0;
895 
896 	if (!user)
897 		return -EBADF;
898 	if (offset)
899 		return -ESPIPE;
900 
901 	logbuf_lock_irq();
902 	switch (whence) {
903 	case SEEK_SET:
904 		/* the first record */
905 		user->idx = log_first_idx;
906 		user->seq = log_first_seq;
907 		break;
908 	case SEEK_DATA:
909 		/*
910 		 * The first record after the last SYSLOG_ACTION_CLEAR,
911 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
912 		 * changes no global state, and does not clear anything.
913 		 */
914 		user->idx = clear_idx;
915 		user->seq = clear_seq;
916 		break;
917 	case SEEK_END:
918 		/* after the last record */
919 		user->idx = log_next_idx;
920 		user->seq = log_next_seq;
921 		break;
922 	default:
923 		ret = -EINVAL;
924 	}
925 	logbuf_unlock_irq();
926 	return ret;
927 }
928 
929 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
930 {
931 	struct devkmsg_user *user = file->private_data;
932 	__poll_t ret = 0;
933 
934 	if (!user)
935 		return EPOLLERR|EPOLLNVAL;
936 
937 	poll_wait(file, &log_wait, wait);
938 
939 	logbuf_lock_irq();
940 	if (user->seq < log_next_seq) {
941 		/* return error when data has vanished underneath us */
942 		if (user->seq < log_first_seq)
943 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
944 		else
945 			ret = EPOLLIN|EPOLLRDNORM;
946 	}
947 	logbuf_unlock_irq();
948 
949 	return ret;
950 }
951 
952 static int devkmsg_open(struct inode *inode, struct file *file)
953 {
954 	struct devkmsg_user *user;
955 	int err;
956 
957 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
958 		return -EPERM;
959 
960 	/* write-only does not need any file context */
961 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
962 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
963 					       SYSLOG_FROM_READER);
964 		if (err)
965 			return err;
966 	}
967 
968 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
969 	if (!user)
970 		return -ENOMEM;
971 
972 	ratelimit_default_init(&user->rs);
973 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
974 
975 	mutex_init(&user->lock);
976 
977 	logbuf_lock_irq();
978 	user->idx = log_first_idx;
979 	user->seq = log_first_seq;
980 	logbuf_unlock_irq();
981 
982 	file->private_data = user;
983 	return 0;
984 }
985 
986 static int devkmsg_release(struct inode *inode, struct file *file)
987 {
988 	struct devkmsg_user *user = file->private_data;
989 
990 	if (!user)
991 		return 0;
992 
993 	ratelimit_state_exit(&user->rs);
994 
995 	mutex_destroy(&user->lock);
996 	kfree(user);
997 	return 0;
998 }
999 
1000 const struct file_operations kmsg_fops = {
1001 	.open = devkmsg_open,
1002 	.read = devkmsg_read,
1003 	.write_iter = devkmsg_write,
1004 	.llseek = devkmsg_llseek,
1005 	.poll = devkmsg_poll,
1006 	.release = devkmsg_release,
1007 };
1008 
1009 #ifdef CONFIG_CRASH_CORE
1010 /*
1011  * This appends the listed symbols to /proc/vmcore
1012  *
1013  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1014  * obtain access to symbols that are otherwise very difficult to locate.  These
1015  * symbols are specifically used so that utilities can access and extract the
1016  * dmesg log from a vmcore file after a crash.
1017  */
1018 void log_buf_vmcoreinfo_setup(void)
1019 {
1020 	VMCOREINFO_SYMBOL(log_buf);
1021 	VMCOREINFO_SYMBOL(log_buf_len);
1022 	VMCOREINFO_SYMBOL(log_first_idx);
1023 	VMCOREINFO_SYMBOL(clear_idx);
1024 	VMCOREINFO_SYMBOL(log_next_idx);
1025 	/*
1026 	 * Export struct printk_log size and field offsets. User space tools can
1027 	 * parse it and detect any changes to structure down the line.
1028 	 */
1029 	VMCOREINFO_STRUCT_SIZE(printk_log);
1030 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1031 	VMCOREINFO_OFFSET(printk_log, len);
1032 	VMCOREINFO_OFFSET(printk_log, text_len);
1033 	VMCOREINFO_OFFSET(printk_log, dict_len);
1034 }
1035 #endif
1036 
1037 /* requested log_buf_len from kernel cmdline */
1038 static unsigned long __initdata new_log_buf_len;
1039 
1040 /* we practice scaling the ring buffer by powers of 2 */
1041 static void __init log_buf_len_update(unsigned size)
1042 {
1043 	if (size)
1044 		size = roundup_pow_of_two(size);
1045 	if (size > log_buf_len)
1046 		new_log_buf_len = size;
1047 }
1048 
1049 /* save requested log_buf_len since it's too early to process it */
1050 static int __init log_buf_len_setup(char *str)
1051 {
1052 	unsigned size = memparse(str, &str);
1053 
1054 	log_buf_len_update(size);
1055 
1056 	return 0;
1057 }
1058 early_param("log_buf_len", log_buf_len_setup);
1059 
1060 #ifdef CONFIG_SMP
1061 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1062 
1063 static void __init log_buf_add_cpu(void)
1064 {
1065 	unsigned int cpu_extra;
1066 
1067 	/*
1068 	 * archs should set up cpu_possible_bits properly with
1069 	 * set_cpu_possible() after setup_arch() but just in
1070 	 * case lets ensure this is valid.
1071 	 */
1072 	if (num_possible_cpus() == 1)
1073 		return;
1074 
1075 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1076 
1077 	/* by default this will only continue through for large > 64 CPUs */
1078 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1079 		return;
1080 
1081 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1082 		__LOG_CPU_MAX_BUF_LEN);
1083 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1084 		cpu_extra);
1085 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1086 
1087 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1088 }
1089 #else /* !CONFIG_SMP */
1090 static inline void log_buf_add_cpu(void) {}
1091 #endif /* CONFIG_SMP */
1092 
1093 void __init setup_log_buf(int early)
1094 {
1095 	unsigned long flags;
1096 	char *new_log_buf;
1097 	int free;
1098 
1099 	if (log_buf != __log_buf)
1100 		return;
1101 
1102 	if (!early && !new_log_buf_len)
1103 		log_buf_add_cpu();
1104 
1105 	if (!new_log_buf_len)
1106 		return;
1107 
1108 	if (early) {
1109 		new_log_buf =
1110 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1111 	} else {
1112 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1113 							  LOG_ALIGN);
1114 	}
1115 
1116 	if (unlikely(!new_log_buf)) {
1117 		pr_err("log_buf_len: %ld bytes not available\n",
1118 			new_log_buf_len);
1119 		return;
1120 	}
1121 
1122 	logbuf_lock_irqsave(flags);
1123 	log_buf_len = new_log_buf_len;
1124 	log_buf = new_log_buf;
1125 	new_log_buf_len = 0;
1126 	free = __LOG_BUF_LEN - log_next_idx;
1127 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1128 	logbuf_unlock_irqrestore(flags);
1129 
1130 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1131 	pr_info("early log buf free: %d(%d%%)\n",
1132 		free, (free * 100) / __LOG_BUF_LEN);
1133 }
1134 
1135 static bool __read_mostly ignore_loglevel;
1136 
1137 static int __init ignore_loglevel_setup(char *str)
1138 {
1139 	ignore_loglevel = true;
1140 	pr_info("debug: ignoring loglevel setting.\n");
1141 
1142 	return 0;
1143 }
1144 
1145 early_param("ignore_loglevel", ignore_loglevel_setup);
1146 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1147 MODULE_PARM_DESC(ignore_loglevel,
1148 		 "ignore loglevel setting (prints all kernel messages to the console)");
1149 
1150 static bool suppress_message_printing(int level)
1151 {
1152 	return (level >= console_loglevel && !ignore_loglevel);
1153 }
1154 
1155 #ifdef CONFIG_BOOT_PRINTK_DELAY
1156 
1157 static int boot_delay; /* msecs delay after each printk during bootup */
1158 static unsigned long long loops_per_msec;	/* based on boot_delay */
1159 
1160 static int __init boot_delay_setup(char *str)
1161 {
1162 	unsigned long lpj;
1163 
1164 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1165 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1166 
1167 	get_option(&str, &boot_delay);
1168 	if (boot_delay > 10 * 1000)
1169 		boot_delay = 0;
1170 
1171 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1172 		"HZ: %d, loops_per_msec: %llu\n",
1173 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1174 	return 0;
1175 }
1176 early_param("boot_delay", boot_delay_setup);
1177 
1178 static void boot_delay_msec(int level)
1179 {
1180 	unsigned long long k;
1181 	unsigned long timeout;
1182 
1183 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1184 		|| suppress_message_printing(level)) {
1185 		return;
1186 	}
1187 
1188 	k = (unsigned long long)loops_per_msec * boot_delay;
1189 
1190 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1191 	while (k) {
1192 		k--;
1193 		cpu_relax();
1194 		/*
1195 		 * use (volatile) jiffies to prevent
1196 		 * compiler reduction; loop termination via jiffies
1197 		 * is secondary and may or may not happen.
1198 		 */
1199 		if (time_after(jiffies, timeout))
1200 			break;
1201 		touch_nmi_watchdog();
1202 	}
1203 }
1204 #else
1205 static inline void boot_delay_msec(int level)
1206 {
1207 }
1208 #endif
1209 
1210 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1211 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1212 
1213 static size_t print_time(u64 ts, char *buf)
1214 {
1215 	unsigned long rem_nsec;
1216 
1217 	if (!printk_time)
1218 		return 0;
1219 
1220 	rem_nsec = do_div(ts, 1000000000);
1221 
1222 	if (!buf)
1223 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1224 
1225 	return sprintf(buf, "[%5lu.%06lu] ",
1226 		       (unsigned long)ts, rem_nsec / 1000);
1227 }
1228 
1229 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1230 {
1231 	size_t len = 0;
1232 	unsigned int prefix = (msg->facility << 3) | msg->level;
1233 
1234 	if (syslog) {
1235 		if (buf) {
1236 			len += sprintf(buf, "<%u>", prefix);
1237 		} else {
1238 			len += 3;
1239 			if (prefix > 999)
1240 				len += 3;
1241 			else if (prefix > 99)
1242 				len += 2;
1243 			else if (prefix > 9)
1244 				len++;
1245 		}
1246 	}
1247 
1248 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1249 	return len;
1250 }
1251 
1252 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1253 {
1254 	const char *text = log_text(msg);
1255 	size_t text_size = msg->text_len;
1256 	size_t len = 0;
1257 
1258 	do {
1259 		const char *next = memchr(text, '\n', text_size);
1260 		size_t text_len;
1261 
1262 		if (next) {
1263 			text_len = next - text;
1264 			next++;
1265 			text_size -= next - text;
1266 		} else {
1267 			text_len = text_size;
1268 		}
1269 
1270 		if (buf) {
1271 			if (print_prefix(msg, syslog, NULL) +
1272 			    text_len + 1 >= size - len)
1273 				break;
1274 
1275 			len += print_prefix(msg, syslog, buf + len);
1276 			memcpy(buf + len, text, text_len);
1277 			len += text_len;
1278 			buf[len++] = '\n';
1279 		} else {
1280 			/* SYSLOG_ACTION_* buffer size only calculation */
1281 			len += print_prefix(msg, syslog, NULL);
1282 			len += text_len;
1283 			len++;
1284 		}
1285 
1286 		text = next;
1287 	} while (text);
1288 
1289 	return len;
1290 }
1291 
1292 static int syslog_print(char __user *buf, int size)
1293 {
1294 	char *text;
1295 	struct printk_log *msg;
1296 	int len = 0;
1297 
1298 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1299 	if (!text)
1300 		return -ENOMEM;
1301 
1302 	while (size > 0) {
1303 		size_t n;
1304 		size_t skip;
1305 
1306 		logbuf_lock_irq();
1307 		if (syslog_seq < log_first_seq) {
1308 			/* messages are gone, move to first one */
1309 			syslog_seq = log_first_seq;
1310 			syslog_idx = log_first_idx;
1311 			syslog_partial = 0;
1312 		}
1313 		if (syslog_seq == log_next_seq) {
1314 			logbuf_unlock_irq();
1315 			break;
1316 		}
1317 
1318 		skip = syslog_partial;
1319 		msg = log_from_idx(syslog_idx);
1320 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1321 		if (n - syslog_partial <= size) {
1322 			/* message fits into buffer, move forward */
1323 			syslog_idx = log_next(syslog_idx);
1324 			syslog_seq++;
1325 			n -= syslog_partial;
1326 			syslog_partial = 0;
1327 		} else if (!len){
1328 			/* partial read(), remember position */
1329 			n = size;
1330 			syslog_partial += n;
1331 		} else
1332 			n = 0;
1333 		logbuf_unlock_irq();
1334 
1335 		if (!n)
1336 			break;
1337 
1338 		if (copy_to_user(buf, text + skip, n)) {
1339 			if (!len)
1340 				len = -EFAULT;
1341 			break;
1342 		}
1343 
1344 		len += n;
1345 		size -= n;
1346 		buf += n;
1347 	}
1348 
1349 	kfree(text);
1350 	return len;
1351 }
1352 
1353 static int syslog_print_all(char __user *buf, int size, bool clear)
1354 {
1355 	char *text;
1356 	int len = 0;
1357 	u64 next_seq;
1358 	u64 seq;
1359 	u32 idx;
1360 
1361 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1362 	if (!text)
1363 		return -ENOMEM;
1364 
1365 	logbuf_lock_irq();
1366 	/*
1367 	 * Find first record that fits, including all following records,
1368 	 * into the user-provided buffer for this dump.
1369 	 */
1370 	seq = clear_seq;
1371 	idx = clear_idx;
1372 	while (seq < log_next_seq) {
1373 		struct printk_log *msg = log_from_idx(idx);
1374 
1375 		len += msg_print_text(msg, true, NULL, 0);
1376 		idx = log_next(idx);
1377 		seq++;
1378 	}
1379 
1380 	/* move first record forward until length fits into the buffer */
1381 	seq = clear_seq;
1382 	idx = clear_idx;
1383 	while (len > size && seq < log_next_seq) {
1384 		struct printk_log *msg = log_from_idx(idx);
1385 
1386 		len -= msg_print_text(msg, true, NULL, 0);
1387 		idx = log_next(idx);
1388 		seq++;
1389 	}
1390 
1391 	/* last message fitting into this dump */
1392 	next_seq = log_next_seq;
1393 
1394 	len = 0;
1395 	while (len >= 0 && seq < next_seq) {
1396 		struct printk_log *msg = log_from_idx(idx);
1397 		int textlen;
1398 
1399 		textlen = msg_print_text(msg, true, text,
1400 					 LOG_LINE_MAX + PREFIX_MAX);
1401 		if (textlen < 0) {
1402 			len = textlen;
1403 			break;
1404 		}
1405 		idx = log_next(idx);
1406 		seq++;
1407 
1408 		logbuf_unlock_irq();
1409 		if (copy_to_user(buf + len, text, textlen))
1410 			len = -EFAULT;
1411 		else
1412 			len += textlen;
1413 		logbuf_lock_irq();
1414 
1415 		if (seq < log_first_seq) {
1416 			/* messages are gone, move to next one */
1417 			seq = log_first_seq;
1418 			idx = log_first_idx;
1419 		}
1420 	}
1421 
1422 	if (clear) {
1423 		clear_seq = log_next_seq;
1424 		clear_idx = log_next_idx;
1425 	}
1426 	logbuf_unlock_irq();
1427 
1428 	kfree(text);
1429 	return len;
1430 }
1431 
1432 static void syslog_clear(void)
1433 {
1434 	logbuf_lock_irq();
1435 	clear_seq = log_next_seq;
1436 	clear_idx = log_next_idx;
1437 	logbuf_unlock_irq();
1438 }
1439 
1440 int do_syslog(int type, char __user *buf, int len, int source)
1441 {
1442 	bool clear = false;
1443 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1444 	int error;
1445 
1446 	error = check_syslog_permissions(type, source);
1447 	if (error)
1448 		return error;
1449 
1450 	switch (type) {
1451 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1452 		break;
1453 	case SYSLOG_ACTION_OPEN:	/* Open log */
1454 		break;
1455 	case SYSLOG_ACTION_READ:	/* Read from log */
1456 		if (!buf || len < 0)
1457 			return -EINVAL;
1458 		if (!len)
1459 			return 0;
1460 		if (!access_ok(VERIFY_WRITE, buf, len))
1461 			return -EFAULT;
1462 		error = wait_event_interruptible(log_wait,
1463 						 syslog_seq != log_next_seq);
1464 		if (error)
1465 			return error;
1466 		error = syslog_print(buf, len);
1467 		break;
1468 	/* Read/clear last kernel messages */
1469 	case SYSLOG_ACTION_READ_CLEAR:
1470 		clear = true;
1471 		/* FALL THRU */
1472 	/* Read last kernel messages */
1473 	case SYSLOG_ACTION_READ_ALL:
1474 		if (!buf || len < 0)
1475 			return -EINVAL;
1476 		if (!len)
1477 			return 0;
1478 		if (!access_ok(VERIFY_WRITE, buf, len))
1479 			return -EFAULT;
1480 		error = syslog_print_all(buf, len, clear);
1481 		break;
1482 	/* Clear ring buffer */
1483 	case SYSLOG_ACTION_CLEAR:
1484 		syslog_clear();
1485 		break;
1486 	/* Disable logging to console */
1487 	case SYSLOG_ACTION_CONSOLE_OFF:
1488 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1489 			saved_console_loglevel = console_loglevel;
1490 		console_loglevel = minimum_console_loglevel;
1491 		break;
1492 	/* Enable logging to console */
1493 	case SYSLOG_ACTION_CONSOLE_ON:
1494 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1495 			console_loglevel = saved_console_loglevel;
1496 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1497 		}
1498 		break;
1499 	/* Set level of messages printed to console */
1500 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1501 		if (len < 1 || len > 8)
1502 			return -EINVAL;
1503 		if (len < minimum_console_loglevel)
1504 			len = minimum_console_loglevel;
1505 		console_loglevel = len;
1506 		/* Implicitly re-enable logging to console */
1507 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1508 		break;
1509 	/* Number of chars in the log buffer */
1510 	case SYSLOG_ACTION_SIZE_UNREAD:
1511 		logbuf_lock_irq();
1512 		if (syslog_seq < log_first_seq) {
1513 			/* messages are gone, move to first one */
1514 			syslog_seq = log_first_seq;
1515 			syslog_idx = log_first_idx;
1516 			syslog_partial = 0;
1517 		}
1518 		if (source == SYSLOG_FROM_PROC) {
1519 			/*
1520 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1521 			 * for pending data, not the size; return the count of
1522 			 * records, not the length.
1523 			 */
1524 			error = log_next_seq - syslog_seq;
1525 		} else {
1526 			u64 seq = syslog_seq;
1527 			u32 idx = syslog_idx;
1528 
1529 			while (seq < log_next_seq) {
1530 				struct printk_log *msg = log_from_idx(idx);
1531 
1532 				error += msg_print_text(msg, true, NULL, 0);
1533 				idx = log_next(idx);
1534 				seq++;
1535 			}
1536 			error -= syslog_partial;
1537 		}
1538 		logbuf_unlock_irq();
1539 		break;
1540 	/* Size of the log buffer */
1541 	case SYSLOG_ACTION_SIZE_BUFFER:
1542 		error = log_buf_len;
1543 		break;
1544 	default:
1545 		error = -EINVAL;
1546 		break;
1547 	}
1548 
1549 	return error;
1550 }
1551 
1552 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1553 {
1554 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1555 }
1556 
1557 /*
1558  * Special console_lock variants that help to reduce the risk of soft-lockups.
1559  * They allow to pass console_lock to another printk() call using a busy wait.
1560  */
1561 
1562 #ifdef CONFIG_LOCKDEP
1563 static struct lockdep_map console_owner_dep_map = {
1564 	.name = "console_owner"
1565 };
1566 #endif
1567 
1568 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1569 static struct task_struct *console_owner;
1570 static bool console_waiter;
1571 
1572 /**
1573  * console_lock_spinning_enable - mark beginning of code where another
1574  *	thread might safely busy wait
1575  *
1576  * This basically converts console_lock into a spinlock. This marks
1577  * the section where the console_lock owner can not sleep, because
1578  * there may be a waiter spinning (like a spinlock). Also it must be
1579  * ready to hand over the lock at the end of the section.
1580  */
1581 static void console_lock_spinning_enable(void)
1582 {
1583 	raw_spin_lock(&console_owner_lock);
1584 	console_owner = current;
1585 	raw_spin_unlock(&console_owner_lock);
1586 
1587 	/* The waiter may spin on us after setting console_owner */
1588 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1589 }
1590 
1591 /**
1592  * console_lock_spinning_disable_and_check - mark end of code where another
1593  *	thread was able to busy wait and check if there is a waiter
1594  *
1595  * This is called at the end of the section where spinning is allowed.
1596  * It has two functions. First, it is a signal that it is no longer
1597  * safe to start busy waiting for the lock. Second, it checks if
1598  * there is a busy waiter and passes the lock rights to her.
1599  *
1600  * Important: Callers lose the lock if there was a busy waiter.
1601  *	They must not touch items synchronized by console_lock
1602  *	in this case.
1603  *
1604  * Return: 1 if the lock rights were passed, 0 otherwise.
1605  */
1606 static int console_lock_spinning_disable_and_check(void)
1607 {
1608 	int waiter;
1609 
1610 	raw_spin_lock(&console_owner_lock);
1611 	waiter = READ_ONCE(console_waiter);
1612 	console_owner = NULL;
1613 	raw_spin_unlock(&console_owner_lock);
1614 
1615 	if (!waiter) {
1616 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1617 		return 0;
1618 	}
1619 
1620 	/* The waiter is now free to continue */
1621 	WRITE_ONCE(console_waiter, false);
1622 
1623 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1624 
1625 	/*
1626 	 * Hand off console_lock to waiter. The waiter will perform
1627 	 * the up(). After this, the waiter is the console_lock owner.
1628 	 */
1629 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1630 	return 1;
1631 }
1632 
1633 /**
1634  * console_trylock_spinning - try to get console_lock by busy waiting
1635  *
1636  * This allows to busy wait for the console_lock when the current
1637  * owner is running in specially marked sections. It means that
1638  * the current owner is running and cannot reschedule until it
1639  * is ready to lose the lock.
1640  *
1641  * Return: 1 if we got the lock, 0 othrewise
1642  */
1643 static int console_trylock_spinning(void)
1644 {
1645 	struct task_struct *owner = NULL;
1646 	bool waiter;
1647 	bool spin = false;
1648 	unsigned long flags;
1649 
1650 	if (console_trylock())
1651 		return 1;
1652 
1653 	printk_safe_enter_irqsave(flags);
1654 
1655 	raw_spin_lock(&console_owner_lock);
1656 	owner = READ_ONCE(console_owner);
1657 	waiter = READ_ONCE(console_waiter);
1658 	if (!waiter && owner && owner != current) {
1659 		WRITE_ONCE(console_waiter, true);
1660 		spin = true;
1661 	}
1662 	raw_spin_unlock(&console_owner_lock);
1663 
1664 	/*
1665 	 * If there is an active printk() writing to the
1666 	 * consoles, instead of having it write our data too,
1667 	 * see if we can offload that load from the active
1668 	 * printer, and do some printing ourselves.
1669 	 * Go into a spin only if there isn't already a waiter
1670 	 * spinning, and there is an active printer, and
1671 	 * that active printer isn't us (recursive printk?).
1672 	 */
1673 	if (!spin) {
1674 		printk_safe_exit_irqrestore(flags);
1675 		return 0;
1676 	}
1677 
1678 	/* We spin waiting for the owner to release us */
1679 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1680 	/* Owner will clear console_waiter on hand off */
1681 	while (READ_ONCE(console_waiter))
1682 		cpu_relax();
1683 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1684 
1685 	printk_safe_exit_irqrestore(flags);
1686 	/*
1687 	 * The owner passed the console lock to us.
1688 	 * Since we did not spin on console lock, annotate
1689 	 * this as a trylock. Otherwise lockdep will
1690 	 * complain.
1691 	 */
1692 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1693 
1694 	return 1;
1695 }
1696 
1697 /*
1698  * Call the console drivers, asking them to write out
1699  * log_buf[start] to log_buf[end - 1].
1700  * The console_lock must be held.
1701  */
1702 static void call_console_drivers(const char *ext_text, size_t ext_len,
1703 				 const char *text, size_t len)
1704 {
1705 	struct console *con;
1706 
1707 	trace_console_rcuidle(text, len);
1708 
1709 	if (!console_drivers)
1710 		return;
1711 
1712 	for_each_console(con) {
1713 		if (exclusive_console && con != exclusive_console)
1714 			continue;
1715 		if (!(con->flags & CON_ENABLED))
1716 			continue;
1717 		if (!con->write)
1718 			continue;
1719 		if (!cpu_online(smp_processor_id()) &&
1720 		    !(con->flags & CON_ANYTIME))
1721 			continue;
1722 		if (con->flags & CON_EXTENDED)
1723 			con->write(con, ext_text, ext_len);
1724 		else
1725 			con->write(con, text, len);
1726 	}
1727 }
1728 
1729 int printk_delay_msec __read_mostly;
1730 
1731 static inline void printk_delay(void)
1732 {
1733 	if (unlikely(printk_delay_msec)) {
1734 		int m = printk_delay_msec;
1735 
1736 		while (m--) {
1737 			mdelay(1);
1738 			touch_nmi_watchdog();
1739 		}
1740 	}
1741 }
1742 
1743 /*
1744  * Continuation lines are buffered, and not committed to the record buffer
1745  * until the line is complete, or a race forces it. The line fragments
1746  * though, are printed immediately to the consoles to ensure everything has
1747  * reached the console in case of a kernel crash.
1748  */
1749 static struct cont {
1750 	char buf[LOG_LINE_MAX];
1751 	size_t len;			/* length == 0 means unused buffer */
1752 	struct task_struct *owner;	/* task of first print*/
1753 	u64 ts_nsec;			/* time of first print */
1754 	u8 level;			/* log level of first message */
1755 	u8 facility;			/* log facility of first message */
1756 	enum log_flags flags;		/* prefix, newline flags */
1757 } cont;
1758 
1759 static void cont_flush(void)
1760 {
1761 	if (cont.len == 0)
1762 		return;
1763 
1764 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1765 		  NULL, 0, cont.buf, cont.len);
1766 	cont.len = 0;
1767 }
1768 
1769 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1770 {
1771 	/*
1772 	 * If ext consoles are present, flush and skip in-kernel
1773 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1774 	 * the line gets too long, split it up in separate records.
1775 	 */
1776 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1777 		cont_flush();
1778 		return false;
1779 	}
1780 
1781 	if (!cont.len) {
1782 		cont.facility = facility;
1783 		cont.level = level;
1784 		cont.owner = current;
1785 		cont.ts_nsec = local_clock();
1786 		cont.flags = flags;
1787 	}
1788 
1789 	memcpy(cont.buf + cont.len, text, len);
1790 	cont.len += len;
1791 
1792 	// The original flags come from the first line,
1793 	// but later continuations can add a newline.
1794 	if (flags & LOG_NEWLINE) {
1795 		cont.flags |= LOG_NEWLINE;
1796 		cont_flush();
1797 	}
1798 
1799 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1800 		cont_flush();
1801 
1802 	return true;
1803 }
1804 
1805 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1806 {
1807 	/*
1808 	 * If an earlier line was buffered, and we're a continuation
1809 	 * write from the same process, try to add it to the buffer.
1810 	 */
1811 	if (cont.len) {
1812 		if (cont.owner == current && (lflags & LOG_CONT)) {
1813 			if (cont_add(facility, level, lflags, text, text_len))
1814 				return text_len;
1815 		}
1816 		/* Otherwise, make sure it's flushed */
1817 		cont_flush();
1818 	}
1819 
1820 	/* Skip empty continuation lines that couldn't be added - they just flush */
1821 	if (!text_len && (lflags & LOG_CONT))
1822 		return 0;
1823 
1824 	/* If it doesn't end in a newline, try to buffer the current line */
1825 	if (!(lflags & LOG_NEWLINE)) {
1826 		if (cont_add(facility, level, lflags, text, text_len))
1827 			return text_len;
1828 	}
1829 
1830 	/* Store it in the record log */
1831 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1832 }
1833 
1834 /* Must be called under logbuf_lock. */
1835 int vprintk_store(int facility, int level,
1836 		  const char *dict, size_t dictlen,
1837 		  const char *fmt, va_list args)
1838 {
1839 	static char textbuf[LOG_LINE_MAX];
1840 	char *text = textbuf;
1841 	size_t text_len;
1842 	enum log_flags lflags = 0;
1843 
1844 	/*
1845 	 * The printf needs to come first; we need the syslog
1846 	 * prefix which might be passed-in as a parameter.
1847 	 */
1848 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1849 
1850 	/* mark and strip a trailing newline */
1851 	if (text_len && text[text_len-1] == '\n') {
1852 		text_len--;
1853 		lflags |= LOG_NEWLINE;
1854 	}
1855 
1856 	/* strip kernel syslog prefix and extract log level or control flags */
1857 	if (facility == 0) {
1858 		int kern_level;
1859 
1860 		while ((kern_level = printk_get_level(text)) != 0) {
1861 			switch (kern_level) {
1862 			case '0' ... '7':
1863 				if (level == LOGLEVEL_DEFAULT)
1864 					level = kern_level - '0';
1865 				/* fallthrough */
1866 			case 'd':	/* KERN_DEFAULT */
1867 				lflags |= LOG_PREFIX;
1868 				break;
1869 			case 'c':	/* KERN_CONT */
1870 				lflags |= LOG_CONT;
1871 			}
1872 
1873 			text_len -= 2;
1874 			text += 2;
1875 		}
1876 	}
1877 
1878 	if (level == LOGLEVEL_DEFAULT)
1879 		level = default_message_loglevel;
1880 
1881 	if (dict)
1882 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1883 
1884 	if (suppress_message_printing(level))
1885 		lflags |= LOG_NOCONS;
1886 
1887 	return log_output(facility, level, lflags,
1888 			  dict, dictlen, text, text_len);
1889 }
1890 
1891 asmlinkage int vprintk_emit(int facility, int level,
1892 			    const char *dict, size_t dictlen,
1893 			    const char *fmt, va_list args)
1894 {
1895 	int printed_len;
1896 	bool in_sched = false;
1897 	unsigned long flags;
1898 
1899 	if (level == LOGLEVEL_SCHED) {
1900 		level = LOGLEVEL_DEFAULT;
1901 		in_sched = true;
1902 	}
1903 
1904 	boot_delay_msec(level);
1905 	printk_delay();
1906 
1907 	/* This stops the holder of console_sem just where we want him */
1908 	logbuf_lock_irqsave(flags);
1909 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1910 	logbuf_unlock_irqrestore(flags);
1911 
1912 	/* If called from the scheduler, we can not call up(). */
1913 	if (!in_sched) {
1914 		/*
1915 		 * Disable preemption to avoid being preempted while holding
1916 		 * console_sem which would prevent anyone from printing to
1917 		 * console
1918 		 */
1919 		preempt_disable();
1920 		/*
1921 		 * Try to acquire and then immediately release the console
1922 		 * semaphore.  The release will print out buffers and wake up
1923 		 * /dev/kmsg and syslog() users.
1924 		 */
1925 		if (console_trylock_spinning())
1926 			console_unlock();
1927 		preempt_enable();
1928 	}
1929 
1930 	wake_up_klogd();
1931 	return printed_len;
1932 }
1933 EXPORT_SYMBOL(vprintk_emit);
1934 
1935 asmlinkage int vprintk(const char *fmt, va_list args)
1936 {
1937 	return vprintk_func(fmt, args);
1938 }
1939 EXPORT_SYMBOL(vprintk);
1940 
1941 asmlinkage int printk_emit(int facility, int level,
1942 			   const char *dict, size_t dictlen,
1943 			   const char *fmt, ...)
1944 {
1945 	va_list args;
1946 	int r;
1947 
1948 	va_start(args, fmt);
1949 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1950 	va_end(args);
1951 
1952 	return r;
1953 }
1954 EXPORT_SYMBOL(printk_emit);
1955 
1956 int vprintk_default(const char *fmt, va_list args)
1957 {
1958 	int r;
1959 
1960 #ifdef CONFIG_KGDB_KDB
1961 	/* Allow to pass printk() to kdb but avoid a recursion. */
1962 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1963 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1964 		return r;
1965 	}
1966 #endif
1967 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1968 
1969 	return r;
1970 }
1971 EXPORT_SYMBOL_GPL(vprintk_default);
1972 
1973 /**
1974  * printk - print a kernel message
1975  * @fmt: format string
1976  *
1977  * This is printk(). It can be called from any context. We want it to work.
1978  *
1979  * We try to grab the console_lock. If we succeed, it's easy - we log the
1980  * output and call the console drivers.  If we fail to get the semaphore, we
1981  * place the output into the log buffer and return. The current holder of
1982  * the console_sem will notice the new output in console_unlock(); and will
1983  * send it to the consoles before releasing the lock.
1984  *
1985  * One effect of this deferred printing is that code which calls printk() and
1986  * then changes console_loglevel may break. This is because console_loglevel
1987  * is inspected when the actual printing occurs.
1988  *
1989  * See also:
1990  * printf(3)
1991  *
1992  * See the vsnprintf() documentation for format string extensions over C99.
1993  */
1994 asmlinkage __visible int printk(const char *fmt, ...)
1995 {
1996 	va_list args;
1997 	int r;
1998 
1999 	va_start(args, fmt);
2000 	r = vprintk_func(fmt, args);
2001 	va_end(args);
2002 
2003 	return r;
2004 }
2005 EXPORT_SYMBOL(printk);
2006 
2007 #else /* CONFIG_PRINTK */
2008 
2009 #define LOG_LINE_MAX		0
2010 #define PREFIX_MAX		0
2011 
2012 static u64 syslog_seq;
2013 static u32 syslog_idx;
2014 static u64 console_seq;
2015 static u32 console_idx;
2016 static u64 log_first_seq;
2017 static u32 log_first_idx;
2018 static u64 log_next_seq;
2019 static char *log_text(const struct printk_log *msg) { return NULL; }
2020 static char *log_dict(const struct printk_log *msg) { return NULL; }
2021 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2022 static u32 log_next(u32 idx) { return 0; }
2023 static ssize_t msg_print_ext_header(char *buf, size_t size,
2024 				    struct printk_log *msg,
2025 				    u64 seq) { return 0; }
2026 static ssize_t msg_print_ext_body(char *buf, size_t size,
2027 				  char *dict, size_t dict_len,
2028 				  char *text, size_t text_len) { return 0; }
2029 static void console_lock_spinning_enable(void) { }
2030 static int console_lock_spinning_disable_and_check(void) { return 0; }
2031 static void call_console_drivers(const char *ext_text, size_t ext_len,
2032 				 const char *text, size_t len) {}
2033 static size_t msg_print_text(const struct printk_log *msg,
2034 			     bool syslog, char *buf, size_t size) { return 0; }
2035 
2036 #endif /* CONFIG_PRINTK */
2037 
2038 #ifdef CONFIG_EARLY_PRINTK
2039 struct console *early_console;
2040 
2041 asmlinkage __visible void early_printk(const char *fmt, ...)
2042 {
2043 	va_list ap;
2044 	char buf[512];
2045 	int n;
2046 
2047 	if (!early_console)
2048 		return;
2049 
2050 	va_start(ap, fmt);
2051 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2052 	va_end(ap);
2053 
2054 	early_console->write(early_console, buf, n);
2055 }
2056 #endif
2057 
2058 static int __add_preferred_console(char *name, int idx, char *options,
2059 				   char *brl_options)
2060 {
2061 	struct console_cmdline *c;
2062 	int i;
2063 
2064 	/*
2065 	 *	See if this tty is not yet registered, and
2066 	 *	if we have a slot free.
2067 	 */
2068 	for (i = 0, c = console_cmdline;
2069 	     i < MAX_CMDLINECONSOLES && c->name[0];
2070 	     i++, c++) {
2071 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2072 			if (!brl_options)
2073 				preferred_console = i;
2074 			return 0;
2075 		}
2076 	}
2077 	if (i == MAX_CMDLINECONSOLES)
2078 		return -E2BIG;
2079 	if (!brl_options)
2080 		preferred_console = i;
2081 	strlcpy(c->name, name, sizeof(c->name));
2082 	c->options = options;
2083 	braille_set_options(c, brl_options);
2084 
2085 	c->index = idx;
2086 	return 0;
2087 }
2088 
2089 static int __init console_msg_format_setup(char *str)
2090 {
2091 	if (!strcmp(str, "syslog"))
2092 		console_msg_format = MSG_FORMAT_SYSLOG;
2093 	if (!strcmp(str, "default"))
2094 		console_msg_format = MSG_FORMAT_DEFAULT;
2095 	return 1;
2096 }
2097 __setup("console_msg_format=", console_msg_format_setup);
2098 
2099 /*
2100  * Set up a console.  Called via do_early_param() in init/main.c
2101  * for each "console=" parameter in the boot command line.
2102  */
2103 static int __init console_setup(char *str)
2104 {
2105 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2106 	char *s, *options, *brl_options = NULL;
2107 	int idx;
2108 
2109 	if (_braille_console_setup(&str, &brl_options))
2110 		return 1;
2111 
2112 	/*
2113 	 * Decode str into name, index, options.
2114 	 */
2115 	if (str[0] >= '0' && str[0] <= '9') {
2116 		strcpy(buf, "ttyS");
2117 		strncpy(buf + 4, str, sizeof(buf) - 5);
2118 	} else {
2119 		strncpy(buf, str, sizeof(buf) - 1);
2120 	}
2121 	buf[sizeof(buf) - 1] = 0;
2122 	options = strchr(str, ',');
2123 	if (options)
2124 		*(options++) = 0;
2125 #ifdef __sparc__
2126 	if (!strcmp(str, "ttya"))
2127 		strcpy(buf, "ttyS0");
2128 	if (!strcmp(str, "ttyb"))
2129 		strcpy(buf, "ttyS1");
2130 #endif
2131 	for (s = buf; *s; s++)
2132 		if (isdigit(*s) || *s == ',')
2133 			break;
2134 	idx = simple_strtoul(s, NULL, 10);
2135 	*s = 0;
2136 
2137 	__add_preferred_console(buf, idx, options, brl_options);
2138 	console_set_on_cmdline = 1;
2139 	return 1;
2140 }
2141 __setup("console=", console_setup);
2142 
2143 /**
2144  * add_preferred_console - add a device to the list of preferred consoles.
2145  * @name: device name
2146  * @idx: device index
2147  * @options: options for this console
2148  *
2149  * The last preferred console added will be used for kernel messages
2150  * and stdin/out/err for init.  Normally this is used by console_setup
2151  * above to handle user-supplied console arguments; however it can also
2152  * be used by arch-specific code either to override the user or more
2153  * commonly to provide a default console (ie from PROM variables) when
2154  * the user has not supplied one.
2155  */
2156 int add_preferred_console(char *name, int idx, char *options)
2157 {
2158 	return __add_preferred_console(name, idx, options, NULL);
2159 }
2160 
2161 bool console_suspend_enabled = true;
2162 EXPORT_SYMBOL(console_suspend_enabled);
2163 
2164 static int __init console_suspend_disable(char *str)
2165 {
2166 	console_suspend_enabled = false;
2167 	return 1;
2168 }
2169 __setup("no_console_suspend", console_suspend_disable);
2170 module_param_named(console_suspend, console_suspend_enabled,
2171 		bool, S_IRUGO | S_IWUSR);
2172 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2173 	" and hibernate operations");
2174 
2175 /**
2176  * suspend_console - suspend the console subsystem
2177  *
2178  * This disables printk() while we go into suspend states
2179  */
2180 void suspend_console(void)
2181 {
2182 	if (!console_suspend_enabled)
2183 		return;
2184 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2185 	console_lock();
2186 	console_suspended = 1;
2187 	up_console_sem();
2188 }
2189 
2190 void resume_console(void)
2191 {
2192 	if (!console_suspend_enabled)
2193 		return;
2194 	down_console_sem();
2195 	console_suspended = 0;
2196 	console_unlock();
2197 }
2198 
2199 /**
2200  * console_cpu_notify - print deferred console messages after CPU hotplug
2201  * @cpu: unused
2202  *
2203  * If printk() is called from a CPU that is not online yet, the messages
2204  * will be printed on the console only if there are CON_ANYTIME consoles.
2205  * This function is called when a new CPU comes online (or fails to come
2206  * up) or goes offline.
2207  */
2208 static int console_cpu_notify(unsigned int cpu)
2209 {
2210 	if (!cpuhp_tasks_frozen) {
2211 		/* If trylock fails, someone else is doing the printing */
2212 		if (console_trylock())
2213 			console_unlock();
2214 	}
2215 	return 0;
2216 }
2217 
2218 /**
2219  * console_lock - lock the console system for exclusive use.
2220  *
2221  * Acquires a lock which guarantees that the caller has
2222  * exclusive access to the console system and the console_drivers list.
2223  *
2224  * Can sleep, returns nothing.
2225  */
2226 void console_lock(void)
2227 {
2228 	might_sleep();
2229 
2230 	down_console_sem();
2231 	if (console_suspended)
2232 		return;
2233 	console_locked = 1;
2234 	console_may_schedule = 1;
2235 }
2236 EXPORT_SYMBOL(console_lock);
2237 
2238 /**
2239  * console_trylock - try to lock the console system for exclusive use.
2240  *
2241  * Try to acquire a lock which guarantees that the caller has exclusive
2242  * access to the console system and the console_drivers list.
2243  *
2244  * returns 1 on success, and 0 on failure to acquire the lock.
2245  */
2246 int console_trylock(void)
2247 {
2248 	if (down_trylock_console_sem())
2249 		return 0;
2250 	if (console_suspended) {
2251 		up_console_sem();
2252 		return 0;
2253 	}
2254 	console_locked = 1;
2255 	console_may_schedule = 0;
2256 	return 1;
2257 }
2258 EXPORT_SYMBOL(console_trylock);
2259 
2260 int is_console_locked(void)
2261 {
2262 	return console_locked;
2263 }
2264 EXPORT_SYMBOL(is_console_locked);
2265 
2266 /*
2267  * Check if we have any console that is capable of printing while cpu is
2268  * booting or shutting down. Requires console_sem.
2269  */
2270 static int have_callable_console(void)
2271 {
2272 	struct console *con;
2273 
2274 	for_each_console(con)
2275 		if ((con->flags & CON_ENABLED) &&
2276 				(con->flags & CON_ANYTIME))
2277 			return 1;
2278 
2279 	return 0;
2280 }
2281 
2282 /*
2283  * Can we actually use the console at this time on this cpu?
2284  *
2285  * Console drivers may assume that per-cpu resources have been allocated. So
2286  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2287  * call them until this CPU is officially up.
2288  */
2289 static inline int can_use_console(void)
2290 {
2291 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2292 }
2293 
2294 /**
2295  * console_unlock - unlock the console system
2296  *
2297  * Releases the console_lock which the caller holds on the console system
2298  * and the console driver list.
2299  *
2300  * While the console_lock was held, console output may have been buffered
2301  * by printk().  If this is the case, console_unlock(); emits
2302  * the output prior to releasing the lock.
2303  *
2304  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2305  *
2306  * console_unlock(); may be called from any context.
2307  */
2308 void console_unlock(void)
2309 {
2310 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2311 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2312 	unsigned long flags;
2313 	bool do_cond_resched, retry;
2314 
2315 	if (console_suspended) {
2316 		up_console_sem();
2317 		return;
2318 	}
2319 
2320 	/*
2321 	 * Console drivers are called with interrupts disabled, so
2322 	 * @console_may_schedule should be cleared before; however, we may
2323 	 * end up dumping a lot of lines, for example, if called from
2324 	 * console registration path, and should invoke cond_resched()
2325 	 * between lines if allowable.  Not doing so can cause a very long
2326 	 * scheduling stall on a slow console leading to RCU stall and
2327 	 * softlockup warnings which exacerbate the issue with more
2328 	 * messages practically incapacitating the system.
2329 	 *
2330 	 * console_trylock() is not able to detect the preemptive
2331 	 * context reliably. Therefore the value must be stored before
2332 	 * and cleared after the the "again" goto label.
2333 	 */
2334 	do_cond_resched = console_may_schedule;
2335 again:
2336 	console_may_schedule = 0;
2337 
2338 	/*
2339 	 * We released the console_sem lock, so we need to recheck if
2340 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2341 	 * console.
2342 	 */
2343 	if (!can_use_console()) {
2344 		console_locked = 0;
2345 		up_console_sem();
2346 		return;
2347 	}
2348 
2349 	for (;;) {
2350 		struct printk_log *msg;
2351 		size_t ext_len = 0;
2352 		size_t len;
2353 
2354 		printk_safe_enter_irqsave(flags);
2355 		raw_spin_lock(&logbuf_lock);
2356 		if (console_seq < log_first_seq) {
2357 			len = sprintf(text, "** %u printk messages dropped **\n",
2358 				      (unsigned)(log_first_seq - console_seq));
2359 
2360 			/* messages are gone, move to first one */
2361 			console_seq = log_first_seq;
2362 			console_idx = log_first_idx;
2363 		} else {
2364 			len = 0;
2365 		}
2366 skip:
2367 		if (console_seq == log_next_seq)
2368 			break;
2369 
2370 		msg = log_from_idx(console_idx);
2371 		if (msg->flags & LOG_NOCONS) {
2372 			/*
2373 			 * Skip record if !ignore_loglevel, and
2374 			 * record has level above the console loglevel.
2375 			 */
2376 			console_idx = log_next(console_idx);
2377 			console_seq++;
2378 			goto skip;
2379 		}
2380 
2381 		len += msg_print_text(msg,
2382 				console_msg_format & MSG_FORMAT_SYSLOG,
2383 				text + len,
2384 				sizeof(text) - len);
2385 		if (nr_ext_console_drivers) {
2386 			ext_len = msg_print_ext_header(ext_text,
2387 						sizeof(ext_text),
2388 						msg, console_seq);
2389 			ext_len += msg_print_ext_body(ext_text + ext_len,
2390 						sizeof(ext_text) - ext_len,
2391 						log_dict(msg), msg->dict_len,
2392 						log_text(msg), msg->text_len);
2393 		}
2394 		console_idx = log_next(console_idx);
2395 		console_seq++;
2396 		raw_spin_unlock(&logbuf_lock);
2397 
2398 		/*
2399 		 * While actively printing out messages, if another printk()
2400 		 * were to occur on another CPU, it may wait for this one to
2401 		 * finish. This task can not be preempted if there is a
2402 		 * waiter waiting to take over.
2403 		 */
2404 		console_lock_spinning_enable();
2405 
2406 		stop_critical_timings();	/* don't trace print latency */
2407 		call_console_drivers(ext_text, ext_len, text, len);
2408 		start_critical_timings();
2409 
2410 		if (console_lock_spinning_disable_and_check()) {
2411 			printk_safe_exit_irqrestore(flags);
2412 			return;
2413 		}
2414 
2415 		printk_safe_exit_irqrestore(flags);
2416 
2417 		if (do_cond_resched)
2418 			cond_resched();
2419 	}
2420 
2421 	console_locked = 0;
2422 
2423 	/* Release the exclusive_console once it is used */
2424 	if (unlikely(exclusive_console))
2425 		exclusive_console = NULL;
2426 
2427 	raw_spin_unlock(&logbuf_lock);
2428 
2429 	up_console_sem();
2430 
2431 	/*
2432 	 * Someone could have filled up the buffer again, so re-check if there's
2433 	 * something to flush. In case we cannot trylock the console_sem again,
2434 	 * there's a new owner and the console_unlock() from them will do the
2435 	 * flush, no worries.
2436 	 */
2437 	raw_spin_lock(&logbuf_lock);
2438 	retry = console_seq != log_next_seq;
2439 	raw_spin_unlock(&logbuf_lock);
2440 	printk_safe_exit_irqrestore(flags);
2441 
2442 	if (retry && console_trylock())
2443 		goto again;
2444 }
2445 EXPORT_SYMBOL(console_unlock);
2446 
2447 /**
2448  * console_conditional_schedule - yield the CPU if required
2449  *
2450  * If the console code is currently allowed to sleep, and
2451  * if this CPU should yield the CPU to another task, do
2452  * so here.
2453  *
2454  * Must be called within console_lock();.
2455  */
2456 void __sched console_conditional_schedule(void)
2457 {
2458 	if (console_may_schedule)
2459 		cond_resched();
2460 }
2461 EXPORT_SYMBOL(console_conditional_schedule);
2462 
2463 void console_unblank(void)
2464 {
2465 	struct console *c;
2466 
2467 	/*
2468 	 * console_unblank can no longer be called in interrupt context unless
2469 	 * oops_in_progress is set to 1..
2470 	 */
2471 	if (oops_in_progress) {
2472 		if (down_trylock_console_sem() != 0)
2473 			return;
2474 	} else
2475 		console_lock();
2476 
2477 	console_locked = 1;
2478 	console_may_schedule = 0;
2479 	for_each_console(c)
2480 		if ((c->flags & CON_ENABLED) && c->unblank)
2481 			c->unblank();
2482 	console_unlock();
2483 }
2484 
2485 /**
2486  * console_flush_on_panic - flush console content on panic
2487  *
2488  * Immediately output all pending messages no matter what.
2489  */
2490 void console_flush_on_panic(void)
2491 {
2492 	/*
2493 	 * If someone else is holding the console lock, trylock will fail
2494 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2495 	 * that messages are flushed out.  As this can be called from any
2496 	 * context and we don't want to get preempted while flushing,
2497 	 * ensure may_schedule is cleared.
2498 	 */
2499 	console_trylock();
2500 	console_may_schedule = 0;
2501 	console_unlock();
2502 }
2503 
2504 /*
2505  * Return the console tty driver structure and its associated index
2506  */
2507 struct tty_driver *console_device(int *index)
2508 {
2509 	struct console *c;
2510 	struct tty_driver *driver = NULL;
2511 
2512 	console_lock();
2513 	for_each_console(c) {
2514 		if (!c->device)
2515 			continue;
2516 		driver = c->device(c, index);
2517 		if (driver)
2518 			break;
2519 	}
2520 	console_unlock();
2521 	return driver;
2522 }
2523 
2524 /*
2525  * Prevent further output on the passed console device so that (for example)
2526  * serial drivers can disable console output before suspending a port, and can
2527  * re-enable output afterwards.
2528  */
2529 void console_stop(struct console *console)
2530 {
2531 	console_lock();
2532 	console->flags &= ~CON_ENABLED;
2533 	console_unlock();
2534 }
2535 EXPORT_SYMBOL(console_stop);
2536 
2537 void console_start(struct console *console)
2538 {
2539 	console_lock();
2540 	console->flags |= CON_ENABLED;
2541 	console_unlock();
2542 }
2543 EXPORT_SYMBOL(console_start);
2544 
2545 static int __read_mostly keep_bootcon;
2546 
2547 static int __init keep_bootcon_setup(char *str)
2548 {
2549 	keep_bootcon = 1;
2550 	pr_info("debug: skip boot console de-registration.\n");
2551 
2552 	return 0;
2553 }
2554 
2555 early_param("keep_bootcon", keep_bootcon_setup);
2556 
2557 /*
2558  * The console driver calls this routine during kernel initialization
2559  * to register the console printing procedure with printk() and to
2560  * print any messages that were printed by the kernel before the
2561  * console driver was initialized.
2562  *
2563  * This can happen pretty early during the boot process (because of
2564  * early_printk) - sometimes before setup_arch() completes - be careful
2565  * of what kernel features are used - they may not be initialised yet.
2566  *
2567  * There are two types of consoles - bootconsoles (early_printk) and
2568  * "real" consoles (everything which is not a bootconsole) which are
2569  * handled differently.
2570  *  - Any number of bootconsoles can be registered at any time.
2571  *  - As soon as a "real" console is registered, all bootconsoles
2572  *    will be unregistered automatically.
2573  *  - Once a "real" console is registered, any attempt to register a
2574  *    bootconsoles will be rejected
2575  */
2576 void register_console(struct console *newcon)
2577 {
2578 	int i;
2579 	unsigned long flags;
2580 	struct console *bcon = NULL;
2581 	struct console_cmdline *c;
2582 	static bool has_preferred;
2583 
2584 	if (console_drivers)
2585 		for_each_console(bcon)
2586 			if (WARN(bcon == newcon,
2587 					"console '%s%d' already registered\n",
2588 					bcon->name, bcon->index))
2589 				return;
2590 
2591 	/*
2592 	 * before we register a new CON_BOOT console, make sure we don't
2593 	 * already have a valid console
2594 	 */
2595 	if (console_drivers && newcon->flags & CON_BOOT) {
2596 		/* find the last or real console */
2597 		for_each_console(bcon) {
2598 			if (!(bcon->flags & CON_BOOT)) {
2599 				pr_info("Too late to register bootconsole %s%d\n",
2600 					newcon->name, newcon->index);
2601 				return;
2602 			}
2603 		}
2604 	}
2605 
2606 	if (console_drivers && console_drivers->flags & CON_BOOT)
2607 		bcon = console_drivers;
2608 
2609 	if (!has_preferred || bcon || !console_drivers)
2610 		has_preferred = preferred_console >= 0;
2611 
2612 	/*
2613 	 *	See if we want to use this console driver. If we
2614 	 *	didn't select a console we take the first one
2615 	 *	that registers here.
2616 	 */
2617 	if (!has_preferred) {
2618 		if (newcon->index < 0)
2619 			newcon->index = 0;
2620 		if (newcon->setup == NULL ||
2621 		    newcon->setup(newcon, NULL) == 0) {
2622 			newcon->flags |= CON_ENABLED;
2623 			if (newcon->device) {
2624 				newcon->flags |= CON_CONSDEV;
2625 				has_preferred = true;
2626 			}
2627 		}
2628 	}
2629 
2630 	/*
2631 	 *	See if this console matches one we selected on
2632 	 *	the command line.
2633 	 */
2634 	for (i = 0, c = console_cmdline;
2635 	     i < MAX_CMDLINECONSOLES && c->name[0];
2636 	     i++, c++) {
2637 		if (!newcon->match ||
2638 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2639 			/* default matching */
2640 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2641 			if (strcmp(c->name, newcon->name) != 0)
2642 				continue;
2643 			if (newcon->index >= 0 &&
2644 			    newcon->index != c->index)
2645 				continue;
2646 			if (newcon->index < 0)
2647 				newcon->index = c->index;
2648 
2649 			if (_braille_register_console(newcon, c))
2650 				return;
2651 
2652 			if (newcon->setup &&
2653 			    newcon->setup(newcon, c->options) != 0)
2654 				break;
2655 		}
2656 
2657 		newcon->flags |= CON_ENABLED;
2658 		if (i == preferred_console) {
2659 			newcon->flags |= CON_CONSDEV;
2660 			has_preferred = true;
2661 		}
2662 		break;
2663 	}
2664 
2665 	if (!(newcon->flags & CON_ENABLED))
2666 		return;
2667 
2668 	/*
2669 	 * If we have a bootconsole, and are switching to a real console,
2670 	 * don't print everything out again, since when the boot console, and
2671 	 * the real console are the same physical device, it's annoying to
2672 	 * see the beginning boot messages twice
2673 	 */
2674 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2675 		newcon->flags &= ~CON_PRINTBUFFER;
2676 
2677 	/*
2678 	 *	Put this console in the list - keep the
2679 	 *	preferred driver at the head of the list.
2680 	 */
2681 	console_lock();
2682 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2683 		newcon->next = console_drivers;
2684 		console_drivers = newcon;
2685 		if (newcon->next)
2686 			newcon->next->flags &= ~CON_CONSDEV;
2687 	} else {
2688 		newcon->next = console_drivers->next;
2689 		console_drivers->next = newcon;
2690 	}
2691 
2692 	if (newcon->flags & CON_EXTENDED)
2693 		if (!nr_ext_console_drivers++)
2694 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2695 
2696 	if (newcon->flags & CON_PRINTBUFFER) {
2697 		/*
2698 		 * console_unlock(); will print out the buffered messages
2699 		 * for us.
2700 		 */
2701 		logbuf_lock_irqsave(flags);
2702 		console_seq = syslog_seq;
2703 		console_idx = syslog_idx;
2704 		logbuf_unlock_irqrestore(flags);
2705 		/*
2706 		 * We're about to replay the log buffer.  Only do this to the
2707 		 * just-registered console to avoid excessive message spam to
2708 		 * the already-registered consoles.
2709 		 */
2710 		exclusive_console = newcon;
2711 	}
2712 	console_unlock();
2713 	console_sysfs_notify();
2714 
2715 	/*
2716 	 * By unregistering the bootconsoles after we enable the real console
2717 	 * we get the "console xxx enabled" message on all the consoles -
2718 	 * boot consoles, real consoles, etc - this is to ensure that end
2719 	 * users know there might be something in the kernel's log buffer that
2720 	 * went to the bootconsole (that they do not see on the real console)
2721 	 */
2722 	pr_info("%sconsole [%s%d] enabled\n",
2723 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2724 		newcon->name, newcon->index);
2725 	if (bcon &&
2726 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2727 	    !keep_bootcon) {
2728 		/* We need to iterate through all boot consoles, to make
2729 		 * sure we print everything out, before we unregister them.
2730 		 */
2731 		for_each_console(bcon)
2732 			if (bcon->flags & CON_BOOT)
2733 				unregister_console(bcon);
2734 	}
2735 }
2736 EXPORT_SYMBOL(register_console);
2737 
2738 int unregister_console(struct console *console)
2739 {
2740         struct console *a, *b;
2741 	int res;
2742 
2743 	pr_info("%sconsole [%s%d] disabled\n",
2744 		(console->flags & CON_BOOT) ? "boot" : "" ,
2745 		console->name, console->index);
2746 
2747 	res = _braille_unregister_console(console);
2748 	if (res)
2749 		return res;
2750 
2751 	res = 1;
2752 	console_lock();
2753 	if (console_drivers == console) {
2754 		console_drivers=console->next;
2755 		res = 0;
2756 	} else if (console_drivers) {
2757 		for (a=console_drivers->next, b=console_drivers ;
2758 		     a; b=a, a=b->next) {
2759 			if (a == console) {
2760 				b->next = a->next;
2761 				res = 0;
2762 				break;
2763 			}
2764 		}
2765 	}
2766 
2767 	if (!res && (console->flags & CON_EXTENDED))
2768 		nr_ext_console_drivers--;
2769 
2770 	/*
2771 	 * If this isn't the last console and it has CON_CONSDEV set, we
2772 	 * need to set it on the next preferred console.
2773 	 */
2774 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2775 		console_drivers->flags |= CON_CONSDEV;
2776 
2777 	console->flags &= ~CON_ENABLED;
2778 	console_unlock();
2779 	console_sysfs_notify();
2780 	return res;
2781 }
2782 EXPORT_SYMBOL(unregister_console);
2783 
2784 /*
2785  * Initialize the console device. This is called *early*, so
2786  * we can't necessarily depend on lots of kernel help here.
2787  * Just do some early initializations, and do the complex setup
2788  * later.
2789  */
2790 void __init console_init(void)
2791 {
2792 	int ret;
2793 	initcall_t call;
2794 	initcall_entry_t *ce;
2795 
2796 	/* Setup the default TTY line discipline. */
2797 	n_tty_init();
2798 
2799 	/*
2800 	 * set up the console device so that later boot sequences can
2801 	 * inform about problems etc..
2802 	 */
2803 	ce = __con_initcall_start;
2804 	trace_initcall_level("console");
2805 	while (ce < __con_initcall_end) {
2806 		call = initcall_from_entry(ce);
2807 		trace_initcall_start(call);
2808 		ret = call();
2809 		trace_initcall_finish(call, ret);
2810 		ce++;
2811 	}
2812 }
2813 
2814 /*
2815  * Some boot consoles access data that is in the init section and which will
2816  * be discarded after the initcalls have been run. To make sure that no code
2817  * will access this data, unregister the boot consoles in a late initcall.
2818  *
2819  * If for some reason, such as deferred probe or the driver being a loadable
2820  * module, the real console hasn't registered yet at this point, there will
2821  * be a brief interval in which no messages are logged to the console, which
2822  * makes it difficult to diagnose problems that occur during this time.
2823  *
2824  * To mitigate this problem somewhat, only unregister consoles whose memory
2825  * intersects with the init section. Note that all other boot consoles will
2826  * get unregistred when the real preferred console is registered.
2827  */
2828 static int __init printk_late_init(void)
2829 {
2830 	struct console *con;
2831 	int ret;
2832 
2833 	for_each_console(con) {
2834 		if (!(con->flags & CON_BOOT))
2835 			continue;
2836 
2837 		/* Check addresses that might be used for enabled consoles. */
2838 		if (init_section_intersects(con, sizeof(*con)) ||
2839 		    init_section_contains(con->write, 0) ||
2840 		    init_section_contains(con->read, 0) ||
2841 		    init_section_contains(con->device, 0) ||
2842 		    init_section_contains(con->unblank, 0) ||
2843 		    init_section_contains(con->data, 0)) {
2844 			/*
2845 			 * Please, consider moving the reported consoles out
2846 			 * of the init section.
2847 			 */
2848 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2849 				con->name, con->index);
2850 			unregister_console(con);
2851 		}
2852 	}
2853 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2854 					console_cpu_notify);
2855 	WARN_ON(ret < 0);
2856 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2857 					console_cpu_notify, NULL);
2858 	WARN_ON(ret < 0);
2859 	return 0;
2860 }
2861 late_initcall(printk_late_init);
2862 
2863 #if defined CONFIG_PRINTK
2864 /*
2865  * Delayed printk version, for scheduler-internal messages:
2866  */
2867 #define PRINTK_PENDING_WAKEUP	0x01
2868 #define PRINTK_PENDING_OUTPUT	0x02
2869 
2870 static DEFINE_PER_CPU(int, printk_pending);
2871 
2872 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2873 {
2874 	int pending = __this_cpu_xchg(printk_pending, 0);
2875 
2876 	if (pending & PRINTK_PENDING_OUTPUT) {
2877 		/* If trylock fails, someone else is doing the printing */
2878 		if (console_trylock())
2879 			console_unlock();
2880 	}
2881 
2882 	if (pending & PRINTK_PENDING_WAKEUP)
2883 		wake_up_interruptible(&log_wait);
2884 }
2885 
2886 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2887 	.func = wake_up_klogd_work_func,
2888 	.flags = IRQ_WORK_LAZY,
2889 };
2890 
2891 void wake_up_klogd(void)
2892 {
2893 	preempt_disable();
2894 	if (waitqueue_active(&log_wait)) {
2895 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2896 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2897 	}
2898 	preempt_enable();
2899 }
2900 
2901 void defer_console_output(void)
2902 {
2903 	preempt_disable();
2904 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2905 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2906 	preempt_enable();
2907 }
2908 
2909 int vprintk_deferred(const char *fmt, va_list args)
2910 {
2911 	int r;
2912 
2913 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2914 	defer_console_output();
2915 
2916 	return r;
2917 }
2918 
2919 int printk_deferred(const char *fmt, ...)
2920 {
2921 	va_list args;
2922 	int r;
2923 
2924 	va_start(args, fmt);
2925 	r = vprintk_deferred(fmt, args);
2926 	va_end(args);
2927 
2928 	return r;
2929 }
2930 
2931 /*
2932  * printk rate limiting, lifted from the networking subsystem.
2933  *
2934  * This enforces a rate limit: not more than 10 kernel messages
2935  * every 5s to make a denial-of-service attack impossible.
2936  */
2937 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2938 
2939 int __printk_ratelimit(const char *func)
2940 {
2941 	return ___ratelimit(&printk_ratelimit_state, func);
2942 }
2943 EXPORT_SYMBOL(__printk_ratelimit);
2944 
2945 /**
2946  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2947  * @caller_jiffies: pointer to caller's state
2948  * @interval_msecs: minimum interval between prints
2949  *
2950  * printk_timed_ratelimit() returns true if more than @interval_msecs
2951  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2952  * returned true.
2953  */
2954 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2955 			unsigned int interval_msecs)
2956 {
2957 	unsigned long elapsed = jiffies - *caller_jiffies;
2958 
2959 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2960 		return false;
2961 
2962 	*caller_jiffies = jiffies;
2963 	return true;
2964 }
2965 EXPORT_SYMBOL(printk_timed_ratelimit);
2966 
2967 static DEFINE_SPINLOCK(dump_list_lock);
2968 static LIST_HEAD(dump_list);
2969 
2970 /**
2971  * kmsg_dump_register - register a kernel log dumper.
2972  * @dumper: pointer to the kmsg_dumper structure
2973  *
2974  * Adds a kernel log dumper to the system. The dump callback in the
2975  * structure will be called when the kernel oopses or panics and must be
2976  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2977  */
2978 int kmsg_dump_register(struct kmsg_dumper *dumper)
2979 {
2980 	unsigned long flags;
2981 	int err = -EBUSY;
2982 
2983 	/* The dump callback needs to be set */
2984 	if (!dumper->dump)
2985 		return -EINVAL;
2986 
2987 	spin_lock_irqsave(&dump_list_lock, flags);
2988 	/* Don't allow registering multiple times */
2989 	if (!dumper->registered) {
2990 		dumper->registered = 1;
2991 		list_add_tail_rcu(&dumper->list, &dump_list);
2992 		err = 0;
2993 	}
2994 	spin_unlock_irqrestore(&dump_list_lock, flags);
2995 
2996 	return err;
2997 }
2998 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2999 
3000 /**
3001  * kmsg_dump_unregister - unregister a kmsg dumper.
3002  * @dumper: pointer to the kmsg_dumper structure
3003  *
3004  * Removes a dump device from the system. Returns zero on success and
3005  * %-EINVAL otherwise.
3006  */
3007 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3008 {
3009 	unsigned long flags;
3010 	int err = -EINVAL;
3011 
3012 	spin_lock_irqsave(&dump_list_lock, flags);
3013 	if (dumper->registered) {
3014 		dumper->registered = 0;
3015 		list_del_rcu(&dumper->list);
3016 		err = 0;
3017 	}
3018 	spin_unlock_irqrestore(&dump_list_lock, flags);
3019 	synchronize_rcu();
3020 
3021 	return err;
3022 }
3023 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3024 
3025 static bool always_kmsg_dump;
3026 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3027 
3028 /**
3029  * kmsg_dump - dump kernel log to kernel message dumpers.
3030  * @reason: the reason (oops, panic etc) for dumping
3031  *
3032  * Call each of the registered dumper's dump() callback, which can
3033  * retrieve the kmsg records with kmsg_dump_get_line() or
3034  * kmsg_dump_get_buffer().
3035  */
3036 void kmsg_dump(enum kmsg_dump_reason reason)
3037 {
3038 	struct kmsg_dumper *dumper;
3039 	unsigned long flags;
3040 
3041 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3042 		return;
3043 
3044 	rcu_read_lock();
3045 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3046 		if (dumper->max_reason && reason > dumper->max_reason)
3047 			continue;
3048 
3049 		/* initialize iterator with data about the stored records */
3050 		dumper->active = true;
3051 
3052 		logbuf_lock_irqsave(flags);
3053 		dumper->cur_seq = clear_seq;
3054 		dumper->cur_idx = clear_idx;
3055 		dumper->next_seq = log_next_seq;
3056 		dumper->next_idx = log_next_idx;
3057 		logbuf_unlock_irqrestore(flags);
3058 
3059 		/* invoke dumper which will iterate over records */
3060 		dumper->dump(dumper, reason);
3061 
3062 		/* reset iterator */
3063 		dumper->active = false;
3064 	}
3065 	rcu_read_unlock();
3066 }
3067 
3068 /**
3069  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3070  * @dumper: registered kmsg dumper
3071  * @syslog: include the "<4>" prefixes
3072  * @line: buffer to copy the line to
3073  * @size: maximum size of the buffer
3074  * @len: length of line placed into buffer
3075  *
3076  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3077  * record, and copy one record into the provided buffer.
3078  *
3079  * Consecutive calls will return the next available record moving
3080  * towards the end of the buffer with the youngest messages.
3081  *
3082  * A return value of FALSE indicates that there are no more records to
3083  * read.
3084  *
3085  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3086  */
3087 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3088 			       char *line, size_t size, size_t *len)
3089 {
3090 	struct printk_log *msg;
3091 	size_t l = 0;
3092 	bool ret = false;
3093 
3094 	if (!dumper->active)
3095 		goto out;
3096 
3097 	if (dumper->cur_seq < log_first_seq) {
3098 		/* messages are gone, move to first available one */
3099 		dumper->cur_seq = log_first_seq;
3100 		dumper->cur_idx = log_first_idx;
3101 	}
3102 
3103 	/* last entry */
3104 	if (dumper->cur_seq >= log_next_seq)
3105 		goto out;
3106 
3107 	msg = log_from_idx(dumper->cur_idx);
3108 	l = msg_print_text(msg, syslog, line, size);
3109 
3110 	dumper->cur_idx = log_next(dumper->cur_idx);
3111 	dumper->cur_seq++;
3112 	ret = true;
3113 out:
3114 	if (len)
3115 		*len = l;
3116 	return ret;
3117 }
3118 
3119 /**
3120  * kmsg_dump_get_line - retrieve one kmsg log line
3121  * @dumper: registered kmsg dumper
3122  * @syslog: include the "<4>" prefixes
3123  * @line: buffer to copy the line to
3124  * @size: maximum size of the buffer
3125  * @len: length of line placed into buffer
3126  *
3127  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3128  * record, and copy one record into the provided buffer.
3129  *
3130  * Consecutive calls will return the next available record moving
3131  * towards the end of the buffer with the youngest messages.
3132  *
3133  * A return value of FALSE indicates that there are no more records to
3134  * read.
3135  */
3136 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3137 			char *line, size_t size, size_t *len)
3138 {
3139 	unsigned long flags;
3140 	bool ret;
3141 
3142 	logbuf_lock_irqsave(flags);
3143 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3144 	logbuf_unlock_irqrestore(flags);
3145 
3146 	return ret;
3147 }
3148 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3149 
3150 /**
3151  * kmsg_dump_get_buffer - copy kmsg log lines
3152  * @dumper: registered kmsg dumper
3153  * @syslog: include the "<4>" prefixes
3154  * @buf: buffer to copy the line to
3155  * @size: maximum size of the buffer
3156  * @len: length of line placed into buffer
3157  *
3158  * Start at the end of the kmsg buffer and fill the provided buffer
3159  * with as many of the the *youngest* kmsg records that fit into it.
3160  * If the buffer is large enough, all available kmsg records will be
3161  * copied with a single call.
3162  *
3163  * Consecutive calls will fill the buffer with the next block of
3164  * available older records, not including the earlier retrieved ones.
3165  *
3166  * A return value of FALSE indicates that there are no more records to
3167  * read.
3168  */
3169 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3170 			  char *buf, size_t size, size_t *len)
3171 {
3172 	unsigned long flags;
3173 	u64 seq;
3174 	u32 idx;
3175 	u64 next_seq;
3176 	u32 next_idx;
3177 	size_t l = 0;
3178 	bool ret = false;
3179 
3180 	if (!dumper->active)
3181 		goto out;
3182 
3183 	logbuf_lock_irqsave(flags);
3184 	if (dumper->cur_seq < log_first_seq) {
3185 		/* messages are gone, move to first available one */
3186 		dumper->cur_seq = log_first_seq;
3187 		dumper->cur_idx = log_first_idx;
3188 	}
3189 
3190 	/* last entry */
3191 	if (dumper->cur_seq >= dumper->next_seq) {
3192 		logbuf_unlock_irqrestore(flags);
3193 		goto out;
3194 	}
3195 
3196 	/* calculate length of entire buffer */
3197 	seq = dumper->cur_seq;
3198 	idx = dumper->cur_idx;
3199 	while (seq < dumper->next_seq) {
3200 		struct printk_log *msg = log_from_idx(idx);
3201 
3202 		l += msg_print_text(msg, true, NULL, 0);
3203 		idx = log_next(idx);
3204 		seq++;
3205 	}
3206 
3207 	/* move first record forward until length fits into the buffer */
3208 	seq = dumper->cur_seq;
3209 	idx = dumper->cur_idx;
3210 	while (l > size && seq < dumper->next_seq) {
3211 		struct printk_log *msg = log_from_idx(idx);
3212 
3213 		l -= msg_print_text(msg, true, NULL, 0);
3214 		idx = log_next(idx);
3215 		seq++;
3216 	}
3217 
3218 	/* last message in next interation */
3219 	next_seq = seq;
3220 	next_idx = idx;
3221 
3222 	l = 0;
3223 	while (seq < dumper->next_seq) {
3224 		struct printk_log *msg = log_from_idx(idx);
3225 
3226 		l += msg_print_text(msg, syslog, buf + l, size - l);
3227 		idx = log_next(idx);
3228 		seq++;
3229 	}
3230 
3231 	dumper->next_seq = next_seq;
3232 	dumper->next_idx = next_idx;
3233 	ret = true;
3234 	logbuf_unlock_irqrestore(flags);
3235 out:
3236 	if (len)
3237 		*len = l;
3238 	return ret;
3239 }
3240 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3241 
3242 /**
3243  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3244  * @dumper: registered kmsg dumper
3245  *
3246  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3247  * kmsg_dump_get_buffer() can be called again and used multiple
3248  * times within the same dumper.dump() callback.
3249  *
3250  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3251  */
3252 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3253 {
3254 	dumper->cur_seq = clear_seq;
3255 	dumper->cur_idx = clear_idx;
3256 	dumper->next_seq = log_next_seq;
3257 	dumper->next_idx = log_next_idx;
3258 }
3259 
3260 /**
3261  * kmsg_dump_rewind - reset the interator
3262  * @dumper: registered kmsg dumper
3263  *
3264  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3265  * kmsg_dump_get_buffer() can be called again and used multiple
3266  * times within the same dumper.dump() callback.
3267  */
3268 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3269 {
3270 	unsigned long flags;
3271 
3272 	logbuf_lock_irqsave(flags);
3273 	kmsg_dump_rewind_nolock(dumper);
3274 	logbuf_unlock_irqrestore(flags);
3275 }
3276 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3277 
3278 #endif
3279