1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/vmcore_info.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 75 76 /* 77 * Low level drivers may need that to know if they can schedule in 78 * their unblank() callback or not. So let's export it. 79 */ 80 int oops_in_progress; 81 EXPORT_SYMBOL(oops_in_progress); 82 83 /* 84 * console_mutex protects console_list updates and console->flags updates. 85 * The flags are synchronized only for consoles that are registered, i.e. 86 * accessible via the console list. 87 */ 88 static DEFINE_MUTEX(console_mutex); 89 90 /* 91 * console_sem protects updates to console->seq 92 * and also provides serialization for console printing. 93 */ 94 static DEFINE_SEMAPHORE(console_sem, 1); 95 HLIST_HEAD(console_list); 96 EXPORT_SYMBOL_GPL(console_list); 97 DEFINE_STATIC_SRCU(console_srcu); 98 99 /* 100 * System may need to suppress printk message under certain 101 * circumstances, like after kernel panic happens. 102 */ 103 int __read_mostly suppress_printk; 104 105 #ifdef CONFIG_LOCKDEP 106 static struct lockdep_map console_lock_dep_map = { 107 .name = "console_lock" 108 }; 109 110 void lockdep_assert_console_list_lock_held(void) 111 { 112 lockdep_assert_held(&console_mutex); 113 } 114 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 115 #endif 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 bool console_srcu_read_lock_is_held(void) 119 { 120 return srcu_read_lock_held(&console_srcu); 121 } 122 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 123 #endif 124 125 enum devkmsg_log_bits { 126 __DEVKMSG_LOG_BIT_ON = 0, 127 __DEVKMSG_LOG_BIT_OFF, 128 __DEVKMSG_LOG_BIT_LOCK, 129 }; 130 131 enum devkmsg_log_masks { 132 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 133 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 134 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 135 }; 136 137 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 138 #define DEVKMSG_LOG_MASK_DEFAULT 0 139 140 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 142 static int __control_devkmsg(char *str) 143 { 144 size_t len; 145 146 if (!str) 147 return -EINVAL; 148 149 len = str_has_prefix(str, "on"); 150 if (len) { 151 devkmsg_log = DEVKMSG_LOG_MASK_ON; 152 return len; 153 } 154 155 len = str_has_prefix(str, "off"); 156 if (len) { 157 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 158 return len; 159 } 160 161 len = str_has_prefix(str, "ratelimit"); 162 if (len) { 163 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 164 return len; 165 } 166 167 return -EINVAL; 168 } 169 170 static int __init control_devkmsg(char *str) 171 { 172 if (__control_devkmsg(str) < 0) { 173 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 174 return 1; 175 } 176 177 /* 178 * Set sysctl string accordingly: 179 */ 180 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 181 strscpy(devkmsg_log_str, "on"); 182 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 183 strscpy(devkmsg_log_str, "off"); 184 /* else "ratelimit" which is set by default. */ 185 186 /* 187 * Sysctl cannot change it anymore. The kernel command line setting of 188 * this parameter is to force the setting to be permanent throughout the 189 * runtime of the system. This is a precation measure against userspace 190 * trying to be a smarta** and attempting to change it up on us. 191 */ 192 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 193 194 return 1; 195 } 196 __setup("printk.devkmsg=", control_devkmsg); 197 198 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 199 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 200 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write, 201 void *buffer, size_t *lenp, loff_t *ppos) 202 { 203 char old_str[DEVKMSG_STR_MAX_SIZE]; 204 unsigned int old; 205 int err; 206 207 if (write) { 208 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 209 return -EINVAL; 210 211 old = devkmsg_log; 212 strscpy(old_str, devkmsg_log_str); 213 } 214 215 err = proc_dostring(table, write, buffer, lenp, ppos); 216 if (err) 217 return err; 218 219 if (write) { 220 err = __control_devkmsg(devkmsg_log_str); 221 222 /* 223 * Do not accept an unknown string OR a known string with 224 * trailing crap... 225 */ 226 if (err < 0 || (err + 1 != *lenp)) { 227 228 /* ... and restore old setting. */ 229 devkmsg_log = old; 230 strscpy(devkmsg_log_str, old_str); 231 232 return -EINVAL; 233 } 234 } 235 236 return 0; 237 } 238 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 239 240 /** 241 * console_list_lock - Lock the console list 242 * 243 * For console list or console->flags updates 244 */ 245 void console_list_lock(void) 246 { 247 /* 248 * In unregister_console() and console_force_preferred_locked(), 249 * synchronize_srcu() is called with the console_list_lock held. 250 * Therefore it is not allowed that the console_list_lock is taken 251 * with the srcu_lock held. 252 * 253 * Detecting if this context is really in the read-side critical 254 * section is only possible if the appropriate debug options are 255 * enabled. 256 */ 257 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 258 srcu_read_lock_held(&console_srcu)); 259 260 mutex_lock(&console_mutex); 261 } 262 EXPORT_SYMBOL(console_list_lock); 263 264 /** 265 * console_list_unlock - Unlock the console list 266 * 267 * Counterpart to console_list_lock() 268 */ 269 void console_list_unlock(void) 270 { 271 mutex_unlock(&console_mutex); 272 } 273 EXPORT_SYMBOL(console_list_unlock); 274 275 /** 276 * console_srcu_read_lock - Register a new reader for the 277 * SRCU-protected console list 278 * 279 * Use for_each_console_srcu() to iterate the console list 280 * 281 * Context: Any context. 282 * Return: A cookie to pass to console_srcu_read_unlock(). 283 */ 284 int console_srcu_read_lock(void) 285 { 286 return srcu_read_lock_nmisafe(&console_srcu); 287 } 288 EXPORT_SYMBOL(console_srcu_read_lock); 289 290 /** 291 * console_srcu_read_unlock - Unregister an old reader from 292 * the SRCU-protected console list 293 * @cookie: cookie returned from console_srcu_read_lock() 294 * 295 * Counterpart to console_srcu_read_lock() 296 */ 297 void console_srcu_read_unlock(int cookie) 298 { 299 srcu_read_unlock_nmisafe(&console_srcu, cookie); 300 } 301 EXPORT_SYMBOL(console_srcu_read_unlock); 302 303 /* 304 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 305 * macros instead of functions so that _RET_IP_ contains useful information. 306 */ 307 #define down_console_sem() do { \ 308 down(&console_sem);\ 309 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 310 } while (0) 311 312 static int __down_trylock_console_sem(unsigned long ip) 313 { 314 int lock_failed; 315 unsigned long flags; 316 317 /* 318 * Here and in __up_console_sem() we need to be in safe mode, 319 * because spindump/WARN/etc from under console ->lock will 320 * deadlock in printk()->down_trylock_console_sem() otherwise. 321 */ 322 printk_safe_enter_irqsave(flags); 323 lock_failed = down_trylock(&console_sem); 324 printk_safe_exit_irqrestore(flags); 325 326 if (lock_failed) 327 return 1; 328 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 329 return 0; 330 } 331 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 332 333 static void __up_console_sem(unsigned long ip) 334 { 335 unsigned long flags; 336 337 mutex_release(&console_lock_dep_map, ip); 338 339 printk_safe_enter_irqsave(flags); 340 up(&console_sem); 341 printk_safe_exit_irqrestore(flags); 342 } 343 #define up_console_sem() __up_console_sem(_RET_IP_) 344 345 static bool panic_in_progress(void) 346 { 347 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 348 } 349 350 /* Return true if a panic is in progress on the current CPU. */ 351 bool this_cpu_in_panic(void) 352 { 353 /* 354 * We can use raw_smp_processor_id() here because it is impossible for 355 * the task to be migrated to the panic_cpu, or away from it. If 356 * panic_cpu has already been set, and we're not currently executing on 357 * that CPU, then we never will be. 358 */ 359 return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id()); 360 } 361 362 /* 363 * Return true if a panic is in progress on a remote CPU. 364 * 365 * On true, the local CPU should immediately release any printing resources 366 * that may be needed by the panic CPU. 367 */ 368 bool other_cpu_in_panic(void) 369 { 370 return (panic_in_progress() && !this_cpu_in_panic()); 371 } 372 373 /* 374 * This is used for debugging the mess that is the VT code by 375 * keeping track if we have the console semaphore held. It's 376 * definitely not the perfect debug tool (we don't know if _WE_ 377 * hold it and are racing, but it helps tracking those weird code 378 * paths in the console code where we end up in places I want 379 * locked without the console semaphore held). 380 */ 381 static int console_locked; 382 383 /* 384 * Array of consoles built from command line options (console=) 385 */ 386 387 #define MAX_CMDLINECONSOLES 8 388 389 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 390 391 static int preferred_console = -1; 392 int console_set_on_cmdline; 393 EXPORT_SYMBOL(console_set_on_cmdline); 394 395 /* Flag: console code may call schedule() */ 396 static int console_may_schedule; 397 398 enum con_msg_format_flags { 399 MSG_FORMAT_DEFAULT = 0, 400 MSG_FORMAT_SYSLOG = (1 << 0), 401 }; 402 403 static int console_msg_format = MSG_FORMAT_DEFAULT; 404 405 /* 406 * The printk log buffer consists of a sequenced collection of records, each 407 * containing variable length message text. Every record also contains its 408 * own meta-data (@info). 409 * 410 * Every record meta-data carries the timestamp in microseconds, as well as 411 * the standard userspace syslog level and syslog facility. The usual kernel 412 * messages use LOG_KERN; userspace-injected messages always carry a matching 413 * syslog facility, by default LOG_USER. The origin of every message can be 414 * reliably determined that way. 415 * 416 * The human readable log message of a record is available in @text, the 417 * length of the message text in @text_len. The stored message is not 418 * terminated. 419 * 420 * Optionally, a record can carry a dictionary of properties (key/value 421 * pairs), to provide userspace with a machine-readable message context. 422 * 423 * Examples for well-defined, commonly used property names are: 424 * DEVICE=b12:8 device identifier 425 * b12:8 block dev_t 426 * c127:3 char dev_t 427 * n8 netdev ifindex 428 * +sound:card0 subsystem:devname 429 * SUBSYSTEM=pci driver-core subsystem name 430 * 431 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 432 * and values are terminated by a '\0' character. 433 * 434 * Example of record values: 435 * record.text_buf = "it's a line" (unterminated) 436 * record.info.seq = 56 437 * record.info.ts_nsec = 36863 438 * record.info.text_len = 11 439 * record.info.facility = 0 (LOG_KERN) 440 * record.info.flags = 0 441 * record.info.level = 3 (LOG_ERR) 442 * record.info.caller_id = 299 (task 299) 443 * record.info.dev_info.subsystem = "pci" (terminated) 444 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 445 * 446 * The 'struct printk_info' buffer must never be directly exported to 447 * userspace, it is a kernel-private implementation detail that might 448 * need to be changed in the future, when the requirements change. 449 * 450 * /dev/kmsg exports the structured data in the following line format: 451 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 452 * 453 * Users of the export format should ignore possible additional values 454 * separated by ',', and find the message after the ';' character. 455 * 456 * The optional key/value pairs are attached as continuation lines starting 457 * with a space character and terminated by a newline. All possible 458 * non-prinatable characters are escaped in the "\xff" notation. 459 */ 460 461 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 462 static DEFINE_MUTEX(syslog_lock); 463 464 #ifdef CONFIG_PRINTK 465 DECLARE_WAIT_QUEUE_HEAD(log_wait); 466 /* All 3 protected by @syslog_lock. */ 467 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 468 static u64 syslog_seq; 469 static size_t syslog_partial; 470 static bool syslog_time; 471 472 struct latched_seq { 473 seqcount_latch_t latch; 474 u64 val[2]; 475 }; 476 477 /* 478 * The next printk record to read after the last 'clear' command. There are 479 * two copies (updated with seqcount_latch) so that reads can locklessly 480 * access a valid value. Writers are synchronized by @syslog_lock. 481 */ 482 static struct latched_seq clear_seq = { 483 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 484 .val[0] = 0, 485 .val[1] = 0, 486 }; 487 488 #define LOG_LEVEL(v) ((v) & 0x07) 489 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 490 491 /* record buffer */ 492 #define LOG_ALIGN __alignof__(unsigned long) 493 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 494 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 495 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 496 static char *log_buf = __log_buf; 497 static u32 log_buf_len = __LOG_BUF_LEN; 498 499 /* 500 * Define the average message size. This only affects the number of 501 * descriptors that will be available. Underestimating is better than 502 * overestimating (too many available descriptors is better than not enough). 503 */ 504 #define PRB_AVGBITS 5 /* 32 character average length */ 505 506 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 507 #error CONFIG_LOG_BUF_SHIFT value too small. 508 #endif 509 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 510 PRB_AVGBITS, &__log_buf[0]); 511 512 static struct printk_ringbuffer printk_rb_dynamic; 513 514 struct printk_ringbuffer *prb = &printk_rb_static; 515 516 /* 517 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 518 * per_cpu_areas are initialised. This variable is set to true when 519 * it's safe to access per-CPU data. 520 */ 521 static bool __printk_percpu_data_ready __ro_after_init; 522 523 bool printk_percpu_data_ready(void) 524 { 525 return __printk_percpu_data_ready; 526 } 527 528 /* Must be called under syslog_lock. */ 529 static void latched_seq_write(struct latched_seq *ls, u64 val) 530 { 531 raw_write_seqcount_latch(&ls->latch); 532 ls->val[0] = val; 533 raw_write_seqcount_latch(&ls->latch); 534 ls->val[1] = val; 535 } 536 537 /* Can be called from any context. */ 538 static u64 latched_seq_read_nolock(struct latched_seq *ls) 539 { 540 unsigned int seq; 541 unsigned int idx; 542 u64 val; 543 544 do { 545 seq = raw_read_seqcount_latch(&ls->latch); 546 idx = seq & 0x1; 547 val = ls->val[idx]; 548 } while (raw_read_seqcount_latch_retry(&ls->latch, seq)); 549 550 return val; 551 } 552 553 /* Return log buffer address */ 554 char *log_buf_addr_get(void) 555 { 556 return log_buf; 557 } 558 559 /* Return log buffer size */ 560 u32 log_buf_len_get(void) 561 { 562 return log_buf_len; 563 } 564 565 /* 566 * Define how much of the log buffer we could take at maximum. The value 567 * must be greater than two. Note that only half of the buffer is available 568 * when the index points to the middle. 569 */ 570 #define MAX_LOG_TAKE_PART 4 571 static const char trunc_msg[] = "<truncated>"; 572 573 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 574 { 575 /* 576 * The message should not take the whole buffer. Otherwise, it might 577 * get removed too soon. 578 */ 579 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 580 581 if (*text_len > max_text_len) 582 *text_len = max_text_len; 583 584 /* enable the warning message (if there is room) */ 585 *trunc_msg_len = strlen(trunc_msg); 586 if (*text_len >= *trunc_msg_len) 587 *text_len -= *trunc_msg_len; 588 else 589 *trunc_msg_len = 0; 590 } 591 592 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 593 594 static int syslog_action_restricted(int type) 595 { 596 if (dmesg_restrict) 597 return 1; 598 /* 599 * Unless restricted, we allow "read all" and "get buffer size" 600 * for everybody. 601 */ 602 return type != SYSLOG_ACTION_READ_ALL && 603 type != SYSLOG_ACTION_SIZE_BUFFER; 604 } 605 606 static int check_syslog_permissions(int type, int source) 607 { 608 /* 609 * If this is from /proc/kmsg and we've already opened it, then we've 610 * already done the capabilities checks at open time. 611 */ 612 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 613 goto ok; 614 615 if (syslog_action_restricted(type)) { 616 if (capable(CAP_SYSLOG)) 617 goto ok; 618 return -EPERM; 619 } 620 ok: 621 return security_syslog(type); 622 } 623 624 static void append_char(char **pp, char *e, char c) 625 { 626 if (*pp < e) 627 *(*pp)++ = c; 628 } 629 630 static ssize_t info_print_ext_header(char *buf, size_t size, 631 struct printk_info *info) 632 { 633 u64 ts_usec = info->ts_nsec; 634 char caller[20]; 635 #ifdef CONFIG_PRINTK_CALLER 636 u32 id = info->caller_id; 637 638 snprintf(caller, sizeof(caller), ",caller=%c%u", 639 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 640 #else 641 caller[0] = '\0'; 642 #endif 643 644 do_div(ts_usec, 1000); 645 646 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 647 (info->facility << 3) | info->level, info->seq, 648 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 649 } 650 651 static ssize_t msg_add_ext_text(char *buf, size_t size, 652 const char *text, size_t text_len, 653 unsigned char endc) 654 { 655 char *p = buf, *e = buf + size; 656 size_t i; 657 658 /* escape non-printable characters */ 659 for (i = 0; i < text_len; i++) { 660 unsigned char c = text[i]; 661 662 if (c < ' ' || c >= 127 || c == '\\') 663 p += scnprintf(p, e - p, "\\x%02x", c); 664 else 665 append_char(&p, e, c); 666 } 667 append_char(&p, e, endc); 668 669 return p - buf; 670 } 671 672 static ssize_t msg_add_dict_text(char *buf, size_t size, 673 const char *key, const char *val) 674 { 675 size_t val_len = strlen(val); 676 ssize_t len; 677 678 if (!val_len) 679 return 0; 680 681 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 682 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 683 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 684 685 return len; 686 } 687 688 static ssize_t msg_print_ext_body(char *buf, size_t size, 689 char *text, size_t text_len, 690 struct dev_printk_info *dev_info) 691 { 692 ssize_t len; 693 694 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 695 696 if (!dev_info) 697 goto out; 698 699 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 700 dev_info->subsystem); 701 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 702 dev_info->device); 703 out: 704 return len; 705 } 706 707 /* /dev/kmsg - userspace message inject/listen interface */ 708 struct devkmsg_user { 709 atomic64_t seq; 710 struct ratelimit_state rs; 711 struct mutex lock; 712 struct printk_buffers pbufs; 713 }; 714 715 static __printf(3, 4) __cold 716 int devkmsg_emit(int facility, int level, const char *fmt, ...) 717 { 718 va_list args; 719 int r; 720 721 va_start(args, fmt); 722 r = vprintk_emit(facility, level, NULL, fmt, args); 723 va_end(args); 724 725 return r; 726 } 727 728 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 729 { 730 char *buf, *line; 731 int level = default_message_loglevel; 732 int facility = 1; /* LOG_USER */ 733 struct file *file = iocb->ki_filp; 734 struct devkmsg_user *user = file->private_data; 735 size_t len = iov_iter_count(from); 736 ssize_t ret = len; 737 738 if (len > PRINTKRB_RECORD_MAX) 739 return -EINVAL; 740 741 /* Ignore when user logging is disabled. */ 742 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 743 return len; 744 745 /* Ratelimit when not explicitly enabled. */ 746 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 747 if (!___ratelimit(&user->rs, current->comm)) 748 return ret; 749 } 750 751 buf = kmalloc(len+1, GFP_KERNEL); 752 if (buf == NULL) 753 return -ENOMEM; 754 755 buf[len] = '\0'; 756 if (!copy_from_iter_full(buf, len, from)) { 757 kfree(buf); 758 return -EFAULT; 759 } 760 761 /* 762 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 763 * the decimal value represents 32bit, the lower 3 bit are the log 764 * level, the rest are the log facility. 765 * 766 * If no prefix or no userspace facility is specified, we 767 * enforce LOG_USER, to be able to reliably distinguish 768 * kernel-generated messages from userspace-injected ones. 769 */ 770 line = buf; 771 if (line[0] == '<') { 772 char *endp = NULL; 773 unsigned int u; 774 775 u = simple_strtoul(line + 1, &endp, 10); 776 if (endp && endp[0] == '>') { 777 level = LOG_LEVEL(u); 778 if (LOG_FACILITY(u) != 0) 779 facility = LOG_FACILITY(u); 780 endp++; 781 line = endp; 782 } 783 } 784 785 devkmsg_emit(facility, level, "%s", line); 786 kfree(buf); 787 return ret; 788 } 789 790 static ssize_t devkmsg_read(struct file *file, char __user *buf, 791 size_t count, loff_t *ppos) 792 { 793 struct devkmsg_user *user = file->private_data; 794 char *outbuf = &user->pbufs.outbuf[0]; 795 struct printk_message pmsg = { 796 .pbufs = &user->pbufs, 797 }; 798 ssize_t ret; 799 800 ret = mutex_lock_interruptible(&user->lock); 801 if (ret) 802 return ret; 803 804 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 805 if (file->f_flags & O_NONBLOCK) { 806 ret = -EAGAIN; 807 goto out; 808 } 809 810 /* 811 * Guarantee this task is visible on the waitqueue before 812 * checking the wake condition. 813 * 814 * The full memory barrier within set_current_state() of 815 * prepare_to_wait_event() pairs with the full memory barrier 816 * within wq_has_sleeper(). 817 * 818 * This pairs with __wake_up_klogd:A. 819 */ 820 ret = wait_event_interruptible(log_wait, 821 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 822 false)); /* LMM(devkmsg_read:A) */ 823 if (ret) 824 goto out; 825 } 826 827 if (pmsg.dropped) { 828 /* our last seen message is gone, return error and reset */ 829 atomic64_set(&user->seq, pmsg.seq); 830 ret = -EPIPE; 831 goto out; 832 } 833 834 atomic64_set(&user->seq, pmsg.seq + 1); 835 836 if (pmsg.outbuf_len > count) { 837 ret = -EINVAL; 838 goto out; 839 } 840 841 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 842 ret = -EFAULT; 843 goto out; 844 } 845 ret = pmsg.outbuf_len; 846 out: 847 mutex_unlock(&user->lock); 848 return ret; 849 } 850 851 /* 852 * Be careful when modifying this function!!! 853 * 854 * Only few operations are supported because the device works only with the 855 * entire variable length messages (records). Non-standard values are 856 * returned in the other cases and has been this way for quite some time. 857 * User space applications might depend on this behavior. 858 */ 859 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 860 { 861 struct devkmsg_user *user = file->private_data; 862 loff_t ret = 0; 863 864 if (offset) 865 return -ESPIPE; 866 867 switch (whence) { 868 case SEEK_SET: 869 /* the first record */ 870 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 871 break; 872 case SEEK_DATA: 873 /* 874 * The first record after the last SYSLOG_ACTION_CLEAR, 875 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 876 * changes no global state, and does not clear anything. 877 */ 878 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 879 break; 880 case SEEK_END: 881 /* after the last record */ 882 atomic64_set(&user->seq, prb_next_seq(prb)); 883 break; 884 default: 885 ret = -EINVAL; 886 } 887 return ret; 888 } 889 890 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 891 { 892 struct devkmsg_user *user = file->private_data; 893 struct printk_info info; 894 __poll_t ret = 0; 895 896 poll_wait(file, &log_wait, wait); 897 898 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 899 /* return error when data has vanished underneath us */ 900 if (info.seq != atomic64_read(&user->seq)) 901 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 902 else 903 ret = EPOLLIN|EPOLLRDNORM; 904 } 905 906 return ret; 907 } 908 909 static int devkmsg_open(struct inode *inode, struct file *file) 910 { 911 struct devkmsg_user *user; 912 int err; 913 914 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 915 return -EPERM; 916 917 /* write-only does not need any file context */ 918 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 919 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 920 SYSLOG_FROM_READER); 921 if (err) 922 return err; 923 } 924 925 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 926 if (!user) 927 return -ENOMEM; 928 929 ratelimit_default_init(&user->rs); 930 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 931 932 mutex_init(&user->lock); 933 934 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 935 936 file->private_data = user; 937 return 0; 938 } 939 940 static int devkmsg_release(struct inode *inode, struct file *file) 941 { 942 struct devkmsg_user *user = file->private_data; 943 944 ratelimit_state_exit(&user->rs); 945 946 mutex_destroy(&user->lock); 947 kvfree(user); 948 return 0; 949 } 950 951 const struct file_operations kmsg_fops = { 952 .open = devkmsg_open, 953 .read = devkmsg_read, 954 .write_iter = devkmsg_write, 955 .llseek = devkmsg_llseek, 956 .poll = devkmsg_poll, 957 .release = devkmsg_release, 958 }; 959 960 #ifdef CONFIG_VMCORE_INFO 961 /* 962 * This appends the listed symbols to /proc/vmcore 963 * 964 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 965 * obtain access to symbols that are otherwise very difficult to locate. These 966 * symbols are specifically used so that utilities can access and extract the 967 * dmesg log from a vmcore file after a crash. 968 */ 969 void log_buf_vmcoreinfo_setup(void) 970 { 971 struct dev_printk_info *dev_info = NULL; 972 973 VMCOREINFO_SYMBOL(prb); 974 VMCOREINFO_SYMBOL(printk_rb_static); 975 VMCOREINFO_SYMBOL(clear_seq); 976 977 /* 978 * Export struct size and field offsets. User space tools can 979 * parse it and detect any changes to structure down the line. 980 */ 981 982 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 983 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 984 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 985 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 986 987 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 988 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 989 VMCOREINFO_OFFSET(prb_desc_ring, descs); 990 VMCOREINFO_OFFSET(prb_desc_ring, infos); 991 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 992 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 993 994 VMCOREINFO_STRUCT_SIZE(prb_desc); 995 VMCOREINFO_OFFSET(prb_desc, state_var); 996 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 997 998 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 999 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 1000 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1001 1002 VMCOREINFO_STRUCT_SIZE(printk_info); 1003 VMCOREINFO_OFFSET(printk_info, seq); 1004 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1005 VMCOREINFO_OFFSET(printk_info, text_len); 1006 VMCOREINFO_OFFSET(printk_info, caller_id); 1007 VMCOREINFO_OFFSET(printk_info, dev_info); 1008 1009 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1010 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1011 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1012 VMCOREINFO_OFFSET(dev_printk_info, device); 1013 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1014 1015 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1016 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1017 VMCOREINFO_OFFSET(prb_data_ring, data); 1018 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1019 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1020 1021 VMCOREINFO_SIZE(atomic_long_t); 1022 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1023 1024 VMCOREINFO_STRUCT_SIZE(latched_seq); 1025 VMCOREINFO_OFFSET(latched_seq, val); 1026 } 1027 #endif 1028 1029 /* requested log_buf_len from kernel cmdline */ 1030 static unsigned long __initdata new_log_buf_len; 1031 1032 /* we practice scaling the ring buffer by powers of 2 */ 1033 static void __init log_buf_len_update(u64 size) 1034 { 1035 if (size > (u64)LOG_BUF_LEN_MAX) { 1036 size = (u64)LOG_BUF_LEN_MAX; 1037 pr_err("log_buf over 2G is not supported.\n"); 1038 } 1039 1040 if (size) 1041 size = roundup_pow_of_two(size); 1042 if (size > log_buf_len) 1043 new_log_buf_len = (unsigned long)size; 1044 } 1045 1046 /* save requested log_buf_len since it's too early to process it */ 1047 static int __init log_buf_len_setup(char *str) 1048 { 1049 u64 size; 1050 1051 if (!str) 1052 return -EINVAL; 1053 1054 size = memparse(str, &str); 1055 1056 log_buf_len_update(size); 1057 1058 return 0; 1059 } 1060 early_param("log_buf_len", log_buf_len_setup); 1061 1062 #ifdef CONFIG_SMP 1063 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1064 1065 static void __init log_buf_add_cpu(void) 1066 { 1067 unsigned int cpu_extra; 1068 1069 /* 1070 * archs should set up cpu_possible_bits properly with 1071 * set_cpu_possible() after setup_arch() but just in 1072 * case lets ensure this is valid. 1073 */ 1074 if (num_possible_cpus() == 1) 1075 return; 1076 1077 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1078 1079 /* by default this will only continue through for large > 64 CPUs */ 1080 if (cpu_extra <= __LOG_BUF_LEN / 2) 1081 return; 1082 1083 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1084 __LOG_CPU_MAX_BUF_LEN); 1085 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1086 cpu_extra); 1087 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1088 1089 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1090 } 1091 #else /* !CONFIG_SMP */ 1092 static inline void log_buf_add_cpu(void) {} 1093 #endif /* CONFIG_SMP */ 1094 1095 static void __init set_percpu_data_ready(void) 1096 { 1097 __printk_percpu_data_ready = true; 1098 } 1099 1100 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1101 struct printk_record *r) 1102 { 1103 struct prb_reserved_entry e; 1104 struct printk_record dest_r; 1105 1106 prb_rec_init_wr(&dest_r, r->info->text_len); 1107 1108 if (!prb_reserve(&e, rb, &dest_r)) 1109 return 0; 1110 1111 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1112 dest_r.info->text_len = r->info->text_len; 1113 dest_r.info->facility = r->info->facility; 1114 dest_r.info->level = r->info->level; 1115 dest_r.info->flags = r->info->flags; 1116 dest_r.info->ts_nsec = r->info->ts_nsec; 1117 dest_r.info->caller_id = r->info->caller_id; 1118 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1119 1120 prb_final_commit(&e); 1121 1122 return prb_record_text_space(&e); 1123 } 1124 1125 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1126 1127 void __init setup_log_buf(int early) 1128 { 1129 struct printk_info *new_infos; 1130 unsigned int new_descs_count; 1131 struct prb_desc *new_descs; 1132 struct printk_info info; 1133 struct printk_record r; 1134 unsigned int text_size; 1135 size_t new_descs_size; 1136 size_t new_infos_size; 1137 unsigned long flags; 1138 char *new_log_buf; 1139 unsigned int free; 1140 u64 seq; 1141 1142 /* 1143 * Some archs call setup_log_buf() multiple times - first is very 1144 * early, e.g. from setup_arch(), and second - when percpu_areas 1145 * are initialised. 1146 */ 1147 if (!early) 1148 set_percpu_data_ready(); 1149 1150 if (log_buf != __log_buf) 1151 return; 1152 1153 if (!early && !new_log_buf_len) 1154 log_buf_add_cpu(); 1155 1156 if (!new_log_buf_len) 1157 return; 1158 1159 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1160 if (new_descs_count == 0) { 1161 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1162 return; 1163 } 1164 1165 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1166 if (unlikely(!new_log_buf)) { 1167 pr_err("log_buf_len: %lu text bytes not available\n", 1168 new_log_buf_len); 1169 return; 1170 } 1171 1172 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1173 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1174 if (unlikely(!new_descs)) { 1175 pr_err("log_buf_len: %zu desc bytes not available\n", 1176 new_descs_size); 1177 goto err_free_log_buf; 1178 } 1179 1180 new_infos_size = new_descs_count * sizeof(struct printk_info); 1181 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1182 if (unlikely(!new_infos)) { 1183 pr_err("log_buf_len: %zu info bytes not available\n", 1184 new_infos_size); 1185 goto err_free_descs; 1186 } 1187 1188 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1189 1190 prb_init(&printk_rb_dynamic, 1191 new_log_buf, ilog2(new_log_buf_len), 1192 new_descs, ilog2(new_descs_count), 1193 new_infos); 1194 1195 local_irq_save(flags); 1196 1197 log_buf_len = new_log_buf_len; 1198 log_buf = new_log_buf; 1199 new_log_buf_len = 0; 1200 1201 free = __LOG_BUF_LEN; 1202 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1203 text_size = add_to_rb(&printk_rb_dynamic, &r); 1204 if (text_size > free) 1205 free = 0; 1206 else 1207 free -= text_size; 1208 } 1209 1210 prb = &printk_rb_dynamic; 1211 1212 local_irq_restore(flags); 1213 1214 /* 1215 * Copy any remaining messages that might have appeared from 1216 * NMI context after copying but before switching to the 1217 * dynamic buffer. 1218 */ 1219 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1220 text_size = add_to_rb(&printk_rb_dynamic, &r); 1221 if (text_size > free) 1222 free = 0; 1223 else 1224 free -= text_size; 1225 } 1226 1227 if (seq != prb_next_seq(&printk_rb_static)) { 1228 pr_err("dropped %llu messages\n", 1229 prb_next_seq(&printk_rb_static) - seq); 1230 } 1231 1232 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1233 pr_info("early log buf free: %u(%u%%)\n", 1234 free, (free * 100) / __LOG_BUF_LEN); 1235 return; 1236 1237 err_free_descs: 1238 memblock_free(new_descs, new_descs_size); 1239 err_free_log_buf: 1240 memblock_free(new_log_buf, new_log_buf_len); 1241 } 1242 1243 static bool __read_mostly ignore_loglevel; 1244 1245 static int __init ignore_loglevel_setup(char *str) 1246 { 1247 ignore_loglevel = true; 1248 pr_info("debug: ignoring loglevel setting.\n"); 1249 1250 return 0; 1251 } 1252 1253 early_param("ignore_loglevel", ignore_loglevel_setup); 1254 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1255 MODULE_PARM_DESC(ignore_loglevel, 1256 "ignore loglevel setting (prints all kernel messages to the console)"); 1257 1258 static bool suppress_message_printing(int level) 1259 { 1260 return (level >= console_loglevel && !ignore_loglevel); 1261 } 1262 1263 #ifdef CONFIG_BOOT_PRINTK_DELAY 1264 1265 static int boot_delay; /* msecs delay after each printk during bootup */ 1266 static unsigned long long loops_per_msec; /* based on boot_delay */ 1267 1268 static int __init boot_delay_setup(char *str) 1269 { 1270 unsigned long lpj; 1271 1272 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1273 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1274 1275 get_option(&str, &boot_delay); 1276 if (boot_delay > 10 * 1000) 1277 boot_delay = 0; 1278 1279 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1280 "HZ: %d, loops_per_msec: %llu\n", 1281 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1282 return 0; 1283 } 1284 early_param("boot_delay", boot_delay_setup); 1285 1286 static void boot_delay_msec(int level) 1287 { 1288 unsigned long long k; 1289 unsigned long timeout; 1290 1291 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1292 || suppress_message_printing(level)) { 1293 return; 1294 } 1295 1296 k = (unsigned long long)loops_per_msec * boot_delay; 1297 1298 timeout = jiffies + msecs_to_jiffies(boot_delay); 1299 while (k) { 1300 k--; 1301 cpu_relax(); 1302 /* 1303 * use (volatile) jiffies to prevent 1304 * compiler reduction; loop termination via jiffies 1305 * is secondary and may or may not happen. 1306 */ 1307 if (time_after(jiffies, timeout)) 1308 break; 1309 touch_nmi_watchdog(); 1310 } 1311 } 1312 #else 1313 static inline void boot_delay_msec(int level) 1314 { 1315 } 1316 #endif 1317 1318 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1319 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1320 1321 static size_t print_syslog(unsigned int level, char *buf) 1322 { 1323 return sprintf(buf, "<%u>", level); 1324 } 1325 1326 static size_t print_time(u64 ts, char *buf) 1327 { 1328 unsigned long rem_nsec = do_div(ts, 1000000000); 1329 1330 return sprintf(buf, "[%5lu.%06lu]", 1331 (unsigned long)ts, rem_nsec / 1000); 1332 } 1333 1334 #ifdef CONFIG_PRINTK_CALLER 1335 static size_t print_caller(u32 id, char *buf) 1336 { 1337 char caller[12]; 1338 1339 snprintf(caller, sizeof(caller), "%c%u", 1340 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1341 return sprintf(buf, "[%6s]", caller); 1342 } 1343 #else 1344 #define print_caller(id, buf) 0 1345 #endif 1346 1347 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1348 bool time, char *buf) 1349 { 1350 size_t len = 0; 1351 1352 if (syslog) 1353 len = print_syslog((info->facility << 3) | info->level, buf); 1354 1355 if (time) 1356 len += print_time(info->ts_nsec, buf + len); 1357 1358 len += print_caller(info->caller_id, buf + len); 1359 1360 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1361 buf[len++] = ' '; 1362 buf[len] = '\0'; 1363 } 1364 1365 return len; 1366 } 1367 1368 /* 1369 * Prepare the record for printing. The text is shifted within the given 1370 * buffer to avoid a need for another one. The following operations are 1371 * done: 1372 * 1373 * - Add prefix for each line. 1374 * - Drop truncated lines that no longer fit into the buffer. 1375 * - Add the trailing newline that has been removed in vprintk_store(). 1376 * - Add a string terminator. 1377 * 1378 * Since the produced string is always terminated, the maximum possible 1379 * return value is @r->text_buf_size - 1; 1380 * 1381 * Return: The length of the updated/prepared text, including the added 1382 * prefixes and the newline. The terminator is not counted. The dropped 1383 * line(s) are not counted. 1384 */ 1385 static size_t record_print_text(struct printk_record *r, bool syslog, 1386 bool time) 1387 { 1388 size_t text_len = r->info->text_len; 1389 size_t buf_size = r->text_buf_size; 1390 char *text = r->text_buf; 1391 char prefix[PRINTK_PREFIX_MAX]; 1392 bool truncated = false; 1393 size_t prefix_len; 1394 size_t line_len; 1395 size_t len = 0; 1396 char *next; 1397 1398 /* 1399 * If the message was truncated because the buffer was not large 1400 * enough, treat the available text as if it were the full text. 1401 */ 1402 if (text_len > buf_size) 1403 text_len = buf_size; 1404 1405 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1406 1407 /* 1408 * @text_len: bytes of unprocessed text 1409 * @line_len: bytes of current line _without_ newline 1410 * @text: pointer to beginning of current line 1411 * @len: number of bytes prepared in r->text_buf 1412 */ 1413 for (;;) { 1414 next = memchr(text, '\n', text_len); 1415 if (next) { 1416 line_len = next - text; 1417 } else { 1418 /* Drop truncated line(s). */ 1419 if (truncated) 1420 break; 1421 line_len = text_len; 1422 } 1423 1424 /* 1425 * Truncate the text if there is not enough space to add the 1426 * prefix and a trailing newline and a terminator. 1427 */ 1428 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1429 /* Drop even the current line if no space. */ 1430 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1431 break; 1432 1433 text_len = buf_size - len - prefix_len - 1 - 1; 1434 truncated = true; 1435 } 1436 1437 memmove(text + prefix_len, text, text_len); 1438 memcpy(text, prefix, prefix_len); 1439 1440 /* 1441 * Increment the prepared length to include the text and 1442 * prefix that were just moved+copied. Also increment for the 1443 * newline at the end of this line. If this is the last line, 1444 * there is no newline, but it will be added immediately below. 1445 */ 1446 len += prefix_len + line_len + 1; 1447 if (text_len == line_len) { 1448 /* 1449 * This is the last line. Add the trailing newline 1450 * removed in vprintk_store(). 1451 */ 1452 text[prefix_len + line_len] = '\n'; 1453 break; 1454 } 1455 1456 /* 1457 * Advance beyond the added prefix and the related line with 1458 * its newline. 1459 */ 1460 text += prefix_len + line_len + 1; 1461 1462 /* 1463 * The remaining text has only decreased by the line with its 1464 * newline. 1465 * 1466 * Note that @text_len can become zero. It happens when @text 1467 * ended with a newline (either due to truncation or the 1468 * original string ending with "\n\n"). The loop is correctly 1469 * repeated and (if not truncated) an empty line with a prefix 1470 * will be prepared. 1471 */ 1472 text_len -= line_len + 1; 1473 } 1474 1475 /* 1476 * If a buffer was provided, it will be terminated. Space for the 1477 * string terminator is guaranteed to be available. The terminator is 1478 * not counted in the return value. 1479 */ 1480 if (buf_size > 0) 1481 r->text_buf[len] = 0; 1482 1483 return len; 1484 } 1485 1486 static size_t get_record_print_text_size(struct printk_info *info, 1487 unsigned int line_count, 1488 bool syslog, bool time) 1489 { 1490 char prefix[PRINTK_PREFIX_MAX]; 1491 size_t prefix_len; 1492 1493 prefix_len = info_print_prefix(info, syslog, time, prefix); 1494 1495 /* 1496 * Each line will be preceded with a prefix. The intermediate 1497 * newlines are already within the text, but a final trailing 1498 * newline will be added. 1499 */ 1500 return ((prefix_len * line_count) + info->text_len + 1); 1501 } 1502 1503 /* 1504 * Beginning with @start_seq, find the first record where it and all following 1505 * records up to (but not including) @max_seq fit into @size. 1506 * 1507 * @max_seq is simply an upper bound and does not need to exist. If the caller 1508 * does not require an upper bound, -1 can be used for @max_seq. 1509 */ 1510 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1511 bool syslog, bool time) 1512 { 1513 struct printk_info info; 1514 unsigned int line_count; 1515 size_t len = 0; 1516 u64 seq; 1517 1518 /* Determine the size of the records up to @max_seq. */ 1519 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1520 if (info.seq >= max_seq) 1521 break; 1522 len += get_record_print_text_size(&info, line_count, syslog, time); 1523 } 1524 1525 /* 1526 * Adjust the upper bound for the next loop to avoid subtracting 1527 * lengths that were never added. 1528 */ 1529 if (seq < max_seq) 1530 max_seq = seq; 1531 1532 /* 1533 * Move first record forward until length fits into the buffer. Ignore 1534 * newest messages that were not counted in the above cycle. Messages 1535 * might appear and get lost in the meantime. This is a best effort 1536 * that prevents an infinite loop that could occur with a retry. 1537 */ 1538 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1539 if (len <= size || info.seq >= max_seq) 1540 break; 1541 len -= get_record_print_text_size(&info, line_count, syslog, time); 1542 } 1543 1544 return seq; 1545 } 1546 1547 /* The caller is responsible for making sure @size is greater than 0. */ 1548 static int syslog_print(char __user *buf, int size) 1549 { 1550 struct printk_info info; 1551 struct printk_record r; 1552 char *text; 1553 int len = 0; 1554 u64 seq; 1555 1556 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1557 if (!text) 1558 return -ENOMEM; 1559 1560 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1561 1562 mutex_lock(&syslog_lock); 1563 1564 /* 1565 * Wait for the @syslog_seq record to be available. @syslog_seq may 1566 * change while waiting. 1567 */ 1568 do { 1569 seq = syslog_seq; 1570 1571 mutex_unlock(&syslog_lock); 1572 /* 1573 * Guarantee this task is visible on the waitqueue before 1574 * checking the wake condition. 1575 * 1576 * The full memory barrier within set_current_state() of 1577 * prepare_to_wait_event() pairs with the full memory barrier 1578 * within wq_has_sleeper(). 1579 * 1580 * This pairs with __wake_up_klogd:A. 1581 */ 1582 len = wait_event_interruptible(log_wait, 1583 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1584 mutex_lock(&syslog_lock); 1585 1586 if (len) 1587 goto out; 1588 } while (syslog_seq != seq); 1589 1590 /* 1591 * Copy records that fit into the buffer. The above cycle makes sure 1592 * that the first record is always available. 1593 */ 1594 do { 1595 size_t n; 1596 size_t skip; 1597 int err; 1598 1599 if (!prb_read_valid(prb, syslog_seq, &r)) 1600 break; 1601 1602 if (r.info->seq != syslog_seq) { 1603 /* message is gone, move to next valid one */ 1604 syslog_seq = r.info->seq; 1605 syslog_partial = 0; 1606 } 1607 1608 /* 1609 * To keep reading/counting partial line consistent, 1610 * use printk_time value as of the beginning of a line. 1611 */ 1612 if (!syslog_partial) 1613 syslog_time = printk_time; 1614 1615 skip = syslog_partial; 1616 n = record_print_text(&r, true, syslog_time); 1617 if (n - syslog_partial <= size) { 1618 /* message fits into buffer, move forward */ 1619 syslog_seq = r.info->seq + 1; 1620 n -= syslog_partial; 1621 syslog_partial = 0; 1622 } else if (!len){ 1623 /* partial read(), remember position */ 1624 n = size; 1625 syslog_partial += n; 1626 } else 1627 n = 0; 1628 1629 if (!n) 1630 break; 1631 1632 mutex_unlock(&syslog_lock); 1633 err = copy_to_user(buf, text + skip, n); 1634 mutex_lock(&syslog_lock); 1635 1636 if (err) { 1637 if (!len) 1638 len = -EFAULT; 1639 break; 1640 } 1641 1642 len += n; 1643 size -= n; 1644 buf += n; 1645 } while (size); 1646 out: 1647 mutex_unlock(&syslog_lock); 1648 kfree(text); 1649 return len; 1650 } 1651 1652 static int syslog_print_all(char __user *buf, int size, bool clear) 1653 { 1654 struct printk_info info; 1655 struct printk_record r; 1656 char *text; 1657 int len = 0; 1658 u64 seq; 1659 bool time; 1660 1661 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1662 if (!text) 1663 return -ENOMEM; 1664 1665 time = printk_time; 1666 /* 1667 * Find first record that fits, including all following records, 1668 * into the user-provided buffer for this dump. 1669 */ 1670 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1671 size, true, time); 1672 1673 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1674 1675 prb_for_each_record(seq, prb, seq, &r) { 1676 int textlen; 1677 1678 textlen = record_print_text(&r, true, time); 1679 1680 if (len + textlen > size) { 1681 seq--; 1682 break; 1683 } 1684 1685 if (copy_to_user(buf + len, text, textlen)) 1686 len = -EFAULT; 1687 else 1688 len += textlen; 1689 1690 if (len < 0) 1691 break; 1692 } 1693 1694 if (clear) { 1695 mutex_lock(&syslog_lock); 1696 latched_seq_write(&clear_seq, seq); 1697 mutex_unlock(&syslog_lock); 1698 } 1699 1700 kfree(text); 1701 return len; 1702 } 1703 1704 static void syslog_clear(void) 1705 { 1706 mutex_lock(&syslog_lock); 1707 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1708 mutex_unlock(&syslog_lock); 1709 } 1710 1711 int do_syslog(int type, char __user *buf, int len, int source) 1712 { 1713 struct printk_info info; 1714 bool clear = false; 1715 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1716 int error; 1717 1718 error = check_syslog_permissions(type, source); 1719 if (error) 1720 return error; 1721 1722 switch (type) { 1723 case SYSLOG_ACTION_CLOSE: /* Close log */ 1724 break; 1725 case SYSLOG_ACTION_OPEN: /* Open log */ 1726 break; 1727 case SYSLOG_ACTION_READ: /* Read from log */ 1728 if (!buf || len < 0) 1729 return -EINVAL; 1730 if (!len) 1731 return 0; 1732 if (!access_ok(buf, len)) 1733 return -EFAULT; 1734 error = syslog_print(buf, len); 1735 break; 1736 /* Read/clear last kernel messages */ 1737 case SYSLOG_ACTION_READ_CLEAR: 1738 clear = true; 1739 fallthrough; 1740 /* Read last kernel messages */ 1741 case SYSLOG_ACTION_READ_ALL: 1742 if (!buf || len < 0) 1743 return -EINVAL; 1744 if (!len) 1745 return 0; 1746 if (!access_ok(buf, len)) 1747 return -EFAULT; 1748 error = syslog_print_all(buf, len, clear); 1749 break; 1750 /* Clear ring buffer */ 1751 case SYSLOG_ACTION_CLEAR: 1752 syslog_clear(); 1753 break; 1754 /* Disable logging to console */ 1755 case SYSLOG_ACTION_CONSOLE_OFF: 1756 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1757 saved_console_loglevel = console_loglevel; 1758 console_loglevel = minimum_console_loglevel; 1759 break; 1760 /* Enable logging to console */ 1761 case SYSLOG_ACTION_CONSOLE_ON: 1762 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1763 console_loglevel = saved_console_loglevel; 1764 saved_console_loglevel = LOGLEVEL_DEFAULT; 1765 } 1766 break; 1767 /* Set level of messages printed to console */ 1768 case SYSLOG_ACTION_CONSOLE_LEVEL: 1769 if (len < 1 || len > 8) 1770 return -EINVAL; 1771 if (len < minimum_console_loglevel) 1772 len = minimum_console_loglevel; 1773 console_loglevel = len; 1774 /* Implicitly re-enable logging to console */ 1775 saved_console_loglevel = LOGLEVEL_DEFAULT; 1776 break; 1777 /* Number of chars in the log buffer */ 1778 case SYSLOG_ACTION_SIZE_UNREAD: 1779 mutex_lock(&syslog_lock); 1780 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1781 /* No unread messages. */ 1782 mutex_unlock(&syslog_lock); 1783 return 0; 1784 } 1785 if (info.seq != syslog_seq) { 1786 /* messages are gone, move to first one */ 1787 syslog_seq = info.seq; 1788 syslog_partial = 0; 1789 } 1790 if (source == SYSLOG_FROM_PROC) { 1791 /* 1792 * Short-cut for poll(/"proc/kmsg") which simply checks 1793 * for pending data, not the size; return the count of 1794 * records, not the length. 1795 */ 1796 error = prb_next_seq(prb) - syslog_seq; 1797 } else { 1798 bool time = syslog_partial ? syslog_time : printk_time; 1799 unsigned int line_count; 1800 u64 seq; 1801 1802 prb_for_each_info(syslog_seq, prb, seq, &info, 1803 &line_count) { 1804 error += get_record_print_text_size(&info, line_count, 1805 true, time); 1806 time = printk_time; 1807 } 1808 error -= syslog_partial; 1809 } 1810 mutex_unlock(&syslog_lock); 1811 break; 1812 /* Size of the log buffer */ 1813 case SYSLOG_ACTION_SIZE_BUFFER: 1814 error = log_buf_len; 1815 break; 1816 default: 1817 error = -EINVAL; 1818 break; 1819 } 1820 1821 return error; 1822 } 1823 1824 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1825 { 1826 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1827 } 1828 1829 /* 1830 * Special console_lock variants that help to reduce the risk of soft-lockups. 1831 * They allow to pass console_lock to another printk() call using a busy wait. 1832 */ 1833 1834 #ifdef CONFIG_LOCKDEP 1835 static struct lockdep_map console_owner_dep_map = { 1836 .name = "console_owner" 1837 }; 1838 #endif 1839 1840 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1841 static struct task_struct *console_owner; 1842 static bool console_waiter; 1843 1844 /** 1845 * console_lock_spinning_enable - mark beginning of code where another 1846 * thread might safely busy wait 1847 * 1848 * This basically converts console_lock into a spinlock. This marks 1849 * the section where the console_lock owner can not sleep, because 1850 * there may be a waiter spinning (like a spinlock). Also it must be 1851 * ready to hand over the lock at the end of the section. 1852 */ 1853 static void console_lock_spinning_enable(void) 1854 { 1855 /* 1856 * Do not use spinning in panic(). The panic CPU wants to keep the lock. 1857 * Non-panic CPUs abandon the flush anyway. 1858 * 1859 * Just keep the lockdep annotation. The panic-CPU should avoid 1860 * taking console_owner_lock because it might cause a deadlock. 1861 * This looks like the easiest way how to prevent false lockdep 1862 * reports without handling races a lockless way. 1863 */ 1864 if (panic_in_progress()) 1865 goto lockdep; 1866 1867 raw_spin_lock(&console_owner_lock); 1868 console_owner = current; 1869 raw_spin_unlock(&console_owner_lock); 1870 1871 lockdep: 1872 /* The waiter may spin on us after setting console_owner */ 1873 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1874 } 1875 1876 /** 1877 * console_lock_spinning_disable_and_check - mark end of code where another 1878 * thread was able to busy wait and check if there is a waiter 1879 * @cookie: cookie returned from console_srcu_read_lock() 1880 * 1881 * This is called at the end of the section where spinning is allowed. 1882 * It has two functions. First, it is a signal that it is no longer 1883 * safe to start busy waiting for the lock. Second, it checks if 1884 * there is a busy waiter and passes the lock rights to her. 1885 * 1886 * Important: Callers lose both the console_lock and the SRCU read lock if 1887 * there was a busy waiter. They must not touch items synchronized by 1888 * console_lock or SRCU read lock in this case. 1889 * 1890 * Return: 1 if the lock rights were passed, 0 otherwise. 1891 */ 1892 static int console_lock_spinning_disable_and_check(int cookie) 1893 { 1894 int waiter; 1895 1896 /* 1897 * Ignore spinning waiters during panic() because they might get stopped 1898 * or blocked at any time, 1899 * 1900 * It is safe because nobody is allowed to start spinning during panic 1901 * in the first place. If there has been a waiter then non panic CPUs 1902 * might stay spinning. They would get stopped anyway. The panic context 1903 * will never start spinning and an interrupted spin on panic CPU will 1904 * never continue. 1905 */ 1906 if (panic_in_progress()) { 1907 /* Keep lockdep happy. */ 1908 spin_release(&console_owner_dep_map, _THIS_IP_); 1909 return 0; 1910 } 1911 1912 raw_spin_lock(&console_owner_lock); 1913 waiter = READ_ONCE(console_waiter); 1914 console_owner = NULL; 1915 raw_spin_unlock(&console_owner_lock); 1916 1917 if (!waiter) { 1918 spin_release(&console_owner_dep_map, _THIS_IP_); 1919 return 0; 1920 } 1921 1922 /* The waiter is now free to continue */ 1923 WRITE_ONCE(console_waiter, false); 1924 1925 spin_release(&console_owner_dep_map, _THIS_IP_); 1926 1927 /* 1928 * Preserve lockdep lock ordering. Release the SRCU read lock before 1929 * releasing the console_lock. 1930 */ 1931 console_srcu_read_unlock(cookie); 1932 1933 /* 1934 * Hand off console_lock to waiter. The waiter will perform 1935 * the up(). After this, the waiter is the console_lock owner. 1936 */ 1937 mutex_release(&console_lock_dep_map, _THIS_IP_); 1938 return 1; 1939 } 1940 1941 /** 1942 * console_trylock_spinning - try to get console_lock by busy waiting 1943 * 1944 * This allows to busy wait for the console_lock when the current 1945 * owner is running in specially marked sections. It means that 1946 * the current owner is running and cannot reschedule until it 1947 * is ready to lose the lock. 1948 * 1949 * Return: 1 if we got the lock, 0 othrewise 1950 */ 1951 static int console_trylock_spinning(void) 1952 { 1953 struct task_struct *owner = NULL; 1954 bool waiter; 1955 bool spin = false; 1956 unsigned long flags; 1957 1958 if (console_trylock()) 1959 return 1; 1960 1961 /* 1962 * It's unsafe to spin once a panic has begun. If we are the 1963 * panic CPU, we may have already halted the owner of the 1964 * console_sem. If we are not the panic CPU, then we should 1965 * avoid taking console_sem, so the panic CPU has a better 1966 * chance of cleanly acquiring it later. 1967 */ 1968 if (panic_in_progress()) 1969 return 0; 1970 1971 printk_safe_enter_irqsave(flags); 1972 1973 raw_spin_lock(&console_owner_lock); 1974 owner = READ_ONCE(console_owner); 1975 waiter = READ_ONCE(console_waiter); 1976 if (!waiter && owner && owner != current) { 1977 WRITE_ONCE(console_waiter, true); 1978 spin = true; 1979 } 1980 raw_spin_unlock(&console_owner_lock); 1981 1982 /* 1983 * If there is an active printk() writing to the 1984 * consoles, instead of having it write our data too, 1985 * see if we can offload that load from the active 1986 * printer, and do some printing ourselves. 1987 * Go into a spin only if there isn't already a waiter 1988 * spinning, and there is an active printer, and 1989 * that active printer isn't us (recursive printk?). 1990 */ 1991 if (!spin) { 1992 printk_safe_exit_irqrestore(flags); 1993 return 0; 1994 } 1995 1996 /* We spin waiting for the owner to release us */ 1997 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1998 /* Owner will clear console_waiter on hand off */ 1999 while (READ_ONCE(console_waiter)) 2000 cpu_relax(); 2001 spin_release(&console_owner_dep_map, _THIS_IP_); 2002 2003 printk_safe_exit_irqrestore(flags); 2004 /* 2005 * The owner passed the console lock to us. 2006 * Since we did not spin on console lock, annotate 2007 * this as a trylock. Otherwise lockdep will 2008 * complain. 2009 */ 2010 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 2011 2012 /* 2013 * Update @console_may_schedule for trylock because the previous 2014 * owner may have been schedulable. 2015 */ 2016 console_may_schedule = 0; 2017 2018 return 1; 2019 } 2020 2021 /* 2022 * Recursion is tracked separately on each CPU. If NMIs are supported, an 2023 * additional NMI context per CPU is also separately tracked. Until per-CPU 2024 * is available, a separate "early tracking" is performed. 2025 */ 2026 static DEFINE_PER_CPU(u8, printk_count); 2027 static u8 printk_count_early; 2028 #ifdef CONFIG_HAVE_NMI 2029 static DEFINE_PER_CPU(u8, printk_count_nmi); 2030 static u8 printk_count_nmi_early; 2031 #endif 2032 2033 /* 2034 * Recursion is limited to keep the output sane. printk() should not require 2035 * more than 1 level of recursion (allowing, for example, printk() to trigger 2036 * a WARN), but a higher value is used in case some printk-internal errors 2037 * exist, such as the ringbuffer validation checks failing. 2038 */ 2039 #define PRINTK_MAX_RECURSION 3 2040 2041 /* 2042 * Return a pointer to the dedicated counter for the CPU+context of the 2043 * caller. 2044 */ 2045 static u8 *__printk_recursion_counter(void) 2046 { 2047 #ifdef CONFIG_HAVE_NMI 2048 if (in_nmi()) { 2049 if (printk_percpu_data_ready()) 2050 return this_cpu_ptr(&printk_count_nmi); 2051 return &printk_count_nmi_early; 2052 } 2053 #endif 2054 if (printk_percpu_data_ready()) 2055 return this_cpu_ptr(&printk_count); 2056 return &printk_count_early; 2057 } 2058 2059 /* 2060 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2061 * The caller must check the boolean return value to see if the recursion is 2062 * allowed. On failure, interrupts are not disabled. 2063 * 2064 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2065 * that is passed to printk_exit_irqrestore(). 2066 */ 2067 #define printk_enter_irqsave(recursion_ptr, flags) \ 2068 ({ \ 2069 bool success = true; \ 2070 \ 2071 typecheck(u8 *, recursion_ptr); \ 2072 local_irq_save(flags); \ 2073 (recursion_ptr) = __printk_recursion_counter(); \ 2074 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2075 local_irq_restore(flags); \ 2076 success = false; \ 2077 } else { \ 2078 (*(recursion_ptr))++; \ 2079 } \ 2080 success; \ 2081 }) 2082 2083 /* Exit recursion tracking, restoring interrupts. */ 2084 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2085 do { \ 2086 typecheck(u8 *, recursion_ptr); \ 2087 (*(recursion_ptr))--; \ 2088 local_irq_restore(flags); \ 2089 } while (0) 2090 2091 int printk_delay_msec __read_mostly; 2092 2093 static inline void printk_delay(int level) 2094 { 2095 boot_delay_msec(level); 2096 2097 if (unlikely(printk_delay_msec)) { 2098 int m = printk_delay_msec; 2099 2100 while (m--) { 2101 mdelay(1); 2102 touch_nmi_watchdog(); 2103 } 2104 } 2105 } 2106 2107 static inline u32 printk_caller_id(void) 2108 { 2109 return in_task() ? task_pid_nr(current) : 2110 0x80000000 + smp_processor_id(); 2111 } 2112 2113 /** 2114 * printk_parse_prefix - Parse level and control flags. 2115 * 2116 * @text: The terminated text message. 2117 * @level: A pointer to the current level value, will be updated. 2118 * @flags: A pointer to the current printk_info flags, will be updated. 2119 * 2120 * @level may be NULL if the caller is not interested in the parsed value. 2121 * Otherwise the variable pointed to by @level must be set to 2122 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2123 * 2124 * @flags may be NULL if the caller is not interested in the parsed value. 2125 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2126 * value. 2127 * 2128 * Return: The length of the parsed level and control flags. 2129 */ 2130 u16 printk_parse_prefix(const char *text, int *level, 2131 enum printk_info_flags *flags) 2132 { 2133 u16 prefix_len = 0; 2134 int kern_level; 2135 2136 while (*text) { 2137 kern_level = printk_get_level(text); 2138 if (!kern_level) 2139 break; 2140 2141 switch (kern_level) { 2142 case '0' ... '7': 2143 if (level && *level == LOGLEVEL_DEFAULT) 2144 *level = kern_level - '0'; 2145 break; 2146 case 'c': /* KERN_CONT */ 2147 if (flags) 2148 *flags |= LOG_CONT; 2149 } 2150 2151 prefix_len += 2; 2152 text += 2; 2153 } 2154 2155 return prefix_len; 2156 } 2157 2158 __printf(5, 0) 2159 static u16 printk_sprint(char *text, u16 size, int facility, 2160 enum printk_info_flags *flags, const char *fmt, 2161 va_list args) 2162 { 2163 u16 text_len; 2164 2165 text_len = vscnprintf(text, size, fmt, args); 2166 2167 /* Mark and strip a trailing newline. */ 2168 if (text_len && text[text_len - 1] == '\n') { 2169 text_len--; 2170 *flags |= LOG_NEWLINE; 2171 } 2172 2173 /* Strip log level and control flags. */ 2174 if (facility == 0) { 2175 u16 prefix_len; 2176 2177 prefix_len = printk_parse_prefix(text, NULL, NULL); 2178 if (prefix_len) { 2179 text_len -= prefix_len; 2180 memmove(text, text + prefix_len, text_len); 2181 } 2182 } 2183 2184 trace_console(text, text_len); 2185 2186 return text_len; 2187 } 2188 2189 __printf(4, 0) 2190 int vprintk_store(int facility, int level, 2191 const struct dev_printk_info *dev_info, 2192 const char *fmt, va_list args) 2193 { 2194 struct prb_reserved_entry e; 2195 enum printk_info_flags flags = 0; 2196 struct printk_record r; 2197 unsigned long irqflags; 2198 u16 trunc_msg_len = 0; 2199 char prefix_buf[8]; 2200 u8 *recursion_ptr; 2201 u16 reserve_size; 2202 va_list args2; 2203 u32 caller_id; 2204 u16 text_len; 2205 int ret = 0; 2206 u64 ts_nsec; 2207 2208 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2209 return 0; 2210 2211 /* 2212 * Since the duration of printk() can vary depending on the message 2213 * and state of the ringbuffer, grab the timestamp now so that it is 2214 * close to the call of printk(). This provides a more deterministic 2215 * timestamp with respect to the caller. 2216 */ 2217 ts_nsec = local_clock(); 2218 2219 caller_id = printk_caller_id(); 2220 2221 /* 2222 * The sprintf needs to come first since the syslog prefix might be 2223 * passed in as a parameter. An extra byte must be reserved so that 2224 * later the vscnprintf() into the reserved buffer has room for the 2225 * terminating '\0', which is not counted by vsnprintf(). 2226 */ 2227 va_copy(args2, args); 2228 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2229 va_end(args2); 2230 2231 if (reserve_size > PRINTKRB_RECORD_MAX) 2232 reserve_size = PRINTKRB_RECORD_MAX; 2233 2234 /* Extract log level or control flags. */ 2235 if (facility == 0) 2236 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2237 2238 if (level == LOGLEVEL_DEFAULT) 2239 level = default_message_loglevel; 2240 2241 if (dev_info) 2242 flags |= LOG_NEWLINE; 2243 2244 if (flags & LOG_CONT) { 2245 prb_rec_init_wr(&r, reserve_size); 2246 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2247 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2248 facility, &flags, fmt, args); 2249 r.info->text_len += text_len; 2250 2251 if (flags & LOG_NEWLINE) { 2252 r.info->flags |= LOG_NEWLINE; 2253 prb_final_commit(&e); 2254 } else { 2255 prb_commit(&e); 2256 } 2257 2258 ret = text_len; 2259 goto out; 2260 } 2261 } 2262 2263 /* 2264 * Explicitly initialize the record before every prb_reserve() call. 2265 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2266 * structure when they fail. 2267 */ 2268 prb_rec_init_wr(&r, reserve_size); 2269 if (!prb_reserve(&e, prb, &r)) { 2270 /* truncate the message if it is too long for empty buffer */ 2271 truncate_msg(&reserve_size, &trunc_msg_len); 2272 2273 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2274 if (!prb_reserve(&e, prb, &r)) 2275 goto out; 2276 } 2277 2278 /* fill message */ 2279 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2280 if (trunc_msg_len) 2281 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2282 r.info->text_len = text_len + trunc_msg_len; 2283 r.info->facility = facility; 2284 r.info->level = level & 7; 2285 r.info->flags = flags & 0x1f; 2286 r.info->ts_nsec = ts_nsec; 2287 r.info->caller_id = caller_id; 2288 if (dev_info) 2289 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2290 2291 /* A message without a trailing newline can be continued. */ 2292 if (!(flags & LOG_NEWLINE)) 2293 prb_commit(&e); 2294 else 2295 prb_final_commit(&e); 2296 2297 ret = text_len + trunc_msg_len; 2298 out: 2299 printk_exit_irqrestore(recursion_ptr, irqflags); 2300 return ret; 2301 } 2302 2303 asmlinkage int vprintk_emit(int facility, int level, 2304 const struct dev_printk_info *dev_info, 2305 const char *fmt, va_list args) 2306 { 2307 int printed_len; 2308 bool in_sched = false; 2309 2310 /* Suppress unimportant messages after panic happens */ 2311 if (unlikely(suppress_printk)) 2312 return 0; 2313 2314 /* 2315 * The messages on the panic CPU are the most important. If 2316 * non-panic CPUs are generating any messages, they will be 2317 * silently dropped. 2318 */ 2319 if (other_cpu_in_panic() && !panic_triggering_all_cpu_backtrace) 2320 return 0; 2321 2322 if (level == LOGLEVEL_SCHED) { 2323 level = LOGLEVEL_DEFAULT; 2324 in_sched = true; 2325 } 2326 2327 printk_delay(level); 2328 2329 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2330 2331 /* If called from the scheduler, we can not call up(). */ 2332 if (!in_sched) { 2333 /* 2334 * The caller may be holding system-critical or 2335 * timing-sensitive locks. Disable preemption during 2336 * printing of all remaining records to all consoles so that 2337 * this context can return as soon as possible. Hopefully 2338 * another printk() caller will take over the printing. 2339 */ 2340 preempt_disable(); 2341 /* 2342 * Try to acquire and then immediately release the console 2343 * semaphore. The release will print out buffers. With the 2344 * spinning variant, this context tries to take over the 2345 * printing from another printing context. 2346 */ 2347 if (console_trylock_spinning()) 2348 console_unlock(); 2349 preempt_enable(); 2350 } 2351 2352 if (in_sched) 2353 defer_console_output(); 2354 else 2355 wake_up_klogd(); 2356 2357 return printed_len; 2358 } 2359 EXPORT_SYMBOL(vprintk_emit); 2360 2361 int vprintk_default(const char *fmt, va_list args) 2362 { 2363 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2364 } 2365 EXPORT_SYMBOL_GPL(vprintk_default); 2366 2367 asmlinkage __visible int _printk(const char *fmt, ...) 2368 { 2369 va_list args; 2370 int r; 2371 2372 va_start(args, fmt); 2373 r = vprintk(fmt, args); 2374 va_end(args); 2375 2376 return r; 2377 } 2378 EXPORT_SYMBOL(_printk); 2379 2380 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2381 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2382 2383 #else /* CONFIG_PRINTK */ 2384 2385 #define printk_time false 2386 2387 #define prb_read_valid(rb, seq, r) false 2388 #define prb_first_valid_seq(rb) 0 2389 #define prb_next_seq(rb) 0 2390 2391 static u64 syslog_seq; 2392 2393 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2394 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2395 2396 #endif /* CONFIG_PRINTK */ 2397 2398 #ifdef CONFIG_EARLY_PRINTK 2399 struct console *early_console; 2400 2401 asmlinkage __visible void early_printk(const char *fmt, ...) 2402 { 2403 va_list ap; 2404 char buf[512]; 2405 int n; 2406 2407 if (!early_console) 2408 return; 2409 2410 va_start(ap, fmt); 2411 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2412 va_end(ap); 2413 2414 early_console->write(early_console, buf, n); 2415 } 2416 #endif 2417 2418 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2419 { 2420 if (!user_specified) 2421 return; 2422 2423 /* 2424 * @c console was defined by the user on the command line. 2425 * Do not clear when added twice also by SPCR or the device tree. 2426 */ 2427 c->user_specified = true; 2428 /* At least one console defined by the user on the command line. */ 2429 console_set_on_cmdline = 1; 2430 } 2431 2432 static int __add_preferred_console(const char *name, const short idx, 2433 const char *devname, char *options, 2434 char *brl_options, bool user_specified) 2435 { 2436 struct console_cmdline *c; 2437 int i; 2438 2439 if (!name && !devname) 2440 return -EINVAL; 2441 2442 /* 2443 * We use a signed short index for struct console for device drivers to 2444 * indicate a not yet assigned index or port. However, a negative index 2445 * value is not valid when the console name and index are defined on 2446 * the command line. 2447 */ 2448 if (name && idx < 0) 2449 return -EINVAL; 2450 2451 /* 2452 * See if this tty is not yet registered, and 2453 * if we have a slot free. 2454 */ 2455 for (i = 0, c = console_cmdline; 2456 i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 2457 i++, c++) { 2458 if ((name && strcmp(c->name, name) == 0 && c->index == idx) || 2459 (devname && strcmp(c->devname, devname) == 0)) { 2460 if (!brl_options) 2461 preferred_console = i; 2462 set_user_specified(c, user_specified); 2463 return 0; 2464 } 2465 } 2466 if (i == MAX_CMDLINECONSOLES) 2467 return -E2BIG; 2468 if (!brl_options) 2469 preferred_console = i; 2470 if (name) 2471 strscpy(c->name, name); 2472 if (devname) 2473 strscpy(c->devname, devname); 2474 c->options = options; 2475 set_user_specified(c, user_specified); 2476 braille_set_options(c, brl_options); 2477 2478 c->index = idx; 2479 return 0; 2480 } 2481 2482 static int __init console_msg_format_setup(char *str) 2483 { 2484 if (!strcmp(str, "syslog")) 2485 console_msg_format = MSG_FORMAT_SYSLOG; 2486 if (!strcmp(str, "default")) 2487 console_msg_format = MSG_FORMAT_DEFAULT; 2488 return 1; 2489 } 2490 __setup("console_msg_format=", console_msg_format_setup); 2491 2492 /* 2493 * Set up a console. Called via do_early_param() in init/main.c 2494 * for each "console=" parameter in the boot command line. 2495 */ 2496 static int __init console_setup(char *str) 2497 { 2498 static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4); 2499 char buf[sizeof(console_cmdline[0].devname)]; 2500 char *brl_options = NULL; 2501 char *ttyname = NULL; 2502 char *devname = NULL; 2503 char *options; 2504 char *s; 2505 int idx; 2506 2507 /* 2508 * console="" or console=null have been suggested as a way to 2509 * disable console output. Use ttynull that has been created 2510 * for exactly this purpose. 2511 */ 2512 if (str[0] == 0 || strcmp(str, "null") == 0) { 2513 __add_preferred_console("ttynull", 0, NULL, NULL, NULL, true); 2514 return 1; 2515 } 2516 2517 if (_braille_console_setup(&str, &brl_options)) 2518 return 1; 2519 2520 /* For a DEVNAME:0.0 style console the character device is unknown early */ 2521 if (strchr(str, ':')) 2522 devname = buf; 2523 else 2524 ttyname = buf; 2525 2526 /* 2527 * Decode str into name, index, options. 2528 */ 2529 if (ttyname && isdigit(str[0])) 2530 scnprintf(buf, sizeof(buf), "ttyS%s", str); 2531 else 2532 strscpy(buf, str); 2533 2534 options = strchr(str, ','); 2535 if (options) 2536 *(options++) = 0; 2537 2538 #ifdef __sparc__ 2539 if (!strcmp(str, "ttya")) 2540 strscpy(buf, "ttyS0"); 2541 if (!strcmp(str, "ttyb")) 2542 strscpy(buf, "ttyS1"); 2543 #endif 2544 2545 for (s = buf; *s; s++) 2546 if ((ttyname && isdigit(*s)) || *s == ',') 2547 break; 2548 2549 /* @idx will get defined when devname matches. */ 2550 if (devname) 2551 idx = -1; 2552 else 2553 idx = simple_strtoul(s, NULL, 10); 2554 2555 *s = 0; 2556 2557 __add_preferred_console(ttyname, idx, devname, options, brl_options, true); 2558 return 1; 2559 } 2560 __setup("console=", console_setup); 2561 2562 /** 2563 * add_preferred_console - add a device to the list of preferred consoles. 2564 * @name: device name 2565 * @idx: device index 2566 * @options: options for this console 2567 * 2568 * The last preferred console added will be used for kernel messages 2569 * and stdin/out/err for init. Normally this is used by console_setup 2570 * above to handle user-supplied console arguments; however it can also 2571 * be used by arch-specific code either to override the user or more 2572 * commonly to provide a default console (ie from PROM variables) when 2573 * the user has not supplied one. 2574 */ 2575 int add_preferred_console(const char *name, const short idx, char *options) 2576 { 2577 return __add_preferred_console(name, idx, NULL, options, NULL, false); 2578 } 2579 2580 /** 2581 * match_devname_and_update_preferred_console - Update a preferred console 2582 * when matching devname is found. 2583 * @devname: DEVNAME:0.0 style device name 2584 * @name: Name of the corresponding console driver, e.g. "ttyS" 2585 * @idx: Console index, e.g. port number. 2586 * 2587 * The function checks whether a device with the given @devname is 2588 * preferred via the console=DEVNAME:0.0 command line option. 2589 * It fills the missing console driver name and console index 2590 * so that a later register_console() call could find (match) 2591 * and enable this device. 2592 * 2593 * It might be used when a driver subsystem initializes particular 2594 * devices with already known DEVNAME:0.0 style names. And it 2595 * could predict which console driver name and index this device 2596 * would later get associated with. 2597 * 2598 * Return: 0 on success, negative error code on failure. 2599 */ 2600 int match_devname_and_update_preferred_console(const char *devname, 2601 const char *name, 2602 const short idx) 2603 { 2604 struct console_cmdline *c = console_cmdline; 2605 int i; 2606 2607 if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0) 2608 return -EINVAL; 2609 2610 for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 2611 i++, c++) { 2612 if (!strcmp(devname, c->devname)) { 2613 pr_info("associate the preferred console \"%s\" with \"%s%d\"\n", 2614 devname, name, idx); 2615 strscpy(c->name, name); 2616 c->index = idx; 2617 return 0; 2618 } 2619 } 2620 2621 return -ENOENT; 2622 } 2623 2624 bool console_suspend_enabled = true; 2625 EXPORT_SYMBOL(console_suspend_enabled); 2626 2627 static int __init console_suspend_disable(char *str) 2628 { 2629 console_suspend_enabled = false; 2630 return 1; 2631 } 2632 __setup("no_console_suspend", console_suspend_disable); 2633 module_param_named(console_suspend, console_suspend_enabled, 2634 bool, S_IRUGO | S_IWUSR); 2635 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2636 " and hibernate operations"); 2637 2638 static bool printk_console_no_auto_verbose; 2639 2640 void console_verbose(void) 2641 { 2642 if (console_loglevel && !printk_console_no_auto_verbose) 2643 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2644 } 2645 EXPORT_SYMBOL_GPL(console_verbose); 2646 2647 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2648 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2649 2650 /** 2651 * suspend_console - suspend the console subsystem 2652 * 2653 * This disables printk() while we go into suspend states 2654 */ 2655 void suspend_console(void) 2656 { 2657 struct console *con; 2658 2659 if (!console_suspend_enabled) 2660 return; 2661 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2662 pr_flush(1000, true); 2663 2664 console_list_lock(); 2665 for_each_console(con) 2666 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2667 console_list_unlock(); 2668 2669 /* 2670 * Ensure that all SRCU list walks have completed. All printing 2671 * contexts must be able to see that they are suspended so that it 2672 * is guaranteed that all printing has stopped when this function 2673 * completes. 2674 */ 2675 synchronize_srcu(&console_srcu); 2676 } 2677 2678 void resume_console(void) 2679 { 2680 struct console *con; 2681 2682 if (!console_suspend_enabled) 2683 return; 2684 2685 console_list_lock(); 2686 for_each_console(con) 2687 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2688 console_list_unlock(); 2689 2690 /* 2691 * Ensure that all SRCU list walks have completed. All printing 2692 * contexts must be able to see they are no longer suspended so 2693 * that they are guaranteed to wake up and resume printing. 2694 */ 2695 synchronize_srcu(&console_srcu); 2696 2697 pr_flush(1000, true); 2698 } 2699 2700 /** 2701 * console_cpu_notify - print deferred console messages after CPU hotplug 2702 * @cpu: unused 2703 * 2704 * If printk() is called from a CPU that is not online yet, the messages 2705 * will be printed on the console only if there are CON_ANYTIME consoles. 2706 * This function is called when a new CPU comes online (or fails to come 2707 * up) or goes offline. 2708 */ 2709 static int console_cpu_notify(unsigned int cpu) 2710 { 2711 if (!cpuhp_tasks_frozen) { 2712 /* If trylock fails, someone else is doing the printing */ 2713 if (console_trylock()) 2714 console_unlock(); 2715 } 2716 return 0; 2717 } 2718 2719 /** 2720 * console_lock - block the console subsystem from printing 2721 * 2722 * Acquires a lock which guarantees that no consoles will 2723 * be in or enter their write() callback. 2724 * 2725 * Can sleep, returns nothing. 2726 */ 2727 void console_lock(void) 2728 { 2729 might_sleep(); 2730 2731 /* On panic, the console_lock must be left to the panic cpu. */ 2732 while (other_cpu_in_panic()) 2733 msleep(1000); 2734 2735 down_console_sem(); 2736 console_locked = 1; 2737 console_may_schedule = 1; 2738 } 2739 EXPORT_SYMBOL(console_lock); 2740 2741 /** 2742 * console_trylock - try to block the console subsystem from printing 2743 * 2744 * Try to acquire a lock which guarantees that no consoles will 2745 * be in or enter their write() callback. 2746 * 2747 * returns 1 on success, and 0 on failure to acquire the lock. 2748 */ 2749 int console_trylock(void) 2750 { 2751 /* On panic, the console_lock must be left to the panic cpu. */ 2752 if (other_cpu_in_panic()) 2753 return 0; 2754 if (down_trylock_console_sem()) 2755 return 0; 2756 console_locked = 1; 2757 console_may_schedule = 0; 2758 return 1; 2759 } 2760 EXPORT_SYMBOL(console_trylock); 2761 2762 int is_console_locked(void) 2763 { 2764 return console_locked; 2765 } 2766 EXPORT_SYMBOL(is_console_locked); 2767 2768 /* 2769 * Check if the given console is currently capable and allowed to print 2770 * records. 2771 * 2772 * Requires the console_srcu_read_lock. 2773 */ 2774 static inline bool console_is_usable(struct console *con) 2775 { 2776 short flags = console_srcu_read_flags(con); 2777 2778 if (!(flags & CON_ENABLED)) 2779 return false; 2780 2781 if ((flags & CON_SUSPENDED)) 2782 return false; 2783 2784 if (!con->write) 2785 return false; 2786 2787 /* 2788 * Console drivers may assume that per-cpu resources have been 2789 * allocated. So unless they're explicitly marked as being able to 2790 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2791 */ 2792 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2793 return false; 2794 2795 return true; 2796 } 2797 2798 static void __console_unlock(void) 2799 { 2800 console_locked = 0; 2801 up_console_sem(); 2802 } 2803 2804 #ifdef CONFIG_PRINTK 2805 2806 /* 2807 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2808 * is achieved by shifting the existing message over and inserting the dropped 2809 * message. 2810 * 2811 * @pmsg is the printk message to prepend. 2812 * 2813 * @dropped is the dropped count to report in the dropped message. 2814 * 2815 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2816 * the dropped message, the message text will be sufficiently truncated. 2817 * 2818 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2819 */ 2820 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2821 { 2822 struct printk_buffers *pbufs = pmsg->pbufs; 2823 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2824 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2825 char *scratchbuf = &pbufs->scratchbuf[0]; 2826 char *outbuf = &pbufs->outbuf[0]; 2827 size_t len; 2828 2829 len = scnprintf(scratchbuf, scratchbuf_sz, 2830 "** %lu printk messages dropped **\n", dropped); 2831 2832 /* 2833 * Make sure outbuf is sufficiently large before prepending. 2834 * Keep at least the prefix when the message must be truncated. 2835 * It is a rather theoretical problem when someone tries to 2836 * use a minimalist buffer. 2837 */ 2838 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2839 return; 2840 2841 if (pmsg->outbuf_len + len >= outbuf_sz) { 2842 /* Truncate the message, but keep it terminated. */ 2843 pmsg->outbuf_len = outbuf_sz - (len + 1); 2844 outbuf[pmsg->outbuf_len] = 0; 2845 } 2846 2847 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2848 memcpy(outbuf, scratchbuf, len); 2849 pmsg->outbuf_len += len; 2850 } 2851 2852 /* 2853 * Read and format the specified record (or a later record if the specified 2854 * record is not available). 2855 * 2856 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2857 * struct printk_buffers. 2858 * 2859 * @seq is the record to read and format. If it is not available, the next 2860 * valid record is read. 2861 * 2862 * @is_extended specifies if the message should be formatted for extended 2863 * console output. 2864 * 2865 * @may_supress specifies if records may be skipped based on loglevel. 2866 * 2867 * Returns false if no record is available. Otherwise true and all fields 2868 * of @pmsg are valid. (See the documentation of struct printk_message 2869 * for information about the @pmsg fields.) 2870 */ 2871 bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2872 bool is_extended, bool may_suppress) 2873 { 2874 struct printk_buffers *pbufs = pmsg->pbufs; 2875 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2876 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2877 char *scratchbuf = &pbufs->scratchbuf[0]; 2878 char *outbuf = &pbufs->outbuf[0]; 2879 struct printk_info info; 2880 struct printk_record r; 2881 size_t len = 0; 2882 2883 /* 2884 * Formatting extended messages requires a separate buffer, so use the 2885 * scratch buffer to read in the ringbuffer text. 2886 * 2887 * Formatting normal messages is done in-place, so read the ringbuffer 2888 * text directly into the output buffer. 2889 */ 2890 if (is_extended) 2891 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2892 else 2893 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2894 2895 if (!prb_read_valid(prb, seq, &r)) 2896 return false; 2897 2898 pmsg->seq = r.info->seq; 2899 pmsg->dropped = r.info->seq - seq; 2900 2901 /* Skip record that has level above the console loglevel. */ 2902 if (may_suppress && suppress_message_printing(r.info->level)) 2903 goto out; 2904 2905 if (is_extended) { 2906 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2907 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2908 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2909 } else { 2910 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2911 } 2912 out: 2913 pmsg->outbuf_len = len; 2914 return true; 2915 } 2916 2917 /* 2918 * Used as the printk buffers for non-panic, serialized console printing. 2919 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles. 2920 * Its usage requires the console_lock held. 2921 */ 2922 struct printk_buffers printk_shared_pbufs; 2923 2924 /* 2925 * Print one record for the given console. The record printed is whatever 2926 * record is the next available record for the given console. 2927 * 2928 * @handover will be set to true if a printk waiter has taken over the 2929 * console_lock, in which case the caller is no longer holding both the 2930 * console_lock and the SRCU read lock. Otherwise it is set to false. 2931 * 2932 * @cookie is the cookie from the SRCU read lock. 2933 * 2934 * Returns false if the given console has no next record to print, otherwise 2935 * true. 2936 * 2937 * Requires the console_lock and the SRCU read lock. 2938 */ 2939 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2940 { 2941 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2942 char *outbuf = &printk_shared_pbufs.outbuf[0]; 2943 struct printk_message pmsg = { 2944 .pbufs = &printk_shared_pbufs, 2945 }; 2946 unsigned long flags; 2947 2948 *handover = false; 2949 2950 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2951 return false; 2952 2953 con->dropped += pmsg.dropped; 2954 2955 /* Skip messages of formatted length 0. */ 2956 if (pmsg.outbuf_len == 0) { 2957 con->seq = pmsg.seq + 1; 2958 goto skip; 2959 } 2960 2961 if (con->dropped && !is_extended) { 2962 console_prepend_dropped(&pmsg, con->dropped); 2963 con->dropped = 0; 2964 } 2965 2966 /* 2967 * While actively printing out messages, if another printk() 2968 * were to occur on another CPU, it may wait for this one to 2969 * finish. This task can not be preempted if there is a 2970 * waiter waiting to take over. 2971 * 2972 * Interrupts are disabled because the hand over to a waiter 2973 * must not be interrupted until the hand over is completed 2974 * (@console_waiter is cleared). 2975 */ 2976 printk_safe_enter_irqsave(flags); 2977 console_lock_spinning_enable(); 2978 2979 /* Do not trace print latency. */ 2980 stop_critical_timings(); 2981 2982 /* Write everything out to the hardware. */ 2983 con->write(con, outbuf, pmsg.outbuf_len); 2984 2985 start_critical_timings(); 2986 2987 con->seq = pmsg.seq + 1; 2988 2989 *handover = console_lock_spinning_disable_and_check(cookie); 2990 printk_safe_exit_irqrestore(flags); 2991 skip: 2992 return true; 2993 } 2994 2995 #else 2996 2997 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2998 { 2999 *handover = false; 3000 return false; 3001 } 3002 3003 #endif /* CONFIG_PRINTK */ 3004 3005 /* 3006 * Print out all remaining records to all consoles. 3007 * 3008 * @do_cond_resched is set by the caller. It can be true only in schedulable 3009 * context. 3010 * 3011 * @next_seq is set to the sequence number after the last available record. 3012 * The value is valid only when this function returns true. It means that all 3013 * usable consoles are completely flushed. 3014 * 3015 * @handover will be set to true if a printk waiter has taken over the 3016 * console_lock, in which case the caller is no longer holding the 3017 * console_lock. Otherwise it is set to false. 3018 * 3019 * Returns true when there was at least one usable console and all messages 3020 * were flushed to all usable consoles. A returned false informs the caller 3021 * that everything was not flushed (either there were no usable consoles or 3022 * another context has taken over printing or it is a panic situation and this 3023 * is not the panic CPU). Regardless the reason, the caller should assume it 3024 * is not useful to immediately try again. 3025 * 3026 * Requires the console_lock. 3027 */ 3028 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 3029 { 3030 bool any_usable = false; 3031 struct console *con; 3032 bool any_progress; 3033 int cookie; 3034 3035 *next_seq = 0; 3036 *handover = false; 3037 3038 do { 3039 any_progress = false; 3040 3041 cookie = console_srcu_read_lock(); 3042 for_each_console_srcu(con) { 3043 bool progress; 3044 3045 if (!console_is_usable(con)) 3046 continue; 3047 any_usable = true; 3048 3049 progress = console_emit_next_record(con, handover, cookie); 3050 3051 /* 3052 * If a handover has occurred, the SRCU read lock 3053 * is already released. 3054 */ 3055 if (*handover) 3056 return false; 3057 3058 /* Track the next of the highest seq flushed. */ 3059 if (con->seq > *next_seq) 3060 *next_seq = con->seq; 3061 3062 if (!progress) 3063 continue; 3064 any_progress = true; 3065 3066 /* Allow panic_cpu to take over the consoles safely. */ 3067 if (other_cpu_in_panic()) 3068 goto abandon; 3069 3070 if (do_cond_resched) 3071 cond_resched(); 3072 } 3073 console_srcu_read_unlock(cookie); 3074 } while (any_progress); 3075 3076 return any_usable; 3077 3078 abandon: 3079 console_srcu_read_unlock(cookie); 3080 return false; 3081 } 3082 3083 /** 3084 * console_unlock - unblock the console subsystem from printing 3085 * 3086 * Releases the console_lock which the caller holds to block printing of 3087 * the console subsystem. 3088 * 3089 * While the console_lock was held, console output may have been buffered 3090 * by printk(). If this is the case, console_unlock(); emits 3091 * the output prior to releasing the lock. 3092 * 3093 * console_unlock(); may be called from any context. 3094 */ 3095 void console_unlock(void) 3096 { 3097 bool do_cond_resched; 3098 bool handover; 3099 bool flushed; 3100 u64 next_seq; 3101 3102 /* 3103 * Console drivers are called with interrupts disabled, so 3104 * @console_may_schedule should be cleared before; however, we may 3105 * end up dumping a lot of lines, for example, if called from 3106 * console registration path, and should invoke cond_resched() 3107 * between lines if allowable. Not doing so can cause a very long 3108 * scheduling stall on a slow console leading to RCU stall and 3109 * softlockup warnings which exacerbate the issue with more 3110 * messages practically incapacitating the system. Therefore, create 3111 * a local to use for the printing loop. 3112 */ 3113 do_cond_resched = console_may_schedule; 3114 3115 do { 3116 console_may_schedule = 0; 3117 3118 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3119 if (!handover) 3120 __console_unlock(); 3121 3122 /* 3123 * Abort if there was a failure to flush all messages to all 3124 * usable consoles. Either it is not possible to flush (in 3125 * which case it would be an infinite loop of retrying) or 3126 * another context has taken over printing. 3127 */ 3128 if (!flushed) 3129 break; 3130 3131 /* 3132 * Some context may have added new records after 3133 * console_flush_all() but before unlocking the console. 3134 * Re-check if there is a new record to flush. If the trylock 3135 * fails, another context is already handling the printing. 3136 */ 3137 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3138 } 3139 EXPORT_SYMBOL(console_unlock); 3140 3141 /** 3142 * console_conditional_schedule - yield the CPU if required 3143 * 3144 * If the console code is currently allowed to sleep, and 3145 * if this CPU should yield the CPU to another task, do 3146 * so here. 3147 * 3148 * Must be called within console_lock();. 3149 */ 3150 void __sched console_conditional_schedule(void) 3151 { 3152 if (console_may_schedule) 3153 cond_resched(); 3154 } 3155 EXPORT_SYMBOL(console_conditional_schedule); 3156 3157 void console_unblank(void) 3158 { 3159 bool found_unblank = false; 3160 struct console *c; 3161 int cookie; 3162 3163 /* 3164 * First check if there are any consoles implementing the unblank() 3165 * callback. If not, there is no reason to continue and take the 3166 * console lock, which in particular can be dangerous if 3167 * @oops_in_progress is set. 3168 */ 3169 cookie = console_srcu_read_lock(); 3170 for_each_console_srcu(c) { 3171 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) { 3172 found_unblank = true; 3173 break; 3174 } 3175 } 3176 console_srcu_read_unlock(cookie); 3177 if (!found_unblank) 3178 return; 3179 3180 /* 3181 * Stop console printing because the unblank() callback may 3182 * assume the console is not within its write() callback. 3183 * 3184 * If @oops_in_progress is set, this may be an atomic context. 3185 * In that case, attempt a trylock as best-effort. 3186 */ 3187 if (oops_in_progress) { 3188 /* Semaphores are not NMI-safe. */ 3189 if (in_nmi()) 3190 return; 3191 3192 /* 3193 * Attempting to trylock the console lock can deadlock 3194 * if another CPU was stopped while modifying the 3195 * semaphore. "Hope and pray" that this is not the 3196 * current situation. 3197 */ 3198 if (down_trylock_console_sem() != 0) 3199 return; 3200 } else 3201 console_lock(); 3202 3203 console_locked = 1; 3204 console_may_schedule = 0; 3205 3206 cookie = console_srcu_read_lock(); 3207 for_each_console_srcu(c) { 3208 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3209 c->unblank(); 3210 } 3211 console_srcu_read_unlock(cookie); 3212 3213 console_unlock(); 3214 3215 if (!oops_in_progress) 3216 pr_flush(1000, true); 3217 } 3218 3219 /* 3220 * Rewind all consoles to the oldest available record. 3221 * 3222 * IMPORTANT: The function is safe only when called under 3223 * console_lock(). It is not enforced because 3224 * it is used as a best effort in panic(). 3225 */ 3226 static void __console_rewind_all(void) 3227 { 3228 struct console *c; 3229 short flags; 3230 int cookie; 3231 u64 seq; 3232 3233 seq = prb_first_valid_seq(prb); 3234 3235 cookie = console_srcu_read_lock(); 3236 for_each_console_srcu(c) { 3237 flags = console_srcu_read_flags(c); 3238 3239 if (flags & CON_NBCON) { 3240 nbcon_seq_force(c, seq); 3241 } else { 3242 /* 3243 * This assignment is safe only when called under 3244 * console_lock(). On panic, legacy consoles are 3245 * only best effort. 3246 */ 3247 c->seq = seq; 3248 } 3249 } 3250 console_srcu_read_unlock(cookie); 3251 } 3252 3253 /** 3254 * console_flush_on_panic - flush console content on panic 3255 * @mode: flush all messages in buffer or just the pending ones 3256 * 3257 * Immediately output all pending messages no matter what. 3258 */ 3259 void console_flush_on_panic(enum con_flush_mode mode) 3260 { 3261 bool handover; 3262 u64 next_seq; 3263 3264 /* 3265 * Ignore the console lock and flush out the messages. Attempting a 3266 * trylock would not be useful because: 3267 * 3268 * - if it is contended, it must be ignored anyway 3269 * - console_lock() and console_trylock() block and fail 3270 * respectively in panic for non-panic CPUs 3271 * - semaphores are not NMI-safe 3272 */ 3273 3274 /* 3275 * If another context is holding the console lock, 3276 * @console_may_schedule might be set. Clear it so that 3277 * this context does not call cond_resched() while flushing. 3278 */ 3279 console_may_schedule = 0; 3280 3281 if (mode == CONSOLE_REPLAY_ALL) 3282 __console_rewind_all(); 3283 3284 console_flush_all(false, &next_seq, &handover); 3285 } 3286 3287 /* 3288 * Return the console tty driver structure and its associated index 3289 */ 3290 struct tty_driver *console_device(int *index) 3291 { 3292 struct console *c; 3293 struct tty_driver *driver = NULL; 3294 int cookie; 3295 3296 /* 3297 * Take console_lock to serialize device() callback with 3298 * other console operations. For example, fg_console is 3299 * modified under console_lock when switching vt. 3300 */ 3301 console_lock(); 3302 3303 cookie = console_srcu_read_lock(); 3304 for_each_console_srcu(c) { 3305 if (!c->device) 3306 continue; 3307 driver = c->device(c, index); 3308 if (driver) 3309 break; 3310 } 3311 console_srcu_read_unlock(cookie); 3312 3313 console_unlock(); 3314 return driver; 3315 } 3316 3317 /* 3318 * Prevent further output on the passed console device so that (for example) 3319 * serial drivers can disable console output before suspending a port, and can 3320 * re-enable output afterwards. 3321 */ 3322 void console_stop(struct console *console) 3323 { 3324 __pr_flush(console, 1000, true); 3325 console_list_lock(); 3326 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3327 console_list_unlock(); 3328 3329 /* 3330 * Ensure that all SRCU list walks have completed. All contexts must 3331 * be able to see that this console is disabled so that (for example) 3332 * the caller can suspend the port without risk of another context 3333 * using the port. 3334 */ 3335 synchronize_srcu(&console_srcu); 3336 } 3337 EXPORT_SYMBOL(console_stop); 3338 3339 void console_start(struct console *console) 3340 { 3341 console_list_lock(); 3342 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3343 console_list_unlock(); 3344 __pr_flush(console, 1000, true); 3345 } 3346 EXPORT_SYMBOL(console_start); 3347 3348 static int __read_mostly keep_bootcon; 3349 3350 static int __init keep_bootcon_setup(char *str) 3351 { 3352 keep_bootcon = 1; 3353 pr_info("debug: skip boot console de-registration.\n"); 3354 3355 return 0; 3356 } 3357 3358 early_param("keep_bootcon", keep_bootcon_setup); 3359 3360 static int console_call_setup(struct console *newcon, char *options) 3361 { 3362 int err; 3363 3364 if (!newcon->setup) 3365 return 0; 3366 3367 /* Synchronize with possible boot console. */ 3368 console_lock(); 3369 err = newcon->setup(newcon, options); 3370 console_unlock(); 3371 3372 return err; 3373 } 3374 3375 /* 3376 * This is called by register_console() to try to match 3377 * the newly registered console with any of the ones selected 3378 * by either the command line or add_preferred_console() and 3379 * setup/enable it. 3380 * 3381 * Care need to be taken with consoles that are statically 3382 * enabled such as netconsole 3383 */ 3384 static int try_enable_preferred_console(struct console *newcon, 3385 bool user_specified) 3386 { 3387 struct console_cmdline *c; 3388 int i, err; 3389 3390 for (i = 0, c = console_cmdline; 3391 i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 3392 i++, c++) { 3393 /* Console not yet initialized? */ 3394 if (!c->name[0]) 3395 continue; 3396 if (c->user_specified != user_specified) 3397 continue; 3398 if (!newcon->match || 3399 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3400 /* default matching */ 3401 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3402 if (strcmp(c->name, newcon->name) != 0) 3403 continue; 3404 if (newcon->index >= 0 && 3405 newcon->index != c->index) 3406 continue; 3407 if (newcon->index < 0) 3408 newcon->index = c->index; 3409 3410 if (_braille_register_console(newcon, c)) 3411 return 0; 3412 3413 err = console_call_setup(newcon, c->options); 3414 if (err) 3415 return err; 3416 } 3417 newcon->flags |= CON_ENABLED; 3418 if (i == preferred_console) 3419 newcon->flags |= CON_CONSDEV; 3420 return 0; 3421 } 3422 3423 /* 3424 * Some consoles, such as pstore and netconsole, can be enabled even 3425 * without matching. Accept the pre-enabled consoles only when match() 3426 * and setup() had a chance to be called. 3427 */ 3428 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3429 return 0; 3430 3431 return -ENOENT; 3432 } 3433 3434 /* Try to enable the console unconditionally */ 3435 static void try_enable_default_console(struct console *newcon) 3436 { 3437 if (newcon->index < 0) 3438 newcon->index = 0; 3439 3440 if (console_call_setup(newcon, NULL) != 0) 3441 return; 3442 3443 newcon->flags |= CON_ENABLED; 3444 3445 if (newcon->device) 3446 newcon->flags |= CON_CONSDEV; 3447 } 3448 3449 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3450 { 3451 struct console *con; 3452 bool handover; 3453 3454 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3455 /* Get a consistent copy of @syslog_seq. */ 3456 mutex_lock(&syslog_lock); 3457 newcon->seq = syslog_seq; 3458 mutex_unlock(&syslog_lock); 3459 } else { 3460 /* Begin with next message added to ringbuffer. */ 3461 newcon->seq = prb_next_seq(prb); 3462 3463 /* 3464 * If any enabled boot consoles are due to be unregistered 3465 * shortly, some may not be caught up and may be the same 3466 * device as @newcon. Since it is not known which boot console 3467 * is the same device, flush all consoles and, if necessary, 3468 * start with the message of the enabled boot console that is 3469 * the furthest behind. 3470 */ 3471 if (bootcon_registered && !keep_bootcon) { 3472 /* 3473 * Hold the console_lock to stop console printing and 3474 * guarantee safe access to console->seq. 3475 */ 3476 console_lock(); 3477 3478 /* 3479 * Flush all consoles and set the console to start at 3480 * the next unprinted sequence number. 3481 */ 3482 if (!console_flush_all(true, &newcon->seq, &handover)) { 3483 /* 3484 * Flushing failed. Just choose the lowest 3485 * sequence of the enabled boot consoles. 3486 */ 3487 3488 /* 3489 * If there was a handover, this context no 3490 * longer holds the console_lock. 3491 */ 3492 if (handover) 3493 console_lock(); 3494 3495 newcon->seq = prb_next_seq(prb); 3496 for_each_console(con) { 3497 if ((con->flags & CON_BOOT) && 3498 (con->flags & CON_ENABLED) && 3499 con->seq < newcon->seq) { 3500 newcon->seq = con->seq; 3501 } 3502 } 3503 } 3504 3505 console_unlock(); 3506 } 3507 } 3508 } 3509 3510 #define console_first() \ 3511 hlist_entry(console_list.first, struct console, node) 3512 3513 static int unregister_console_locked(struct console *console); 3514 3515 /* 3516 * The console driver calls this routine during kernel initialization 3517 * to register the console printing procedure with printk() and to 3518 * print any messages that were printed by the kernel before the 3519 * console driver was initialized. 3520 * 3521 * This can happen pretty early during the boot process (because of 3522 * early_printk) - sometimes before setup_arch() completes - be careful 3523 * of what kernel features are used - they may not be initialised yet. 3524 * 3525 * There are two types of consoles - bootconsoles (early_printk) and 3526 * "real" consoles (everything which is not a bootconsole) which are 3527 * handled differently. 3528 * - Any number of bootconsoles can be registered at any time. 3529 * - As soon as a "real" console is registered, all bootconsoles 3530 * will be unregistered automatically. 3531 * - Once a "real" console is registered, any attempt to register a 3532 * bootconsoles will be rejected 3533 */ 3534 void register_console(struct console *newcon) 3535 { 3536 struct console *con; 3537 bool bootcon_registered = false; 3538 bool realcon_registered = false; 3539 int err; 3540 3541 console_list_lock(); 3542 3543 for_each_console(con) { 3544 if (WARN(con == newcon, "console '%s%d' already registered\n", 3545 con->name, con->index)) { 3546 goto unlock; 3547 } 3548 3549 if (con->flags & CON_BOOT) 3550 bootcon_registered = true; 3551 else 3552 realcon_registered = true; 3553 } 3554 3555 /* Do not register boot consoles when there already is a real one. */ 3556 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3557 pr_info("Too late to register bootconsole %s%d\n", 3558 newcon->name, newcon->index); 3559 goto unlock; 3560 } 3561 3562 if (newcon->flags & CON_NBCON) { 3563 /* 3564 * Ensure the nbcon console buffers can be allocated 3565 * before modifying any global data. 3566 */ 3567 if (!nbcon_alloc(newcon)) 3568 goto unlock; 3569 } 3570 3571 /* 3572 * See if we want to enable this console driver by default. 3573 * 3574 * Nope when a console is preferred by the command line, device 3575 * tree, or SPCR. 3576 * 3577 * The first real console with tty binding (driver) wins. More 3578 * consoles might get enabled before the right one is found. 3579 * 3580 * Note that a console with tty binding will have CON_CONSDEV 3581 * flag set and will be first in the list. 3582 */ 3583 if (preferred_console < 0) { 3584 if (hlist_empty(&console_list) || !console_first()->device || 3585 console_first()->flags & CON_BOOT) { 3586 try_enable_default_console(newcon); 3587 } 3588 } 3589 3590 /* See if this console matches one we selected on the command line */ 3591 err = try_enable_preferred_console(newcon, true); 3592 3593 /* If not, try to match against the platform default(s) */ 3594 if (err == -ENOENT) 3595 err = try_enable_preferred_console(newcon, false); 3596 3597 /* printk() messages are not printed to the Braille console. */ 3598 if (err || newcon->flags & CON_BRL) { 3599 if (newcon->flags & CON_NBCON) 3600 nbcon_free(newcon); 3601 goto unlock; 3602 } 3603 3604 /* 3605 * If we have a bootconsole, and are switching to a real console, 3606 * don't print everything out again, since when the boot console, and 3607 * the real console are the same physical device, it's annoying to 3608 * see the beginning boot messages twice 3609 */ 3610 if (bootcon_registered && 3611 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3612 newcon->flags &= ~CON_PRINTBUFFER; 3613 } 3614 3615 newcon->dropped = 0; 3616 console_init_seq(newcon, bootcon_registered); 3617 3618 if (newcon->flags & CON_NBCON) 3619 nbcon_init(newcon); 3620 3621 /* 3622 * Put this console in the list - keep the 3623 * preferred driver at the head of the list. 3624 */ 3625 if (hlist_empty(&console_list)) { 3626 /* Ensure CON_CONSDEV is always set for the head. */ 3627 newcon->flags |= CON_CONSDEV; 3628 hlist_add_head_rcu(&newcon->node, &console_list); 3629 3630 } else if (newcon->flags & CON_CONSDEV) { 3631 /* Only the new head can have CON_CONSDEV set. */ 3632 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3633 hlist_add_head_rcu(&newcon->node, &console_list); 3634 3635 } else { 3636 hlist_add_behind_rcu(&newcon->node, console_list.first); 3637 } 3638 3639 /* 3640 * No need to synchronize SRCU here! The caller does not rely 3641 * on all contexts being able to see the new console before 3642 * register_console() completes. 3643 */ 3644 3645 console_sysfs_notify(); 3646 3647 /* 3648 * By unregistering the bootconsoles after we enable the real console 3649 * we get the "console xxx enabled" message on all the consoles - 3650 * boot consoles, real consoles, etc - this is to ensure that end 3651 * users know there might be something in the kernel's log buffer that 3652 * went to the bootconsole (that they do not see on the real console) 3653 */ 3654 con_printk(KERN_INFO, newcon, "enabled\n"); 3655 if (bootcon_registered && 3656 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3657 !keep_bootcon) { 3658 struct hlist_node *tmp; 3659 3660 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3661 if (con->flags & CON_BOOT) 3662 unregister_console_locked(con); 3663 } 3664 } 3665 unlock: 3666 console_list_unlock(); 3667 } 3668 EXPORT_SYMBOL(register_console); 3669 3670 /* Must be called under console_list_lock(). */ 3671 static int unregister_console_locked(struct console *console) 3672 { 3673 int res; 3674 3675 lockdep_assert_console_list_lock_held(); 3676 3677 con_printk(KERN_INFO, console, "disabled\n"); 3678 3679 res = _braille_unregister_console(console); 3680 if (res < 0) 3681 return res; 3682 if (res > 0) 3683 return 0; 3684 3685 /* Disable it unconditionally */ 3686 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3687 3688 if (!console_is_registered_locked(console)) 3689 return -ENODEV; 3690 3691 hlist_del_init_rcu(&console->node); 3692 3693 /* 3694 * <HISTORICAL> 3695 * If this isn't the last console and it has CON_CONSDEV set, we 3696 * need to set it on the next preferred console. 3697 * </HISTORICAL> 3698 * 3699 * The above makes no sense as there is no guarantee that the next 3700 * console has any device attached. Oh well.... 3701 */ 3702 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3703 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3704 3705 /* 3706 * Ensure that all SRCU list walks have completed. All contexts 3707 * must not be able to see this console in the list so that any 3708 * exit/cleanup routines can be performed safely. 3709 */ 3710 synchronize_srcu(&console_srcu); 3711 3712 if (console->flags & CON_NBCON) 3713 nbcon_free(console); 3714 3715 console_sysfs_notify(); 3716 3717 if (console->exit) 3718 res = console->exit(console); 3719 3720 return res; 3721 } 3722 3723 int unregister_console(struct console *console) 3724 { 3725 int res; 3726 3727 console_list_lock(); 3728 res = unregister_console_locked(console); 3729 console_list_unlock(); 3730 return res; 3731 } 3732 EXPORT_SYMBOL(unregister_console); 3733 3734 /** 3735 * console_force_preferred_locked - force a registered console preferred 3736 * @con: The registered console to force preferred. 3737 * 3738 * Must be called under console_list_lock(). 3739 */ 3740 void console_force_preferred_locked(struct console *con) 3741 { 3742 struct console *cur_pref_con; 3743 3744 if (!console_is_registered_locked(con)) 3745 return; 3746 3747 cur_pref_con = console_first(); 3748 3749 /* Already preferred? */ 3750 if (cur_pref_con == con) 3751 return; 3752 3753 /* 3754 * Delete, but do not re-initialize the entry. This allows the console 3755 * to continue to appear registered (via any hlist_unhashed_lockless() 3756 * checks), even though it was briefly removed from the console list. 3757 */ 3758 hlist_del_rcu(&con->node); 3759 3760 /* 3761 * Ensure that all SRCU list walks have completed so that the console 3762 * can be added to the beginning of the console list and its forward 3763 * list pointer can be re-initialized. 3764 */ 3765 synchronize_srcu(&console_srcu); 3766 3767 con->flags |= CON_CONSDEV; 3768 WARN_ON(!con->device); 3769 3770 /* Only the new head can have CON_CONSDEV set. */ 3771 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3772 hlist_add_head_rcu(&con->node, &console_list); 3773 } 3774 EXPORT_SYMBOL(console_force_preferred_locked); 3775 3776 /* 3777 * Initialize the console device. This is called *early*, so 3778 * we can't necessarily depend on lots of kernel help here. 3779 * Just do some early initializations, and do the complex setup 3780 * later. 3781 */ 3782 void __init console_init(void) 3783 { 3784 int ret; 3785 initcall_t call; 3786 initcall_entry_t *ce; 3787 3788 /* Setup the default TTY line discipline. */ 3789 n_tty_init(); 3790 3791 /* 3792 * set up the console device so that later boot sequences can 3793 * inform about problems etc.. 3794 */ 3795 ce = __con_initcall_start; 3796 trace_initcall_level("console"); 3797 while (ce < __con_initcall_end) { 3798 call = initcall_from_entry(ce); 3799 trace_initcall_start(call); 3800 ret = call(); 3801 trace_initcall_finish(call, ret); 3802 ce++; 3803 } 3804 } 3805 3806 /* 3807 * Some boot consoles access data that is in the init section and which will 3808 * be discarded after the initcalls have been run. To make sure that no code 3809 * will access this data, unregister the boot consoles in a late initcall. 3810 * 3811 * If for some reason, such as deferred probe or the driver being a loadable 3812 * module, the real console hasn't registered yet at this point, there will 3813 * be a brief interval in which no messages are logged to the console, which 3814 * makes it difficult to diagnose problems that occur during this time. 3815 * 3816 * To mitigate this problem somewhat, only unregister consoles whose memory 3817 * intersects with the init section. Note that all other boot consoles will 3818 * get unregistered when the real preferred console is registered. 3819 */ 3820 static int __init printk_late_init(void) 3821 { 3822 struct hlist_node *tmp; 3823 struct console *con; 3824 int ret; 3825 3826 console_list_lock(); 3827 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3828 if (!(con->flags & CON_BOOT)) 3829 continue; 3830 3831 /* Check addresses that might be used for enabled consoles. */ 3832 if (init_section_intersects(con, sizeof(*con)) || 3833 init_section_contains(con->write, 0) || 3834 init_section_contains(con->read, 0) || 3835 init_section_contains(con->device, 0) || 3836 init_section_contains(con->unblank, 0) || 3837 init_section_contains(con->data, 0)) { 3838 /* 3839 * Please, consider moving the reported consoles out 3840 * of the init section. 3841 */ 3842 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3843 con->name, con->index); 3844 unregister_console_locked(con); 3845 } 3846 } 3847 console_list_unlock(); 3848 3849 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3850 console_cpu_notify); 3851 WARN_ON(ret < 0); 3852 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3853 console_cpu_notify, NULL); 3854 WARN_ON(ret < 0); 3855 printk_sysctl_init(); 3856 return 0; 3857 } 3858 late_initcall(printk_late_init); 3859 3860 #if defined CONFIG_PRINTK 3861 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3862 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3863 { 3864 unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms); 3865 unsigned long remaining_jiffies = timeout_jiffies; 3866 struct console *c; 3867 u64 last_diff = 0; 3868 u64 printk_seq; 3869 short flags; 3870 int cookie; 3871 u64 diff; 3872 u64 seq; 3873 3874 might_sleep(); 3875 3876 seq = prb_next_reserve_seq(prb); 3877 3878 /* Flush the consoles so that records up to @seq are printed. */ 3879 console_lock(); 3880 console_unlock(); 3881 3882 for (;;) { 3883 unsigned long begin_jiffies; 3884 unsigned long slept_jiffies; 3885 3886 diff = 0; 3887 3888 /* 3889 * Hold the console_lock to guarantee safe access to 3890 * console->seq. Releasing console_lock flushes more 3891 * records in case @seq is still not printed on all 3892 * usable consoles. 3893 */ 3894 console_lock(); 3895 3896 cookie = console_srcu_read_lock(); 3897 for_each_console_srcu(c) { 3898 if (con && con != c) 3899 continue; 3900 3901 flags = console_srcu_read_flags(c); 3902 3903 /* 3904 * If consoles are not usable, it cannot be expected 3905 * that they make forward progress, so only increment 3906 * @diff for usable consoles. 3907 */ 3908 if (!console_is_usable(c)) 3909 continue; 3910 3911 if (flags & CON_NBCON) { 3912 printk_seq = nbcon_seq_read(c); 3913 } else { 3914 printk_seq = c->seq; 3915 } 3916 3917 if (printk_seq < seq) 3918 diff += seq - printk_seq; 3919 } 3920 console_srcu_read_unlock(cookie); 3921 3922 if (diff != last_diff && reset_on_progress) 3923 remaining_jiffies = timeout_jiffies; 3924 3925 console_unlock(); 3926 3927 /* Note: @diff is 0 if there are no usable consoles. */ 3928 if (diff == 0 || remaining_jiffies == 0) 3929 break; 3930 3931 /* msleep(1) might sleep much longer. Check time by jiffies. */ 3932 begin_jiffies = jiffies; 3933 msleep(1); 3934 slept_jiffies = jiffies - begin_jiffies; 3935 3936 remaining_jiffies -= min(slept_jiffies, remaining_jiffies); 3937 3938 last_diff = diff; 3939 } 3940 3941 return (diff == 0); 3942 } 3943 3944 /** 3945 * pr_flush() - Wait for printing threads to catch up. 3946 * 3947 * @timeout_ms: The maximum time (in ms) to wait. 3948 * @reset_on_progress: Reset the timeout if forward progress is seen. 3949 * 3950 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3951 * represents infinite waiting. 3952 * 3953 * If @reset_on_progress is true, the timeout will be reset whenever any 3954 * printer has been seen to make some forward progress. 3955 * 3956 * Context: Process context. May sleep while acquiring console lock. 3957 * Return: true if all usable printers are caught up. 3958 */ 3959 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3960 { 3961 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3962 } 3963 3964 /* 3965 * Delayed printk version, for scheduler-internal messages: 3966 */ 3967 #define PRINTK_PENDING_WAKEUP 0x01 3968 #define PRINTK_PENDING_OUTPUT 0x02 3969 3970 static DEFINE_PER_CPU(int, printk_pending); 3971 3972 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3973 { 3974 int pending = this_cpu_xchg(printk_pending, 0); 3975 3976 if (pending & PRINTK_PENDING_OUTPUT) { 3977 /* If trylock fails, someone else is doing the printing */ 3978 if (console_trylock()) 3979 console_unlock(); 3980 } 3981 3982 if (pending & PRINTK_PENDING_WAKEUP) 3983 wake_up_interruptible(&log_wait); 3984 } 3985 3986 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3987 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3988 3989 static void __wake_up_klogd(int val) 3990 { 3991 if (!printk_percpu_data_ready()) 3992 return; 3993 3994 preempt_disable(); 3995 /* 3996 * Guarantee any new records can be seen by tasks preparing to wait 3997 * before this context checks if the wait queue is empty. 3998 * 3999 * The full memory barrier within wq_has_sleeper() pairs with the full 4000 * memory barrier within set_current_state() of 4001 * prepare_to_wait_event(), which is called after ___wait_event() adds 4002 * the waiter but before it has checked the wait condition. 4003 * 4004 * This pairs with devkmsg_read:A and syslog_print:A. 4005 */ 4006 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 4007 (val & PRINTK_PENDING_OUTPUT)) { 4008 this_cpu_or(printk_pending, val); 4009 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 4010 } 4011 preempt_enable(); 4012 } 4013 4014 /** 4015 * wake_up_klogd - Wake kernel logging daemon 4016 * 4017 * Use this function when new records have been added to the ringbuffer 4018 * and the console printing of those records has already occurred or is 4019 * known to be handled by some other context. This function will only 4020 * wake the logging daemon. 4021 * 4022 * Context: Any context. 4023 */ 4024 void wake_up_klogd(void) 4025 { 4026 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 4027 } 4028 4029 /** 4030 * defer_console_output - Wake kernel logging daemon and trigger 4031 * console printing in a deferred context 4032 * 4033 * Use this function when new records have been added to the ringbuffer, 4034 * this context is responsible for console printing those records, but 4035 * the current context is not allowed to perform the console printing. 4036 * Trigger an irq_work context to perform the console printing. This 4037 * function also wakes the logging daemon. 4038 * 4039 * Context: Any context. 4040 */ 4041 void defer_console_output(void) 4042 { 4043 /* 4044 * New messages may have been added directly to the ringbuffer 4045 * using vprintk_store(), so wake any waiters as well. 4046 */ 4047 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 4048 } 4049 4050 void printk_trigger_flush(void) 4051 { 4052 defer_console_output(); 4053 } 4054 4055 int vprintk_deferred(const char *fmt, va_list args) 4056 { 4057 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 4058 } 4059 4060 int _printk_deferred(const char *fmt, ...) 4061 { 4062 va_list args; 4063 int r; 4064 4065 va_start(args, fmt); 4066 r = vprintk_deferred(fmt, args); 4067 va_end(args); 4068 4069 return r; 4070 } 4071 4072 /* 4073 * printk rate limiting, lifted from the networking subsystem. 4074 * 4075 * This enforces a rate limit: not more than 10 kernel messages 4076 * every 5s to make a denial-of-service attack impossible. 4077 */ 4078 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 4079 4080 int __printk_ratelimit(const char *func) 4081 { 4082 return ___ratelimit(&printk_ratelimit_state, func); 4083 } 4084 EXPORT_SYMBOL(__printk_ratelimit); 4085 4086 /** 4087 * printk_timed_ratelimit - caller-controlled printk ratelimiting 4088 * @caller_jiffies: pointer to caller's state 4089 * @interval_msecs: minimum interval between prints 4090 * 4091 * printk_timed_ratelimit() returns true if more than @interval_msecs 4092 * milliseconds have elapsed since the last time printk_timed_ratelimit() 4093 * returned true. 4094 */ 4095 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 4096 unsigned int interval_msecs) 4097 { 4098 unsigned long elapsed = jiffies - *caller_jiffies; 4099 4100 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 4101 return false; 4102 4103 *caller_jiffies = jiffies; 4104 return true; 4105 } 4106 EXPORT_SYMBOL(printk_timed_ratelimit); 4107 4108 static DEFINE_SPINLOCK(dump_list_lock); 4109 static LIST_HEAD(dump_list); 4110 4111 /** 4112 * kmsg_dump_register - register a kernel log dumper. 4113 * @dumper: pointer to the kmsg_dumper structure 4114 * 4115 * Adds a kernel log dumper to the system. The dump callback in the 4116 * structure will be called when the kernel oopses or panics and must be 4117 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 4118 */ 4119 int kmsg_dump_register(struct kmsg_dumper *dumper) 4120 { 4121 unsigned long flags; 4122 int err = -EBUSY; 4123 4124 /* The dump callback needs to be set */ 4125 if (!dumper->dump) 4126 return -EINVAL; 4127 4128 spin_lock_irqsave(&dump_list_lock, flags); 4129 /* Don't allow registering multiple times */ 4130 if (!dumper->registered) { 4131 dumper->registered = 1; 4132 list_add_tail_rcu(&dumper->list, &dump_list); 4133 err = 0; 4134 } 4135 spin_unlock_irqrestore(&dump_list_lock, flags); 4136 4137 return err; 4138 } 4139 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4140 4141 /** 4142 * kmsg_dump_unregister - unregister a kmsg dumper. 4143 * @dumper: pointer to the kmsg_dumper structure 4144 * 4145 * Removes a dump device from the system. Returns zero on success and 4146 * %-EINVAL otherwise. 4147 */ 4148 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4149 { 4150 unsigned long flags; 4151 int err = -EINVAL; 4152 4153 spin_lock_irqsave(&dump_list_lock, flags); 4154 if (dumper->registered) { 4155 dumper->registered = 0; 4156 list_del_rcu(&dumper->list); 4157 err = 0; 4158 } 4159 spin_unlock_irqrestore(&dump_list_lock, flags); 4160 synchronize_rcu(); 4161 4162 return err; 4163 } 4164 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4165 4166 static bool always_kmsg_dump; 4167 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4168 4169 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4170 { 4171 switch (reason) { 4172 case KMSG_DUMP_PANIC: 4173 return "Panic"; 4174 case KMSG_DUMP_OOPS: 4175 return "Oops"; 4176 case KMSG_DUMP_EMERG: 4177 return "Emergency"; 4178 case KMSG_DUMP_SHUTDOWN: 4179 return "Shutdown"; 4180 default: 4181 return "Unknown"; 4182 } 4183 } 4184 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4185 4186 /** 4187 * kmsg_dump_desc - dump kernel log to kernel message dumpers. 4188 * @reason: the reason (oops, panic etc) for dumping 4189 * @desc: a short string to describe what caused the panic or oops. Can be NULL 4190 * if no additional description is available. 4191 * 4192 * Call each of the registered dumper's dump() callback, which can 4193 * retrieve the kmsg records with kmsg_dump_get_line() or 4194 * kmsg_dump_get_buffer(). 4195 */ 4196 void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc) 4197 { 4198 struct kmsg_dumper *dumper; 4199 struct kmsg_dump_detail detail = { 4200 .reason = reason, 4201 .description = desc}; 4202 4203 rcu_read_lock(); 4204 list_for_each_entry_rcu(dumper, &dump_list, list) { 4205 enum kmsg_dump_reason max_reason = dumper->max_reason; 4206 4207 /* 4208 * If client has not provided a specific max_reason, default 4209 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4210 */ 4211 if (max_reason == KMSG_DUMP_UNDEF) { 4212 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4213 KMSG_DUMP_OOPS; 4214 } 4215 if (reason > max_reason) 4216 continue; 4217 4218 /* invoke dumper which will iterate over records */ 4219 dumper->dump(dumper, &detail); 4220 } 4221 rcu_read_unlock(); 4222 } 4223 4224 /** 4225 * kmsg_dump_get_line - retrieve one kmsg log line 4226 * @iter: kmsg dump iterator 4227 * @syslog: include the "<4>" prefixes 4228 * @line: buffer to copy the line to 4229 * @size: maximum size of the buffer 4230 * @len: length of line placed into buffer 4231 * 4232 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4233 * record, and copy one record into the provided buffer. 4234 * 4235 * Consecutive calls will return the next available record moving 4236 * towards the end of the buffer with the youngest messages. 4237 * 4238 * A return value of FALSE indicates that there are no more records to 4239 * read. 4240 */ 4241 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4242 char *line, size_t size, size_t *len) 4243 { 4244 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4245 struct printk_info info; 4246 unsigned int line_count; 4247 struct printk_record r; 4248 size_t l = 0; 4249 bool ret = false; 4250 4251 if (iter->cur_seq < min_seq) 4252 iter->cur_seq = min_seq; 4253 4254 prb_rec_init_rd(&r, &info, line, size); 4255 4256 /* Read text or count text lines? */ 4257 if (line) { 4258 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4259 goto out; 4260 l = record_print_text(&r, syslog, printk_time); 4261 } else { 4262 if (!prb_read_valid_info(prb, iter->cur_seq, 4263 &info, &line_count)) { 4264 goto out; 4265 } 4266 l = get_record_print_text_size(&info, line_count, syslog, 4267 printk_time); 4268 4269 } 4270 4271 iter->cur_seq = r.info->seq + 1; 4272 ret = true; 4273 out: 4274 if (len) 4275 *len = l; 4276 return ret; 4277 } 4278 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4279 4280 /** 4281 * kmsg_dump_get_buffer - copy kmsg log lines 4282 * @iter: kmsg dump iterator 4283 * @syslog: include the "<4>" prefixes 4284 * @buf: buffer to copy the line to 4285 * @size: maximum size of the buffer 4286 * @len_out: length of line placed into buffer 4287 * 4288 * Start at the end of the kmsg buffer and fill the provided buffer 4289 * with as many of the *youngest* kmsg records that fit into it. 4290 * If the buffer is large enough, all available kmsg records will be 4291 * copied with a single call. 4292 * 4293 * Consecutive calls will fill the buffer with the next block of 4294 * available older records, not including the earlier retrieved ones. 4295 * 4296 * A return value of FALSE indicates that there are no more records to 4297 * read. 4298 */ 4299 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4300 char *buf, size_t size, size_t *len_out) 4301 { 4302 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4303 struct printk_info info; 4304 struct printk_record r; 4305 u64 seq; 4306 u64 next_seq; 4307 size_t len = 0; 4308 bool ret = false; 4309 bool time = printk_time; 4310 4311 if (!buf || !size) 4312 goto out; 4313 4314 if (iter->cur_seq < min_seq) 4315 iter->cur_seq = min_seq; 4316 4317 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4318 if (info.seq != iter->cur_seq) { 4319 /* messages are gone, move to first available one */ 4320 iter->cur_seq = info.seq; 4321 } 4322 } 4323 4324 /* last entry */ 4325 if (iter->cur_seq >= iter->next_seq) 4326 goto out; 4327 4328 /* 4329 * Find first record that fits, including all following records, 4330 * into the user-provided buffer for this dump. Pass in size-1 4331 * because this function (by way of record_print_text()) will 4332 * not write more than size-1 bytes of text into @buf. 4333 */ 4334 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4335 size - 1, syslog, time); 4336 4337 /* 4338 * Next kmsg_dump_get_buffer() invocation will dump block of 4339 * older records stored right before this one. 4340 */ 4341 next_seq = seq; 4342 4343 prb_rec_init_rd(&r, &info, buf, size); 4344 4345 prb_for_each_record(seq, prb, seq, &r) { 4346 if (r.info->seq >= iter->next_seq) 4347 break; 4348 4349 len += record_print_text(&r, syslog, time); 4350 4351 /* Adjust record to store to remaining buffer space. */ 4352 prb_rec_init_rd(&r, &info, buf + len, size - len); 4353 } 4354 4355 iter->next_seq = next_seq; 4356 ret = true; 4357 out: 4358 if (len_out) 4359 *len_out = len; 4360 return ret; 4361 } 4362 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4363 4364 /** 4365 * kmsg_dump_rewind - reset the iterator 4366 * @iter: kmsg dump iterator 4367 * 4368 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4369 * kmsg_dump_get_buffer() can be called again and used multiple 4370 * times within the same dumper.dump() callback. 4371 */ 4372 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4373 { 4374 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4375 iter->next_seq = prb_next_seq(prb); 4376 } 4377 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4378 4379 /** 4380 * console_try_replay_all - try to replay kernel log on consoles 4381 * 4382 * Try to obtain lock on console subsystem and replay all 4383 * available records in printk buffer on the consoles. 4384 * Does nothing if lock is not obtained. 4385 * 4386 * Context: Any, except for NMI. 4387 */ 4388 void console_try_replay_all(void) 4389 { 4390 if (console_trylock()) { 4391 __console_rewind_all(); 4392 /* Consoles are flushed as part of console_unlock(). */ 4393 console_unlock(); 4394 } 4395 } 4396 #endif 4397 4398 #ifdef CONFIG_SMP 4399 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4400 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4401 4402 /** 4403 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4404 * spinning lock is not owned by any CPU. 4405 * 4406 * Context: Any context. 4407 */ 4408 void __printk_cpu_sync_wait(void) 4409 { 4410 do { 4411 cpu_relax(); 4412 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4413 } 4414 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4415 4416 /** 4417 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4418 * spinning lock. 4419 * 4420 * If no processor has the lock, the calling processor takes the lock and 4421 * becomes the owner. If the calling processor is already the owner of the 4422 * lock, this function succeeds immediately. 4423 * 4424 * Context: Any context. Expects interrupts to be disabled. 4425 * Return: 1 on success, otherwise 0. 4426 */ 4427 int __printk_cpu_sync_try_get(void) 4428 { 4429 int cpu; 4430 int old; 4431 4432 cpu = smp_processor_id(); 4433 4434 /* 4435 * Guarantee loads and stores from this CPU when it is the lock owner 4436 * are _not_ visible to the previous lock owner. This pairs with 4437 * __printk_cpu_sync_put:B. 4438 * 4439 * Memory barrier involvement: 4440 * 4441 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4442 * then __printk_cpu_sync_put:A can never read from 4443 * __printk_cpu_sync_try_get:B. 4444 * 4445 * Relies on: 4446 * 4447 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4448 * of the previous CPU 4449 * matching 4450 * ACQUIRE from __printk_cpu_sync_try_get:A to 4451 * __printk_cpu_sync_try_get:B of this CPU 4452 */ 4453 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4454 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4455 if (old == -1) { 4456 /* 4457 * This CPU is now the owner and begins loading/storing 4458 * data: LMM(__printk_cpu_sync_try_get:B) 4459 */ 4460 return 1; 4461 4462 } else if (old == cpu) { 4463 /* This CPU is already the owner. */ 4464 atomic_inc(&printk_cpu_sync_nested); 4465 return 1; 4466 } 4467 4468 return 0; 4469 } 4470 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4471 4472 /** 4473 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4474 * 4475 * The calling processor must be the owner of the lock. 4476 * 4477 * Context: Any context. Expects interrupts to be disabled. 4478 */ 4479 void __printk_cpu_sync_put(void) 4480 { 4481 if (atomic_read(&printk_cpu_sync_nested)) { 4482 atomic_dec(&printk_cpu_sync_nested); 4483 return; 4484 } 4485 4486 /* 4487 * This CPU is finished loading/storing data: 4488 * LMM(__printk_cpu_sync_put:A) 4489 */ 4490 4491 /* 4492 * Guarantee loads and stores from this CPU when it was the 4493 * lock owner are visible to the next lock owner. This pairs 4494 * with __printk_cpu_sync_try_get:A. 4495 * 4496 * Memory barrier involvement: 4497 * 4498 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4499 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4500 * 4501 * Relies on: 4502 * 4503 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4504 * of this CPU 4505 * matching 4506 * ACQUIRE from __printk_cpu_sync_try_get:A to 4507 * __printk_cpu_sync_try_get:B of the next CPU 4508 */ 4509 atomic_set_release(&printk_cpu_sync_owner, 4510 -1); /* LMM(__printk_cpu_sync_put:B) */ 4511 } 4512 EXPORT_SYMBOL(__printk_cpu_sync_put); 4513 #endif /* CONFIG_SMP */ 4514