1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/tty.h> 24 #include <linux/tty_driver.h> 25 #include <linux/console.h> 26 #include <linux/init.h> 27 #include <linux/jiffies.h> 28 #include <linux/nmi.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/delay.h> 32 #include <linux/smp.h> 33 #include <linux/security.h> 34 #include <linux/bootmem.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #include <trace/events/initcall.h> 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/printk.h> 58 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 71 EXPORT_SYMBOL(ignore_console_lock_warning); 72 73 /* 74 * Low level drivers may need that to know if they can schedule in 75 * their unblank() callback or not. So let's export it. 76 */ 77 int oops_in_progress; 78 EXPORT_SYMBOL(oops_in_progress); 79 80 /* 81 * console_sem protects the console_drivers list, and also 82 * provides serialisation for access to the entire console 83 * driver system. 84 */ 85 static DEFINE_SEMAPHORE(console_sem); 86 struct console *console_drivers; 87 EXPORT_SYMBOL_GPL(console_drivers); 88 89 #ifdef CONFIG_LOCKDEP 90 static struct lockdep_map console_lock_dep_map = { 91 .name = "console_lock" 92 }; 93 #endif 94 95 enum devkmsg_log_bits { 96 __DEVKMSG_LOG_BIT_ON = 0, 97 __DEVKMSG_LOG_BIT_OFF, 98 __DEVKMSG_LOG_BIT_LOCK, 99 }; 100 101 enum devkmsg_log_masks { 102 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 103 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 104 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 105 }; 106 107 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 108 #define DEVKMSG_LOG_MASK_DEFAULT 0 109 110 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 111 112 static int __control_devkmsg(char *str) 113 { 114 if (!str) 115 return -EINVAL; 116 117 if (!strncmp(str, "on", 2)) { 118 devkmsg_log = DEVKMSG_LOG_MASK_ON; 119 return 2; 120 } else if (!strncmp(str, "off", 3)) { 121 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 122 return 3; 123 } else if (!strncmp(str, "ratelimit", 9)) { 124 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 125 return 9; 126 } 127 return -EINVAL; 128 } 129 130 static int __init control_devkmsg(char *str) 131 { 132 if (__control_devkmsg(str) < 0) 133 return 1; 134 135 /* 136 * Set sysctl string accordingly: 137 */ 138 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 139 strcpy(devkmsg_log_str, "on"); 140 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 141 strcpy(devkmsg_log_str, "off"); 142 /* else "ratelimit" which is set by default. */ 143 144 /* 145 * Sysctl cannot change it anymore. The kernel command line setting of 146 * this parameter is to force the setting to be permanent throughout the 147 * runtime of the system. This is a precation measure against userspace 148 * trying to be a smarta** and attempting to change it up on us. 149 */ 150 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 151 152 return 0; 153 } 154 __setup("printk.devkmsg=", control_devkmsg); 155 156 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 157 158 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 159 void __user *buffer, size_t *lenp, loff_t *ppos) 160 { 161 char old_str[DEVKMSG_STR_MAX_SIZE]; 162 unsigned int old; 163 int err; 164 165 if (write) { 166 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 167 return -EINVAL; 168 169 old = devkmsg_log; 170 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 171 } 172 173 err = proc_dostring(table, write, buffer, lenp, ppos); 174 if (err) 175 return err; 176 177 if (write) { 178 err = __control_devkmsg(devkmsg_log_str); 179 180 /* 181 * Do not accept an unknown string OR a known string with 182 * trailing crap... 183 */ 184 if (err < 0 || (err + 1 != *lenp)) { 185 186 /* ... and restore old setting. */ 187 devkmsg_log = old; 188 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 189 190 return -EINVAL; 191 } 192 } 193 194 return 0; 195 } 196 197 /* Number of registered extended console drivers. */ 198 static int nr_ext_console_drivers; 199 200 /* 201 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 202 * macros instead of functions so that _RET_IP_ contains useful information. 203 */ 204 #define down_console_sem() do { \ 205 down(&console_sem);\ 206 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 207 } while (0) 208 209 static int __down_trylock_console_sem(unsigned long ip) 210 { 211 int lock_failed; 212 unsigned long flags; 213 214 /* 215 * Here and in __up_console_sem() we need to be in safe mode, 216 * because spindump/WARN/etc from under console ->lock will 217 * deadlock in printk()->down_trylock_console_sem() otherwise. 218 */ 219 printk_safe_enter_irqsave(flags); 220 lock_failed = down_trylock(&console_sem); 221 printk_safe_exit_irqrestore(flags); 222 223 if (lock_failed) 224 return 1; 225 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 226 return 0; 227 } 228 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 229 230 static void __up_console_sem(unsigned long ip) 231 { 232 unsigned long flags; 233 234 mutex_release(&console_lock_dep_map, 1, ip); 235 236 printk_safe_enter_irqsave(flags); 237 up(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 } 240 #define up_console_sem() __up_console_sem(_RET_IP_) 241 242 /* 243 * This is used for debugging the mess that is the VT code by 244 * keeping track if we have the console semaphore held. It's 245 * definitely not the perfect debug tool (we don't know if _WE_ 246 * hold it and are racing, but it helps tracking those weird code 247 * paths in the console code where we end up in places I want 248 * locked without the console sempahore held). 249 */ 250 static int console_locked, console_suspended; 251 252 /* 253 * If exclusive_console is non-NULL then only this console is to be printed to. 254 */ 255 static struct console *exclusive_console; 256 257 /* 258 * Array of consoles built from command line options (console=) 259 */ 260 261 #define MAX_CMDLINECONSOLES 8 262 263 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 264 265 static int preferred_console = -1; 266 int console_set_on_cmdline; 267 EXPORT_SYMBOL(console_set_on_cmdline); 268 269 /* Flag: console code may call schedule() */ 270 static int console_may_schedule; 271 272 enum con_msg_format_flags { 273 MSG_FORMAT_DEFAULT = 0, 274 MSG_FORMAT_SYSLOG = (1 << 0), 275 }; 276 277 static int console_msg_format = MSG_FORMAT_DEFAULT; 278 279 /* 280 * The printk log buffer consists of a chain of concatenated variable 281 * length records. Every record starts with a record header, containing 282 * the overall length of the record. 283 * 284 * The heads to the first and last entry in the buffer, as well as the 285 * sequence numbers of these entries are maintained when messages are 286 * stored. 287 * 288 * If the heads indicate available messages, the length in the header 289 * tells the start next message. A length == 0 for the next message 290 * indicates a wrap-around to the beginning of the buffer. 291 * 292 * Every record carries the monotonic timestamp in microseconds, as well as 293 * the standard userspace syslog level and syslog facility. The usual 294 * kernel messages use LOG_KERN; userspace-injected messages always carry 295 * a matching syslog facility, by default LOG_USER. The origin of every 296 * message can be reliably determined that way. 297 * 298 * The human readable log message directly follows the message header. The 299 * length of the message text is stored in the header, the stored message 300 * is not terminated. 301 * 302 * Optionally, a message can carry a dictionary of properties (key/value pairs), 303 * to provide userspace with a machine-readable message context. 304 * 305 * Examples for well-defined, commonly used property names are: 306 * DEVICE=b12:8 device identifier 307 * b12:8 block dev_t 308 * c127:3 char dev_t 309 * n8 netdev ifindex 310 * +sound:card0 subsystem:devname 311 * SUBSYSTEM=pci driver-core subsystem name 312 * 313 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 314 * follows directly after a '=' character. Every property is terminated by 315 * a '\0' character. The last property is not terminated. 316 * 317 * Example of a message structure: 318 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 319 * 0008 34 00 record is 52 bytes long 320 * 000a 0b 00 text is 11 bytes long 321 * 000c 1f 00 dictionary is 23 bytes long 322 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 323 * 0010 69 74 27 73 20 61 20 6c "it's a l" 324 * 69 6e 65 "ine" 325 * 001b 44 45 56 49 43 "DEVIC" 326 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 327 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 328 * 67 "g" 329 * 0032 00 00 00 padding to next message header 330 * 331 * The 'struct printk_log' buffer header must never be directly exported to 332 * userspace, it is a kernel-private implementation detail that might 333 * need to be changed in the future, when the requirements change. 334 * 335 * /dev/kmsg exports the structured data in the following line format: 336 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 337 * 338 * Users of the export format should ignore possible additional values 339 * separated by ',', and find the message after the ';' character. 340 * 341 * The optional key/value pairs are attached as continuation lines starting 342 * with a space character and terminated by a newline. All possible 343 * non-prinatable characters are escaped in the "\xff" notation. 344 */ 345 346 enum log_flags { 347 LOG_NEWLINE = 2, /* text ended with a newline */ 348 LOG_PREFIX = 4, /* text started with a prefix */ 349 LOG_CONT = 8, /* text is a fragment of a continuation line */ 350 }; 351 352 struct printk_log { 353 u64 ts_nsec; /* timestamp in nanoseconds */ 354 u16 len; /* length of entire record */ 355 u16 text_len; /* length of text buffer */ 356 u16 dict_len; /* length of dictionary buffer */ 357 u8 facility; /* syslog facility */ 358 u8 flags:5; /* internal record flags */ 359 u8 level:3; /* syslog level */ 360 } 361 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 362 __packed __aligned(4) 363 #endif 364 ; 365 366 /* 367 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 368 * within the scheduler's rq lock. It must be released before calling 369 * console_unlock() or anything else that might wake up a process. 370 */ 371 DEFINE_RAW_SPINLOCK(logbuf_lock); 372 373 /* 374 * Helper macros to lock/unlock logbuf_lock and switch between 375 * printk-safe/unsafe modes. 376 */ 377 #define logbuf_lock_irq() \ 378 do { \ 379 printk_safe_enter_irq(); \ 380 raw_spin_lock(&logbuf_lock); \ 381 } while (0) 382 383 #define logbuf_unlock_irq() \ 384 do { \ 385 raw_spin_unlock(&logbuf_lock); \ 386 printk_safe_exit_irq(); \ 387 } while (0) 388 389 #define logbuf_lock_irqsave(flags) \ 390 do { \ 391 printk_safe_enter_irqsave(flags); \ 392 raw_spin_lock(&logbuf_lock); \ 393 } while (0) 394 395 #define logbuf_unlock_irqrestore(flags) \ 396 do { \ 397 raw_spin_unlock(&logbuf_lock); \ 398 printk_safe_exit_irqrestore(flags); \ 399 } while (0) 400 401 #ifdef CONFIG_PRINTK 402 DECLARE_WAIT_QUEUE_HEAD(log_wait); 403 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 404 static u64 syslog_seq; 405 static u32 syslog_idx; 406 static size_t syslog_partial; 407 408 /* index and sequence number of the first record stored in the buffer */ 409 static u64 log_first_seq; 410 static u32 log_first_idx; 411 412 /* index and sequence number of the next record to store in the buffer */ 413 static u64 log_next_seq; 414 static u32 log_next_idx; 415 416 /* the next printk record to write to the console */ 417 static u64 console_seq; 418 static u32 console_idx; 419 static u64 exclusive_console_stop_seq; 420 421 /* the next printk record to read after the last 'clear' command */ 422 static u64 clear_seq; 423 static u32 clear_idx; 424 425 #define PREFIX_MAX 32 426 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 427 428 #define LOG_LEVEL(v) ((v) & 0x07) 429 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 430 431 /* record buffer */ 432 #define LOG_ALIGN __alignof__(struct printk_log) 433 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 434 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 436 static char *log_buf = __log_buf; 437 static u32 log_buf_len = __LOG_BUF_LEN; 438 439 /* Return log buffer address */ 440 char *log_buf_addr_get(void) 441 { 442 return log_buf; 443 } 444 445 /* Return log buffer size */ 446 u32 log_buf_len_get(void) 447 { 448 return log_buf_len; 449 } 450 451 /* human readable text of the record */ 452 static char *log_text(const struct printk_log *msg) 453 { 454 return (char *)msg + sizeof(struct printk_log); 455 } 456 457 /* optional key/value pair dictionary attached to the record */ 458 static char *log_dict(const struct printk_log *msg) 459 { 460 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 461 } 462 463 /* get record by index; idx must point to valid msg */ 464 static struct printk_log *log_from_idx(u32 idx) 465 { 466 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 467 468 /* 469 * A length == 0 record is the end of buffer marker. Wrap around and 470 * read the message at the start of the buffer. 471 */ 472 if (!msg->len) 473 return (struct printk_log *)log_buf; 474 return msg; 475 } 476 477 /* get next record; idx must point to valid msg */ 478 static u32 log_next(u32 idx) 479 { 480 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 481 482 /* length == 0 indicates the end of the buffer; wrap */ 483 /* 484 * A length == 0 record is the end of buffer marker. Wrap around and 485 * read the message at the start of the buffer as *this* one, and 486 * return the one after that. 487 */ 488 if (!msg->len) { 489 msg = (struct printk_log *)log_buf; 490 return msg->len; 491 } 492 return idx + msg->len; 493 } 494 495 /* 496 * Check whether there is enough free space for the given message. 497 * 498 * The same values of first_idx and next_idx mean that the buffer 499 * is either empty or full. 500 * 501 * If the buffer is empty, we must respect the position of the indexes. 502 * They cannot be reset to the beginning of the buffer. 503 */ 504 static int logbuf_has_space(u32 msg_size, bool empty) 505 { 506 u32 free; 507 508 if (log_next_idx > log_first_idx || empty) 509 free = max(log_buf_len - log_next_idx, log_first_idx); 510 else 511 free = log_first_idx - log_next_idx; 512 513 /* 514 * We need space also for an empty header that signalizes wrapping 515 * of the buffer. 516 */ 517 return free >= msg_size + sizeof(struct printk_log); 518 } 519 520 static int log_make_free_space(u32 msg_size) 521 { 522 while (log_first_seq < log_next_seq && 523 !logbuf_has_space(msg_size, false)) { 524 /* drop old messages until we have enough contiguous space */ 525 log_first_idx = log_next(log_first_idx); 526 log_first_seq++; 527 } 528 529 if (clear_seq < log_first_seq) { 530 clear_seq = log_first_seq; 531 clear_idx = log_first_idx; 532 } 533 534 /* sequence numbers are equal, so the log buffer is empty */ 535 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 536 return 0; 537 538 return -ENOMEM; 539 } 540 541 /* compute the message size including the padding bytes */ 542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 543 { 544 u32 size; 545 546 size = sizeof(struct printk_log) + text_len + dict_len; 547 *pad_len = (-size) & (LOG_ALIGN - 1); 548 size += *pad_len; 549 550 return size; 551 } 552 553 /* 554 * Define how much of the log buffer we could take at maximum. The value 555 * must be greater than two. Note that only half of the buffer is available 556 * when the index points to the middle. 557 */ 558 #define MAX_LOG_TAKE_PART 4 559 static const char trunc_msg[] = "<truncated>"; 560 561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 562 u16 *dict_len, u32 *pad_len) 563 { 564 /* 565 * The message should not take the whole buffer. Otherwise, it might 566 * get removed too soon. 567 */ 568 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 569 if (*text_len > max_text_len) 570 *text_len = max_text_len; 571 /* enable the warning message */ 572 *trunc_msg_len = strlen(trunc_msg); 573 /* disable the "dict" completely */ 574 *dict_len = 0; 575 /* compute the size again, count also the warning message */ 576 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 577 } 578 579 /* insert record into the buffer, discard old ones, update heads */ 580 static int log_store(int facility, int level, 581 enum log_flags flags, u64 ts_nsec, 582 const char *dict, u16 dict_len, 583 const char *text, u16 text_len) 584 { 585 struct printk_log *msg; 586 u32 size, pad_len; 587 u16 trunc_msg_len = 0; 588 589 /* number of '\0' padding bytes to next message */ 590 size = msg_used_size(text_len, dict_len, &pad_len); 591 592 if (log_make_free_space(size)) { 593 /* truncate the message if it is too long for empty buffer */ 594 size = truncate_msg(&text_len, &trunc_msg_len, 595 &dict_len, &pad_len); 596 /* survive when the log buffer is too small for trunc_msg */ 597 if (log_make_free_space(size)) 598 return 0; 599 } 600 601 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 602 /* 603 * This message + an additional empty header does not fit 604 * at the end of the buffer. Add an empty header with len == 0 605 * to signify a wrap around. 606 */ 607 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 608 log_next_idx = 0; 609 } 610 611 /* fill message */ 612 msg = (struct printk_log *)(log_buf + log_next_idx); 613 memcpy(log_text(msg), text, text_len); 614 msg->text_len = text_len; 615 if (trunc_msg_len) { 616 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 617 msg->text_len += trunc_msg_len; 618 } 619 memcpy(log_dict(msg), dict, dict_len); 620 msg->dict_len = dict_len; 621 msg->facility = facility; 622 msg->level = level & 7; 623 msg->flags = flags & 0x1f; 624 if (ts_nsec > 0) 625 msg->ts_nsec = ts_nsec; 626 else 627 msg->ts_nsec = local_clock(); 628 memset(log_dict(msg) + dict_len, 0, pad_len); 629 msg->len = size; 630 631 /* insert message */ 632 log_next_idx += msg->len; 633 log_next_seq++; 634 635 return msg->text_len; 636 } 637 638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 639 640 static int syslog_action_restricted(int type) 641 { 642 if (dmesg_restrict) 643 return 1; 644 /* 645 * Unless restricted, we allow "read all" and "get buffer size" 646 * for everybody. 647 */ 648 return type != SYSLOG_ACTION_READ_ALL && 649 type != SYSLOG_ACTION_SIZE_BUFFER; 650 } 651 652 static int check_syslog_permissions(int type, int source) 653 { 654 /* 655 * If this is from /proc/kmsg and we've already opened it, then we've 656 * already done the capabilities checks at open time. 657 */ 658 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 659 goto ok; 660 661 if (syslog_action_restricted(type)) { 662 if (capable(CAP_SYSLOG)) 663 goto ok; 664 /* 665 * For historical reasons, accept CAP_SYS_ADMIN too, with 666 * a warning. 667 */ 668 if (capable(CAP_SYS_ADMIN)) { 669 pr_warn_once("%s (%d): Attempt to access syslog with " 670 "CAP_SYS_ADMIN but no CAP_SYSLOG " 671 "(deprecated).\n", 672 current->comm, task_pid_nr(current)); 673 goto ok; 674 } 675 return -EPERM; 676 } 677 ok: 678 return security_syslog(type); 679 } 680 681 static void append_char(char **pp, char *e, char c) 682 { 683 if (*pp < e) 684 *(*pp)++ = c; 685 } 686 687 static ssize_t msg_print_ext_header(char *buf, size_t size, 688 struct printk_log *msg, u64 seq) 689 { 690 u64 ts_usec = msg->ts_nsec; 691 692 do_div(ts_usec, 1000); 693 694 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 695 (msg->facility << 3) | msg->level, seq, ts_usec, 696 msg->flags & LOG_CONT ? 'c' : '-'); 697 } 698 699 static ssize_t msg_print_ext_body(char *buf, size_t size, 700 char *dict, size_t dict_len, 701 char *text, size_t text_len) 702 { 703 char *p = buf, *e = buf + size; 704 size_t i; 705 706 /* escape non-printable characters */ 707 for (i = 0; i < text_len; i++) { 708 unsigned char c = text[i]; 709 710 if (c < ' ' || c >= 127 || c == '\\') 711 p += scnprintf(p, e - p, "\\x%02x", c); 712 else 713 append_char(&p, e, c); 714 } 715 append_char(&p, e, '\n'); 716 717 if (dict_len) { 718 bool line = true; 719 720 for (i = 0; i < dict_len; i++) { 721 unsigned char c = dict[i]; 722 723 if (line) { 724 append_char(&p, e, ' '); 725 line = false; 726 } 727 728 if (c == '\0') { 729 append_char(&p, e, '\n'); 730 line = true; 731 continue; 732 } 733 734 if (c < ' ' || c >= 127 || c == '\\') { 735 p += scnprintf(p, e - p, "\\x%02x", c); 736 continue; 737 } 738 739 append_char(&p, e, c); 740 } 741 append_char(&p, e, '\n'); 742 } 743 744 return p - buf; 745 } 746 747 /* /dev/kmsg - userspace message inject/listen interface */ 748 struct devkmsg_user { 749 u64 seq; 750 u32 idx; 751 struct ratelimit_state rs; 752 struct mutex lock; 753 char buf[CONSOLE_EXT_LOG_MAX]; 754 }; 755 756 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 757 { 758 char *buf, *line; 759 int level = default_message_loglevel; 760 int facility = 1; /* LOG_USER */ 761 struct file *file = iocb->ki_filp; 762 struct devkmsg_user *user = file->private_data; 763 size_t len = iov_iter_count(from); 764 ssize_t ret = len; 765 766 if (!user || len > LOG_LINE_MAX) 767 return -EINVAL; 768 769 /* Ignore when user logging is disabled. */ 770 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 771 return len; 772 773 /* Ratelimit when not explicitly enabled. */ 774 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 775 if (!___ratelimit(&user->rs, current->comm)) 776 return ret; 777 } 778 779 buf = kmalloc(len+1, GFP_KERNEL); 780 if (buf == NULL) 781 return -ENOMEM; 782 783 buf[len] = '\0'; 784 if (!copy_from_iter_full(buf, len, from)) { 785 kfree(buf); 786 return -EFAULT; 787 } 788 789 /* 790 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 791 * the decimal value represents 32bit, the lower 3 bit are the log 792 * level, the rest are the log facility. 793 * 794 * If no prefix or no userspace facility is specified, we 795 * enforce LOG_USER, to be able to reliably distinguish 796 * kernel-generated messages from userspace-injected ones. 797 */ 798 line = buf; 799 if (line[0] == '<') { 800 char *endp = NULL; 801 unsigned int u; 802 803 u = simple_strtoul(line + 1, &endp, 10); 804 if (endp && endp[0] == '>') { 805 level = LOG_LEVEL(u); 806 if (LOG_FACILITY(u) != 0) 807 facility = LOG_FACILITY(u); 808 endp++; 809 len -= endp - line; 810 line = endp; 811 } 812 } 813 814 printk_emit(facility, level, NULL, 0, "%s", line); 815 kfree(buf); 816 return ret; 817 } 818 819 static ssize_t devkmsg_read(struct file *file, char __user *buf, 820 size_t count, loff_t *ppos) 821 { 822 struct devkmsg_user *user = file->private_data; 823 struct printk_log *msg; 824 size_t len; 825 ssize_t ret; 826 827 if (!user) 828 return -EBADF; 829 830 ret = mutex_lock_interruptible(&user->lock); 831 if (ret) 832 return ret; 833 834 logbuf_lock_irq(); 835 while (user->seq == log_next_seq) { 836 if (file->f_flags & O_NONBLOCK) { 837 ret = -EAGAIN; 838 logbuf_unlock_irq(); 839 goto out; 840 } 841 842 logbuf_unlock_irq(); 843 ret = wait_event_interruptible(log_wait, 844 user->seq != log_next_seq); 845 if (ret) 846 goto out; 847 logbuf_lock_irq(); 848 } 849 850 if (user->seq < log_first_seq) { 851 /* our last seen message is gone, return error and reset */ 852 user->idx = log_first_idx; 853 user->seq = log_first_seq; 854 ret = -EPIPE; 855 logbuf_unlock_irq(); 856 goto out; 857 } 858 859 msg = log_from_idx(user->idx); 860 len = msg_print_ext_header(user->buf, sizeof(user->buf), 861 msg, user->seq); 862 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 863 log_dict(msg), msg->dict_len, 864 log_text(msg), msg->text_len); 865 866 user->idx = log_next(user->idx); 867 user->seq++; 868 logbuf_unlock_irq(); 869 870 if (len > count) { 871 ret = -EINVAL; 872 goto out; 873 } 874 875 if (copy_to_user(buf, user->buf, len)) { 876 ret = -EFAULT; 877 goto out; 878 } 879 ret = len; 880 out: 881 mutex_unlock(&user->lock); 882 return ret; 883 } 884 885 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 886 { 887 struct devkmsg_user *user = file->private_data; 888 loff_t ret = 0; 889 890 if (!user) 891 return -EBADF; 892 if (offset) 893 return -ESPIPE; 894 895 logbuf_lock_irq(); 896 switch (whence) { 897 case SEEK_SET: 898 /* the first record */ 899 user->idx = log_first_idx; 900 user->seq = log_first_seq; 901 break; 902 case SEEK_DATA: 903 /* 904 * The first record after the last SYSLOG_ACTION_CLEAR, 905 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 906 * changes no global state, and does not clear anything. 907 */ 908 user->idx = clear_idx; 909 user->seq = clear_seq; 910 break; 911 case SEEK_END: 912 /* after the last record */ 913 user->idx = log_next_idx; 914 user->seq = log_next_seq; 915 break; 916 default: 917 ret = -EINVAL; 918 } 919 logbuf_unlock_irq(); 920 return ret; 921 } 922 923 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 924 { 925 struct devkmsg_user *user = file->private_data; 926 __poll_t ret = 0; 927 928 if (!user) 929 return EPOLLERR|EPOLLNVAL; 930 931 poll_wait(file, &log_wait, wait); 932 933 logbuf_lock_irq(); 934 if (user->seq < log_next_seq) { 935 /* return error when data has vanished underneath us */ 936 if (user->seq < log_first_seq) 937 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 938 else 939 ret = EPOLLIN|EPOLLRDNORM; 940 } 941 logbuf_unlock_irq(); 942 943 return ret; 944 } 945 946 static int devkmsg_open(struct inode *inode, struct file *file) 947 { 948 struct devkmsg_user *user; 949 int err; 950 951 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 952 return -EPERM; 953 954 /* write-only does not need any file context */ 955 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 956 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 957 SYSLOG_FROM_READER); 958 if (err) 959 return err; 960 } 961 962 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 963 if (!user) 964 return -ENOMEM; 965 966 ratelimit_default_init(&user->rs); 967 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 968 969 mutex_init(&user->lock); 970 971 logbuf_lock_irq(); 972 user->idx = log_first_idx; 973 user->seq = log_first_seq; 974 logbuf_unlock_irq(); 975 976 file->private_data = user; 977 return 0; 978 } 979 980 static int devkmsg_release(struct inode *inode, struct file *file) 981 { 982 struct devkmsg_user *user = file->private_data; 983 984 if (!user) 985 return 0; 986 987 ratelimit_state_exit(&user->rs); 988 989 mutex_destroy(&user->lock); 990 kfree(user); 991 return 0; 992 } 993 994 const struct file_operations kmsg_fops = { 995 .open = devkmsg_open, 996 .read = devkmsg_read, 997 .write_iter = devkmsg_write, 998 .llseek = devkmsg_llseek, 999 .poll = devkmsg_poll, 1000 .release = devkmsg_release, 1001 }; 1002 1003 #ifdef CONFIG_CRASH_CORE 1004 /* 1005 * This appends the listed symbols to /proc/vmcore 1006 * 1007 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1008 * obtain access to symbols that are otherwise very difficult to locate. These 1009 * symbols are specifically used so that utilities can access and extract the 1010 * dmesg log from a vmcore file after a crash. 1011 */ 1012 void log_buf_vmcoreinfo_setup(void) 1013 { 1014 VMCOREINFO_SYMBOL(log_buf); 1015 VMCOREINFO_SYMBOL(log_buf_len); 1016 VMCOREINFO_SYMBOL(log_first_idx); 1017 VMCOREINFO_SYMBOL(clear_idx); 1018 VMCOREINFO_SYMBOL(log_next_idx); 1019 /* 1020 * Export struct printk_log size and field offsets. User space tools can 1021 * parse it and detect any changes to structure down the line. 1022 */ 1023 VMCOREINFO_STRUCT_SIZE(printk_log); 1024 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1025 VMCOREINFO_OFFSET(printk_log, len); 1026 VMCOREINFO_OFFSET(printk_log, text_len); 1027 VMCOREINFO_OFFSET(printk_log, dict_len); 1028 } 1029 #endif 1030 1031 /* requested log_buf_len from kernel cmdline */ 1032 static unsigned long __initdata new_log_buf_len; 1033 1034 /* we practice scaling the ring buffer by powers of 2 */ 1035 static void __init log_buf_len_update(u64 size) 1036 { 1037 if (size > (u64)LOG_BUF_LEN_MAX) { 1038 size = (u64)LOG_BUF_LEN_MAX; 1039 pr_err("log_buf over 2G is not supported.\n"); 1040 } 1041 1042 if (size) 1043 size = roundup_pow_of_two(size); 1044 if (size > log_buf_len) 1045 new_log_buf_len = (unsigned long)size; 1046 } 1047 1048 /* save requested log_buf_len since it's too early to process it */ 1049 static int __init log_buf_len_setup(char *str) 1050 { 1051 u64 size; 1052 1053 if (!str) 1054 return -EINVAL; 1055 1056 size = memparse(str, &str); 1057 1058 log_buf_len_update(size); 1059 1060 return 0; 1061 } 1062 early_param("log_buf_len", log_buf_len_setup); 1063 1064 #ifdef CONFIG_SMP 1065 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1066 1067 static void __init log_buf_add_cpu(void) 1068 { 1069 unsigned int cpu_extra; 1070 1071 /* 1072 * archs should set up cpu_possible_bits properly with 1073 * set_cpu_possible() after setup_arch() but just in 1074 * case lets ensure this is valid. 1075 */ 1076 if (num_possible_cpus() == 1) 1077 return; 1078 1079 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1080 1081 /* by default this will only continue through for large > 64 CPUs */ 1082 if (cpu_extra <= __LOG_BUF_LEN / 2) 1083 return; 1084 1085 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1086 __LOG_CPU_MAX_BUF_LEN); 1087 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1088 cpu_extra); 1089 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1090 1091 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1092 } 1093 #else /* !CONFIG_SMP */ 1094 static inline void log_buf_add_cpu(void) {} 1095 #endif /* CONFIG_SMP */ 1096 1097 void __init setup_log_buf(int early) 1098 { 1099 unsigned long flags; 1100 char *new_log_buf; 1101 unsigned int free; 1102 1103 if (log_buf != __log_buf) 1104 return; 1105 1106 if (!early && !new_log_buf_len) 1107 log_buf_add_cpu(); 1108 1109 if (!new_log_buf_len) 1110 return; 1111 1112 if (early) { 1113 new_log_buf = 1114 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1115 } else { 1116 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1117 LOG_ALIGN); 1118 } 1119 1120 if (unlikely(!new_log_buf)) { 1121 pr_err("log_buf_len: %lu bytes not available\n", 1122 new_log_buf_len); 1123 return; 1124 } 1125 1126 logbuf_lock_irqsave(flags); 1127 log_buf_len = new_log_buf_len; 1128 log_buf = new_log_buf; 1129 new_log_buf_len = 0; 1130 free = __LOG_BUF_LEN - log_next_idx; 1131 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1132 logbuf_unlock_irqrestore(flags); 1133 1134 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1135 pr_info("early log buf free: %u(%u%%)\n", 1136 free, (free * 100) / __LOG_BUF_LEN); 1137 } 1138 1139 static bool __read_mostly ignore_loglevel; 1140 1141 static int __init ignore_loglevel_setup(char *str) 1142 { 1143 ignore_loglevel = true; 1144 pr_info("debug: ignoring loglevel setting.\n"); 1145 1146 return 0; 1147 } 1148 1149 early_param("ignore_loglevel", ignore_loglevel_setup); 1150 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1151 MODULE_PARM_DESC(ignore_loglevel, 1152 "ignore loglevel setting (prints all kernel messages to the console)"); 1153 1154 static bool suppress_message_printing(int level) 1155 { 1156 return (level >= console_loglevel && !ignore_loglevel); 1157 } 1158 1159 #ifdef CONFIG_BOOT_PRINTK_DELAY 1160 1161 static int boot_delay; /* msecs delay after each printk during bootup */ 1162 static unsigned long long loops_per_msec; /* based on boot_delay */ 1163 1164 static int __init boot_delay_setup(char *str) 1165 { 1166 unsigned long lpj; 1167 1168 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1169 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1170 1171 get_option(&str, &boot_delay); 1172 if (boot_delay > 10 * 1000) 1173 boot_delay = 0; 1174 1175 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1176 "HZ: %d, loops_per_msec: %llu\n", 1177 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1178 return 0; 1179 } 1180 early_param("boot_delay", boot_delay_setup); 1181 1182 static void boot_delay_msec(int level) 1183 { 1184 unsigned long long k; 1185 unsigned long timeout; 1186 1187 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1188 || suppress_message_printing(level)) { 1189 return; 1190 } 1191 1192 k = (unsigned long long)loops_per_msec * boot_delay; 1193 1194 timeout = jiffies + msecs_to_jiffies(boot_delay); 1195 while (k) { 1196 k--; 1197 cpu_relax(); 1198 /* 1199 * use (volatile) jiffies to prevent 1200 * compiler reduction; loop termination via jiffies 1201 * is secondary and may or may not happen. 1202 */ 1203 if (time_after(jiffies, timeout)) 1204 break; 1205 touch_nmi_watchdog(); 1206 } 1207 } 1208 #else 1209 static inline void boot_delay_msec(int level) 1210 { 1211 } 1212 #endif 1213 1214 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1215 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1216 1217 static size_t print_time(u64 ts, char *buf) 1218 { 1219 unsigned long rem_nsec; 1220 1221 if (!printk_time) 1222 return 0; 1223 1224 rem_nsec = do_div(ts, 1000000000); 1225 1226 if (!buf) 1227 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1228 1229 return sprintf(buf, "[%5lu.%06lu] ", 1230 (unsigned long)ts, rem_nsec / 1000); 1231 } 1232 1233 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1234 { 1235 size_t len = 0; 1236 unsigned int prefix = (msg->facility << 3) | msg->level; 1237 1238 if (syslog) { 1239 if (buf) { 1240 len += sprintf(buf, "<%u>", prefix); 1241 } else { 1242 len += 3; 1243 if (prefix > 999) 1244 len += 3; 1245 else if (prefix > 99) 1246 len += 2; 1247 else if (prefix > 9) 1248 len++; 1249 } 1250 } 1251 1252 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1253 return len; 1254 } 1255 1256 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1257 { 1258 const char *text = log_text(msg); 1259 size_t text_size = msg->text_len; 1260 size_t len = 0; 1261 1262 do { 1263 const char *next = memchr(text, '\n', text_size); 1264 size_t text_len; 1265 1266 if (next) { 1267 text_len = next - text; 1268 next++; 1269 text_size -= next - text; 1270 } else { 1271 text_len = text_size; 1272 } 1273 1274 if (buf) { 1275 if (print_prefix(msg, syslog, NULL) + 1276 text_len + 1 >= size - len) 1277 break; 1278 1279 len += print_prefix(msg, syslog, buf + len); 1280 memcpy(buf + len, text, text_len); 1281 len += text_len; 1282 buf[len++] = '\n'; 1283 } else { 1284 /* SYSLOG_ACTION_* buffer size only calculation */ 1285 len += print_prefix(msg, syslog, NULL); 1286 len += text_len; 1287 len++; 1288 } 1289 1290 text = next; 1291 } while (text); 1292 1293 return len; 1294 } 1295 1296 static int syslog_print(char __user *buf, int size) 1297 { 1298 char *text; 1299 struct printk_log *msg; 1300 int len = 0; 1301 1302 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1303 if (!text) 1304 return -ENOMEM; 1305 1306 while (size > 0) { 1307 size_t n; 1308 size_t skip; 1309 1310 logbuf_lock_irq(); 1311 if (syslog_seq < log_first_seq) { 1312 /* messages are gone, move to first one */ 1313 syslog_seq = log_first_seq; 1314 syslog_idx = log_first_idx; 1315 syslog_partial = 0; 1316 } 1317 if (syslog_seq == log_next_seq) { 1318 logbuf_unlock_irq(); 1319 break; 1320 } 1321 1322 skip = syslog_partial; 1323 msg = log_from_idx(syslog_idx); 1324 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1325 if (n - syslog_partial <= size) { 1326 /* message fits into buffer, move forward */ 1327 syslog_idx = log_next(syslog_idx); 1328 syslog_seq++; 1329 n -= syslog_partial; 1330 syslog_partial = 0; 1331 } else if (!len){ 1332 /* partial read(), remember position */ 1333 n = size; 1334 syslog_partial += n; 1335 } else 1336 n = 0; 1337 logbuf_unlock_irq(); 1338 1339 if (!n) 1340 break; 1341 1342 if (copy_to_user(buf, text + skip, n)) { 1343 if (!len) 1344 len = -EFAULT; 1345 break; 1346 } 1347 1348 len += n; 1349 size -= n; 1350 buf += n; 1351 } 1352 1353 kfree(text); 1354 return len; 1355 } 1356 1357 static int syslog_print_all(char __user *buf, int size, bool clear) 1358 { 1359 char *text; 1360 int len = 0; 1361 u64 next_seq; 1362 u64 seq; 1363 u32 idx; 1364 1365 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1366 if (!text) 1367 return -ENOMEM; 1368 1369 logbuf_lock_irq(); 1370 /* 1371 * Find first record that fits, including all following records, 1372 * into the user-provided buffer for this dump. 1373 */ 1374 seq = clear_seq; 1375 idx = clear_idx; 1376 while (seq < log_next_seq) { 1377 struct printk_log *msg = log_from_idx(idx); 1378 1379 len += msg_print_text(msg, true, NULL, 0); 1380 idx = log_next(idx); 1381 seq++; 1382 } 1383 1384 /* move first record forward until length fits into the buffer */ 1385 seq = clear_seq; 1386 idx = clear_idx; 1387 while (len > size && seq < log_next_seq) { 1388 struct printk_log *msg = log_from_idx(idx); 1389 1390 len -= msg_print_text(msg, true, NULL, 0); 1391 idx = log_next(idx); 1392 seq++; 1393 } 1394 1395 /* last message fitting into this dump */ 1396 next_seq = log_next_seq; 1397 1398 len = 0; 1399 while (len >= 0 && seq < next_seq) { 1400 struct printk_log *msg = log_from_idx(idx); 1401 int textlen; 1402 1403 textlen = msg_print_text(msg, true, text, 1404 LOG_LINE_MAX + PREFIX_MAX); 1405 if (textlen < 0) { 1406 len = textlen; 1407 break; 1408 } 1409 idx = log_next(idx); 1410 seq++; 1411 1412 logbuf_unlock_irq(); 1413 if (copy_to_user(buf + len, text, textlen)) 1414 len = -EFAULT; 1415 else 1416 len += textlen; 1417 logbuf_lock_irq(); 1418 1419 if (seq < log_first_seq) { 1420 /* messages are gone, move to next one */ 1421 seq = log_first_seq; 1422 idx = log_first_idx; 1423 } 1424 } 1425 1426 if (clear) { 1427 clear_seq = log_next_seq; 1428 clear_idx = log_next_idx; 1429 } 1430 logbuf_unlock_irq(); 1431 1432 kfree(text); 1433 return len; 1434 } 1435 1436 static void syslog_clear(void) 1437 { 1438 logbuf_lock_irq(); 1439 clear_seq = log_next_seq; 1440 clear_idx = log_next_idx; 1441 logbuf_unlock_irq(); 1442 } 1443 1444 int do_syslog(int type, char __user *buf, int len, int source) 1445 { 1446 bool clear = false; 1447 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1448 int error; 1449 1450 error = check_syslog_permissions(type, source); 1451 if (error) 1452 return error; 1453 1454 switch (type) { 1455 case SYSLOG_ACTION_CLOSE: /* Close log */ 1456 break; 1457 case SYSLOG_ACTION_OPEN: /* Open log */ 1458 break; 1459 case SYSLOG_ACTION_READ: /* Read from log */ 1460 if (!buf || len < 0) 1461 return -EINVAL; 1462 if (!len) 1463 return 0; 1464 if (!access_ok(VERIFY_WRITE, buf, len)) 1465 return -EFAULT; 1466 error = wait_event_interruptible(log_wait, 1467 syslog_seq != log_next_seq); 1468 if (error) 1469 return error; 1470 error = syslog_print(buf, len); 1471 break; 1472 /* Read/clear last kernel messages */ 1473 case SYSLOG_ACTION_READ_CLEAR: 1474 clear = true; 1475 /* FALL THRU */ 1476 /* Read last kernel messages */ 1477 case SYSLOG_ACTION_READ_ALL: 1478 if (!buf || len < 0) 1479 return -EINVAL; 1480 if (!len) 1481 return 0; 1482 if (!access_ok(VERIFY_WRITE, buf, len)) 1483 return -EFAULT; 1484 error = syslog_print_all(buf, len, clear); 1485 break; 1486 /* Clear ring buffer */ 1487 case SYSLOG_ACTION_CLEAR: 1488 syslog_clear(); 1489 break; 1490 /* Disable logging to console */ 1491 case SYSLOG_ACTION_CONSOLE_OFF: 1492 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1493 saved_console_loglevel = console_loglevel; 1494 console_loglevel = minimum_console_loglevel; 1495 break; 1496 /* Enable logging to console */ 1497 case SYSLOG_ACTION_CONSOLE_ON: 1498 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1499 console_loglevel = saved_console_loglevel; 1500 saved_console_loglevel = LOGLEVEL_DEFAULT; 1501 } 1502 break; 1503 /* Set level of messages printed to console */ 1504 case SYSLOG_ACTION_CONSOLE_LEVEL: 1505 if (len < 1 || len > 8) 1506 return -EINVAL; 1507 if (len < minimum_console_loglevel) 1508 len = minimum_console_loglevel; 1509 console_loglevel = len; 1510 /* Implicitly re-enable logging to console */ 1511 saved_console_loglevel = LOGLEVEL_DEFAULT; 1512 break; 1513 /* Number of chars in the log buffer */ 1514 case SYSLOG_ACTION_SIZE_UNREAD: 1515 logbuf_lock_irq(); 1516 if (syslog_seq < log_first_seq) { 1517 /* messages are gone, move to first one */ 1518 syslog_seq = log_first_seq; 1519 syslog_idx = log_first_idx; 1520 syslog_partial = 0; 1521 } 1522 if (source == SYSLOG_FROM_PROC) { 1523 /* 1524 * Short-cut for poll(/"proc/kmsg") which simply checks 1525 * for pending data, not the size; return the count of 1526 * records, not the length. 1527 */ 1528 error = log_next_seq - syslog_seq; 1529 } else { 1530 u64 seq = syslog_seq; 1531 u32 idx = syslog_idx; 1532 1533 while (seq < log_next_seq) { 1534 struct printk_log *msg = log_from_idx(idx); 1535 1536 error += msg_print_text(msg, true, NULL, 0); 1537 idx = log_next(idx); 1538 seq++; 1539 } 1540 error -= syslog_partial; 1541 } 1542 logbuf_unlock_irq(); 1543 break; 1544 /* Size of the log buffer */ 1545 case SYSLOG_ACTION_SIZE_BUFFER: 1546 error = log_buf_len; 1547 break; 1548 default: 1549 error = -EINVAL; 1550 break; 1551 } 1552 1553 return error; 1554 } 1555 1556 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1557 { 1558 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1559 } 1560 1561 /* 1562 * Special console_lock variants that help to reduce the risk of soft-lockups. 1563 * They allow to pass console_lock to another printk() call using a busy wait. 1564 */ 1565 1566 #ifdef CONFIG_LOCKDEP 1567 static struct lockdep_map console_owner_dep_map = { 1568 .name = "console_owner" 1569 }; 1570 #endif 1571 1572 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1573 static struct task_struct *console_owner; 1574 static bool console_waiter; 1575 1576 /** 1577 * console_lock_spinning_enable - mark beginning of code where another 1578 * thread might safely busy wait 1579 * 1580 * This basically converts console_lock into a spinlock. This marks 1581 * the section where the console_lock owner can not sleep, because 1582 * there may be a waiter spinning (like a spinlock). Also it must be 1583 * ready to hand over the lock at the end of the section. 1584 */ 1585 static void console_lock_spinning_enable(void) 1586 { 1587 raw_spin_lock(&console_owner_lock); 1588 console_owner = current; 1589 raw_spin_unlock(&console_owner_lock); 1590 1591 /* The waiter may spin on us after setting console_owner */ 1592 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1593 } 1594 1595 /** 1596 * console_lock_spinning_disable_and_check - mark end of code where another 1597 * thread was able to busy wait and check if there is a waiter 1598 * 1599 * This is called at the end of the section where spinning is allowed. 1600 * It has two functions. First, it is a signal that it is no longer 1601 * safe to start busy waiting for the lock. Second, it checks if 1602 * there is a busy waiter and passes the lock rights to her. 1603 * 1604 * Important: Callers lose the lock if there was a busy waiter. 1605 * They must not touch items synchronized by console_lock 1606 * in this case. 1607 * 1608 * Return: 1 if the lock rights were passed, 0 otherwise. 1609 */ 1610 static int console_lock_spinning_disable_and_check(void) 1611 { 1612 int waiter; 1613 1614 raw_spin_lock(&console_owner_lock); 1615 waiter = READ_ONCE(console_waiter); 1616 console_owner = NULL; 1617 raw_spin_unlock(&console_owner_lock); 1618 1619 if (!waiter) { 1620 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1621 return 0; 1622 } 1623 1624 /* The waiter is now free to continue */ 1625 WRITE_ONCE(console_waiter, false); 1626 1627 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1628 1629 /* 1630 * Hand off console_lock to waiter. The waiter will perform 1631 * the up(). After this, the waiter is the console_lock owner. 1632 */ 1633 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1634 return 1; 1635 } 1636 1637 /** 1638 * console_trylock_spinning - try to get console_lock by busy waiting 1639 * 1640 * This allows to busy wait for the console_lock when the current 1641 * owner is running in specially marked sections. It means that 1642 * the current owner is running and cannot reschedule until it 1643 * is ready to lose the lock. 1644 * 1645 * Return: 1 if we got the lock, 0 othrewise 1646 */ 1647 static int console_trylock_spinning(void) 1648 { 1649 struct task_struct *owner = NULL; 1650 bool waiter; 1651 bool spin = false; 1652 unsigned long flags; 1653 1654 if (console_trylock()) 1655 return 1; 1656 1657 printk_safe_enter_irqsave(flags); 1658 1659 raw_spin_lock(&console_owner_lock); 1660 owner = READ_ONCE(console_owner); 1661 waiter = READ_ONCE(console_waiter); 1662 if (!waiter && owner && owner != current) { 1663 WRITE_ONCE(console_waiter, true); 1664 spin = true; 1665 } 1666 raw_spin_unlock(&console_owner_lock); 1667 1668 /* 1669 * If there is an active printk() writing to the 1670 * consoles, instead of having it write our data too, 1671 * see if we can offload that load from the active 1672 * printer, and do some printing ourselves. 1673 * Go into a spin only if there isn't already a waiter 1674 * spinning, and there is an active printer, and 1675 * that active printer isn't us (recursive printk?). 1676 */ 1677 if (!spin) { 1678 printk_safe_exit_irqrestore(flags); 1679 return 0; 1680 } 1681 1682 /* We spin waiting for the owner to release us */ 1683 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1684 /* Owner will clear console_waiter on hand off */ 1685 while (READ_ONCE(console_waiter)) 1686 cpu_relax(); 1687 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1688 1689 printk_safe_exit_irqrestore(flags); 1690 /* 1691 * The owner passed the console lock to us. 1692 * Since we did not spin on console lock, annotate 1693 * this as a trylock. Otherwise lockdep will 1694 * complain. 1695 */ 1696 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1697 1698 return 1; 1699 } 1700 1701 /* 1702 * Call the console drivers, asking them to write out 1703 * log_buf[start] to log_buf[end - 1]. 1704 * The console_lock must be held. 1705 */ 1706 static void call_console_drivers(const char *ext_text, size_t ext_len, 1707 const char *text, size_t len) 1708 { 1709 struct console *con; 1710 1711 trace_console_rcuidle(text, len); 1712 1713 if (!console_drivers) 1714 return; 1715 1716 for_each_console(con) { 1717 if (exclusive_console && con != exclusive_console) 1718 continue; 1719 if (!(con->flags & CON_ENABLED)) 1720 continue; 1721 if (!con->write) 1722 continue; 1723 if (!cpu_online(smp_processor_id()) && 1724 !(con->flags & CON_ANYTIME)) 1725 continue; 1726 if (con->flags & CON_EXTENDED) 1727 con->write(con, ext_text, ext_len); 1728 else 1729 con->write(con, text, len); 1730 } 1731 } 1732 1733 int printk_delay_msec __read_mostly; 1734 1735 static inline void printk_delay(void) 1736 { 1737 if (unlikely(printk_delay_msec)) { 1738 int m = printk_delay_msec; 1739 1740 while (m--) { 1741 mdelay(1); 1742 touch_nmi_watchdog(); 1743 } 1744 } 1745 } 1746 1747 /* 1748 * Continuation lines are buffered, and not committed to the record buffer 1749 * until the line is complete, or a race forces it. The line fragments 1750 * though, are printed immediately to the consoles to ensure everything has 1751 * reached the console in case of a kernel crash. 1752 */ 1753 static struct cont { 1754 char buf[LOG_LINE_MAX]; 1755 size_t len; /* length == 0 means unused buffer */ 1756 struct task_struct *owner; /* task of first print*/ 1757 u64 ts_nsec; /* time of first print */ 1758 u8 level; /* log level of first message */ 1759 u8 facility; /* log facility of first message */ 1760 enum log_flags flags; /* prefix, newline flags */ 1761 } cont; 1762 1763 static void cont_flush(void) 1764 { 1765 if (cont.len == 0) 1766 return; 1767 1768 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1769 NULL, 0, cont.buf, cont.len); 1770 cont.len = 0; 1771 } 1772 1773 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1774 { 1775 /* If the line gets too long, split it up in separate records. */ 1776 if (cont.len + len > sizeof(cont.buf)) { 1777 cont_flush(); 1778 return false; 1779 } 1780 1781 if (!cont.len) { 1782 cont.facility = facility; 1783 cont.level = level; 1784 cont.owner = current; 1785 cont.ts_nsec = local_clock(); 1786 cont.flags = flags; 1787 } 1788 1789 memcpy(cont.buf + cont.len, text, len); 1790 cont.len += len; 1791 1792 // The original flags come from the first line, 1793 // but later continuations can add a newline. 1794 if (flags & LOG_NEWLINE) { 1795 cont.flags |= LOG_NEWLINE; 1796 cont_flush(); 1797 } 1798 1799 return true; 1800 } 1801 1802 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1803 { 1804 /* 1805 * If an earlier line was buffered, and we're a continuation 1806 * write from the same process, try to add it to the buffer. 1807 */ 1808 if (cont.len) { 1809 if (cont.owner == current && (lflags & LOG_CONT)) { 1810 if (cont_add(facility, level, lflags, text, text_len)) 1811 return text_len; 1812 } 1813 /* Otherwise, make sure it's flushed */ 1814 cont_flush(); 1815 } 1816 1817 /* Skip empty continuation lines that couldn't be added - they just flush */ 1818 if (!text_len && (lflags & LOG_CONT)) 1819 return 0; 1820 1821 /* If it doesn't end in a newline, try to buffer the current line */ 1822 if (!(lflags & LOG_NEWLINE)) { 1823 if (cont_add(facility, level, lflags, text, text_len)) 1824 return text_len; 1825 } 1826 1827 /* Store it in the record log */ 1828 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1829 } 1830 1831 /* Must be called under logbuf_lock. */ 1832 int vprintk_store(int facility, int level, 1833 const char *dict, size_t dictlen, 1834 const char *fmt, va_list args) 1835 { 1836 static char textbuf[LOG_LINE_MAX]; 1837 char *text = textbuf; 1838 size_t text_len; 1839 enum log_flags lflags = 0; 1840 1841 /* 1842 * The printf needs to come first; we need the syslog 1843 * prefix which might be passed-in as a parameter. 1844 */ 1845 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1846 1847 /* mark and strip a trailing newline */ 1848 if (text_len && text[text_len-1] == '\n') { 1849 text_len--; 1850 lflags |= LOG_NEWLINE; 1851 } 1852 1853 /* strip kernel syslog prefix and extract log level or control flags */ 1854 if (facility == 0) { 1855 int kern_level; 1856 1857 while ((kern_level = printk_get_level(text)) != 0) { 1858 switch (kern_level) { 1859 case '0' ... '7': 1860 if (level == LOGLEVEL_DEFAULT) 1861 level = kern_level - '0'; 1862 /* fallthrough */ 1863 case 'd': /* KERN_DEFAULT */ 1864 lflags |= LOG_PREFIX; 1865 break; 1866 case 'c': /* KERN_CONT */ 1867 lflags |= LOG_CONT; 1868 } 1869 1870 text_len -= 2; 1871 text += 2; 1872 } 1873 } 1874 1875 if (level == LOGLEVEL_DEFAULT) 1876 level = default_message_loglevel; 1877 1878 if (dict) 1879 lflags |= LOG_PREFIX|LOG_NEWLINE; 1880 1881 return log_output(facility, level, lflags, 1882 dict, dictlen, text, text_len); 1883 } 1884 1885 asmlinkage int vprintk_emit(int facility, int level, 1886 const char *dict, size_t dictlen, 1887 const char *fmt, va_list args) 1888 { 1889 int printed_len; 1890 bool in_sched = false, pending_output; 1891 unsigned long flags; 1892 u64 curr_log_seq; 1893 1894 if (level == LOGLEVEL_SCHED) { 1895 level = LOGLEVEL_DEFAULT; 1896 in_sched = true; 1897 } 1898 1899 boot_delay_msec(level); 1900 printk_delay(); 1901 1902 /* This stops the holder of console_sem just where we want him */ 1903 logbuf_lock_irqsave(flags); 1904 curr_log_seq = log_next_seq; 1905 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1906 pending_output = (curr_log_seq != log_next_seq); 1907 logbuf_unlock_irqrestore(flags); 1908 1909 /* If called from the scheduler, we can not call up(). */ 1910 if (!in_sched && pending_output) { 1911 /* 1912 * Disable preemption to avoid being preempted while holding 1913 * console_sem which would prevent anyone from printing to 1914 * console 1915 */ 1916 preempt_disable(); 1917 /* 1918 * Try to acquire and then immediately release the console 1919 * semaphore. The release will print out buffers and wake up 1920 * /dev/kmsg and syslog() users. 1921 */ 1922 if (console_trylock_spinning()) 1923 console_unlock(); 1924 preempt_enable(); 1925 } 1926 1927 if (pending_output) 1928 wake_up_klogd(); 1929 return printed_len; 1930 } 1931 EXPORT_SYMBOL(vprintk_emit); 1932 1933 asmlinkage int vprintk(const char *fmt, va_list args) 1934 { 1935 return vprintk_func(fmt, args); 1936 } 1937 EXPORT_SYMBOL(vprintk); 1938 1939 asmlinkage int printk_emit(int facility, int level, 1940 const char *dict, size_t dictlen, 1941 const char *fmt, ...) 1942 { 1943 va_list args; 1944 int r; 1945 1946 va_start(args, fmt); 1947 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1948 va_end(args); 1949 1950 return r; 1951 } 1952 EXPORT_SYMBOL(printk_emit); 1953 1954 int vprintk_default(const char *fmt, va_list args) 1955 { 1956 int r; 1957 1958 #ifdef CONFIG_KGDB_KDB 1959 /* Allow to pass printk() to kdb but avoid a recursion. */ 1960 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1961 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1962 return r; 1963 } 1964 #endif 1965 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1966 1967 return r; 1968 } 1969 EXPORT_SYMBOL_GPL(vprintk_default); 1970 1971 /** 1972 * printk - print a kernel message 1973 * @fmt: format string 1974 * 1975 * This is printk(). It can be called from any context. We want it to work. 1976 * 1977 * We try to grab the console_lock. If we succeed, it's easy - we log the 1978 * output and call the console drivers. If we fail to get the semaphore, we 1979 * place the output into the log buffer and return. The current holder of 1980 * the console_sem will notice the new output in console_unlock(); and will 1981 * send it to the consoles before releasing the lock. 1982 * 1983 * One effect of this deferred printing is that code which calls printk() and 1984 * then changes console_loglevel may break. This is because console_loglevel 1985 * is inspected when the actual printing occurs. 1986 * 1987 * See also: 1988 * printf(3) 1989 * 1990 * See the vsnprintf() documentation for format string extensions over C99. 1991 */ 1992 asmlinkage __visible int printk(const char *fmt, ...) 1993 { 1994 va_list args; 1995 int r; 1996 1997 va_start(args, fmt); 1998 r = vprintk_func(fmt, args); 1999 va_end(args); 2000 2001 return r; 2002 } 2003 EXPORT_SYMBOL(printk); 2004 2005 #else /* CONFIG_PRINTK */ 2006 2007 #define LOG_LINE_MAX 0 2008 #define PREFIX_MAX 0 2009 2010 static u64 syslog_seq; 2011 static u32 syslog_idx; 2012 static u64 console_seq; 2013 static u32 console_idx; 2014 static u64 exclusive_console_stop_seq; 2015 static u64 log_first_seq; 2016 static u32 log_first_idx; 2017 static u64 log_next_seq; 2018 static char *log_text(const struct printk_log *msg) { return NULL; } 2019 static char *log_dict(const struct printk_log *msg) { return NULL; } 2020 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2021 static u32 log_next(u32 idx) { return 0; } 2022 static ssize_t msg_print_ext_header(char *buf, size_t size, 2023 struct printk_log *msg, 2024 u64 seq) { return 0; } 2025 static ssize_t msg_print_ext_body(char *buf, size_t size, 2026 char *dict, size_t dict_len, 2027 char *text, size_t text_len) { return 0; } 2028 static void console_lock_spinning_enable(void) { } 2029 static int console_lock_spinning_disable_and_check(void) { return 0; } 2030 static void call_console_drivers(const char *ext_text, size_t ext_len, 2031 const char *text, size_t len) {} 2032 static size_t msg_print_text(const struct printk_log *msg, 2033 bool syslog, char *buf, size_t size) { return 0; } 2034 static bool suppress_message_printing(int level) { return false; } 2035 2036 #endif /* CONFIG_PRINTK */ 2037 2038 #ifdef CONFIG_EARLY_PRINTK 2039 struct console *early_console; 2040 2041 asmlinkage __visible void early_printk(const char *fmt, ...) 2042 { 2043 va_list ap; 2044 char buf[512]; 2045 int n; 2046 2047 if (!early_console) 2048 return; 2049 2050 va_start(ap, fmt); 2051 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2052 va_end(ap); 2053 2054 early_console->write(early_console, buf, n); 2055 } 2056 #endif 2057 2058 static int __add_preferred_console(char *name, int idx, char *options, 2059 char *brl_options) 2060 { 2061 struct console_cmdline *c; 2062 int i; 2063 2064 /* 2065 * See if this tty is not yet registered, and 2066 * if we have a slot free. 2067 */ 2068 for (i = 0, c = console_cmdline; 2069 i < MAX_CMDLINECONSOLES && c->name[0]; 2070 i++, c++) { 2071 if (strcmp(c->name, name) == 0 && c->index == idx) { 2072 if (!brl_options) 2073 preferred_console = i; 2074 return 0; 2075 } 2076 } 2077 if (i == MAX_CMDLINECONSOLES) 2078 return -E2BIG; 2079 if (!brl_options) 2080 preferred_console = i; 2081 strlcpy(c->name, name, sizeof(c->name)); 2082 c->options = options; 2083 braille_set_options(c, brl_options); 2084 2085 c->index = idx; 2086 return 0; 2087 } 2088 2089 static int __init console_msg_format_setup(char *str) 2090 { 2091 if (!strcmp(str, "syslog")) 2092 console_msg_format = MSG_FORMAT_SYSLOG; 2093 if (!strcmp(str, "default")) 2094 console_msg_format = MSG_FORMAT_DEFAULT; 2095 return 1; 2096 } 2097 __setup("console_msg_format=", console_msg_format_setup); 2098 2099 /* 2100 * Set up a console. Called via do_early_param() in init/main.c 2101 * for each "console=" parameter in the boot command line. 2102 */ 2103 static int __init console_setup(char *str) 2104 { 2105 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2106 char *s, *options, *brl_options = NULL; 2107 int idx; 2108 2109 if (_braille_console_setup(&str, &brl_options)) 2110 return 1; 2111 2112 /* 2113 * Decode str into name, index, options. 2114 */ 2115 if (str[0] >= '0' && str[0] <= '9') { 2116 strcpy(buf, "ttyS"); 2117 strncpy(buf + 4, str, sizeof(buf) - 5); 2118 } else { 2119 strncpy(buf, str, sizeof(buf) - 1); 2120 } 2121 buf[sizeof(buf) - 1] = 0; 2122 options = strchr(str, ','); 2123 if (options) 2124 *(options++) = 0; 2125 #ifdef __sparc__ 2126 if (!strcmp(str, "ttya")) 2127 strcpy(buf, "ttyS0"); 2128 if (!strcmp(str, "ttyb")) 2129 strcpy(buf, "ttyS1"); 2130 #endif 2131 for (s = buf; *s; s++) 2132 if (isdigit(*s) || *s == ',') 2133 break; 2134 idx = simple_strtoul(s, NULL, 10); 2135 *s = 0; 2136 2137 __add_preferred_console(buf, idx, options, brl_options); 2138 console_set_on_cmdline = 1; 2139 return 1; 2140 } 2141 __setup("console=", console_setup); 2142 2143 /** 2144 * add_preferred_console - add a device to the list of preferred consoles. 2145 * @name: device name 2146 * @idx: device index 2147 * @options: options for this console 2148 * 2149 * The last preferred console added will be used for kernel messages 2150 * and stdin/out/err for init. Normally this is used by console_setup 2151 * above to handle user-supplied console arguments; however it can also 2152 * be used by arch-specific code either to override the user or more 2153 * commonly to provide a default console (ie from PROM variables) when 2154 * the user has not supplied one. 2155 */ 2156 int add_preferred_console(char *name, int idx, char *options) 2157 { 2158 return __add_preferred_console(name, idx, options, NULL); 2159 } 2160 2161 bool console_suspend_enabled = true; 2162 EXPORT_SYMBOL(console_suspend_enabled); 2163 2164 static int __init console_suspend_disable(char *str) 2165 { 2166 console_suspend_enabled = false; 2167 return 1; 2168 } 2169 __setup("no_console_suspend", console_suspend_disable); 2170 module_param_named(console_suspend, console_suspend_enabled, 2171 bool, S_IRUGO | S_IWUSR); 2172 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2173 " and hibernate operations"); 2174 2175 /** 2176 * suspend_console - suspend the console subsystem 2177 * 2178 * This disables printk() while we go into suspend states 2179 */ 2180 void suspend_console(void) 2181 { 2182 if (!console_suspend_enabled) 2183 return; 2184 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2185 console_lock(); 2186 console_suspended = 1; 2187 up_console_sem(); 2188 } 2189 2190 void resume_console(void) 2191 { 2192 if (!console_suspend_enabled) 2193 return; 2194 down_console_sem(); 2195 console_suspended = 0; 2196 console_unlock(); 2197 } 2198 2199 /** 2200 * console_cpu_notify - print deferred console messages after CPU hotplug 2201 * @cpu: unused 2202 * 2203 * If printk() is called from a CPU that is not online yet, the messages 2204 * will be printed on the console only if there are CON_ANYTIME consoles. 2205 * This function is called when a new CPU comes online (or fails to come 2206 * up) or goes offline. 2207 */ 2208 static int console_cpu_notify(unsigned int cpu) 2209 { 2210 if (!cpuhp_tasks_frozen) { 2211 /* If trylock fails, someone else is doing the printing */ 2212 if (console_trylock()) 2213 console_unlock(); 2214 } 2215 return 0; 2216 } 2217 2218 /** 2219 * console_lock - lock the console system for exclusive use. 2220 * 2221 * Acquires a lock which guarantees that the caller has 2222 * exclusive access to the console system and the console_drivers list. 2223 * 2224 * Can sleep, returns nothing. 2225 */ 2226 void console_lock(void) 2227 { 2228 might_sleep(); 2229 2230 down_console_sem(); 2231 if (console_suspended) 2232 return; 2233 console_locked = 1; 2234 console_may_schedule = 1; 2235 } 2236 EXPORT_SYMBOL(console_lock); 2237 2238 /** 2239 * console_trylock - try to lock the console system for exclusive use. 2240 * 2241 * Try to acquire a lock which guarantees that the caller has exclusive 2242 * access to the console system and the console_drivers list. 2243 * 2244 * returns 1 on success, and 0 on failure to acquire the lock. 2245 */ 2246 int console_trylock(void) 2247 { 2248 if (down_trylock_console_sem()) 2249 return 0; 2250 if (console_suspended) { 2251 up_console_sem(); 2252 return 0; 2253 } 2254 console_locked = 1; 2255 console_may_schedule = 0; 2256 return 1; 2257 } 2258 EXPORT_SYMBOL(console_trylock); 2259 2260 int is_console_locked(void) 2261 { 2262 return console_locked; 2263 } 2264 EXPORT_SYMBOL(is_console_locked); 2265 2266 /* 2267 * Check if we have any console that is capable of printing while cpu is 2268 * booting or shutting down. Requires console_sem. 2269 */ 2270 static int have_callable_console(void) 2271 { 2272 struct console *con; 2273 2274 for_each_console(con) 2275 if ((con->flags & CON_ENABLED) && 2276 (con->flags & CON_ANYTIME)) 2277 return 1; 2278 2279 return 0; 2280 } 2281 2282 /* 2283 * Can we actually use the console at this time on this cpu? 2284 * 2285 * Console drivers may assume that per-cpu resources have been allocated. So 2286 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2287 * call them until this CPU is officially up. 2288 */ 2289 static inline int can_use_console(void) 2290 { 2291 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2292 } 2293 2294 /** 2295 * console_unlock - unlock the console system 2296 * 2297 * Releases the console_lock which the caller holds on the console system 2298 * and the console driver list. 2299 * 2300 * While the console_lock was held, console output may have been buffered 2301 * by printk(). If this is the case, console_unlock(); emits 2302 * the output prior to releasing the lock. 2303 * 2304 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2305 * 2306 * console_unlock(); may be called from any context. 2307 */ 2308 void console_unlock(void) 2309 { 2310 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2311 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2312 unsigned long flags; 2313 bool do_cond_resched, retry; 2314 2315 if (console_suspended) { 2316 up_console_sem(); 2317 return; 2318 } 2319 2320 /* 2321 * Console drivers are called with interrupts disabled, so 2322 * @console_may_schedule should be cleared before; however, we may 2323 * end up dumping a lot of lines, for example, if called from 2324 * console registration path, and should invoke cond_resched() 2325 * between lines if allowable. Not doing so can cause a very long 2326 * scheduling stall on a slow console leading to RCU stall and 2327 * softlockup warnings which exacerbate the issue with more 2328 * messages practically incapacitating the system. 2329 * 2330 * console_trylock() is not able to detect the preemptive 2331 * context reliably. Therefore the value must be stored before 2332 * and cleared after the the "again" goto label. 2333 */ 2334 do_cond_resched = console_may_schedule; 2335 again: 2336 console_may_schedule = 0; 2337 2338 /* 2339 * We released the console_sem lock, so we need to recheck if 2340 * cpu is online and (if not) is there at least one CON_ANYTIME 2341 * console. 2342 */ 2343 if (!can_use_console()) { 2344 console_locked = 0; 2345 up_console_sem(); 2346 return; 2347 } 2348 2349 for (;;) { 2350 struct printk_log *msg; 2351 size_t ext_len = 0; 2352 size_t len; 2353 2354 printk_safe_enter_irqsave(flags); 2355 raw_spin_lock(&logbuf_lock); 2356 if (console_seq < log_first_seq) { 2357 len = sprintf(text, 2358 "** %llu printk messages dropped **\n", 2359 log_first_seq - console_seq); 2360 2361 /* messages are gone, move to first one */ 2362 console_seq = log_first_seq; 2363 console_idx = log_first_idx; 2364 } else { 2365 len = 0; 2366 } 2367 skip: 2368 if (console_seq == log_next_seq) 2369 break; 2370 2371 msg = log_from_idx(console_idx); 2372 if (suppress_message_printing(msg->level)) { 2373 /* 2374 * Skip record we have buffered and already printed 2375 * directly to the console when we received it, and 2376 * record that has level above the console loglevel. 2377 */ 2378 console_idx = log_next(console_idx); 2379 console_seq++; 2380 goto skip; 2381 } 2382 2383 /* Output to all consoles once old messages replayed. */ 2384 if (unlikely(exclusive_console && 2385 console_seq >= exclusive_console_stop_seq)) { 2386 exclusive_console = NULL; 2387 } 2388 2389 len += msg_print_text(msg, 2390 console_msg_format & MSG_FORMAT_SYSLOG, 2391 text + len, 2392 sizeof(text) - len); 2393 if (nr_ext_console_drivers) { 2394 ext_len = msg_print_ext_header(ext_text, 2395 sizeof(ext_text), 2396 msg, console_seq); 2397 ext_len += msg_print_ext_body(ext_text + ext_len, 2398 sizeof(ext_text) - ext_len, 2399 log_dict(msg), msg->dict_len, 2400 log_text(msg), msg->text_len); 2401 } 2402 console_idx = log_next(console_idx); 2403 console_seq++; 2404 raw_spin_unlock(&logbuf_lock); 2405 2406 /* 2407 * While actively printing out messages, if another printk() 2408 * were to occur on another CPU, it may wait for this one to 2409 * finish. This task can not be preempted if there is a 2410 * waiter waiting to take over. 2411 */ 2412 console_lock_spinning_enable(); 2413 2414 stop_critical_timings(); /* don't trace print latency */ 2415 call_console_drivers(ext_text, ext_len, text, len); 2416 start_critical_timings(); 2417 2418 if (console_lock_spinning_disable_and_check()) { 2419 printk_safe_exit_irqrestore(flags); 2420 return; 2421 } 2422 2423 printk_safe_exit_irqrestore(flags); 2424 2425 if (do_cond_resched) 2426 cond_resched(); 2427 } 2428 2429 console_locked = 0; 2430 2431 raw_spin_unlock(&logbuf_lock); 2432 2433 up_console_sem(); 2434 2435 /* 2436 * Someone could have filled up the buffer again, so re-check if there's 2437 * something to flush. In case we cannot trylock the console_sem again, 2438 * there's a new owner and the console_unlock() from them will do the 2439 * flush, no worries. 2440 */ 2441 raw_spin_lock(&logbuf_lock); 2442 retry = console_seq != log_next_seq; 2443 raw_spin_unlock(&logbuf_lock); 2444 printk_safe_exit_irqrestore(flags); 2445 2446 if (retry && console_trylock()) 2447 goto again; 2448 } 2449 EXPORT_SYMBOL(console_unlock); 2450 2451 /** 2452 * console_conditional_schedule - yield the CPU if required 2453 * 2454 * If the console code is currently allowed to sleep, and 2455 * if this CPU should yield the CPU to another task, do 2456 * so here. 2457 * 2458 * Must be called within console_lock();. 2459 */ 2460 void __sched console_conditional_schedule(void) 2461 { 2462 if (console_may_schedule) 2463 cond_resched(); 2464 } 2465 EXPORT_SYMBOL(console_conditional_schedule); 2466 2467 void console_unblank(void) 2468 { 2469 struct console *c; 2470 2471 /* 2472 * console_unblank can no longer be called in interrupt context unless 2473 * oops_in_progress is set to 1.. 2474 */ 2475 if (oops_in_progress) { 2476 if (down_trylock_console_sem() != 0) 2477 return; 2478 } else 2479 console_lock(); 2480 2481 console_locked = 1; 2482 console_may_schedule = 0; 2483 for_each_console(c) 2484 if ((c->flags & CON_ENABLED) && c->unblank) 2485 c->unblank(); 2486 console_unlock(); 2487 } 2488 2489 /** 2490 * console_flush_on_panic - flush console content on panic 2491 * 2492 * Immediately output all pending messages no matter what. 2493 */ 2494 void console_flush_on_panic(void) 2495 { 2496 /* 2497 * If someone else is holding the console lock, trylock will fail 2498 * and may_schedule may be set. Ignore and proceed to unlock so 2499 * that messages are flushed out. As this can be called from any 2500 * context and we don't want to get preempted while flushing, 2501 * ensure may_schedule is cleared. 2502 */ 2503 console_trylock(); 2504 console_may_schedule = 0; 2505 console_unlock(); 2506 } 2507 2508 /* 2509 * Return the console tty driver structure and its associated index 2510 */ 2511 struct tty_driver *console_device(int *index) 2512 { 2513 struct console *c; 2514 struct tty_driver *driver = NULL; 2515 2516 console_lock(); 2517 for_each_console(c) { 2518 if (!c->device) 2519 continue; 2520 driver = c->device(c, index); 2521 if (driver) 2522 break; 2523 } 2524 console_unlock(); 2525 return driver; 2526 } 2527 2528 /* 2529 * Prevent further output on the passed console device so that (for example) 2530 * serial drivers can disable console output before suspending a port, and can 2531 * re-enable output afterwards. 2532 */ 2533 void console_stop(struct console *console) 2534 { 2535 console_lock(); 2536 console->flags &= ~CON_ENABLED; 2537 console_unlock(); 2538 } 2539 EXPORT_SYMBOL(console_stop); 2540 2541 void console_start(struct console *console) 2542 { 2543 console_lock(); 2544 console->flags |= CON_ENABLED; 2545 console_unlock(); 2546 } 2547 EXPORT_SYMBOL(console_start); 2548 2549 static int __read_mostly keep_bootcon; 2550 2551 static int __init keep_bootcon_setup(char *str) 2552 { 2553 keep_bootcon = 1; 2554 pr_info("debug: skip boot console de-registration.\n"); 2555 2556 return 0; 2557 } 2558 2559 early_param("keep_bootcon", keep_bootcon_setup); 2560 2561 /* 2562 * The console driver calls this routine during kernel initialization 2563 * to register the console printing procedure with printk() and to 2564 * print any messages that were printed by the kernel before the 2565 * console driver was initialized. 2566 * 2567 * This can happen pretty early during the boot process (because of 2568 * early_printk) - sometimes before setup_arch() completes - be careful 2569 * of what kernel features are used - they may not be initialised yet. 2570 * 2571 * There are two types of consoles - bootconsoles (early_printk) and 2572 * "real" consoles (everything which is not a bootconsole) which are 2573 * handled differently. 2574 * - Any number of bootconsoles can be registered at any time. 2575 * - As soon as a "real" console is registered, all bootconsoles 2576 * will be unregistered automatically. 2577 * - Once a "real" console is registered, any attempt to register a 2578 * bootconsoles will be rejected 2579 */ 2580 void register_console(struct console *newcon) 2581 { 2582 int i; 2583 unsigned long flags; 2584 struct console *bcon = NULL; 2585 struct console_cmdline *c; 2586 static bool has_preferred; 2587 2588 if (console_drivers) 2589 for_each_console(bcon) 2590 if (WARN(bcon == newcon, 2591 "console '%s%d' already registered\n", 2592 bcon->name, bcon->index)) 2593 return; 2594 2595 /* 2596 * before we register a new CON_BOOT console, make sure we don't 2597 * already have a valid console 2598 */ 2599 if (console_drivers && newcon->flags & CON_BOOT) { 2600 /* find the last or real console */ 2601 for_each_console(bcon) { 2602 if (!(bcon->flags & CON_BOOT)) { 2603 pr_info("Too late to register bootconsole %s%d\n", 2604 newcon->name, newcon->index); 2605 return; 2606 } 2607 } 2608 } 2609 2610 if (console_drivers && console_drivers->flags & CON_BOOT) 2611 bcon = console_drivers; 2612 2613 if (!has_preferred || bcon || !console_drivers) 2614 has_preferred = preferred_console >= 0; 2615 2616 /* 2617 * See if we want to use this console driver. If we 2618 * didn't select a console we take the first one 2619 * that registers here. 2620 */ 2621 if (!has_preferred) { 2622 if (newcon->index < 0) 2623 newcon->index = 0; 2624 if (newcon->setup == NULL || 2625 newcon->setup(newcon, NULL) == 0) { 2626 newcon->flags |= CON_ENABLED; 2627 if (newcon->device) { 2628 newcon->flags |= CON_CONSDEV; 2629 has_preferred = true; 2630 } 2631 } 2632 } 2633 2634 /* 2635 * See if this console matches one we selected on 2636 * the command line. 2637 */ 2638 for (i = 0, c = console_cmdline; 2639 i < MAX_CMDLINECONSOLES && c->name[0]; 2640 i++, c++) { 2641 if (!newcon->match || 2642 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2643 /* default matching */ 2644 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2645 if (strcmp(c->name, newcon->name) != 0) 2646 continue; 2647 if (newcon->index >= 0 && 2648 newcon->index != c->index) 2649 continue; 2650 if (newcon->index < 0) 2651 newcon->index = c->index; 2652 2653 if (_braille_register_console(newcon, c)) 2654 return; 2655 2656 if (newcon->setup && 2657 newcon->setup(newcon, c->options) != 0) 2658 break; 2659 } 2660 2661 newcon->flags |= CON_ENABLED; 2662 if (i == preferred_console) { 2663 newcon->flags |= CON_CONSDEV; 2664 has_preferred = true; 2665 } 2666 break; 2667 } 2668 2669 if (!(newcon->flags & CON_ENABLED)) 2670 return; 2671 2672 /* 2673 * If we have a bootconsole, and are switching to a real console, 2674 * don't print everything out again, since when the boot console, and 2675 * the real console are the same physical device, it's annoying to 2676 * see the beginning boot messages twice 2677 */ 2678 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2679 newcon->flags &= ~CON_PRINTBUFFER; 2680 2681 /* 2682 * Put this console in the list - keep the 2683 * preferred driver at the head of the list. 2684 */ 2685 console_lock(); 2686 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2687 newcon->next = console_drivers; 2688 console_drivers = newcon; 2689 if (newcon->next) 2690 newcon->next->flags &= ~CON_CONSDEV; 2691 } else { 2692 newcon->next = console_drivers->next; 2693 console_drivers->next = newcon; 2694 } 2695 2696 if (newcon->flags & CON_EXTENDED) 2697 nr_ext_console_drivers++; 2698 2699 if (newcon->flags & CON_PRINTBUFFER) { 2700 /* 2701 * console_unlock(); will print out the buffered messages 2702 * for us. 2703 */ 2704 logbuf_lock_irqsave(flags); 2705 console_seq = syslog_seq; 2706 console_idx = syslog_idx; 2707 /* 2708 * We're about to replay the log buffer. Only do this to the 2709 * just-registered console to avoid excessive message spam to 2710 * the already-registered consoles. 2711 * 2712 * Set exclusive_console with disabled interrupts to reduce 2713 * race window with eventual console_flush_on_panic() that 2714 * ignores console_lock. 2715 */ 2716 exclusive_console = newcon; 2717 exclusive_console_stop_seq = console_seq; 2718 logbuf_unlock_irqrestore(flags); 2719 } 2720 console_unlock(); 2721 console_sysfs_notify(); 2722 2723 /* 2724 * By unregistering the bootconsoles after we enable the real console 2725 * we get the "console xxx enabled" message on all the consoles - 2726 * boot consoles, real consoles, etc - this is to ensure that end 2727 * users know there might be something in the kernel's log buffer that 2728 * went to the bootconsole (that they do not see on the real console) 2729 */ 2730 pr_info("%sconsole [%s%d] enabled\n", 2731 (newcon->flags & CON_BOOT) ? "boot" : "" , 2732 newcon->name, newcon->index); 2733 if (bcon && 2734 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2735 !keep_bootcon) { 2736 /* We need to iterate through all boot consoles, to make 2737 * sure we print everything out, before we unregister them. 2738 */ 2739 for_each_console(bcon) 2740 if (bcon->flags & CON_BOOT) 2741 unregister_console(bcon); 2742 } 2743 } 2744 EXPORT_SYMBOL(register_console); 2745 2746 int unregister_console(struct console *console) 2747 { 2748 struct console *a, *b; 2749 int res; 2750 2751 pr_info("%sconsole [%s%d] disabled\n", 2752 (console->flags & CON_BOOT) ? "boot" : "" , 2753 console->name, console->index); 2754 2755 res = _braille_unregister_console(console); 2756 if (res) 2757 return res; 2758 2759 res = 1; 2760 console_lock(); 2761 if (console_drivers == console) { 2762 console_drivers=console->next; 2763 res = 0; 2764 } else if (console_drivers) { 2765 for (a=console_drivers->next, b=console_drivers ; 2766 a; b=a, a=b->next) { 2767 if (a == console) { 2768 b->next = a->next; 2769 res = 0; 2770 break; 2771 } 2772 } 2773 } 2774 2775 if (!res && (console->flags & CON_EXTENDED)) 2776 nr_ext_console_drivers--; 2777 2778 /* 2779 * If this isn't the last console and it has CON_CONSDEV set, we 2780 * need to set it on the next preferred console. 2781 */ 2782 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2783 console_drivers->flags |= CON_CONSDEV; 2784 2785 console->flags &= ~CON_ENABLED; 2786 console_unlock(); 2787 console_sysfs_notify(); 2788 return res; 2789 } 2790 EXPORT_SYMBOL(unregister_console); 2791 2792 /* 2793 * Initialize the console device. This is called *early*, so 2794 * we can't necessarily depend on lots of kernel help here. 2795 * Just do some early initializations, and do the complex setup 2796 * later. 2797 */ 2798 void __init console_init(void) 2799 { 2800 int ret; 2801 initcall_t call; 2802 initcall_entry_t *ce; 2803 2804 /* Setup the default TTY line discipline. */ 2805 n_tty_init(); 2806 2807 /* 2808 * set up the console device so that later boot sequences can 2809 * inform about problems etc.. 2810 */ 2811 ce = __con_initcall_start; 2812 trace_initcall_level("console"); 2813 while (ce < __con_initcall_end) { 2814 call = initcall_from_entry(ce); 2815 trace_initcall_start(call); 2816 ret = call(); 2817 trace_initcall_finish(call, ret); 2818 ce++; 2819 } 2820 } 2821 2822 /* 2823 * Some boot consoles access data that is in the init section and which will 2824 * be discarded after the initcalls have been run. To make sure that no code 2825 * will access this data, unregister the boot consoles in a late initcall. 2826 * 2827 * If for some reason, such as deferred probe or the driver being a loadable 2828 * module, the real console hasn't registered yet at this point, there will 2829 * be a brief interval in which no messages are logged to the console, which 2830 * makes it difficult to diagnose problems that occur during this time. 2831 * 2832 * To mitigate this problem somewhat, only unregister consoles whose memory 2833 * intersects with the init section. Note that all other boot consoles will 2834 * get unregistred when the real preferred console is registered. 2835 */ 2836 static int __init printk_late_init(void) 2837 { 2838 struct console *con; 2839 int ret; 2840 2841 for_each_console(con) { 2842 if (!(con->flags & CON_BOOT)) 2843 continue; 2844 2845 /* Check addresses that might be used for enabled consoles. */ 2846 if (init_section_intersects(con, sizeof(*con)) || 2847 init_section_contains(con->write, 0) || 2848 init_section_contains(con->read, 0) || 2849 init_section_contains(con->device, 0) || 2850 init_section_contains(con->unblank, 0) || 2851 init_section_contains(con->data, 0)) { 2852 /* 2853 * Please, consider moving the reported consoles out 2854 * of the init section. 2855 */ 2856 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2857 con->name, con->index); 2858 unregister_console(con); 2859 } 2860 } 2861 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2862 console_cpu_notify); 2863 WARN_ON(ret < 0); 2864 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2865 console_cpu_notify, NULL); 2866 WARN_ON(ret < 0); 2867 return 0; 2868 } 2869 late_initcall(printk_late_init); 2870 2871 #if defined CONFIG_PRINTK 2872 /* 2873 * Delayed printk version, for scheduler-internal messages: 2874 */ 2875 #define PRINTK_PENDING_WAKEUP 0x01 2876 #define PRINTK_PENDING_OUTPUT 0x02 2877 2878 static DEFINE_PER_CPU(int, printk_pending); 2879 2880 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2881 { 2882 int pending = __this_cpu_xchg(printk_pending, 0); 2883 2884 if (pending & PRINTK_PENDING_OUTPUT) { 2885 /* If trylock fails, someone else is doing the printing */ 2886 if (console_trylock()) 2887 console_unlock(); 2888 } 2889 2890 if (pending & PRINTK_PENDING_WAKEUP) 2891 wake_up_interruptible(&log_wait); 2892 } 2893 2894 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2895 .func = wake_up_klogd_work_func, 2896 .flags = IRQ_WORK_LAZY, 2897 }; 2898 2899 void wake_up_klogd(void) 2900 { 2901 preempt_disable(); 2902 if (waitqueue_active(&log_wait)) { 2903 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2904 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2905 } 2906 preempt_enable(); 2907 } 2908 2909 void defer_console_output(void) 2910 { 2911 preempt_disable(); 2912 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2913 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2914 preempt_enable(); 2915 } 2916 2917 int vprintk_deferred(const char *fmt, va_list args) 2918 { 2919 int r; 2920 2921 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2922 defer_console_output(); 2923 2924 return r; 2925 } 2926 2927 int printk_deferred(const char *fmt, ...) 2928 { 2929 va_list args; 2930 int r; 2931 2932 va_start(args, fmt); 2933 r = vprintk_deferred(fmt, args); 2934 va_end(args); 2935 2936 return r; 2937 } 2938 2939 /* 2940 * printk rate limiting, lifted from the networking subsystem. 2941 * 2942 * This enforces a rate limit: not more than 10 kernel messages 2943 * every 5s to make a denial-of-service attack impossible. 2944 */ 2945 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2946 2947 int __printk_ratelimit(const char *func) 2948 { 2949 return ___ratelimit(&printk_ratelimit_state, func); 2950 } 2951 EXPORT_SYMBOL(__printk_ratelimit); 2952 2953 /** 2954 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2955 * @caller_jiffies: pointer to caller's state 2956 * @interval_msecs: minimum interval between prints 2957 * 2958 * printk_timed_ratelimit() returns true if more than @interval_msecs 2959 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2960 * returned true. 2961 */ 2962 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2963 unsigned int interval_msecs) 2964 { 2965 unsigned long elapsed = jiffies - *caller_jiffies; 2966 2967 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2968 return false; 2969 2970 *caller_jiffies = jiffies; 2971 return true; 2972 } 2973 EXPORT_SYMBOL(printk_timed_ratelimit); 2974 2975 static DEFINE_SPINLOCK(dump_list_lock); 2976 static LIST_HEAD(dump_list); 2977 2978 /** 2979 * kmsg_dump_register - register a kernel log dumper. 2980 * @dumper: pointer to the kmsg_dumper structure 2981 * 2982 * Adds a kernel log dumper to the system. The dump callback in the 2983 * structure will be called when the kernel oopses or panics and must be 2984 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2985 */ 2986 int kmsg_dump_register(struct kmsg_dumper *dumper) 2987 { 2988 unsigned long flags; 2989 int err = -EBUSY; 2990 2991 /* The dump callback needs to be set */ 2992 if (!dumper->dump) 2993 return -EINVAL; 2994 2995 spin_lock_irqsave(&dump_list_lock, flags); 2996 /* Don't allow registering multiple times */ 2997 if (!dumper->registered) { 2998 dumper->registered = 1; 2999 list_add_tail_rcu(&dumper->list, &dump_list); 3000 err = 0; 3001 } 3002 spin_unlock_irqrestore(&dump_list_lock, flags); 3003 3004 return err; 3005 } 3006 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3007 3008 /** 3009 * kmsg_dump_unregister - unregister a kmsg dumper. 3010 * @dumper: pointer to the kmsg_dumper structure 3011 * 3012 * Removes a dump device from the system. Returns zero on success and 3013 * %-EINVAL otherwise. 3014 */ 3015 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3016 { 3017 unsigned long flags; 3018 int err = -EINVAL; 3019 3020 spin_lock_irqsave(&dump_list_lock, flags); 3021 if (dumper->registered) { 3022 dumper->registered = 0; 3023 list_del_rcu(&dumper->list); 3024 err = 0; 3025 } 3026 spin_unlock_irqrestore(&dump_list_lock, flags); 3027 synchronize_rcu(); 3028 3029 return err; 3030 } 3031 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3032 3033 static bool always_kmsg_dump; 3034 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3035 3036 /** 3037 * kmsg_dump - dump kernel log to kernel message dumpers. 3038 * @reason: the reason (oops, panic etc) for dumping 3039 * 3040 * Call each of the registered dumper's dump() callback, which can 3041 * retrieve the kmsg records with kmsg_dump_get_line() or 3042 * kmsg_dump_get_buffer(). 3043 */ 3044 void kmsg_dump(enum kmsg_dump_reason reason) 3045 { 3046 struct kmsg_dumper *dumper; 3047 unsigned long flags; 3048 3049 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3050 return; 3051 3052 rcu_read_lock(); 3053 list_for_each_entry_rcu(dumper, &dump_list, list) { 3054 if (dumper->max_reason && reason > dumper->max_reason) 3055 continue; 3056 3057 /* initialize iterator with data about the stored records */ 3058 dumper->active = true; 3059 3060 logbuf_lock_irqsave(flags); 3061 dumper->cur_seq = clear_seq; 3062 dumper->cur_idx = clear_idx; 3063 dumper->next_seq = log_next_seq; 3064 dumper->next_idx = log_next_idx; 3065 logbuf_unlock_irqrestore(flags); 3066 3067 /* invoke dumper which will iterate over records */ 3068 dumper->dump(dumper, reason); 3069 3070 /* reset iterator */ 3071 dumper->active = false; 3072 } 3073 rcu_read_unlock(); 3074 } 3075 3076 /** 3077 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3078 * @dumper: registered kmsg dumper 3079 * @syslog: include the "<4>" prefixes 3080 * @line: buffer to copy the line to 3081 * @size: maximum size of the buffer 3082 * @len: length of line placed into buffer 3083 * 3084 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3085 * record, and copy one record into the provided buffer. 3086 * 3087 * Consecutive calls will return the next available record moving 3088 * towards the end of the buffer with the youngest messages. 3089 * 3090 * A return value of FALSE indicates that there are no more records to 3091 * read. 3092 * 3093 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3094 */ 3095 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3096 char *line, size_t size, size_t *len) 3097 { 3098 struct printk_log *msg; 3099 size_t l = 0; 3100 bool ret = false; 3101 3102 if (!dumper->active) 3103 goto out; 3104 3105 if (dumper->cur_seq < log_first_seq) { 3106 /* messages are gone, move to first available one */ 3107 dumper->cur_seq = log_first_seq; 3108 dumper->cur_idx = log_first_idx; 3109 } 3110 3111 /* last entry */ 3112 if (dumper->cur_seq >= log_next_seq) 3113 goto out; 3114 3115 msg = log_from_idx(dumper->cur_idx); 3116 l = msg_print_text(msg, syslog, line, size); 3117 3118 dumper->cur_idx = log_next(dumper->cur_idx); 3119 dumper->cur_seq++; 3120 ret = true; 3121 out: 3122 if (len) 3123 *len = l; 3124 return ret; 3125 } 3126 3127 /** 3128 * kmsg_dump_get_line - retrieve one kmsg log line 3129 * @dumper: registered kmsg dumper 3130 * @syslog: include the "<4>" prefixes 3131 * @line: buffer to copy the line to 3132 * @size: maximum size of the buffer 3133 * @len: length of line placed into buffer 3134 * 3135 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3136 * record, and copy one record into the provided buffer. 3137 * 3138 * Consecutive calls will return the next available record moving 3139 * towards the end of the buffer with the youngest messages. 3140 * 3141 * A return value of FALSE indicates that there are no more records to 3142 * read. 3143 */ 3144 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3145 char *line, size_t size, size_t *len) 3146 { 3147 unsigned long flags; 3148 bool ret; 3149 3150 logbuf_lock_irqsave(flags); 3151 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3152 logbuf_unlock_irqrestore(flags); 3153 3154 return ret; 3155 } 3156 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3157 3158 /** 3159 * kmsg_dump_get_buffer - copy kmsg log lines 3160 * @dumper: registered kmsg dumper 3161 * @syslog: include the "<4>" prefixes 3162 * @buf: buffer to copy the line to 3163 * @size: maximum size of the buffer 3164 * @len: length of line placed into buffer 3165 * 3166 * Start at the end of the kmsg buffer and fill the provided buffer 3167 * with as many of the the *youngest* kmsg records that fit into it. 3168 * If the buffer is large enough, all available kmsg records will be 3169 * copied with a single call. 3170 * 3171 * Consecutive calls will fill the buffer with the next block of 3172 * available older records, not including the earlier retrieved ones. 3173 * 3174 * A return value of FALSE indicates that there are no more records to 3175 * read. 3176 */ 3177 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3178 char *buf, size_t size, size_t *len) 3179 { 3180 unsigned long flags; 3181 u64 seq; 3182 u32 idx; 3183 u64 next_seq; 3184 u32 next_idx; 3185 size_t l = 0; 3186 bool ret = false; 3187 3188 if (!dumper->active) 3189 goto out; 3190 3191 logbuf_lock_irqsave(flags); 3192 if (dumper->cur_seq < log_first_seq) { 3193 /* messages are gone, move to first available one */ 3194 dumper->cur_seq = log_first_seq; 3195 dumper->cur_idx = log_first_idx; 3196 } 3197 3198 /* last entry */ 3199 if (dumper->cur_seq >= dumper->next_seq) { 3200 logbuf_unlock_irqrestore(flags); 3201 goto out; 3202 } 3203 3204 /* calculate length of entire buffer */ 3205 seq = dumper->cur_seq; 3206 idx = dumper->cur_idx; 3207 while (seq < dumper->next_seq) { 3208 struct printk_log *msg = log_from_idx(idx); 3209 3210 l += msg_print_text(msg, true, NULL, 0); 3211 idx = log_next(idx); 3212 seq++; 3213 } 3214 3215 /* move first record forward until length fits into the buffer */ 3216 seq = dumper->cur_seq; 3217 idx = dumper->cur_idx; 3218 while (l > size && seq < dumper->next_seq) { 3219 struct printk_log *msg = log_from_idx(idx); 3220 3221 l -= msg_print_text(msg, true, NULL, 0); 3222 idx = log_next(idx); 3223 seq++; 3224 } 3225 3226 /* last message in next interation */ 3227 next_seq = seq; 3228 next_idx = idx; 3229 3230 l = 0; 3231 while (seq < dumper->next_seq) { 3232 struct printk_log *msg = log_from_idx(idx); 3233 3234 l += msg_print_text(msg, syslog, buf + l, size - l); 3235 idx = log_next(idx); 3236 seq++; 3237 } 3238 3239 dumper->next_seq = next_seq; 3240 dumper->next_idx = next_idx; 3241 ret = true; 3242 logbuf_unlock_irqrestore(flags); 3243 out: 3244 if (len) 3245 *len = l; 3246 return ret; 3247 } 3248 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3249 3250 /** 3251 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3252 * @dumper: registered kmsg dumper 3253 * 3254 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3255 * kmsg_dump_get_buffer() can be called again and used multiple 3256 * times within the same dumper.dump() callback. 3257 * 3258 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3259 */ 3260 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3261 { 3262 dumper->cur_seq = clear_seq; 3263 dumper->cur_idx = clear_idx; 3264 dumper->next_seq = log_next_seq; 3265 dumper->next_idx = log_next_idx; 3266 } 3267 3268 /** 3269 * kmsg_dump_rewind - reset the interator 3270 * @dumper: registered kmsg dumper 3271 * 3272 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3273 * kmsg_dump_get_buffer() can be called again and used multiple 3274 * times within the same dumper.dump() callback. 3275 */ 3276 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3277 { 3278 unsigned long flags; 3279 3280 logbuf_lock_irqsave(flags); 3281 kmsg_dump_rewind_nolock(dumper); 3282 logbuf_unlock_irqrestore(flags); 3283 } 3284 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3285 3286 #endif 3287