1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/syscore_ops.h> 38 #include <linux/vmcore_info.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 #include <linux/panic.h> 52 53 #include <linux/uaccess.h> 54 #include <asm/sections.h> 55 56 #include <trace/events/initcall.h> 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/printk.h> 59 60 #include "printk_ringbuffer.h" 61 #include "console_cmdline.h" 62 #include "braille.h" 63 #include "internal.h" 64 65 int console_printk[4] = { 66 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 67 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 68 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 69 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 70 }; 71 EXPORT_SYMBOL_GPL(console_printk); 72 73 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 74 EXPORT_SYMBOL(ignore_console_lock_warning); 75 76 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 77 78 /* 79 * Low level drivers may need that to know if they can schedule in 80 * their unblank() callback or not. So let's export it. 81 */ 82 int oops_in_progress; 83 EXPORT_SYMBOL(oops_in_progress); 84 85 /* 86 * console_mutex protects console_list updates and console->flags updates. 87 * The flags are synchronized only for consoles that are registered, i.e. 88 * accessible via the console list. 89 */ 90 static DEFINE_MUTEX(console_mutex); 91 92 /* 93 * console_sem protects updates to console->seq 94 * and also provides serialization for console printing. 95 */ 96 static DEFINE_SEMAPHORE(console_sem, 1); 97 HLIST_HEAD(console_list); 98 EXPORT_SYMBOL_GPL(console_list); 99 DEFINE_STATIC_SRCU(console_srcu); 100 101 /* 102 * System may need to suppress printk message under certain 103 * circumstances, like after kernel panic happens. 104 */ 105 int __read_mostly suppress_printk; 106 107 #ifdef CONFIG_LOCKDEP 108 static struct lockdep_map console_lock_dep_map = { 109 .name = "console_lock" 110 }; 111 112 void lockdep_assert_console_list_lock_held(void) 113 { 114 lockdep_assert_held(&console_mutex); 115 } 116 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 117 #endif 118 119 #ifdef CONFIG_DEBUG_LOCK_ALLOC 120 bool console_srcu_read_lock_is_held(void) 121 { 122 return srcu_read_lock_held(&console_srcu); 123 } 124 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 125 #endif 126 127 enum devkmsg_log_bits { 128 __DEVKMSG_LOG_BIT_ON = 0, 129 __DEVKMSG_LOG_BIT_OFF, 130 __DEVKMSG_LOG_BIT_LOCK, 131 }; 132 133 enum devkmsg_log_masks { 134 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 135 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 136 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 137 }; 138 139 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 140 #define DEVKMSG_LOG_MASK_DEFAULT 0 141 142 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 143 144 static int __control_devkmsg(char *str) 145 { 146 size_t len; 147 148 if (!str) 149 return -EINVAL; 150 151 len = str_has_prefix(str, "on"); 152 if (len) { 153 devkmsg_log = DEVKMSG_LOG_MASK_ON; 154 return len; 155 } 156 157 len = str_has_prefix(str, "off"); 158 if (len) { 159 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 160 return len; 161 } 162 163 len = str_has_prefix(str, "ratelimit"); 164 if (len) { 165 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 166 return len; 167 } 168 169 return -EINVAL; 170 } 171 172 static int __init control_devkmsg(char *str) 173 { 174 if (__control_devkmsg(str) < 0) { 175 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 176 return 1; 177 } 178 179 /* 180 * Set sysctl string accordingly: 181 */ 182 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 183 strscpy(devkmsg_log_str, "on"); 184 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 185 strscpy(devkmsg_log_str, "off"); 186 /* else "ratelimit" which is set by default. */ 187 188 /* 189 * Sysctl cannot change it anymore. The kernel command line setting of 190 * this parameter is to force the setting to be permanent throughout the 191 * runtime of the system. This is a precation measure against userspace 192 * trying to be a smarta** and attempting to change it up on us. 193 */ 194 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 195 196 return 1; 197 } 198 __setup("printk.devkmsg=", control_devkmsg); 199 200 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 201 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 202 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write, 203 void *buffer, size_t *lenp, loff_t *ppos) 204 { 205 char old_str[DEVKMSG_STR_MAX_SIZE]; 206 unsigned int old; 207 int err; 208 209 if (write) { 210 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 211 return -EINVAL; 212 213 old = devkmsg_log; 214 strscpy(old_str, devkmsg_log_str); 215 } 216 217 err = proc_dostring(table, write, buffer, lenp, ppos); 218 if (err) 219 return err; 220 221 if (write) { 222 err = __control_devkmsg(devkmsg_log_str); 223 224 /* 225 * Do not accept an unknown string OR a known string with 226 * trailing crap... 227 */ 228 if (err < 0 || (err + 1 != *lenp)) { 229 230 /* ... and restore old setting. */ 231 devkmsg_log = old; 232 strscpy(devkmsg_log_str, old_str); 233 234 return -EINVAL; 235 } 236 } 237 238 return 0; 239 } 240 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 241 242 /** 243 * console_list_lock - Lock the console list 244 * 245 * For console list or console->flags updates 246 */ 247 void console_list_lock(void) 248 { 249 /* 250 * In unregister_console() and console_force_preferred_locked(), 251 * synchronize_srcu() is called with the console_list_lock held. 252 * Therefore it is not allowed that the console_list_lock is taken 253 * with the srcu_lock held. 254 * 255 * Detecting if this context is really in the read-side critical 256 * section is only possible if the appropriate debug options are 257 * enabled. 258 */ 259 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 260 srcu_read_lock_held(&console_srcu)); 261 262 mutex_lock(&console_mutex); 263 } 264 EXPORT_SYMBOL(console_list_lock); 265 266 /** 267 * console_list_unlock - Unlock the console list 268 * 269 * Counterpart to console_list_lock() 270 */ 271 void console_list_unlock(void) 272 { 273 mutex_unlock(&console_mutex); 274 } 275 EXPORT_SYMBOL(console_list_unlock); 276 277 /** 278 * console_srcu_read_lock - Register a new reader for the 279 * SRCU-protected console list 280 * 281 * Use for_each_console_srcu() to iterate the console list 282 * 283 * Context: Any context. 284 * Return: A cookie to pass to console_srcu_read_unlock(). 285 */ 286 int console_srcu_read_lock(void) 287 __acquires(&console_srcu) 288 { 289 return srcu_read_lock_nmisafe(&console_srcu); 290 } 291 EXPORT_SYMBOL(console_srcu_read_lock); 292 293 /** 294 * console_srcu_read_unlock - Unregister an old reader from 295 * the SRCU-protected console list 296 * @cookie: cookie returned from console_srcu_read_lock() 297 * 298 * Counterpart to console_srcu_read_lock() 299 */ 300 void console_srcu_read_unlock(int cookie) 301 __releases(&console_srcu) 302 { 303 srcu_read_unlock_nmisafe(&console_srcu, cookie); 304 } 305 EXPORT_SYMBOL(console_srcu_read_unlock); 306 307 /* 308 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 309 * macros instead of functions so that _RET_IP_ contains useful information. 310 */ 311 #define down_console_sem() do { \ 312 down(&console_sem);\ 313 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 314 } while (0) 315 316 static int __down_trylock_console_sem(unsigned long ip) 317 { 318 int lock_failed; 319 unsigned long flags; 320 321 /* 322 * Here and in __up_console_sem() we need to be in safe mode, 323 * because spindump/WARN/etc from under console ->lock will 324 * deadlock in printk()->down_trylock_console_sem() otherwise. 325 */ 326 printk_safe_enter_irqsave(flags); 327 lock_failed = down_trylock(&console_sem); 328 printk_safe_exit_irqrestore(flags); 329 330 if (lock_failed) 331 return 1; 332 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 333 return 0; 334 } 335 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 336 337 static void __up_console_sem(unsigned long ip) 338 { 339 unsigned long flags; 340 341 mutex_release(&console_lock_dep_map, ip); 342 343 printk_safe_enter_irqsave(flags); 344 up(&console_sem); 345 printk_safe_exit_irqrestore(flags); 346 } 347 #define up_console_sem() __up_console_sem(_RET_IP_) 348 349 /* 350 * This is used for debugging the mess that is the VT code by 351 * keeping track if we have the console semaphore held. It's 352 * definitely not the perfect debug tool (we don't know if _WE_ 353 * hold it and are racing, but it helps tracking those weird code 354 * paths in the console code where we end up in places I want 355 * locked without the console semaphore held). 356 */ 357 static int console_locked; 358 359 /* 360 * Array of consoles built from command line options (console=) 361 */ 362 363 #define MAX_CMDLINECONSOLES 8 364 365 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 366 367 static int preferred_console = -1; 368 int console_set_on_cmdline; 369 EXPORT_SYMBOL(console_set_on_cmdline); 370 371 /* Flag: console code may call schedule() */ 372 static int console_may_schedule; 373 374 enum con_msg_format_flags { 375 MSG_FORMAT_DEFAULT = 0, 376 MSG_FORMAT_SYSLOG = (1 << 0), 377 }; 378 379 static int console_msg_format = MSG_FORMAT_DEFAULT; 380 381 /* 382 * The printk log buffer consists of a sequenced collection of records, each 383 * containing variable length message text. Every record also contains its 384 * own meta-data (@info). 385 * 386 * Every record meta-data carries the timestamp in microseconds, as well as 387 * the standard userspace syslog level and syslog facility. The usual kernel 388 * messages use LOG_KERN; userspace-injected messages always carry a matching 389 * syslog facility, by default LOG_USER. The origin of every message can be 390 * reliably determined that way. 391 * 392 * The human readable log message of a record is available in @text, the 393 * length of the message text in @text_len. The stored message is not 394 * terminated. 395 * 396 * Optionally, a record can carry a dictionary of properties (key/value 397 * pairs), to provide userspace with a machine-readable message context. 398 * 399 * Examples for well-defined, commonly used property names are: 400 * DEVICE=b12:8 device identifier 401 * b12:8 block dev_t 402 * c127:3 char dev_t 403 * n8 netdev ifindex 404 * +sound:card0 subsystem:devname 405 * SUBSYSTEM=pci driver-core subsystem name 406 * 407 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 408 * and values are terminated by a '\0' character. 409 * 410 * Example of record values: 411 * record.text_buf = "it's a line" (unterminated) 412 * record.info.seq = 56 413 * record.info.ts_nsec = 36863 414 * record.info.text_len = 11 415 * record.info.facility = 0 (LOG_KERN) 416 * record.info.flags = 0 417 * record.info.level = 3 (LOG_ERR) 418 * record.info.caller_id = 299 (task 299) 419 * record.info.dev_info.subsystem = "pci" (terminated) 420 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 421 * 422 * The 'struct printk_info' buffer must never be directly exported to 423 * userspace, it is a kernel-private implementation detail that might 424 * need to be changed in the future, when the requirements change. 425 * 426 * /dev/kmsg exports the structured data in the following line format: 427 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 428 * 429 * Users of the export format should ignore possible additional values 430 * separated by ',', and find the message after the ';' character. 431 * 432 * The optional key/value pairs are attached as continuation lines starting 433 * with a space character and terminated by a newline. All possible 434 * non-prinatable characters are escaped in the "\xff" notation. 435 */ 436 437 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 438 static DEFINE_MUTEX(syslog_lock); 439 440 /* 441 * Specifies if a legacy console is registered. If legacy consoles are 442 * present, it is necessary to perform the console lock/unlock dance 443 * whenever console flushing should occur. 444 */ 445 bool have_legacy_console; 446 447 /* 448 * Specifies if an nbcon console is registered. If nbcon consoles are present, 449 * synchronous printing of legacy consoles will not occur during panic until 450 * the backtrace has been stored to the ringbuffer. 451 */ 452 bool have_nbcon_console; 453 454 /* 455 * Specifies if a boot console is registered. If boot consoles are present, 456 * nbcon consoles cannot print simultaneously and must be synchronized by 457 * the console lock. This is because boot consoles and nbcon consoles may 458 * have mapped the same hardware. 459 */ 460 bool have_boot_console; 461 462 /* See printk_legacy_allow_panic_sync() for details. */ 463 bool legacy_allow_panic_sync; 464 465 /* Avoid using irq_work when suspending. */ 466 bool console_irqwork_blocked; 467 468 #ifdef CONFIG_PRINTK 469 DECLARE_WAIT_QUEUE_HEAD(log_wait); 470 static DECLARE_WAIT_QUEUE_HEAD(legacy_wait); 471 /* All 3 protected by @syslog_lock. */ 472 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 473 static u64 syslog_seq; 474 static size_t syslog_partial; 475 static bool syslog_time; 476 477 /* True when _all_ printer threads are available for printing. */ 478 bool printk_kthreads_running; 479 480 struct latched_seq { 481 seqcount_latch_t latch; 482 u64 val[2]; 483 }; 484 485 /* 486 * The next printk record to read after the last 'clear' command. There are 487 * two copies (updated with seqcount_latch) so that reads can locklessly 488 * access a valid value. Writers are synchronized by @syslog_lock. 489 */ 490 static struct latched_seq clear_seq = { 491 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 492 .val[0] = 0, 493 .val[1] = 0, 494 }; 495 496 #define LOG_LEVEL(v) ((v) & 0x07) 497 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 498 499 /* record buffer */ 500 #define LOG_ALIGN __alignof__(unsigned long) 501 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 502 #define LOG_BUF_LEN_MAX ((u32)1 << 31) 503 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 504 static char *log_buf = __log_buf; 505 static u32 log_buf_len = __LOG_BUF_LEN; 506 507 /* 508 * Define the average message size. This only affects the number of 509 * descriptors that will be available. Underestimating is better than 510 * overestimating (too many available descriptors is better than not enough). 511 */ 512 #define PRB_AVGBITS 5 /* 32 character average length */ 513 514 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 515 #error CONFIG_LOG_BUF_SHIFT value too small. 516 #endif 517 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 518 PRB_AVGBITS, &__log_buf[0]); 519 520 static struct printk_ringbuffer printk_rb_dynamic; 521 522 struct printk_ringbuffer *prb = &printk_rb_static; 523 524 /* 525 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 526 * per_cpu_areas are initialised. This variable is set to true when 527 * it's safe to access per-CPU data. 528 */ 529 static bool __printk_percpu_data_ready __ro_after_init; 530 531 bool printk_percpu_data_ready(void) 532 { 533 return __printk_percpu_data_ready; 534 } 535 536 /* Must be called under syslog_lock. */ 537 static void latched_seq_write(struct latched_seq *ls, u64 val) 538 { 539 write_seqcount_latch_begin(&ls->latch); 540 ls->val[0] = val; 541 write_seqcount_latch(&ls->latch); 542 ls->val[1] = val; 543 write_seqcount_latch_end(&ls->latch); 544 } 545 546 /* Can be called from any context. */ 547 static u64 latched_seq_read_nolock(struct latched_seq *ls) 548 { 549 unsigned int seq; 550 unsigned int idx; 551 u64 val; 552 553 do { 554 seq = read_seqcount_latch(&ls->latch); 555 idx = seq & 0x1; 556 val = ls->val[idx]; 557 } while (read_seqcount_latch_retry(&ls->latch, seq)); 558 559 return val; 560 } 561 562 /* Return log buffer address */ 563 char *log_buf_addr_get(void) 564 { 565 return log_buf; 566 } 567 568 /* Return log buffer size */ 569 u32 log_buf_len_get(void) 570 { 571 return log_buf_len; 572 } 573 574 /* 575 * Define how much of the log buffer we could take at maximum. The value 576 * must be greater than two. Note that only half of the buffer is available 577 * when the index points to the middle. 578 */ 579 #define MAX_LOG_TAKE_PART 4 580 static const char trunc_msg[] = "<truncated>"; 581 582 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 583 { 584 /* 585 * The message should not take the whole buffer. Otherwise, it might 586 * get removed too soon. 587 */ 588 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 589 590 if (*text_len > max_text_len) 591 *text_len = max_text_len; 592 593 /* enable the warning message (if there is room) */ 594 *trunc_msg_len = strlen(trunc_msg); 595 if (*text_len >= *trunc_msg_len) 596 *text_len -= *trunc_msg_len; 597 else 598 *trunc_msg_len = 0; 599 } 600 601 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 602 603 static int syslog_action_restricted(int type) 604 { 605 if (dmesg_restrict) 606 return 1; 607 /* 608 * Unless restricted, we allow "read all" and "get buffer size" 609 * for everybody. 610 */ 611 return type != SYSLOG_ACTION_READ_ALL && 612 type != SYSLOG_ACTION_SIZE_BUFFER; 613 } 614 615 static int check_syslog_permissions(int type, int source) 616 { 617 /* 618 * If this is from /proc/kmsg and we've already opened it, then we've 619 * already done the capabilities checks at open time. 620 */ 621 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 622 goto ok; 623 624 if (syslog_action_restricted(type)) { 625 if (capable(CAP_SYSLOG)) 626 goto ok; 627 return -EPERM; 628 } 629 ok: 630 return security_syslog(type); 631 } 632 633 static void append_char(char **pp, char *e, char c) 634 { 635 if (*pp < e) 636 *(*pp)++ = c; 637 } 638 639 static ssize_t info_print_ext_header(char *buf, size_t size, 640 struct printk_info *info) 641 { 642 u64 ts_usec = info->ts_nsec; 643 char caller[20]; 644 #ifdef CONFIG_PRINTK_CALLER 645 u32 id = info->caller_id; 646 647 snprintf(caller, sizeof(caller), ",caller=%c%u", 648 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 649 #else 650 caller[0] = '\0'; 651 #endif 652 653 do_div(ts_usec, 1000); 654 655 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 656 (info->facility << 3) | info->level, info->seq, 657 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 658 } 659 660 static ssize_t msg_add_ext_text(char *buf, size_t size, 661 const char *text, size_t text_len, 662 unsigned char endc) 663 { 664 char *p = buf, *e = buf + size; 665 size_t i; 666 667 /* escape non-printable characters */ 668 for (i = 0; i < text_len; i++) { 669 unsigned char c = text[i]; 670 671 if (c < ' ' || c >= 127 || c == '\\') 672 p += scnprintf(p, e - p, "\\x%02x", c); 673 else 674 append_char(&p, e, c); 675 } 676 append_char(&p, e, endc); 677 678 return p - buf; 679 } 680 681 static ssize_t msg_add_dict_text(char *buf, size_t size, 682 const char *key, const char *val) 683 { 684 size_t val_len = strlen(val); 685 ssize_t len; 686 687 if (!val_len) 688 return 0; 689 690 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 691 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 692 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 693 694 return len; 695 } 696 697 static ssize_t msg_print_ext_body(char *buf, size_t size, 698 char *text, size_t text_len, 699 struct dev_printk_info *dev_info) 700 { 701 ssize_t len; 702 703 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 704 705 if (!dev_info) 706 goto out; 707 708 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 709 dev_info->subsystem); 710 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 711 dev_info->device); 712 out: 713 return len; 714 } 715 716 /* /dev/kmsg - userspace message inject/listen interface */ 717 struct devkmsg_user { 718 atomic64_t seq; 719 struct ratelimit_state rs; 720 struct mutex lock; 721 struct printk_buffers pbufs; 722 }; 723 724 static __printf(3, 4) __cold 725 int devkmsg_emit(int facility, int level, const char *fmt, ...) 726 { 727 va_list args; 728 int r; 729 730 va_start(args, fmt); 731 r = vprintk_emit(facility, level, NULL, fmt, args); 732 va_end(args); 733 734 return r; 735 } 736 737 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 738 { 739 char *buf, *line; 740 int level = default_message_loglevel; 741 int facility = 1; /* LOG_USER */ 742 struct file *file = iocb->ki_filp; 743 struct devkmsg_user *user = file->private_data; 744 size_t len = iov_iter_count(from); 745 ssize_t ret = len; 746 747 if (len > PRINTKRB_RECORD_MAX) 748 return -EINVAL; 749 750 /* Ignore when user logging is disabled. */ 751 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 752 return len; 753 754 /* Ratelimit when not explicitly enabled. */ 755 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 756 if (!___ratelimit(&user->rs, current->comm)) 757 return ret; 758 } 759 760 buf = kmalloc(len+1, GFP_KERNEL); 761 if (buf == NULL) 762 return -ENOMEM; 763 764 buf[len] = '\0'; 765 if (!copy_from_iter_full(buf, len, from)) { 766 kfree(buf); 767 return -EFAULT; 768 } 769 770 /* 771 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 772 * the decimal value represents 32bit, the lower 3 bit are the log 773 * level, the rest are the log facility. 774 * 775 * If no prefix or no userspace facility is specified, we 776 * enforce LOG_USER, to be able to reliably distinguish 777 * kernel-generated messages from userspace-injected ones. 778 */ 779 line = buf; 780 if (line[0] == '<') { 781 char *endp = NULL; 782 unsigned int u; 783 784 u = simple_strtoul(line + 1, &endp, 10); 785 if (endp && endp[0] == '>') { 786 level = LOG_LEVEL(u); 787 if (LOG_FACILITY(u) != 0) 788 facility = LOG_FACILITY(u); 789 endp++; 790 line = endp; 791 } 792 } 793 794 devkmsg_emit(facility, level, "%s", line); 795 kfree(buf); 796 return ret; 797 } 798 799 static ssize_t devkmsg_read(struct file *file, char __user *buf, 800 size_t count, loff_t *ppos) 801 { 802 struct devkmsg_user *user = file->private_data; 803 char *outbuf = &user->pbufs.outbuf[0]; 804 struct printk_message pmsg = { 805 .pbufs = &user->pbufs, 806 }; 807 ssize_t ret; 808 809 ret = mutex_lock_interruptible(&user->lock); 810 if (ret) 811 return ret; 812 813 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 814 if (file->f_flags & O_NONBLOCK) { 815 ret = -EAGAIN; 816 goto out; 817 } 818 819 /* 820 * Guarantee this task is visible on the waitqueue before 821 * checking the wake condition. 822 * 823 * The full memory barrier within set_current_state() of 824 * prepare_to_wait_event() pairs with the full memory barrier 825 * within wq_has_sleeper(). 826 * 827 * This pairs with __wake_up_klogd:A. 828 */ 829 ret = wait_event_interruptible(log_wait, 830 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 831 false)); /* LMM(devkmsg_read:A) */ 832 if (ret) 833 goto out; 834 } 835 836 if (pmsg.dropped) { 837 /* our last seen message is gone, return error and reset */ 838 atomic64_set(&user->seq, pmsg.seq); 839 ret = -EPIPE; 840 goto out; 841 } 842 843 atomic64_set(&user->seq, pmsg.seq + 1); 844 845 if (pmsg.outbuf_len > count) { 846 ret = -EINVAL; 847 goto out; 848 } 849 850 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 851 ret = -EFAULT; 852 goto out; 853 } 854 ret = pmsg.outbuf_len; 855 out: 856 mutex_unlock(&user->lock); 857 return ret; 858 } 859 860 /* 861 * Be careful when modifying this function!!! 862 * 863 * Only few operations are supported because the device works only with the 864 * entire variable length messages (records). Non-standard values are 865 * returned in the other cases and has been this way for quite some time. 866 * User space applications might depend on this behavior. 867 */ 868 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 869 { 870 struct devkmsg_user *user = file->private_data; 871 loff_t ret = 0; 872 873 if (offset) 874 return -ESPIPE; 875 876 switch (whence) { 877 case SEEK_SET: 878 /* the first record */ 879 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 880 break; 881 case SEEK_DATA: 882 /* 883 * The first record after the last SYSLOG_ACTION_CLEAR, 884 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 885 * changes no global state, and does not clear anything. 886 */ 887 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 888 break; 889 case SEEK_END: 890 /* after the last record */ 891 atomic64_set(&user->seq, prb_next_seq(prb)); 892 break; 893 default: 894 ret = -EINVAL; 895 } 896 return ret; 897 } 898 899 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 900 { 901 struct devkmsg_user *user = file->private_data; 902 struct printk_info info; 903 __poll_t ret = 0; 904 905 poll_wait(file, &log_wait, wait); 906 907 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 908 /* return error when data has vanished underneath us */ 909 if (info.seq != atomic64_read(&user->seq)) 910 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 911 else 912 ret = EPOLLIN|EPOLLRDNORM; 913 } 914 915 return ret; 916 } 917 918 static int devkmsg_open(struct inode *inode, struct file *file) 919 { 920 struct devkmsg_user *user; 921 int err; 922 923 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 924 return -EPERM; 925 926 /* write-only does not need any file context */ 927 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 928 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 929 SYSLOG_FROM_READER); 930 if (err) 931 return err; 932 } 933 934 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 935 if (!user) 936 return -ENOMEM; 937 938 ratelimit_default_init(&user->rs); 939 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 940 941 mutex_init(&user->lock); 942 943 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 944 945 file->private_data = user; 946 return 0; 947 } 948 949 static int devkmsg_release(struct inode *inode, struct file *file) 950 { 951 struct devkmsg_user *user = file->private_data; 952 953 ratelimit_state_exit(&user->rs); 954 955 mutex_destroy(&user->lock); 956 kvfree(user); 957 return 0; 958 } 959 960 const struct file_operations kmsg_fops = { 961 .open = devkmsg_open, 962 .read = devkmsg_read, 963 .write_iter = devkmsg_write, 964 .llseek = devkmsg_llseek, 965 .poll = devkmsg_poll, 966 .release = devkmsg_release, 967 }; 968 969 #ifdef CONFIG_VMCORE_INFO 970 /* 971 * This appends the listed symbols to /proc/vmcore 972 * 973 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 974 * obtain access to symbols that are otherwise very difficult to locate. These 975 * symbols are specifically used so that utilities can access and extract the 976 * dmesg log from a vmcore file after a crash. 977 */ 978 void log_buf_vmcoreinfo_setup(void) 979 { 980 struct dev_printk_info *dev_info = NULL; 981 982 VMCOREINFO_SYMBOL(prb); 983 VMCOREINFO_SYMBOL(printk_rb_static); 984 VMCOREINFO_SYMBOL(clear_seq); 985 986 /* 987 * Export struct size and field offsets. User space tools can 988 * parse it and detect any changes to structure down the line. 989 */ 990 991 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 992 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 993 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 994 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 995 996 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 997 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 998 VMCOREINFO_OFFSET(prb_desc_ring, descs); 999 VMCOREINFO_OFFSET(prb_desc_ring, infos); 1000 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 1001 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 1002 1003 VMCOREINFO_STRUCT_SIZE(prb_desc); 1004 VMCOREINFO_OFFSET(prb_desc, state_var); 1005 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 1006 1007 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 1008 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 1009 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1010 1011 VMCOREINFO_STRUCT_SIZE(printk_info); 1012 VMCOREINFO_OFFSET(printk_info, seq); 1013 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1014 VMCOREINFO_OFFSET(printk_info, text_len); 1015 VMCOREINFO_OFFSET(printk_info, caller_id); 1016 VMCOREINFO_OFFSET(printk_info, dev_info); 1017 1018 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1019 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1020 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1021 VMCOREINFO_OFFSET(dev_printk_info, device); 1022 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1023 1024 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1025 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1026 VMCOREINFO_OFFSET(prb_data_ring, data); 1027 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1028 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1029 1030 VMCOREINFO_SIZE(atomic_long_t); 1031 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1032 1033 VMCOREINFO_STRUCT_SIZE(latched_seq); 1034 VMCOREINFO_OFFSET(latched_seq, val); 1035 } 1036 #endif 1037 1038 /* requested log_buf_len from kernel cmdline */ 1039 static unsigned long __initdata new_log_buf_len; 1040 1041 /* we practice scaling the ring buffer by powers of 2 */ 1042 static void __init log_buf_len_update(u64 size) 1043 { 1044 if (size > (u64)LOG_BUF_LEN_MAX) { 1045 size = (u64)LOG_BUF_LEN_MAX; 1046 pr_err("log_buf over 2G is not supported.\n"); 1047 } 1048 1049 if (size) 1050 size = roundup_pow_of_two(size); 1051 if (size > log_buf_len) 1052 new_log_buf_len = (unsigned long)size; 1053 } 1054 1055 /* save requested log_buf_len since it's too early to process it */ 1056 static int __init log_buf_len_setup(char *str) 1057 { 1058 u64 size; 1059 1060 if (!str) 1061 return -EINVAL; 1062 1063 size = memparse(str, &str); 1064 1065 log_buf_len_update(size); 1066 1067 return 0; 1068 } 1069 early_param("log_buf_len", log_buf_len_setup); 1070 1071 #ifdef CONFIG_SMP 1072 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1073 1074 static void __init log_buf_add_cpu(void) 1075 { 1076 unsigned int cpu_extra; 1077 1078 /* 1079 * archs should set up cpu_possible_bits properly with 1080 * set_cpu_possible() after setup_arch() but just in 1081 * case lets ensure this is valid. 1082 */ 1083 if (num_possible_cpus() == 1) 1084 return; 1085 1086 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1087 1088 /* by default this will only continue through for large > 64 CPUs */ 1089 if (cpu_extra <= __LOG_BUF_LEN / 2) 1090 return; 1091 1092 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1093 __LOG_CPU_MAX_BUF_LEN); 1094 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1095 cpu_extra); 1096 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1097 1098 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1099 } 1100 #else /* !CONFIG_SMP */ 1101 static inline void log_buf_add_cpu(void) {} 1102 #endif /* CONFIG_SMP */ 1103 1104 static void __init set_percpu_data_ready(void) 1105 { 1106 __printk_percpu_data_ready = true; 1107 } 1108 1109 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1110 struct printk_record *r) 1111 { 1112 struct prb_reserved_entry e; 1113 struct printk_record dest_r; 1114 1115 prb_rec_init_wr(&dest_r, r->info->text_len); 1116 1117 if (!prb_reserve(&e, rb, &dest_r)) 1118 return 0; 1119 1120 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1121 dest_r.info->text_len = r->info->text_len; 1122 dest_r.info->facility = r->info->facility; 1123 dest_r.info->level = r->info->level; 1124 dest_r.info->flags = r->info->flags; 1125 dest_r.info->ts_nsec = r->info->ts_nsec; 1126 dest_r.info->caller_id = r->info->caller_id; 1127 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1128 1129 prb_final_commit(&e); 1130 1131 return prb_record_text_space(&e); 1132 } 1133 1134 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1135 1136 static void print_log_buf_usage_stats(void) 1137 { 1138 unsigned int descs_count = log_buf_len >> PRB_AVGBITS; 1139 size_t meta_data_size; 1140 1141 meta_data_size = descs_count * (sizeof(struct prb_desc) + sizeof(struct printk_info)); 1142 1143 pr_info("log buffer data + meta data: %u + %zu = %zu bytes\n", 1144 log_buf_len, meta_data_size, log_buf_len + meta_data_size); 1145 } 1146 1147 void __init setup_log_buf(int early) 1148 { 1149 struct printk_info *new_infos; 1150 unsigned int new_descs_count; 1151 struct prb_desc *new_descs; 1152 struct printk_info info; 1153 struct printk_record r; 1154 unsigned int text_size; 1155 size_t new_descs_size; 1156 size_t new_infos_size; 1157 unsigned long flags; 1158 char *new_log_buf; 1159 unsigned int free; 1160 u64 seq; 1161 1162 /* 1163 * Some archs call setup_log_buf() multiple times - first is very 1164 * early, e.g. from setup_arch(), and second - when percpu_areas 1165 * are initialised. 1166 */ 1167 if (!early) 1168 set_percpu_data_ready(); 1169 1170 if (log_buf != __log_buf) 1171 return; 1172 1173 if (!early && !new_log_buf_len) 1174 log_buf_add_cpu(); 1175 1176 if (!new_log_buf_len) { 1177 /* Show the memory stats only once. */ 1178 if (!early) 1179 goto out; 1180 1181 return; 1182 } 1183 1184 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1185 if (new_descs_count == 0) { 1186 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1187 goto out; 1188 } 1189 1190 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1191 if (unlikely(!new_log_buf)) { 1192 pr_err("log_buf_len: %lu text bytes not available\n", 1193 new_log_buf_len); 1194 goto out; 1195 } 1196 1197 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1198 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1199 if (unlikely(!new_descs)) { 1200 pr_err("log_buf_len: %zu desc bytes not available\n", 1201 new_descs_size); 1202 goto err_free_log_buf; 1203 } 1204 1205 new_infos_size = new_descs_count * sizeof(struct printk_info); 1206 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1207 if (unlikely(!new_infos)) { 1208 pr_err("log_buf_len: %zu info bytes not available\n", 1209 new_infos_size); 1210 goto err_free_descs; 1211 } 1212 1213 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1214 1215 prb_init(&printk_rb_dynamic, 1216 new_log_buf, ilog2(new_log_buf_len), 1217 new_descs, ilog2(new_descs_count), 1218 new_infos); 1219 1220 local_irq_save(flags); 1221 1222 log_buf_len = new_log_buf_len; 1223 log_buf = new_log_buf; 1224 new_log_buf_len = 0; 1225 1226 free = __LOG_BUF_LEN; 1227 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1228 text_size = add_to_rb(&printk_rb_dynamic, &r); 1229 if (text_size > free) 1230 free = 0; 1231 else 1232 free -= text_size; 1233 } 1234 1235 prb = &printk_rb_dynamic; 1236 1237 local_irq_restore(flags); 1238 1239 /* 1240 * Copy any remaining messages that might have appeared from 1241 * NMI context after copying but before switching to the 1242 * dynamic buffer. 1243 */ 1244 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1245 text_size = add_to_rb(&printk_rb_dynamic, &r); 1246 if (text_size > free) 1247 free = 0; 1248 else 1249 free -= text_size; 1250 } 1251 1252 if (seq != prb_next_seq(&printk_rb_static)) { 1253 pr_err("dropped %llu messages\n", 1254 prb_next_seq(&printk_rb_static) - seq); 1255 } 1256 1257 print_log_buf_usage_stats(); 1258 pr_info("early log buf free: %u(%u%%)\n", 1259 free, (free * 100) / __LOG_BUF_LEN); 1260 return; 1261 1262 err_free_descs: 1263 memblock_free(new_descs, new_descs_size); 1264 err_free_log_buf: 1265 memblock_free(new_log_buf, new_log_buf_len); 1266 out: 1267 print_log_buf_usage_stats(); 1268 } 1269 1270 static bool __read_mostly ignore_loglevel; 1271 1272 static int __init ignore_loglevel_setup(char *str) 1273 { 1274 ignore_loglevel = true; 1275 pr_info("debug: ignoring loglevel setting.\n"); 1276 1277 return 0; 1278 } 1279 1280 early_param("ignore_loglevel", ignore_loglevel_setup); 1281 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1282 MODULE_PARM_DESC(ignore_loglevel, 1283 "ignore loglevel setting (prints all kernel messages to the console)"); 1284 1285 static bool suppress_message_printing(int level) 1286 { 1287 return (level >= console_loglevel && !ignore_loglevel); 1288 } 1289 1290 #ifdef CONFIG_BOOT_PRINTK_DELAY 1291 1292 static int boot_delay; /* msecs delay after each printk during bootup */ 1293 static unsigned long long loops_per_msec; /* based on boot_delay */ 1294 1295 static int __init boot_delay_setup(char *str) 1296 { 1297 unsigned long lpj; 1298 1299 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1300 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1301 1302 get_option(&str, &boot_delay); 1303 if (boot_delay > 10 * 1000) 1304 boot_delay = 0; 1305 1306 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1307 "HZ: %d, loops_per_msec: %llu\n", 1308 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1309 return 0; 1310 } 1311 early_param("boot_delay", boot_delay_setup); 1312 1313 static void boot_delay_msec(int level) 1314 { 1315 unsigned long long k; 1316 unsigned long timeout; 1317 bool suppress = !is_printk_force_console() && 1318 suppress_message_printing(level); 1319 1320 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) || suppress) 1321 return; 1322 1323 k = (unsigned long long)loops_per_msec * boot_delay; 1324 1325 timeout = jiffies + msecs_to_jiffies(boot_delay); 1326 while (k) { 1327 k--; 1328 cpu_relax(); 1329 /* 1330 * use (volatile) jiffies to prevent 1331 * compiler reduction; loop termination via jiffies 1332 * is secondary and may or may not happen. 1333 */ 1334 if (time_after(jiffies, timeout)) 1335 break; 1336 touch_nmi_watchdog(); 1337 } 1338 } 1339 #else 1340 static inline void boot_delay_msec(int level) 1341 { 1342 } 1343 #endif 1344 1345 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1346 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1347 1348 static size_t print_syslog(unsigned int level, char *buf) 1349 { 1350 return sprintf(buf, "<%u>", level); 1351 } 1352 1353 static size_t print_time(u64 ts, char *buf) 1354 { 1355 unsigned long rem_nsec = do_div(ts, 1000000000); 1356 1357 return sprintf(buf, "[%5lu.%06lu]", 1358 (unsigned long)ts, rem_nsec / 1000); 1359 } 1360 1361 #ifdef CONFIG_PRINTK_CALLER 1362 static size_t print_caller(u32 id, char *buf) 1363 { 1364 char caller[12]; 1365 1366 snprintf(caller, sizeof(caller), "%c%u", 1367 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1368 return sprintf(buf, "[%6s]", caller); 1369 } 1370 #else 1371 #define print_caller(id, buf) 0 1372 #endif 1373 1374 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1375 bool time, char *buf) 1376 { 1377 size_t len = 0; 1378 1379 if (syslog) 1380 len = print_syslog((info->facility << 3) | info->level, buf); 1381 1382 if (time) 1383 len += print_time(info->ts_nsec, buf + len); 1384 1385 len += print_caller(info->caller_id, buf + len); 1386 1387 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1388 buf[len++] = ' '; 1389 buf[len] = '\0'; 1390 } 1391 1392 return len; 1393 } 1394 1395 /* 1396 * Prepare the record for printing. The text is shifted within the given 1397 * buffer to avoid a need for another one. The following operations are 1398 * done: 1399 * 1400 * - Add prefix for each line. 1401 * - Drop truncated lines that no longer fit into the buffer. 1402 * - Add the trailing newline that has been removed in vprintk_store(). 1403 * - Add a string terminator. 1404 * 1405 * Since the produced string is always terminated, the maximum possible 1406 * return value is @r->text_buf_size - 1; 1407 * 1408 * Return: The length of the updated/prepared text, including the added 1409 * prefixes and the newline. The terminator is not counted. The dropped 1410 * line(s) are not counted. 1411 */ 1412 static size_t record_print_text(struct printk_record *r, bool syslog, 1413 bool time) 1414 { 1415 size_t text_len = r->info->text_len; 1416 size_t buf_size = r->text_buf_size; 1417 char *text = r->text_buf; 1418 char prefix[PRINTK_PREFIX_MAX]; 1419 bool truncated = false; 1420 size_t prefix_len; 1421 size_t line_len; 1422 size_t len = 0; 1423 char *next; 1424 1425 /* 1426 * If the message was truncated because the buffer was not large 1427 * enough, treat the available text as if it were the full text. 1428 */ 1429 if (text_len > buf_size) 1430 text_len = buf_size; 1431 1432 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1433 1434 /* 1435 * @text_len: bytes of unprocessed text 1436 * @line_len: bytes of current line _without_ newline 1437 * @text: pointer to beginning of current line 1438 * @len: number of bytes prepared in r->text_buf 1439 */ 1440 for (;;) { 1441 next = memchr(text, '\n', text_len); 1442 if (next) { 1443 line_len = next - text; 1444 } else { 1445 /* Drop truncated line(s). */ 1446 if (truncated) 1447 break; 1448 line_len = text_len; 1449 } 1450 1451 /* 1452 * Truncate the text if there is not enough space to add the 1453 * prefix and a trailing newline and a terminator. 1454 */ 1455 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1456 /* Drop even the current line if no space. */ 1457 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1458 break; 1459 1460 text_len = buf_size - len - prefix_len - 1 - 1; 1461 truncated = true; 1462 } 1463 1464 memmove(text + prefix_len, text, text_len); 1465 memcpy(text, prefix, prefix_len); 1466 1467 /* 1468 * Increment the prepared length to include the text and 1469 * prefix that were just moved+copied. Also increment for the 1470 * newline at the end of this line. If this is the last line, 1471 * there is no newline, but it will be added immediately below. 1472 */ 1473 len += prefix_len + line_len + 1; 1474 if (text_len == line_len) { 1475 /* 1476 * This is the last line. Add the trailing newline 1477 * removed in vprintk_store(). 1478 */ 1479 text[prefix_len + line_len] = '\n'; 1480 break; 1481 } 1482 1483 /* 1484 * Advance beyond the added prefix and the related line with 1485 * its newline. 1486 */ 1487 text += prefix_len + line_len + 1; 1488 1489 /* 1490 * The remaining text has only decreased by the line with its 1491 * newline. 1492 * 1493 * Note that @text_len can become zero. It happens when @text 1494 * ended with a newline (either due to truncation or the 1495 * original string ending with "\n\n"). The loop is correctly 1496 * repeated and (if not truncated) an empty line with a prefix 1497 * will be prepared. 1498 */ 1499 text_len -= line_len + 1; 1500 } 1501 1502 /* 1503 * If a buffer was provided, it will be terminated. Space for the 1504 * string terminator is guaranteed to be available. The terminator is 1505 * not counted in the return value. 1506 */ 1507 if (buf_size > 0) 1508 r->text_buf[len] = 0; 1509 1510 return len; 1511 } 1512 1513 static size_t get_record_print_text_size(struct printk_info *info, 1514 unsigned int line_count, 1515 bool syslog, bool time) 1516 { 1517 char prefix[PRINTK_PREFIX_MAX]; 1518 size_t prefix_len; 1519 1520 prefix_len = info_print_prefix(info, syslog, time, prefix); 1521 1522 /* 1523 * Each line will be preceded with a prefix. The intermediate 1524 * newlines are already within the text, but a final trailing 1525 * newline will be added. 1526 */ 1527 return ((prefix_len * line_count) + info->text_len + 1); 1528 } 1529 1530 /* 1531 * Beginning with @start_seq, find the first record where it and all following 1532 * records up to (but not including) @max_seq fit into @size. 1533 * 1534 * @max_seq is simply an upper bound and does not need to exist. If the caller 1535 * does not require an upper bound, -1 can be used for @max_seq. 1536 */ 1537 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1538 bool syslog, bool time) 1539 { 1540 struct printk_info info; 1541 unsigned int line_count; 1542 size_t len = 0; 1543 u64 seq; 1544 1545 /* Determine the size of the records up to @max_seq. */ 1546 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1547 if (info.seq >= max_seq) 1548 break; 1549 len += get_record_print_text_size(&info, line_count, syslog, time); 1550 } 1551 1552 /* 1553 * Adjust the upper bound for the next loop to avoid subtracting 1554 * lengths that were never added. 1555 */ 1556 if (seq < max_seq) 1557 max_seq = seq; 1558 1559 /* 1560 * Move first record forward until length fits into the buffer. Ignore 1561 * newest messages that were not counted in the above cycle. Messages 1562 * might appear and get lost in the meantime. This is a best effort 1563 * that prevents an infinite loop that could occur with a retry. 1564 */ 1565 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1566 if (len <= size || info.seq >= max_seq) 1567 break; 1568 len -= get_record_print_text_size(&info, line_count, syslog, time); 1569 } 1570 1571 return seq; 1572 } 1573 1574 /* The caller is responsible for making sure @size is greater than 0. */ 1575 static int syslog_print(char __user *buf, int size) 1576 { 1577 struct printk_info info; 1578 struct printk_record r; 1579 char *text; 1580 int len = 0; 1581 u64 seq; 1582 1583 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1584 if (!text) 1585 return -ENOMEM; 1586 1587 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1588 1589 mutex_lock(&syslog_lock); 1590 1591 /* 1592 * Wait for the @syslog_seq record to be available. @syslog_seq may 1593 * change while waiting. 1594 */ 1595 do { 1596 seq = syslog_seq; 1597 1598 mutex_unlock(&syslog_lock); 1599 /* 1600 * Guarantee this task is visible on the waitqueue before 1601 * checking the wake condition. 1602 * 1603 * The full memory barrier within set_current_state() of 1604 * prepare_to_wait_event() pairs with the full memory barrier 1605 * within wq_has_sleeper(). 1606 * 1607 * This pairs with __wake_up_klogd:A. 1608 */ 1609 len = wait_event_interruptible(log_wait, 1610 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1611 mutex_lock(&syslog_lock); 1612 1613 if (len) 1614 goto out; 1615 } while (syslog_seq != seq); 1616 1617 /* 1618 * Copy records that fit into the buffer. The above cycle makes sure 1619 * that the first record is always available. 1620 */ 1621 do { 1622 size_t n; 1623 size_t skip; 1624 int err; 1625 1626 if (!prb_read_valid(prb, syslog_seq, &r)) 1627 break; 1628 1629 if (r.info->seq != syslog_seq) { 1630 /* message is gone, move to next valid one */ 1631 syslog_seq = r.info->seq; 1632 syslog_partial = 0; 1633 } 1634 1635 /* 1636 * To keep reading/counting partial line consistent, 1637 * use printk_time value as of the beginning of a line. 1638 */ 1639 if (!syslog_partial) 1640 syslog_time = printk_time; 1641 1642 skip = syslog_partial; 1643 n = record_print_text(&r, true, syslog_time); 1644 if (n - syslog_partial <= size) { 1645 /* message fits into buffer, move forward */ 1646 syslog_seq = r.info->seq + 1; 1647 n -= syslog_partial; 1648 syslog_partial = 0; 1649 } else if (!len){ 1650 /* partial read(), remember position */ 1651 n = size; 1652 syslog_partial += n; 1653 } else 1654 n = 0; 1655 1656 if (!n) 1657 break; 1658 1659 mutex_unlock(&syslog_lock); 1660 err = copy_to_user(buf, text + skip, n); 1661 mutex_lock(&syslog_lock); 1662 1663 if (err) { 1664 if (!len) 1665 len = -EFAULT; 1666 break; 1667 } 1668 1669 len += n; 1670 size -= n; 1671 buf += n; 1672 } while (size); 1673 out: 1674 mutex_unlock(&syslog_lock); 1675 kfree(text); 1676 return len; 1677 } 1678 1679 static int syslog_print_all(char __user *buf, int size, bool clear) 1680 { 1681 struct printk_info info; 1682 struct printk_record r; 1683 char *text; 1684 int len = 0; 1685 u64 seq; 1686 bool time; 1687 1688 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1689 if (!text) 1690 return -ENOMEM; 1691 1692 time = printk_time; 1693 /* 1694 * Find first record that fits, including all following records, 1695 * into the user-provided buffer for this dump. 1696 */ 1697 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1698 size, true, time); 1699 1700 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1701 1702 prb_for_each_record(seq, prb, seq, &r) { 1703 int textlen; 1704 1705 textlen = record_print_text(&r, true, time); 1706 1707 if (len + textlen > size) { 1708 seq--; 1709 break; 1710 } 1711 1712 if (copy_to_user(buf + len, text, textlen)) 1713 len = -EFAULT; 1714 else 1715 len += textlen; 1716 1717 if (len < 0) 1718 break; 1719 } 1720 1721 if (clear) { 1722 mutex_lock(&syslog_lock); 1723 latched_seq_write(&clear_seq, seq); 1724 mutex_unlock(&syslog_lock); 1725 } 1726 1727 kfree(text); 1728 return len; 1729 } 1730 1731 static void syslog_clear(void) 1732 { 1733 mutex_lock(&syslog_lock); 1734 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1735 mutex_unlock(&syslog_lock); 1736 } 1737 1738 int do_syslog(int type, char __user *buf, int len, int source) 1739 { 1740 struct printk_info info; 1741 bool clear = false; 1742 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1743 int error; 1744 1745 error = check_syslog_permissions(type, source); 1746 if (error) 1747 return error; 1748 1749 switch (type) { 1750 case SYSLOG_ACTION_CLOSE: /* Close log */ 1751 break; 1752 case SYSLOG_ACTION_OPEN: /* Open log */ 1753 break; 1754 case SYSLOG_ACTION_READ: /* Read from log */ 1755 if (!buf || len < 0) 1756 return -EINVAL; 1757 if (!len) 1758 return 0; 1759 if (!access_ok(buf, len)) 1760 return -EFAULT; 1761 error = syslog_print(buf, len); 1762 break; 1763 /* Read/clear last kernel messages */ 1764 case SYSLOG_ACTION_READ_CLEAR: 1765 clear = true; 1766 fallthrough; 1767 /* Read last kernel messages */ 1768 case SYSLOG_ACTION_READ_ALL: 1769 if (!buf || len < 0) 1770 return -EINVAL; 1771 if (!len) 1772 return 0; 1773 if (!access_ok(buf, len)) 1774 return -EFAULT; 1775 error = syslog_print_all(buf, len, clear); 1776 break; 1777 /* Clear ring buffer */ 1778 case SYSLOG_ACTION_CLEAR: 1779 syslog_clear(); 1780 break; 1781 /* Disable logging to console */ 1782 case SYSLOG_ACTION_CONSOLE_OFF: 1783 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1784 saved_console_loglevel = console_loglevel; 1785 console_loglevel = minimum_console_loglevel; 1786 break; 1787 /* Enable logging to console */ 1788 case SYSLOG_ACTION_CONSOLE_ON: 1789 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1790 console_loglevel = saved_console_loglevel; 1791 saved_console_loglevel = LOGLEVEL_DEFAULT; 1792 } 1793 break; 1794 /* Set level of messages printed to console */ 1795 case SYSLOG_ACTION_CONSOLE_LEVEL: 1796 if (len < 1 || len > 8) 1797 return -EINVAL; 1798 if (len < minimum_console_loglevel) 1799 len = minimum_console_loglevel; 1800 console_loglevel = len; 1801 /* Implicitly re-enable logging to console */ 1802 saved_console_loglevel = LOGLEVEL_DEFAULT; 1803 break; 1804 /* Number of chars in the log buffer */ 1805 case SYSLOG_ACTION_SIZE_UNREAD: 1806 mutex_lock(&syslog_lock); 1807 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1808 /* No unread messages. */ 1809 mutex_unlock(&syslog_lock); 1810 return 0; 1811 } 1812 if (info.seq != syslog_seq) { 1813 /* messages are gone, move to first one */ 1814 syslog_seq = info.seq; 1815 syslog_partial = 0; 1816 } 1817 if (source == SYSLOG_FROM_PROC) { 1818 /* 1819 * Short-cut for poll(/"proc/kmsg") which simply checks 1820 * for pending data, not the size; return the count of 1821 * records, not the length. 1822 */ 1823 error = prb_next_seq(prb) - syslog_seq; 1824 } else { 1825 bool time = syslog_partial ? syslog_time : printk_time; 1826 unsigned int line_count; 1827 u64 seq; 1828 1829 prb_for_each_info(syslog_seq, prb, seq, &info, 1830 &line_count) { 1831 error += get_record_print_text_size(&info, line_count, 1832 true, time); 1833 time = printk_time; 1834 } 1835 error -= syslog_partial; 1836 } 1837 mutex_unlock(&syslog_lock); 1838 break; 1839 /* Size of the log buffer */ 1840 case SYSLOG_ACTION_SIZE_BUFFER: 1841 error = log_buf_len; 1842 break; 1843 default: 1844 error = -EINVAL; 1845 break; 1846 } 1847 1848 return error; 1849 } 1850 1851 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1852 { 1853 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1854 } 1855 1856 /* 1857 * Special console_lock variants that help to reduce the risk of soft-lockups. 1858 * They allow to pass console_lock to another printk() call using a busy wait. 1859 */ 1860 1861 #ifdef CONFIG_LOCKDEP 1862 static struct lockdep_map console_owner_dep_map = { 1863 .name = "console_owner" 1864 }; 1865 #endif 1866 1867 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1868 static struct task_struct *console_owner; 1869 static bool console_waiter; 1870 1871 /** 1872 * console_lock_spinning_enable - mark beginning of code where another 1873 * thread might safely busy wait 1874 * 1875 * This basically converts console_lock into a spinlock. This marks 1876 * the section where the console_lock owner can not sleep, because 1877 * there may be a waiter spinning (like a spinlock). Also it must be 1878 * ready to hand over the lock at the end of the section. 1879 */ 1880 void console_lock_spinning_enable(void) 1881 { 1882 /* 1883 * Do not use spinning in panic(). The panic CPU wants to keep the lock. 1884 * Non-panic CPUs abandon the flush anyway. 1885 * 1886 * Just keep the lockdep annotation. The panic-CPU should avoid 1887 * taking console_owner_lock because it might cause a deadlock. 1888 * This looks like the easiest way how to prevent false lockdep 1889 * reports without handling races a lockless way. 1890 */ 1891 if (panic_in_progress()) 1892 goto lockdep; 1893 1894 raw_spin_lock(&console_owner_lock); 1895 console_owner = current; 1896 raw_spin_unlock(&console_owner_lock); 1897 1898 lockdep: 1899 /* The waiter may spin on us after setting console_owner */ 1900 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1901 } 1902 1903 /** 1904 * console_lock_spinning_disable_and_check - mark end of code where another 1905 * thread was able to busy wait and check if there is a waiter 1906 * @cookie: cookie returned from console_srcu_read_lock() 1907 * 1908 * This is called at the end of the section where spinning is allowed. 1909 * It has two functions. First, it is a signal that it is no longer 1910 * safe to start busy waiting for the lock. Second, it checks if 1911 * there is a busy waiter and passes the lock rights to her. 1912 * 1913 * Important: Callers lose both the console_lock and the SRCU read lock if 1914 * there was a busy waiter. They must not touch items synchronized by 1915 * console_lock or SRCU read lock in this case. 1916 * 1917 * Return: 1 if the lock rights were passed, 0 otherwise. 1918 */ 1919 int console_lock_spinning_disable_and_check(int cookie) 1920 { 1921 int waiter; 1922 1923 /* 1924 * Ignore spinning waiters during panic() because they might get stopped 1925 * or blocked at any time, 1926 * 1927 * It is safe because nobody is allowed to start spinning during panic 1928 * in the first place. If there has been a waiter then non panic CPUs 1929 * might stay spinning. They would get stopped anyway. The panic context 1930 * will never start spinning and an interrupted spin on panic CPU will 1931 * never continue. 1932 */ 1933 if (panic_in_progress()) { 1934 /* Keep lockdep happy. */ 1935 spin_release(&console_owner_dep_map, _THIS_IP_); 1936 return 0; 1937 } 1938 1939 raw_spin_lock(&console_owner_lock); 1940 waiter = READ_ONCE(console_waiter); 1941 console_owner = NULL; 1942 raw_spin_unlock(&console_owner_lock); 1943 1944 if (!waiter) { 1945 spin_release(&console_owner_dep_map, _THIS_IP_); 1946 return 0; 1947 } 1948 1949 /* The waiter is now free to continue */ 1950 WRITE_ONCE(console_waiter, false); 1951 1952 spin_release(&console_owner_dep_map, _THIS_IP_); 1953 1954 /* 1955 * Preserve lockdep lock ordering. Release the SRCU read lock before 1956 * releasing the console_lock. 1957 */ 1958 console_srcu_read_unlock(cookie); 1959 1960 /* 1961 * Hand off console_lock to waiter. The waiter will perform 1962 * the up(). After this, the waiter is the console_lock owner. 1963 */ 1964 mutex_release(&console_lock_dep_map, _THIS_IP_); 1965 return 1; 1966 } 1967 1968 /** 1969 * console_trylock_spinning - try to get console_lock by busy waiting 1970 * 1971 * This allows to busy wait for the console_lock when the current 1972 * owner is running in specially marked sections. It means that 1973 * the current owner is running and cannot reschedule until it 1974 * is ready to lose the lock. 1975 * 1976 * Return: 1 if we got the lock, 0 othrewise 1977 */ 1978 static int console_trylock_spinning(void) 1979 { 1980 struct task_struct *owner = NULL; 1981 bool waiter; 1982 bool spin = false; 1983 unsigned long flags; 1984 1985 if (console_trylock()) 1986 return 1; 1987 1988 /* 1989 * It's unsafe to spin once a panic has begun. If we are the 1990 * panic CPU, we may have already halted the owner of the 1991 * console_sem. If we are not the panic CPU, then we should 1992 * avoid taking console_sem, so the panic CPU has a better 1993 * chance of cleanly acquiring it later. 1994 */ 1995 if (panic_in_progress()) 1996 return 0; 1997 1998 printk_safe_enter_irqsave(flags); 1999 2000 raw_spin_lock(&console_owner_lock); 2001 owner = READ_ONCE(console_owner); 2002 waiter = READ_ONCE(console_waiter); 2003 if (!waiter && owner && owner != current) { 2004 WRITE_ONCE(console_waiter, true); 2005 spin = true; 2006 } 2007 raw_spin_unlock(&console_owner_lock); 2008 2009 /* 2010 * If there is an active printk() writing to the 2011 * consoles, instead of having it write our data too, 2012 * see if we can offload that load from the active 2013 * printer, and do some printing ourselves. 2014 * Go into a spin only if there isn't already a waiter 2015 * spinning, and there is an active printer, and 2016 * that active printer isn't us (recursive printk?). 2017 */ 2018 if (!spin) { 2019 printk_safe_exit_irqrestore(flags); 2020 return 0; 2021 } 2022 2023 /* We spin waiting for the owner to release us */ 2024 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 2025 /* Owner will clear console_waiter on hand off */ 2026 while (READ_ONCE(console_waiter)) 2027 cpu_relax(); 2028 spin_release(&console_owner_dep_map, _THIS_IP_); 2029 2030 printk_safe_exit_irqrestore(flags); 2031 /* 2032 * The owner passed the console lock to us. 2033 * Since we did not spin on console lock, annotate 2034 * this as a trylock. Otherwise lockdep will 2035 * complain. 2036 */ 2037 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 2038 2039 /* 2040 * Update @console_may_schedule for trylock because the previous 2041 * owner may have been schedulable. 2042 */ 2043 console_may_schedule = 0; 2044 2045 return 1; 2046 } 2047 2048 /* 2049 * Recursion is tracked separately on each CPU. If NMIs are supported, an 2050 * additional NMI context per CPU is also separately tracked. Until per-CPU 2051 * is available, a separate "early tracking" is performed. 2052 */ 2053 static DEFINE_PER_CPU(u8, printk_count); 2054 static u8 printk_count_early; 2055 #ifdef CONFIG_HAVE_NMI 2056 static DEFINE_PER_CPU(u8, printk_count_nmi); 2057 static u8 printk_count_nmi_early; 2058 #endif 2059 2060 /* 2061 * Recursion is limited to keep the output sane. printk() should not require 2062 * more than 1 level of recursion (allowing, for example, printk() to trigger 2063 * a WARN), but a higher value is used in case some printk-internal errors 2064 * exist, such as the ringbuffer validation checks failing. 2065 */ 2066 #define PRINTK_MAX_RECURSION 3 2067 2068 /* 2069 * Return a pointer to the dedicated counter for the CPU+context of the 2070 * caller. 2071 */ 2072 static u8 *__printk_recursion_counter(void) 2073 { 2074 #ifdef CONFIG_HAVE_NMI 2075 if (in_nmi()) { 2076 if (printk_percpu_data_ready()) 2077 return this_cpu_ptr(&printk_count_nmi); 2078 return &printk_count_nmi_early; 2079 } 2080 #endif 2081 if (printk_percpu_data_ready()) 2082 return this_cpu_ptr(&printk_count); 2083 return &printk_count_early; 2084 } 2085 2086 /* 2087 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2088 * The caller must check the boolean return value to see if the recursion is 2089 * allowed. On failure, interrupts are not disabled. 2090 * 2091 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2092 * that is passed to printk_exit_irqrestore(). 2093 */ 2094 #define printk_enter_irqsave(recursion_ptr, flags) \ 2095 ({ \ 2096 bool success = true; \ 2097 \ 2098 typecheck(u8 *, recursion_ptr); \ 2099 local_irq_save(flags); \ 2100 (recursion_ptr) = __printk_recursion_counter(); \ 2101 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2102 local_irq_restore(flags); \ 2103 success = false; \ 2104 } else { \ 2105 (*(recursion_ptr))++; \ 2106 } \ 2107 success; \ 2108 }) 2109 2110 /* Exit recursion tracking, restoring interrupts. */ 2111 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2112 do { \ 2113 typecheck(u8 *, recursion_ptr); \ 2114 (*(recursion_ptr))--; \ 2115 local_irq_restore(flags); \ 2116 } while (0) 2117 2118 int printk_delay_msec __read_mostly; 2119 2120 static inline void printk_delay(int level) 2121 { 2122 boot_delay_msec(level); 2123 2124 if (unlikely(printk_delay_msec)) { 2125 int m = printk_delay_msec; 2126 2127 while (m--) { 2128 mdelay(1); 2129 touch_nmi_watchdog(); 2130 } 2131 } 2132 } 2133 2134 static inline u32 printk_caller_id(void) 2135 { 2136 return in_task() ? task_pid_nr(current) : 2137 0x80000000 + smp_processor_id(); 2138 } 2139 2140 /** 2141 * printk_parse_prefix - Parse level and control flags. 2142 * 2143 * @text: The terminated text message. 2144 * @level: A pointer to the current level value, will be updated. 2145 * @flags: A pointer to the current printk_info flags, will be updated. 2146 * 2147 * @level may be NULL if the caller is not interested in the parsed value. 2148 * Otherwise the variable pointed to by @level must be set to 2149 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2150 * 2151 * @flags may be NULL if the caller is not interested in the parsed value. 2152 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2153 * value. 2154 * 2155 * Return: The length of the parsed level and control flags. 2156 */ 2157 u16 printk_parse_prefix(const char *text, int *level, 2158 enum printk_info_flags *flags) 2159 { 2160 u16 prefix_len = 0; 2161 int kern_level; 2162 2163 while (*text) { 2164 kern_level = printk_get_level(text); 2165 if (!kern_level) 2166 break; 2167 2168 switch (kern_level) { 2169 case '0' ... '7': 2170 if (level && *level == LOGLEVEL_DEFAULT) 2171 *level = kern_level - '0'; 2172 break; 2173 case 'c': /* KERN_CONT */ 2174 if (flags) 2175 *flags |= LOG_CONT; 2176 } 2177 2178 prefix_len += 2; 2179 text += 2; 2180 } 2181 2182 return prefix_len; 2183 } 2184 2185 __printf(5, 0) 2186 static u16 printk_sprint(char *text, u16 size, int facility, 2187 enum printk_info_flags *flags, const char *fmt, 2188 va_list args) 2189 { 2190 u16 text_len; 2191 2192 text_len = vscnprintf(text, size, fmt, args); 2193 2194 /* Mark and strip a trailing newline. */ 2195 if (text_len && text[text_len - 1] == '\n') { 2196 text_len--; 2197 *flags |= LOG_NEWLINE; 2198 } 2199 2200 /* Strip log level and control flags. */ 2201 if (facility == 0) { 2202 u16 prefix_len; 2203 2204 prefix_len = printk_parse_prefix(text, NULL, NULL); 2205 if (prefix_len) { 2206 text_len -= prefix_len; 2207 memmove(text, text + prefix_len, text_len); 2208 } 2209 } 2210 2211 trace_console(text, text_len); 2212 2213 return text_len; 2214 } 2215 2216 __printf(4, 0) 2217 int vprintk_store(int facility, int level, 2218 const struct dev_printk_info *dev_info, 2219 const char *fmt, va_list args) 2220 { 2221 struct prb_reserved_entry e; 2222 enum printk_info_flags flags = 0; 2223 struct printk_record r; 2224 unsigned long irqflags; 2225 u16 trunc_msg_len = 0; 2226 char prefix_buf[8]; 2227 u8 *recursion_ptr; 2228 u16 reserve_size; 2229 va_list args2; 2230 u32 caller_id; 2231 u16 text_len; 2232 int ret = 0; 2233 u64 ts_nsec; 2234 2235 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2236 return 0; 2237 2238 /* 2239 * Since the duration of printk() can vary depending on the message 2240 * and state of the ringbuffer, grab the timestamp now so that it is 2241 * close to the call of printk(). This provides a more deterministic 2242 * timestamp with respect to the caller. 2243 */ 2244 ts_nsec = local_clock(); 2245 2246 caller_id = printk_caller_id(); 2247 2248 /* 2249 * The sprintf needs to come first since the syslog prefix might be 2250 * passed in as a parameter. An extra byte must be reserved so that 2251 * later the vscnprintf() into the reserved buffer has room for the 2252 * terminating '\0', which is not counted by vsnprintf(). 2253 */ 2254 va_copy(args2, args); 2255 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2256 va_end(args2); 2257 2258 if (reserve_size > PRINTKRB_RECORD_MAX) 2259 reserve_size = PRINTKRB_RECORD_MAX; 2260 2261 /* Extract log level or control flags. */ 2262 if (facility == 0) 2263 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2264 2265 if (level == LOGLEVEL_DEFAULT) 2266 level = default_message_loglevel; 2267 2268 if (dev_info) 2269 flags |= LOG_NEWLINE; 2270 2271 if (is_printk_force_console()) 2272 flags |= LOG_FORCE_CON; 2273 2274 if (flags & LOG_CONT) { 2275 prb_rec_init_wr(&r, reserve_size); 2276 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2277 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2278 facility, &flags, fmt, args); 2279 r.info->text_len += text_len; 2280 2281 if (flags & LOG_FORCE_CON) 2282 r.info->flags |= LOG_FORCE_CON; 2283 2284 if (flags & LOG_NEWLINE) { 2285 r.info->flags |= LOG_NEWLINE; 2286 prb_final_commit(&e); 2287 } else { 2288 prb_commit(&e); 2289 } 2290 2291 ret = text_len; 2292 goto out; 2293 } 2294 } 2295 2296 /* 2297 * Explicitly initialize the record before every prb_reserve() call. 2298 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2299 * structure when they fail. 2300 */ 2301 prb_rec_init_wr(&r, reserve_size); 2302 if (!prb_reserve(&e, prb, &r)) { 2303 /* truncate the message if it is too long for empty buffer */ 2304 truncate_msg(&reserve_size, &trunc_msg_len); 2305 2306 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2307 if (!prb_reserve(&e, prb, &r)) 2308 goto out; 2309 } 2310 2311 /* fill message */ 2312 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2313 if (trunc_msg_len) 2314 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2315 r.info->text_len = text_len + trunc_msg_len; 2316 r.info->facility = facility; 2317 r.info->level = level & 7; 2318 r.info->flags = flags & 0x1f; 2319 r.info->ts_nsec = ts_nsec; 2320 r.info->caller_id = caller_id; 2321 if (dev_info) 2322 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2323 2324 /* A message without a trailing newline can be continued. */ 2325 if (!(flags & LOG_NEWLINE)) 2326 prb_commit(&e); 2327 else 2328 prb_final_commit(&e); 2329 2330 ret = text_len + trunc_msg_len; 2331 out: 2332 printk_exit_irqrestore(recursion_ptr, irqflags); 2333 return ret; 2334 } 2335 2336 /* 2337 * This acts as a one-way switch to allow legacy consoles to print from 2338 * the printk() caller context on a panic CPU. It also attempts to flush 2339 * the legacy consoles in this context. 2340 */ 2341 void printk_legacy_allow_panic_sync(void) 2342 { 2343 struct console_flush_type ft; 2344 2345 legacy_allow_panic_sync = true; 2346 2347 printk_get_console_flush_type(&ft); 2348 if (ft.legacy_direct) { 2349 if (console_trylock()) 2350 console_unlock(); 2351 } 2352 } 2353 2354 bool __read_mostly debug_non_panic_cpus; 2355 2356 #ifdef CONFIG_PRINTK_CALLER 2357 static int __init debug_non_panic_cpus_setup(char *str) 2358 { 2359 debug_non_panic_cpus = true; 2360 pr_info("allow messages from non-panic CPUs in panic()\n"); 2361 2362 return 0; 2363 } 2364 early_param("debug_non_panic_cpus", debug_non_panic_cpus_setup); 2365 module_param(debug_non_panic_cpus, bool, 0644); 2366 MODULE_PARM_DESC(debug_non_panic_cpus, 2367 "allow messages from non-panic CPUs in panic()"); 2368 #endif 2369 2370 asmlinkage int vprintk_emit(int facility, int level, 2371 const struct dev_printk_info *dev_info, 2372 const char *fmt, va_list args) 2373 { 2374 struct console_flush_type ft; 2375 int printed_len; 2376 2377 /* Suppress unimportant messages after panic happens */ 2378 if (unlikely(suppress_printk)) 2379 return 0; 2380 2381 /* 2382 * The messages on the panic CPU are the most important. If 2383 * non-panic CPUs are generating any messages, they will be 2384 * silently dropped. 2385 */ 2386 if (panic_on_other_cpu() && 2387 !debug_non_panic_cpus && 2388 !panic_triggering_all_cpu_backtrace) 2389 return 0; 2390 2391 printk_get_console_flush_type(&ft); 2392 2393 /* If called from the scheduler, we can not call up(). */ 2394 if (level == LOGLEVEL_SCHED) { 2395 level = LOGLEVEL_DEFAULT; 2396 ft.legacy_offload |= ft.legacy_direct && !console_irqwork_blocked; 2397 ft.legacy_direct = false; 2398 } 2399 2400 printk_delay(level); 2401 2402 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2403 2404 if (ft.nbcon_atomic) 2405 nbcon_atomic_flush_pending(); 2406 2407 if (ft.nbcon_offload) 2408 nbcon_kthreads_wake(); 2409 2410 if (ft.legacy_direct) { 2411 /* 2412 * The caller may be holding system-critical or 2413 * timing-sensitive locks. Disable preemption during 2414 * printing of all remaining records to all consoles so that 2415 * this context can return as soon as possible. Hopefully 2416 * another printk() caller will take over the printing. 2417 */ 2418 preempt_disable(); 2419 /* 2420 * Try to acquire and then immediately release the console 2421 * semaphore. The release will print out buffers. With the 2422 * spinning variant, this context tries to take over the 2423 * printing from another printing context. 2424 */ 2425 if (console_trylock_spinning()) 2426 console_unlock(); 2427 preempt_enable(); 2428 } 2429 2430 if (ft.legacy_offload) 2431 defer_console_output(); 2432 else if (!console_irqwork_blocked) 2433 wake_up_klogd(); 2434 2435 return printed_len; 2436 } 2437 EXPORT_SYMBOL(vprintk_emit); 2438 2439 int vprintk_default(const char *fmt, va_list args) 2440 { 2441 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2442 } 2443 EXPORT_SYMBOL_GPL(vprintk_default); 2444 2445 asmlinkage __visible int _printk(const char *fmt, ...) 2446 { 2447 va_list args; 2448 int r; 2449 2450 va_start(args, fmt); 2451 r = vprintk(fmt, args); 2452 va_end(args); 2453 2454 return r; 2455 } 2456 EXPORT_SYMBOL(_printk); 2457 2458 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2459 2460 #else /* CONFIG_PRINTK */ 2461 2462 #define printk_time false 2463 2464 #define prb_read_valid(rb, seq, r) false 2465 #define prb_first_valid_seq(rb) 0 2466 #define prb_next_seq(rb) 0 2467 2468 static u64 syslog_seq; 2469 2470 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2471 2472 #endif /* CONFIG_PRINTK */ 2473 2474 #ifdef CONFIG_EARLY_PRINTK 2475 struct console *early_console; 2476 2477 asmlinkage __visible void early_printk(const char *fmt, ...) 2478 { 2479 va_list ap; 2480 char buf[512]; 2481 int n; 2482 2483 if (!early_console) 2484 return; 2485 2486 va_start(ap, fmt); 2487 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2488 va_end(ap); 2489 2490 early_console->write(early_console, buf, n); 2491 } 2492 #endif 2493 2494 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2495 { 2496 if (!user_specified) 2497 return; 2498 2499 /* 2500 * @c console was defined by the user on the command line. 2501 * Do not clear when added twice also by SPCR or the device tree. 2502 */ 2503 c->user_specified = true; 2504 /* At least one console defined by the user on the command line. */ 2505 console_set_on_cmdline = 1; 2506 } 2507 2508 static int __add_preferred_console(const char *name, const short idx, 2509 const char *devname, char *options, 2510 char *brl_options, bool user_specified) 2511 { 2512 struct console_cmdline *c; 2513 int i; 2514 2515 if (!name && !devname) 2516 return -EINVAL; 2517 2518 /* 2519 * We use a signed short index for struct console for device drivers to 2520 * indicate a not yet assigned index or port. However, a negative index 2521 * value is not valid when the console name and index are defined on 2522 * the command line. 2523 */ 2524 if (name && idx < 0) 2525 return -EINVAL; 2526 2527 /* 2528 * See if this tty is not yet registered, and 2529 * if we have a slot free. 2530 */ 2531 for (i = 0, c = console_cmdline; 2532 i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 2533 i++, c++) { 2534 if ((name && strcmp(c->name, name) == 0 && c->index == idx) || 2535 (devname && strcmp(c->devname, devname) == 0)) { 2536 if (!brl_options) 2537 preferred_console = i; 2538 set_user_specified(c, user_specified); 2539 return 0; 2540 } 2541 } 2542 if (i == MAX_CMDLINECONSOLES) 2543 return -E2BIG; 2544 if (!brl_options) 2545 preferred_console = i; 2546 if (name) 2547 strscpy(c->name, name); 2548 if (devname) 2549 strscpy(c->devname, devname); 2550 c->options = options; 2551 set_user_specified(c, user_specified); 2552 braille_set_options(c, brl_options); 2553 2554 c->index = idx; 2555 return 0; 2556 } 2557 2558 static int __init console_msg_format_setup(char *str) 2559 { 2560 if (!strcmp(str, "syslog")) 2561 console_msg_format = MSG_FORMAT_SYSLOG; 2562 if (!strcmp(str, "default")) 2563 console_msg_format = MSG_FORMAT_DEFAULT; 2564 return 1; 2565 } 2566 __setup("console_msg_format=", console_msg_format_setup); 2567 2568 /* 2569 * Set up a console. Called via do_early_param() in init/main.c 2570 * for each "console=" parameter in the boot command line. 2571 */ 2572 static int __init console_setup(char *str) 2573 { 2574 static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4); 2575 char buf[sizeof(console_cmdline[0].devname)]; 2576 char *brl_options = NULL; 2577 char *ttyname = NULL; 2578 char *devname = NULL; 2579 char *options; 2580 char *s; 2581 int idx; 2582 2583 /* 2584 * console="" or console=null have been suggested as a way to 2585 * disable console output. Use ttynull that has been created 2586 * for exactly this purpose. 2587 */ 2588 if (str[0] == 0 || strcmp(str, "null") == 0) { 2589 __add_preferred_console("ttynull", 0, NULL, NULL, NULL, true); 2590 return 1; 2591 } 2592 2593 if (_braille_console_setup(&str, &brl_options)) 2594 return 1; 2595 2596 /* For a DEVNAME:0.0 style console the character device is unknown early */ 2597 if (strchr(str, ':')) 2598 devname = buf; 2599 else 2600 ttyname = buf; 2601 2602 /* 2603 * Decode str into name, index, options. 2604 */ 2605 if (ttyname && isdigit(str[0])) 2606 scnprintf(buf, sizeof(buf), "ttyS%s", str); 2607 else 2608 strscpy(buf, str); 2609 2610 options = strchr(str, ','); 2611 if (options) 2612 *(options++) = 0; 2613 2614 #ifdef __sparc__ 2615 if (!strcmp(str, "ttya")) 2616 strscpy(buf, "ttyS0"); 2617 if (!strcmp(str, "ttyb")) 2618 strscpy(buf, "ttyS1"); 2619 #endif 2620 2621 for (s = buf; *s; s++) 2622 if ((ttyname && isdigit(*s)) || *s == ',') 2623 break; 2624 2625 /* @idx will get defined when devname matches. */ 2626 if (devname) 2627 idx = -1; 2628 else 2629 idx = simple_strtoul(s, NULL, 10); 2630 2631 *s = 0; 2632 2633 __add_preferred_console(ttyname, idx, devname, options, brl_options, true); 2634 return 1; 2635 } 2636 __setup("console=", console_setup); 2637 2638 /** 2639 * add_preferred_console - add a device to the list of preferred consoles. 2640 * @name: device name 2641 * @idx: device index 2642 * @options: options for this console 2643 * 2644 * The last preferred console added will be used for kernel messages 2645 * and stdin/out/err for init. Normally this is used by console_setup 2646 * above to handle user-supplied console arguments; however it can also 2647 * be used by arch-specific code either to override the user or more 2648 * commonly to provide a default console (ie from PROM variables) when 2649 * the user has not supplied one. 2650 */ 2651 int add_preferred_console(const char *name, const short idx, char *options) 2652 { 2653 return __add_preferred_console(name, idx, NULL, options, NULL, false); 2654 } 2655 2656 /** 2657 * match_devname_and_update_preferred_console - Update a preferred console 2658 * when matching devname is found. 2659 * @devname: DEVNAME:0.0 style device name 2660 * @name: Name of the corresponding console driver, e.g. "ttyS" 2661 * @idx: Console index, e.g. port number. 2662 * 2663 * The function checks whether a device with the given @devname is 2664 * preferred via the console=DEVNAME:0.0 command line option. 2665 * It fills the missing console driver name and console index 2666 * so that a later register_console() call could find (match) 2667 * and enable this device. 2668 * 2669 * It might be used when a driver subsystem initializes particular 2670 * devices with already known DEVNAME:0.0 style names. And it 2671 * could predict which console driver name and index this device 2672 * would later get associated with. 2673 * 2674 * Return: 0 on success, negative error code on failure. 2675 */ 2676 int match_devname_and_update_preferred_console(const char *devname, 2677 const char *name, 2678 const short idx) 2679 { 2680 struct console_cmdline *c = console_cmdline; 2681 int i; 2682 2683 if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0) 2684 return -EINVAL; 2685 2686 for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 2687 i++, c++) { 2688 if (!strcmp(devname, c->devname)) { 2689 pr_info("associate the preferred console \"%s\" with \"%s%d\"\n", 2690 devname, name, idx); 2691 strscpy(c->name, name); 2692 c->index = idx; 2693 return 0; 2694 } 2695 } 2696 2697 return -ENOENT; 2698 } 2699 EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console); 2700 2701 bool console_suspend_enabled = true; 2702 EXPORT_SYMBOL(console_suspend_enabled); 2703 2704 static int __init console_suspend_disable(char *str) 2705 { 2706 console_suspend_enabled = false; 2707 return 1; 2708 } 2709 __setup("no_console_suspend", console_suspend_disable); 2710 module_param_named(console_suspend, console_suspend_enabled, 2711 bool, S_IRUGO | S_IWUSR); 2712 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2713 " and hibernate operations"); 2714 2715 static bool printk_console_no_auto_verbose; 2716 2717 void console_verbose(void) 2718 { 2719 if (console_loglevel && !printk_console_no_auto_verbose) 2720 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2721 } 2722 EXPORT_SYMBOL_GPL(console_verbose); 2723 2724 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2725 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2726 2727 /** 2728 * console_suspend_all - suspend the console subsystem 2729 * 2730 * This disables printk() while we go into suspend states 2731 */ 2732 void console_suspend_all(void) 2733 { 2734 struct console *con; 2735 2736 if (console_suspend_enabled) 2737 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2738 2739 /* 2740 * Flush any console backlog and then avoid queueing irq_work until 2741 * console_resume_all(). Until then deferred printing is no longer 2742 * triggered, NBCON consoles transition to atomic flushing, and 2743 * any klogd waiters are not triggered. 2744 */ 2745 pr_flush(1000, true); 2746 console_irqwork_blocked = true; 2747 2748 if (!console_suspend_enabled) 2749 return; 2750 2751 console_list_lock(); 2752 for_each_console(con) 2753 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2754 console_list_unlock(); 2755 2756 /* 2757 * Ensure that all SRCU list walks have completed. All printing 2758 * contexts must be able to see that they are suspended so that it 2759 * is guaranteed that all printing has stopped when this function 2760 * completes. 2761 */ 2762 synchronize_srcu(&console_srcu); 2763 } 2764 2765 void console_resume_all(void) 2766 { 2767 struct console_flush_type ft; 2768 struct console *con; 2769 2770 /* 2771 * Allow queueing irq_work. After restoring console state, deferred 2772 * printing and any klogd waiters need to be triggered in case there 2773 * is now a console backlog. 2774 */ 2775 console_irqwork_blocked = false; 2776 2777 if (console_suspend_enabled) { 2778 console_list_lock(); 2779 for_each_console(con) 2780 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2781 console_list_unlock(); 2782 2783 /* 2784 * Ensure that all SRCU list walks have completed. All printing 2785 * contexts must be able to see they are no longer suspended so 2786 * that they are guaranteed to wake up and resume printing. 2787 */ 2788 synchronize_srcu(&console_srcu); 2789 } 2790 2791 printk_get_console_flush_type(&ft); 2792 if (ft.nbcon_offload) 2793 nbcon_kthreads_wake(); 2794 if (ft.legacy_offload) 2795 defer_console_output(); 2796 else 2797 wake_up_klogd(); 2798 2799 pr_flush(1000, true); 2800 } 2801 2802 /** 2803 * console_cpu_notify - print deferred console messages after CPU hotplug 2804 * @cpu: unused 2805 * 2806 * If printk() is called from a CPU that is not online yet, the messages 2807 * will be printed on the console only if there are CON_ANYTIME consoles. 2808 * This function is called when a new CPU comes online (or fails to come 2809 * up) or goes offline. 2810 */ 2811 static int console_cpu_notify(unsigned int cpu) 2812 { 2813 struct console_flush_type ft; 2814 2815 if (!cpuhp_tasks_frozen) { 2816 printk_get_console_flush_type(&ft); 2817 if (ft.nbcon_atomic) 2818 nbcon_atomic_flush_pending(); 2819 if (ft.legacy_direct) { 2820 if (console_trylock()) 2821 console_unlock(); 2822 } 2823 } 2824 return 0; 2825 } 2826 2827 /** 2828 * console_lock - block the console subsystem from printing 2829 * 2830 * Acquires a lock which guarantees that no consoles will 2831 * be in or enter their write() callback. 2832 * 2833 * Can sleep, returns nothing. 2834 */ 2835 void console_lock(void) 2836 { 2837 might_sleep(); 2838 2839 /* On panic, the console_lock must be left to the panic cpu. */ 2840 while (panic_on_other_cpu()) 2841 msleep(1000); 2842 2843 down_console_sem(); 2844 console_locked = 1; 2845 console_may_schedule = 1; 2846 } 2847 EXPORT_SYMBOL(console_lock); 2848 2849 /** 2850 * console_trylock - try to block the console subsystem from printing 2851 * 2852 * Try to acquire a lock which guarantees that no consoles will 2853 * be in or enter their write() callback. 2854 * 2855 * returns 1 on success, and 0 on failure to acquire the lock. 2856 */ 2857 int console_trylock(void) 2858 { 2859 /* On panic, the console_lock must be left to the panic cpu. */ 2860 if (panic_on_other_cpu()) 2861 return 0; 2862 if (down_trylock_console_sem()) 2863 return 0; 2864 console_locked = 1; 2865 console_may_schedule = 0; 2866 return 1; 2867 } 2868 EXPORT_SYMBOL(console_trylock); 2869 2870 int is_console_locked(void) 2871 { 2872 return console_locked; 2873 } 2874 EXPORT_SYMBOL(is_console_locked); 2875 2876 static void __console_unlock(void) 2877 { 2878 console_locked = 0; 2879 up_console_sem(); 2880 } 2881 2882 #ifdef CONFIG_PRINTK 2883 2884 /* 2885 * Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting 2886 * the existing message over and inserting the scratchbuf message. 2887 * 2888 * @pmsg is the original printk message. 2889 * @fmt is the printf format of the message which will prepend the existing one. 2890 * 2891 * If there is not enough space in @pmsg->pbufs->outbuf, the existing 2892 * message text will be sufficiently truncated. 2893 * 2894 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2895 */ 2896 __printf(2, 3) 2897 static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...) 2898 { 2899 struct printk_buffers *pbufs = pmsg->pbufs; 2900 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2901 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2902 char *scratchbuf = &pbufs->scratchbuf[0]; 2903 char *outbuf = &pbufs->outbuf[0]; 2904 va_list args; 2905 size_t len; 2906 2907 va_start(args, fmt); 2908 len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args); 2909 va_end(args); 2910 2911 /* 2912 * Make sure outbuf is sufficiently large before prepending. 2913 * Keep at least the prefix when the message must be truncated. 2914 * It is a rather theoretical problem when someone tries to 2915 * use a minimalist buffer. 2916 */ 2917 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2918 return; 2919 2920 if (pmsg->outbuf_len + len >= outbuf_sz) { 2921 /* Truncate the message, but keep it terminated. */ 2922 pmsg->outbuf_len = outbuf_sz - (len + 1); 2923 outbuf[pmsg->outbuf_len] = 0; 2924 } 2925 2926 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2927 memcpy(outbuf, scratchbuf, len); 2928 pmsg->outbuf_len += len; 2929 } 2930 2931 /* 2932 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". 2933 * @pmsg->outbuf_len is updated appropriately. 2934 * 2935 * @pmsg is the printk message to prepend. 2936 * 2937 * @dropped is the dropped count to report in the dropped message. 2938 */ 2939 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2940 { 2941 console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped); 2942 } 2943 2944 /* 2945 * Prepend the message in @pmsg->pbufs->outbuf with a "replay message". 2946 * @pmsg->outbuf_len is updated appropriately. 2947 * 2948 * @pmsg is the printk message to prepend. 2949 */ 2950 void console_prepend_replay(struct printk_message *pmsg) 2951 { 2952 console_prepend_message(pmsg, "** replaying previous printk message **\n"); 2953 } 2954 2955 /* 2956 * Read and format the specified record (or a later record if the specified 2957 * record is not available). 2958 * 2959 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2960 * struct printk_buffers. 2961 * 2962 * @seq is the record to read and format. If it is not available, the next 2963 * valid record is read. 2964 * 2965 * @is_extended specifies if the message should be formatted for extended 2966 * console output. 2967 * 2968 * @may_supress specifies if records may be skipped based on loglevel. 2969 * 2970 * Returns false if no record is available. Otherwise true and all fields 2971 * of @pmsg are valid. (See the documentation of struct printk_message 2972 * for information about the @pmsg fields.) 2973 */ 2974 bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2975 bool is_extended, bool may_suppress) 2976 { 2977 struct printk_buffers *pbufs = pmsg->pbufs; 2978 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2979 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2980 char *scratchbuf = &pbufs->scratchbuf[0]; 2981 char *outbuf = &pbufs->outbuf[0]; 2982 struct printk_info info; 2983 struct printk_record r; 2984 size_t len = 0; 2985 bool force_con; 2986 2987 /* 2988 * Formatting extended messages requires a separate buffer, so use the 2989 * scratch buffer to read in the ringbuffer text. 2990 * 2991 * Formatting normal messages is done in-place, so read the ringbuffer 2992 * text directly into the output buffer. 2993 */ 2994 if (is_extended) 2995 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2996 else 2997 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2998 2999 if (!prb_read_valid(prb, seq, &r)) 3000 return false; 3001 3002 pmsg->seq = r.info->seq; 3003 pmsg->dropped = r.info->seq - seq; 3004 force_con = r.info->flags & LOG_FORCE_CON; 3005 3006 /* 3007 * Skip records that are not forced to be printed on consoles and that 3008 * has level above the console loglevel. 3009 */ 3010 if (!force_con && may_suppress && suppress_message_printing(r.info->level)) 3011 goto out; 3012 3013 if (is_extended) { 3014 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 3015 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 3016 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 3017 } else { 3018 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 3019 } 3020 out: 3021 pmsg->outbuf_len = len; 3022 return true; 3023 } 3024 3025 /* 3026 * The legacy console always acquires a spinlock_t from its printing 3027 * callback. This violates lock nesting if the caller acquired an always 3028 * spinning lock (raw_spinlock_t) while invoking printk(). This is not a 3029 * problem on PREEMPT_RT because legacy consoles print always from a 3030 * dedicated thread and never from within printk(). Therefore we tell 3031 * lockdep that a sleeping spin lock (spinlock_t) is valid here. 3032 */ 3033 #ifdef CONFIG_PREEMPT_RT 3034 static inline void printk_legacy_allow_spinlock_enter(void) { } 3035 static inline void printk_legacy_allow_spinlock_exit(void) { } 3036 #else 3037 static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_CONFIG); 3038 3039 static inline void printk_legacy_allow_spinlock_enter(void) 3040 { 3041 lock_map_acquire_try(&printk_legacy_map); 3042 } 3043 3044 static inline void printk_legacy_allow_spinlock_exit(void) 3045 { 3046 lock_map_release(&printk_legacy_map); 3047 } 3048 #endif /* CONFIG_PREEMPT_RT */ 3049 3050 /* 3051 * Used as the printk buffers for non-panic, serialized console printing. 3052 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles. 3053 * Its usage requires the console_lock held. 3054 */ 3055 struct printk_buffers printk_shared_pbufs; 3056 3057 /* 3058 * Print one record for the given console. The record printed is whatever 3059 * record is the next available record for the given console. 3060 * 3061 * @handover will be set to true if a printk waiter has taken over the 3062 * console_lock, in which case the caller is no longer holding both the 3063 * console_lock and the SRCU read lock. Otherwise it is set to false. 3064 * 3065 * @cookie is the cookie from the SRCU read lock. 3066 * 3067 * Returns false if the given console has no next record to print, otherwise 3068 * true. 3069 * 3070 * Requires the console_lock and the SRCU read lock. 3071 */ 3072 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 3073 { 3074 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 3075 char *outbuf = &printk_shared_pbufs.outbuf[0]; 3076 struct printk_message pmsg = { 3077 .pbufs = &printk_shared_pbufs, 3078 }; 3079 unsigned long flags; 3080 3081 *handover = false; 3082 3083 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 3084 return false; 3085 3086 con->dropped += pmsg.dropped; 3087 3088 /* Skip messages of formatted length 0. */ 3089 if (pmsg.outbuf_len == 0) { 3090 con->seq = pmsg.seq + 1; 3091 goto skip; 3092 } 3093 3094 if (con->dropped && !is_extended) { 3095 console_prepend_dropped(&pmsg, con->dropped); 3096 con->dropped = 0; 3097 } 3098 3099 /* Write everything out to the hardware. */ 3100 3101 if (force_legacy_kthread() && !panic_in_progress()) { 3102 /* 3103 * With forced threading this function is in a task context 3104 * (either legacy kthread or get_init_console_seq()). There 3105 * is no need for concern about printk reentrance, handovers, 3106 * or lockdep complaints. 3107 */ 3108 3109 con->write(con, outbuf, pmsg.outbuf_len); 3110 con->seq = pmsg.seq + 1; 3111 } else { 3112 /* 3113 * While actively printing out messages, if another printk() 3114 * were to occur on another CPU, it may wait for this one to 3115 * finish. This task can not be preempted if there is a 3116 * waiter waiting to take over. 3117 * 3118 * Interrupts are disabled because the hand over to a waiter 3119 * must not be interrupted until the hand over is completed 3120 * (@console_waiter is cleared). 3121 */ 3122 printk_safe_enter_irqsave(flags); 3123 console_lock_spinning_enable(); 3124 3125 /* Do not trace print latency. */ 3126 stop_critical_timings(); 3127 3128 printk_legacy_allow_spinlock_enter(); 3129 con->write(con, outbuf, pmsg.outbuf_len); 3130 printk_legacy_allow_spinlock_exit(); 3131 3132 start_critical_timings(); 3133 3134 con->seq = pmsg.seq + 1; 3135 3136 *handover = console_lock_spinning_disable_and_check(cookie); 3137 printk_safe_exit_irqrestore(flags); 3138 } 3139 skip: 3140 return true; 3141 } 3142 3143 #else 3144 3145 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 3146 { 3147 *handover = false; 3148 return false; 3149 } 3150 3151 static inline void printk_kthreads_check_locked(void) { } 3152 3153 #endif /* CONFIG_PRINTK */ 3154 3155 3156 /* 3157 * Print out one record for each console. 3158 * 3159 * @do_cond_resched is set by the caller. It can be true only in schedulable 3160 * context. 3161 * 3162 * @next_seq is set to the sequence number after the last available record. 3163 * The value is valid only when all usable consoles were flushed. It is 3164 * when the function returns true (can do the job) and @try_again parameter 3165 * is set to false, see below. 3166 * 3167 * @handover will be set to true if a printk waiter has taken over the 3168 * console_lock, in which case the caller is no longer holding the 3169 * console_lock. Otherwise it is set to false. 3170 * 3171 * @try_again will be set to true when it still makes sense to call this 3172 * function again. The function could do the job, see the return value. 3173 * And some consoles still make progress. 3174 * 3175 * Returns true when the function could do the job. Some consoles are usable, 3176 * and there was no takeover and no panic_on_other_cpu(). 3177 * 3178 * Requires the console_lock. 3179 */ 3180 static bool console_flush_one_record(bool do_cond_resched, u64 *next_seq, bool *handover, 3181 bool *try_again) 3182 { 3183 struct console_flush_type ft; 3184 bool any_usable = false; 3185 struct console *con; 3186 int cookie; 3187 3188 *try_again = false; 3189 3190 printk_get_console_flush_type(&ft); 3191 3192 cookie = console_srcu_read_lock(); 3193 for_each_console_srcu(con) { 3194 short flags = console_srcu_read_flags(con); 3195 u64 printk_seq; 3196 bool progress; 3197 3198 /* 3199 * console_flush_one_record() is only responsible for 3200 * nbcon consoles when the nbcon consoles cannot print via 3201 * their atomic or threaded flushing. 3202 */ 3203 if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload)) 3204 continue; 3205 3206 if (!console_is_usable(con, flags, !do_cond_resched)) 3207 continue; 3208 any_usable = true; 3209 3210 if (flags & CON_NBCON) { 3211 progress = nbcon_legacy_emit_next_record(con, handover, cookie, 3212 !do_cond_resched); 3213 printk_seq = nbcon_seq_read(con); 3214 } else { 3215 progress = console_emit_next_record(con, handover, cookie); 3216 printk_seq = con->seq; 3217 } 3218 3219 /* 3220 * If a handover has occurred, the SRCU read lock 3221 * is already released. 3222 */ 3223 if (*handover) 3224 goto fail; 3225 3226 /* Track the next of the highest seq flushed. */ 3227 if (printk_seq > *next_seq) 3228 *next_seq = printk_seq; 3229 3230 if (!progress) 3231 continue; 3232 3233 /* 3234 * An usable console made a progress. There might still be 3235 * pending messages. 3236 */ 3237 *try_again = true; 3238 3239 /* Allow panic_cpu to take over the consoles safely. */ 3240 if (panic_on_other_cpu()) 3241 goto fail_srcu; 3242 3243 if (do_cond_resched) 3244 cond_resched(); 3245 } 3246 console_srcu_read_unlock(cookie); 3247 3248 return any_usable; 3249 3250 fail_srcu: 3251 console_srcu_read_unlock(cookie); 3252 fail: 3253 *try_again = false; 3254 return false; 3255 } 3256 3257 /* 3258 * Print out all remaining records to all consoles. 3259 * 3260 * @do_cond_resched is set by the caller. It can be true only in schedulable 3261 * context. 3262 * 3263 * @next_seq is set to the sequence number after the last available record. 3264 * The value is valid only when this function returns true. It means that all 3265 * usable consoles are completely flushed. 3266 * 3267 * @handover will be set to true if a printk waiter has taken over the 3268 * console_lock, in which case the caller is no longer holding the 3269 * console_lock. Otherwise it is set to false. 3270 * 3271 * Returns true when there was at least one usable console and all messages 3272 * were flushed to all usable consoles. A returned false informs the caller 3273 * that everything was not flushed (either there were no usable consoles or 3274 * another context has taken over printing or it is a panic situation and this 3275 * is not the panic CPU). Regardless the reason, the caller should assume it 3276 * is not useful to immediately try again. 3277 * 3278 * Requires the console_lock. 3279 */ 3280 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 3281 { 3282 bool try_again; 3283 bool ret; 3284 3285 *next_seq = 0; 3286 *handover = false; 3287 3288 do { 3289 ret = console_flush_one_record(do_cond_resched, next_seq, 3290 handover, &try_again); 3291 } while (try_again); 3292 3293 return ret; 3294 } 3295 3296 static void __console_flush_and_unlock(void) 3297 { 3298 bool do_cond_resched; 3299 bool handover; 3300 bool flushed; 3301 u64 next_seq; 3302 3303 /* 3304 * Console drivers are called with interrupts disabled, so 3305 * @console_may_schedule should be cleared before; however, we may 3306 * end up dumping a lot of lines, for example, if called from 3307 * console registration path, and should invoke cond_resched() 3308 * between lines if allowable. Not doing so can cause a very long 3309 * scheduling stall on a slow console leading to RCU stall and 3310 * softlockup warnings which exacerbate the issue with more 3311 * messages practically incapacitating the system. Therefore, create 3312 * a local to use for the printing loop. 3313 */ 3314 do_cond_resched = console_may_schedule; 3315 3316 do { 3317 console_may_schedule = 0; 3318 3319 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3320 if (!handover) 3321 __console_unlock(); 3322 3323 /* 3324 * Abort if there was a failure to flush all messages to all 3325 * usable consoles. Either it is not possible to flush (in 3326 * which case it would be an infinite loop of retrying) or 3327 * another context has taken over printing. 3328 */ 3329 if (!flushed) 3330 break; 3331 3332 /* 3333 * Some context may have added new records after 3334 * console_flush_all() but before unlocking the console. 3335 * Re-check if there is a new record to flush. If the trylock 3336 * fails, another context is already handling the printing. 3337 */ 3338 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3339 } 3340 3341 /** 3342 * console_unlock - unblock the legacy console subsystem from printing 3343 * 3344 * Releases the console_lock which the caller holds to block printing of 3345 * the legacy console subsystem. 3346 * 3347 * While the console_lock was held, console output may have been buffered 3348 * by printk(). If this is the case, console_unlock() emits the output on 3349 * legacy consoles prior to releasing the lock. 3350 * 3351 * console_unlock(); may be called from any context. 3352 */ 3353 void console_unlock(void) 3354 { 3355 struct console_flush_type ft; 3356 3357 printk_get_console_flush_type(&ft); 3358 if (ft.legacy_direct) 3359 __console_flush_and_unlock(); 3360 else 3361 __console_unlock(); 3362 } 3363 EXPORT_SYMBOL(console_unlock); 3364 3365 /** 3366 * console_conditional_schedule - yield the CPU if required 3367 * 3368 * If the console code is currently allowed to sleep, and 3369 * if this CPU should yield the CPU to another task, do 3370 * so here. 3371 * 3372 * Must be called within console_lock();. 3373 */ 3374 void __sched console_conditional_schedule(void) 3375 { 3376 if (console_may_schedule) 3377 cond_resched(); 3378 } 3379 EXPORT_SYMBOL(console_conditional_schedule); 3380 3381 void console_unblank(void) 3382 { 3383 bool found_unblank = false; 3384 struct console *c; 3385 int cookie; 3386 3387 /* 3388 * First check if there are any consoles implementing the unblank() 3389 * callback. If not, there is no reason to continue and take the 3390 * console lock, which in particular can be dangerous if 3391 * @oops_in_progress is set. 3392 */ 3393 cookie = console_srcu_read_lock(); 3394 for_each_console_srcu(c) { 3395 if (!console_is_usable(c, console_srcu_read_flags(c), true)) 3396 continue; 3397 3398 if (c->unblank) { 3399 found_unblank = true; 3400 break; 3401 } 3402 } 3403 console_srcu_read_unlock(cookie); 3404 if (!found_unblank) 3405 return; 3406 3407 /* 3408 * Stop console printing because the unblank() callback may 3409 * assume the console is not within its write() callback. 3410 * 3411 * If @oops_in_progress is set, this may be an atomic context. 3412 * In that case, attempt a trylock as best-effort. 3413 */ 3414 if (oops_in_progress) { 3415 /* Semaphores are not NMI-safe. */ 3416 if (in_nmi()) 3417 return; 3418 3419 /* 3420 * Attempting to trylock the console lock can deadlock 3421 * if another CPU was stopped while modifying the 3422 * semaphore. "Hope and pray" that this is not the 3423 * current situation. 3424 */ 3425 if (down_trylock_console_sem() != 0) 3426 return; 3427 } else 3428 console_lock(); 3429 3430 console_locked = 1; 3431 console_may_schedule = 0; 3432 3433 cookie = console_srcu_read_lock(); 3434 for_each_console_srcu(c) { 3435 if (!console_is_usable(c, console_srcu_read_flags(c), true)) 3436 continue; 3437 3438 if (c->unblank) 3439 c->unblank(); 3440 } 3441 console_srcu_read_unlock(cookie); 3442 3443 console_unlock(); 3444 3445 if (!oops_in_progress) 3446 pr_flush(1000, true); 3447 } 3448 3449 /* 3450 * Rewind all consoles to the oldest available record. 3451 * 3452 * IMPORTANT: The function is safe only when called under 3453 * console_lock(). It is not enforced because 3454 * it is used as a best effort in panic(). 3455 */ 3456 static void __console_rewind_all(void) 3457 { 3458 struct console *c; 3459 short flags; 3460 int cookie; 3461 u64 seq; 3462 3463 seq = prb_first_valid_seq(prb); 3464 3465 cookie = console_srcu_read_lock(); 3466 for_each_console_srcu(c) { 3467 flags = console_srcu_read_flags(c); 3468 3469 if (flags & CON_NBCON) { 3470 nbcon_seq_force(c, seq); 3471 } else { 3472 /* 3473 * This assignment is safe only when called under 3474 * console_lock(). On panic, legacy consoles are 3475 * only best effort. 3476 */ 3477 c->seq = seq; 3478 } 3479 } 3480 console_srcu_read_unlock(cookie); 3481 } 3482 3483 /** 3484 * console_flush_on_panic - flush console content on panic 3485 * @mode: flush all messages in buffer or just the pending ones 3486 * 3487 * Immediately output all pending messages no matter what. 3488 */ 3489 void console_flush_on_panic(enum con_flush_mode mode) 3490 { 3491 struct console_flush_type ft; 3492 bool handover; 3493 u64 next_seq; 3494 3495 /* 3496 * Ignore the console lock and flush out the messages. Attempting a 3497 * trylock would not be useful because: 3498 * 3499 * - if it is contended, it must be ignored anyway 3500 * - console_lock() and console_trylock() block and fail 3501 * respectively in panic for non-panic CPUs 3502 * - semaphores are not NMI-safe 3503 */ 3504 3505 /* 3506 * If another context is holding the console lock, 3507 * @console_may_schedule might be set. Clear it so that 3508 * this context does not call cond_resched() while flushing. 3509 */ 3510 console_may_schedule = 0; 3511 3512 if (mode == CONSOLE_REPLAY_ALL) 3513 __console_rewind_all(); 3514 3515 printk_get_console_flush_type(&ft); 3516 if (ft.nbcon_atomic) 3517 nbcon_atomic_flush_pending(); 3518 3519 /* Flush legacy consoles once allowed, even when dangerous. */ 3520 if (legacy_allow_panic_sync) 3521 console_flush_all(false, &next_seq, &handover); 3522 } 3523 3524 /* 3525 * Return the console tty driver structure and its associated index 3526 */ 3527 struct tty_driver *console_device(int *index) 3528 { 3529 struct console *c; 3530 struct tty_driver *driver = NULL; 3531 int cookie; 3532 3533 /* 3534 * Take console_lock to serialize device() callback with 3535 * other console operations. For example, fg_console is 3536 * modified under console_lock when switching vt. 3537 */ 3538 console_lock(); 3539 3540 cookie = console_srcu_read_lock(); 3541 for_each_console_srcu(c) { 3542 if (!c->device) 3543 continue; 3544 driver = c->device(c, index); 3545 if (driver) 3546 break; 3547 } 3548 console_srcu_read_unlock(cookie); 3549 3550 console_unlock(); 3551 return driver; 3552 } 3553 3554 /* 3555 * Prevent further output on the passed console device so that (for example) 3556 * serial drivers can suspend console output before suspending a port, and can 3557 * re-enable output afterwards. 3558 */ 3559 void console_suspend(struct console *console) 3560 { 3561 __pr_flush(console, 1000, true); 3562 console_list_lock(); 3563 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3564 console_list_unlock(); 3565 3566 /* 3567 * Ensure that all SRCU list walks have completed. All contexts must 3568 * be able to see that this console is disabled so that (for example) 3569 * the caller can suspend the port without risk of another context 3570 * using the port. 3571 */ 3572 synchronize_srcu(&console_srcu); 3573 } 3574 EXPORT_SYMBOL(console_suspend); 3575 3576 void console_resume(struct console *console) 3577 { 3578 struct console_flush_type ft; 3579 bool is_nbcon; 3580 3581 console_list_lock(); 3582 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3583 is_nbcon = console->flags & CON_NBCON; 3584 console_list_unlock(); 3585 3586 /* 3587 * Ensure that all SRCU list walks have completed. The related 3588 * printing context must be able to see it is enabled so that 3589 * it is guaranteed to wake up and resume printing. 3590 */ 3591 synchronize_srcu(&console_srcu); 3592 3593 printk_get_console_flush_type(&ft); 3594 if (is_nbcon && ft.nbcon_offload) 3595 nbcon_kthread_wake(console); 3596 else if (ft.legacy_offload) 3597 defer_console_output(); 3598 3599 __pr_flush(console, 1000, true); 3600 } 3601 EXPORT_SYMBOL(console_resume); 3602 3603 #ifdef CONFIG_PRINTK 3604 static int unregister_console_locked(struct console *console); 3605 3606 /* True when system boot is far enough to create printer threads. */ 3607 bool printk_kthreads_ready __ro_after_init; 3608 3609 static struct task_struct *printk_legacy_kthread; 3610 3611 static bool legacy_kthread_should_wakeup(void) 3612 { 3613 struct console_flush_type ft; 3614 struct console *con; 3615 bool ret = false; 3616 int cookie; 3617 3618 if (kthread_should_stop()) 3619 return true; 3620 3621 printk_get_console_flush_type(&ft); 3622 3623 cookie = console_srcu_read_lock(); 3624 for_each_console_srcu(con) { 3625 short flags = console_srcu_read_flags(con); 3626 u64 printk_seq; 3627 3628 /* 3629 * The legacy printer thread is only responsible for nbcon 3630 * consoles when the nbcon consoles cannot print via their 3631 * atomic or threaded flushing. 3632 */ 3633 if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload)) 3634 continue; 3635 3636 if (!console_is_usable(con, flags, false)) 3637 continue; 3638 3639 if (flags & CON_NBCON) { 3640 printk_seq = nbcon_seq_read(con); 3641 } else { 3642 /* 3643 * It is safe to read @seq because only this 3644 * thread context updates @seq. 3645 */ 3646 printk_seq = con->seq; 3647 } 3648 3649 if (prb_read_valid(prb, printk_seq, NULL)) { 3650 ret = true; 3651 break; 3652 } 3653 } 3654 console_srcu_read_unlock(cookie); 3655 3656 return ret; 3657 } 3658 3659 static int legacy_kthread_func(void *unused) 3660 { 3661 bool try_again; 3662 3663 wait_for_event: 3664 wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup()); 3665 3666 do { 3667 bool handover = false; 3668 u64 next_seq = 0; 3669 3670 if (kthread_should_stop()) 3671 return 0; 3672 3673 console_lock(); 3674 console_flush_one_record(true, &next_seq, &handover, &try_again); 3675 if (!handover) 3676 __console_unlock(); 3677 3678 } while (try_again); 3679 3680 goto wait_for_event; 3681 } 3682 3683 static bool legacy_kthread_create(void) 3684 { 3685 struct task_struct *kt; 3686 3687 lockdep_assert_console_list_lock_held(); 3688 3689 kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy"); 3690 if (WARN_ON(IS_ERR(kt))) { 3691 pr_err("failed to start legacy printing thread\n"); 3692 return false; 3693 } 3694 3695 printk_legacy_kthread = kt; 3696 3697 /* 3698 * It is important that console printing threads are scheduled 3699 * shortly after a printk call and with generous runtime budgets. 3700 */ 3701 sched_set_normal(printk_legacy_kthread, -20); 3702 3703 return true; 3704 } 3705 3706 /** 3707 * printk_kthreads_shutdown - shutdown all threaded printers 3708 * 3709 * On system shutdown all threaded printers are stopped. This allows printk 3710 * to transition back to atomic printing, thus providing a robust mechanism 3711 * for the final shutdown/reboot messages to be output. 3712 */ 3713 static void printk_kthreads_shutdown(void) 3714 { 3715 struct console *con; 3716 3717 console_list_lock(); 3718 if (printk_kthreads_running) { 3719 printk_kthreads_running = false; 3720 3721 for_each_console(con) { 3722 if (con->flags & CON_NBCON) 3723 nbcon_kthread_stop(con); 3724 } 3725 3726 /* 3727 * The threads may have been stopped while printing a 3728 * backlog. Flush any records left over. 3729 */ 3730 nbcon_atomic_flush_pending(); 3731 } 3732 console_list_unlock(); 3733 } 3734 3735 static struct syscore_ops printk_syscore_ops = { 3736 .shutdown = printk_kthreads_shutdown, 3737 }; 3738 3739 /* 3740 * If appropriate, start nbcon kthreads and set @printk_kthreads_running. 3741 * If any kthreads fail to start, those consoles are unregistered. 3742 * 3743 * Must be called under console_list_lock(). 3744 */ 3745 static void printk_kthreads_check_locked(void) 3746 { 3747 struct hlist_node *tmp; 3748 struct console *con; 3749 3750 lockdep_assert_console_list_lock_held(); 3751 3752 if (!printk_kthreads_ready) 3753 return; 3754 3755 /* Start or stop the legacy kthread when needed. */ 3756 if (have_legacy_console || have_boot_console) { 3757 if (!printk_legacy_kthread && 3758 force_legacy_kthread() && 3759 !legacy_kthread_create()) { 3760 /* 3761 * All legacy consoles must be unregistered. If there 3762 * are any nbcon consoles, they will set up their own 3763 * kthread. 3764 */ 3765 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3766 if (con->flags & CON_NBCON) 3767 continue; 3768 3769 unregister_console_locked(con); 3770 } 3771 } 3772 } else if (printk_legacy_kthread) { 3773 kthread_stop(printk_legacy_kthread); 3774 printk_legacy_kthread = NULL; 3775 } 3776 3777 /* 3778 * Printer threads cannot be started as long as any boot console is 3779 * registered because there is no way to synchronize the hardware 3780 * registers between boot console code and regular console code. 3781 * It can only be known that there will be no new boot consoles when 3782 * an nbcon console is registered. 3783 */ 3784 if (have_boot_console || !have_nbcon_console) { 3785 /* Clear flag in case all nbcon consoles unregistered. */ 3786 printk_kthreads_running = false; 3787 return; 3788 } 3789 3790 if (printk_kthreads_running) 3791 return; 3792 3793 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3794 if (!(con->flags & CON_NBCON)) 3795 continue; 3796 3797 if (!nbcon_kthread_create(con)) 3798 unregister_console_locked(con); 3799 } 3800 3801 printk_kthreads_running = true; 3802 } 3803 3804 static int __init printk_set_kthreads_ready(void) 3805 { 3806 register_syscore_ops(&printk_syscore_ops); 3807 3808 console_list_lock(); 3809 printk_kthreads_ready = true; 3810 printk_kthreads_check_locked(); 3811 console_list_unlock(); 3812 3813 return 0; 3814 } 3815 early_initcall(printk_set_kthreads_ready); 3816 #endif /* CONFIG_PRINTK */ 3817 3818 static int __read_mostly keep_bootcon; 3819 3820 static int __init keep_bootcon_setup(char *str) 3821 { 3822 keep_bootcon = 1; 3823 pr_info("debug: skip boot console de-registration.\n"); 3824 3825 return 0; 3826 } 3827 3828 early_param("keep_bootcon", keep_bootcon_setup); 3829 3830 static int console_call_setup(struct console *newcon, char *options) 3831 { 3832 int err; 3833 3834 if (!newcon->setup) 3835 return 0; 3836 3837 /* Synchronize with possible boot console. */ 3838 console_lock(); 3839 err = newcon->setup(newcon, options); 3840 console_unlock(); 3841 3842 return err; 3843 } 3844 3845 /* 3846 * This is called by register_console() to try to match 3847 * the newly registered console with any of the ones selected 3848 * by either the command line or add_preferred_console() and 3849 * setup/enable it. 3850 * 3851 * Care need to be taken with consoles that are statically 3852 * enabled such as netconsole 3853 */ 3854 static int try_enable_preferred_console(struct console *newcon, 3855 bool user_specified) 3856 { 3857 struct console_cmdline *c; 3858 int i, err; 3859 3860 for (i = 0, c = console_cmdline; 3861 i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 3862 i++, c++) { 3863 /* Console not yet initialized? */ 3864 if (!c->name[0]) 3865 continue; 3866 if (c->user_specified != user_specified) 3867 continue; 3868 if (!newcon->match || 3869 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3870 /* default matching */ 3871 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3872 if (strcmp(c->name, newcon->name) != 0) 3873 continue; 3874 if (newcon->index >= 0 && 3875 newcon->index != c->index) 3876 continue; 3877 if (newcon->index < 0) 3878 newcon->index = c->index; 3879 3880 if (_braille_register_console(newcon, c)) 3881 return 0; 3882 3883 err = console_call_setup(newcon, c->options); 3884 if (err) 3885 return err; 3886 } 3887 newcon->flags |= CON_ENABLED; 3888 if (i == preferred_console) 3889 newcon->flags |= CON_CONSDEV; 3890 return 0; 3891 } 3892 3893 /* 3894 * Some consoles, such as pstore and netconsole, can be enabled even 3895 * without matching. Accept the pre-enabled consoles only when match() 3896 * and setup() had a chance to be called. 3897 */ 3898 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3899 return 0; 3900 3901 return -ENOENT; 3902 } 3903 3904 /* Try to enable the console unconditionally */ 3905 static void try_enable_default_console(struct console *newcon) 3906 { 3907 if (newcon->index < 0) 3908 newcon->index = 0; 3909 3910 if (console_call_setup(newcon, NULL) != 0) 3911 return; 3912 3913 newcon->flags |= CON_ENABLED; 3914 3915 if (newcon->device) 3916 newcon->flags |= CON_CONSDEV; 3917 } 3918 3919 /* Return the starting sequence number for a newly registered console. */ 3920 static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered) 3921 { 3922 struct console *con; 3923 bool handover; 3924 u64 init_seq; 3925 3926 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3927 /* Get a consistent copy of @syslog_seq. */ 3928 mutex_lock(&syslog_lock); 3929 init_seq = syslog_seq; 3930 mutex_unlock(&syslog_lock); 3931 } else { 3932 /* Begin with next message added to ringbuffer. */ 3933 init_seq = prb_next_seq(prb); 3934 3935 /* 3936 * If any enabled boot consoles are due to be unregistered 3937 * shortly, some may not be caught up and may be the same 3938 * device as @newcon. Since it is not known which boot console 3939 * is the same device, flush all consoles and, if necessary, 3940 * start with the message of the enabled boot console that is 3941 * the furthest behind. 3942 */ 3943 if (bootcon_registered && !keep_bootcon) { 3944 /* 3945 * Hold the console_lock to stop console printing and 3946 * guarantee safe access to console->seq. 3947 */ 3948 console_lock(); 3949 3950 /* 3951 * Flush all consoles and set the console to start at 3952 * the next unprinted sequence number. 3953 */ 3954 if (!console_flush_all(true, &init_seq, &handover)) { 3955 /* 3956 * Flushing failed. Just choose the lowest 3957 * sequence of the enabled boot consoles. 3958 */ 3959 3960 /* 3961 * If there was a handover, this context no 3962 * longer holds the console_lock. 3963 */ 3964 if (handover) 3965 console_lock(); 3966 3967 init_seq = prb_next_seq(prb); 3968 for_each_console(con) { 3969 u64 seq; 3970 3971 if (!(con->flags & CON_BOOT) || 3972 !(con->flags & CON_ENABLED)) { 3973 continue; 3974 } 3975 3976 if (con->flags & CON_NBCON) 3977 seq = nbcon_seq_read(con); 3978 else 3979 seq = con->seq; 3980 3981 if (seq < init_seq) 3982 init_seq = seq; 3983 } 3984 } 3985 3986 console_unlock(); 3987 } 3988 } 3989 3990 return init_seq; 3991 } 3992 3993 #define console_first() \ 3994 hlist_entry(console_list.first, struct console, node) 3995 3996 static int unregister_console_locked(struct console *console); 3997 3998 /* 3999 * The console driver calls this routine during kernel initialization 4000 * to register the console printing procedure with printk() and to 4001 * print any messages that were printed by the kernel before the 4002 * console driver was initialized. 4003 * 4004 * This can happen pretty early during the boot process (because of 4005 * early_printk) - sometimes before setup_arch() completes - be careful 4006 * of what kernel features are used - they may not be initialised yet. 4007 * 4008 * There are two types of consoles - bootconsoles (early_printk) and 4009 * "real" consoles (everything which is not a bootconsole) which are 4010 * handled differently. 4011 * - Any number of bootconsoles can be registered at any time. 4012 * - As soon as a "real" console is registered, all bootconsoles 4013 * will be unregistered automatically. 4014 * - Once a "real" console is registered, any attempt to register a 4015 * bootconsoles will be rejected 4016 */ 4017 void register_console(struct console *newcon) 4018 { 4019 bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic; 4020 bool bootcon_registered = false; 4021 bool realcon_registered = false; 4022 struct console *con; 4023 unsigned long flags; 4024 u64 init_seq; 4025 int err; 4026 4027 console_list_lock(); 4028 4029 for_each_console(con) { 4030 if (WARN(con == newcon, "console '%s%d' already registered\n", 4031 con->name, con->index)) { 4032 goto unlock; 4033 } 4034 4035 if (con->flags & CON_BOOT) 4036 bootcon_registered = true; 4037 else 4038 realcon_registered = true; 4039 } 4040 4041 /* Do not register boot consoles when there already is a real one. */ 4042 if ((newcon->flags & CON_BOOT) && realcon_registered) { 4043 pr_info("Too late to register bootconsole %s%d\n", 4044 newcon->name, newcon->index); 4045 goto unlock; 4046 } 4047 4048 if (newcon->flags & CON_NBCON) { 4049 /* 4050 * Ensure the nbcon console buffers can be allocated 4051 * before modifying any global data. 4052 */ 4053 if (!nbcon_alloc(newcon)) 4054 goto unlock; 4055 } 4056 4057 /* 4058 * See if we want to enable this console driver by default. 4059 * 4060 * Nope when a console is preferred by the command line, device 4061 * tree, or SPCR. 4062 * 4063 * The first real console with tty binding (driver) wins. More 4064 * consoles might get enabled before the right one is found. 4065 * 4066 * Note that a console with tty binding will have CON_CONSDEV 4067 * flag set and will be first in the list. 4068 */ 4069 if (preferred_console < 0) { 4070 if (hlist_empty(&console_list) || !console_first()->device || 4071 console_first()->flags & CON_BOOT) { 4072 try_enable_default_console(newcon); 4073 } 4074 } 4075 4076 /* See if this console matches one we selected on the command line */ 4077 err = try_enable_preferred_console(newcon, true); 4078 4079 /* If not, try to match against the platform default(s) */ 4080 if (err == -ENOENT) 4081 err = try_enable_preferred_console(newcon, false); 4082 4083 /* printk() messages are not printed to the Braille console. */ 4084 if (err || newcon->flags & CON_BRL) { 4085 if (newcon->flags & CON_NBCON) 4086 nbcon_free(newcon); 4087 goto unlock; 4088 } 4089 4090 /* 4091 * If we have a bootconsole, and are switching to a real console, 4092 * don't print everything out again, since when the boot console, and 4093 * the real console are the same physical device, it's annoying to 4094 * see the beginning boot messages twice 4095 */ 4096 if (bootcon_registered && 4097 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 4098 newcon->flags &= ~CON_PRINTBUFFER; 4099 } 4100 4101 newcon->dropped = 0; 4102 init_seq = get_init_console_seq(newcon, bootcon_registered); 4103 4104 if (newcon->flags & CON_NBCON) { 4105 have_nbcon_console = true; 4106 nbcon_seq_force(newcon, init_seq); 4107 } else { 4108 have_legacy_console = true; 4109 newcon->seq = init_seq; 4110 } 4111 4112 if (newcon->flags & CON_BOOT) 4113 have_boot_console = true; 4114 4115 /* 4116 * If another context is actively using the hardware of this new 4117 * console, it will not be aware of the nbcon synchronization. This 4118 * is a risk that two contexts could access the hardware 4119 * simultaneously if this new console is used for atomic printing 4120 * and the other context is still using the hardware. 4121 * 4122 * Use the driver synchronization to ensure that the hardware is not 4123 * in use while this new console transitions to being registered. 4124 */ 4125 if (use_device_lock) 4126 newcon->device_lock(newcon, &flags); 4127 4128 /* 4129 * Put this console in the list - keep the 4130 * preferred driver at the head of the list. 4131 */ 4132 if (hlist_empty(&console_list)) { 4133 /* Ensure CON_CONSDEV is always set for the head. */ 4134 newcon->flags |= CON_CONSDEV; 4135 hlist_add_head_rcu(&newcon->node, &console_list); 4136 4137 } else if (newcon->flags & CON_CONSDEV) { 4138 /* Only the new head can have CON_CONSDEV set. */ 4139 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 4140 hlist_add_head_rcu(&newcon->node, &console_list); 4141 4142 } else { 4143 hlist_add_behind_rcu(&newcon->node, console_list.first); 4144 } 4145 4146 /* 4147 * No need to synchronize SRCU here! The caller does not rely 4148 * on all contexts being able to see the new console before 4149 * register_console() completes. 4150 */ 4151 4152 /* This new console is now registered. */ 4153 if (use_device_lock) 4154 newcon->device_unlock(newcon, flags); 4155 4156 console_sysfs_notify(); 4157 4158 /* 4159 * By unregistering the bootconsoles after we enable the real console 4160 * we get the "console xxx enabled" message on all the consoles - 4161 * boot consoles, real consoles, etc - this is to ensure that end 4162 * users know there might be something in the kernel's log buffer that 4163 * went to the bootconsole (that they do not see on the real console) 4164 */ 4165 con_printk(KERN_INFO, newcon, "enabled\n"); 4166 if (bootcon_registered && 4167 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 4168 !keep_bootcon) { 4169 struct hlist_node *tmp; 4170 4171 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 4172 if (con->flags & CON_BOOT) 4173 unregister_console_locked(con); 4174 } 4175 } 4176 4177 /* Changed console list, may require printer threads to start/stop. */ 4178 printk_kthreads_check_locked(); 4179 unlock: 4180 console_list_unlock(); 4181 } 4182 EXPORT_SYMBOL(register_console); 4183 4184 /* Must be called under console_list_lock(). */ 4185 static int unregister_console_locked(struct console *console) 4186 { 4187 bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic; 4188 bool found_legacy_con = false; 4189 bool found_nbcon_con = false; 4190 bool found_boot_con = false; 4191 unsigned long flags; 4192 struct console *c; 4193 int res; 4194 4195 lockdep_assert_console_list_lock_held(); 4196 4197 con_printk(KERN_INFO, console, "disabled\n"); 4198 4199 res = _braille_unregister_console(console); 4200 if (res < 0) 4201 return res; 4202 if (res > 0) 4203 return 0; 4204 4205 if (!console_is_registered_locked(console)) 4206 res = -ENODEV; 4207 else if (console_is_usable(console, console->flags, true)) 4208 __pr_flush(console, 1000, true); 4209 4210 /* Disable it unconditionally */ 4211 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 4212 4213 if (res < 0) 4214 return res; 4215 4216 /* 4217 * Use the driver synchronization to ensure that the hardware is not 4218 * in use while this console transitions to being unregistered. 4219 */ 4220 if (use_device_lock) 4221 console->device_lock(console, &flags); 4222 4223 hlist_del_init_rcu(&console->node); 4224 4225 if (use_device_lock) 4226 console->device_unlock(console, flags); 4227 4228 /* 4229 * <HISTORICAL> 4230 * If this isn't the last console and it has CON_CONSDEV set, we 4231 * need to set it on the next preferred console. 4232 * </HISTORICAL> 4233 * 4234 * The above makes no sense as there is no guarantee that the next 4235 * console has any device attached. Oh well.... 4236 */ 4237 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 4238 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 4239 4240 /* 4241 * Ensure that all SRCU list walks have completed. All contexts 4242 * must not be able to see this console in the list so that any 4243 * exit/cleanup routines can be performed safely. 4244 */ 4245 synchronize_srcu(&console_srcu); 4246 4247 /* 4248 * With this console gone, the global flags tracking registered 4249 * console types may have changed. Update them. 4250 */ 4251 for_each_console(c) { 4252 if (c->flags & CON_BOOT) 4253 found_boot_con = true; 4254 4255 if (c->flags & CON_NBCON) 4256 found_nbcon_con = true; 4257 else 4258 found_legacy_con = true; 4259 } 4260 if (!found_boot_con) 4261 have_boot_console = found_boot_con; 4262 if (!found_legacy_con) 4263 have_legacy_console = found_legacy_con; 4264 if (!found_nbcon_con) 4265 have_nbcon_console = found_nbcon_con; 4266 4267 /* @have_nbcon_console must be updated before calling nbcon_free(). */ 4268 if (console->flags & CON_NBCON) 4269 nbcon_free(console); 4270 4271 console_sysfs_notify(); 4272 4273 if (console->exit) 4274 res = console->exit(console); 4275 4276 /* Changed console list, may require printer threads to start/stop. */ 4277 printk_kthreads_check_locked(); 4278 4279 return res; 4280 } 4281 4282 int unregister_console(struct console *console) 4283 { 4284 int res; 4285 4286 console_list_lock(); 4287 res = unregister_console_locked(console); 4288 console_list_unlock(); 4289 return res; 4290 } 4291 EXPORT_SYMBOL(unregister_console); 4292 4293 /** 4294 * console_force_preferred_locked - force a registered console preferred 4295 * @con: The registered console to force preferred. 4296 * 4297 * Must be called under console_list_lock(). 4298 */ 4299 void console_force_preferred_locked(struct console *con) 4300 { 4301 struct console *cur_pref_con; 4302 4303 if (!console_is_registered_locked(con)) 4304 return; 4305 4306 cur_pref_con = console_first(); 4307 4308 /* Already preferred? */ 4309 if (cur_pref_con == con) 4310 return; 4311 4312 /* 4313 * Delete, but do not re-initialize the entry. This allows the console 4314 * to continue to appear registered (via any hlist_unhashed_lockless() 4315 * checks), even though it was briefly removed from the console list. 4316 */ 4317 hlist_del_rcu(&con->node); 4318 4319 /* 4320 * Ensure that all SRCU list walks have completed so that the console 4321 * can be added to the beginning of the console list and its forward 4322 * list pointer can be re-initialized. 4323 */ 4324 synchronize_srcu(&console_srcu); 4325 4326 con->flags |= CON_CONSDEV; 4327 WARN_ON(!con->device); 4328 4329 /* Only the new head can have CON_CONSDEV set. */ 4330 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 4331 hlist_add_head_rcu(&con->node, &console_list); 4332 } 4333 EXPORT_SYMBOL(console_force_preferred_locked); 4334 4335 /* 4336 * Initialize the console device. This is called *early*, so 4337 * we can't necessarily depend on lots of kernel help here. 4338 * Just do some early initializations, and do the complex setup 4339 * later. 4340 */ 4341 void __init console_init(void) 4342 { 4343 int ret; 4344 initcall_t call; 4345 initcall_entry_t *ce; 4346 4347 #ifdef CONFIG_NULL_TTY_DEFAULT_CONSOLE 4348 if (!console_set_on_cmdline) 4349 add_preferred_console("ttynull", 0, NULL); 4350 #endif 4351 4352 /* Setup the default TTY line discipline. */ 4353 n_tty_init(); 4354 4355 /* 4356 * set up the console device so that later boot sequences can 4357 * inform about problems etc.. 4358 */ 4359 ce = __con_initcall_start; 4360 trace_initcall_level("console"); 4361 while (ce < __con_initcall_end) { 4362 call = initcall_from_entry(ce); 4363 trace_initcall_start(call); 4364 ret = call(); 4365 trace_initcall_finish(call, ret); 4366 ce++; 4367 } 4368 } 4369 4370 /* 4371 * Some boot consoles access data that is in the init section and which will 4372 * be discarded after the initcalls have been run. To make sure that no code 4373 * will access this data, unregister the boot consoles in a late initcall. 4374 * 4375 * If for some reason, such as deferred probe or the driver being a loadable 4376 * module, the real console hasn't registered yet at this point, there will 4377 * be a brief interval in which no messages are logged to the console, which 4378 * makes it difficult to diagnose problems that occur during this time. 4379 * 4380 * To mitigate this problem somewhat, only unregister consoles whose memory 4381 * intersects with the init section. Note that all other boot consoles will 4382 * get unregistered when the real preferred console is registered. 4383 */ 4384 static int __init printk_late_init(void) 4385 { 4386 struct hlist_node *tmp; 4387 struct console *con; 4388 int ret; 4389 4390 console_list_lock(); 4391 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 4392 if (!(con->flags & CON_BOOT)) 4393 continue; 4394 4395 /* Check addresses that might be used for enabled consoles. */ 4396 if (init_section_intersects(con, sizeof(*con)) || 4397 init_section_contains(con->write, 0) || 4398 init_section_contains(con->read, 0) || 4399 init_section_contains(con->device, 0) || 4400 init_section_contains(con->unblank, 0) || 4401 init_section_contains(con->data, 0)) { 4402 /* 4403 * Please, consider moving the reported consoles out 4404 * of the init section. 4405 */ 4406 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 4407 con->name, con->index); 4408 unregister_console_locked(con); 4409 } 4410 } 4411 console_list_unlock(); 4412 4413 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 4414 console_cpu_notify); 4415 WARN_ON(ret < 0); 4416 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 4417 console_cpu_notify, NULL); 4418 WARN_ON(ret < 0); 4419 printk_sysctl_init(); 4420 return 0; 4421 } 4422 late_initcall(printk_late_init); 4423 4424 #if defined CONFIG_PRINTK 4425 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 4426 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 4427 { 4428 unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms); 4429 unsigned long remaining_jiffies = timeout_jiffies; 4430 struct console_flush_type ft; 4431 struct console *c; 4432 u64 last_diff = 0; 4433 u64 printk_seq; 4434 short flags; 4435 int cookie; 4436 u64 diff; 4437 u64 seq; 4438 4439 /* Sorry, pr_flush() will not work this early. */ 4440 if (system_state < SYSTEM_SCHEDULING) 4441 return false; 4442 4443 might_sleep(); 4444 4445 seq = prb_next_reserve_seq(prb); 4446 4447 /* Flush the consoles so that records up to @seq are printed. */ 4448 printk_get_console_flush_type(&ft); 4449 if (ft.nbcon_atomic) 4450 nbcon_atomic_flush_pending(); 4451 if (ft.legacy_direct) { 4452 console_lock(); 4453 console_unlock(); 4454 } 4455 4456 for (;;) { 4457 unsigned long begin_jiffies; 4458 unsigned long slept_jiffies; 4459 4460 diff = 0; 4461 4462 /* 4463 * Hold the console_lock to guarantee safe access to 4464 * console->seq. Releasing console_lock flushes more 4465 * records in case @seq is still not printed on all 4466 * usable consoles. 4467 * 4468 * Holding the console_lock is not necessary if there 4469 * are no legacy or boot consoles. However, such a 4470 * console could register at any time. Always hold the 4471 * console_lock as a precaution rather than 4472 * synchronizing against register_console(). 4473 */ 4474 console_lock(); 4475 4476 cookie = console_srcu_read_lock(); 4477 for_each_console_srcu(c) { 4478 if (con && con != c) 4479 continue; 4480 4481 flags = console_srcu_read_flags(c); 4482 4483 /* 4484 * If consoles are not usable, it cannot be expected 4485 * that they make forward progress, so only increment 4486 * @diff for usable consoles. 4487 */ 4488 if (!console_is_usable(c, flags, true) && 4489 !console_is_usable(c, flags, false)) { 4490 continue; 4491 } 4492 4493 if (flags & CON_NBCON) { 4494 printk_seq = nbcon_seq_read(c); 4495 } else { 4496 printk_seq = c->seq; 4497 } 4498 4499 if (printk_seq < seq) 4500 diff += seq - printk_seq; 4501 } 4502 console_srcu_read_unlock(cookie); 4503 4504 if (diff != last_diff && reset_on_progress) 4505 remaining_jiffies = timeout_jiffies; 4506 4507 console_unlock(); 4508 4509 /* Note: @diff is 0 if there are no usable consoles. */ 4510 if (diff == 0 || remaining_jiffies == 0) 4511 break; 4512 4513 /* msleep(1) might sleep much longer. Check time by jiffies. */ 4514 begin_jiffies = jiffies; 4515 msleep(1); 4516 slept_jiffies = jiffies - begin_jiffies; 4517 4518 remaining_jiffies -= min(slept_jiffies, remaining_jiffies); 4519 4520 last_diff = diff; 4521 } 4522 4523 return (diff == 0); 4524 } 4525 4526 /** 4527 * pr_flush() - Wait for printing threads to catch up. 4528 * 4529 * @timeout_ms: The maximum time (in ms) to wait. 4530 * @reset_on_progress: Reset the timeout if forward progress is seen. 4531 * 4532 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 4533 * represents infinite waiting. 4534 * 4535 * If @reset_on_progress is true, the timeout will be reset whenever any 4536 * printer has been seen to make some forward progress. 4537 * 4538 * Context: Process context. May sleep while acquiring console lock. 4539 * Return: true if all usable printers are caught up. 4540 */ 4541 bool pr_flush(int timeout_ms, bool reset_on_progress) 4542 { 4543 return __pr_flush(NULL, timeout_ms, reset_on_progress); 4544 } 4545 4546 /* 4547 * Delayed printk version, for scheduler-internal messages: 4548 */ 4549 #define PRINTK_PENDING_WAKEUP 0x01 4550 #define PRINTK_PENDING_OUTPUT 0x02 4551 4552 static DEFINE_PER_CPU(int, printk_pending); 4553 4554 static void wake_up_klogd_work_func(struct irq_work *irq_work) 4555 { 4556 int pending = this_cpu_xchg(printk_pending, 0); 4557 4558 if (pending & PRINTK_PENDING_OUTPUT) { 4559 if (force_legacy_kthread()) { 4560 if (printk_legacy_kthread) 4561 wake_up_interruptible(&legacy_wait); 4562 } else { 4563 if (console_trylock()) 4564 console_unlock(); 4565 } 4566 } 4567 4568 if (pending & PRINTK_PENDING_WAKEUP) 4569 wake_up_interruptible(&log_wait); 4570 } 4571 4572 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 4573 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 4574 4575 static void __wake_up_klogd(int val) 4576 { 4577 if (!printk_percpu_data_ready()) 4578 return; 4579 4580 /* 4581 * It is not allowed to call this function when console irq_work 4582 * is blocked. 4583 */ 4584 if (WARN_ON_ONCE(console_irqwork_blocked)) 4585 return; 4586 4587 preempt_disable(); 4588 /* 4589 * Guarantee any new records can be seen by tasks preparing to wait 4590 * before this context checks if the wait queue is empty. 4591 * 4592 * The full memory barrier within wq_has_sleeper() pairs with the full 4593 * memory barrier within set_current_state() of 4594 * prepare_to_wait_event(), which is called after ___wait_event() adds 4595 * the waiter but before it has checked the wait condition. 4596 * 4597 * This pairs with devkmsg_read:A and syslog_print:A. 4598 */ 4599 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 4600 (val & PRINTK_PENDING_OUTPUT)) { 4601 this_cpu_or(printk_pending, val); 4602 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 4603 } 4604 preempt_enable(); 4605 } 4606 4607 /** 4608 * wake_up_klogd - Wake kernel logging daemon 4609 * 4610 * Use this function when new records have been added to the ringbuffer 4611 * and the console printing of those records has already occurred or is 4612 * known to be handled by some other context. This function will only 4613 * wake the logging daemon. 4614 * 4615 * Context: Any context. 4616 */ 4617 void wake_up_klogd(void) 4618 { 4619 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 4620 } 4621 4622 /** 4623 * defer_console_output - Wake kernel logging daemon and trigger 4624 * console printing in a deferred context 4625 * 4626 * Use this function when new records have been added to the ringbuffer, 4627 * this context is responsible for console printing those records, but 4628 * the current context is not allowed to perform the console printing. 4629 * Trigger an irq_work context to perform the console printing. This 4630 * function also wakes the logging daemon. 4631 * 4632 * Context: Any context. 4633 */ 4634 void defer_console_output(void) 4635 { 4636 /* 4637 * New messages may have been added directly to the ringbuffer 4638 * using vprintk_store(), so wake any waiters as well. 4639 */ 4640 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 4641 } 4642 4643 /** 4644 * printk_trigger_flush - Attempt to flush printk buffer to consoles. 4645 * 4646 * If possible, flush the printk buffer to all consoles in the caller's 4647 * context. If offloading is available, trigger deferred printing. 4648 * 4649 * This is best effort. Depending on the system state, console states, 4650 * and caller context, no actual flushing may result from this call. 4651 */ 4652 void printk_trigger_flush(void) 4653 { 4654 struct console_flush_type ft; 4655 4656 printk_get_console_flush_type(&ft); 4657 if (ft.nbcon_atomic) 4658 nbcon_atomic_flush_pending(); 4659 if (ft.nbcon_offload) 4660 nbcon_kthreads_wake(); 4661 if (ft.legacy_direct) { 4662 if (console_trylock()) 4663 console_unlock(); 4664 } 4665 if (ft.legacy_offload) 4666 defer_console_output(); 4667 } 4668 4669 int vprintk_deferred(const char *fmt, va_list args) 4670 { 4671 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 4672 } 4673 4674 int _printk_deferred(const char *fmt, ...) 4675 { 4676 va_list args; 4677 int r; 4678 4679 va_start(args, fmt); 4680 r = vprintk_deferred(fmt, args); 4681 va_end(args); 4682 4683 return r; 4684 } 4685 4686 /* 4687 * printk rate limiting, lifted from the networking subsystem. 4688 * 4689 * This enforces a rate limit: not more than 10 kernel messages 4690 * every 5s to make a denial-of-service attack impossible. 4691 */ 4692 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 4693 4694 int __printk_ratelimit(const char *func) 4695 { 4696 return ___ratelimit(&printk_ratelimit_state, func); 4697 } 4698 EXPORT_SYMBOL(__printk_ratelimit); 4699 4700 /** 4701 * printk_timed_ratelimit - caller-controlled printk ratelimiting 4702 * @caller_jiffies: pointer to caller's state 4703 * @interval_msecs: minimum interval between prints 4704 * 4705 * printk_timed_ratelimit() returns true if more than @interval_msecs 4706 * milliseconds have elapsed since the last time printk_timed_ratelimit() 4707 * returned true. 4708 */ 4709 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 4710 unsigned int interval_msecs) 4711 { 4712 unsigned long elapsed = jiffies - *caller_jiffies; 4713 4714 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 4715 return false; 4716 4717 *caller_jiffies = jiffies; 4718 return true; 4719 } 4720 EXPORT_SYMBOL(printk_timed_ratelimit); 4721 4722 static DEFINE_SPINLOCK(dump_list_lock); 4723 static LIST_HEAD(dump_list); 4724 4725 /** 4726 * kmsg_dump_register - register a kernel log dumper. 4727 * @dumper: pointer to the kmsg_dumper structure 4728 * 4729 * Adds a kernel log dumper to the system. The dump callback in the 4730 * structure will be called when the kernel oopses or panics and must be 4731 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 4732 */ 4733 int kmsg_dump_register(struct kmsg_dumper *dumper) 4734 { 4735 unsigned long flags; 4736 int err = -EBUSY; 4737 4738 /* The dump callback needs to be set */ 4739 if (!dumper->dump) 4740 return -EINVAL; 4741 4742 spin_lock_irqsave(&dump_list_lock, flags); 4743 /* Don't allow registering multiple times */ 4744 if (!dumper->registered) { 4745 dumper->registered = 1; 4746 list_add_tail_rcu(&dumper->list, &dump_list); 4747 err = 0; 4748 } 4749 spin_unlock_irqrestore(&dump_list_lock, flags); 4750 4751 return err; 4752 } 4753 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4754 4755 /** 4756 * kmsg_dump_unregister - unregister a kmsg dumper. 4757 * @dumper: pointer to the kmsg_dumper structure 4758 * 4759 * Removes a dump device from the system. Returns zero on success and 4760 * %-EINVAL otherwise. 4761 */ 4762 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4763 { 4764 unsigned long flags; 4765 int err = -EINVAL; 4766 4767 spin_lock_irqsave(&dump_list_lock, flags); 4768 if (dumper->registered) { 4769 dumper->registered = 0; 4770 list_del_rcu(&dumper->list); 4771 err = 0; 4772 } 4773 spin_unlock_irqrestore(&dump_list_lock, flags); 4774 synchronize_rcu(); 4775 4776 return err; 4777 } 4778 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4779 4780 static bool always_kmsg_dump; 4781 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4782 4783 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4784 { 4785 switch (reason) { 4786 case KMSG_DUMP_PANIC: 4787 return "Panic"; 4788 case KMSG_DUMP_OOPS: 4789 return "Oops"; 4790 case KMSG_DUMP_EMERG: 4791 return "Emergency"; 4792 case KMSG_DUMP_SHUTDOWN: 4793 return "Shutdown"; 4794 default: 4795 return "Unknown"; 4796 } 4797 } 4798 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4799 4800 /** 4801 * kmsg_dump_desc - dump kernel log to kernel message dumpers. 4802 * @reason: the reason (oops, panic etc) for dumping 4803 * @desc: a short string to describe what caused the panic or oops. Can be NULL 4804 * if no additional description is available. 4805 * 4806 * Call each of the registered dumper's dump() callback, which can 4807 * retrieve the kmsg records with kmsg_dump_get_line() or 4808 * kmsg_dump_get_buffer(). 4809 */ 4810 void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc) 4811 { 4812 struct kmsg_dumper *dumper; 4813 struct kmsg_dump_detail detail = { 4814 .reason = reason, 4815 .description = desc}; 4816 4817 rcu_read_lock(); 4818 list_for_each_entry_rcu(dumper, &dump_list, list) { 4819 enum kmsg_dump_reason max_reason = dumper->max_reason; 4820 4821 /* 4822 * If client has not provided a specific max_reason, default 4823 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4824 */ 4825 if (max_reason == KMSG_DUMP_UNDEF) { 4826 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4827 KMSG_DUMP_OOPS; 4828 } 4829 if (reason > max_reason) 4830 continue; 4831 4832 /* invoke dumper which will iterate over records */ 4833 dumper->dump(dumper, &detail); 4834 } 4835 rcu_read_unlock(); 4836 } 4837 4838 /** 4839 * kmsg_dump_get_line - retrieve one kmsg log line 4840 * @iter: kmsg dump iterator 4841 * @syslog: include the "<4>" prefixes 4842 * @line: buffer to copy the line to 4843 * @size: maximum size of the buffer 4844 * @len: length of line placed into buffer 4845 * 4846 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4847 * record, and copy one record into the provided buffer. 4848 * 4849 * Consecutive calls will return the next available record moving 4850 * towards the end of the buffer with the youngest messages. 4851 * 4852 * A return value of FALSE indicates that there are no more records to 4853 * read. 4854 */ 4855 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4856 char *line, size_t size, size_t *len) 4857 { 4858 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4859 struct printk_info info; 4860 unsigned int line_count; 4861 struct printk_record r; 4862 size_t l = 0; 4863 bool ret = false; 4864 4865 if (iter->cur_seq < min_seq) 4866 iter->cur_seq = min_seq; 4867 4868 prb_rec_init_rd(&r, &info, line, size); 4869 4870 /* Read text or count text lines? */ 4871 if (line) { 4872 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4873 goto out; 4874 l = record_print_text(&r, syslog, printk_time); 4875 } else { 4876 if (!prb_read_valid_info(prb, iter->cur_seq, 4877 &info, &line_count)) { 4878 goto out; 4879 } 4880 l = get_record_print_text_size(&info, line_count, syslog, 4881 printk_time); 4882 4883 } 4884 4885 iter->cur_seq = r.info->seq + 1; 4886 ret = true; 4887 out: 4888 if (len) 4889 *len = l; 4890 return ret; 4891 } 4892 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4893 4894 /** 4895 * kmsg_dump_get_buffer - copy kmsg log lines 4896 * @iter: kmsg dump iterator 4897 * @syslog: include the "<4>" prefixes 4898 * @buf: buffer to copy the line to 4899 * @size: maximum size of the buffer 4900 * @len_out: length of line placed into buffer 4901 * 4902 * Start at the end of the kmsg buffer and fill the provided buffer 4903 * with as many of the *youngest* kmsg records that fit into it. 4904 * If the buffer is large enough, all available kmsg records will be 4905 * copied with a single call. 4906 * 4907 * Consecutive calls will fill the buffer with the next block of 4908 * available older records, not including the earlier retrieved ones. 4909 * 4910 * A return value of FALSE indicates that there are no more records to 4911 * read. 4912 */ 4913 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4914 char *buf, size_t size, size_t *len_out) 4915 { 4916 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4917 struct printk_info info; 4918 struct printk_record r; 4919 u64 seq; 4920 u64 next_seq; 4921 size_t len = 0; 4922 bool ret = false; 4923 bool time = printk_time; 4924 4925 if (!buf || !size) 4926 goto out; 4927 4928 if (iter->cur_seq < min_seq) 4929 iter->cur_seq = min_seq; 4930 4931 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4932 if (info.seq != iter->cur_seq) { 4933 /* messages are gone, move to first available one */ 4934 iter->cur_seq = info.seq; 4935 } 4936 } 4937 4938 /* last entry */ 4939 if (iter->cur_seq >= iter->next_seq) 4940 goto out; 4941 4942 /* 4943 * Find first record that fits, including all following records, 4944 * into the user-provided buffer for this dump. Pass in size-1 4945 * because this function (by way of record_print_text()) will 4946 * not write more than size-1 bytes of text into @buf. 4947 */ 4948 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4949 size - 1, syslog, time); 4950 4951 /* 4952 * Next kmsg_dump_get_buffer() invocation will dump block of 4953 * older records stored right before this one. 4954 */ 4955 next_seq = seq; 4956 4957 prb_rec_init_rd(&r, &info, buf, size); 4958 4959 prb_for_each_record(seq, prb, seq, &r) { 4960 if (r.info->seq >= iter->next_seq) 4961 break; 4962 4963 len += record_print_text(&r, syslog, time); 4964 4965 /* Adjust record to store to remaining buffer space. */ 4966 prb_rec_init_rd(&r, &info, buf + len, size - len); 4967 } 4968 4969 iter->next_seq = next_seq; 4970 ret = true; 4971 out: 4972 if (len_out) 4973 *len_out = len; 4974 return ret; 4975 } 4976 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4977 4978 /** 4979 * kmsg_dump_rewind - reset the iterator 4980 * @iter: kmsg dump iterator 4981 * 4982 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4983 * kmsg_dump_get_buffer() can be called again and used multiple 4984 * times within the same dumper.dump() callback. 4985 */ 4986 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4987 { 4988 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4989 iter->next_seq = prb_next_seq(prb); 4990 } 4991 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4992 4993 /** 4994 * console_try_replay_all - try to replay kernel log on consoles 4995 * 4996 * Try to obtain lock on console subsystem and replay all 4997 * available records in printk buffer on the consoles. 4998 * Does nothing if lock is not obtained. 4999 * 5000 * Context: Any, except for NMI. 5001 */ 5002 void console_try_replay_all(void) 5003 { 5004 struct console_flush_type ft; 5005 5006 printk_get_console_flush_type(&ft); 5007 if (console_trylock()) { 5008 __console_rewind_all(); 5009 if (ft.nbcon_atomic) 5010 nbcon_atomic_flush_pending(); 5011 if (ft.nbcon_offload) 5012 nbcon_kthreads_wake(); 5013 if (ft.legacy_offload) 5014 defer_console_output(); 5015 /* Consoles are flushed as part of console_unlock(). */ 5016 console_unlock(); 5017 } 5018 } 5019 #endif 5020 5021 #ifdef CONFIG_SMP 5022 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 5023 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 5024 5025 bool is_printk_cpu_sync_owner(void) 5026 { 5027 return (atomic_read(&printk_cpu_sync_owner) == raw_smp_processor_id()); 5028 } 5029 5030 /** 5031 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 5032 * spinning lock is not owned by any CPU. 5033 * 5034 * Context: Any context. 5035 */ 5036 void __printk_cpu_sync_wait(void) 5037 { 5038 do { 5039 cpu_relax(); 5040 } while (atomic_read(&printk_cpu_sync_owner) != -1); 5041 } 5042 EXPORT_SYMBOL(__printk_cpu_sync_wait); 5043 5044 /** 5045 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 5046 * spinning lock. 5047 * 5048 * If no processor has the lock, the calling processor takes the lock and 5049 * becomes the owner. If the calling processor is already the owner of the 5050 * lock, this function succeeds immediately. 5051 * 5052 * Context: Any context. Expects interrupts to be disabled. 5053 * Return: 1 on success, otherwise 0. 5054 */ 5055 int __printk_cpu_sync_try_get(void) 5056 { 5057 int cpu; 5058 int old; 5059 5060 cpu = smp_processor_id(); 5061 5062 /* 5063 * Guarantee loads and stores from this CPU when it is the lock owner 5064 * are _not_ visible to the previous lock owner. This pairs with 5065 * __printk_cpu_sync_put:B. 5066 * 5067 * Memory barrier involvement: 5068 * 5069 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 5070 * then __printk_cpu_sync_put:A can never read from 5071 * __printk_cpu_sync_try_get:B. 5072 * 5073 * Relies on: 5074 * 5075 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 5076 * of the previous CPU 5077 * matching 5078 * ACQUIRE from __printk_cpu_sync_try_get:A to 5079 * __printk_cpu_sync_try_get:B of this CPU 5080 */ 5081 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 5082 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 5083 if (old == -1) { 5084 /* 5085 * This CPU is now the owner and begins loading/storing 5086 * data: LMM(__printk_cpu_sync_try_get:B) 5087 */ 5088 return 1; 5089 5090 } else if (old == cpu) { 5091 /* This CPU is already the owner. */ 5092 atomic_inc(&printk_cpu_sync_nested); 5093 return 1; 5094 } 5095 5096 return 0; 5097 } 5098 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 5099 5100 /** 5101 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 5102 * 5103 * The calling processor must be the owner of the lock. 5104 * 5105 * Context: Any context. Expects interrupts to be disabled. 5106 */ 5107 void __printk_cpu_sync_put(void) 5108 { 5109 if (atomic_read(&printk_cpu_sync_nested)) { 5110 atomic_dec(&printk_cpu_sync_nested); 5111 return; 5112 } 5113 5114 /* 5115 * This CPU is finished loading/storing data: 5116 * LMM(__printk_cpu_sync_put:A) 5117 */ 5118 5119 /* 5120 * Guarantee loads and stores from this CPU when it was the 5121 * lock owner are visible to the next lock owner. This pairs 5122 * with __printk_cpu_sync_try_get:A. 5123 * 5124 * Memory barrier involvement: 5125 * 5126 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 5127 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 5128 * 5129 * Relies on: 5130 * 5131 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 5132 * of this CPU 5133 * matching 5134 * ACQUIRE from __printk_cpu_sync_try_get:A to 5135 * __printk_cpu_sync_try_get:B of the next CPU 5136 */ 5137 atomic_set_release(&printk_cpu_sync_owner, 5138 -1); /* LMM(__printk_cpu_sync_put:B) */ 5139 } 5140 EXPORT_SYMBOL(__printk_cpu_sync_put); 5141 #endif /* CONFIG_SMP */ 5142