1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_mutex protects console_list updates and console->flags updates. 83 * The flags are synchronized only for consoles that are registered, i.e. 84 * accessible via the console list. 85 */ 86 static DEFINE_MUTEX(console_mutex); 87 88 /* 89 * console_sem protects updates to console->seq and console_suspended, 90 * and also provides serialization for console printing. 91 */ 92 static DEFINE_SEMAPHORE(console_sem); 93 HLIST_HEAD(console_list); 94 EXPORT_SYMBOL_GPL(console_list); 95 DEFINE_STATIC_SRCU(console_srcu); 96 97 /* 98 * System may need to suppress printk message under certain 99 * circumstances, like after kernel panic happens. 100 */ 101 int __read_mostly suppress_printk; 102 103 /* 104 * During panic, heavy printk by other CPUs can delay the 105 * panic and risk deadlock on console resources. 106 */ 107 static int __read_mostly suppress_panic_printk; 108 109 #ifdef CONFIG_LOCKDEP 110 static struct lockdep_map console_lock_dep_map = { 111 .name = "console_lock" 112 }; 113 114 void lockdep_assert_console_list_lock_held(void) 115 { 116 lockdep_assert_held(&console_mutex); 117 } 118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 119 #endif 120 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 bool console_srcu_read_lock_is_held(void) 123 { 124 return srcu_read_lock_held(&console_srcu); 125 } 126 #endif 127 128 enum devkmsg_log_bits { 129 __DEVKMSG_LOG_BIT_ON = 0, 130 __DEVKMSG_LOG_BIT_OFF, 131 __DEVKMSG_LOG_BIT_LOCK, 132 }; 133 134 enum devkmsg_log_masks { 135 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 136 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 137 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 138 }; 139 140 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 141 #define DEVKMSG_LOG_MASK_DEFAULT 0 142 143 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 144 145 static int __control_devkmsg(char *str) 146 { 147 size_t len; 148 149 if (!str) 150 return -EINVAL; 151 152 len = str_has_prefix(str, "on"); 153 if (len) { 154 devkmsg_log = DEVKMSG_LOG_MASK_ON; 155 return len; 156 } 157 158 len = str_has_prefix(str, "off"); 159 if (len) { 160 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 161 return len; 162 } 163 164 len = str_has_prefix(str, "ratelimit"); 165 if (len) { 166 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 167 return len; 168 } 169 170 return -EINVAL; 171 } 172 173 static int __init control_devkmsg(char *str) 174 { 175 if (__control_devkmsg(str) < 0) { 176 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 177 return 1; 178 } 179 180 /* 181 * Set sysctl string accordingly: 182 */ 183 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 184 strcpy(devkmsg_log_str, "on"); 185 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 186 strcpy(devkmsg_log_str, "off"); 187 /* else "ratelimit" which is set by default. */ 188 189 /* 190 * Sysctl cannot change it anymore. The kernel command line setting of 191 * this parameter is to force the setting to be permanent throughout the 192 * runtime of the system. This is a precation measure against userspace 193 * trying to be a smarta** and attempting to change it up on us. 194 */ 195 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 196 197 return 1; 198 } 199 __setup("printk.devkmsg=", control_devkmsg); 200 201 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 202 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 203 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 204 void *buffer, size_t *lenp, loff_t *ppos) 205 { 206 char old_str[DEVKMSG_STR_MAX_SIZE]; 207 unsigned int old; 208 int err; 209 210 if (write) { 211 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 212 return -EINVAL; 213 214 old = devkmsg_log; 215 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 216 } 217 218 err = proc_dostring(table, write, buffer, lenp, ppos); 219 if (err) 220 return err; 221 222 if (write) { 223 err = __control_devkmsg(devkmsg_log_str); 224 225 /* 226 * Do not accept an unknown string OR a known string with 227 * trailing crap... 228 */ 229 if (err < 0 || (err + 1 != *lenp)) { 230 231 /* ... and restore old setting. */ 232 devkmsg_log = old; 233 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 234 235 return -EINVAL; 236 } 237 } 238 239 return 0; 240 } 241 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 242 243 /** 244 * console_list_lock - Lock the console list 245 * 246 * For console list or console->flags updates 247 */ 248 void console_list_lock(void) 249 { 250 /* 251 * In unregister_console() and console_force_preferred_locked(), 252 * synchronize_srcu() is called with the console_list_lock held. 253 * Therefore it is not allowed that the console_list_lock is taken 254 * with the srcu_lock held. 255 * 256 * Detecting if this context is really in the read-side critical 257 * section is only possible if the appropriate debug options are 258 * enabled. 259 */ 260 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 261 srcu_read_lock_held(&console_srcu)); 262 263 mutex_lock(&console_mutex); 264 } 265 EXPORT_SYMBOL(console_list_lock); 266 267 /** 268 * console_list_unlock - Unlock the console list 269 * 270 * Counterpart to console_list_lock() 271 */ 272 void console_list_unlock(void) 273 { 274 mutex_unlock(&console_mutex); 275 } 276 EXPORT_SYMBOL(console_list_unlock); 277 278 /** 279 * console_srcu_read_lock - Register a new reader for the 280 * SRCU-protected console list 281 * 282 * Use for_each_console_srcu() to iterate the console list 283 * 284 * Context: Any context. 285 * Return: A cookie to pass to console_srcu_read_unlock(). 286 */ 287 int console_srcu_read_lock(void) 288 { 289 return srcu_read_lock_nmisafe(&console_srcu); 290 } 291 EXPORT_SYMBOL(console_srcu_read_lock); 292 293 /** 294 * console_srcu_read_unlock - Unregister an old reader from 295 * the SRCU-protected console list 296 * @cookie: cookie returned from console_srcu_read_lock() 297 * 298 * Counterpart to console_srcu_read_lock() 299 */ 300 void console_srcu_read_unlock(int cookie) 301 { 302 srcu_read_unlock_nmisafe(&console_srcu, cookie); 303 } 304 EXPORT_SYMBOL(console_srcu_read_unlock); 305 306 /* 307 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 308 * macros instead of functions so that _RET_IP_ contains useful information. 309 */ 310 #define down_console_sem() do { \ 311 down(&console_sem);\ 312 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 313 } while (0) 314 315 static int __down_trylock_console_sem(unsigned long ip) 316 { 317 int lock_failed; 318 unsigned long flags; 319 320 /* 321 * Here and in __up_console_sem() we need to be in safe mode, 322 * because spindump/WARN/etc from under console ->lock will 323 * deadlock in printk()->down_trylock_console_sem() otherwise. 324 */ 325 printk_safe_enter_irqsave(flags); 326 lock_failed = down_trylock(&console_sem); 327 printk_safe_exit_irqrestore(flags); 328 329 if (lock_failed) 330 return 1; 331 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 332 return 0; 333 } 334 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 335 336 static void __up_console_sem(unsigned long ip) 337 { 338 unsigned long flags; 339 340 mutex_release(&console_lock_dep_map, ip); 341 342 printk_safe_enter_irqsave(flags); 343 up(&console_sem); 344 printk_safe_exit_irqrestore(flags); 345 } 346 #define up_console_sem() __up_console_sem(_RET_IP_) 347 348 static bool panic_in_progress(void) 349 { 350 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 351 } 352 353 /* 354 * This is used for debugging the mess that is the VT code by 355 * keeping track if we have the console semaphore held. It's 356 * definitely not the perfect debug tool (we don't know if _WE_ 357 * hold it and are racing, but it helps tracking those weird code 358 * paths in the console code where we end up in places I want 359 * locked without the console semaphore held). 360 */ 361 static int console_locked, console_suspended; 362 363 /* 364 * Array of consoles built from command line options (console=) 365 */ 366 367 #define MAX_CMDLINECONSOLES 8 368 369 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 370 371 static int preferred_console = -1; 372 int console_set_on_cmdline; 373 EXPORT_SYMBOL(console_set_on_cmdline); 374 375 /* Flag: console code may call schedule() */ 376 static int console_may_schedule; 377 378 enum con_msg_format_flags { 379 MSG_FORMAT_DEFAULT = 0, 380 MSG_FORMAT_SYSLOG = (1 << 0), 381 }; 382 383 static int console_msg_format = MSG_FORMAT_DEFAULT; 384 385 /* 386 * The printk log buffer consists of a sequenced collection of records, each 387 * containing variable length message text. Every record also contains its 388 * own meta-data (@info). 389 * 390 * Every record meta-data carries the timestamp in microseconds, as well as 391 * the standard userspace syslog level and syslog facility. The usual kernel 392 * messages use LOG_KERN; userspace-injected messages always carry a matching 393 * syslog facility, by default LOG_USER. The origin of every message can be 394 * reliably determined that way. 395 * 396 * The human readable log message of a record is available in @text, the 397 * length of the message text in @text_len. The stored message is not 398 * terminated. 399 * 400 * Optionally, a record can carry a dictionary of properties (key/value 401 * pairs), to provide userspace with a machine-readable message context. 402 * 403 * Examples for well-defined, commonly used property names are: 404 * DEVICE=b12:8 device identifier 405 * b12:8 block dev_t 406 * c127:3 char dev_t 407 * n8 netdev ifindex 408 * +sound:card0 subsystem:devname 409 * SUBSYSTEM=pci driver-core subsystem name 410 * 411 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 412 * and values are terminated by a '\0' character. 413 * 414 * Example of record values: 415 * record.text_buf = "it's a line" (unterminated) 416 * record.info.seq = 56 417 * record.info.ts_nsec = 36863 418 * record.info.text_len = 11 419 * record.info.facility = 0 (LOG_KERN) 420 * record.info.flags = 0 421 * record.info.level = 3 (LOG_ERR) 422 * record.info.caller_id = 299 (task 299) 423 * record.info.dev_info.subsystem = "pci" (terminated) 424 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 425 * 426 * The 'struct printk_info' buffer must never be directly exported to 427 * userspace, it is a kernel-private implementation detail that might 428 * need to be changed in the future, when the requirements change. 429 * 430 * /dev/kmsg exports the structured data in the following line format: 431 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 432 * 433 * Users of the export format should ignore possible additional values 434 * separated by ',', and find the message after the ';' character. 435 * 436 * The optional key/value pairs are attached as continuation lines starting 437 * with a space character and terminated by a newline. All possible 438 * non-prinatable characters are escaped in the "\xff" notation. 439 */ 440 441 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 442 static DEFINE_MUTEX(syslog_lock); 443 444 #ifdef CONFIG_PRINTK 445 DECLARE_WAIT_QUEUE_HEAD(log_wait); 446 /* All 3 protected by @syslog_lock. */ 447 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 448 static u64 syslog_seq; 449 static size_t syslog_partial; 450 static bool syslog_time; 451 452 struct latched_seq { 453 seqcount_latch_t latch; 454 u64 val[2]; 455 }; 456 457 /* 458 * The next printk record to read after the last 'clear' command. There are 459 * two copies (updated with seqcount_latch) so that reads can locklessly 460 * access a valid value. Writers are synchronized by @syslog_lock. 461 */ 462 static struct latched_seq clear_seq = { 463 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 464 .val[0] = 0, 465 .val[1] = 0, 466 }; 467 468 #ifdef CONFIG_PRINTK_CALLER 469 #define PREFIX_MAX 48 470 #else 471 #define PREFIX_MAX 32 472 #endif 473 474 /* the maximum size of a formatted record (i.e. with prefix added per line) */ 475 #define CONSOLE_LOG_MAX 1024 476 477 /* the maximum size for a dropped text message */ 478 #define DROPPED_TEXT_MAX 64 479 480 /* the maximum size allowed to be reserved for a record */ 481 #define LOG_LINE_MAX (CONSOLE_LOG_MAX - PREFIX_MAX) 482 483 #define LOG_LEVEL(v) ((v) & 0x07) 484 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 485 486 /* record buffer */ 487 #define LOG_ALIGN __alignof__(unsigned long) 488 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 489 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 490 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 491 static char *log_buf = __log_buf; 492 static u32 log_buf_len = __LOG_BUF_LEN; 493 494 /* 495 * Define the average message size. This only affects the number of 496 * descriptors that will be available. Underestimating is better than 497 * overestimating (too many available descriptors is better than not enough). 498 */ 499 #define PRB_AVGBITS 5 /* 32 character average length */ 500 501 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 502 #error CONFIG_LOG_BUF_SHIFT value too small. 503 #endif 504 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 505 PRB_AVGBITS, &__log_buf[0]); 506 507 static struct printk_ringbuffer printk_rb_dynamic; 508 509 static struct printk_ringbuffer *prb = &printk_rb_static; 510 511 /* 512 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 513 * per_cpu_areas are initialised. This variable is set to true when 514 * it's safe to access per-CPU data. 515 */ 516 static bool __printk_percpu_data_ready __ro_after_init; 517 518 bool printk_percpu_data_ready(void) 519 { 520 return __printk_percpu_data_ready; 521 } 522 523 /* Must be called under syslog_lock. */ 524 static void latched_seq_write(struct latched_seq *ls, u64 val) 525 { 526 raw_write_seqcount_latch(&ls->latch); 527 ls->val[0] = val; 528 raw_write_seqcount_latch(&ls->latch); 529 ls->val[1] = val; 530 } 531 532 /* Can be called from any context. */ 533 static u64 latched_seq_read_nolock(struct latched_seq *ls) 534 { 535 unsigned int seq; 536 unsigned int idx; 537 u64 val; 538 539 do { 540 seq = raw_read_seqcount_latch(&ls->latch); 541 idx = seq & 0x1; 542 val = ls->val[idx]; 543 } while (read_seqcount_latch_retry(&ls->latch, seq)); 544 545 return val; 546 } 547 548 /* Return log buffer address */ 549 char *log_buf_addr_get(void) 550 { 551 return log_buf; 552 } 553 554 /* Return log buffer size */ 555 u32 log_buf_len_get(void) 556 { 557 return log_buf_len; 558 } 559 560 /* 561 * Define how much of the log buffer we could take at maximum. The value 562 * must be greater than two. Note that only half of the buffer is available 563 * when the index points to the middle. 564 */ 565 #define MAX_LOG_TAKE_PART 4 566 static const char trunc_msg[] = "<truncated>"; 567 568 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 569 { 570 /* 571 * The message should not take the whole buffer. Otherwise, it might 572 * get removed too soon. 573 */ 574 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 575 576 if (*text_len > max_text_len) 577 *text_len = max_text_len; 578 579 /* enable the warning message (if there is room) */ 580 *trunc_msg_len = strlen(trunc_msg); 581 if (*text_len >= *trunc_msg_len) 582 *text_len -= *trunc_msg_len; 583 else 584 *trunc_msg_len = 0; 585 } 586 587 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 588 589 static int syslog_action_restricted(int type) 590 { 591 if (dmesg_restrict) 592 return 1; 593 /* 594 * Unless restricted, we allow "read all" and "get buffer size" 595 * for everybody. 596 */ 597 return type != SYSLOG_ACTION_READ_ALL && 598 type != SYSLOG_ACTION_SIZE_BUFFER; 599 } 600 601 static int check_syslog_permissions(int type, int source) 602 { 603 /* 604 * If this is from /proc/kmsg and we've already opened it, then we've 605 * already done the capabilities checks at open time. 606 */ 607 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 608 goto ok; 609 610 if (syslog_action_restricted(type)) { 611 if (capable(CAP_SYSLOG)) 612 goto ok; 613 /* 614 * For historical reasons, accept CAP_SYS_ADMIN too, with 615 * a warning. 616 */ 617 if (capable(CAP_SYS_ADMIN)) { 618 pr_warn_once("%s (%d): Attempt to access syslog with " 619 "CAP_SYS_ADMIN but no CAP_SYSLOG " 620 "(deprecated).\n", 621 current->comm, task_pid_nr(current)); 622 goto ok; 623 } 624 return -EPERM; 625 } 626 ok: 627 return security_syslog(type); 628 } 629 630 static void append_char(char **pp, char *e, char c) 631 { 632 if (*pp < e) 633 *(*pp)++ = c; 634 } 635 636 static ssize_t info_print_ext_header(char *buf, size_t size, 637 struct printk_info *info) 638 { 639 u64 ts_usec = info->ts_nsec; 640 char caller[20]; 641 #ifdef CONFIG_PRINTK_CALLER 642 u32 id = info->caller_id; 643 644 snprintf(caller, sizeof(caller), ",caller=%c%u", 645 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 646 #else 647 caller[0] = '\0'; 648 #endif 649 650 do_div(ts_usec, 1000); 651 652 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 653 (info->facility << 3) | info->level, info->seq, 654 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 655 } 656 657 static ssize_t msg_add_ext_text(char *buf, size_t size, 658 const char *text, size_t text_len, 659 unsigned char endc) 660 { 661 char *p = buf, *e = buf + size; 662 size_t i; 663 664 /* escape non-printable characters */ 665 for (i = 0; i < text_len; i++) { 666 unsigned char c = text[i]; 667 668 if (c < ' ' || c >= 127 || c == '\\') 669 p += scnprintf(p, e - p, "\\x%02x", c); 670 else 671 append_char(&p, e, c); 672 } 673 append_char(&p, e, endc); 674 675 return p - buf; 676 } 677 678 static ssize_t msg_add_dict_text(char *buf, size_t size, 679 const char *key, const char *val) 680 { 681 size_t val_len = strlen(val); 682 ssize_t len; 683 684 if (!val_len) 685 return 0; 686 687 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 688 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 689 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 690 691 return len; 692 } 693 694 static ssize_t msg_print_ext_body(char *buf, size_t size, 695 char *text, size_t text_len, 696 struct dev_printk_info *dev_info) 697 { 698 ssize_t len; 699 700 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 701 702 if (!dev_info) 703 goto out; 704 705 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 706 dev_info->subsystem); 707 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 708 dev_info->device); 709 out: 710 return len; 711 } 712 713 /* /dev/kmsg - userspace message inject/listen interface */ 714 struct devkmsg_user { 715 atomic64_t seq; 716 struct ratelimit_state rs; 717 struct mutex lock; 718 char buf[CONSOLE_EXT_LOG_MAX]; 719 720 struct printk_info info; 721 char text_buf[CONSOLE_EXT_LOG_MAX]; 722 struct printk_record record; 723 }; 724 725 static __printf(3, 4) __cold 726 int devkmsg_emit(int facility, int level, const char *fmt, ...) 727 { 728 va_list args; 729 int r; 730 731 va_start(args, fmt); 732 r = vprintk_emit(facility, level, NULL, fmt, args); 733 va_end(args); 734 735 return r; 736 } 737 738 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 739 { 740 char *buf, *line; 741 int level = default_message_loglevel; 742 int facility = 1; /* LOG_USER */ 743 struct file *file = iocb->ki_filp; 744 struct devkmsg_user *user = file->private_data; 745 size_t len = iov_iter_count(from); 746 ssize_t ret = len; 747 748 if (!user || len > LOG_LINE_MAX) 749 return -EINVAL; 750 751 /* Ignore when user logging is disabled. */ 752 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 753 return len; 754 755 /* Ratelimit when not explicitly enabled. */ 756 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 757 if (!___ratelimit(&user->rs, current->comm)) 758 return ret; 759 } 760 761 buf = kmalloc(len+1, GFP_KERNEL); 762 if (buf == NULL) 763 return -ENOMEM; 764 765 buf[len] = '\0'; 766 if (!copy_from_iter_full(buf, len, from)) { 767 kfree(buf); 768 return -EFAULT; 769 } 770 771 /* 772 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 773 * the decimal value represents 32bit, the lower 3 bit are the log 774 * level, the rest are the log facility. 775 * 776 * If no prefix or no userspace facility is specified, we 777 * enforce LOG_USER, to be able to reliably distinguish 778 * kernel-generated messages from userspace-injected ones. 779 */ 780 line = buf; 781 if (line[0] == '<') { 782 char *endp = NULL; 783 unsigned int u; 784 785 u = simple_strtoul(line + 1, &endp, 10); 786 if (endp && endp[0] == '>') { 787 level = LOG_LEVEL(u); 788 if (LOG_FACILITY(u) != 0) 789 facility = LOG_FACILITY(u); 790 endp++; 791 line = endp; 792 } 793 } 794 795 devkmsg_emit(facility, level, "%s", line); 796 kfree(buf); 797 return ret; 798 } 799 800 static ssize_t devkmsg_read(struct file *file, char __user *buf, 801 size_t count, loff_t *ppos) 802 { 803 struct devkmsg_user *user = file->private_data; 804 struct printk_record *r = &user->record; 805 size_t len; 806 ssize_t ret; 807 808 if (!user) 809 return -EBADF; 810 811 ret = mutex_lock_interruptible(&user->lock); 812 if (ret) 813 return ret; 814 815 if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) { 816 if (file->f_flags & O_NONBLOCK) { 817 ret = -EAGAIN; 818 goto out; 819 } 820 821 /* 822 * Guarantee this task is visible on the waitqueue before 823 * checking the wake condition. 824 * 825 * The full memory barrier within set_current_state() of 826 * prepare_to_wait_event() pairs with the full memory barrier 827 * within wq_has_sleeper(). 828 * 829 * This pairs with __wake_up_klogd:A. 830 */ 831 ret = wait_event_interruptible(log_wait, 832 prb_read_valid(prb, 833 atomic64_read(&user->seq), r)); /* LMM(devkmsg_read:A) */ 834 if (ret) 835 goto out; 836 } 837 838 if (r->info->seq != atomic64_read(&user->seq)) { 839 /* our last seen message is gone, return error and reset */ 840 atomic64_set(&user->seq, r->info->seq); 841 ret = -EPIPE; 842 goto out; 843 } 844 845 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info); 846 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 847 &r->text_buf[0], r->info->text_len, 848 &r->info->dev_info); 849 850 atomic64_set(&user->seq, r->info->seq + 1); 851 852 if (len > count) { 853 ret = -EINVAL; 854 goto out; 855 } 856 857 if (copy_to_user(buf, user->buf, len)) { 858 ret = -EFAULT; 859 goto out; 860 } 861 ret = len; 862 out: 863 mutex_unlock(&user->lock); 864 return ret; 865 } 866 867 /* 868 * Be careful when modifying this function!!! 869 * 870 * Only few operations are supported because the device works only with the 871 * entire variable length messages (records). Non-standard values are 872 * returned in the other cases and has been this way for quite some time. 873 * User space applications might depend on this behavior. 874 */ 875 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 876 { 877 struct devkmsg_user *user = file->private_data; 878 loff_t ret = 0; 879 880 if (!user) 881 return -EBADF; 882 if (offset) 883 return -ESPIPE; 884 885 switch (whence) { 886 case SEEK_SET: 887 /* the first record */ 888 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 889 break; 890 case SEEK_DATA: 891 /* 892 * The first record after the last SYSLOG_ACTION_CLEAR, 893 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 894 * changes no global state, and does not clear anything. 895 */ 896 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 897 break; 898 case SEEK_END: 899 /* after the last record */ 900 atomic64_set(&user->seq, prb_next_seq(prb)); 901 break; 902 default: 903 ret = -EINVAL; 904 } 905 return ret; 906 } 907 908 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 909 { 910 struct devkmsg_user *user = file->private_data; 911 struct printk_info info; 912 __poll_t ret = 0; 913 914 if (!user) 915 return EPOLLERR|EPOLLNVAL; 916 917 poll_wait(file, &log_wait, wait); 918 919 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 920 /* return error when data has vanished underneath us */ 921 if (info.seq != atomic64_read(&user->seq)) 922 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 923 else 924 ret = EPOLLIN|EPOLLRDNORM; 925 } 926 927 return ret; 928 } 929 930 static int devkmsg_open(struct inode *inode, struct file *file) 931 { 932 struct devkmsg_user *user; 933 int err; 934 935 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 936 return -EPERM; 937 938 /* write-only does not need any file context */ 939 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 940 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 941 SYSLOG_FROM_READER); 942 if (err) 943 return err; 944 } 945 946 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 947 if (!user) 948 return -ENOMEM; 949 950 ratelimit_default_init(&user->rs); 951 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 952 953 mutex_init(&user->lock); 954 955 prb_rec_init_rd(&user->record, &user->info, 956 &user->text_buf[0], sizeof(user->text_buf)); 957 958 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 959 960 file->private_data = user; 961 return 0; 962 } 963 964 static int devkmsg_release(struct inode *inode, struct file *file) 965 { 966 struct devkmsg_user *user = file->private_data; 967 968 if (!user) 969 return 0; 970 971 ratelimit_state_exit(&user->rs); 972 973 mutex_destroy(&user->lock); 974 kvfree(user); 975 return 0; 976 } 977 978 const struct file_operations kmsg_fops = { 979 .open = devkmsg_open, 980 .read = devkmsg_read, 981 .write_iter = devkmsg_write, 982 .llseek = devkmsg_llseek, 983 .poll = devkmsg_poll, 984 .release = devkmsg_release, 985 }; 986 987 #ifdef CONFIG_CRASH_CORE 988 /* 989 * This appends the listed symbols to /proc/vmcore 990 * 991 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 992 * obtain access to symbols that are otherwise very difficult to locate. These 993 * symbols are specifically used so that utilities can access and extract the 994 * dmesg log from a vmcore file after a crash. 995 */ 996 void log_buf_vmcoreinfo_setup(void) 997 { 998 struct dev_printk_info *dev_info = NULL; 999 1000 VMCOREINFO_SYMBOL(prb); 1001 VMCOREINFO_SYMBOL(printk_rb_static); 1002 VMCOREINFO_SYMBOL(clear_seq); 1003 1004 /* 1005 * Export struct size and field offsets. User space tools can 1006 * parse it and detect any changes to structure down the line. 1007 */ 1008 1009 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 1010 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 1011 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 1012 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 1013 1014 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 1015 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 1016 VMCOREINFO_OFFSET(prb_desc_ring, descs); 1017 VMCOREINFO_OFFSET(prb_desc_ring, infos); 1018 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 1019 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 1020 1021 VMCOREINFO_STRUCT_SIZE(prb_desc); 1022 VMCOREINFO_OFFSET(prb_desc, state_var); 1023 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 1024 1025 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 1026 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 1027 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1028 1029 VMCOREINFO_STRUCT_SIZE(printk_info); 1030 VMCOREINFO_OFFSET(printk_info, seq); 1031 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1032 VMCOREINFO_OFFSET(printk_info, text_len); 1033 VMCOREINFO_OFFSET(printk_info, caller_id); 1034 VMCOREINFO_OFFSET(printk_info, dev_info); 1035 1036 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1037 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1038 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1039 VMCOREINFO_OFFSET(dev_printk_info, device); 1040 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1041 1042 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1043 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1044 VMCOREINFO_OFFSET(prb_data_ring, data); 1045 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1046 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1047 1048 VMCOREINFO_SIZE(atomic_long_t); 1049 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1050 1051 VMCOREINFO_STRUCT_SIZE(latched_seq); 1052 VMCOREINFO_OFFSET(latched_seq, val); 1053 } 1054 #endif 1055 1056 /* requested log_buf_len from kernel cmdline */ 1057 static unsigned long __initdata new_log_buf_len; 1058 1059 /* we practice scaling the ring buffer by powers of 2 */ 1060 static void __init log_buf_len_update(u64 size) 1061 { 1062 if (size > (u64)LOG_BUF_LEN_MAX) { 1063 size = (u64)LOG_BUF_LEN_MAX; 1064 pr_err("log_buf over 2G is not supported.\n"); 1065 } 1066 1067 if (size) 1068 size = roundup_pow_of_two(size); 1069 if (size > log_buf_len) 1070 new_log_buf_len = (unsigned long)size; 1071 } 1072 1073 /* save requested log_buf_len since it's too early to process it */ 1074 static int __init log_buf_len_setup(char *str) 1075 { 1076 u64 size; 1077 1078 if (!str) 1079 return -EINVAL; 1080 1081 size = memparse(str, &str); 1082 1083 log_buf_len_update(size); 1084 1085 return 0; 1086 } 1087 early_param("log_buf_len", log_buf_len_setup); 1088 1089 #ifdef CONFIG_SMP 1090 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1091 1092 static void __init log_buf_add_cpu(void) 1093 { 1094 unsigned int cpu_extra; 1095 1096 /* 1097 * archs should set up cpu_possible_bits properly with 1098 * set_cpu_possible() after setup_arch() but just in 1099 * case lets ensure this is valid. 1100 */ 1101 if (num_possible_cpus() == 1) 1102 return; 1103 1104 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1105 1106 /* by default this will only continue through for large > 64 CPUs */ 1107 if (cpu_extra <= __LOG_BUF_LEN / 2) 1108 return; 1109 1110 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1111 __LOG_CPU_MAX_BUF_LEN); 1112 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1113 cpu_extra); 1114 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1115 1116 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1117 } 1118 #else /* !CONFIG_SMP */ 1119 static inline void log_buf_add_cpu(void) {} 1120 #endif /* CONFIG_SMP */ 1121 1122 static void __init set_percpu_data_ready(void) 1123 { 1124 __printk_percpu_data_ready = true; 1125 } 1126 1127 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1128 struct printk_record *r) 1129 { 1130 struct prb_reserved_entry e; 1131 struct printk_record dest_r; 1132 1133 prb_rec_init_wr(&dest_r, r->info->text_len); 1134 1135 if (!prb_reserve(&e, rb, &dest_r)) 1136 return 0; 1137 1138 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1139 dest_r.info->text_len = r->info->text_len; 1140 dest_r.info->facility = r->info->facility; 1141 dest_r.info->level = r->info->level; 1142 dest_r.info->flags = r->info->flags; 1143 dest_r.info->ts_nsec = r->info->ts_nsec; 1144 dest_r.info->caller_id = r->info->caller_id; 1145 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1146 1147 prb_final_commit(&e); 1148 1149 return prb_record_text_space(&e); 1150 } 1151 1152 static char setup_text_buf[LOG_LINE_MAX] __initdata; 1153 1154 void __init setup_log_buf(int early) 1155 { 1156 struct printk_info *new_infos; 1157 unsigned int new_descs_count; 1158 struct prb_desc *new_descs; 1159 struct printk_info info; 1160 struct printk_record r; 1161 unsigned int text_size; 1162 size_t new_descs_size; 1163 size_t new_infos_size; 1164 unsigned long flags; 1165 char *new_log_buf; 1166 unsigned int free; 1167 u64 seq; 1168 1169 /* 1170 * Some archs call setup_log_buf() multiple times - first is very 1171 * early, e.g. from setup_arch(), and second - when percpu_areas 1172 * are initialised. 1173 */ 1174 if (!early) 1175 set_percpu_data_ready(); 1176 1177 if (log_buf != __log_buf) 1178 return; 1179 1180 if (!early && !new_log_buf_len) 1181 log_buf_add_cpu(); 1182 1183 if (!new_log_buf_len) 1184 return; 1185 1186 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1187 if (new_descs_count == 0) { 1188 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1189 return; 1190 } 1191 1192 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1193 if (unlikely(!new_log_buf)) { 1194 pr_err("log_buf_len: %lu text bytes not available\n", 1195 new_log_buf_len); 1196 return; 1197 } 1198 1199 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1200 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1201 if (unlikely(!new_descs)) { 1202 pr_err("log_buf_len: %zu desc bytes not available\n", 1203 new_descs_size); 1204 goto err_free_log_buf; 1205 } 1206 1207 new_infos_size = new_descs_count * sizeof(struct printk_info); 1208 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1209 if (unlikely(!new_infos)) { 1210 pr_err("log_buf_len: %zu info bytes not available\n", 1211 new_infos_size); 1212 goto err_free_descs; 1213 } 1214 1215 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1216 1217 prb_init(&printk_rb_dynamic, 1218 new_log_buf, ilog2(new_log_buf_len), 1219 new_descs, ilog2(new_descs_count), 1220 new_infos); 1221 1222 local_irq_save(flags); 1223 1224 log_buf_len = new_log_buf_len; 1225 log_buf = new_log_buf; 1226 new_log_buf_len = 0; 1227 1228 free = __LOG_BUF_LEN; 1229 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1230 text_size = add_to_rb(&printk_rb_dynamic, &r); 1231 if (text_size > free) 1232 free = 0; 1233 else 1234 free -= text_size; 1235 } 1236 1237 prb = &printk_rb_dynamic; 1238 1239 local_irq_restore(flags); 1240 1241 /* 1242 * Copy any remaining messages that might have appeared from 1243 * NMI context after copying but before switching to the 1244 * dynamic buffer. 1245 */ 1246 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1247 text_size = add_to_rb(&printk_rb_dynamic, &r); 1248 if (text_size > free) 1249 free = 0; 1250 else 1251 free -= text_size; 1252 } 1253 1254 if (seq != prb_next_seq(&printk_rb_static)) { 1255 pr_err("dropped %llu messages\n", 1256 prb_next_seq(&printk_rb_static) - seq); 1257 } 1258 1259 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1260 pr_info("early log buf free: %u(%u%%)\n", 1261 free, (free * 100) / __LOG_BUF_LEN); 1262 return; 1263 1264 err_free_descs: 1265 memblock_free(new_descs, new_descs_size); 1266 err_free_log_buf: 1267 memblock_free(new_log_buf, new_log_buf_len); 1268 } 1269 1270 static bool __read_mostly ignore_loglevel; 1271 1272 static int __init ignore_loglevel_setup(char *str) 1273 { 1274 ignore_loglevel = true; 1275 pr_info("debug: ignoring loglevel setting.\n"); 1276 1277 return 0; 1278 } 1279 1280 early_param("ignore_loglevel", ignore_loglevel_setup); 1281 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1282 MODULE_PARM_DESC(ignore_loglevel, 1283 "ignore loglevel setting (prints all kernel messages to the console)"); 1284 1285 static bool suppress_message_printing(int level) 1286 { 1287 return (level >= console_loglevel && !ignore_loglevel); 1288 } 1289 1290 #ifdef CONFIG_BOOT_PRINTK_DELAY 1291 1292 static int boot_delay; /* msecs delay after each printk during bootup */ 1293 static unsigned long long loops_per_msec; /* based on boot_delay */ 1294 1295 static int __init boot_delay_setup(char *str) 1296 { 1297 unsigned long lpj; 1298 1299 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1300 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1301 1302 get_option(&str, &boot_delay); 1303 if (boot_delay > 10 * 1000) 1304 boot_delay = 0; 1305 1306 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1307 "HZ: %d, loops_per_msec: %llu\n", 1308 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1309 return 0; 1310 } 1311 early_param("boot_delay", boot_delay_setup); 1312 1313 static void boot_delay_msec(int level) 1314 { 1315 unsigned long long k; 1316 unsigned long timeout; 1317 1318 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1319 || suppress_message_printing(level)) { 1320 return; 1321 } 1322 1323 k = (unsigned long long)loops_per_msec * boot_delay; 1324 1325 timeout = jiffies + msecs_to_jiffies(boot_delay); 1326 while (k) { 1327 k--; 1328 cpu_relax(); 1329 /* 1330 * use (volatile) jiffies to prevent 1331 * compiler reduction; loop termination via jiffies 1332 * is secondary and may or may not happen. 1333 */ 1334 if (time_after(jiffies, timeout)) 1335 break; 1336 touch_nmi_watchdog(); 1337 } 1338 } 1339 #else 1340 static inline void boot_delay_msec(int level) 1341 { 1342 } 1343 #endif 1344 1345 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1346 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1347 1348 static size_t print_syslog(unsigned int level, char *buf) 1349 { 1350 return sprintf(buf, "<%u>", level); 1351 } 1352 1353 static size_t print_time(u64 ts, char *buf) 1354 { 1355 unsigned long rem_nsec = do_div(ts, 1000000000); 1356 1357 return sprintf(buf, "[%5lu.%06lu]", 1358 (unsigned long)ts, rem_nsec / 1000); 1359 } 1360 1361 #ifdef CONFIG_PRINTK_CALLER 1362 static size_t print_caller(u32 id, char *buf) 1363 { 1364 char caller[12]; 1365 1366 snprintf(caller, sizeof(caller), "%c%u", 1367 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1368 return sprintf(buf, "[%6s]", caller); 1369 } 1370 #else 1371 #define print_caller(id, buf) 0 1372 #endif 1373 1374 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1375 bool time, char *buf) 1376 { 1377 size_t len = 0; 1378 1379 if (syslog) 1380 len = print_syslog((info->facility << 3) | info->level, buf); 1381 1382 if (time) 1383 len += print_time(info->ts_nsec, buf + len); 1384 1385 len += print_caller(info->caller_id, buf + len); 1386 1387 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1388 buf[len++] = ' '; 1389 buf[len] = '\0'; 1390 } 1391 1392 return len; 1393 } 1394 1395 /* 1396 * Prepare the record for printing. The text is shifted within the given 1397 * buffer to avoid a need for another one. The following operations are 1398 * done: 1399 * 1400 * - Add prefix for each line. 1401 * - Drop truncated lines that no longer fit into the buffer. 1402 * - Add the trailing newline that has been removed in vprintk_store(). 1403 * - Add a string terminator. 1404 * 1405 * Since the produced string is always terminated, the maximum possible 1406 * return value is @r->text_buf_size - 1; 1407 * 1408 * Return: The length of the updated/prepared text, including the added 1409 * prefixes and the newline. The terminator is not counted. The dropped 1410 * line(s) are not counted. 1411 */ 1412 static size_t record_print_text(struct printk_record *r, bool syslog, 1413 bool time) 1414 { 1415 size_t text_len = r->info->text_len; 1416 size_t buf_size = r->text_buf_size; 1417 char *text = r->text_buf; 1418 char prefix[PREFIX_MAX]; 1419 bool truncated = false; 1420 size_t prefix_len; 1421 size_t line_len; 1422 size_t len = 0; 1423 char *next; 1424 1425 /* 1426 * If the message was truncated because the buffer was not large 1427 * enough, treat the available text as if it were the full text. 1428 */ 1429 if (text_len > buf_size) 1430 text_len = buf_size; 1431 1432 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1433 1434 /* 1435 * @text_len: bytes of unprocessed text 1436 * @line_len: bytes of current line _without_ newline 1437 * @text: pointer to beginning of current line 1438 * @len: number of bytes prepared in r->text_buf 1439 */ 1440 for (;;) { 1441 next = memchr(text, '\n', text_len); 1442 if (next) { 1443 line_len = next - text; 1444 } else { 1445 /* Drop truncated line(s). */ 1446 if (truncated) 1447 break; 1448 line_len = text_len; 1449 } 1450 1451 /* 1452 * Truncate the text if there is not enough space to add the 1453 * prefix and a trailing newline and a terminator. 1454 */ 1455 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1456 /* Drop even the current line if no space. */ 1457 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1458 break; 1459 1460 text_len = buf_size - len - prefix_len - 1 - 1; 1461 truncated = true; 1462 } 1463 1464 memmove(text + prefix_len, text, text_len); 1465 memcpy(text, prefix, prefix_len); 1466 1467 /* 1468 * Increment the prepared length to include the text and 1469 * prefix that were just moved+copied. Also increment for the 1470 * newline at the end of this line. If this is the last line, 1471 * there is no newline, but it will be added immediately below. 1472 */ 1473 len += prefix_len + line_len + 1; 1474 if (text_len == line_len) { 1475 /* 1476 * This is the last line. Add the trailing newline 1477 * removed in vprintk_store(). 1478 */ 1479 text[prefix_len + line_len] = '\n'; 1480 break; 1481 } 1482 1483 /* 1484 * Advance beyond the added prefix and the related line with 1485 * its newline. 1486 */ 1487 text += prefix_len + line_len + 1; 1488 1489 /* 1490 * The remaining text has only decreased by the line with its 1491 * newline. 1492 * 1493 * Note that @text_len can become zero. It happens when @text 1494 * ended with a newline (either due to truncation or the 1495 * original string ending with "\n\n"). The loop is correctly 1496 * repeated and (if not truncated) an empty line with a prefix 1497 * will be prepared. 1498 */ 1499 text_len -= line_len + 1; 1500 } 1501 1502 /* 1503 * If a buffer was provided, it will be terminated. Space for the 1504 * string terminator is guaranteed to be available. The terminator is 1505 * not counted in the return value. 1506 */ 1507 if (buf_size > 0) 1508 r->text_buf[len] = 0; 1509 1510 return len; 1511 } 1512 1513 static size_t get_record_print_text_size(struct printk_info *info, 1514 unsigned int line_count, 1515 bool syslog, bool time) 1516 { 1517 char prefix[PREFIX_MAX]; 1518 size_t prefix_len; 1519 1520 prefix_len = info_print_prefix(info, syslog, time, prefix); 1521 1522 /* 1523 * Each line will be preceded with a prefix. The intermediate 1524 * newlines are already within the text, but a final trailing 1525 * newline will be added. 1526 */ 1527 return ((prefix_len * line_count) + info->text_len + 1); 1528 } 1529 1530 /* 1531 * Beginning with @start_seq, find the first record where it and all following 1532 * records up to (but not including) @max_seq fit into @size. 1533 * 1534 * @max_seq is simply an upper bound and does not need to exist. If the caller 1535 * does not require an upper bound, -1 can be used for @max_seq. 1536 */ 1537 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1538 bool syslog, bool time) 1539 { 1540 struct printk_info info; 1541 unsigned int line_count; 1542 size_t len = 0; 1543 u64 seq; 1544 1545 /* Determine the size of the records up to @max_seq. */ 1546 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1547 if (info.seq >= max_seq) 1548 break; 1549 len += get_record_print_text_size(&info, line_count, syslog, time); 1550 } 1551 1552 /* 1553 * Adjust the upper bound for the next loop to avoid subtracting 1554 * lengths that were never added. 1555 */ 1556 if (seq < max_seq) 1557 max_seq = seq; 1558 1559 /* 1560 * Move first record forward until length fits into the buffer. Ignore 1561 * newest messages that were not counted in the above cycle. Messages 1562 * might appear and get lost in the meantime. This is a best effort 1563 * that prevents an infinite loop that could occur with a retry. 1564 */ 1565 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1566 if (len <= size || info.seq >= max_seq) 1567 break; 1568 len -= get_record_print_text_size(&info, line_count, syslog, time); 1569 } 1570 1571 return seq; 1572 } 1573 1574 /* The caller is responsible for making sure @size is greater than 0. */ 1575 static int syslog_print(char __user *buf, int size) 1576 { 1577 struct printk_info info; 1578 struct printk_record r; 1579 char *text; 1580 int len = 0; 1581 u64 seq; 1582 1583 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1584 if (!text) 1585 return -ENOMEM; 1586 1587 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1588 1589 mutex_lock(&syslog_lock); 1590 1591 /* 1592 * Wait for the @syslog_seq record to be available. @syslog_seq may 1593 * change while waiting. 1594 */ 1595 do { 1596 seq = syslog_seq; 1597 1598 mutex_unlock(&syslog_lock); 1599 /* 1600 * Guarantee this task is visible on the waitqueue before 1601 * checking the wake condition. 1602 * 1603 * The full memory barrier within set_current_state() of 1604 * prepare_to_wait_event() pairs with the full memory barrier 1605 * within wq_has_sleeper(). 1606 * 1607 * This pairs with __wake_up_klogd:A. 1608 */ 1609 len = wait_event_interruptible(log_wait, 1610 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1611 mutex_lock(&syslog_lock); 1612 1613 if (len) 1614 goto out; 1615 } while (syslog_seq != seq); 1616 1617 /* 1618 * Copy records that fit into the buffer. The above cycle makes sure 1619 * that the first record is always available. 1620 */ 1621 do { 1622 size_t n; 1623 size_t skip; 1624 int err; 1625 1626 if (!prb_read_valid(prb, syslog_seq, &r)) 1627 break; 1628 1629 if (r.info->seq != syslog_seq) { 1630 /* message is gone, move to next valid one */ 1631 syslog_seq = r.info->seq; 1632 syslog_partial = 0; 1633 } 1634 1635 /* 1636 * To keep reading/counting partial line consistent, 1637 * use printk_time value as of the beginning of a line. 1638 */ 1639 if (!syslog_partial) 1640 syslog_time = printk_time; 1641 1642 skip = syslog_partial; 1643 n = record_print_text(&r, true, syslog_time); 1644 if (n - syslog_partial <= size) { 1645 /* message fits into buffer, move forward */ 1646 syslog_seq = r.info->seq + 1; 1647 n -= syslog_partial; 1648 syslog_partial = 0; 1649 } else if (!len){ 1650 /* partial read(), remember position */ 1651 n = size; 1652 syslog_partial += n; 1653 } else 1654 n = 0; 1655 1656 if (!n) 1657 break; 1658 1659 mutex_unlock(&syslog_lock); 1660 err = copy_to_user(buf, text + skip, n); 1661 mutex_lock(&syslog_lock); 1662 1663 if (err) { 1664 if (!len) 1665 len = -EFAULT; 1666 break; 1667 } 1668 1669 len += n; 1670 size -= n; 1671 buf += n; 1672 } while (size); 1673 out: 1674 mutex_unlock(&syslog_lock); 1675 kfree(text); 1676 return len; 1677 } 1678 1679 static int syslog_print_all(char __user *buf, int size, bool clear) 1680 { 1681 struct printk_info info; 1682 struct printk_record r; 1683 char *text; 1684 int len = 0; 1685 u64 seq; 1686 bool time; 1687 1688 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1689 if (!text) 1690 return -ENOMEM; 1691 1692 time = printk_time; 1693 /* 1694 * Find first record that fits, including all following records, 1695 * into the user-provided buffer for this dump. 1696 */ 1697 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1698 size, true, time); 1699 1700 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1701 1702 len = 0; 1703 prb_for_each_record(seq, prb, seq, &r) { 1704 int textlen; 1705 1706 textlen = record_print_text(&r, true, time); 1707 1708 if (len + textlen > size) { 1709 seq--; 1710 break; 1711 } 1712 1713 if (copy_to_user(buf + len, text, textlen)) 1714 len = -EFAULT; 1715 else 1716 len += textlen; 1717 1718 if (len < 0) 1719 break; 1720 } 1721 1722 if (clear) { 1723 mutex_lock(&syslog_lock); 1724 latched_seq_write(&clear_seq, seq); 1725 mutex_unlock(&syslog_lock); 1726 } 1727 1728 kfree(text); 1729 return len; 1730 } 1731 1732 static void syslog_clear(void) 1733 { 1734 mutex_lock(&syslog_lock); 1735 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1736 mutex_unlock(&syslog_lock); 1737 } 1738 1739 int do_syslog(int type, char __user *buf, int len, int source) 1740 { 1741 struct printk_info info; 1742 bool clear = false; 1743 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1744 int error; 1745 1746 error = check_syslog_permissions(type, source); 1747 if (error) 1748 return error; 1749 1750 switch (type) { 1751 case SYSLOG_ACTION_CLOSE: /* Close log */ 1752 break; 1753 case SYSLOG_ACTION_OPEN: /* Open log */ 1754 break; 1755 case SYSLOG_ACTION_READ: /* Read from log */ 1756 if (!buf || len < 0) 1757 return -EINVAL; 1758 if (!len) 1759 return 0; 1760 if (!access_ok(buf, len)) 1761 return -EFAULT; 1762 error = syslog_print(buf, len); 1763 break; 1764 /* Read/clear last kernel messages */ 1765 case SYSLOG_ACTION_READ_CLEAR: 1766 clear = true; 1767 fallthrough; 1768 /* Read last kernel messages */ 1769 case SYSLOG_ACTION_READ_ALL: 1770 if (!buf || len < 0) 1771 return -EINVAL; 1772 if (!len) 1773 return 0; 1774 if (!access_ok(buf, len)) 1775 return -EFAULT; 1776 error = syslog_print_all(buf, len, clear); 1777 break; 1778 /* Clear ring buffer */ 1779 case SYSLOG_ACTION_CLEAR: 1780 syslog_clear(); 1781 break; 1782 /* Disable logging to console */ 1783 case SYSLOG_ACTION_CONSOLE_OFF: 1784 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1785 saved_console_loglevel = console_loglevel; 1786 console_loglevel = minimum_console_loglevel; 1787 break; 1788 /* Enable logging to console */ 1789 case SYSLOG_ACTION_CONSOLE_ON: 1790 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1791 console_loglevel = saved_console_loglevel; 1792 saved_console_loglevel = LOGLEVEL_DEFAULT; 1793 } 1794 break; 1795 /* Set level of messages printed to console */ 1796 case SYSLOG_ACTION_CONSOLE_LEVEL: 1797 if (len < 1 || len > 8) 1798 return -EINVAL; 1799 if (len < minimum_console_loglevel) 1800 len = minimum_console_loglevel; 1801 console_loglevel = len; 1802 /* Implicitly re-enable logging to console */ 1803 saved_console_loglevel = LOGLEVEL_DEFAULT; 1804 break; 1805 /* Number of chars in the log buffer */ 1806 case SYSLOG_ACTION_SIZE_UNREAD: 1807 mutex_lock(&syslog_lock); 1808 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1809 /* No unread messages. */ 1810 mutex_unlock(&syslog_lock); 1811 return 0; 1812 } 1813 if (info.seq != syslog_seq) { 1814 /* messages are gone, move to first one */ 1815 syslog_seq = info.seq; 1816 syslog_partial = 0; 1817 } 1818 if (source == SYSLOG_FROM_PROC) { 1819 /* 1820 * Short-cut for poll(/"proc/kmsg") which simply checks 1821 * for pending data, not the size; return the count of 1822 * records, not the length. 1823 */ 1824 error = prb_next_seq(prb) - syslog_seq; 1825 } else { 1826 bool time = syslog_partial ? syslog_time : printk_time; 1827 unsigned int line_count; 1828 u64 seq; 1829 1830 prb_for_each_info(syslog_seq, prb, seq, &info, 1831 &line_count) { 1832 error += get_record_print_text_size(&info, line_count, 1833 true, time); 1834 time = printk_time; 1835 } 1836 error -= syslog_partial; 1837 } 1838 mutex_unlock(&syslog_lock); 1839 break; 1840 /* Size of the log buffer */ 1841 case SYSLOG_ACTION_SIZE_BUFFER: 1842 error = log_buf_len; 1843 break; 1844 default: 1845 error = -EINVAL; 1846 break; 1847 } 1848 1849 return error; 1850 } 1851 1852 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1853 { 1854 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1855 } 1856 1857 /* 1858 * Special console_lock variants that help to reduce the risk of soft-lockups. 1859 * They allow to pass console_lock to another printk() call using a busy wait. 1860 */ 1861 1862 #ifdef CONFIG_LOCKDEP 1863 static struct lockdep_map console_owner_dep_map = { 1864 .name = "console_owner" 1865 }; 1866 #endif 1867 1868 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1869 static struct task_struct *console_owner; 1870 static bool console_waiter; 1871 1872 /** 1873 * console_lock_spinning_enable - mark beginning of code where another 1874 * thread might safely busy wait 1875 * 1876 * This basically converts console_lock into a spinlock. This marks 1877 * the section where the console_lock owner can not sleep, because 1878 * there may be a waiter spinning (like a spinlock). Also it must be 1879 * ready to hand over the lock at the end of the section. 1880 */ 1881 static void console_lock_spinning_enable(void) 1882 { 1883 raw_spin_lock(&console_owner_lock); 1884 console_owner = current; 1885 raw_spin_unlock(&console_owner_lock); 1886 1887 /* The waiter may spin on us after setting console_owner */ 1888 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1889 } 1890 1891 /** 1892 * console_lock_spinning_disable_and_check - mark end of code where another 1893 * thread was able to busy wait and check if there is a waiter 1894 * 1895 * This is called at the end of the section where spinning is allowed. 1896 * It has two functions. First, it is a signal that it is no longer 1897 * safe to start busy waiting for the lock. Second, it checks if 1898 * there is a busy waiter and passes the lock rights to her. 1899 * 1900 * Important: Callers lose both the console_lock and the SRCU read lock if 1901 * there was a busy waiter. They must not touch items synchronized by 1902 * console_lock or SRCU read lock in this case. 1903 * 1904 * Return: 1 if the lock rights were passed, 0 otherwise. 1905 */ 1906 static int console_lock_spinning_disable_and_check(int cookie) 1907 { 1908 int waiter; 1909 1910 raw_spin_lock(&console_owner_lock); 1911 waiter = READ_ONCE(console_waiter); 1912 console_owner = NULL; 1913 raw_spin_unlock(&console_owner_lock); 1914 1915 if (!waiter) { 1916 spin_release(&console_owner_dep_map, _THIS_IP_); 1917 return 0; 1918 } 1919 1920 /* The waiter is now free to continue */ 1921 WRITE_ONCE(console_waiter, false); 1922 1923 spin_release(&console_owner_dep_map, _THIS_IP_); 1924 1925 /* 1926 * Preserve lockdep lock ordering. Release the SRCU read lock before 1927 * releasing the console_lock. 1928 */ 1929 console_srcu_read_unlock(cookie); 1930 1931 /* 1932 * Hand off console_lock to waiter. The waiter will perform 1933 * the up(). After this, the waiter is the console_lock owner. 1934 */ 1935 mutex_release(&console_lock_dep_map, _THIS_IP_); 1936 return 1; 1937 } 1938 1939 /** 1940 * console_trylock_spinning - try to get console_lock by busy waiting 1941 * 1942 * This allows to busy wait for the console_lock when the current 1943 * owner is running in specially marked sections. It means that 1944 * the current owner is running and cannot reschedule until it 1945 * is ready to lose the lock. 1946 * 1947 * Return: 1 if we got the lock, 0 othrewise 1948 */ 1949 static int console_trylock_spinning(void) 1950 { 1951 struct task_struct *owner = NULL; 1952 bool waiter; 1953 bool spin = false; 1954 unsigned long flags; 1955 1956 if (console_trylock()) 1957 return 1; 1958 1959 /* 1960 * It's unsafe to spin once a panic has begun. If we are the 1961 * panic CPU, we may have already halted the owner of the 1962 * console_sem. If we are not the panic CPU, then we should 1963 * avoid taking console_sem, so the panic CPU has a better 1964 * chance of cleanly acquiring it later. 1965 */ 1966 if (panic_in_progress()) 1967 return 0; 1968 1969 printk_safe_enter_irqsave(flags); 1970 1971 raw_spin_lock(&console_owner_lock); 1972 owner = READ_ONCE(console_owner); 1973 waiter = READ_ONCE(console_waiter); 1974 if (!waiter && owner && owner != current) { 1975 WRITE_ONCE(console_waiter, true); 1976 spin = true; 1977 } 1978 raw_spin_unlock(&console_owner_lock); 1979 1980 /* 1981 * If there is an active printk() writing to the 1982 * consoles, instead of having it write our data too, 1983 * see if we can offload that load from the active 1984 * printer, and do some printing ourselves. 1985 * Go into a spin only if there isn't already a waiter 1986 * spinning, and there is an active printer, and 1987 * that active printer isn't us (recursive printk?). 1988 */ 1989 if (!spin) { 1990 printk_safe_exit_irqrestore(flags); 1991 return 0; 1992 } 1993 1994 /* We spin waiting for the owner to release us */ 1995 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1996 /* Owner will clear console_waiter on hand off */ 1997 while (READ_ONCE(console_waiter)) 1998 cpu_relax(); 1999 spin_release(&console_owner_dep_map, _THIS_IP_); 2000 2001 printk_safe_exit_irqrestore(flags); 2002 /* 2003 * The owner passed the console lock to us. 2004 * Since we did not spin on console lock, annotate 2005 * this as a trylock. Otherwise lockdep will 2006 * complain. 2007 */ 2008 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 2009 2010 return 1; 2011 } 2012 2013 /* 2014 * Call the specified console driver, asking it to write out the specified 2015 * text and length. If @dropped_text is non-NULL and any records have been 2016 * dropped, a dropped message will be written out first. 2017 */ 2018 static void call_console_driver(struct console *con, const char *text, size_t len, 2019 char *dropped_text) 2020 { 2021 size_t dropped_len; 2022 2023 if (con->dropped && dropped_text) { 2024 dropped_len = snprintf(dropped_text, DROPPED_TEXT_MAX, 2025 "** %lu printk messages dropped **\n", 2026 con->dropped); 2027 con->dropped = 0; 2028 con->write(con, dropped_text, dropped_len); 2029 } 2030 2031 con->write(con, text, len); 2032 } 2033 2034 /* 2035 * Recursion is tracked separately on each CPU. If NMIs are supported, an 2036 * additional NMI context per CPU is also separately tracked. Until per-CPU 2037 * is available, a separate "early tracking" is performed. 2038 */ 2039 static DEFINE_PER_CPU(u8, printk_count); 2040 static u8 printk_count_early; 2041 #ifdef CONFIG_HAVE_NMI 2042 static DEFINE_PER_CPU(u8, printk_count_nmi); 2043 static u8 printk_count_nmi_early; 2044 #endif 2045 2046 /* 2047 * Recursion is limited to keep the output sane. printk() should not require 2048 * more than 1 level of recursion (allowing, for example, printk() to trigger 2049 * a WARN), but a higher value is used in case some printk-internal errors 2050 * exist, such as the ringbuffer validation checks failing. 2051 */ 2052 #define PRINTK_MAX_RECURSION 3 2053 2054 /* 2055 * Return a pointer to the dedicated counter for the CPU+context of the 2056 * caller. 2057 */ 2058 static u8 *__printk_recursion_counter(void) 2059 { 2060 #ifdef CONFIG_HAVE_NMI 2061 if (in_nmi()) { 2062 if (printk_percpu_data_ready()) 2063 return this_cpu_ptr(&printk_count_nmi); 2064 return &printk_count_nmi_early; 2065 } 2066 #endif 2067 if (printk_percpu_data_ready()) 2068 return this_cpu_ptr(&printk_count); 2069 return &printk_count_early; 2070 } 2071 2072 /* 2073 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2074 * The caller must check the boolean return value to see if the recursion is 2075 * allowed. On failure, interrupts are not disabled. 2076 * 2077 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2078 * that is passed to printk_exit_irqrestore(). 2079 */ 2080 #define printk_enter_irqsave(recursion_ptr, flags) \ 2081 ({ \ 2082 bool success = true; \ 2083 \ 2084 typecheck(u8 *, recursion_ptr); \ 2085 local_irq_save(flags); \ 2086 (recursion_ptr) = __printk_recursion_counter(); \ 2087 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2088 local_irq_restore(flags); \ 2089 success = false; \ 2090 } else { \ 2091 (*(recursion_ptr))++; \ 2092 } \ 2093 success; \ 2094 }) 2095 2096 /* Exit recursion tracking, restoring interrupts. */ 2097 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2098 do { \ 2099 typecheck(u8 *, recursion_ptr); \ 2100 (*(recursion_ptr))--; \ 2101 local_irq_restore(flags); \ 2102 } while (0) 2103 2104 int printk_delay_msec __read_mostly; 2105 2106 static inline void printk_delay(int level) 2107 { 2108 boot_delay_msec(level); 2109 2110 if (unlikely(printk_delay_msec)) { 2111 int m = printk_delay_msec; 2112 2113 while (m--) { 2114 mdelay(1); 2115 touch_nmi_watchdog(); 2116 } 2117 } 2118 } 2119 2120 static inline u32 printk_caller_id(void) 2121 { 2122 return in_task() ? task_pid_nr(current) : 2123 0x80000000 + smp_processor_id(); 2124 } 2125 2126 /** 2127 * printk_parse_prefix - Parse level and control flags. 2128 * 2129 * @text: The terminated text message. 2130 * @level: A pointer to the current level value, will be updated. 2131 * @flags: A pointer to the current printk_info flags, will be updated. 2132 * 2133 * @level may be NULL if the caller is not interested in the parsed value. 2134 * Otherwise the variable pointed to by @level must be set to 2135 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2136 * 2137 * @flags may be NULL if the caller is not interested in the parsed value. 2138 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2139 * value. 2140 * 2141 * Return: The length of the parsed level and control flags. 2142 */ 2143 u16 printk_parse_prefix(const char *text, int *level, 2144 enum printk_info_flags *flags) 2145 { 2146 u16 prefix_len = 0; 2147 int kern_level; 2148 2149 while (*text) { 2150 kern_level = printk_get_level(text); 2151 if (!kern_level) 2152 break; 2153 2154 switch (kern_level) { 2155 case '0' ... '7': 2156 if (level && *level == LOGLEVEL_DEFAULT) 2157 *level = kern_level - '0'; 2158 break; 2159 case 'c': /* KERN_CONT */ 2160 if (flags) 2161 *flags |= LOG_CONT; 2162 } 2163 2164 prefix_len += 2; 2165 text += 2; 2166 } 2167 2168 return prefix_len; 2169 } 2170 2171 __printf(5, 0) 2172 static u16 printk_sprint(char *text, u16 size, int facility, 2173 enum printk_info_flags *flags, const char *fmt, 2174 va_list args) 2175 { 2176 u16 text_len; 2177 2178 text_len = vscnprintf(text, size, fmt, args); 2179 2180 /* Mark and strip a trailing newline. */ 2181 if (text_len && text[text_len - 1] == '\n') { 2182 text_len--; 2183 *flags |= LOG_NEWLINE; 2184 } 2185 2186 /* Strip log level and control flags. */ 2187 if (facility == 0) { 2188 u16 prefix_len; 2189 2190 prefix_len = printk_parse_prefix(text, NULL, NULL); 2191 if (prefix_len) { 2192 text_len -= prefix_len; 2193 memmove(text, text + prefix_len, text_len); 2194 } 2195 } 2196 2197 trace_console_rcuidle(text, text_len); 2198 2199 return text_len; 2200 } 2201 2202 __printf(4, 0) 2203 int vprintk_store(int facility, int level, 2204 const struct dev_printk_info *dev_info, 2205 const char *fmt, va_list args) 2206 { 2207 struct prb_reserved_entry e; 2208 enum printk_info_flags flags = 0; 2209 struct printk_record r; 2210 unsigned long irqflags; 2211 u16 trunc_msg_len = 0; 2212 char prefix_buf[8]; 2213 u8 *recursion_ptr; 2214 u16 reserve_size; 2215 va_list args2; 2216 u32 caller_id; 2217 u16 text_len; 2218 int ret = 0; 2219 u64 ts_nsec; 2220 2221 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2222 return 0; 2223 2224 /* 2225 * Since the duration of printk() can vary depending on the message 2226 * and state of the ringbuffer, grab the timestamp now so that it is 2227 * close to the call of printk(). This provides a more deterministic 2228 * timestamp with respect to the caller. 2229 */ 2230 ts_nsec = local_clock(); 2231 2232 caller_id = printk_caller_id(); 2233 2234 /* 2235 * The sprintf needs to come first since the syslog prefix might be 2236 * passed in as a parameter. An extra byte must be reserved so that 2237 * later the vscnprintf() into the reserved buffer has room for the 2238 * terminating '\0', which is not counted by vsnprintf(). 2239 */ 2240 va_copy(args2, args); 2241 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2242 va_end(args2); 2243 2244 if (reserve_size > LOG_LINE_MAX) 2245 reserve_size = LOG_LINE_MAX; 2246 2247 /* Extract log level or control flags. */ 2248 if (facility == 0) 2249 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2250 2251 if (level == LOGLEVEL_DEFAULT) 2252 level = default_message_loglevel; 2253 2254 if (dev_info) 2255 flags |= LOG_NEWLINE; 2256 2257 if (flags & LOG_CONT) { 2258 prb_rec_init_wr(&r, reserve_size); 2259 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { 2260 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2261 facility, &flags, fmt, args); 2262 r.info->text_len += text_len; 2263 2264 if (flags & LOG_NEWLINE) { 2265 r.info->flags |= LOG_NEWLINE; 2266 prb_final_commit(&e); 2267 } else { 2268 prb_commit(&e); 2269 } 2270 2271 ret = text_len; 2272 goto out; 2273 } 2274 } 2275 2276 /* 2277 * Explicitly initialize the record before every prb_reserve() call. 2278 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2279 * structure when they fail. 2280 */ 2281 prb_rec_init_wr(&r, reserve_size); 2282 if (!prb_reserve(&e, prb, &r)) { 2283 /* truncate the message if it is too long for empty buffer */ 2284 truncate_msg(&reserve_size, &trunc_msg_len); 2285 2286 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2287 if (!prb_reserve(&e, prb, &r)) 2288 goto out; 2289 } 2290 2291 /* fill message */ 2292 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2293 if (trunc_msg_len) 2294 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2295 r.info->text_len = text_len + trunc_msg_len; 2296 r.info->facility = facility; 2297 r.info->level = level & 7; 2298 r.info->flags = flags & 0x1f; 2299 r.info->ts_nsec = ts_nsec; 2300 r.info->caller_id = caller_id; 2301 if (dev_info) 2302 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2303 2304 /* A message without a trailing newline can be continued. */ 2305 if (!(flags & LOG_NEWLINE)) 2306 prb_commit(&e); 2307 else 2308 prb_final_commit(&e); 2309 2310 ret = text_len + trunc_msg_len; 2311 out: 2312 printk_exit_irqrestore(recursion_ptr, irqflags); 2313 return ret; 2314 } 2315 2316 asmlinkage int vprintk_emit(int facility, int level, 2317 const struct dev_printk_info *dev_info, 2318 const char *fmt, va_list args) 2319 { 2320 int printed_len; 2321 bool in_sched = false; 2322 2323 /* Suppress unimportant messages after panic happens */ 2324 if (unlikely(suppress_printk)) 2325 return 0; 2326 2327 if (unlikely(suppress_panic_printk) && 2328 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2329 return 0; 2330 2331 if (level == LOGLEVEL_SCHED) { 2332 level = LOGLEVEL_DEFAULT; 2333 in_sched = true; 2334 } 2335 2336 printk_delay(level); 2337 2338 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2339 2340 /* If called from the scheduler, we can not call up(). */ 2341 if (!in_sched) { 2342 /* 2343 * The caller may be holding system-critical or 2344 * timing-sensitive locks. Disable preemption during 2345 * printing of all remaining records to all consoles so that 2346 * this context can return as soon as possible. Hopefully 2347 * another printk() caller will take over the printing. 2348 */ 2349 preempt_disable(); 2350 /* 2351 * Try to acquire and then immediately release the console 2352 * semaphore. The release will print out buffers. With the 2353 * spinning variant, this context tries to take over the 2354 * printing from another printing context. 2355 */ 2356 if (console_trylock_spinning()) 2357 console_unlock(); 2358 preempt_enable(); 2359 } 2360 2361 wake_up_klogd(); 2362 return printed_len; 2363 } 2364 EXPORT_SYMBOL(vprintk_emit); 2365 2366 int vprintk_default(const char *fmt, va_list args) 2367 { 2368 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2369 } 2370 EXPORT_SYMBOL_GPL(vprintk_default); 2371 2372 asmlinkage __visible int _printk(const char *fmt, ...) 2373 { 2374 va_list args; 2375 int r; 2376 2377 va_start(args, fmt); 2378 r = vprintk(fmt, args); 2379 va_end(args); 2380 2381 return r; 2382 } 2383 EXPORT_SYMBOL(_printk); 2384 2385 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2386 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2387 2388 #else /* CONFIG_PRINTK */ 2389 2390 #define CONSOLE_LOG_MAX 0 2391 #define DROPPED_TEXT_MAX 0 2392 #define printk_time false 2393 2394 #define prb_read_valid(rb, seq, r) false 2395 #define prb_first_valid_seq(rb) 0 2396 #define prb_next_seq(rb) 0 2397 2398 static u64 syslog_seq; 2399 2400 static size_t record_print_text(const struct printk_record *r, 2401 bool syslog, bool time) 2402 { 2403 return 0; 2404 } 2405 static ssize_t info_print_ext_header(char *buf, size_t size, 2406 struct printk_info *info) 2407 { 2408 return 0; 2409 } 2410 static ssize_t msg_print_ext_body(char *buf, size_t size, 2411 char *text, size_t text_len, 2412 struct dev_printk_info *dev_info) { return 0; } 2413 static void console_lock_spinning_enable(void) { } 2414 static int console_lock_spinning_disable_and_check(int cookie) { return 0; } 2415 static void call_console_driver(struct console *con, const char *text, size_t len, 2416 char *dropped_text) 2417 { 2418 } 2419 static bool suppress_message_printing(int level) { return false; } 2420 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2421 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2422 2423 #endif /* CONFIG_PRINTK */ 2424 2425 #ifdef CONFIG_EARLY_PRINTK 2426 struct console *early_console; 2427 2428 asmlinkage __visible void early_printk(const char *fmt, ...) 2429 { 2430 va_list ap; 2431 char buf[512]; 2432 int n; 2433 2434 if (!early_console) 2435 return; 2436 2437 va_start(ap, fmt); 2438 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2439 va_end(ap); 2440 2441 early_console->write(early_console, buf, n); 2442 } 2443 #endif 2444 2445 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2446 { 2447 if (!user_specified) 2448 return; 2449 2450 /* 2451 * @c console was defined by the user on the command line. 2452 * Do not clear when added twice also by SPCR or the device tree. 2453 */ 2454 c->user_specified = true; 2455 /* At least one console defined by the user on the command line. */ 2456 console_set_on_cmdline = 1; 2457 } 2458 2459 static int __add_preferred_console(char *name, int idx, char *options, 2460 char *brl_options, bool user_specified) 2461 { 2462 struct console_cmdline *c; 2463 int i; 2464 2465 /* 2466 * See if this tty is not yet registered, and 2467 * if we have a slot free. 2468 */ 2469 for (i = 0, c = console_cmdline; 2470 i < MAX_CMDLINECONSOLES && c->name[0]; 2471 i++, c++) { 2472 if (strcmp(c->name, name) == 0 && c->index == idx) { 2473 if (!brl_options) 2474 preferred_console = i; 2475 set_user_specified(c, user_specified); 2476 return 0; 2477 } 2478 } 2479 if (i == MAX_CMDLINECONSOLES) 2480 return -E2BIG; 2481 if (!brl_options) 2482 preferred_console = i; 2483 strscpy(c->name, name, sizeof(c->name)); 2484 c->options = options; 2485 set_user_specified(c, user_specified); 2486 braille_set_options(c, brl_options); 2487 2488 c->index = idx; 2489 return 0; 2490 } 2491 2492 static int __init console_msg_format_setup(char *str) 2493 { 2494 if (!strcmp(str, "syslog")) 2495 console_msg_format = MSG_FORMAT_SYSLOG; 2496 if (!strcmp(str, "default")) 2497 console_msg_format = MSG_FORMAT_DEFAULT; 2498 return 1; 2499 } 2500 __setup("console_msg_format=", console_msg_format_setup); 2501 2502 /* 2503 * Set up a console. Called via do_early_param() in init/main.c 2504 * for each "console=" parameter in the boot command line. 2505 */ 2506 static int __init console_setup(char *str) 2507 { 2508 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2509 char *s, *options, *brl_options = NULL; 2510 int idx; 2511 2512 /* 2513 * console="" or console=null have been suggested as a way to 2514 * disable console output. Use ttynull that has been created 2515 * for exactly this purpose. 2516 */ 2517 if (str[0] == 0 || strcmp(str, "null") == 0) { 2518 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2519 return 1; 2520 } 2521 2522 if (_braille_console_setup(&str, &brl_options)) 2523 return 1; 2524 2525 /* 2526 * Decode str into name, index, options. 2527 */ 2528 if (str[0] >= '0' && str[0] <= '9') { 2529 strcpy(buf, "ttyS"); 2530 strncpy(buf + 4, str, sizeof(buf) - 5); 2531 } else { 2532 strncpy(buf, str, sizeof(buf) - 1); 2533 } 2534 buf[sizeof(buf) - 1] = 0; 2535 options = strchr(str, ','); 2536 if (options) 2537 *(options++) = 0; 2538 #ifdef __sparc__ 2539 if (!strcmp(str, "ttya")) 2540 strcpy(buf, "ttyS0"); 2541 if (!strcmp(str, "ttyb")) 2542 strcpy(buf, "ttyS1"); 2543 #endif 2544 for (s = buf; *s; s++) 2545 if (isdigit(*s) || *s == ',') 2546 break; 2547 idx = simple_strtoul(s, NULL, 10); 2548 *s = 0; 2549 2550 __add_preferred_console(buf, idx, options, brl_options, true); 2551 return 1; 2552 } 2553 __setup("console=", console_setup); 2554 2555 /** 2556 * add_preferred_console - add a device to the list of preferred consoles. 2557 * @name: device name 2558 * @idx: device index 2559 * @options: options for this console 2560 * 2561 * The last preferred console added will be used for kernel messages 2562 * and stdin/out/err for init. Normally this is used by console_setup 2563 * above to handle user-supplied console arguments; however it can also 2564 * be used by arch-specific code either to override the user or more 2565 * commonly to provide a default console (ie from PROM variables) when 2566 * the user has not supplied one. 2567 */ 2568 int add_preferred_console(char *name, int idx, char *options) 2569 { 2570 return __add_preferred_console(name, idx, options, NULL, false); 2571 } 2572 2573 bool console_suspend_enabled = true; 2574 EXPORT_SYMBOL(console_suspend_enabled); 2575 2576 static int __init console_suspend_disable(char *str) 2577 { 2578 console_suspend_enabled = false; 2579 return 1; 2580 } 2581 __setup("no_console_suspend", console_suspend_disable); 2582 module_param_named(console_suspend, console_suspend_enabled, 2583 bool, S_IRUGO | S_IWUSR); 2584 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2585 " and hibernate operations"); 2586 2587 static bool printk_console_no_auto_verbose; 2588 2589 void console_verbose(void) 2590 { 2591 if (console_loglevel && !printk_console_no_auto_verbose) 2592 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2593 } 2594 EXPORT_SYMBOL_GPL(console_verbose); 2595 2596 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2597 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2598 2599 /** 2600 * suspend_console - suspend the console subsystem 2601 * 2602 * This disables printk() while we go into suspend states 2603 */ 2604 void suspend_console(void) 2605 { 2606 if (!console_suspend_enabled) 2607 return; 2608 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2609 pr_flush(1000, true); 2610 console_lock(); 2611 console_suspended = 1; 2612 up_console_sem(); 2613 } 2614 2615 void resume_console(void) 2616 { 2617 if (!console_suspend_enabled) 2618 return; 2619 down_console_sem(); 2620 console_suspended = 0; 2621 console_unlock(); 2622 pr_flush(1000, true); 2623 } 2624 2625 /** 2626 * console_cpu_notify - print deferred console messages after CPU hotplug 2627 * @cpu: unused 2628 * 2629 * If printk() is called from a CPU that is not online yet, the messages 2630 * will be printed on the console only if there are CON_ANYTIME consoles. 2631 * This function is called when a new CPU comes online (or fails to come 2632 * up) or goes offline. 2633 */ 2634 static int console_cpu_notify(unsigned int cpu) 2635 { 2636 if (!cpuhp_tasks_frozen) { 2637 /* If trylock fails, someone else is doing the printing */ 2638 if (console_trylock()) 2639 console_unlock(); 2640 } 2641 return 0; 2642 } 2643 2644 /** 2645 * console_lock - block the console subsystem from printing 2646 * 2647 * Acquires a lock which guarantees that no consoles will 2648 * be in or enter their write() callback. 2649 * 2650 * Can sleep, returns nothing. 2651 */ 2652 void console_lock(void) 2653 { 2654 might_sleep(); 2655 2656 down_console_sem(); 2657 if (console_suspended) 2658 return; 2659 console_locked = 1; 2660 console_may_schedule = 1; 2661 } 2662 EXPORT_SYMBOL(console_lock); 2663 2664 /** 2665 * console_trylock - try to block the console subsystem from printing 2666 * 2667 * Try to acquire a lock which guarantees that no consoles will 2668 * be in or enter their write() callback. 2669 * 2670 * returns 1 on success, and 0 on failure to acquire the lock. 2671 */ 2672 int console_trylock(void) 2673 { 2674 if (down_trylock_console_sem()) 2675 return 0; 2676 if (console_suspended) { 2677 up_console_sem(); 2678 return 0; 2679 } 2680 console_locked = 1; 2681 console_may_schedule = 0; 2682 return 1; 2683 } 2684 EXPORT_SYMBOL(console_trylock); 2685 2686 int is_console_locked(void) 2687 { 2688 return console_locked; 2689 } 2690 EXPORT_SYMBOL(is_console_locked); 2691 2692 /* 2693 * Return true when this CPU should unlock console_sem without pushing all 2694 * messages to the console. This reduces the chance that the console is 2695 * locked when the panic CPU tries to use it. 2696 */ 2697 static bool abandon_console_lock_in_panic(void) 2698 { 2699 if (!panic_in_progress()) 2700 return false; 2701 2702 /* 2703 * We can use raw_smp_processor_id() here because it is impossible for 2704 * the task to be migrated to the panic_cpu, or away from it. If 2705 * panic_cpu has already been set, and we're not currently executing on 2706 * that CPU, then we never will be. 2707 */ 2708 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2709 } 2710 2711 /* 2712 * Check if the given console is currently capable and allowed to print 2713 * records. 2714 * 2715 * Requires the console_srcu_read_lock. 2716 */ 2717 static inline bool console_is_usable(struct console *con) 2718 { 2719 short flags = console_srcu_read_flags(con); 2720 2721 if (!(flags & CON_ENABLED)) 2722 return false; 2723 2724 if (!con->write) 2725 return false; 2726 2727 /* 2728 * Console drivers may assume that per-cpu resources have been 2729 * allocated. So unless they're explicitly marked as being able to 2730 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2731 */ 2732 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2733 return false; 2734 2735 return true; 2736 } 2737 2738 static void __console_unlock(void) 2739 { 2740 console_locked = 0; 2741 up_console_sem(); 2742 } 2743 2744 /* 2745 * Print one record for the given console. The record printed is whatever 2746 * record is the next available record for the given console. 2747 * 2748 * @text is a buffer of size CONSOLE_LOG_MAX. 2749 * 2750 * If extended messages should be printed, @ext_text is a buffer of size 2751 * CONSOLE_EXT_LOG_MAX. Otherwise @ext_text must be NULL. 2752 * 2753 * If dropped messages should be printed, @dropped_text is a buffer of size 2754 * DROPPED_TEXT_MAX. Otherwise @dropped_text must be NULL. 2755 * 2756 * @handover will be set to true if a printk waiter has taken over the 2757 * console_lock, in which case the caller is no longer holding both the 2758 * console_lock and the SRCU read lock. Otherwise it is set to false. 2759 * 2760 * @cookie is the cookie from the SRCU read lock. 2761 * 2762 * Returns false if the given console has no next record to print, otherwise 2763 * true. 2764 * 2765 * Requires the console_lock and the SRCU read lock. 2766 */ 2767 static bool console_emit_next_record(struct console *con, char *text, char *ext_text, 2768 char *dropped_text, bool *handover, int cookie) 2769 { 2770 static int panic_console_dropped; 2771 struct printk_info info; 2772 struct printk_record r; 2773 unsigned long flags; 2774 char *write_text; 2775 size_t len; 2776 2777 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 2778 2779 *handover = false; 2780 2781 if (!prb_read_valid(prb, con->seq, &r)) 2782 return false; 2783 2784 if (con->seq != r.info->seq) { 2785 con->dropped += r.info->seq - con->seq; 2786 con->seq = r.info->seq; 2787 if (panic_in_progress() && panic_console_dropped++ > 10) { 2788 suppress_panic_printk = 1; 2789 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2790 } 2791 } 2792 2793 /* Skip record that has level above the console loglevel. */ 2794 if (suppress_message_printing(r.info->level)) { 2795 con->seq++; 2796 goto skip; 2797 } 2798 2799 if (ext_text) { 2800 write_text = ext_text; 2801 len = info_print_ext_header(ext_text, CONSOLE_EXT_LOG_MAX, r.info); 2802 len += msg_print_ext_body(ext_text + len, CONSOLE_EXT_LOG_MAX - len, 2803 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2804 } else { 2805 write_text = text; 2806 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2807 } 2808 2809 /* 2810 * While actively printing out messages, if another printk() 2811 * were to occur on another CPU, it may wait for this one to 2812 * finish. This task can not be preempted if there is a 2813 * waiter waiting to take over. 2814 * 2815 * Interrupts are disabled because the hand over to a waiter 2816 * must not be interrupted until the hand over is completed 2817 * (@console_waiter is cleared). 2818 */ 2819 printk_safe_enter_irqsave(flags); 2820 console_lock_spinning_enable(); 2821 2822 stop_critical_timings(); /* don't trace print latency */ 2823 call_console_driver(con, write_text, len, dropped_text); 2824 start_critical_timings(); 2825 2826 con->seq++; 2827 2828 *handover = console_lock_spinning_disable_and_check(cookie); 2829 printk_safe_exit_irqrestore(flags); 2830 skip: 2831 return true; 2832 } 2833 2834 /* 2835 * Print out all remaining records to all consoles. 2836 * 2837 * @do_cond_resched is set by the caller. It can be true only in schedulable 2838 * context. 2839 * 2840 * @next_seq is set to the sequence number after the last available record. 2841 * The value is valid only when this function returns true. It means that all 2842 * usable consoles are completely flushed. 2843 * 2844 * @handover will be set to true if a printk waiter has taken over the 2845 * console_lock, in which case the caller is no longer holding the 2846 * console_lock. Otherwise it is set to false. 2847 * 2848 * Returns true when there was at least one usable console and all messages 2849 * were flushed to all usable consoles. A returned false informs the caller 2850 * that everything was not flushed (either there were no usable consoles or 2851 * another context has taken over printing or it is a panic situation and this 2852 * is not the panic CPU). Regardless the reason, the caller should assume it 2853 * is not useful to immediately try again. 2854 * 2855 * Requires the console_lock. 2856 */ 2857 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2858 { 2859 static char dropped_text[DROPPED_TEXT_MAX]; 2860 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2861 static char text[CONSOLE_LOG_MAX]; 2862 bool any_usable = false; 2863 struct console *con; 2864 bool any_progress; 2865 int cookie; 2866 2867 *next_seq = 0; 2868 *handover = false; 2869 2870 do { 2871 any_progress = false; 2872 2873 cookie = console_srcu_read_lock(); 2874 for_each_console_srcu(con) { 2875 bool progress; 2876 2877 if (!console_is_usable(con)) 2878 continue; 2879 any_usable = true; 2880 2881 if (console_srcu_read_flags(con) & CON_EXTENDED) { 2882 /* Extended consoles do not print "dropped messages". */ 2883 progress = console_emit_next_record(con, &text[0], 2884 &ext_text[0], NULL, 2885 handover, cookie); 2886 } else { 2887 progress = console_emit_next_record(con, &text[0], 2888 NULL, &dropped_text[0], 2889 handover, cookie); 2890 } 2891 2892 /* 2893 * If a handover has occurred, the SRCU read lock 2894 * is already released. 2895 */ 2896 if (*handover) 2897 return false; 2898 2899 /* Track the next of the highest seq flushed. */ 2900 if (con->seq > *next_seq) 2901 *next_seq = con->seq; 2902 2903 if (!progress) 2904 continue; 2905 any_progress = true; 2906 2907 /* Allow panic_cpu to take over the consoles safely. */ 2908 if (abandon_console_lock_in_panic()) 2909 goto abandon; 2910 2911 if (do_cond_resched) 2912 cond_resched(); 2913 } 2914 console_srcu_read_unlock(cookie); 2915 } while (any_progress); 2916 2917 return any_usable; 2918 2919 abandon: 2920 console_srcu_read_unlock(cookie); 2921 return false; 2922 } 2923 2924 /** 2925 * console_unlock - unblock the console subsystem from printing 2926 * 2927 * Releases the console_lock which the caller holds to block printing of 2928 * the console subsystem. 2929 * 2930 * While the console_lock was held, console output may have been buffered 2931 * by printk(). If this is the case, console_unlock(); emits 2932 * the output prior to releasing the lock. 2933 * 2934 * console_unlock(); may be called from any context. 2935 */ 2936 void console_unlock(void) 2937 { 2938 bool do_cond_resched; 2939 bool handover; 2940 bool flushed; 2941 u64 next_seq; 2942 2943 if (console_suspended) { 2944 up_console_sem(); 2945 return; 2946 } 2947 2948 /* 2949 * Console drivers are called with interrupts disabled, so 2950 * @console_may_schedule should be cleared before; however, we may 2951 * end up dumping a lot of lines, for example, if called from 2952 * console registration path, and should invoke cond_resched() 2953 * between lines if allowable. Not doing so can cause a very long 2954 * scheduling stall on a slow console leading to RCU stall and 2955 * softlockup warnings which exacerbate the issue with more 2956 * messages practically incapacitating the system. Therefore, create 2957 * a local to use for the printing loop. 2958 */ 2959 do_cond_resched = console_may_schedule; 2960 2961 do { 2962 console_may_schedule = 0; 2963 2964 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 2965 if (!handover) 2966 __console_unlock(); 2967 2968 /* 2969 * Abort if there was a failure to flush all messages to all 2970 * usable consoles. Either it is not possible to flush (in 2971 * which case it would be an infinite loop of retrying) or 2972 * another context has taken over printing. 2973 */ 2974 if (!flushed) 2975 break; 2976 2977 /* 2978 * Some context may have added new records after 2979 * console_flush_all() but before unlocking the console. 2980 * Re-check if there is a new record to flush. If the trylock 2981 * fails, another context is already handling the printing. 2982 */ 2983 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 2984 } 2985 EXPORT_SYMBOL(console_unlock); 2986 2987 /** 2988 * console_conditional_schedule - yield the CPU if required 2989 * 2990 * If the console code is currently allowed to sleep, and 2991 * if this CPU should yield the CPU to another task, do 2992 * so here. 2993 * 2994 * Must be called within console_lock();. 2995 */ 2996 void __sched console_conditional_schedule(void) 2997 { 2998 if (console_may_schedule) 2999 cond_resched(); 3000 } 3001 EXPORT_SYMBOL(console_conditional_schedule); 3002 3003 void console_unblank(void) 3004 { 3005 struct console *c; 3006 int cookie; 3007 3008 /* 3009 * Stop console printing because the unblank() callback may 3010 * assume the console is not within its write() callback. 3011 * 3012 * If @oops_in_progress is set, this may be an atomic context. 3013 * In that case, attempt a trylock as best-effort. 3014 */ 3015 if (oops_in_progress) { 3016 if (down_trylock_console_sem() != 0) 3017 return; 3018 } else 3019 console_lock(); 3020 3021 console_locked = 1; 3022 console_may_schedule = 0; 3023 3024 cookie = console_srcu_read_lock(); 3025 for_each_console_srcu(c) { 3026 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3027 c->unblank(); 3028 } 3029 console_srcu_read_unlock(cookie); 3030 3031 console_unlock(); 3032 3033 if (!oops_in_progress) 3034 pr_flush(1000, true); 3035 } 3036 3037 /** 3038 * console_flush_on_panic - flush console content on panic 3039 * @mode: flush all messages in buffer or just the pending ones 3040 * 3041 * Immediately output all pending messages no matter what. 3042 */ 3043 void console_flush_on_panic(enum con_flush_mode mode) 3044 { 3045 /* 3046 * If someone else is holding the console lock, trylock will fail 3047 * and may_schedule may be set. Ignore and proceed to unlock so 3048 * that messages are flushed out. As this can be called from any 3049 * context and we don't want to get preempted while flushing, 3050 * ensure may_schedule is cleared. 3051 */ 3052 console_trylock(); 3053 console_may_schedule = 0; 3054 3055 if (mode == CONSOLE_REPLAY_ALL) { 3056 struct console *c; 3057 int cookie; 3058 u64 seq; 3059 3060 seq = prb_first_valid_seq(prb); 3061 3062 cookie = console_srcu_read_lock(); 3063 for_each_console_srcu(c) { 3064 /* 3065 * If the above console_trylock() failed, this is an 3066 * unsynchronized assignment. But in that case, the 3067 * kernel is in "hope and pray" mode anyway. 3068 */ 3069 c->seq = seq; 3070 } 3071 console_srcu_read_unlock(cookie); 3072 } 3073 console_unlock(); 3074 } 3075 3076 /* 3077 * Return the console tty driver structure and its associated index 3078 */ 3079 struct tty_driver *console_device(int *index) 3080 { 3081 struct console *c; 3082 struct tty_driver *driver = NULL; 3083 int cookie; 3084 3085 /* 3086 * Take console_lock to serialize device() callback with 3087 * other console operations. For example, fg_console is 3088 * modified under console_lock when switching vt. 3089 */ 3090 console_lock(); 3091 3092 cookie = console_srcu_read_lock(); 3093 for_each_console_srcu(c) { 3094 if (!c->device) 3095 continue; 3096 driver = c->device(c, index); 3097 if (driver) 3098 break; 3099 } 3100 console_srcu_read_unlock(cookie); 3101 3102 console_unlock(); 3103 return driver; 3104 } 3105 3106 /* 3107 * Prevent further output on the passed console device so that (for example) 3108 * serial drivers can disable console output before suspending a port, and can 3109 * re-enable output afterwards. 3110 */ 3111 void console_stop(struct console *console) 3112 { 3113 __pr_flush(console, 1000, true); 3114 console_list_lock(); 3115 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3116 console_list_unlock(); 3117 3118 /* 3119 * Ensure that all SRCU list walks have completed. All contexts must 3120 * be able to see that this console is disabled so that (for example) 3121 * the caller can suspend the port without risk of another context 3122 * using the port. 3123 */ 3124 synchronize_srcu(&console_srcu); 3125 } 3126 EXPORT_SYMBOL(console_stop); 3127 3128 void console_start(struct console *console) 3129 { 3130 console_list_lock(); 3131 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3132 console_list_unlock(); 3133 __pr_flush(console, 1000, true); 3134 } 3135 EXPORT_SYMBOL(console_start); 3136 3137 static int __read_mostly keep_bootcon; 3138 3139 static int __init keep_bootcon_setup(char *str) 3140 { 3141 keep_bootcon = 1; 3142 pr_info("debug: skip boot console de-registration.\n"); 3143 3144 return 0; 3145 } 3146 3147 early_param("keep_bootcon", keep_bootcon_setup); 3148 3149 /* 3150 * This is called by register_console() to try to match 3151 * the newly registered console with any of the ones selected 3152 * by either the command line or add_preferred_console() and 3153 * setup/enable it. 3154 * 3155 * Care need to be taken with consoles that are statically 3156 * enabled such as netconsole 3157 */ 3158 static int try_enable_preferred_console(struct console *newcon, 3159 bool user_specified) 3160 { 3161 struct console_cmdline *c; 3162 int i, err; 3163 3164 for (i = 0, c = console_cmdline; 3165 i < MAX_CMDLINECONSOLES && c->name[0]; 3166 i++, c++) { 3167 if (c->user_specified != user_specified) 3168 continue; 3169 if (!newcon->match || 3170 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3171 /* default matching */ 3172 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3173 if (strcmp(c->name, newcon->name) != 0) 3174 continue; 3175 if (newcon->index >= 0 && 3176 newcon->index != c->index) 3177 continue; 3178 if (newcon->index < 0) 3179 newcon->index = c->index; 3180 3181 if (_braille_register_console(newcon, c)) 3182 return 0; 3183 3184 if (newcon->setup && 3185 (err = newcon->setup(newcon, c->options)) != 0) 3186 return err; 3187 } 3188 newcon->flags |= CON_ENABLED; 3189 if (i == preferred_console) 3190 newcon->flags |= CON_CONSDEV; 3191 return 0; 3192 } 3193 3194 /* 3195 * Some consoles, such as pstore and netconsole, can be enabled even 3196 * without matching. Accept the pre-enabled consoles only when match() 3197 * and setup() had a chance to be called. 3198 */ 3199 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3200 return 0; 3201 3202 return -ENOENT; 3203 } 3204 3205 /* Try to enable the console unconditionally */ 3206 static void try_enable_default_console(struct console *newcon) 3207 { 3208 if (newcon->index < 0) 3209 newcon->index = 0; 3210 3211 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 3212 return; 3213 3214 newcon->flags |= CON_ENABLED; 3215 3216 if (newcon->device) 3217 newcon->flags |= CON_CONSDEV; 3218 } 3219 3220 #define con_printk(lvl, con, fmt, ...) \ 3221 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \ 3222 (con->flags & CON_BOOT) ? "boot" : "", \ 3223 con->name, con->index, ##__VA_ARGS__) 3224 3225 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3226 { 3227 struct console *con; 3228 bool handover; 3229 3230 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3231 /* Get a consistent copy of @syslog_seq. */ 3232 mutex_lock(&syslog_lock); 3233 newcon->seq = syslog_seq; 3234 mutex_unlock(&syslog_lock); 3235 } else { 3236 /* Begin with next message added to ringbuffer. */ 3237 newcon->seq = prb_next_seq(prb); 3238 3239 /* 3240 * If any enabled boot consoles are due to be unregistered 3241 * shortly, some may not be caught up and may be the same 3242 * device as @newcon. Since it is not known which boot console 3243 * is the same device, flush all consoles and, if necessary, 3244 * start with the message of the enabled boot console that is 3245 * the furthest behind. 3246 */ 3247 if (bootcon_registered && !keep_bootcon) { 3248 /* 3249 * Hold the console_lock to stop console printing and 3250 * guarantee safe access to console->seq. 3251 */ 3252 console_lock(); 3253 3254 /* 3255 * Flush all consoles and set the console to start at 3256 * the next unprinted sequence number. 3257 */ 3258 if (!console_flush_all(true, &newcon->seq, &handover)) { 3259 /* 3260 * Flushing failed. Just choose the lowest 3261 * sequence of the enabled boot consoles. 3262 */ 3263 3264 /* 3265 * If there was a handover, this context no 3266 * longer holds the console_lock. 3267 */ 3268 if (handover) 3269 console_lock(); 3270 3271 newcon->seq = prb_next_seq(prb); 3272 for_each_console(con) { 3273 if ((con->flags & CON_BOOT) && 3274 (con->flags & CON_ENABLED) && 3275 con->seq < newcon->seq) { 3276 newcon->seq = con->seq; 3277 } 3278 } 3279 } 3280 3281 console_unlock(); 3282 } 3283 } 3284 } 3285 3286 #define console_first() \ 3287 hlist_entry(console_list.first, struct console, node) 3288 3289 static int unregister_console_locked(struct console *console); 3290 3291 /* 3292 * The console driver calls this routine during kernel initialization 3293 * to register the console printing procedure with printk() and to 3294 * print any messages that were printed by the kernel before the 3295 * console driver was initialized. 3296 * 3297 * This can happen pretty early during the boot process (because of 3298 * early_printk) - sometimes before setup_arch() completes - be careful 3299 * of what kernel features are used - they may not be initialised yet. 3300 * 3301 * There are two types of consoles - bootconsoles (early_printk) and 3302 * "real" consoles (everything which is not a bootconsole) which are 3303 * handled differently. 3304 * - Any number of bootconsoles can be registered at any time. 3305 * - As soon as a "real" console is registered, all bootconsoles 3306 * will be unregistered automatically. 3307 * - Once a "real" console is registered, any attempt to register a 3308 * bootconsoles will be rejected 3309 */ 3310 void register_console(struct console *newcon) 3311 { 3312 struct console *con; 3313 bool bootcon_registered = false; 3314 bool realcon_registered = false; 3315 int err; 3316 3317 console_list_lock(); 3318 3319 for_each_console(con) { 3320 if (WARN(con == newcon, "console '%s%d' already registered\n", 3321 con->name, con->index)) { 3322 goto unlock; 3323 } 3324 3325 if (con->flags & CON_BOOT) 3326 bootcon_registered = true; 3327 else 3328 realcon_registered = true; 3329 } 3330 3331 /* Do not register boot consoles when there already is a real one. */ 3332 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3333 pr_info("Too late to register bootconsole %s%d\n", 3334 newcon->name, newcon->index); 3335 goto unlock; 3336 } 3337 3338 /* 3339 * See if we want to enable this console driver by default. 3340 * 3341 * Nope when a console is preferred by the command line, device 3342 * tree, or SPCR. 3343 * 3344 * The first real console with tty binding (driver) wins. More 3345 * consoles might get enabled before the right one is found. 3346 * 3347 * Note that a console with tty binding will have CON_CONSDEV 3348 * flag set and will be first in the list. 3349 */ 3350 if (preferred_console < 0) { 3351 if (hlist_empty(&console_list) || !console_first()->device || 3352 console_first()->flags & CON_BOOT) { 3353 try_enable_default_console(newcon); 3354 } 3355 } 3356 3357 /* See if this console matches one we selected on the command line */ 3358 err = try_enable_preferred_console(newcon, true); 3359 3360 /* If not, try to match against the platform default(s) */ 3361 if (err == -ENOENT) 3362 err = try_enable_preferred_console(newcon, false); 3363 3364 /* printk() messages are not printed to the Braille console. */ 3365 if (err || newcon->flags & CON_BRL) 3366 goto unlock; 3367 3368 /* 3369 * If we have a bootconsole, and are switching to a real console, 3370 * don't print everything out again, since when the boot console, and 3371 * the real console are the same physical device, it's annoying to 3372 * see the beginning boot messages twice 3373 */ 3374 if (bootcon_registered && 3375 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3376 newcon->flags &= ~CON_PRINTBUFFER; 3377 } 3378 3379 newcon->dropped = 0; 3380 console_init_seq(newcon, bootcon_registered); 3381 3382 /* 3383 * Put this console in the list - keep the 3384 * preferred driver at the head of the list. 3385 */ 3386 if (hlist_empty(&console_list)) { 3387 /* Ensure CON_CONSDEV is always set for the head. */ 3388 newcon->flags |= CON_CONSDEV; 3389 hlist_add_head_rcu(&newcon->node, &console_list); 3390 3391 } else if (newcon->flags & CON_CONSDEV) { 3392 /* Only the new head can have CON_CONSDEV set. */ 3393 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3394 hlist_add_head_rcu(&newcon->node, &console_list); 3395 3396 } else { 3397 hlist_add_behind_rcu(&newcon->node, console_list.first); 3398 } 3399 3400 /* 3401 * No need to synchronize SRCU here! The caller does not rely 3402 * on all contexts being able to see the new console before 3403 * register_console() completes. 3404 */ 3405 3406 console_sysfs_notify(); 3407 3408 /* 3409 * By unregistering the bootconsoles after we enable the real console 3410 * we get the "console xxx enabled" message on all the consoles - 3411 * boot consoles, real consoles, etc - this is to ensure that end 3412 * users know there might be something in the kernel's log buffer that 3413 * went to the bootconsole (that they do not see on the real console) 3414 */ 3415 con_printk(KERN_INFO, newcon, "enabled\n"); 3416 if (bootcon_registered && 3417 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3418 !keep_bootcon) { 3419 struct hlist_node *tmp; 3420 3421 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3422 if (con->flags & CON_BOOT) 3423 unregister_console_locked(con); 3424 } 3425 } 3426 unlock: 3427 console_list_unlock(); 3428 } 3429 EXPORT_SYMBOL(register_console); 3430 3431 /* Must be called under console_list_lock(). */ 3432 static int unregister_console_locked(struct console *console) 3433 { 3434 int res; 3435 3436 lockdep_assert_console_list_lock_held(); 3437 3438 con_printk(KERN_INFO, console, "disabled\n"); 3439 3440 res = _braille_unregister_console(console); 3441 if (res < 0) 3442 return res; 3443 if (res > 0) 3444 return 0; 3445 3446 /* Disable it unconditionally */ 3447 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3448 3449 if (!console_is_registered_locked(console)) 3450 return -ENODEV; 3451 3452 hlist_del_init_rcu(&console->node); 3453 3454 /* 3455 * <HISTORICAL> 3456 * If this isn't the last console and it has CON_CONSDEV set, we 3457 * need to set it on the next preferred console. 3458 * </HISTORICAL> 3459 * 3460 * The above makes no sense as there is no guarantee that the next 3461 * console has any device attached. Oh well.... 3462 */ 3463 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3464 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3465 3466 /* 3467 * Ensure that all SRCU list walks have completed. All contexts 3468 * must not be able to see this console in the list so that any 3469 * exit/cleanup routines can be performed safely. 3470 */ 3471 synchronize_srcu(&console_srcu); 3472 3473 console_sysfs_notify(); 3474 3475 if (console->exit) 3476 res = console->exit(console); 3477 3478 return res; 3479 } 3480 3481 int unregister_console(struct console *console) 3482 { 3483 int res; 3484 3485 console_list_lock(); 3486 res = unregister_console_locked(console); 3487 console_list_unlock(); 3488 return res; 3489 } 3490 EXPORT_SYMBOL(unregister_console); 3491 3492 /** 3493 * console_force_preferred_locked - force a registered console preferred 3494 * @con: The registered console to force preferred. 3495 * 3496 * Must be called under console_list_lock(). 3497 */ 3498 void console_force_preferred_locked(struct console *con) 3499 { 3500 struct console *cur_pref_con; 3501 3502 if (!console_is_registered_locked(con)) 3503 return; 3504 3505 cur_pref_con = console_first(); 3506 3507 /* Already preferred? */ 3508 if (cur_pref_con == con) 3509 return; 3510 3511 /* 3512 * Delete, but do not re-initialize the entry. This allows the console 3513 * to continue to appear registered (via any hlist_unhashed_lockless() 3514 * checks), even though it was briefly removed from the console list. 3515 */ 3516 hlist_del_rcu(&con->node); 3517 3518 /* 3519 * Ensure that all SRCU list walks have completed so that the console 3520 * can be added to the beginning of the console list and its forward 3521 * list pointer can be re-initialized. 3522 */ 3523 synchronize_srcu(&console_srcu); 3524 3525 con->flags |= CON_CONSDEV; 3526 WARN_ON(!con->device); 3527 3528 /* Only the new head can have CON_CONSDEV set. */ 3529 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3530 hlist_add_head_rcu(&con->node, &console_list); 3531 } 3532 EXPORT_SYMBOL(console_force_preferred_locked); 3533 3534 /* 3535 * Initialize the console device. This is called *early*, so 3536 * we can't necessarily depend on lots of kernel help here. 3537 * Just do some early initializations, and do the complex setup 3538 * later. 3539 */ 3540 void __init console_init(void) 3541 { 3542 int ret; 3543 initcall_t call; 3544 initcall_entry_t *ce; 3545 3546 /* Setup the default TTY line discipline. */ 3547 n_tty_init(); 3548 3549 /* 3550 * set up the console device so that later boot sequences can 3551 * inform about problems etc.. 3552 */ 3553 ce = __con_initcall_start; 3554 trace_initcall_level("console"); 3555 while (ce < __con_initcall_end) { 3556 call = initcall_from_entry(ce); 3557 trace_initcall_start(call); 3558 ret = call(); 3559 trace_initcall_finish(call, ret); 3560 ce++; 3561 } 3562 } 3563 3564 /* 3565 * Some boot consoles access data that is in the init section and which will 3566 * be discarded after the initcalls have been run. To make sure that no code 3567 * will access this data, unregister the boot consoles in a late initcall. 3568 * 3569 * If for some reason, such as deferred probe or the driver being a loadable 3570 * module, the real console hasn't registered yet at this point, there will 3571 * be a brief interval in which no messages are logged to the console, which 3572 * makes it difficult to diagnose problems that occur during this time. 3573 * 3574 * To mitigate this problem somewhat, only unregister consoles whose memory 3575 * intersects with the init section. Note that all other boot consoles will 3576 * get unregistered when the real preferred console is registered. 3577 */ 3578 static int __init printk_late_init(void) 3579 { 3580 struct hlist_node *tmp; 3581 struct console *con; 3582 int ret; 3583 3584 console_list_lock(); 3585 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3586 if (!(con->flags & CON_BOOT)) 3587 continue; 3588 3589 /* Check addresses that might be used for enabled consoles. */ 3590 if (init_section_intersects(con, sizeof(*con)) || 3591 init_section_contains(con->write, 0) || 3592 init_section_contains(con->read, 0) || 3593 init_section_contains(con->device, 0) || 3594 init_section_contains(con->unblank, 0) || 3595 init_section_contains(con->data, 0)) { 3596 /* 3597 * Please, consider moving the reported consoles out 3598 * of the init section. 3599 */ 3600 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3601 con->name, con->index); 3602 unregister_console_locked(con); 3603 } 3604 } 3605 console_list_unlock(); 3606 3607 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3608 console_cpu_notify); 3609 WARN_ON(ret < 0); 3610 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3611 console_cpu_notify, NULL); 3612 WARN_ON(ret < 0); 3613 printk_sysctl_init(); 3614 return 0; 3615 } 3616 late_initcall(printk_late_init); 3617 3618 #if defined CONFIG_PRINTK 3619 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3620 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3621 { 3622 int remaining = timeout_ms; 3623 struct console *c; 3624 u64 last_diff = 0; 3625 u64 printk_seq; 3626 int cookie; 3627 u64 diff; 3628 u64 seq; 3629 3630 might_sleep(); 3631 3632 seq = prb_next_seq(prb); 3633 3634 for (;;) { 3635 diff = 0; 3636 3637 /* 3638 * Hold the console_lock to guarantee safe access to 3639 * console->seq and to prevent changes to @console_suspended 3640 * until all consoles have been processed. 3641 */ 3642 console_lock(); 3643 3644 cookie = console_srcu_read_lock(); 3645 for_each_console_srcu(c) { 3646 if (con && con != c) 3647 continue; 3648 if (!console_is_usable(c)) 3649 continue; 3650 printk_seq = c->seq; 3651 if (printk_seq < seq) 3652 diff += seq - printk_seq; 3653 } 3654 console_srcu_read_unlock(cookie); 3655 3656 /* 3657 * If consoles are suspended, it cannot be expected that they 3658 * make forward progress, so timeout immediately. @diff is 3659 * still used to return a valid flush status. 3660 */ 3661 if (console_suspended) 3662 remaining = 0; 3663 else if (diff != last_diff && reset_on_progress) 3664 remaining = timeout_ms; 3665 3666 console_unlock(); 3667 3668 if (diff == 0 || remaining == 0) 3669 break; 3670 3671 if (remaining < 0) { 3672 /* no timeout limit */ 3673 msleep(100); 3674 } else if (remaining < 100) { 3675 msleep(remaining); 3676 remaining = 0; 3677 } else { 3678 msleep(100); 3679 remaining -= 100; 3680 } 3681 3682 last_diff = diff; 3683 } 3684 3685 return (diff == 0); 3686 } 3687 3688 /** 3689 * pr_flush() - Wait for printing threads to catch up. 3690 * 3691 * @timeout_ms: The maximum time (in ms) to wait. 3692 * @reset_on_progress: Reset the timeout if forward progress is seen. 3693 * 3694 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3695 * represents infinite waiting. 3696 * 3697 * If @reset_on_progress is true, the timeout will be reset whenever any 3698 * printer has been seen to make some forward progress. 3699 * 3700 * Context: Process context. May sleep while acquiring console lock. 3701 * Return: true if all enabled printers are caught up. 3702 */ 3703 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3704 { 3705 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3706 } 3707 3708 /* 3709 * Delayed printk version, for scheduler-internal messages: 3710 */ 3711 #define PRINTK_PENDING_WAKEUP 0x01 3712 #define PRINTK_PENDING_OUTPUT 0x02 3713 3714 static DEFINE_PER_CPU(int, printk_pending); 3715 3716 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3717 { 3718 int pending = this_cpu_xchg(printk_pending, 0); 3719 3720 if (pending & PRINTK_PENDING_OUTPUT) { 3721 /* If trylock fails, someone else is doing the printing */ 3722 if (console_trylock()) 3723 console_unlock(); 3724 } 3725 3726 if (pending & PRINTK_PENDING_WAKEUP) 3727 wake_up_interruptible(&log_wait); 3728 } 3729 3730 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3731 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3732 3733 static void __wake_up_klogd(int val) 3734 { 3735 if (!printk_percpu_data_ready()) 3736 return; 3737 3738 preempt_disable(); 3739 /* 3740 * Guarantee any new records can be seen by tasks preparing to wait 3741 * before this context checks if the wait queue is empty. 3742 * 3743 * The full memory barrier within wq_has_sleeper() pairs with the full 3744 * memory barrier within set_current_state() of 3745 * prepare_to_wait_event(), which is called after ___wait_event() adds 3746 * the waiter but before it has checked the wait condition. 3747 * 3748 * This pairs with devkmsg_read:A and syslog_print:A. 3749 */ 3750 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3751 (val & PRINTK_PENDING_OUTPUT)) { 3752 this_cpu_or(printk_pending, val); 3753 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3754 } 3755 preempt_enable(); 3756 } 3757 3758 void wake_up_klogd(void) 3759 { 3760 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3761 } 3762 3763 void defer_console_output(void) 3764 { 3765 /* 3766 * New messages may have been added directly to the ringbuffer 3767 * using vprintk_store(), so wake any waiters as well. 3768 */ 3769 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3770 } 3771 3772 void printk_trigger_flush(void) 3773 { 3774 defer_console_output(); 3775 } 3776 3777 int vprintk_deferred(const char *fmt, va_list args) 3778 { 3779 int r; 3780 3781 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3782 defer_console_output(); 3783 3784 return r; 3785 } 3786 3787 int _printk_deferred(const char *fmt, ...) 3788 { 3789 va_list args; 3790 int r; 3791 3792 va_start(args, fmt); 3793 r = vprintk_deferred(fmt, args); 3794 va_end(args); 3795 3796 return r; 3797 } 3798 3799 /* 3800 * printk rate limiting, lifted from the networking subsystem. 3801 * 3802 * This enforces a rate limit: not more than 10 kernel messages 3803 * every 5s to make a denial-of-service attack impossible. 3804 */ 3805 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3806 3807 int __printk_ratelimit(const char *func) 3808 { 3809 return ___ratelimit(&printk_ratelimit_state, func); 3810 } 3811 EXPORT_SYMBOL(__printk_ratelimit); 3812 3813 /** 3814 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3815 * @caller_jiffies: pointer to caller's state 3816 * @interval_msecs: minimum interval between prints 3817 * 3818 * printk_timed_ratelimit() returns true if more than @interval_msecs 3819 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3820 * returned true. 3821 */ 3822 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3823 unsigned int interval_msecs) 3824 { 3825 unsigned long elapsed = jiffies - *caller_jiffies; 3826 3827 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3828 return false; 3829 3830 *caller_jiffies = jiffies; 3831 return true; 3832 } 3833 EXPORT_SYMBOL(printk_timed_ratelimit); 3834 3835 static DEFINE_SPINLOCK(dump_list_lock); 3836 static LIST_HEAD(dump_list); 3837 3838 /** 3839 * kmsg_dump_register - register a kernel log dumper. 3840 * @dumper: pointer to the kmsg_dumper structure 3841 * 3842 * Adds a kernel log dumper to the system. The dump callback in the 3843 * structure will be called when the kernel oopses or panics and must be 3844 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3845 */ 3846 int kmsg_dump_register(struct kmsg_dumper *dumper) 3847 { 3848 unsigned long flags; 3849 int err = -EBUSY; 3850 3851 /* The dump callback needs to be set */ 3852 if (!dumper->dump) 3853 return -EINVAL; 3854 3855 spin_lock_irqsave(&dump_list_lock, flags); 3856 /* Don't allow registering multiple times */ 3857 if (!dumper->registered) { 3858 dumper->registered = 1; 3859 list_add_tail_rcu(&dumper->list, &dump_list); 3860 err = 0; 3861 } 3862 spin_unlock_irqrestore(&dump_list_lock, flags); 3863 3864 return err; 3865 } 3866 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3867 3868 /** 3869 * kmsg_dump_unregister - unregister a kmsg dumper. 3870 * @dumper: pointer to the kmsg_dumper structure 3871 * 3872 * Removes a dump device from the system. Returns zero on success and 3873 * %-EINVAL otherwise. 3874 */ 3875 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3876 { 3877 unsigned long flags; 3878 int err = -EINVAL; 3879 3880 spin_lock_irqsave(&dump_list_lock, flags); 3881 if (dumper->registered) { 3882 dumper->registered = 0; 3883 list_del_rcu(&dumper->list); 3884 err = 0; 3885 } 3886 spin_unlock_irqrestore(&dump_list_lock, flags); 3887 synchronize_rcu(); 3888 3889 return err; 3890 } 3891 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3892 3893 static bool always_kmsg_dump; 3894 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3895 3896 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3897 { 3898 switch (reason) { 3899 case KMSG_DUMP_PANIC: 3900 return "Panic"; 3901 case KMSG_DUMP_OOPS: 3902 return "Oops"; 3903 case KMSG_DUMP_EMERG: 3904 return "Emergency"; 3905 case KMSG_DUMP_SHUTDOWN: 3906 return "Shutdown"; 3907 default: 3908 return "Unknown"; 3909 } 3910 } 3911 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3912 3913 /** 3914 * kmsg_dump - dump kernel log to kernel message dumpers. 3915 * @reason: the reason (oops, panic etc) for dumping 3916 * 3917 * Call each of the registered dumper's dump() callback, which can 3918 * retrieve the kmsg records with kmsg_dump_get_line() or 3919 * kmsg_dump_get_buffer(). 3920 */ 3921 void kmsg_dump(enum kmsg_dump_reason reason) 3922 { 3923 struct kmsg_dumper *dumper; 3924 3925 rcu_read_lock(); 3926 list_for_each_entry_rcu(dumper, &dump_list, list) { 3927 enum kmsg_dump_reason max_reason = dumper->max_reason; 3928 3929 /* 3930 * If client has not provided a specific max_reason, default 3931 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3932 */ 3933 if (max_reason == KMSG_DUMP_UNDEF) { 3934 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3935 KMSG_DUMP_OOPS; 3936 } 3937 if (reason > max_reason) 3938 continue; 3939 3940 /* invoke dumper which will iterate over records */ 3941 dumper->dump(dumper, reason); 3942 } 3943 rcu_read_unlock(); 3944 } 3945 3946 /** 3947 * kmsg_dump_get_line - retrieve one kmsg log line 3948 * @iter: kmsg dump iterator 3949 * @syslog: include the "<4>" prefixes 3950 * @line: buffer to copy the line to 3951 * @size: maximum size of the buffer 3952 * @len: length of line placed into buffer 3953 * 3954 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3955 * record, and copy one record into the provided buffer. 3956 * 3957 * Consecutive calls will return the next available record moving 3958 * towards the end of the buffer with the youngest messages. 3959 * 3960 * A return value of FALSE indicates that there are no more records to 3961 * read. 3962 */ 3963 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 3964 char *line, size_t size, size_t *len) 3965 { 3966 u64 min_seq = latched_seq_read_nolock(&clear_seq); 3967 struct printk_info info; 3968 unsigned int line_count; 3969 struct printk_record r; 3970 size_t l = 0; 3971 bool ret = false; 3972 3973 if (iter->cur_seq < min_seq) 3974 iter->cur_seq = min_seq; 3975 3976 prb_rec_init_rd(&r, &info, line, size); 3977 3978 /* Read text or count text lines? */ 3979 if (line) { 3980 if (!prb_read_valid(prb, iter->cur_seq, &r)) 3981 goto out; 3982 l = record_print_text(&r, syslog, printk_time); 3983 } else { 3984 if (!prb_read_valid_info(prb, iter->cur_seq, 3985 &info, &line_count)) { 3986 goto out; 3987 } 3988 l = get_record_print_text_size(&info, line_count, syslog, 3989 printk_time); 3990 3991 } 3992 3993 iter->cur_seq = r.info->seq + 1; 3994 ret = true; 3995 out: 3996 if (len) 3997 *len = l; 3998 return ret; 3999 } 4000 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4001 4002 /** 4003 * kmsg_dump_get_buffer - copy kmsg log lines 4004 * @iter: kmsg dump iterator 4005 * @syslog: include the "<4>" prefixes 4006 * @buf: buffer to copy the line to 4007 * @size: maximum size of the buffer 4008 * @len_out: length of line placed into buffer 4009 * 4010 * Start at the end of the kmsg buffer and fill the provided buffer 4011 * with as many of the *youngest* kmsg records that fit into it. 4012 * If the buffer is large enough, all available kmsg records will be 4013 * copied with a single call. 4014 * 4015 * Consecutive calls will fill the buffer with the next block of 4016 * available older records, not including the earlier retrieved ones. 4017 * 4018 * A return value of FALSE indicates that there are no more records to 4019 * read. 4020 */ 4021 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4022 char *buf, size_t size, size_t *len_out) 4023 { 4024 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4025 struct printk_info info; 4026 struct printk_record r; 4027 u64 seq; 4028 u64 next_seq; 4029 size_t len = 0; 4030 bool ret = false; 4031 bool time = printk_time; 4032 4033 if (!buf || !size) 4034 goto out; 4035 4036 if (iter->cur_seq < min_seq) 4037 iter->cur_seq = min_seq; 4038 4039 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4040 if (info.seq != iter->cur_seq) { 4041 /* messages are gone, move to first available one */ 4042 iter->cur_seq = info.seq; 4043 } 4044 } 4045 4046 /* last entry */ 4047 if (iter->cur_seq >= iter->next_seq) 4048 goto out; 4049 4050 /* 4051 * Find first record that fits, including all following records, 4052 * into the user-provided buffer for this dump. Pass in size-1 4053 * because this function (by way of record_print_text()) will 4054 * not write more than size-1 bytes of text into @buf. 4055 */ 4056 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4057 size - 1, syslog, time); 4058 4059 /* 4060 * Next kmsg_dump_get_buffer() invocation will dump block of 4061 * older records stored right before this one. 4062 */ 4063 next_seq = seq; 4064 4065 prb_rec_init_rd(&r, &info, buf, size); 4066 4067 len = 0; 4068 prb_for_each_record(seq, prb, seq, &r) { 4069 if (r.info->seq >= iter->next_seq) 4070 break; 4071 4072 len += record_print_text(&r, syslog, time); 4073 4074 /* Adjust record to store to remaining buffer space. */ 4075 prb_rec_init_rd(&r, &info, buf + len, size - len); 4076 } 4077 4078 iter->next_seq = next_seq; 4079 ret = true; 4080 out: 4081 if (len_out) 4082 *len_out = len; 4083 return ret; 4084 } 4085 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4086 4087 /** 4088 * kmsg_dump_rewind - reset the iterator 4089 * @iter: kmsg dump iterator 4090 * 4091 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4092 * kmsg_dump_get_buffer() can be called again and used multiple 4093 * times within the same dumper.dump() callback. 4094 */ 4095 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4096 { 4097 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4098 iter->next_seq = prb_next_seq(prb); 4099 } 4100 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4101 4102 #endif 4103 4104 #ifdef CONFIG_SMP 4105 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4106 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4107 4108 /** 4109 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4110 * spinning lock is not owned by any CPU. 4111 * 4112 * Context: Any context. 4113 */ 4114 void __printk_cpu_sync_wait(void) 4115 { 4116 do { 4117 cpu_relax(); 4118 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4119 } 4120 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4121 4122 /** 4123 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4124 * spinning lock. 4125 * 4126 * If no processor has the lock, the calling processor takes the lock and 4127 * becomes the owner. If the calling processor is already the owner of the 4128 * lock, this function succeeds immediately. 4129 * 4130 * Context: Any context. Expects interrupts to be disabled. 4131 * Return: 1 on success, otherwise 0. 4132 */ 4133 int __printk_cpu_sync_try_get(void) 4134 { 4135 int cpu; 4136 int old; 4137 4138 cpu = smp_processor_id(); 4139 4140 /* 4141 * Guarantee loads and stores from this CPU when it is the lock owner 4142 * are _not_ visible to the previous lock owner. This pairs with 4143 * __printk_cpu_sync_put:B. 4144 * 4145 * Memory barrier involvement: 4146 * 4147 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4148 * then __printk_cpu_sync_put:A can never read from 4149 * __printk_cpu_sync_try_get:B. 4150 * 4151 * Relies on: 4152 * 4153 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4154 * of the previous CPU 4155 * matching 4156 * ACQUIRE from __printk_cpu_sync_try_get:A to 4157 * __printk_cpu_sync_try_get:B of this CPU 4158 */ 4159 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4160 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4161 if (old == -1) { 4162 /* 4163 * This CPU is now the owner and begins loading/storing 4164 * data: LMM(__printk_cpu_sync_try_get:B) 4165 */ 4166 return 1; 4167 4168 } else if (old == cpu) { 4169 /* This CPU is already the owner. */ 4170 atomic_inc(&printk_cpu_sync_nested); 4171 return 1; 4172 } 4173 4174 return 0; 4175 } 4176 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4177 4178 /** 4179 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4180 * 4181 * The calling processor must be the owner of the lock. 4182 * 4183 * Context: Any context. Expects interrupts to be disabled. 4184 */ 4185 void __printk_cpu_sync_put(void) 4186 { 4187 if (atomic_read(&printk_cpu_sync_nested)) { 4188 atomic_dec(&printk_cpu_sync_nested); 4189 return; 4190 } 4191 4192 /* 4193 * This CPU is finished loading/storing data: 4194 * LMM(__printk_cpu_sync_put:A) 4195 */ 4196 4197 /* 4198 * Guarantee loads and stores from this CPU when it was the 4199 * lock owner are visible to the next lock owner. This pairs 4200 * with __printk_cpu_sync_try_get:A. 4201 * 4202 * Memory barrier involvement: 4203 * 4204 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4205 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4206 * 4207 * Relies on: 4208 * 4209 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4210 * of this CPU 4211 * matching 4212 * ACQUIRE from __printk_cpu_sync_try_get:A to 4213 * __printk_cpu_sync_try_get:B of the next CPU 4214 */ 4215 atomic_set_release(&printk_cpu_sync_owner, 4216 -1); /* LMM(__printk_cpu_sync_put:B) */ 4217 } 4218 EXPORT_SYMBOL(__printk_cpu_sync_put); 4219 #endif /* CONFIG_SMP */ 4220