xref: /linux/kernel/printk/printk.c (revision c4c14c3bd177ea769fee938674f73a8ec0cdd47a)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/tty.h>
24 #include <linux/tty_driver.h>
25 #include <linux/console.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/nmi.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/delay.h>
32 #include <linux/smp.h>
33 #include <linux/security.h>
34 #include <linux/bootmem.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 
70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
71 EXPORT_SYMBOL(ignore_console_lock_warning);
72 
73 /*
74  * Low level drivers may need that to know if they can schedule in
75  * their unblank() callback or not. So let's export it.
76  */
77 int oops_in_progress;
78 EXPORT_SYMBOL(oops_in_progress);
79 
80 /*
81  * console_sem protects the console_drivers list, and also
82  * provides serialisation for access to the entire console
83  * driver system.
84  */
85 static DEFINE_SEMAPHORE(console_sem);
86 struct console *console_drivers;
87 EXPORT_SYMBOL_GPL(console_drivers);
88 
89 #ifdef CONFIG_LOCKDEP
90 static struct lockdep_map console_lock_dep_map = {
91 	.name = "console_lock"
92 };
93 #endif
94 
95 enum devkmsg_log_bits {
96 	__DEVKMSG_LOG_BIT_ON = 0,
97 	__DEVKMSG_LOG_BIT_OFF,
98 	__DEVKMSG_LOG_BIT_LOCK,
99 };
100 
101 enum devkmsg_log_masks {
102 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
103 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
104 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
105 };
106 
107 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
108 #define DEVKMSG_LOG_MASK_DEFAULT	0
109 
110 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
111 
112 static int __control_devkmsg(char *str)
113 {
114 	if (!str)
115 		return -EINVAL;
116 
117 	if (!strncmp(str, "on", 2)) {
118 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
119 		return 2;
120 	} else if (!strncmp(str, "off", 3)) {
121 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
122 		return 3;
123 	} else if (!strncmp(str, "ratelimit", 9)) {
124 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
125 		return 9;
126 	}
127 	return -EINVAL;
128 }
129 
130 static int __init control_devkmsg(char *str)
131 {
132 	if (__control_devkmsg(str) < 0)
133 		return 1;
134 
135 	/*
136 	 * Set sysctl string accordingly:
137 	 */
138 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
139 		strcpy(devkmsg_log_str, "on");
140 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
141 		strcpy(devkmsg_log_str, "off");
142 	/* else "ratelimit" which is set by default. */
143 
144 	/*
145 	 * Sysctl cannot change it anymore. The kernel command line setting of
146 	 * this parameter is to force the setting to be permanent throughout the
147 	 * runtime of the system. This is a precation measure against userspace
148 	 * trying to be a smarta** and attempting to change it up on us.
149 	 */
150 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
151 
152 	return 0;
153 }
154 __setup("printk.devkmsg=", control_devkmsg);
155 
156 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
157 
158 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
159 			      void __user *buffer, size_t *lenp, loff_t *ppos)
160 {
161 	char old_str[DEVKMSG_STR_MAX_SIZE];
162 	unsigned int old;
163 	int err;
164 
165 	if (write) {
166 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
167 			return -EINVAL;
168 
169 		old = devkmsg_log;
170 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
171 	}
172 
173 	err = proc_dostring(table, write, buffer, lenp, ppos);
174 	if (err)
175 		return err;
176 
177 	if (write) {
178 		err = __control_devkmsg(devkmsg_log_str);
179 
180 		/*
181 		 * Do not accept an unknown string OR a known string with
182 		 * trailing crap...
183 		 */
184 		if (err < 0 || (err + 1 != *lenp)) {
185 
186 			/* ... and restore old setting. */
187 			devkmsg_log = old;
188 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
189 
190 			return -EINVAL;
191 		}
192 	}
193 
194 	return 0;
195 }
196 
197 /* Number of registered extended console drivers. */
198 static int nr_ext_console_drivers;
199 
200 /*
201  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
202  * macros instead of functions so that _RET_IP_ contains useful information.
203  */
204 #define down_console_sem() do { \
205 	down(&console_sem);\
206 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
207 } while (0)
208 
209 static int __down_trylock_console_sem(unsigned long ip)
210 {
211 	int lock_failed;
212 	unsigned long flags;
213 
214 	/*
215 	 * Here and in __up_console_sem() we need to be in safe mode,
216 	 * because spindump/WARN/etc from under console ->lock will
217 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
218 	 */
219 	printk_safe_enter_irqsave(flags);
220 	lock_failed = down_trylock(&console_sem);
221 	printk_safe_exit_irqrestore(flags);
222 
223 	if (lock_failed)
224 		return 1;
225 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
226 	return 0;
227 }
228 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
229 
230 static void __up_console_sem(unsigned long ip)
231 {
232 	unsigned long flags;
233 
234 	mutex_release(&console_lock_dep_map, 1, ip);
235 
236 	printk_safe_enter_irqsave(flags);
237 	up(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 }
240 #define up_console_sem() __up_console_sem(_RET_IP_)
241 
242 /*
243  * This is used for debugging the mess that is the VT code by
244  * keeping track if we have the console semaphore held. It's
245  * definitely not the perfect debug tool (we don't know if _WE_
246  * hold it and are racing, but it helps tracking those weird code
247  * paths in the console code where we end up in places I want
248  * locked without the console sempahore held).
249  */
250 static int console_locked, console_suspended;
251 
252 /*
253  * If exclusive_console is non-NULL then only this console is to be printed to.
254  */
255 static struct console *exclusive_console;
256 
257 /*
258  *	Array of consoles built from command line options (console=)
259  */
260 
261 #define MAX_CMDLINECONSOLES 8
262 
263 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
264 
265 static int preferred_console = -1;
266 int console_set_on_cmdline;
267 EXPORT_SYMBOL(console_set_on_cmdline);
268 
269 /* Flag: console code may call schedule() */
270 static int console_may_schedule;
271 
272 enum con_msg_format_flags {
273 	MSG_FORMAT_DEFAULT	= 0,
274 	MSG_FORMAT_SYSLOG	= (1 << 0),
275 };
276 
277 static int console_msg_format = MSG_FORMAT_DEFAULT;
278 
279 /*
280  * The printk log buffer consists of a chain of concatenated variable
281  * length records. Every record starts with a record header, containing
282  * the overall length of the record.
283  *
284  * The heads to the first and last entry in the buffer, as well as the
285  * sequence numbers of these entries are maintained when messages are
286  * stored.
287  *
288  * If the heads indicate available messages, the length in the header
289  * tells the start next message. A length == 0 for the next message
290  * indicates a wrap-around to the beginning of the buffer.
291  *
292  * Every record carries the monotonic timestamp in microseconds, as well as
293  * the standard userspace syslog level and syslog facility. The usual
294  * kernel messages use LOG_KERN; userspace-injected messages always carry
295  * a matching syslog facility, by default LOG_USER. The origin of every
296  * message can be reliably determined that way.
297  *
298  * The human readable log message directly follows the message header. The
299  * length of the message text is stored in the header, the stored message
300  * is not terminated.
301  *
302  * Optionally, a message can carry a dictionary of properties (key/value pairs),
303  * to provide userspace with a machine-readable message context.
304  *
305  * Examples for well-defined, commonly used property names are:
306  *   DEVICE=b12:8               device identifier
307  *                                b12:8         block dev_t
308  *                                c127:3        char dev_t
309  *                                n8            netdev ifindex
310  *                                +sound:card0  subsystem:devname
311  *   SUBSYSTEM=pci              driver-core subsystem name
312  *
313  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
314  * follows directly after a '=' character. Every property is terminated by
315  * a '\0' character. The last property is not terminated.
316  *
317  * Example of a message structure:
318  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
319  *   0008  34 00                        record is 52 bytes long
320  *   000a        0b 00                  text is 11 bytes long
321  *   000c              1f 00            dictionary is 23 bytes long
322  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
323  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
324  *         69 6e 65                     "ine"
325  *   001b           44 45 56 49 43      "DEVIC"
326  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
327  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
328  *         67                           "g"
329  *   0032     00 00 00                  padding to next message header
330  *
331  * The 'struct printk_log' buffer header must never be directly exported to
332  * userspace, it is a kernel-private implementation detail that might
333  * need to be changed in the future, when the requirements change.
334  *
335  * /dev/kmsg exports the structured data in the following line format:
336  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
337  *
338  * Users of the export format should ignore possible additional values
339  * separated by ',', and find the message after the ';' character.
340  *
341  * The optional key/value pairs are attached as continuation lines starting
342  * with a space character and terminated by a newline. All possible
343  * non-prinatable characters are escaped in the "\xff" notation.
344  */
345 
346 enum log_flags {
347 	LOG_NEWLINE	= 2,	/* text ended with a newline */
348 	LOG_PREFIX	= 4,	/* text started with a prefix */
349 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
350 };
351 
352 struct printk_log {
353 	u64 ts_nsec;		/* timestamp in nanoseconds */
354 	u16 len;		/* length of entire record */
355 	u16 text_len;		/* length of text buffer */
356 	u16 dict_len;		/* length of dictionary buffer */
357 	u8 facility;		/* syslog facility */
358 	u8 flags:5;		/* internal record flags */
359 	u8 level:3;		/* syslog level */
360 }
361 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
362 __packed __aligned(4)
363 #endif
364 ;
365 
366 /*
367  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
368  * within the scheduler's rq lock. It must be released before calling
369  * console_unlock() or anything else that might wake up a process.
370  */
371 DEFINE_RAW_SPINLOCK(logbuf_lock);
372 
373 /*
374  * Helper macros to lock/unlock logbuf_lock and switch between
375  * printk-safe/unsafe modes.
376  */
377 #define logbuf_lock_irq()				\
378 	do {						\
379 		printk_safe_enter_irq();		\
380 		raw_spin_lock(&logbuf_lock);		\
381 	} while (0)
382 
383 #define logbuf_unlock_irq()				\
384 	do {						\
385 		raw_spin_unlock(&logbuf_lock);		\
386 		printk_safe_exit_irq();			\
387 	} while (0)
388 
389 #define logbuf_lock_irqsave(flags)			\
390 	do {						\
391 		printk_safe_enter_irqsave(flags);	\
392 		raw_spin_lock(&logbuf_lock);		\
393 	} while (0)
394 
395 #define logbuf_unlock_irqrestore(flags)		\
396 	do {						\
397 		raw_spin_unlock(&logbuf_lock);		\
398 		printk_safe_exit_irqrestore(flags);	\
399 	} while (0)
400 
401 #ifdef CONFIG_PRINTK
402 DECLARE_WAIT_QUEUE_HEAD(log_wait);
403 /* the next printk record to read by syslog(READ) or /proc/kmsg */
404 static u64 syslog_seq;
405 static u32 syslog_idx;
406 static size_t syslog_partial;
407 
408 /* index and sequence number of the first record stored in the buffer */
409 static u64 log_first_seq;
410 static u32 log_first_idx;
411 
412 /* index and sequence number of the next record to store in the buffer */
413 static u64 log_next_seq;
414 static u32 log_next_idx;
415 
416 /* the next printk record to write to the console */
417 static u64 console_seq;
418 static u32 console_idx;
419 static u64 exclusive_console_stop_seq;
420 
421 /* the next printk record to read after the last 'clear' command */
422 static u64 clear_seq;
423 static u32 clear_idx;
424 
425 #define PREFIX_MAX		32
426 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
427 
428 #define LOG_LEVEL(v)		((v) & 0x07)
429 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
430 
431 /* record buffer */
432 #define LOG_ALIGN __alignof__(struct printk_log)
433 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
434 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
436 static char *log_buf = __log_buf;
437 static u32 log_buf_len = __LOG_BUF_LEN;
438 
439 /* Return log buffer address */
440 char *log_buf_addr_get(void)
441 {
442 	return log_buf;
443 }
444 
445 /* Return log buffer size */
446 u32 log_buf_len_get(void)
447 {
448 	return log_buf_len;
449 }
450 
451 /* human readable text of the record */
452 static char *log_text(const struct printk_log *msg)
453 {
454 	return (char *)msg + sizeof(struct printk_log);
455 }
456 
457 /* optional key/value pair dictionary attached to the record */
458 static char *log_dict(const struct printk_log *msg)
459 {
460 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
461 }
462 
463 /* get record by index; idx must point to valid msg */
464 static struct printk_log *log_from_idx(u32 idx)
465 {
466 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
467 
468 	/*
469 	 * A length == 0 record is the end of buffer marker. Wrap around and
470 	 * read the message at the start of the buffer.
471 	 */
472 	if (!msg->len)
473 		return (struct printk_log *)log_buf;
474 	return msg;
475 }
476 
477 /* get next record; idx must point to valid msg */
478 static u32 log_next(u32 idx)
479 {
480 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
481 
482 	/* length == 0 indicates the end of the buffer; wrap */
483 	/*
484 	 * A length == 0 record is the end of buffer marker. Wrap around and
485 	 * read the message at the start of the buffer as *this* one, and
486 	 * return the one after that.
487 	 */
488 	if (!msg->len) {
489 		msg = (struct printk_log *)log_buf;
490 		return msg->len;
491 	}
492 	return idx + msg->len;
493 }
494 
495 /*
496  * Check whether there is enough free space for the given message.
497  *
498  * The same values of first_idx and next_idx mean that the buffer
499  * is either empty or full.
500  *
501  * If the buffer is empty, we must respect the position of the indexes.
502  * They cannot be reset to the beginning of the buffer.
503  */
504 static int logbuf_has_space(u32 msg_size, bool empty)
505 {
506 	u32 free;
507 
508 	if (log_next_idx > log_first_idx || empty)
509 		free = max(log_buf_len - log_next_idx, log_first_idx);
510 	else
511 		free = log_first_idx - log_next_idx;
512 
513 	/*
514 	 * We need space also for an empty header that signalizes wrapping
515 	 * of the buffer.
516 	 */
517 	return free >= msg_size + sizeof(struct printk_log);
518 }
519 
520 static int log_make_free_space(u32 msg_size)
521 {
522 	while (log_first_seq < log_next_seq &&
523 	       !logbuf_has_space(msg_size, false)) {
524 		/* drop old messages until we have enough contiguous space */
525 		log_first_idx = log_next(log_first_idx);
526 		log_first_seq++;
527 	}
528 
529 	if (clear_seq < log_first_seq) {
530 		clear_seq = log_first_seq;
531 		clear_idx = log_first_idx;
532 	}
533 
534 	/* sequence numbers are equal, so the log buffer is empty */
535 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
536 		return 0;
537 
538 	return -ENOMEM;
539 }
540 
541 /* compute the message size including the padding bytes */
542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
543 {
544 	u32 size;
545 
546 	size = sizeof(struct printk_log) + text_len + dict_len;
547 	*pad_len = (-size) & (LOG_ALIGN - 1);
548 	size += *pad_len;
549 
550 	return size;
551 }
552 
553 /*
554  * Define how much of the log buffer we could take at maximum. The value
555  * must be greater than two. Note that only half of the buffer is available
556  * when the index points to the middle.
557  */
558 #define MAX_LOG_TAKE_PART 4
559 static const char trunc_msg[] = "<truncated>";
560 
561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
562 			u16 *dict_len, u32 *pad_len)
563 {
564 	/*
565 	 * The message should not take the whole buffer. Otherwise, it might
566 	 * get removed too soon.
567 	 */
568 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
569 	if (*text_len > max_text_len)
570 		*text_len = max_text_len;
571 	/* enable the warning message */
572 	*trunc_msg_len = strlen(trunc_msg);
573 	/* disable the "dict" completely */
574 	*dict_len = 0;
575 	/* compute the size again, count also the warning message */
576 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
577 }
578 
579 /* insert record into the buffer, discard old ones, update heads */
580 static int log_store(int facility, int level,
581 		     enum log_flags flags, u64 ts_nsec,
582 		     const char *dict, u16 dict_len,
583 		     const char *text, u16 text_len)
584 {
585 	struct printk_log *msg;
586 	u32 size, pad_len;
587 	u16 trunc_msg_len = 0;
588 
589 	/* number of '\0' padding bytes to next message */
590 	size = msg_used_size(text_len, dict_len, &pad_len);
591 
592 	if (log_make_free_space(size)) {
593 		/* truncate the message if it is too long for empty buffer */
594 		size = truncate_msg(&text_len, &trunc_msg_len,
595 				    &dict_len, &pad_len);
596 		/* survive when the log buffer is too small for trunc_msg */
597 		if (log_make_free_space(size))
598 			return 0;
599 	}
600 
601 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
602 		/*
603 		 * This message + an additional empty header does not fit
604 		 * at the end of the buffer. Add an empty header with len == 0
605 		 * to signify a wrap around.
606 		 */
607 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
608 		log_next_idx = 0;
609 	}
610 
611 	/* fill message */
612 	msg = (struct printk_log *)(log_buf + log_next_idx);
613 	memcpy(log_text(msg), text, text_len);
614 	msg->text_len = text_len;
615 	if (trunc_msg_len) {
616 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
617 		msg->text_len += trunc_msg_len;
618 	}
619 	memcpy(log_dict(msg), dict, dict_len);
620 	msg->dict_len = dict_len;
621 	msg->facility = facility;
622 	msg->level = level & 7;
623 	msg->flags = flags & 0x1f;
624 	if (ts_nsec > 0)
625 		msg->ts_nsec = ts_nsec;
626 	else
627 		msg->ts_nsec = local_clock();
628 	memset(log_dict(msg) + dict_len, 0, pad_len);
629 	msg->len = size;
630 
631 	/* insert message */
632 	log_next_idx += msg->len;
633 	log_next_seq++;
634 
635 	return msg->text_len;
636 }
637 
638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
639 
640 static int syslog_action_restricted(int type)
641 {
642 	if (dmesg_restrict)
643 		return 1;
644 	/*
645 	 * Unless restricted, we allow "read all" and "get buffer size"
646 	 * for everybody.
647 	 */
648 	return type != SYSLOG_ACTION_READ_ALL &&
649 	       type != SYSLOG_ACTION_SIZE_BUFFER;
650 }
651 
652 static int check_syslog_permissions(int type, int source)
653 {
654 	/*
655 	 * If this is from /proc/kmsg and we've already opened it, then we've
656 	 * already done the capabilities checks at open time.
657 	 */
658 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
659 		goto ok;
660 
661 	if (syslog_action_restricted(type)) {
662 		if (capable(CAP_SYSLOG))
663 			goto ok;
664 		/*
665 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
666 		 * a warning.
667 		 */
668 		if (capable(CAP_SYS_ADMIN)) {
669 			pr_warn_once("%s (%d): Attempt to access syslog with "
670 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
671 				     "(deprecated).\n",
672 				 current->comm, task_pid_nr(current));
673 			goto ok;
674 		}
675 		return -EPERM;
676 	}
677 ok:
678 	return security_syslog(type);
679 }
680 
681 static void append_char(char **pp, char *e, char c)
682 {
683 	if (*pp < e)
684 		*(*pp)++ = c;
685 }
686 
687 static ssize_t msg_print_ext_header(char *buf, size_t size,
688 				    struct printk_log *msg, u64 seq)
689 {
690 	u64 ts_usec = msg->ts_nsec;
691 
692 	do_div(ts_usec, 1000);
693 
694 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
695 		       (msg->facility << 3) | msg->level, seq, ts_usec,
696 		       msg->flags & LOG_CONT ? 'c' : '-');
697 }
698 
699 static ssize_t msg_print_ext_body(char *buf, size_t size,
700 				  char *dict, size_t dict_len,
701 				  char *text, size_t text_len)
702 {
703 	char *p = buf, *e = buf + size;
704 	size_t i;
705 
706 	/* escape non-printable characters */
707 	for (i = 0; i < text_len; i++) {
708 		unsigned char c = text[i];
709 
710 		if (c < ' ' || c >= 127 || c == '\\')
711 			p += scnprintf(p, e - p, "\\x%02x", c);
712 		else
713 			append_char(&p, e, c);
714 	}
715 	append_char(&p, e, '\n');
716 
717 	if (dict_len) {
718 		bool line = true;
719 
720 		for (i = 0; i < dict_len; i++) {
721 			unsigned char c = dict[i];
722 
723 			if (line) {
724 				append_char(&p, e, ' ');
725 				line = false;
726 			}
727 
728 			if (c == '\0') {
729 				append_char(&p, e, '\n');
730 				line = true;
731 				continue;
732 			}
733 
734 			if (c < ' ' || c >= 127 || c == '\\') {
735 				p += scnprintf(p, e - p, "\\x%02x", c);
736 				continue;
737 			}
738 
739 			append_char(&p, e, c);
740 		}
741 		append_char(&p, e, '\n');
742 	}
743 
744 	return p - buf;
745 }
746 
747 /* /dev/kmsg - userspace message inject/listen interface */
748 struct devkmsg_user {
749 	u64 seq;
750 	u32 idx;
751 	struct ratelimit_state rs;
752 	struct mutex lock;
753 	char buf[CONSOLE_EXT_LOG_MAX];
754 };
755 
756 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
757 {
758 	char *buf, *line;
759 	int level = default_message_loglevel;
760 	int facility = 1;	/* LOG_USER */
761 	struct file *file = iocb->ki_filp;
762 	struct devkmsg_user *user = file->private_data;
763 	size_t len = iov_iter_count(from);
764 	ssize_t ret = len;
765 
766 	if (!user || len > LOG_LINE_MAX)
767 		return -EINVAL;
768 
769 	/* Ignore when user logging is disabled. */
770 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
771 		return len;
772 
773 	/* Ratelimit when not explicitly enabled. */
774 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
775 		if (!___ratelimit(&user->rs, current->comm))
776 			return ret;
777 	}
778 
779 	buf = kmalloc(len+1, GFP_KERNEL);
780 	if (buf == NULL)
781 		return -ENOMEM;
782 
783 	buf[len] = '\0';
784 	if (!copy_from_iter_full(buf, len, from)) {
785 		kfree(buf);
786 		return -EFAULT;
787 	}
788 
789 	/*
790 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
791 	 * the decimal value represents 32bit, the lower 3 bit are the log
792 	 * level, the rest are the log facility.
793 	 *
794 	 * If no prefix or no userspace facility is specified, we
795 	 * enforce LOG_USER, to be able to reliably distinguish
796 	 * kernel-generated messages from userspace-injected ones.
797 	 */
798 	line = buf;
799 	if (line[0] == '<') {
800 		char *endp = NULL;
801 		unsigned int u;
802 
803 		u = simple_strtoul(line + 1, &endp, 10);
804 		if (endp && endp[0] == '>') {
805 			level = LOG_LEVEL(u);
806 			if (LOG_FACILITY(u) != 0)
807 				facility = LOG_FACILITY(u);
808 			endp++;
809 			len -= endp - line;
810 			line = endp;
811 		}
812 	}
813 
814 	printk_emit(facility, level, NULL, 0, "%s", line);
815 	kfree(buf);
816 	return ret;
817 }
818 
819 static ssize_t devkmsg_read(struct file *file, char __user *buf,
820 			    size_t count, loff_t *ppos)
821 {
822 	struct devkmsg_user *user = file->private_data;
823 	struct printk_log *msg;
824 	size_t len;
825 	ssize_t ret;
826 
827 	if (!user)
828 		return -EBADF;
829 
830 	ret = mutex_lock_interruptible(&user->lock);
831 	if (ret)
832 		return ret;
833 
834 	logbuf_lock_irq();
835 	while (user->seq == log_next_seq) {
836 		if (file->f_flags & O_NONBLOCK) {
837 			ret = -EAGAIN;
838 			logbuf_unlock_irq();
839 			goto out;
840 		}
841 
842 		logbuf_unlock_irq();
843 		ret = wait_event_interruptible(log_wait,
844 					       user->seq != log_next_seq);
845 		if (ret)
846 			goto out;
847 		logbuf_lock_irq();
848 	}
849 
850 	if (user->seq < log_first_seq) {
851 		/* our last seen message is gone, return error and reset */
852 		user->idx = log_first_idx;
853 		user->seq = log_first_seq;
854 		ret = -EPIPE;
855 		logbuf_unlock_irq();
856 		goto out;
857 	}
858 
859 	msg = log_from_idx(user->idx);
860 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
861 				   msg, user->seq);
862 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
863 				  log_dict(msg), msg->dict_len,
864 				  log_text(msg), msg->text_len);
865 
866 	user->idx = log_next(user->idx);
867 	user->seq++;
868 	logbuf_unlock_irq();
869 
870 	if (len > count) {
871 		ret = -EINVAL;
872 		goto out;
873 	}
874 
875 	if (copy_to_user(buf, user->buf, len)) {
876 		ret = -EFAULT;
877 		goto out;
878 	}
879 	ret = len;
880 out:
881 	mutex_unlock(&user->lock);
882 	return ret;
883 }
884 
885 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
886 {
887 	struct devkmsg_user *user = file->private_data;
888 	loff_t ret = 0;
889 
890 	if (!user)
891 		return -EBADF;
892 	if (offset)
893 		return -ESPIPE;
894 
895 	logbuf_lock_irq();
896 	switch (whence) {
897 	case SEEK_SET:
898 		/* the first record */
899 		user->idx = log_first_idx;
900 		user->seq = log_first_seq;
901 		break;
902 	case SEEK_DATA:
903 		/*
904 		 * The first record after the last SYSLOG_ACTION_CLEAR,
905 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
906 		 * changes no global state, and does not clear anything.
907 		 */
908 		user->idx = clear_idx;
909 		user->seq = clear_seq;
910 		break;
911 	case SEEK_END:
912 		/* after the last record */
913 		user->idx = log_next_idx;
914 		user->seq = log_next_seq;
915 		break;
916 	default:
917 		ret = -EINVAL;
918 	}
919 	logbuf_unlock_irq();
920 	return ret;
921 }
922 
923 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
924 {
925 	struct devkmsg_user *user = file->private_data;
926 	__poll_t ret = 0;
927 
928 	if (!user)
929 		return EPOLLERR|EPOLLNVAL;
930 
931 	poll_wait(file, &log_wait, wait);
932 
933 	logbuf_lock_irq();
934 	if (user->seq < log_next_seq) {
935 		/* return error when data has vanished underneath us */
936 		if (user->seq < log_first_seq)
937 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
938 		else
939 			ret = EPOLLIN|EPOLLRDNORM;
940 	}
941 	logbuf_unlock_irq();
942 
943 	return ret;
944 }
945 
946 static int devkmsg_open(struct inode *inode, struct file *file)
947 {
948 	struct devkmsg_user *user;
949 	int err;
950 
951 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
952 		return -EPERM;
953 
954 	/* write-only does not need any file context */
955 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
956 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
957 					       SYSLOG_FROM_READER);
958 		if (err)
959 			return err;
960 	}
961 
962 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
963 	if (!user)
964 		return -ENOMEM;
965 
966 	ratelimit_default_init(&user->rs);
967 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
968 
969 	mutex_init(&user->lock);
970 
971 	logbuf_lock_irq();
972 	user->idx = log_first_idx;
973 	user->seq = log_first_seq;
974 	logbuf_unlock_irq();
975 
976 	file->private_data = user;
977 	return 0;
978 }
979 
980 static int devkmsg_release(struct inode *inode, struct file *file)
981 {
982 	struct devkmsg_user *user = file->private_data;
983 
984 	if (!user)
985 		return 0;
986 
987 	ratelimit_state_exit(&user->rs);
988 
989 	mutex_destroy(&user->lock);
990 	kfree(user);
991 	return 0;
992 }
993 
994 const struct file_operations kmsg_fops = {
995 	.open = devkmsg_open,
996 	.read = devkmsg_read,
997 	.write_iter = devkmsg_write,
998 	.llseek = devkmsg_llseek,
999 	.poll = devkmsg_poll,
1000 	.release = devkmsg_release,
1001 };
1002 
1003 #ifdef CONFIG_CRASH_CORE
1004 /*
1005  * This appends the listed symbols to /proc/vmcore
1006  *
1007  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1008  * obtain access to symbols that are otherwise very difficult to locate.  These
1009  * symbols are specifically used so that utilities can access and extract the
1010  * dmesg log from a vmcore file after a crash.
1011  */
1012 void log_buf_vmcoreinfo_setup(void)
1013 {
1014 	VMCOREINFO_SYMBOL(log_buf);
1015 	VMCOREINFO_SYMBOL(log_buf_len);
1016 	VMCOREINFO_SYMBOL(log_first_idx);
1017 	VMCOREINFO_SYMBOL(clear_idx);
1018 	VMCOREINFO_SYMBOL(log_next_idx);
1019 	/*
1020 	 * Export struct printk_log size and field offsets. User space tools can
1021 	 * parse it and detect any changes to structure down the line.
1022 	 */
1023 	VMCOREINFO_STRUCT_SIZE(printk_log);
1024 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1025 	VMCOREINFO_OFFSET(printk_log, len);
1026 	VMCOREINFO_OFFSET(printk_log, text_len);
1027 	VMCOREINFO_OFFSET(printk_log, dict_len);
1028 }
1029 #endif
1030 
1031 /* requested log_buf_len from kernel cmdline */
1032 static unsigned long __initdata new_log_buf_len;
1033 
1034 /* we practice scaling the ring buffer by powers of 2 */
1035 static void __init log_buf_len_update(u64 size)
1036 {
1037 	if (size > (u64)LOG_BUF_LEN_MAX) {
1038 		size = (u64)LOG_BUF_LEN_MAX;
1039 		pr_err("log_buf over 2G is not supported.\n");
1040 	}
1041 
1042 	if (size)
1043 		size = roundup_pow_of_two(size);
1044 	if (size > log_buf_len)
1045 		new_log_buf_len = (unsigned long)size;
1046 }
1047 
1048 /* save requested log_buf_len since it's too early to process it */
1049 static int __init log_buf_len_setup(char *str)
1050 {
1051 	u64 size;
1052 
1053 	if (!str)
1054 		return -EINVAL;
1055 
1056 	size = memparse(str, &str);
1057 
1058 	log_buf_len_update(size);
1059 
1060 	return 0;
1061 }
1062 early_param("log_buf_len", log_buf_len_setup);
1063 
1064 #ifdef CONFIG_SMP
1065 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1066 
1067 static void __init log_buf_add_cpu(void)
1068 {
1069 	unsigned int cpu_extra;
1070 
1071 	/*
1072 	 * archs should set up cpu_possible_bits properly with
1073 	 * set_cpu_possible() after setup_arch() but just in
1074 	 * case lets ensure this is valid.
1075 	 */
1076 	if (num_possible_cpus() == 1)
1077 		return;
1078 
1079 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1080 
1081 	/* by default this will only continue through for large > 64 CPUs */
1082 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1083 		return;
1084 
1085 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1086 		__LOG_CPU_MAX_BUF_LEN);
1087 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1088 		cpu_extra);
1089 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1090 
1091 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1092 }
1093 #else /* !CONFIG_SMP */
1094 static inline void log_buf_add_cpu(void) {}
1095 #endif /* CONFIG_SMP */
1096 
1097 void __init setup_log_buf(int early)
1098 {
1099 	unsigned long flags;
1100 	char *new_log_buf;
1101 	unsigned int free;
1102 
1103 	if (log_buf != __log_buf)
1104 		return;
1105 
1106 	if (!early && !new_log_buf_len)
1107 		log_buf_add_cpu();
1108 
1109 	if (!new_log_buf_len)
1110 		return;
1111 
1112 	if (early) {
1113 		new_log_buf =
1114 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1115 	} else {
1116 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1117 							  LOG_ALIGN);
1118 	}
1119 
1120 	if (unlikely(!new_log_buf)) {
1121 		pr_err("log_buf_len: %lu bytes not available\n",
1122 			new_log_buf_len);
1123 		return;
1124 	}
1125 
1126 	logbuf_lock_irqsave(flags);
1127 	log_buf_len = new_log_buf_len;
1128 	log_buf = new_log_buf;
1129 	new_log_buf_len = 0;
1130 	free = __LOG_BUF_LEN - log_next_idx;
1131 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1132 	logbuf_unlock_irqrestore(flags);
1133 
1134 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1135 	pr_info("early log buf free: %u(%u%%)\n",
1136 		free, (free * 100) / __LOG_BUF_LEN);
1137 }
1138 
1139 static bool __read_mostly ignore_loglevel;
1140 
1141 static int __init ignore_loglevel_setup(char *str)
1142 {
1143 	ignore_loglevel = true;
1144 	pr_info("debug: ignoring loglevel setting.\n");
1145 
1146 	return 0;
1147 }
1148 
1149 early_param("ignore_loglevel", ignore_loglevel_setup);
1150 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1151 MODULE_PARM_DESC(ignore_loglevel,
1152 		 "ignore loglevel setting (prints all kernel messages to the console)");
1153 
1154 static bool suppress_message_printing(int level)
1155 {
1156 	return (level >= console_loglevel && !ignore_loglevel);
1157 }
1158 
1159 #ifdef CONFIG_BOOT_PRINTK_DELAY
1160 
1161 static int boot_delay; /* msecs delay after each printk during bootup */
1162 static unsigned long long loops_per_msec;	/* based on boot_delay */
1163 
1164 static int __init boot_delay_setup(char *str)
1165 {
1166 	unsigned long lpj;
1167 
1168 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1169 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1170 
1171 	get_option(&str, &boot_delay);
1172 	if (boot_delay > 10 * 1000)
1173 		boot_delay = 0;
1174 
1175 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1176 		"HZ: %d, loops_per_msec: %llu\n",
1177 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1178 	return 0;
1179 }
1180 early_param("boot_delay", boot_delay_setup);
1181 
1182 static void boot_delay_msec(int level)
1183 {
1184 	unsigned long long k;
1185 	unsigned long timeout;
1186 
1187 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1188 		|| suppress_message_printing(level)) {
1189 		return;
1190 	}
1191 
1192 	k = (unsigned long long)loops_per_msec * boot_delay;
1193 
1194 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1195 	while (k) {
1196 		k--;
1197 		cpu_relax();
1198 		/*
1199 		 * use (volatile) jiffies to prevent
1200 		 * compiler reduction; loop termination via jiffies
1201 		 * is secondary and may or may not happen.
1202 		 */
1203 		if (time_after(jiffies, timeout))
1204 			break;
1205 		touch_nmi_watchdog();
1206 	}
1207 }
1208 #else
1209 static inline void boot_delay_msec(int level)
1210 {
1211 }
1212 #endif
1213 
1214 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1215 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1216 
1217 static size_t print_time(u64 ts, char *buf)
1218 {
1219 	unsigned long rem_nsec;
1220 
1221 	if (!printk_time)
1222 		return 0;
1223 
1224 	rem_nsec = do_div(ts, 1000000000);
1225 
1226 	if (!buf)
1227 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1228 
1229 	return sprintf(buf, "[%5lu.%06lu] ",
1230 		       (unsigned long)ts, rem_nsec / 1000);
1231 }
1232 
1233 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1234 {
1235 	size_t len = 0;
1236 	unsigned int prefix = (msg->facility << 3) | msg->level;
1237 
1238 	if (syslog) {
1239 		if (buf) {
1240 			len += sprintf(buf, "<%u>", prefix);
1241 		} else {
1242 			len += 3;
1243 			if (prefix > 999)
1244 				len += 3;
1245 			else if (prefix > 99)
1246 				len += 2;
1247 			else if (prefix > 9)
1248 				len++;
1249 		}
1250 	}
1251 
1252 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1253 	return len;
1254 }
1255 
1256 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1257 {
1258 	const char *text = log_text(msg);
1259 	size_t text_size = msg->text_len;
1260 	size_t len = 0;
1261 
1262 	do {
1263 		const char *next = memchr(text, '\n', text_size);
1264 		size_t text_len;
1265 
1266 		if (next) {
1267 			text_len = next - text;
1268 			next++;
1269 			text_size -= next - text;
1270 		} else {
1271 			text_len = text_size;
1272 		}
1273 
1274 		if (buf) {
1275 			if (print_prefix(msg, syslog, NULL) +
1276 			    text_len + 1 >= size - len)
1277 				break;
1278 
1279 			len += print_prefix(msg, syslog, buf + len);
1280 			memcpy(buf + len, text, text_len);
1281 			len += text_len;
1282 			buf[len++] = '\n';
1283 		} else {
1284 			/* SYSLOG_ACTION_* buffer size only calculation */
1285 			len += print_prefix(msg, syslog, NULL);
1286 			len += text_len;
1287 			len++;
1288 		}
1289 
1290 		text = next;
1291 	} while (text);
1292 
1293 	return len;
1294 }
1295 
1296 static int syslog_print(char __user *buf, int size)
1297 {
1298 	char *text;
1299 	struct printk_log *msg;
1300 	int len = 0;
1301 
1302 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1303 	if (!text)
1304 		return -ENOMEM;
1305 
1306 	while (size > 0) {
1307 		size_t n;
1308 		size_t skip;
1309 
1310 		logbuf_lock_irq();
1311 		if (syslog_seq < log_first_seq) {
1312 			/* messages are gone, move to first one */
1313 			syslog_seq = log_first_seq;
1314 			syslog_idx = log_first_idx;
1315 			syslog_partial = 0;
1316 		}
1317 		if (syslog_seq == log_next_seq) {
1318 			logbuf_unlock_irq();
1319 			break;
1320 		}
1321 
1322 		skip = syslog_partial;
1323 		msg = log_from_idx(syslog_idx);
1324 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1325 		if (n - syslog_partial <= size) {
1326 			/* message fits into buffer, move forward */
1327 			syslog_idx = log_next(syslog_idx);
1328 			syslog_seq++;
1329 			n -= syslog_partial;
1330 			syslog_partial = 0;
1331 		} else if (!len){
1332 			/* partial read(), remember position */
1333 			n = size;
1334 			syslog_partial += n;
1335 		} else
1336 			n = 0;
1337 		logbuf_unlock_irq();
1338 
1339 		if (!n)
1340 			break;
1341 
1342 		if (copy_to_user(buf, text + skip, n)) {
1343 			if (!len)
1344 				len = -EFAULT;
1345 			break;
1346 		}
1347 
1348 		len += n;
1349 		size -= n;
1350 		buf += n;
1351 	}
1352 
1353 	kfree(text);
1354 	return len;
1355 }
1356 
1357 static int syslog_print_all(char __user *buf, int size, bool clear)
1358 {
1359 	char *text;
1360 	int len = 0;
1361 	u64 next_seq;
1362 	u64 seq;
1363 	u32 idx;
1364 
1365 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1366 	if (!text)
1367 		return -ENOMEM;
1368 
1369 	logbuf_lock_irq();
1370 	/*
1371 	 * Find first record that fits, including all following records,
1372 	 * into the user-provided buffer for this dump.
1373 	 */
1374 	seq = clear_seq;
1375 	idx = clear_idx;
1376 	while (seq < log_next_seq) {
1377 		struct printk_log *msg = log_from_idx(idx);
1378 
1379 		len += msg_print_text(msg, true, NULL, 0);
1380 		idx = log_next(idx);
1381 		seq++;
1382 	}
1383 
1384 	/* move first record forward until length fits into the buffer */
1385 	seq = clear_seq;
1386 	idx = clear_idx;
1387 	while (len > size && seq < log_next_seq) {
1388 		struct printk_log *msg = log_from_idx(idx);
1389 
1390 		len -= msg_print_text(msg, true, NULL, 0);
1391 		idx = log_next(idx);
1392 		seq++;
1393 	}
1394 
1395 	/* last message fitting into this dump */
1396 	next_seq = log_next_seq;
1397 
1398 	len = 0;
1399 	while (len >= 0 && seq < next_seq) {
1400 		struct printk_log *msg = log_from_idx(idx);
1401 		int textlen;
1402 
1403 		textlen = msg_print_text(msg, true, text,
1404 					 LOG_LINE_MAX + PREFIX_MAX);
1405 		if (textlen < 0) {
1406 			len = textlen;
1407 			break;
1408 		}
1409 		idx = log_next(idx);
1410 		seq++;
1411 
1412 		logbuf_unlock_irq();
1413 		if (copy_to_user(buf + len, text, textlen))
1414 			len = -EFAULT;
1415 		else
1416 			len += textlen;
1417 		logbuf_lock_irq();
1418 
1419 		if (seq < log_first_seq) {
1420 			/* messages are gone, move to next one */
1421 			seq = log_first_seq;
1422 			idx = log_first_idx;
1423 		}
1424 	}
1425 
1426 	if (clear) {
1427 		clear_seq = log_next_seq;
1428 		clear_idx = log_next_idx;
1429 	}
1430 	logbuf_unlock_irq();
1431 
1432 	kfree(text);
1433 	return len;
1434 }
1435 
1436 static void syslog_clear(void)
1437 {
1438 	logbuf_lock_irq();
1439 	clear_seq = log_next_seq;
1440 	clear_idx = log_next_idx;
1441 	logbuf_unlock_irq();
1442 }
1443 
1444 int do_syslog(int type, char __user *buf, int len, int source)
1445 {
1446 	bool clear = false;
1447 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1448 	int error;
1449 
1450 	error = check_syslog_permissions(type, source);
1451 	if (error)
1452 		return error;
1453 
1454 	switch (type) {
1455 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1456 		break;
1457 	case SYSLOG_ACTION_OPEN:	/* Open log */
1458 		break;
1459 	case SYSLOG_ACTION_READ:	/* Read from log */
1460 		if (!buf || len < 0)
1461 			return -EINVAL;
1462 		if (!len)
1463 			return 0;
1464 		if (!access_ok(VERIFY_WRITE, buf, len))
1465 			return -EFAULT;
1466 		error = wait_event_interruptible(log_wait,
1467 						 syslog_seq != log_next_seq);
1468 		if (error)
1469 			return error;
1470 		error = syslog_print(buf, len);
1471 		break;
1472 	/* Read/clear last kernel messages */
1473 	case SYSLOG_ACTION_READ_CLEAR:
1474 		clear = true;
1475 		/* FALL THRU */
1476 	/* Read last kernel messages */
1477 	case SYSLOG_ACTION_READ_ALL:
1478 		if (!buf || len < 0)
1479 			return -EINVAL;
1480 		if (!len)
1481 			return 0;
1482 		if (!access_ok(VERIFY_WRITE, buf, len))
1483 			return -EFAULT;
1484 		error = syslog_print_all(buf, len, clear);
1485 		break;
1486 	/* Clear ring buffer */
1487 	case SYSLOG_ACTION_CLEAR:
1488 		syslog_clear();
1489 		break;
1490 	/* Disable logging to console */
1491 	case SYSLOG_ACTION_CONSOLE_OFF:
1492 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1493 			saved_console_loglevel = console_loglevel;
1494 		console_loglevel = minimum_console_loglevel;
1495 		break;
1496 	/* Enable logging to console */
1497 	case SYSLOG_ACTION_CONSOLE_ON:
1498 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1499 			console_loglevel = saved_console_loglevel;
1500 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1501 		}
1502 		break;
1503 	/* Set level of messages printed to console */
1504 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1505 		if (len < 1 || len > 8)
1506 			return -EINVAL;
1507 		if (len < minimum_console_loglevel)
1508 			len = minimum_console_loglevel;
1509 		console_loglevel = len;
1510 		/* Implicitly re-enable logging to console */
1511 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1512 		break;
1513 	/* Number of chars in the log buffer */
1514 	case SYSLOG_ACTION_SIZE_UNREAD:
1515 		logbuf_lock_irq();
1516 		if (syslog_seq < log_first_seq) {
1517 			/* messages are gone, move to first one */
1518 			syslog_seq = log_first_seq;
1519 			syslog_idx = log_first_idx;
1520 			syslog_partial = 0;
1521 		}
1522 		if (source == SYSLOG_FROM_PROC) {
1523 			/*
1524 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1525 			 * for pending data, not the size; return the count of
1526 			 * records, not the length.
1527 			 */
1528 			error = log_next_seq - syslog_seq;
1529 		} else {
1530 			u64 seq = syslog_seq;
1531 			u32 idx = syslog_idx;
1532 
1533 			while (seq < log_next_seq) {
1534 				struct printk_log *msg = log_from_idx(idx);
1535 
1536 				error += msg_print_text(msg, true, NULL, 0);
1537 				idx = log_next(idx);
1538 				seq++;
1539 			}
1540 			error -= syslog_partial;
1541 		}
1542 		logbuf_unlock_irq();
1543 		break;
1544 	/* Size of the log buffer */
1545 	case SYSLOG_ACTION_SIZE_BUFFER:
1546 		error = log_buf_len;
1547 		break;
1548 	default:
1549 		error = -EINVAL;
1550 		break;
1551 	}
1552 
1553 	return error;
1554 }
1555 
1556 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1557 {
1558 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1559 }
1560 
1561 /*
1562  * Special console_lock variants that help to reduce the risk of soft-lockups.
1563  * They allow to pass console_lock to another printk() call using a busy wait.
1564  */
1565 
1566 #ifdef CONFIG_LOCKDEP
1567 static struct lockdep_map console_owner_dep_map = {
1568 	.name = "console_owner"
1569 };
1570 #endif
1571 
1572 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1573 static struct task_struct *console_owner;
1574 static bool console_waiter;
1575 
1576 /**
1577  * console_lock_spinning_enable - mark beginning of code where another
1578  *	thread might safely busy wait
1579  *
1580  * This basically converts console_lock into a spinlock. This marks
1581  * the section where the console_lock owner can not sleep, because
1582  * there may be a waiter spinning (like a spinlock). Also it must be
1583  * ready to hand over the lock at the end of the section.
1584  */
1585 static void console_lock_spinning_enable(void)
1586 {
1587 	raw_spin_lock(&console_owner_lock);
1588 	console_owner = current;
1589 	raw_spin_unlock(&console_owner_lock);
1590 
1591 	/* The waiter may spin on us after setting console_owner */
1592 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1593 }
1594 
1595 /**
1596  * console_lock_spinning_disable_and_check - mark end of code where another
1597  *	thread was able to busy wait and check if there is a waiter
1598  *
1599  * This is called at the end of the section where spinning is allowed.
1600  * It has two functions. First, it is a signal that it is no longer
1601  * safe to start busy waiting for the lock. Second, it checks if
1602  * there is a busy waiter and passes the lock rights to her.
1603  *
1604  * Important: Callers lose the lock if there was a busy waiter.
1605  *	They must not touch items synchronized by console_lock
1606  *	in this case.
1607  *
1608  * Return: 1 if the lock rights were passed, 0 otherwise.
1609  */
1610 static int console_lock_spinning_disable_and_check(void)
1611 {
1612 	int waiter;
1613 
1614 	raw_spin_lock(&console_owner_lock);
1615 	waiter = READ_ONCE(console_waiter);
1616 	console_owner = NULL;
1617 	raw_spin_unlock(&console_owner_lock);
1618 
1619 	if (!waiter) {
1620 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1621 		return 0;
1622 	}
1623 
1624 	/* The waiter is now free to continue */
1625 	WRITE_ONCE(console_waiter, false);
1626 
1627 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1628 
1629 	/*
1630 	 * Hand off console_lock to waiter. The waiter will perform
1631 	 * the up(). After this, the waiter is the console_lock owner.
1632 	 */
1633 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1634 	return 1;
1635 }
1636 
1637 /**
1638  * console_trylock_spinning - try to get console_lock by busy waiting
1639  *
1640  * This allows to busy wait for the console_lock when the current
1641  * owner is running in specially marked sections. It means that
1642  * the current owner is running and cannot reschedule until it
1643  * is ready to lose the lock.
1644  *
1645  * Return: 1 if we got the lock, 0 othrewise
1646  */
1647 static int console_trylock_spinning(void)
1648 {
1649 	struct task_struct *owner = NULL;
1650 	bool waiter;
1651 	bool spin = false;
1652 	unsigned long flags;
1653 
1654 	if (console_trylock())
1655 		return 1;
1656 
1657 	printk_safe_enter_irqsave(flags);
1658 
1659 	raw_spin_lock(&console_owner_lock);
1660 	owner = READ_ONCE(console_owner);
1661 	waiter = READ_ONCE(console_waiter);
1662 	if (!waiter && owner && owner != current) {
1663 		WRITE_ONCE(console_waiter, true);
1664 		spin = true;
1665 	}
1666 	raw_spin_unlock(&console_owner_lock);
1667 
1668 	/*
1669 	 * If there is an active printk() writing to the
1670 	 * consoles, instead of having it write our data too,
1671 	 * see if we can offload that load from the active
1672 	 * printer, and do some printing ourselves.
1673 	 * Go into a spin only if there isn't already a waiter
1674 	 * spinning, and there is an active printer, and
1675 	 * that active printer isn't us (recursive printk?).
1676 	 */
1677 	if (!spin) {
1678 		printk_safe_exit_irqrestore(flags);
1679 		return 0;
1680 	}
1681 
1682 	/* We spin waiting for the owner to release us */
1683 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1684 	/* Owner will clear console_waiter on hand off */
1685 	while (READ_ONCE(console_waiter))
1686 		cpu_relax();
1687 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1688 
1689 	printk_safe_exit_irqrestore(flags);
1690 	/*
1691 	 * The owner passed the console lock to us.
1692 	 * Since we did not spin on console lock, annotate
1693 	 * this as a trylock. Otherwise lockdep will
1694 	 * complain.
1695 	 */
1696 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1697 
1698 	return 1;
1699 }
1700 
1701 /*
1702  * Call the console drivers, asking them to write out
1703  * log_buf[start] to log_buf[end - 1].
1704  * The console_lock must be held.
1705  */
1706 static void call_console_drivers(const char *ext_text, size_t ext_len,
1707 				 const char *text, size_t len)
1708 {
1709 	struct console *con;
1710 
1711 	trace_console_rcuidle(text, len);
1712 
1713 	if (!console_drivers)
1714 		return;
1715 
1716 	for_each_console(con) {
1717 		if (exclusive_console && con != exclusive_console)
1718 			continue;
1719 		if (!(con->flags & CON_ENABLED))
1720 			continue;
1721 		if (!con->write)
1722 			continue;
1723 		if (!cpu_online(smp_processor_id()) &&
1724 		    !(con->flags & CON_ANYTIME))
1725 			continue;
1726 		if (con->flags & CON_EXTENDED)
1727 			con->write(con, ext_text, ext_len);
1728 		else
1729 			con->write(con, text, len);
1730 	}
1731 }
1732 
1733 int printk_delay_msec __read_mostly;
1734 
1735 static inline void printk_delay(void)
1736 {
1737 	if (unlikely(printk_delay_msec)) {
1738 		int m = printk_delay_msec;
1739 
1740 		while (m--) {
1741 			mdelay(1);
1742 			touch_nmi_watchdog();
1743 		}
1744 	}
1745 }
1746 
1747 /*
1748  * Continuation lines are buffered, and not committed to the record buffer
1749  * until the line is complete, or a race forces it. The line fragments
1750  * though, are printed immediately to the consoles to ensure everything has
1751  * reached the console in case of a kernel crash.
1752  */
1753 static struct cont {
1754 	char buf[LOG_LINE_MAX];
1755 	size_t len;			/* length == 0 means unused buffer */
1756 	struct task_struct *owner;	/* task of first print*/
1757 	u64 ts_nsec;			/* time of first print */
1758 	u8 level;			/* log level of first message */
1759 	u8 facility;			/* log facility of first message */
1760 	enum log_flags flags;		/* prefix, newline flags */
1761 } cont;
1762 
1763 static void cont_flush(void)
1764 {
1765 	if (cont.len == 0)
1766 		return;
1767 
1768 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1769 		  NULL, 0, cont.buf, cont.len);
1770 	cont.len = 0;
1771 }
1772 
1773 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1774 {
1775 	/* If the line gets too long, split it up in separate records. */
1776 	if (cont.len + len > sizeof(cont.buf)) {
1777 		cont_flush();
1778 		return false;
1779 	}
1780 
1781 	if (!cont.len) {
1782 		cont.facility = facility;
1783 		cont.level = level;
1784 		cont.owner = current;
1785 		cont.ts_nsec = local_clock();
1786 		cont.flags = flags;
1787 	}
1788 
1789 	memcpy(cont.buf + cont.len, text, len);
1790 	cont.len += len;
1791 
1792 	// The original flags come from the first line,
1793 	// but later continuations can add a newline.
1794 	if (flags & LOG_NEWLINE) {
1795 		cont.flags |= LOG_NEWLINE;
1796 		cont_flush();
1797 	}
1798 
1799 	return true;
1800 }
1801 
1802 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1803 {
1804 	/*
1805 	 * If an earlier line was buffered, and we're a continuation
1806 	 * write from the same process, try to add it to the buffer.
1807 	 */
1808 	if (cont.len) {
1809 		if (cont.owner == current && (lflags & LOG_CONT)) {
1810 			if (cont_add(facility, level, lflags, text, text_len))
1811 				return text_len;
1812 		}
1813 		/* Otherwise, make sure it's flushed */
1814 		cont_flush();
1815 	}
1816 
1817 	/* Skip empty continuation lines that couldn't be added - they just flush */
1818 	if (!text_len && (lflags & LOG_CONT))
1819 		return 0;
1820 
1821 	/* If it doesn't end in a newline, try to buffer the current line */
1822 	if (!(lflags & LOG_NEWLINE)) {
1823 		if (cont_add(facility, level, lflags, text, text_len))
1824 			return text_len;
1825 	}
1826 
1827 	/* Store it in the record log */
1828 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1829 }
1830 
1831 /* Must be called under logbuf_lock. */
1832 int vprintk_store(int facility, int level,
1833 		  const char *dict, size_t dictlen,
1834 		  const char *fmt, va_list args)
1835 {
1836 	static char textbuf[LOG_LINE_MAX];
1837 	char *text = textbuf;
1838 	size_t text_len;
1839 	enum log_flags lflags = 0;
1840 
1841 	/*
1842 	 * The printf needs to come first; we need the syslog
1843 	 * prefix which might be passed-in as a parameter.
1844 	 */
1845 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1846 
1847 	/* mark and strip a trailing newline */
1848 	if (text_len && text[text_len-1] == '\n') {
1849 		text_len--;
1850 		lflags |= LOG_NEWLINE;
1851 	}
1852 
1853 	/* strip kernel syslog prefix and extract log level or control flags */
1854 	if (facility == 0) {
1855 		int kern_level;
1856 
1857 		while ((kern_level = printk_get_level(text)) != 0) {
1858 			switch (kern_level) {
1859 			case '0' ... '7':
1860 				if (level == LOGLEVEL_DEFAULT)
1861 					level = kern_level - '0';
1862 				/* fallthrough */
1863 			case 'd':	/* KERN_DEFAULT */
1864 				lflags |= LOG_PREFIX;
1865 				break;
1866 			case 'c':	/* KERN_CONT */
1867 				lflags |= LOG_CONT;
1868 			}
1869 
1870 			text_len -= 2;
1871 			text += 2;
1872 		}
1873 	}
1874 
1875 	if (level == LOGLEVEL_DEFAULT)
1876 		level = default_message_loglevel;
1877 
1878 	if (dict)
1879 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1880 
1881 	return log_output(facility, level, lflags,
1882 			  dict, dictlen, text, text_len);
1883 }
1884 
1885 asmlinkage int vprintk_emit(int facility, int level,
1886 			    const char *dict, size_t dictlen,
1887 			    const char *fmt, va_list args)
1888 {
1889 	int printed_len;
1890 	bool in_sched = false, pending_output;
1891 	unsigned long flags;
1892 	u64 curr_log_seq;
1893 
1894 	if (level == LOGLEVEL_SCHED) {
1895 		level = LOGLEVEL_DEFAULT;
1896 		in_sched = true;
1897 	}
1898 
1899 	boot_delay_msec(level);
1900 	printk_delay();
1901 
1902 	/* This stops the holder of console_sem just where we want him */
1903 	logbuf_lock_irqsave(flags);
1904 	curr_log_seq = log_next_seq;
1905 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1906 	pending_output = (curr_log_seq != log_next_seq);
1907 	logbuf_unlock_irqrestore(flags);
1908 
1909 	/* If called from the scheduler, we can not call up(). */
1910 	if (!in_sched && pending_output) {
1911 		/*
1912 		 * Disable preemption to avoid being preempted while holding
1913 		 * console_sem which would prevent anyone from printing to
1914 		 * console
1915 		 */
1916 		preempt_disable();
1917 		/*
1918 		 * Try to acquire and then immediately release the console
1919 		 * semaphore.  The release will print out buffers and wake up
1920 		 * /dev/kmsg and syslog() users.
1921 		 */
1922 		if (console_trylock_spinning())
1923 			console_unlock();
1924 		preempt_enable();
1925 	}
1926 
1927 	if (pending_output)
1928 		wake_up_klogd();
1929 	return printed_len;
1930 }
1931 EXPORT_SYMBOL(vprintk_emit);
1932 
1933 asmlinkage int vprintk(const char *fmt, va_list args)
1934 {
1935 	return vprintk_func(fmt, args);
1936 }
1937 EXPORT_SYMBOL(vprintk);
1938 
1939 asmlinkage int printk_emit(int facility, int level,
1940 			   const char *dict, size_t dictlen,
1941 			   const char *fmt, ...)
1942 {
1943 	va_list args;
1944 	int r;
1945 
1946 	va_start(args, fmt);
1947 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1948 	va_end(args);
1949 
1950 	return r;
1951 }
1952 EXPORT_SYMBOL(printk_emit);
1953 
1954 int vprintk_default(const char *fmt, va_list args)
1955 {
1956 	int r;
1957 
1958 #ifdef CONFIG_KGDB_KDB
1959 	/* Allow to pass printk() to kdb but avoid a recursion. */
1960 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1961 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1962 		return r;
1963 	}
1964 #endif
1965 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1966 
1967 	return r;
1968 }
1969 EXPORT_SYMBOL_GPL(vprintk_default);
1970 
1971 /**
1972  * printk - print a kernel message
1973  * @fmt: format string
1974  *
1975  * This is printk(). It can be called from any context. We want it to work.
1976  *
1977  * We try to grab the console_lock. If we succeed, it's easy - we log the
1978  * output and call the console drivers.  If we fail to get the semaphore, we
1979  * place the output into the log buffer and return. The current holder of
1980  * the console_sem will notice the new output in console_unlock(); and will
1981  * send it to the consoles before releasing the lock.
1982  *
1983  * One effect of this deferred printing is that code which calls printk() and
1984  * then changes console_loglevel may break. This is because console_loglevel
1985  * is inspected when the actual printing occurs.
1986  *
1987  * See also:
1988  * printf(3)
1989  *
1990  * See the vsnprintf() documentation for format string extensions over C99.
1991  */
1992 asmlinkage __visible int printk(const char *fmt, ...)
1993 {
1994 	va_list args;
1995 	int r;
1996 
1997 	va_start(args, fmt);
1998 	r = vprintk_func(fmt, args);
1999 	va_end(args);
2000 
2001 	return r;
2002 }
2003 EXPORT_SYMBOL(printk);
2004 
2005 #else /* CONFIG_PRINTK */
2006 
2007 #define LOG_LINE_MAX		0
2008 #define PREFIX_MAX		0
2009 
2010 static u64 syslog_seq;
2011 static u32 syslog_idx;
2012 static u64 console_seq;
2013 static u32 console_idx;
2014 static u64 exclusive_console_stop_seq;
2015 static u64 log_first_seq;
2016 static u32 log_first_idx;
2017 static u64 log_next_seq;
2018 static char *log_text(const struct printk_log *msg) { return NULL; }
2019 static char *log_dict(const struct printk_log *msg) { return NULL; }
2020 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2021 static u32 log_next(u32 idx) { return 0; }
2022 static ssize_t msg_print_ext_header(char *buf, size_t size,
2023 				    struct printk_log *msg,
2024 				    u64 seq) { return 0; }
2025 static ssize_t msg_print_ext_body(char *buf, size_t size,
2026 				  char *dict, size_t dict_len,
2027 				  char *text, size_t text_len) { return 0; }
2028 static void console_lock_spinning_enable(void) { }
2029 static int console_lock_spinning_disable_and_check(void) { return 0; }
2030 static void call_console_drivers(const char *ext_text, size_t ext_len,
2031 				 const char *text, size_t len) {}
2032 static size_t msg_print_text(const struct printk_log *msg,
2033 			     bool syslog, char *buf, size_t size) { return 0; }
2034 static bool suppress_message_printing(int level) { return false; }
2035 
2036 #endif /* CONFIG_PRINTK */
2037 
2038 #ifdef CONFIG_EARLY_PRINTK
2039 struct console *early_console;
2040 
2041 asmlinkage __visible void early_printk(const char *fmt, ...)
2042 {
2043 	va_list ap;
2044 	char buf[512];
2045 	int n;
2046 
2047 	if (!early_console)
2048 		return;
2049 
2050 	va_start(ap, fmt);
2051 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2052 	va_end(ap);
2053 
2054 	early_console->write(early_console, buf, n);
2055 }
2056 #endif
2057 
2058 static int __add_preferred_console(char *name, int idx, char *options,
2059 				   char *brl_options)
2060 {
2061 	struct console_cmdline *c;
2062 	int i;
2063 
2064 	/*
2065 	 *	See if this tty is not yet registered, and
2066 	 *	if we have a slot free.
2067 	 */
2068 	for (i = 0, c = console_cmdline;
2069 	     i < MAX_CMDLINECONSOLES && c->name[0];
2070 	     i++, c++) {
2071 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2072 			if (!brl_options)
2073 				preferred_console = i;
2074 			return 0;
2075 		}
2076 	}
2077 	if (i == MAX_CMDLINECONSOLES)
2078 		return -E2BIG;
2079 	if (!brl_options)
2080 		preferred_console = i;
2081 	strlcpy(c->name, name, sizeof(c->name));
2082 	c->options = options;
2083 	braille_set_options(c, brl_options);
2084 
2085 	c->index = idx;
2086 	return 0;
2087 }
2088 
2089 static int __init console_msg_format_setup(char *str)
2090 {
2091 	if (!strcmp(str, "syslog"))
2092 		console_msg_format = MSG_FORMAT_SYSLOG;
2093 	if (!strcmp(str, "default"))
2094 		console_msg_format = MSG_FORMAT_DEFAULT;
2095 	return 1;
2096 }
2097 __setup("console_msg_format=", console_msg_format_setup);
2098 
2099 /*
2100  * Set up a console.  Called via do_early_param() in init/main.c
2101  * for each "console=" parameter in the boot command line.
2102  */
2103 static int __init console_setup(char *str)
2104 {
2105 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2106 	char *s, *options, *brl_options = NULL;
2107 	int idx;
2108 
2109 	if (_braille_console_setup(&str, &brl_options))
2110 		return 1;
2111 
2112 	/*
2113 	 * Decode str into name, index, options.
2114 	 */
2115 	if (str[0] >= '0' && str[0] <= '9') {
2116 		strcpy(buf, "ttyS");
2117 		strncpy(buf + 4, str, sizeof(buf) - 5);
2118 	} else {
2119 		strncpy(buf, str, sizeof(buf) - 1);
2120 	}
2121 	buf[sizeof(buf) - 1] = 0;
2122 	options = strchr(str, ',');
2123 	if (options)
2124 		*(options++) = 0;
2125 #ifdef __sparc__
2126 	if (!strcmp(str, "ttya"))
2127 		strcpy(buf, "ttyS0");
2128 	if (!strcmp(str, "ttyb"))
2129 		strcpy(buf, "ttyS1");
2130 #endif
2131 	for (s = buf; *s; s++)
2132 		if (isdigit(*s) || *s == ',')
2133 			break;
2134 	idx = simple_strtoul(s, NULL, 10);
2135 	*s = 0;
2136 
2137 	__add_preferred_console(buf, idx, options, brl_options);
2138 	console_set_on_cmdline = 1;
2139 	return 1;
2140 }
2141 __setup("console=", console_setup);
2142 
2143 /**
2144  * add_preferred_console - add a device to the list of preferred consoles.
2145  * @name: device name
2146  * @idx: device index
2147  * @options: options for this console
2148  *
2149  * The last preferred console added will be used for kernel messages
2150  * and stdin/out/err for init.  Normally this is used by console_setup
2151  * above to handle user-supplied console arguments; however it can also
2152  * be used by arch-specific code either to override the user or more
2153  * commonly to provide a default console (ie from PROM variables) when
2154  * the user has not supplied one.
2155  */
2156 int add_preferred_console(char *name, int idx, char *options)
2157 {
2158 	return __add_preferred_console(name, idx, options, NULL);
2159 }
2160 
2161 bool console_suspend_enabled = true;
2162 EXPORT_SYMBOL(console_suspend_enabled);
2163 
2164 static int __init console_suspend_disable(char *str)
2165 {
2166 	console_suspend_enabled = false;
2167 	return 1;
2168 }
2169 __setup("no_console_suspend", console_suspend_disable);
2170 module_param_named(console_suspend, console_suspend_enabled,
2171 		bool, S_IRUGO | S_IWUSR);
2172 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2173 	" and hibernate operations");
2174 
2175 /**
2176  * suspend_console - suspend the console subsystem
2177  *
2178  * This disables printk() while we go into suspend states
2179  */
2180 void suspend_console(void)
2181 {
2182 	if (!console_suspend_enabled)
2183 		return;
2184 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2185 	console_lock();
2186 	console_suspended = 1;
2187 	up_console_sem();
2188 }
2189 
2190 void resume_console(void)
2191 {
2192 	if (!console_suspend_enabled)
2193 		return;
2194 	down_console_sem();
2195 	console_suspended = 0;
2196 	console_unlock();
2197 }
2198 
2199 /**
2200  * console_cpu_notify - print deferred console messages after CPU hotplug
2201  * @cpu: unused
2202  *
2203  * If printk() is called from a CPU that is not online yet, the messages
2204  * will be printed on the console only if there are CON_ANYTIME consoles.
2205  * This function is called when a new CPU comes online (or fails to come
2206  * up) or goes offline.
2207  */
2208 static int console_cpu_notify(unsigned int cpu)
2209 {
2210 	if (!cpuhp_tasks_frozen) {
2211 		/* If trylock fails, someone else is doing the printing */
2212 		if (console_trylock())
2213 			console_unlock();
2214 	}
2215 	return 0;
2216 }
2217 
2218 /**
2219  * console_lock - lock the console system for exclusive use.
2220  *
2221  * Acquires a lock which guarantees that the caller has
2222  * exclusive access to the console system and the console_drivers list.
2223  *
2224  * Can sleep, returns nothing.
2225  */
2226 void console_lock(void)
2227 {
2228 	might_sleep();
2229 
2230 	down_console_sem();
2231 	if (console_suspended)
2232 		return;
2233 	console_locked = 1;
2234 	console_may_schedule = 1;
2235 }
2236 EXPORT_SYMBOL(console_lock);
2237 
2238 /**
2239  * console_trylock - try to lock the console system for exclusive use.
2240  *
2241  * Try to acquire a lock which guarantees that the caller has exclusive
2242  * access to the console system and the console_drivers list.
2243  *
2244  * returns 1 on success, and 0 on failure to acquire the lock.
2245  */
2246 int console_trylock(void)
2247 {
2248 	if (down_trylock_console_sem())
2249 		return 0;
2250 	if (console_suspended) {
2251 		up_console_sem();
2252 		return 0;
2253 	}
2254 	console_locked = 1;
2255 	console_may_schedule = 0;
2256 	return 1;
2257 }
2258 EXPORT_SYMBOL(console_trylock);
2259 
2260 int is_console_locked(void)
2261 {
2262 	return console_locked;
2263 }
2264 EXPORT_SYMBOL(is_console_locked);
2265 
2266 /*
2267  * Check if we have any console that is capable of printing while cpu is
2268  * booting or shutting down. Requires console_sem.
2269  */
2270 static int have_callable_console(void)
2271 {
2272 	struct console *con;
2273 
2274 	for_each_console(con)
2275 		if ((con->flags & CON_ENABLED) &&
2276 				(con->flags & CON_ANYTIME))
2277 			return 1;
2278 
2279 	return 0;
2280 }
2281 
2282 /*
2283  * Can we actually use the console at this time on this cpu?
2284  *
2285  * Console drivers may assume that per-cpu resources have been allocated. So
2286  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2287  * call them until this CPU is officially up.
2288  */
2289 static inline int can_use_console(void)
2290 {
2291 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2292 }
2293 
2294 /**
2295  * console_unlock - unlock the console system
2296  *
2297  * Releases the console_lock which the caller holds on the console system
2298  * and the console driver list.
2299  *
2300  * While the console_lock was held, console output may have been buffered
2301  * by printk().  If this is the case, console_unlock(); emits
2302  * the output prior to releasing the lock.
2303  *
2304  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2305  *
2306  * console_unlock(); may be called from any context.
2307  */
2308 void console_unlock(void)
2309 {
2310 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2311 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2312 	unsigned long flags;
2313 	bool do_cond_resched, retry;
2314 
2315 	if (console_suspended) {
2316 		up_console_sem();
2317 		return;
2318 	}
2319 
2320 	/*
2321 	 * Console drivers are called with interrupts disabled, so
2322 	 * @console_may_schedule should be cleared before; however, we may
2323 	 * end up dumping a lot of lines, for example, if called from
2324 	 * console registration path, and should invoke cond_resched()
2325 	 * between lines if allowable.  Not doing so can cause a very long
2326 	 * scheduling stall on a slow console leading to RCU stall and
2327 	 * softlockup warnings which exacerbate the issue with more
2328 	 * messages practically incapacitating the system.
2329 	 *
2330 	 * console_trylock() is not able to detect the preemptive
2331 	 * context reliably. Therefore the value must be stored before
2332 	 * and cleared after the the "again" goto label.
2333 	 */
2334 	do_cond_resched = console_may_schedule;
2335 again:
2336 	console_may_schedule = 0;
2337 
2338 	/*
2339 	 * We released the console_sem lock, so we need to recheck if
2340 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2341 	 * console.
2342 	 */
2343 	if (!can_use_console()) {
2344 		console_locked = 0;
2345 		up_console_sem();
2346 		return;
2347 	}
2348 
2349 	for (;;) {
2350 		struct printk_log *msg;
2351 		size_t ext_len = 0;
2352 		size_t len;
2353 
2354 		printk_safe_enter_irqsave(flags);
2355 		raw_spin_lock(&logbuf_lock);
2356 		if (console_seq < log_first_seq) {
2357 			len = sprintf(text,
2358 				      "** %llu printk messages dropped **\n",
2359 				      log_first_seq - console_seq);
2360 
2361 			/* messages are gone, move to first one */
2362 			console_seq = log_first_seq;
2363 			console_idx = log_first_idx;
2364 		} else {
2365 			len = 0;
2366 		}
2367 skip:
2368 		if (console_seq == log_next_seq)
2369 			break;
2370 
2371 		msg = log_from_idx(console_idx);
2372 		if (suppress_message_printing(msg->level)) {
2373 			/*
2374 			 * Skip record we have buffered and already printed
2375 			 * directly to the console when we received it, and
2376 			 * record that has level above the console loglevel.
2377 			 */
2378 			console_idx = log_next(console_idx);
2379 			console_seq++;
2380 			goto skip;
2381 		}
2382 
2383 		/* Output to all consoles once old messages replayed. */
2384 		if (unlikely(exclusive_console &&
2385 			     console_seq >= exclusive_console_stop_seq)) {
2386 			exclusive_console = NULL;
2387 		}
2388 
2389 		len += msg_print_text(msg,
2390 				console_msg_format & MSG_FORMAT_SYSLOG,
2391 				text + len,
2392 				sizeof(text) - len);
2393 		if (nr_ext_console_drivers) {
2394 			ext_len = msg_print_ext_header(ext_text,
2395 						sizeof(ext_text),
2396 						msg, console_seq);
2397 			ext_len += msg_print_ext_body(ext_text + ext_len,
2398 						sizeof(ext_text) - ext_len,
2399 						log_dict(msg), msg->dict_len,
2400 						log_text(msg), msg->text_len);
2401 		}
2402 		console_idx = log_next(console_idx);
2403 		console_seq++;
2404 		raw_spin_unlock(&logbuf_lock);
2405 
2406 		/*
2407 		 * While actively printing out messages, if another printk()
2408 		 * were to occur on another CPU, it may wait for this one to
2409 		 * finish. This task can not be preempted if there is a
2410 		 * waiter waiting to take over.
2411 		 */
2412 		console_lock_spinning_enable();
2413 
2414 		stop_critical_timings();	/* don't trace print latency */
2415 		call_console_drivers(ext_text, ext_len, text, len);
2416 		start_critical_timings();
2417 
2418 		if (console_lock_spinning_disable_and_check()) {
2419 			printk_safe_exit_irqrestore(flags);
2420 			return;
2421 		}
2422 
2423 		printk_safe_exit_irqrestore(flags);
2424 
2425 		if (do_cond_resched)
2426 			cond_resched();
2427 	}
2428 
2429 	console_locked = 0;
2430 
2431 	raw_spin_unlock(&logbuf_lock);
2432 
2433 	up_console_sem();
2434 
2435 	/*
2436 	 * Someone could have filled up the buffer again, so re-check if there's
2437 	 * something to flush. In case we cannot trylock the console_sem again,
2438 	 * there's a new owner and the console_unlock() from them will do the
2439 	 * flush, no worries.
2440 	 */
2441 	raw_spin_lock(&logbuf_lock);
2442 	retry = console_seq != log_next_seq;
2443 	raw_spin_unlock(&logbuf_lock);
2444 	printk_safe_exit_irqrestore(flags);
2445 
2446 	if (retry && console_trylock())
2447 		goto again;
2448 }
2449 EXPORT_SYMBOL(console_unlock);
2450 
2451 /**
2452  * console_conditional_schedule - yield the CPU if required
2453  *
2454  * If the console code is currently allowed to sleep, and
2455  * if this CPU should yield the CPU to another task, do
2456  * so here.
2457  *
2458  * Must be called within console_lock();.
2459  */
2460 void __sched console_conditional_schedule(void)
2461 {
2462 	if (console_may_schedule)
2463 		cond_resched();
2464 }
2465 EXPORT_SYMBOL(console_conditional_schedule);
2466 
2467 void console_unblank(void)
2468 {
2469 	struct console *c;
2470 
2471 	/*
2472 	 * console_unblank can no longer be called in interrupt context unless
2473 	 * oops_in_progress is set to 1..
2474 	 */
2475 	if (oops_in_progress) {
2476 		if (down_trylock_console_sem() != 0)
2477 			return;
2478 	} else
2479 		console_lock();
2480 
2481 	console_locked = 1;
2482 	console_may_schedule = 0;
2483 	for_each_console(c)
2484 		if ((c->flags & CON_ENABLED) && c->unblank)
2485 			c->unblank();
2486 	console_unlock();
2487 }
2488 
2489 /**
2490  * console_flush_on_panic - flush console content on panic
2491  *
2492  * Immediately output all pending messages no matter what.
2493  */
2494 void console_flush_on_panic(void)
2495 {
2496 	/*
2497 	 * If someone else is holding the console lock, trylock will fail
2498 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2499 	 * that messages are flushed out.  As this can be called from any
2500 	 * context and we don't want to get preempted while flushing,
2501 	 * ensure may_schedule is cleared.
2502 	 */
2503 	console_trylock();
2504 	console_may_schedule = 0;
2505 	console_unlock();
2506 }
2507 
2508 /*
2509  * Return the console tty driver structure and its associated index
2510  */
2511 struct tty_driver *console_device(int *index)
2512 {
2513 	struct console *c;
2514 	struct tty_driver *driver = NULL;
2515 
2516 	console_lock();
2517 	for_each_console(c) {
2518 		if (!c->device)
2519 			continue;
2520 		driver = c->device(c, index);
2521 		if (driver)
2522 			break;
2523 	}
2524 	console_unlock();
2525 	return driver;
2526 }
2527 
2528 /*
2529  * Prevent further output on the passed console device so that (for example)
2530  * serial drivers can disable console output before suspending a port, and can
2531  * re-enable output afterwards.
2532  */
2533 void console_stop(struct console *console)
2534 {
2535 	console_lock();
2536 	console->flags &= ~CON_ENABLED;
2537 	console_unlock();
2538 }
2539 EXPORT_SYMBOL(console_stop);
2540 
2541 void console_start(struct console *console)
2542 {
2543 	console_lock();
2544 	console->flags |= CON_ENABLED;
2545 	console_unlock();
2546 }
2547 EXPORT_SYMBOL(console_start);
2548 
2549 static int __read_mostly keep_bootcon;
2550 
2551 static int __init keep_bootcon_setup(char *str)
2552 {
2553 	keep_bootcon = 1;
2554 	pr_info("debug: skip boot console de-registration.\n");
2555 
2556 	return 0;
2557 }
2558 
2559 early_param("keep_bootcon", keep_bootcon_setup);
2560 
2561 /*
2562  * The console driver calls this routine during kernel initialization
2563  * to register the console printing procedure with printk() and to
2564  * print any messages that were printed by the kernel before the
2565  * console driver was initialized.
2566  *
2567  * This can happen pretty early during the boot process (because of
2568  * early_printk) - sometimes before setup_arch() completes - be careful
2569  * of what kernel features are used - they may not be initialised yet.
2570  *
2571  * There are two types of consoles - bootconsoles (early_printk) and
2572  * "real" consoles (everything which is not a bootconsole) which are
2573  * handled differently.
2574  *  - Any number of bootconsoles can be registered at any time.
2575  *  - As soon as a "real" console is registered, all bootconsoles
2576  *    will be unregistered automatically.
2577  *  - Once a "real" console is registered, any attempt to register a
2578  *    bootconsoles will be rejected
2579  */
2580 void register_console(struct console *newcon)
2581 {
2582 	int i;
2583 	unsigned long flags;
2584 	struct console *bcon = NULL;
2585 	struct console_cmdline *c;
2586 	static bool has_preferred;
2587 
2588 	if (console_drivers)
2589 		for_each_console(bcon)
2590 			if (WARN(bcon == newcon,
2591 					"console '%s%d' already registered\n",
2592 					bcon->name, bcon->index))
2593 				return;
2594 
2595 	/*
2596 	 * before we register a new CON_BOOT console, make sure we don't
2597 	 * already have a valid console
2598 	 */
2599 	if (console_drivers && newcon->flags & CON_BOOT) {
2600 		/* find the last or real console */
2601 		for_each_console(bcon) {
2602 			if (!(bcon->flags & CON_BOOT)) {
2603 				pr_info("Too late to register bootconsole %s%d\n",
2604 					newcon->name, newcon->index);
2605 				return;
2606 			}
2607 		}
2608 	}
2609 
2610 	if (console_drivers && console_drivers->flags & CON_BOOT)
2611 		bcon = console_drivers;
2612 
2613 	if (!has_preferred || bcon || !console_drivers)
2614 		has_preferred = preferred_console >= 0;
2615 
2616 	/*
2617 	 *	See if we want to use this console driver. If we
2618 	 *	didn't select a console we take the first one
2619 	 *	that registers here.
2620 	 */
2621 	if (!has_preferred) {
2622 		if (newcon->index < 0)
2623 			newcon->index = 0;
2624 		if (newcon->setup == NULL ||
2625 		    newcon->setup(newcon, NULL) == 0) {
2626 			newcon->flags |= CON_ENABLED;
2627 			if (newcon->device) {
2628 				newcon->flags |= CON_CONSDEV;
2629 				has_preferred = true;
2630 			}
2631 		}
2632 	}
2633 
2634 	/*
2635 	 *	See if this console matches one we selected on
2636 	 *	the command line.
2637 	 */
2638 	for (i = 0, c = console_cmdline;
2639 	     i < MAX_CMDLINECONSOLES && c->name[0];
2640 	     i++, c++) {
2641 		if (!newcon->match ||
2642 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2643 			/* default matching */
2644 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2645 			if (strcmp(c->name, newcon->name) != 0)
2646 				continue;
2647 			if (newcon->index >= 0 &&
2648 			    newcon->index != c->index)
2649 				continue;
2650 			if (newcon->index < 0)
2651 				newcon->index = c->index;
2652 
2653 			if (_braille_register_console(newcon, c))
2654 				return;
2655 
2656 			if (newcon->setup &&
2657 			    newcon->setup(newcon, c->options) != 0)
2658 				break;
2659 		}
2660 
2661 		newcon->flags |= CON_ENABLED;
2662 		if (i == preferred_console) {
2663 			newcon->flags |= CON_CONSDEV;
2664 			has_preferred = true;
2665 		}
2666 		break;
2667 	}
2668 
2669 	if (!(newcon->flags & CON_ENABLED))
2670 		return;
2671 
2672 	/*
2673 	 * If we have a bootconsole, and are switching to a real console,
2674 	 * don't print everything out again, since when the boot console, and
2675 	 * the real console are the same physical device, it's annoying to
2676 	 * see the beginning boot messages twice
2677 	 */
2678 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2679 		newcon->flags &= ~CON_PRINTBUFFER;
2680 
2681 	/*
2682 	 *	Put this console in the list - keep the
2683 	 *	preferred driver at the head of the list.
2684 	 */
2685 	console_lock();
2686 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2687 		newcon->next = console_drivers;
2688 		console_drivers = newcon;
2689 		if (newcon->next)
2690 			newcon->next->flags &= ~CON_CONSDEV;
2691 	} else {
2692 		newcon->next = console_drivers->next;
2693 		console_drivers->next = newcon;
2694 	}
2695 
2696 	if (newcon->flags & CON_EXTENDED)
2697 		nr_ext_console_drivers++;
2698 
2699 	if (newcon->flags & CON_PRINTBUFFER) {
2700 		/*
2701 		 * console_unlock(); will print out the buffered messages
2702 		 * for us.
2703 		 */
2704 		logbuf_lock_irqsave(flags);
2705 		console_seq = syslog_seq;
2706 		console_idx = syslog_idx;
2707 		/*
2708 		 * We're about to replay the log buffer.  Only do this to the
2709 		 * just-registered console to avoid excessive message spam to
2710 		 * the already-registered consoles.
2711 		 *
2712 		 * Set exclusive_console with disabled interrupts to reduce
2713 		 * race window with eventual console_flush_on_panic() that
2714 		 * ignores console_lock.
2715 		 */
2716 		exclusive_console = newcon;
2717 		exclusive_console_stop_seq = console_seq;
2718 		logbuf_unlock_irqrestore(flags);
2719 	}
2720 	console_unlock();
2721 	console_sysfs_notify();
2722 
2723 	/*
2724 	 * By unregistering the bootconsoles after we enable the real console
2725 	 * we get the "console xxx enabled" message on all the consoles -
2726 	 * boot consoles, real consoles, etc - this is to ensure that end
2727 	 * users know there might be something in the kernel's log buffer that
2728 	 * went to the bootconsole (that they do not see on the real console)
2729 	 */
2730 	pr_info("%sconsole [%s%d] enabled\n",
2731 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2732 		newcon->name, newcon->index);
2733 	if (bcon &&
2734 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2735 	    !keep_bootcon) {
2736 		/* We need to iterate through all boot consoles, to make
2737 		 * sure we print everything out, before we unregister them.
2738 		 */
2739 		for_each_console(bcon)
2740 			if (bcon->flags & CON_BOOT)
2741 				unregister_console(bcon);
2742 	}
2743 }
2744 EXPORT_SYMBOL(register_console);
2745 
2746 int unregister_console(struct console *console)
2747 {
2748         struct console *a, *b;
2749 	int res;
2750 
2751 	pr_info("%sconsole [%s%d] disabled\n",
2752 		(console->flags & CON_BOOT) ? "boot" : "" ,
2753 		console->name, console->index);
2754 
2755 	res = _braille_unregister_console(console);
2756 	if (res)
2757 		return res;
2758 
2759 	res = 1;
2760 	console_lock();
2761 	if (console_drivers == console) {
2762 		console_drivers=console->next;
2763 		res = 0;
2764 	} else if (console_drivers) {
2765 		for (a=console_drivers->next, b=console_drivers ;
2766 		     a; b=a, a=b->next) {
2767 			if (a == console) {
2768 				b->next = a->next;
2769 				res = 0;
2770 				break;
2771 			}
2772 		}
2773 	}
2774 
2775 	if (!res && (console->flags & CON_EXTENDED))
2776 		nr_ext_console_drivers--;
2777 
2778 	/*
2779 	 * If this isn't the last console and it has CON_CONSDEV set, we
2780 	 * need to set it on the next preferred console.
2781 	 */
2782 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2783 		console_drivers->flags |= CON_CONSDEV;
2784 
2785 	console->flags &= ~CON_ENABLED;
2786 	console_unlock();
2787 	console_sysfs_notify();
2788 	return res;
2789 }
2790 EXPORT_SYMBOL(unregister_console);
2791 
2792 /*
2793  * Initialize the console device. This is called *early*, so
2794  * we can't necessarily depend on lots of kernel help here.
2795  * Just do some early initializations, and do the complex setup
2796  * later.
2797  */
2798 void __init console_init(void)
2799 {
2800 	int ret;
2801 	initcall_t call;
2802 	initcall_entry_t *ce;
2803 
2804 	/* Setup the default TTY line discipline. */
2805 	n_tty_init();
2806 
2807 	/*
2808 	 * set up the console device so that later boot sequences can
2809 	 * inform about problems etc..
2810 	 */
2811 	ce = __con_initcall_start;
2812 	trace_initcall_level("console");
2813 	while (ce < __con_initcall_end) {
2814 		call = initcall_from_entry(ce);
2815 		trace_initcall_start(call);
2816 		ret = call();
2817 		trace_initcall_finish(call, ret);
2818 		ce++;
2819 	}
2820 }
2821 
2822 /*
2823  * Some boot consoles access data that is in the init section and which will
2824  * be discarded after the initcalls have been run. To make sure that no code
2825  * will access this data, unregister the boot consoles in a late initcall.
2826  *
2827  * If for some reason, such as deferred probe or the driver being a loadable
2828  * module, the real console hasn't registered yet at this point, there will
2829  * be a brief interval in which no messages are logged to the console, which
2830  * makes it difficult to diagnose problems that occur during this time.
2831  *
2832  * To mitigate this problem somewhat, only unregister consoles whose memory
2833  * intersects with the init section. Note that all other boot consoles will
2834  * get unregistred when the real preferred console is registered.
2835  */
2836 static int __init printk_late_init(void)
2837 {
2838 	struct console *con;
2839 	int ret;
2840 
2841 	for_each_console(con) {
2842 		if (!(con->flags & CON_BOOT))
2843 			continue;
2844 
2845 		/* Check addresses that might be used for enabled consoles. */
2846 		if (init_section_intersects(con, sizeof(*con)) ||
2847 		    init_section_contains(con->write, 0) ||
2848 		    init_section_contains(con->read, 0) ||
2849 		    init_section_contains(con->device, 0) ||
2850 		    init_section_contains(con->unblank, 0) ||
2851 		    init_section_contains(con->data, 0)) {
2852 			/*
2853 			 * Please, consider moving the reported consoles out
2854 			 * of the init section.
2855 			 */
2856 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2857 				con->name, con->index);
2858 			unregister_console(con);
2859 		}
2860 	}
2861 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2862 					console_cpu_notify);
2863 	WARN_ON(ret < 0);
2864 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2865 					console_cpu_notify, NULL);
2866 	WARN_ON(ret < 0);
2867 	return 0;
2868 }
2869 late_initcall(printk_late_init);
2870 
2871 #if defined CONFIG_PRINTK
2872 /*
2873  * Delayed printk version, for scheduler-internal messages:
2874  */
2875 #define PRINTK_PENDING_WAKEUP	0x01
2876 #define PRINTK_PENDING_OUTPUT	0x02
2877 
2878 static DEFINE_PER_CPU(int, printk_pending);
2879 
2880 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2881 {
2882 	int pending = __this_cpu_xchg(printk_pending, 0);
2883 
2884 	if (pending & PRINTK_PENDING_OUTPUT) {
2885 		/* If trylock fails, someone else is doing the printing */
2886 		if (console_trylock())
2887 			console_unlock();
2888 	}
2889 
2890 	if (pending & PRINTK_PENDING_WAKEUP)
2891 		wake_up_interruptible(&log_wait);
2892 }
2893 
2894 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2895 	.func = wake_up_klogd_work_func,
2896 	.flags = IRQ_WORK_LAZY,
2897 };
2898 
2899 void wake_up_klogd(void)
2900 {
2901 	preempt_disable();
2902 	if (waitqueue_active(&log_wait)) {
2903 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2904 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2905 	}
2906 	preempt_enable();
2907 }
2908 
2909 void defer_console_output(void)
2910 {
2911 	preempt_disable();
2912 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2913 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2914 	preempt_enable();
2915 }
2916 
2917 int vprintk_deferred(const char *fmt, va_list args)
2918 {
2919 	int r;
2920 
2921 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2922 	defer_console_output();
2923 
2924 	return r;
2925 }
2926 
2927 int printk_deferred(const char *fmt, ...)
2928 {
2929 	va_list args;
2930 	int r;
2931 
2932 	va_start(args, fmt);
2933 	r = vprintk_deferred(fmt, args);
2934 	va_end(args);
2935 
2936 	return r;
2937 }
2938 
2939 /*
2940  * printk rate limiting, lifted from the networking subsystem.
2941  *
2942  * This enforces a rate limit: not more than 10 kernel messages
2943  * every 5s to make a denial-of-service attack impossible.
2944  */
2945 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2946 
2947 int __printk_ratelimit(const char *func)
2948 {
2949 	return ___ratelimit(&printk_ratelimit_state, func);
2950 }
2951 EXPORT_SYMBOL(__printk_ratelimit);
2952 
2953 /**
2954  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2955  * @caller_jiffies: pointer to caller's state
2956  * @interval_msecs: minimum interval between prints
2957  *
2958  * printk_timed_ratelimit() returns true if more than @interval_msecs
2959  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2960  * returned true.
2961  */
2962 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2963 			unsigned int interval_msecs)
2964 {
2965 	unsigned long elapsed = jiffies - *caller_jiffies;
2966 
2967 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2968 		return false;
2969 
2970 	*caller_jiffies = jiffies;
2971 	return true;
2972 }
2973 EXPORT_SYMBOL(printk_timed_ratelimit);
2974 
2975 static DEFINE_SPINLOCK(dump_list_lock);
2976 static LIST_HEAD(dump_list);
2977 
2978 /**
2979  * kmsg_dump_register - register a kernel log dumper.
2980  * @dumper: pointer to the kmsg_dumper structure
2981  *
2982  * Adds a kernel log dumper to the system. The dump callback in the
2983  * structure will be called when the kernel oopses or panics and must be
2984  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2985  */
2986 int kmsg_dump_register(struct kmsg_dumper *dumper)
2987 {
2988 	unsigned long flags;
2989 	int err = -EBUSY;
2990 
2991 	/* The dump callback needs to be set */
2992 	if (!dumper->dump)
2993 		return -EINVAL;
2994 
2995 	spin_lock_irqsave(&dump_list_lock, flags);
2996 	/* Don't allow registering multiple times */
2997 	if (!dumper->registered) {
2998 		dumper->registered = 1;
2999 		list_add_tail_rcu(&dumper->list, &dump_list);
3000 		err = 0;
3001 	}
3002 	spin_unlock_irqrestore(&dump_list_lock, flags);
3003 
3004 	return err;
3005 }
3006 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3007 
3008 /**
3009  * kmsg_dump_unregister - unregister a kmsg dumper.
3010  * @dumper: pointer to the kmsg_dumper structure
3011  *
3012  * Removes a dump device from the system. Returns zero on success and
3013  * %-EINVAL otherwise.
3014  */
3015 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3016 {
3017 	unsigned long flags;
3018 	int err = -EINVAL;
3019 
3020 	spin_lock_irqsave(&dump_list_lock, flags);
3021 	if (dumper->registered) {
3022 		dumper->registered = 0;
3023 		list_del_rcu(&dumper->list);
3024 		err = 0;
3025 	}
3026 	spin_unlock_irqrestore(&dump_list_lock, flags);
3027 	synchronize_rcu();
3028 
3029 	return err;
3030 }
3031 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3032 
3033 static bool always_kmsg_dump;
3034 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3035 
3036 /**
3037  * kmsg_dump - dump kernel log to kernel message dumpers.
3038  * @reason: the reason (oops, panic etc) for dumping
3039  *
3040  * Call each of the registered dumper's dump() callback, which can
3041  * retrieve the kmsg records with kmsg_dump_get_line() or
3042  * kmsg_dump_get_buffer().
3043  */
3044 void kmsg_dump(enum kmsg_dump_reason reason)
3045 {
3046 	struct kmsg_dumper *dumper;
3047 	unsigned long flags;
3048 
3049 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3050 		return;
3051 
3052 	rcu_read_lock();
3053 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3054 		if (dumper->max_reason && reason > dumper->max_reason)
3055 			continue;
3056 
3057 		/* initialize iterator with data about the stored records */
3058 		dumper->active = true;
3059 
3060 		logbuf_lock_irqsave(flags);
3061 		dumper->cur_seq = clear_seq;
3062 		dumper->cur_idx = clear_idx;
3063 		dumper->next_seq = log_next_seq;
3064 		dumper->next_idx = log_next_idx;
3065 		logbuf_unlock_irqrestore(flags);
3066 
3067 		/* invoke dumper which will iterate over records */
3068 		dumper->dump(dumper, reason);
3069 
3070 		/* reset iterator */
3071 		dumper->active = false;
3072 	}
3073 	rcu_read_unlock();
3074 }
3075 
3076 /**
3077  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3078  * @dumper: registered kmsg dumper
3079  * @syslog: include the "<4>" prefixes
3080  * @line: buffer to copy the line to
3081  * @size: maximum size of the buffer
3082  * @len: length of line placed into buffer
3083  *
3084  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3085  * record, and copy one record into the provided buffer.
3086  *
3087  * Consecutive calls will return the next available record moving
3088  * towards the end of the buffer with the youngest messages.
3089  *
3090  * A return value of FALSE indicates that there are no more records to
3091  * read.
3092  *
3093  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3094  */
3095 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3096 			       char *line, size_t size, size_t *len)
3097 {
3098 	struct printk_log *msg;
3099 	size_t l = 0;
3100 	bool ret = false;
3101 
3102 	if (!dumper->active)
3103 		goto out;
3104 
3105 	if (dumper->cur_seq < log_first_seq) {
3106 		/* messages are gone, move to first available one */
3107 		dumper->cur_seq = log_first_seq;
3108 		dumper->cur_idx = log_first_idx;
3109 	}
3110 
3111 	/* last entry */
3112 	if (dumper->cur_seq >= log_next_seq)
3113 		goto out;
3114 
3115 	msg = log_from_idx(dumper->cur_idx);
3116 	l = msg_print_text(msg, syslog, line, size);
3117 
3118 	dumper->cur_idx = log_next(dumper->cur_idx);
3119 	dumper->cur_seq++;
3120 	ret = true;
3121 out:
3122 	if (len)
3123 		*len = l;
3124 	return ret;
3125 }
3126 
3127 /**
3128  * kmsg_dump_get_line - retrieve one kmsg log line
3129  * @dumper: registered kmsg dumper
3130  * @syslog: include the "<4>" prefixes
3131  * @line: buffer to copy the line to
3132  * @size: maximum size of the buffer
3133  * @len: length of line placed into buffer
3134  *
3135  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3136  * record, and copy one record into the provided buffer.
3137  *
3138  * Consecutive calls will return the next available record moving
3139  * towards the end of the buffer with the youngest messages.
3140  *
3141  * A return value of FALSE indicates that there are no more records to
3142  * read.
3143  */
3144 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3145 			char *line, size_t size, size_t *len)
3146 {
3147 	unsigned long flags;
3148 	bool ret;
3149 
3150 	logbuf_lock_irqsave(flags);
3151 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3152 	logbuf_unlock_irqrestore(flags);
3153 
3154 	return ret;
3155 }
3156 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3157 
3158 /**
3159  * kmsg_dump_get_buffer - copy kmsg log lines
3160  * @dumper: registered kmsg dumper
3161  * @syslog: include the "<4>" prefixes
3162  * @buf: buffer to copy the line to
3163  * @size: maximum size of the buffer
3164  * @len: length of line placed into buffer
3165  *
3166  * Start at the end of the kmsg buffer and fill the provided buffer
3167  * with as many of the the *youngest* kmsg records that fit into it.
3168  * If the buffer is large enough, all available kmsg records will be
3169  * copied with a single call.
3170  *
3171  * Consecutive calls will fill the buffer with the next block of
3172  * available older records, not including the earlier retrieved ones.
3173  *
3174  * A return value of FALSE indicates that there are no more records to
3175  * read.
3176  */
3177 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3178 			  char *buf, size_t size, size_t *len)
3179 {
3180 	unsigned long flags;
3181 	u64 seq;
3182 	u32 idx;
3183 	u64 next_seq;
3184 	u32 next_idx;
3185 	size_t l = 0;
3186 	bool ret = false;
3187 
3188 	if (!dumper->active)
3189 		goto out;
3190 
3191 	logbuf_lock_irqsave(flags);
3192 	if (dumper->cur_seq < log_first_seq) {
3193 		/* messages are gone, move to first available one */
3194 		dumper->cur_seq = log_first_seq;
3195 		dumper->cur_idx = log_first_idx;
3196 	}
3197 
3198 	/* last entry */
3199 	if (dumper->cur_seq >= dumper->next_seq) {
3200 		logbuf_unlock_irqrestore(flags);
3201 		goto out;
3202 	}
3203 
3204 	/* calculate length of entire buffer */
3205 	seq = dumper->cur_seq;
3206 	idx = dumper->cur_idx;
3207 	while (seq < dumper->next_seq) {
3208 		struct printk_log *msg = log_from_idx(idx);
3209 
3210 		l += msg_print_text(msg, true, NULL, 0);
3211 		idx = log_next(idx);
3212 		seq++;
3213 	}
3214 
3215 	/* move first record forward until length fits into the buffer */
3216 	seq = dumper->cur_seq;
3217 	idx = dumper->cur_idx;
3218 	while (l > size && seq < dumper->next_seq) {
3219 		struct printk_log *msg = log_from_idx(idx);
3220 
3221 		l -= msg_print_text(msg, true, NULL, 0);
3222 		idx = log_next(idx);
3223 		seq++;
3224 	}
3225 
3226 	/* last message in next interation */
3227 	next_seq = seq;
3228 	next_idx = idx;
3229 
3230 	l = 0;
3231 	while (seq < dumper->next_seq) {
3232 		struct printk_log *msg = log_from_idx(idx);
3233 
3234 		l += msg_print_text(msg, syslog, buf + l, size - l);
3235 		idx = log_next(idx);
3236 		seq++;
3237 	}
3238 
3239 	dumper->next_seq = next_seq;
3240 	dumper->next_idx = next_idx;
3241 	ret = true;
3242 	logbuf_unlock_irqrestore(flags);
3243 out:
3244 	if (len)
3245 		*len = l;
3246 	return ret;
3247 }
3248 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3249 
3250 /**
3251  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3252  * @dumper: registered kmsg dumper
3253  *
3254  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3255  * kmsg_dump_get_buffer() can be called again and used multiple
3256  * times within the same dumper.dump() callback.
3257  *
3258  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3259  */
3260 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3261 {
3262 	dumper->cur_seq = clear_seq;
3263 	dumper->cur_idx = clear_idx;
3264 	dumper->next_seq = log_next_seq;
3265 	dumper->next_idx = log_next_idx;
3266 }
3267 
3268 /**
3269  * kmsg_dump_rewind - reset the interator
3270  * @dumper: registered kmsg dumper
3271  *
3272  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3273  * kmsg_dump_get_buffer() can be called again and used multiple
3274  * times within the same dumper.dump() callback.
3275  */
3276 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3277 {
3278 	unsigned long flags;
3279 
3280 	logbuf_lock_irqsave(flags);
3281 	kmsg_dump_rewind_nolock(dumper);
3282 	logbuf_unlock_irqrestore(flags);
3283 }
3284 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3285 
3286 #endif
3287