xref: /linux/kernel/printk/printk.c (revision bd66a89249892acc9d938ba4956066b21403fa5f)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/sections.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58 
59 int console_printk[4] = {
60 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
61 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
62 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
64 };
65 
66 /*
67  * Low level drivers may need that to know if they can schedule in
68  * their unblank() callback or not. So let's export it.
69  */
70 int oops_in_progress;
71 EXPORT_SYMBOL(oops_in_progress);
72 
73 /*
74  * console_sem protects the console_drivers list, and also
75  * provides serialisation for access to the entire console
76  * driver system.
77  */
78 static DEFINE_SEMAPHORE(console_sem);
79 struct console *console_drivers;
80 EXPORT_SYMBOL_GPL(console_drivers);
81 
82 #ifdef CONFIG_LOCKDEP
83 static struct lockdep_map console_lock_dep_map = {
84 	.name = "console_lock"
85 };
86 #endif
87 
88 enum devkmsg_log_bits {
89 	__DEVKMSG_LOG_BIT_ON = 0,
90 	__DEVKMSG_LOG_BIT_OFF,
91 	__DEVKMSG_LOG_BIT_LOCK,
92 };
93 
94 enum devkmsg_log_masks {
95 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
96 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
97 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
98 };
99 
100 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
101 #define DEVKMSG_LOG_MASK_DEFAULT	0
102 
103 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
104 
105 static int __control_devkmsg(char *str)
106 {
107 	if (!str)
108 		return -EINVAL;
109 
110 	if (!strncmp(str, "on", 2)) {
111 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
112 		return 2;
113 	} else if (!strncmp(str, "off", 3)) {
114 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
115 		return 3;
116 	} else if (!strncmp(str, "ratelimit", 9)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 		return 9;
119 	}
120 	return -EINVAL;
121 }
122 
123 static int __init control_devkmsg(char *str)
124 {
125 	if (__control_devkmsg(str) < 0)
126 		return 1;
127 
128 	/*
129 	 * Set sysctl string accordingly:
130 	 */
131 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
132 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
133 		strncpy(devkmsg_log_str, "on", 2);
134 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
135 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
136 		strncpy(devkmsg_log_str, "off", 3);
137 	}
138 	/* else "ratelimit" which is set by default. */
139 
140 	/*
141 	 * Sysctl cannot change it anymore. The kernel command line setting of
142 	 * this parameter is to force the setting to be permanent throughout the
143 	 * runtime of the system. This is a precation measure against userspace
144 	 * trying to be a smarta** and attempting to change it up on us.
145 	 */
146 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
147 
148 	return 0;
149 }
150 __setup("printk.devkmsg=", control_devkmsg);
151 
152 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
153 
154 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
155 			      void __user *buffer, size_t *lenp, loff_t *ppos)
156 {
157 	char old_str[DEVKMSG_STR_MAX_SIZE];
158 	unsigned int old;
159 	int err;
160 
161 	if (write) {
162 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
163 			return -EINVAL;
164 
165 		old = devkmsg_log;
166 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
167 	}
168 
169 	err = proc_dostring(table, write, buffer, lenp, ppos);
170 	if (err)
171 		return err;
172 
173 	if (write) {
174 		err = __control_devkmsg(devkmsg_log_str);
175 
176 		/*
177 		 * Do not accept an unknown string OR a known string with
178 		 * trailing crap...
179 		 */
180 		if (err < 0 || (err + 1 != *lenp)) {
181 
182 			/* ... and restore old setting. */
183 			devkmsg_log = old;
184 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
185 
186 			return -EINVAL;
187 		}
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * Number of registered extended console drivers.
195  *
196  * If extended consoles are present, in-kernel cont reassembly is disabled
197  * and each fragment is stored as a separate log entry with proper
198  * continuation flag so that every emitted message has full metadata.  This
199  * doesn't change the result for regular consoles or /proc/kmsg.  For
200  * /dev/kmsg, as long as the reader concatenates messages according to
201  * consecutive continuation flags, the end result should be the same too.
202  */
203 static int nr_ext_console_drivers;
204 
205 /*
206  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
207  * macros instead of functions so that _RET_IP_ contains useful information.
208  */
209 #define down_console_sem() do { \
210 	down(&console_sem);\
211 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
212 } while (0)
213 
214 static int __down_trylock_console_sem(unsigned long ip)
215 {
216 	if (down_trylock(&console_sem))
217 		return 1;
218 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
219 	return 0;
220 }
221 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
222 
223 #define up_console_sem() do { \
224 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
225 	up(&console_sem);\
226 } while (0)
227 
228 /*
229  * This is used for debugging the mess that is the VT code by
230  * keeping track if we have the console semaphore held. It's
231  * definitely not the perfect debug tool (we don't know if _WE_
232  * hold it and are racing, but it helps tracking those weird code
233  * paths in the console code where we end up in places I want
234  * locked without the console sempahore held).
235  */
236 static int console_locked, console_suspended;
237 
238 /*
239  * If exclusive_console is non-NULL then only this console is to be printed to.
240  */
241 static struct console *exclusive_console;
242 
243 /*
244  *	Array of consoles built from command line options (console=)
245  */
246 
247 #define MAX_CMDLINECONSOLES 8
248 
249 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
250 
251 static int selected_console = -1;
252 static int preferred_console = -1;
253 int console_set_on_cmdline;
254 EXPORT_SYMBOL(console_set_on_cmdline);
255 
256 /* Flag: console code may call schedule() */
257 static int console_may_schedule;
258 
259 /*
260  * The printk log buffer consists of a chain of concatenated variable
261  * length records. Every record starts with a record header, containing
262  * the overall length of the record.
263  *
264  * The heads to the first and last entry in the buffer, as well as the
265  * sequence numbers of these entries are maintained when messages are
266  * stored.
267  *
268  * If the heads indicate available messages, the length in the header
269  * tells the start next message. A length == 0 for the next message
270  * indicates a wrap-around to the beginning of the buffer.
271  *
272  * Every record carries the monotonic timestamp in microseconds, as well as
273  * the standard userspace syslog level and syslog facility. The usual
274  * kernel messages use LOG_KERN; userspace-injected messages always carry
275  * a matching syslog facility, by default LOG_USER. The origin of every
276  * message can be reliably determined that way.
277  *
278  * The human readable log message directly follows the message header. The
279  * length of the message text is stored in the header, the stored message
280  * is not terminated.
281  *
282  * Optionally, a message can carry a dictionary of properties (key/value pairs),
283  * to provide userspace with a machine-readable message context.
284  *
285  * Examples for well-defined, commonly used property names are:
286  *   DEVICE=b12:8               device identifier
287  *                                b12:8         block dev_t
288  *                                c127:3        char dev_t
289  *                                n8            netdev ifindex
290  *                                +sound:card0  subsystem:devname
291  *   SUBSYSTEM=pci              driver-core subsystem name
292  *
293  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
294  * follows directly after a '=' character. Every property is terminated by
295  * a '\0' character. The last property is not terminated.
296  *
297  * Example of a message structure:
298  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
299  *   0008  34 00                        record is 52 bytes long
300  *   000a        0b 00                  text is 11 bytes long
301  *   000c              1f 00            dictionary is 23 bytes long
302  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
303  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
304  *         69 6e 65                     "ine"
305  *   001b           44 45 56 49 43      "DEVIC"
306  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
307  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
308  *         67                           "g"
309  *   0032     00 00 00                  padding to next message header
310  *
311  * The 'struct printk_log' buffer header must never be directly exported to
312  * userspace, it is a kernel-private implementation detail that might
313  * need to be changed in the future, when the requirements change.
314  *
315  * /dev/kmsg exports the structured data in the following line format:
316  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
317  *
318  * Users of the export format should ignore possible additional values
319  * separated by ',', and find the message after the ';' character.
320  *
321  * The optional key/value pairs are attached as continuation lines starting
322  * with a space character and terminated by a newline. All possible
323  * non-prinatable characters are escaped in the "\xff" notation.
324  */
325 
326 enum log_flags {
327 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
328 	LOG_NEWLINE	= 2,	/* text ended with a newline */
329 	LOG_PREFIX	= 4,	/* text started with a prefix */
330 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
331 };
332 
333 struct printk_log {
334 	u64 ts_nsec;		/* timestamp in nanoseconds */
335 	u16 len;		/* length of entire record */
336 	u16 text_len;		/* length of text buffer */
337 	u16 dict_len;		/* length of dictionary buffer */
338 	u8 facility;		/* syslog facility */
339 	u8 flags:5;		/* internal record flags */
340 	u8 level:3;		/* syslog level */
341 }
342 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
343 __packed __aligned(4)
344 #endif
345 ;
346 
347 /*
348  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
349  * within the scheduler's rq lock. It must be released before calling
350  * console_unlock() or anything else that might wake up a process.
351  */
352 DEFINE_RAW_SPINLOCK(logbuf_lock);
353 
354 #ifdef CONFIG_PRINTK
355 DECLARE_WAIT_QUEUE_HEAD(log_wait);
356 /* the next printk record to read by syslog(READ) or /proc/kmsg */
357 static u64 syslog_seq;
358 static u32 syslog_idx;
359 static size_t syslog_partial;
360 
361 /* index and sequence number of the first record stored in the buffer */
362 static u64 log_first_seq;
363 static u32 log_first_idx;
364 
365 /* index and sequence number of the next record to store in the buffer */
366 static u64 log_next_seq;
367 static u32 log_next_idx;
368 
369 /* the next printk record to write to the console */
370 static u64 console_seq;
371 static u32 console_idx;
372 
373 /* the next printk record to read after the last 'clear' command */
374 static u64 clear_seq;
375 static u32 clear_idx;
376 
377 #define PREFIX_MAX		32
378 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
379 
380 #define LOG_LEVEL(v)		((v) & 0x07)
381 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
382 
383 /* record buffer */
384 #define LOG_ALIGN __alignof__(struct printk_log)
385 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
386 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
387 static char *log_buf = __log_buf;
388 static u32 log_buf_len = __LOG_BUF_LEN;
389 
390 /* Return log buffer address */
391 char *log_buf_addr_get(void)
392 {
393 	return log_buf;
394 }
395 
396 /* Return log buffer size */
397 u32 log_buf_len_get(void)
398 {
399 	return log_buf_len;
400 }
401 
402 /* human readable text of the record */
403 static char *log_text(const struct printk_log *msg)
404 {
405 	return (char *)msg + sizeof(struct printk_log);
406 }
407 
408 /* optional key/value pair dictionary attached to the record */
409 static char *log_dict(const struct printk_log *msg)
410 {
411 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
412 }
413 
414 /* get record by index; idx must point to valid msg */
415 static struct printk_log *log_from_idx(u32 idx)
416 {
417 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
418 
419 	/*
420 	 * A length == 0 record is the end of buffer marker. Wrap around and
421 	 * read the message at the start of the buffer.
422 	 */
423 	if (!msg->len)
424 		return (struct printk_log *)log_buf;
425 	return msg;
426 }
427 
428 /* get next record; idx must point to valid msg */
429 static u32 log_next(u32 idx)
430 {
431 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
432 
433 	/* length == 0 indicates the end of the buffer; wrap */
434 	/*
435 	 * A length == 0 record is the end of buffer marker. Wrap around and
436 	 * read the message at the start of the buffer as *this* one, and
437 	 * return the one after that.
438 	 */
439 	if (!msg->len) {
440 		msg = (struct printk_log *)log_buf;
441 		return msg->len;
442 	}
443 	return idx + msg->len;
444 }
445 
446 /*
447  * Check whether there is enough free space for the given message.
448  *
449  * The same values of first_idx and next_idx mean that the buffer
450  * is either empty or full.
451  *
452  * If the buffer is empty, we must respect the position of the indexes.
453  * They cannot be reset to the beginning of the buffer.
454  */
455 static int logbuf_has_space(u32 msg_size, bool empty)
456 {
457 	u32 free;
458 
459 	if (log_next_idx > log_first_idx || empty)
460 		free = max(log_buf_len - log_next_idx, log_first_idx);
461 	else
462 		free = log_first_idx - log_next_idx;
463 
464 	/*
465 	 * We need space also for an empty header that signalizes wrapping
466 	 * of the buffer.
467 	 */
468 	return free >= msg_size + sizeof(struct printk_log);
469 }
470 
471 static int log_make_free_space(u32 msg_size)
472 {
473 	while (log_first_seq < log_next_seq &&
474 	       !logbuf_has_space(msg_size, false)) {
475 		/* drop old messages until we have enough contiguous space */
476 		log_first_idx = log_next(log_first_idx);
477 		log_first_seq++;
478 	}
479 
480 	if (clear_seq < log_first_seq) {
481 		clear_seq = log_first_seq;
482 		clear_idx = log_first_idx;
483 	}
484 
485 	/* sequence numbers are equal, so the log buffer is empty */
486 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
487 		return 0;
488 
489 	return -ENOMEM;
490 }
491 
492 /* compute the message size including the padding bytes */
493 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
494 {
495 	u32 size;
496 
497 	size = sizeof(struct printk_log) + text_len + dict_len;
498 	*pad_len = (-size) & (LOG_ALIGN - 1);
499 	size += *pad_len;
500 
501 	return size;
502 }
503 
504 /*
505  * Define how much of the log buffer we could take at maximum. The value
506  * must be greater than two. Note that only half of the buffer is available
507  * when the index points to the middle.
508  */
509 #define MAX_LOG_TAKE_PART 4
510 static const char trunc_msg[] = "<truncated>";
511 
512 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
513 			u16 *dict_len, u32 *pad_len)
514 {
515 	/*
516 	 * The message should not take the whole buffer. Otherwise, it might
517 	 * get removed too soon.
518 	 */
519 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
520 	if (*text_len > max_text_len)
521 		*text_len = max_text_len;
522 	/* enable the warning message */
523 	*trunc_msg_len = strlen(trunc_msg);
524 	/* disable the "dict" completely */
525 	*dict_len = 0;
526 	/* compute the size again, count also the warning message */
527 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
528 }
529 
530 /* insert record into the buffer, discard old ones, update heads */
531 static int log_store(int facility, int level,
532 		     enum log_flags flags, u64 ts_nsec,
533 		     const char *dict, u16 dict_len,
534 		     const char *text, u16 text_len)
535 {
536 	struct printk_log *msg;
537 	u32 size, pad_len;
538 	u16 trunc_msg_len = 0;
539 
540 	/* number of '\0' padding bytes to next message */
541 	size = msg_used_size(text_len, dict_len, &pad_len);
542 
543 	if (log_make_free_space(size)) {
544 		/* truncate the message if it is too long for empty buffer */
545 		size = truncate_msg(&text_len, &trunc_msg_len,
546 				    &dict_len, &pad_len);
547 		/* survive when the log buffer is too small for trunc_msg */
548 		if (log_make_free_space(size))
549 			return 0;
550 	}
551 
552 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
553 		/*
554 		 * This message + an additional empty header does not fit
555 		 * at the end of the buffer. Add an empty header with len == 0
556 		 * to signify a wrap around.
557 		 */
558 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
559 		log_next_idx = 0;
560 	}
561 
562 	/* fill message */
563 	msg = (struct printk_log *)(log_buf + log_next_idx);
564 	memcpy(log_text(msg), text, text_len);
565 	msg->text_len = text_len;
566 	if (trunc_msg_len) {
567 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
568 		msg->text_len += trunc_msg_len;
569 	}
570 	memcpy(log_dict(msg), dict, dict_len);
571 	msg->dict_len = dict_len;
572 	msg->facility = facility;
573 	msg->level = level & 7;
574 	msg->flags = flags & 0x1f;
575 	if (ts_nsec > 0)
576 		msg->ts_nsec = ts_nsec;
577 	else
578 		msg->ts_nsec = local_clock();
579 	memset(log_dict(msg) + dict_len, 0, pad_len);
580 	msg->len = size;
581 
582 	/* insert message */
583 	log_next_idx += msg->len;
584 	log_next_seq++;
585 
586 	return msg->text_len;
587 }
588 
589 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
590 
591 static int syslog_action_restricted(int type)
592 {
593 	if (dmesg_restrict)
594 		return 1;
595 	/*
596 	 * Unless restricted, we allow "read all" and "get buffer size"
597 	 * for everybody.
598 	 */
599 	return type != SYSLOG_ACTION_READ_ALL &&
600 	       type != SYSLOG_ACTION_SIZE_BUFFER;
601 }
602 
603 int check_syslog_permissions(int type, int source)
604 {
605 	/*
606 	 * If this is from /proc/kmsg and we've already opened it, then we've
607 	 * already done the capabilities checks at open time.
608 	 */
609 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
610 		goto ok;
611 
612 	if (syslog_action_restricted(type)) {
613 		if (capable(CAP_SYSLOG))
614 			goto ok;
615 		/*
616 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
617 		 * a warning.
618 		 */
619 		if (capable(CAP_SYS_ADMIN)) {
620 			pr_warn_once("%s (%d): Attempt to access syslog with "
621 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
622 				     "(deprecated).\n",
623 				 current->comm, task_pid_nr(current));
624 			goto ok;
625 		}
626 		return -EPERM;
627 	}
628 ok:
629 	return security_syslog(type);
630 }
631 EXPORT_SYMBOL_GPL(check_syslog_permissions);
632 
633 static void append_char(char **pp, char *e, char c)
634 {
635 	if (*pp < e)
636 		*(*pp)++ = c;
637 }
638 
639 static ssize_t msg_print_ext_header(char *buf, size_t size,
640 				    struct printk_log *msg, u64 seq)
641 {
642 	u64 ts_usec = msg->ts_nsec;
643 
644 	do_div(ts_usec, 1000);
645 
646 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
647 		       (msg->facility << 3) | msg->level, seq, ts_usec,
648 		       msg->flags & LOG_CONT ? 'c' : '-');
649 }
650 
651 static ssize_t msg_print_ext_body(char *buf, size_t size,
652 				  char *dict, size_t dict_len,
653 				  char *text, size_t text_len)
654 {
655 	char *p = buf, *e = buf + size;
656 	size_t i;
657 
658 	/* escape non-printable characters */
659 	for (i = 0; i < text_len; i++) {
660 		unsigned char c = text[i];
661 
662 		if (c < ' ' || c >= 127 || c == '\\')
663 			p += scnprintf(p, e - p, "\\x%02x", c);
664 		else
665 			append_char(&p, e, c);
666 	}
667 	append_char(&p, e, '\n');
668 
669 	if (dict_len) {
670 		bool line = true;
671 
672 		for (i = 0; i < dict_len; i++) {
673 			unsigned char c = dict[i];
674 
675 			if (line) {
676 				append_char(&p, e, ' ');
677 				line = false;
678 			}
679 
680 			if (c == '\0') {
681 				append_char(&p, e, '\n');
682 				line = true;
683 				continue;
684 			}
685 
686 			if (c < ' ' || c >= 127 || c == '\\') {
687 				p += scnprintf(p, e - p, "\\x%02x", c);
688 				continue;
689 			}
690 
691 			append_char(&p, e, c);
692 		}
693 		append_char(&p, e, '\n');
694 	}
695 
696 	return p - buf;
697 }
698 
699 /* /dev/kmsg - userspace message inject/listen interface */
700 struct devkmsg_user {
701 	u64 seq;
702 	u32 idx;
703 	struct ratelimit_state rs;
704 	struct mutex lock;
705 	char buf[CONSOLE_EXT_LOG_MAX];
706 };
707 
708 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
709 {
710 	char *buf, *line;
711 	int level = default_message_loglevel;
712 	int facility = 1;	/* LOG_USER */
713 	struct file *file = iocb->ki_filp;
714 	struct devkmsg_user *user = file->private_data;
715 	size_t len = iov_iter_count(from);
716 	ssize_t ret = len;
717 
718 	if (!user || len > LOG_LINE_MAX)
719 		return -EINVAL;
720 
721 	/* Ignore when user logging is disabled. */
722 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
723 		return len;
724 
725 	/* Ratelimit when not explicitly enabled. */
726 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
727 		if (!___ratelimit(&user->rs, current->comm))
728 			return ret;
729 	}
730 
731 	buf = kmalloc(len+1, GFP_KERNEL);
732 	if (buf == NULL)
733 		return -ENOMEM;
734 
735 	buf[len] = '\0';
736 	if (!copy_from_iter_full(buf, len, from)) {
737 		kfree(buf);
738 		return -EFAULT;
739 	}
740 
741 	/*
742 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
743 	 * the decimal value represents 32bit, the lower 3 bit are the log
744 	 * level, the rest are the log facility.
745 	 *
746 	 * If no prefix or no userspace facility is specified, we
747 	 * enforce LOG_USER, to be able to reliably distinguish
748 	 * kernel-generated messages from userspace-injected ones.
749 	 */
750 	line = buf;
751 	if (line[0] == '<') {
752 		char *endp = NULL;
753 		unsigned int u;
754 
755 		u = simple_strtoul(line + 1, &endp, 10);
756 		if (endp && endp[0] == '>') {
757 			level = LOG_LEVEL(u);
758 			if (LOG_FACILITY(u) != 0)
759 				facility = LOG_FACILITY(u);
760 			endp++;
761 			len -= endp - line;
762 			line = endp;
763 		}
764 	}
765 
766 	printk_emit(facility, level, NULL, 0, "%s", line);
767 	kfree(buf);
768 	return ret;
769 }
770 
771 static ssize_t devkmsg_read(struct file *file, char __user *buf,
772 			    size_t count, loff_t *ppos)
773 {
774 	struct devkmsg_user *user = file->private_data;
775 	struct printk_log *msg;
776 	size_t len;
777 	ssize_t ret;
778 
779 	if (!user)
780 		return -EBADF;
781 
782 	ret = mutex_lock_interruptible(&user->lock);
783 	if (ret)
784 		return ret;
785 	raw_spin_lock_irq(&logbuf_lock);
786 	while (user->seq == log_next_seq) {
787 		if (file->f_flags & O_NONBLOCK) {
788 			ret = -EAGAIN;
789 			raw_spin_unlock_irq(&logbuf_lock);
790 			goto out;
791 		}
792 
793 		raw_spin_unlock_irq(&logbuf_lock);
794 		ret = wait_event_interruptible(log_wait,
795 					       user->seq != log_next_seq);
796 		if (ret)
797 			goto out;
798 		raw_spin_lock_irq(&logbuf_lock);
799 	}
800 
801 	if (user->seq < log_first_seq) {
802 		/* our last seen message is gone, return error and reset */
803 		user->idx = log_first_idx;
804 		user->seq = log_first_seq;
805 		ret = -EPIPE;
806 		raw_spin_unlock_irq(&logbuf_lock);
807 		goto out;
808 	}
809 
810 	msg = log_from_idx(user->idx);
811 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
812 				   msg, user->seq);
813 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
814 				  log_dict(msg), msg->dict_len,
815 				  log_text(msg), msg->text_len);
816 
817 	user->idx = log_next(user->idx);
818 	user->seq++;
819 	raw_spin_unlock_irq(&logbuf_lock);
820 
821 	if (len > count) {
822 		ret = -EINVAL;
823 		goto out;
824 	}
825 
826 	if (copy_to_user(buf, user->buf, len)) {
827 		ret = -EFAULT;
828 		goto out;
829 	}
830 	ret = len;
831 out:
832 	mutex_unlock(&user->lock);
833 	return ret;
834 }
835 
836 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
837 {
838 	struct devkmsg_user *user = file->private_data;
839 	loff_t ret = 0;
840 
841 	if (!user)
842 		return -EBADF;
843 	if (offset)
844 		return -ESPIPE;
845 
846 	raw_spin_lock_irq(&logbuf_lock);
847 	switch (whence) {
848 	case SEEK_SET:
849 		/* the first record */
850 		user->idx = log_first_idx;
851 		user->seq = log_first_seq;
852 		break;
853 	case SEEK_DATA:
854 		/*
855 		 * The first record after the last SYSLOG_ACTION_CLEAR,
856 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
857 		 * changes no global state, and does not clear anything.
858 		 */
859 		user->idx = clear_idx;
860 		user->seq = clear_seq;
861 		break;
862 	case SEEK_END:
863 		/* after the last record */
864 		user->idx = log_next_idx;
865 		user->seq = log_next_seq;
866 		break;
867 	default:
868 		ret = -EINVAL;
869 	}
870 	raw_spin_unlock_irq(&logbuf_lock);
871 	return ret;
872 }
873 
874 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
875 {
876 	struct devkmsg_user *user = file->private_data;
877 	int ret = 0;
878 
879 	if (!user)
880 		return POLLERR|POLLNVAL;
881 
882 	poll_wait(file, &log_wait, wait);
883 
884 	raw_spin_lock_irq(&logbuf_lock);
885 	if (user->seq < log_next_seq) {
886 		/* return error when data has vanished underneath us */
887 		if (user->seq < log_first_seq)
888 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
889 		else
890 			ret = POLLIN|POLLRDNORM;
891 	}
892 	raw_spin_unlock_irq(&logbuf_lock);
893 
894 	return ret;
895 }
896 
897 static int devkmsg_open(struct inode *inode, struct file *file)
898 {
899 	struct devkmsg_user *user;
900 	int err;
901 
902 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
903 		return -EPERM;
904 
905 	/* write-only does not need any file context */
906 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
907 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
908 					       SYSLOG_FROM_READER);
909 		if (err)
910 			return err;
911 	}
912 
913 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
914 	if (!user)
915 		return -ENOMEM;
916 
917 	ratelimit_default_init(&user->rs);
918 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
919 
920 	mutex_init(&user->lock);
921 
922 	raw_spin_lock_irq(&logbuf_lock);
923 	user->idx = log_first_idx;
924 	user->seq = log_first_seq;
925 	raw_spin_unlock_irq(&logbuf_lock);
926 
927 	file->private_data = user;
928 	return 0;
929 }
930 
931 static int devkmsg_release(struct inode *inode, struct file *file)
932 {
933 	struct devkmsg_user *user = file->private_data;
934 
935 	if (!user)
936 		return 0;
937 
938 	ratelimit_state_exit(&user->rs);
939 
940 	mutex_destroy(&user->lock);
941 	kfree(user);
942 	return 0;
943 }
944 
945 const struct file_operations kmsg_fops = {
946 	.open = devkmsg_open,
947 	.read = devkmsg_read,
948 	.write_iter = devkmsg_write,
949 	.llseek = devkmsg_llseek,
950 	.poll = devkmsg_poll,
951 	.release = devkmsg_release,
952 };
953 
954 #ifdef CONFIG_KEXEC_CORE
955 /*
956  * This appends the listed symbols to /proc/vmcore
957  *
958  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
959  * obtain access to symbols that are otherwise very difficult to locate.  These
960  * symbols are specifically used so that utilities can access and extract the
961  * dmesg log from a vmcore file after a crash.
962  */
963 void log_buf_kexec_setup(void)
964 {
965 	VMCOREINFO_SYMBOL(log_buf);
966 	VMCOREINFO_SYMBOL(log_buf_len);
967 	VMCOREINFO_SYMBOL(log_first_idx);
968 	VMCOREINFO_SYMBOL(clear_idx);
969 	VMCOREINFO_SYMBOL(log_next_idx);
970 	/*
971 	 * Export struct printk_log size and field offsets. User space tools can
972 	 * parse it and detect any changes to structure down the line.
973 	 */
974 	VMCOREINFO_STRUCT_SIZE(printk_log);
975 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
976 	VMCOREINFO_OFFSET(printk_log, len);
977 	VMCOREINFO_OFFSET(printk_log, text_len);
978 	VMCOREINFO_OFFSET(printk_log, dict_len);
979 }
980 #endif
981 
982 /* requested log_buf_len from kernel cmdline */
983 static unsigned long __initdata new_log_buf_len;
984 
985 /* we practice scaling the ring buffer by powers of 2 */
986 static void __init log_buf_len_update(unsigned size)
987 {
988 	if (size)
989 		size = roundup_pow_of_two(size);
990 	if (size > log_buf_len)
991 		new_log_buf_len = size;
992 }
993 
994 /* save requested log_buf_len since it's too early to process it */
995 static int __init log_buf_len_setup(char *str)
996 {
997 	unsigned size = memparse(str, &str);
998 
999 	log_buf_len_update(size);
1000 
1001 	return 0;
1002 }
1003 early_param("log_buf_len", log_buf_len_setup);
1004 
1005 #ifdef CONFIG_SMP
1006 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1007 
1008 static void __init log_buf_add_cpu(void)
1009 {
1010 	unsigned int cpu_extra;
1011 
1012 	/*
1013 	 * archs should set up cpu_possible_bits properly with
1014 	 * set_cpu_possible() after setup_arch() but just in
1015 	 * case lets ensure this is valid.
1016 	 */
1017 	if (num_possible_cpus() == 1)
1018 		return;
1019 
1020 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1021 
1022 	/* by default this will only continue through for large > 64 CPUs */
1023 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1024 		return;
1025 
1026 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1027 		__LOG_CPU_MAX_BUF_LEN);
1028 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1029 		cpu_extra);
1030 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1031 
1032 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1033 }
1034 #else /* !CONFIG_SMP */
1035 static inline void log_buf_add_cpu(void) {}
1036 #endif /* CONFIG_SMP */
1037 
1038 void __init setup_log_buf(int early)
1039 {
1040 	unsigned long flags;
1041 	char *new_log_buf;
1042 	int free;
1043 
1044 	if (log_buf != __log_buf)
1045 		return;
1046 
1047 	if (!early && !new_log_buf_len)
1048 		log_buf_add_cpu();
1049 
1050 	if (!new_log_buf_len)
1051 		return;
1052 
1053 	if (early) {
1054 		new_log_buf =
1055 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1056 	} else {
1057 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1058 							  LOG_ALIGN);
1059 	}
1060 
1061 	if (unlikely(!new_log_buf)) {
1062 		pr_err("log_buf_len: %ld bytes not available\n",
1063 			new_log_buf_len);
1064 		return;
1065 	}
1066 
1067 	raw_spin_lock_irqsave(&logbuf_lock, flags);
1068 	log_buf_len = new_log_buf_len;
1069 	log_buf = new_log_buf;
1070 	new_log_buf_len = 0;
1071 	free = __LOG_BUF_LEN - log_next_idx;
1072 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1073 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1074 
1075 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1076 	pr_info("early log buf free: %d(%d%%)\n",
1077 		free, (free * 100) / __LOG_BUF_LEN);
1078 }
1079 
1080 static bool __read_mostly ignore_loglevel;
1081 
1082 static int __init ignore_loglevel_setup(char *str)
1083 {
1084 	ignore_loglevel = true;
1085 	pr_info("debug: ignoring loglevel setting.\n");
1086 
1087 	return 0;
1088 }
1089 
1090 early_param("ignore_loglevel", ignore_loglevel_setup);
1091 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1092 MODULE_PARM_DESC(ignore_loglevel,
1093 		 "ignore loglevel setting (prints all kernel messages to the console)");
1094 
1095 static bool suppress_message_printing(int level)
1096 {
1097 	return (level >= console_loglevel && !ignore_loglevel);
1098 }
1099 
1100 #ifdef CONFIG_BOOT_PRINTK_DELAY
1101 
1102 static int boot_delay; /* msecs delay after each printk during bootup */
1103 static unsigned long long loops_per_msec;	/* based on boot_delay */
1104 
1105 static int __init boot_delay_setup(char *str)
1106 {
1107 	unsigned long lpj;
1108 
1109 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1110 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1111 
1112 	get_option(&str, &boot_delay);
1113 	if (boot_delay > 10 * 1000)
1114 		boot_delay = 0;
1115 
1116 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1117 		"HZ: %d, loops_per_msec: %llu\n",
1118 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1119 	return 0;
1120 }
1121 early_param("boot_delay", boot_delay_setup);
1122 
1123 static void boot_delay_msec(int level)
1124 {
1125 	unsigned long long k;
1126 	unsigned long timeout;
1127 
1128 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1129 		|| suppress_message_printing(level)) {
1130 		return;
1131 	}
1132 
1133 	k = (unsigned long long)loops_per_msec * boot_delay;
1134 
1135 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1136 	while (k) {
1137 		k--;
1138 		cpu_relax();
1139 		/*
1140 		 * use (volatile) jiffies to prevent
1141 		 * compiler reduction; loop termination via jiffies
1142 		 * is secondary and may or may not happen.
1143 		 */
1144 		if (time_after(jiffies, timeout))
1145 			break;
1146 		touch_nmi_watchdog();
1147 	}
1148 }
1149 #else
1150 static inline void boot_delay_msec(int level)
1151 {
1152 }
1153 #endif
1154 
1155 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1156 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1157 
1158 static size_t print_time(u64 ts, char *buf)
1159 {
1160 	unsigned long rem_nsec;
1161 
1162 	if (!printk_time)
1163 		return 0;
1164 
1165 	rem_nsec = do_div(ts, 1000000000);
1166 
1167 	if (!buf)
1168 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1169 
1170 	return sprintf(buf, "[%5lu.%06lu] ",
1171 		       (unsigned long)ts, rem_nsec / 1000);
1172 }
1173 
1174 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1175 {
1176 	size_t len = 0;
1177 	unsigned int prefix = (msg->facility << 3) | msg->level;
1178 
1179 	if (syslog) {
1180 		if (buf) {
1181 			len += sprintf(buf, "<%u>", prefix);
1182 		} else {
1183 			len += 3;
1184 			if (prefix > 999)
1185 				len += 3;
1186 			else if (prefix > 99)
1187 				len += 2;
1188 			else if (prefix > 9)
1189 				len++;
1190 		}
1191 	}
1192 
1193 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1194 	return len;
1195 }
1196 
1197 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1198 {
1199 	const char *text = log_text(msg);
1200 	size_t text_size = msg->text_len;
1201 	size_t len = 0;
1202 
1203 	do {
1204 		const char *next = memchr(text, '\n', text_size);
1205 		size_t text_len;
1206 
1207 		if (next) {
1208 			text_len = next - text;
1209 			next++;
1210 			text_size -= next - text;
1211 		} else {
1212 			text_len = text_size;
1213 		}
1214 
1215 		if (buf) {
1216 			if (print_prefix(msg, syslog, NULL) +
1217 			    text_len + 1 >= size - len)
1218 				break;
1219 
1220 			len += print_prefix(msg, syslog, buf + len);
1221 			memcpy(buf + len, text, text_len);
1222 			len += text_len;
1223 			buf[len++] = '\n';
1224 		} else {
1225 			/* SYSLOG_ACTION_* buffer size only calculation */
1226 			len += print_prefix(msg, syslog, NULL);
1227 			len += text_len;
1228 			len++;
1229 		}
1230 
1231 		text = next;
1232 	} while (text);
1233 
1234 	return len;
1235 }
1236 
1237 static int syslog_print(char __user *buf, int size)
1238 {
1239 	char *text;
1240 	struct printk_log *msg;
1241 	int len = 0;
1242 
1243 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1244 	if (!text)
1245 		return -ENOMEM;
1246 
1247 	while (size > 0) {
1248 		size_t n;
1249 		size_t skip;
1250 
1251 		raw_spin_lock_irq(&logbuf_lock);
1252 		if (syslog_seq < log_first_seq) {
1253 			/* messages are gone, move to first one */
1254 			syslog_seq = log_first_seq;
1255 			syslog_idx = log_first_idx;
1256 			syslog_partial = 0;
1257 		}
1258 		if (syslog_seq == log_next_seq) {
1259 			raw_spin_unlock_irq(&logbuf_lock);
1260 			break;
1261 		}
1262 
1263 		skip = syslog_partial;
1264 		msg = log_from_idx(syslog_idx);
1265 		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1266 		if (n - syslog_partial <= size) {
1267 			/* message fits into buffer, move forward */
1268 			syslog_idx = log_next(syslog_idx);
1269 			syslog_seq++;
1270 			n -= syslog_partial;
1271 			syslog_partial = 0;
1272 		} else if (!len){
1273 			/* partial read(), remember position */
1274 			n = size;
1275 			syslog_partial += n;
1276 		} else
1277 			n = 0;
1278 		raw_spin_unlock_irq(&logbuf_lock);
1279 
1280 		if (!n)
1281 			break;
1282 
1283 		if (copy_to_user(buf, text + skip, n)) {
1284 			if (!len)
1285 				len = -EFAULT;
1286 			break;
1287 		}
1288 
1289 		len += n;
1290 		size -= n;
1291 		buf += n;
1292 	}
1293 
1294 	kfree(text);
1295 	return len;
1296 }
1297 
1298 static int syslog_print_all(char __user *buf, int size, bool clear)
1299 {
1300 	char *text;
1301 	int len = 0;
1302 
1303 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1304 	if (!text)
1305 		return -ENOMEM;
1306 
1307 	raw_spin_lock_irq(&logbuf_lock);
1308 	if (buf) {
1309 		u64 next_seq;
1310 		u64 seq;
1311 		u32 idx;
1312 
1313 		/*
1314 		 * Find first record that fits, including all following records,
1315 		 * into the user-provided buffer for this dump.
1316 		 */
1317 		seq = clear_seq;
1318 		idx = clear_idx;
1319 		while (seq < log_next_seq) {
1320 			struct printk_log *msg = log_from_idx(idx);
1321 
1322 			len += msg_print_text(msg, true, NULL, 0);
1323 			idx = log_next(idx);
1324 			seq++;
1325 		}
1326 
1327 		/* move first record forward until length fits into the buffer */
1328 		seq = clear_seq;
1329 		idx = clear_idx;
1330 		while (len > size && seq < log_next_seq) {
1331 			struct printk_log *msg = log_from_idx(idx);
1332 
1333 			len -= msg_print_text(msg, true, NULL, 0);
1334 			idx = log_next(idx);
1335 			seq++;
1336 		}
1337 
1338 		/* last message fitting into this dump */
1339 		next_seq = log_next_seq;
1340 
1341 		len = 0;
1342 		while (len >= 0 && seq < next_seq) {
1343 			struct printk_log *msg = log_from_idx(idx);
1344 			int textlen;
1345 
1346 			textlen = msg_print_text(msg, true, text,
1347 						 LOG_LINE_MAX + PREFIX_MAX);
1348 			if (textlen < 0) {
1349 				len = textlen;
1350 				break;
1351 			}
1352 			idx = log_next(idx);
1353 			seq++;
1354 
1355 			raw_spin_unlock_irq(&logbuf_lock);
1356 			if (copy_to_user(buf + len, text, textlen))
1357 				len = -EFAULT;
1358 			else
1359 				len += textlen;
1360 			raw_spin_lock_irq(&logbuf_lock);
1361 
1362 			if (seq < log_first_seq) {
1363 				/* messages are gone, move to next one */
1364 				seq = log_first_seq;
1365 				idx = log_first_idx;
1366 			}
1367 		}
1368 	}
1369 
1370 	if (clear) {
1371 		clear_seq = log_next_seq;
1372 		clear_idx = log_next_idx;
1373 	}
1374 	raw_spin_unlock_irq(&logbuf_lock);
1375 
1376 	kfree(text);
1377 	return len;
1378 }
1379 
1380 int do_syslog(int type, char __user *buf, int len, int source)
1381 {
1382 	bool clear = false;
1383 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1384 	int error;
1385 
1386 	error = check_syslog_permissions(type, source);
1387 	if (error)
1388 		goto out;
1389 
1390 	switch (type) {
1391 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1392 		break;
1393 	case SYSLOG_ACTION_OPEN:	/* Open log */
1394 		break;
1395 	case SYSLOG_ACTION_READ:	/* Read from log */
1396 		error = -EINVAL;
1397 		if (!buf || len < 0)
1398 			goto out;
1399 		error = 0;
1400 		if (!len)
1401 			goto out;
1402 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1403 			error = -EFAULT;
1404 			goto out;
1405 		}
1406 		error = wait_event_interruptible(log_wait,
1407 						 syslog_seq != log_next_seq);
1408 		if (error)
1409 			goto out;
1410 		error = syslog_print(buf, len);
1411 		break;
1412 	/* Read/clear last kernel messages */
1413 	case SYSLOG_ACTION_READ_CLEAR:
1414 		clear = true;
1415 		/* FALL THRU */
1416 	/* Read last kernel messages */
1417 	case SYSLOG_ACTION_READ_ALL:
1418 		error = -EINVAL;
1419 		if (!buf || len < 0)
1420 			goto out;
1421 		error = 0;
1422 		if (!len)
1423 			goto out;
1424 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1425 			error = -EFAULT;
1426 			goto out;
1427 		}
1428 		error = syslog_print_all(buf, len, clear);
1429 		break;
1430 	/* Clear ring buffer */
1431 	case SYSLOG_ACTION_CLEAR:
1432 		syslog_print_all(NULL, 0, true);
1433 		break;
1434 	/* Disable logging to console */
1435 	case SYSLOG_ACTION_CONSOLE_OFF:
1436 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1437 			saved_console_loglevel = console_loglevel;
1438 		console_loglevel = minimum_console_loglevel;
1439 		break;
1440 	/* Enable logging to console */
1441 	case SYSLOG_ACTION_CONSOLE_ON:
1442 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1443 			console_loglevel = saved_console_loglevel;
1444 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1445 		}
1446 		break;
1447 	/* Set level of messages printed to console */
1448 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1449 		error = -EINVAL;
1450 		if (len < 1 || len > 8)
1451 			goto out;
1452 		if (len < minimum_console_loglevel)
1453 			len = minimum_console_loglevel;
1454 		console_loglevel = len;
1455 		/* Implicitly re-enable logging to console */
1456 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1457 		error = 0;
1458 		break;
1459 	/* Number of chars in the log buffer */
1460 	case SYSLOG_ACTION_SIZE_UNREAD:
1461 		raw_spin_lock_irq(&logbuf_lock);
1462 		if (syslog_seq < log_first_seq) {
1463 			/* messages are gone, move to first one */
1464 			syslog_seq = log_first_seq;
1465 			syslog_idx = log_first_idx;
1466 			syslog_partial = 0;
1467 		}
1468 		if (source == SYSLOG_FROM_PROC) {
1469 			/*
1470 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1471 			 * for pending data, not the size; return the count of
1472 			 * records, not the length.
1473 			 */
1474 			error = log_next_seq - syslog_seq;
1475 		} else {
1476 			u64 seq = syslog_seq;
1477 			u32 idx = syslog_idx;
1478 
1479 			error = 0;
1480 			while (seq < log_next_seq) {
1481 				struct printk_log *msg = log_from_idx(idx);
1482 
1483 				error += msg_print_text(msg, true, NULL, 0);
1484 				idx = log_next(idx);
1485 				seq++;
1486 			}
1487 			error -= syslog_partial;
1488 		}
1489 		raw_spin_unlock_irq(&logbuf_lock);
1490 		break;
1491 	/* Size of the log buffer */
1492 	case SYSLOG_ACTION_SIZE_BUFFER:
1493 		error = log_buf_len;
1494 		break;
1495 	default:
1496 		error = -EINVAL;
1497 		break;
1498 	}
1499 out:
1500 	return error;
1501 }
1502 
1503 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1504 {
1505 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1506 }
1507 
1508 /*
1509  * Call the console drivers, asking them to write out
1510  * log_buf[start] to log_buf[end - 1].
1511  * The console_lock must be held.
1512  */
1513 static void call_console_drivers(int level,
1514 				 const char *ext_text, size_t ext_len,
1515 				 const char *text, size_t len)
1516 {
1517 	struct console *con;
1518 
1519 	trace_console(text, len);
1520 
1521 	if (!console_drivers)
1522 		return;
1523 
1524 	for_each_console(con) {
1525 		if (exclusive_console && con != exclusive_console)
1526 			continue;
1527 		if (!(con->flags & CON_ENABLED))
1528 			continue;
1529 		if (!con->write)
1530 			continue;
1531 		if (!cpu_online(smp_processor_id()) &&
1532 		    !(con->flags & CON_ANYTIME))
1533 			continue;
1534 		if (con->flags & CON_EXTENDED)
1535 			con->write(con, ext_text, ext_len);
1536 		else
1537 			con->write(con, text, len);
1538 	}
1539 }
1540 
1541 /*
1542  * Zap console related locks when oopsing.
1543  * To leave time for slow consoles to print a full oops,
1544  * only zap at most once every 30 seconds.
1545  */
1546 static void zap_locks(void)
1547 {
1548 	static unsigned long oops_timestamp;
1549 
1550 	if (time_after_eq(jiffies, oops_timestamp) &&
1551 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1552 		return;
1553 
1554 	oops_timestamp = jiffies;
1555 
1556 	debug_locks_off();
1557 	/* If a crash is occurring, make sure we can't deadlock */
1558 	raw_spin_lock_init(&logbuf_lock);
1559 	/* And make sure that we print immediately */
1560 	sema_init(&console_sem, 1);
1561 }
1562 
1563 int printk_delay_msec __read_mostly;
1564 
1565 static inline void printk_delay(void)
1566 {
1567 	if (unlikely(printk_delay_msec)) {
1568 		int m = printk_delay_msec;
1569 
1570 		while (m--) {
1571 			mdelay(1);
1572 			touch_nmi_watchdog();
1573 		}
1574 	}
1575 }
1576 
1577 /*
1578  * Continuation lines are buffered, and not committed to the record buffer
1579  * until the line is complete, or a race forces it. The line fragments
1580  * though, are printed immediately to the consoles to ensure everything has
1581  * reached the console in case of a kernel crash.
1582  */
1583 static struct cont {
1584 	char buf[LOG_LINE_MAX];
1585 	size_t len;			/* length == 0 means unused buffer */
1586 	struct task_struct *owner;	/* task of first print*/
1587 	u64 ts_nsec;			/* time of first print */
1588 	u8 level;			/* log level of first message */
1589 	u8 facility;			/* log facility of first message */
1590 	enum log_flags flags;		/* prefix, newline flags */
1591 } cont;
1592 
1593 static void cont_flush(void)
1594 {
1595 	if (cont.len == 0)
1596 		return;
1597 
1598 	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1599 		  NULL, 0, cont.buf, cont.len);
1600 	cont.len = 0;
1601 }
1602 
1603 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1604 {
1605 	/*
1606 	 * If ext consoles are present, flush and skip in-kernel
1607 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1608 	 * the line gets too long, split it up in separate records.
1609 	 */
1610 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1611 		cont_flush();
1612 		return false;
1613 	}
1614 
1615 	if (!cont.len) {
1616 		cont.facility = facility;
1617 		cont.level = level;
1618 		cont.owner = current;
1619 		cont.ts_nsec = local_clock();
1620 		cont.flags = flags;
1621 	}
1622 
1623 	memcpy(cont.buf + cont.len, text, len);
1624 	cont.len += len;
1625 
1626 	// The original flags come from the first line,
1627 	// but later continuations can add a newline.
1628 	if (flags & LOG_NEWLINE) {
1629 		cont.flags |= LOG_NEWLINE;
1630 		cont_flush();
1631 	}
1632 
1633 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1634 		cont_flush();
1635 
1636 	return true;
1637 }
1638 
1639 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1640 {
1641 	/*
1642 	 * If an earlier line was buffered, and we're a continuation
1643 	 * write from the same process, try to add it to the buffer.
1644 	 */
1645 	if (cont.len) {
1646 		if (cont.owner == current && (lflags & LOG_CONT)) {
1647 			if (cont_add(facility, level, lflags, text, text_len))
1648 				return text_len;
1649 		}
1650 		/* Otherwise, make sure it's flushed */
1651 		cont_flush();
1652 	}
1653 
1654 	/* Skip empty continuation lines that couldn't be added - they just flush */
1655 	if (!text_len && (lflags & LOG_CONT))
1656 		return 0;
1657 
1658 	/* If it doesn't end in a newline, try to buffer the current line */
1659 	if (!(lflags & LOG_NEWLINE)) {
1660 		if (cont_add(facility, level, lflags, text, text_len))
1661 			return text_len;
1662 	}
1663 
1664 	/* Store it in the record log */
1665 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1666 }
1667 
1668 asmlinkage int vprintk_emit(int facility, int level,
1669 			    const char *dict, size_t dictlen,
1670 			    const char *fmt, va_list args)
1671 {
1672 	static bool recursion_bug;
1673 	static char textbuf[LOG_LINE_MAX];
1674 	char *text = textbuf;
1675 	size_t text_len = 0;
1676 	enum log_flags lflags = 0;
1677 	unsigned long flags;
1678 	int this_cpu;
1679 	int printed_len = 0;
1680 	int nmi_message_lost;
1681 	bool in_sched = false;
1682 	/* cpu currently holding logbuf_lock in this function */
1683 	static unsigned int logbuf_cpu = UINT_MAX;
1684 
1685 	if (level == LOGLEVEL_SCHED) {
1686 		level = LOGLEVEL_DEFAULT;
1687 		in_sched = true;
1688 	}
1689 
1690 	boot_delay_msec(level);
1691 	printk_delay();
1692 
1693 	local_irq_save(flags);
1694 	this_cpu = smp_processor_id();
1695 
1696 	/*
1697 	 * Ouch, printk recursed into itself!
1698 	 */
1699 	if (unlikely(logbuf_cpu == this_cpu)) {
1700 		/*
1701 		 * If a crash is occurring during printk() on this CPU,
1702 		 * then try to get the crash message out but make sure
1703 		 * we can't deadlock. Otherwise just return to avoid the
1704 		 * recursion and return - but flag the recursion so that
1705 		 * it can be printed at the next appropriate moment:
1706 		 */
1707 		if (!oops_in_progress && !lockdep_recursing(current)) {
1708 			recursion_bug = true;
1709 			local_irq_restore(flags);
1710 			return 0;
1711 		}
1712 		zap_locks();
1713 	}
1714 
1715 	lockdep_off();
1716 	/* This stops the holder of console_sem just where we want him */
1717 	raw_spin_lock(&logbuf_lock);
1718 	logbuf_cpu = this_cpu;
1719 
1720 	if (unlikely(recursion_bug)) {
1721 		static const char recursion_msg[] =
1722 			"BUG: recent printk recursion!";
1723 
1724 		recursion_bug = false;
1725 		/* emit KERN_CRIT message */
1726 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1727 					 NULL, 0, recursion_msg,
1728 					 strlen(recursion_msg));
1729 	}
1730 
1731 	nmi_message_lost = get_nmi_message_lost();
1732 	if (unlikely(nmi_message_lost)) {
1733 		text_len = scnprintf(textbuf, sizeof(textbuf),
1734 				     "BAD LUCK: lost %d message(s) from NMI context!",
1735 				     nmi_message_lost);
1736 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1737 					 NULL, 0, textbuf, text_len);
1738 	}
1739 
1740 	/*
1741 	 * The printf needs to come first; we need the syslog
1742 	 * prefix which might be passed-in as a parameter.
1743 	 */
1744 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1745 
1746 	/* mark and strip a trailing newline */
1747 	if (text_len && text[text_len-1] == '\n') {
1748 		text_len--;
1749 		lflags |= LOG_NEWLINE;
1750 	}
1751 
1752 	/* strip kernel syslog prefix and extract log level or control flags */
1753 	if (facility == 0) {
1754 		int kern_level;
1755 
1756 		while ((kern_level = printk_get_level(text)) != 0) {
1757 			switch (kern_level) {
1758 			case '0' ... '7':
1759 				if (level == LOGLEVEL_DEFAULT)
1760 					level = kern_level - '0';
1761 				/* fallthrough */
1762 			case 'd':	/* KERN_DEFAULT */
1763 				lflags |= LOG_PREFIX;
1764 				break;
1765 			case 'c':	/* KERN_CONT */
1766 				lflags |= LOG_CONT;
1767 			}
1768 
1769 			text_len -= 2;
1770 			text += 2;
1771 		}
1772 	}
1773 
1774 	if (level == LOGLEVEL_DEFAULT)
1775 		level = default_message_loglevel;
1776 
1777 	if (dict)
1778 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1779 
1780 	printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1781 
1782 	logbuf_cpu = UINT_MAX;
1783 	raw_spin_unlock(&logbuf_lock);
1784 	lockdep_on();
1785 	local_irq_restore(flags);
1786 
1787 	/* If called from the scheduler, we can not call up(). */
1788 	if (!in_sched) {
1789 		lockdep_off();
1790 		/*
1791 		 * Try to acquire and then immediately release the console
1792 		 * semaphore.  The release will print out buffers and wake up
1793 		 * /dev/kmsg and syslog() users.
1794 		 */
1795 		if (console_trylock())
1796 			console_unlock();
1797 		lockdep_on();
1798 	}
1799 
1800 	return printed_len;
1801 }
1802 EXPORT_SYMBOL(vprintk_emit);
1803 
1804 asmlinkage int vprintk(const char *fmt, va_list args)
1805 {
1806 	return vprintk_func(fmt, args);
1807 }
1808 EXPORT_SYMBOL(vprintk);
1809 
1810 asmlinkage int printk_emit(int facility, int level,
1811 			   const char *dict, size_t dictlen,
1812 			   const char *fmt, ...)
1813 {
1814 	va_list args;
1815 	int r;
1816 
1817 	va_start(args, fmt);
1818 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1819 	va_end(args);
1820 
1821 	return r;
1822 }
1823 EXPORT_SYMBOL(printk_emit);
1824 
1825 int vprintk_default(const char *fmt, va_list args)
1826 {
1827 	int r;
1828 
1829 #ifdef CONFIG_KGDB_KDB
1830 	/* Allow to pass printk() to kdb but avoid a recursion. */
1831 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1832 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1833 		return r;
1834 	}
1835 #endif
1836 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1837 
1838 	return r;
1839 }
1840 EXPORT_SYMBOL_GPL(vprintk_default);
1841 
1842 /**
1843  * printk - print a kernel message
1844  * @fmt: format string
1845  *
1846  * This is printk(). It can be called from any context. We want it to work.
1847  *
1848  * We try to grab the console_lock. If we succeed, it's easy - we log the
1849  * output and call the console drivers.  If we fail to get the semaphore, we
1850  * place the output into the log buffer and return. The current holder of
1851  * the console_sem will notice the new output in console_unlock(); and will
1852  * send it to the consoles before releasing the lock.
1853  *
1854  * One effect of this deferred printing is that code which calls printk() and
1855  * then changes console_loglevel may break. This is because console_loglevel
1856  * is inspected when the actual printing occurs.
1857  *
1858  * See also:
1859  * printf(3)
1860  *
1861  * See the vsnprintf() documentation for format string extensions over C99.
1862  */
1863 asmlinkage __visible int printk(const char *fmt, ...)
1864 {
1865 	va_list args;
1866 	int r;
1867 
1868 	va_start(args, fmt);
1869 	r = vprintk_func(fmt, args);
1870 	va_end(args);
1871 
1872 	return r;
1873 }
1874 EXPORT_SYMBOL(printk);
1875 
1876 #else /* CONFIG_PRINTK */
1877 
1878 #define LOG_LINE_MAX		0
1879 #define PREFIX_MAX		0
1880 
1881 static u64 syslog_seq;
1882 static u32 syslog_idx;
1883 static u64 console_seq;
1884 static u32 console_idx;
1885 static u64 log_first_seq;
1886 static u32 log_first_idx;
1887 static u64 log_next_seq;
1888 static char *log_text(const struct printk_log *msg) { return NULL; }
1889 static char *log_dict(const struct printk_log *msg) { return NULL; }
1890 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1891 static u32 log_next(u32 idx) { return 0; }
1892 static ssize_t msg_print_ext_header(char *buf, size_t size,
1893 				    struct printk_log *msg,
1894 				    u64 seq) { return 0; }
1895 static ssize_t msg_print_ext_body(char *buf, size_t size,
1896 				  char *dict, size_t dict_len,
1897 				  char *text, size_t text_len) { return 0; }
1898 static void call_console_drivers(int level,
1899 				 const char *ext_text, size_t ext_len,
1900 				 const char *text, size_t len) {}
1901 static size_t msg_print_text(const struct printk_log *msg,
1902 			     bool syslog, char *buf, size_t size) { return 0; }
1903 static bool suppress_message_printing(int level) { return false; }
1904 
1905 /* Still needs to be defined for users */
1906 DEFINE_PER_CPU(printk_func_t, printk_func);
1907 
1908 #endif /* CONFIG_PRINTK */
1909 
1910 #ifdef CONFIG_EARLY_PRINTK
1911 struct console *early_console;
1912 
1913 asmlinkage __visible void early_printk(const char *fmt, ...)
1914 {
1915 	va_list ap;
1916 	char buf[512];
1917 	int n;
1918 
1919 	if (!early_console)
1920 		return;
1921 
1922 	va_start(ap, fmt);
1923 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1924 	va_end(ap);
1925 
1926 	early_console->write(early_console, buf, n);
1927 }
1928 #endif
1929 
1930 static int __add_preferred_console(char *name, int idx, char *options,
1931 				   char *brl_options)
1932 {
1933 	struct console_cmdline *c;
1934 	int i;
1935 
1936 	/*
1937 	 *	See if this tty is not yet registered, and
1938 	 *	if we have a slot free.
1939 	 */
1940 	for (i = 0, c = console_cmdline;
1941 	     i < MAX_CMDLINECONSOLES && c->name[0];
1942 	     i++, c++) {
1943 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1944 			if (!brl_options)
1945 				selected_console = i;
1946 			return 0;
1947 		}
1948 	}
1949 	if (i == MAX_CMDLINECONSOLES)
1950 		return -E2BIG;
1951 	if (!brl_options)
1952 		selected_console = i;
1953 	strlcpy(c->name, name, sizeof(c->name));
1954 	c->options = options;
1955 	braille_set_options(c, brl_options);
1956 
1957 	c->index = idx;
1958 	return 0;
1959 }
1960 /*
1961  * Set up a console.  Called via do_early_param() in init/main.c
1962  * for each "console=" parameter in the boot command line.
1963  */
1964 static int __init console_setup(char *str)
1965 {
1966 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1967 	char *s, *options, *brl_options = NULL;
1968 	int idx;
1969 
1970 	if (_braille_console_setup(&str, &brl_options))
1971 		return 1;
1972 
1973 	/*
1974 	 * Decode str into name, index, options.
1975 	 */
1976 	if (str[0] >= '0' && str[0] <= '9') {
1977 		strcpy(buf, "ttyS");
1978 		strncpy(buf + 4, str, sizeof(buf) - 5);
1979 	} else {
1980 		strncpy(buf, str, sizeof(buf) - 1);
1981 	}
1982 	buf[sizeof(buf) - 1] = 0;
1983 	options = strchr(str, ',');
1984 	if (options)
1985 		*(options++) = 0;
1986 #ifdef __sparc__
1987 	if (!strcmp(str, "ttya"))
1988 		strcpy(buf, "ttyS0");
1989 	if (!strcmp(str, "ttyb"))
1990 		strcpy(buf, "ttyS1");
1991 #endif
1992 	for (s = buf; *s; s++)
1993 		if (isdigit(*s) || *s == ',')
1994 			break;
1995 	idx = simple_strtoul(s, NULL, 10);
1996 	*s = 0;
1997 
1998 	__add_preferred_console(buf, idx, options, brl_options);
1999 	console_set_on_cmdline = 1;
2000 	return 1;
2001 }
2002 __setup("console=", console_setup);
2003 
2004 /**
2005  * add_preferred_console - add a device to the list of preferred consoles.
2006  * @name: device name
2007  * @idx: device index
2008  * @options: options for this console
2009  *
2010  * The last preferred console added will be used for kernel messages
2011  * and stdin/out/err for init.  Normally this is used by console_setup
2012  * above to handle user-supplied console arguments; however it can also
2013  * be used by arch-specific code either to override the user or more
2014  * commonly to provide a default console (ie from PROM variables) when
2015  * the user has not supplied one.
2016  */
2017 int add_preferred_console(char *name, int idx, char *options)
2018 {
2019 	return __add_preferred_console(name, idx, options, NULL);
2020 }
2021 
2022 bool console_suspend_enabled = true;
2023 EXPORT_SYMBOL(console_suspend_enabled);
2024 
2025 static int __init console_suspend_disable(char *str)
2026 {
2027 	console_suspend_enabled = false;
2028 	return 1;
2029 }
2030 __setup("no_console_suspend", console_suspend_disable);
2031 module_param_named(console_suspend, console_suspend_enabled,
2032 		bool, S_IRUGO | S_IWUSR);
2033 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2034 	" and hibernate operations");
2035 
2036 /**
2037  * suspend_console - suspend the console subsystem
2038  *
2039  * This disables printk() while we go into suspend states
2040  */
2041 void suspend_console(void)
2042 {
2043 	if (!console_suspend_enabled)
2044 		return;
2045 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2046 	console_lock();
2047 	console_suspended = 1;
2048 	up_console_sem();
2049 }
2050 
2051 void resume_console(void)
2052 {
2053 	if (!console_suspend_enabled)
2054 		return;
2055 	down_console_sem();
2056 	console_suspended = 0;
2057 	console_unlock();
2058 }
2059 
2060 /**
2061  * console_cpu_notify - print deferred console messages after CPU hotplug
2062  * @cpu: unused
2063  *
2064  * If printk() is called from a CPU that is not online yet, the messages
2065  * will be spooled but will not show up on the console.  This function is
2066  * called when a new CPU comes online (or fails to come up), and ensures
2067  * that any such output gets printed.
2068  */
2069 static int console_cpu_notify(unsigned int cpu)
2070 {
2071 	if (!cpuhp_tasks_frozen) {
2072 		console_lock();
2073 		console_unlock();
2074 	}
2075 	return 0;
2076 }
2077 
2078 /**
2079  * console_lock - lock the console system for exclusive use.
2080  *
2081  * Acquires a lock which guarantees that the caller has
2082  * exclusive access to the console system and the console_drivers list.
2083  *
2084  * Can sleep, returns nothing.
2085  */
2086 void console_lock(void)
2087 {
2088 	might_sleep();
2089 
2090 	down_console_sem();
2091 	if (console_suspended)
2092 		return;
2093 	console_locked = 1;
2094 	console_may_schedule = 1;
2095 }
2096 EXPORT_SYMBOL(console_lock);
2097 
2098 /**
2099  * console_trylock - try to lock the console system for exclusive use.
2100  *
2101  * Try to acquire a lock which guarantees that the caller has exclusive
2102  * access to the console system and the console_drivers list.
2103  *
2104  * returns 1 on success, and 0 on failure to acquire the lock.
2105  */
2106 int console_trylock(void)
2107 {
2108 	if (down_trylock_console_sem())
2109 		return 0;
2110 	if (console_suspended) {
2111 		up_console_sem();
2112 		return 0;
2113 	}
2114 	console_locked = 1;
2115 	/*
2116 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2117 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2118 	 * because preempt_disable()/preempt_enable() are just barriers there
2119 	 * and preempt_count() is always 0.
2120 	 *
2121 	 * RCU read sections have a separate preemption counter when
2122 	 * PREEMPT_RCU enabled thus we must take extra care and check
2123 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2124 	 * preempt_count().
2125 	 */
2126 	console_may_schedule = !oops_in_progress &&
2127 			preemptible() &&
2128 			!rcu_preempt_depth();
2129 	return 1;
2130 }
2131 EXPORT_SYMBOL(console_trylock);
2132 
2133 int is_console_locked(void)
2134 {
2135 	return console_locked;
2136 }
2137 
2138 /*
2139  * Check if we have any console that is capable of printing while cpu is
2140  * booting or shutting down. Requires console_sem.
2141  */
2142 static int have_callable_console(void)
2143 {
2144 	struct console *con;
2145 
2146 	for_each_console(con)
2147 		if ((con->flags & CON_ENABLED) &&
2148 				(con->flags & CON_ANYTIME))
2149 			return 1;
2150 
2151 	return 0;
2152 }
2153 
2154 /*
2155  * Can we actually use the console at this time on this cpu?
2156  *
2157  * Console drivers may assume that per-cpu resources have been allocated. So
2158  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2159  * call them until this CPU is officially up.
2160  */
2161 static inline int can_use_console(void)
2162 {
2163 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2164 }
2165 
2166 /**
2167  * console_unlock - unlock the console system
2168  *
2169  * Releases the console_lock which the caller holds on the console system
2170  * and the console driver list.
2171  *
2172  * While the console_lock was held, console output may have been buffered
2173  * by printk().  If this is the case, console_unlock(); emits
2174  * the output prior to releasing the lock.
2175  *
2176  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2177  *
2178  * console_unlock(); may be called from any context.
2179  */
2180 void console_unlock(void)
2181 {
2182 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2183 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2184 	static u64 seen_seq;
2185 	unsigned long flags;
2186 	bool wake_klogd = false;
2187 	bool do_cond_resched, retry;
2188 
2189 	if (console_suspended) {
2190 		up_console_sem();
2191 		return;
2192 	}
2193 
2194 	/*
2195 	 * Console drivers are called under logbuf_lock, so
2196 	 * @console_may_schedule should be cleared before; however, we may
2197 	 * end up dumping a lot of lines, for example, if called from
2198 	 * console registration path, and should invoke cond_resched()
2199 	 * between lines if allowable.  Not doing so can cause a very long
2200 	 * scheduling stall on a slow console leading to RCU stall and
2201 	 * softlockup warnings which exacerbate the issue with more
2202 	 * messages practically incapacitating the system.
2203 	 */
2204 	do_cond_resched = console_may_schedule;
2205 	console_may_schedule = 0;
2206 
2207 again:
2208 	/*
2209 	 * We released the console_sem lock, so we need to recheck if
2210 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2211 	 * console.
2212 	 */
2213 	if (!can_use_console()) {
2214 		console_locked = 0;
2215 		up_console_sem();
2216 		return;
2217 	}
2218 
2219 	for (;;) {
2220 		struct printk_log *msg;
2221 		size_t ext_len = 0;
2222 		size_t len;
2223 		int level;
2224 
2225 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2226 		if (seen_seq != log_next_seq) {
2227 			wake_klogd = true;
2228 			seen_seq = log_next_seq;
2229 		}
2230 
2231 		if (console_seq < log_first_seq) {
2232 			len = sprintf(text, "** %u printk messages dropped ** ",
2233 				      (unsigned)(log_first_seq - console_seq));
2234 
2235 			/* messages are gone, move to first one */
2236 			console_seq = log_first_seq;
2237 			console_idx = log_first_idx;
2238 		} else {
2239 			len = 0;
2240 		}
2241 skip:
2242 		if (console_seq == log_next_seq)
2243 			break;
2244 
2245 		msg = log_from_idx(console_idx);
2246 		level = msg->level;
2247 		if (suppress_message_printing(level)) {
2248 			/*
2249 			 * Skip record we have buffered and already printed
2250 			 * directly to the console when we received it, and
2251 			 * record that has level above the console loglevel.
2252 			 */
2253 			console_idx = log_next(console_idx);
2254 			console_seq++;
2255 			goto skip;
2256 		}
2257 
2258 		len += msg_print_text(msg, false, text + len, sizeof(text) - len);
2259 		if (nr_ext_console_drivers) {
2260 			ext_len = msg_print_ext_header(ext_text,
2261 						sizeof(ext_text),
2262 						msg, console_seq);
2263 			ext_len += msg_print_ext_body(ext_text + ext_len,
2264 						sizeof(ext_text) - ext_len,
2265 						log_dict(msg), msg->dict_len,
2266 						log_text(msg), msg->text_len);
2267 		}
2268 		console_idx = log_next(console_idx);
2269 		console_seq++;
2270 		raw_spin_unlock(&logbuf_lock);
2271 
2272 		stop_critical_timings();	/* don't trace print latency */
2273 		call_console_drivers(level, ext_text, ext_len, text, len);
2274 		start_critical_timings();
2275 		local_irq_restore(flags);
2276 
2277 		if (do_cond_resched)
2278 			cond_resched();
2279 	}
2280 	console_locked = 0;
2281 
2282 	/* Release the exclusive_console once it is used */
2283 	if (unlikely(exclusive_console))
2284 		exclusive_console = NULL;
2285 
2286 	raw_spin_unlock(&logbuf_lock);
2287 
2288 	up_console_sem();
2289 
2290 	/*
2291 	 * Someone could have filled up the buffer again, so re-check if there's
2292 	 * something to flush. In case we cannot trylock the console_sem again,
2293 	 * there's a new owner and the console_unlock() from them will do the
2294 	 * flush, no worries.
2295 	 */
2296 	raw_spin_lock(&logbuf_lock);
2297 	retry = console_seq != log_next_seq;
2298 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2299 
2300 	if (retry && console_trylock())
2301 		goto again;
2302 
2303 	if (wake_klogd)
2304 		wake_up_klogd();
2305 }
2306 EXPORT_SYMBOL(console_unlock);
2307 
2308 /**
2309  * console_conditional_schedule - yield the CPU if required
2310  *
2311  * If the console code is currently allowed to sleep, and
2312  * if this CPU should yield the CPU to another task, do
2313  * so here.
2314  *
2315  * Must be called within console_lock();.
2316  */
2317 void __sched console_conditional_schedule(void)
2318 {
2319 	if (console_may_schedule)
2320 		cond_resched();
2321 }
2322 EXPORT_SYMBOL(console_conditional_schedule);
2323 
2324 void console_unblank(void)
2325 {
2326 	struct console *c;
2327 
2328 	/*
2329 	 * console_unblank can no longer be called in interrupt context unless
2330 	 * oops_in_progress is set to 1..
2331 	 */
2332 	if (oops_in_progress) {
2333 		if (down_trylock_console_sem() != 0)
2334 			return;
2335 	} else
2336 		console_lock();
2337 
2338 	console_locked = 1;
2339 	console_may_schedule = 0;
2340 	for_each_console(c)
2341 		if ((c->flags & CON_ENABLED) && c->unblank)
2342 			c->unblank();
2343 	console_unlock();
2344 }
2345 
2346 /**
2347  * console_flush_on_panic - flush console content on panic
2348  *
2349  * Immediately output all pending messages no matter what.
2350  */
2351 void console_flush_on_panic(void)
2352 {
2353 	/*
2354 	 * If someone else is holding the console lock, trylock will fail
2355 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2356 	 * that messages are flushed out.  As this can be called from any
2357 	 * context and we don't want to get preempted while flushing,
2358 	 * ensure may_schedule is cleared.
2359 	 */
2360 	console_trylock();
2361 	console_may_schedule = 0;
2362 	console_unlock();
2363 }
2364 
2365 /*
2366  * Return the console tty driver structure and its associated index
2367  */
2368 struct tty_driver *console_device(int *index)
2369 {
2370 	struct console *c;
2371 	struct tty_driver *driver = NULL;
2372 
2373 	console_lock();
2374 	for_each_console(c) {
2375 		if (!c->device)
2376 			continue;
2377 		driver = c->device(c, index);
2378 		if (driver)
2379 			break;
2380 	}
2381 	console_unlock();
2382 	return driver;
2383 }
2384 
2385 /*
2386  * Prevent further output on the passed console device so that (for example)
2387  * serial drivers can disable console output before suspending a port, and can
2388  * re-enable output afterwards.
2389  */
2390 void console_stop(struct console *console)
2391 {
2392 	console_lock();
2393 	console->flags &= ~CON_ENABLED;
2394 	console_unlock();
2395 }
2396 EXPORT_SYMBOL(console_stop);
2397 
2398 void console_start(struct console *console)
2399 {
2400 	console_lock();
2401 	console->flags |= CON_ENABLED;
2402 	console_unlock();
2403 }
2404 EXPORT_SYMBOL(console_start);
2405 
2406 static int __read_mostly keep_bootcon;
2407 
2408 static int __init keep_bootcon_setup(char *str)
2409 {
2410 	keep_bootcon = 1;
2411 	pr_info("debug: skip boot console de-registration.\n");
2412 
2413 	return 0;
2414 }
2415 
2416 early_param("keep_bootcon", keep_bootcon_setup);
2417 
2418 /*
2419  * The console driver calls this routine during kernel initialization
2420  * to register the console printing procedure with printk() and to
2421  * print any messages that were printed by the kernel before the
2422  * console driver was initialized.
2423  *
2424  * This can happen pretty early during the boot process (because of
2425  * early_printk) - sometimes before setup_arch() completes - be careful
2426  * of what kernel features are used - they may not be initialised yet.
2427  *
2428  * There are two types of consoles - bootconsoles (early_printk) and
2429  * "real" consoles (everything which is not a bootconsole) which are
2430  * handled differently.
2431  *  - Any number of bootconsoles can be registered at any time.
2432  *  - As soon as a "real" console is registered, all bootconsoles
2433  *    will be unregistered automatically.
2434  *  - Once a "real" console is registered, any attempt to register a
2435  *    bootconsoles will be rejected
2436  */
2437 void register_console(struct console *newcon)
2438 {
2439 	int i;
2440 	unsigned long flags;
2441 	struct console *bcon = NULL;
2442 	struct console_cmdline *c;
2443 
2444 	if (console_drivers)
2445 		for_each_console(bcon)
2446 			if (WARN(bcon == newcon,
2447 					"console '%s%d' already registered\n",
2448 					bcon->name, bcon->index))
2449 				return;
2450 
2451 	/*
2452 	 * before we register a new CON_BOOT console, make sure we don't
2453 	 * already have a valid console
2454 	 */
2455 	if (console_drivers && newcon->flags & CON_BOOT) {
2456 		/* find the last or real console */
2457 		for_each_console(bcon) {
2458 			if (!(bcon->flags & CON_BOOT)) {
2459 				pr_info("Too late to register bootconsole %s%d\n",
2460 					newcon->name, newcon->index);
2461 				return;
2462 			}
2463 		}
2464 	}
2465 
2466 	if (console_drivers && console_drivers->flags & CON_BOOT)
2467 		bcon = console_drivers;
2468 
2469 	if (preferred_console < 0 || bcon || !console_drivers)
2470 		preferred_console = selected_console;
2471 
2472 	/*
2473 	 *	See if we want to use this console driver. If we
2474 	 *	didn't select a console we take the first one
2475 	 *	that registers here.
2476 	 */
2477 	if (preferred_console < 0) {
2478 		if (newcon->index < 0)
2479 			newcon->index = 0;
2480 		if (newcon->setup == NULL ||
2481 		    newcon->setup(newcon, NULL) == 0) {
2482 			newcon->flags |= CON_ENABLED;
2483 			if (newcon->device) {
2484 				newcon->flags |= CON_CONSDEV;
2485 				preferred_console = 0;
2486 			}
2487 		}
2488 	}
2489 
2490 	/*
2491 	 *	See if this console matches one we selected on
2492 	 *	the command line.
2493 	 */
2494 	for (i = 0, c = console_cmdline;
2495 	     i < MAX_CMDLINECONSOLES && c->name[0];
2496 	     i++, c++) {
2497 		if (!newcon->match ||
2498 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2499 			/* default matching */
2500 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2501 			if (strcmp(c->name, newcon->name) != 0)
2502 				continue;
2503 			if (newcon->index >= 0 &&
2504 			    newcon->index != c->index)
2505 				continue;
2506 			if (newcon->index < 0)
2507 				newcon->index = c->index;
2508 
2509 			if (_braille_register_console(newcon, c))
2510 				return;
2511 
2512 			if (newcon->setup &&
2513 			    newcon->setup(newcon, c->options) != 0)
2514 				break;
2515 		}
2516 
2517 		newcon->flags |= CON_ENABLED;
2518 		if (i == selected_console) {
2519 			newcon->flags |= CON_CONSDEV;
2520 			preferred_console = selected_console;
2521 		}
2522 		break;
2523 	}
2524 
2525 	if (!(newcon->flags & CON_ENABLED))
2526 		return;
2527 
2528 	/*
2529 	 * If we have a bootconsole, and are switching to a real console,
2530 	 * don't print everything out again, since when the boot console, and
2531 	 * the real console are the same physical device, it's annoying to
2532 	 * see the beginning boot messages twice
2533 	 */
2534 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2535 		newcon->flags &= ~CON_PRINTBUFFER;
2536 
2537 	/*
2538 	 *	Put this console in the list - keep the
2539 	 *	preferred driver at the head of the list.
2540 	 */
2541 	console_lock();
2542 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2543 		newcon->next = console_drivers;
2544 		console_drivers = newcon;
2545 		if (newcon->next)
2546 			newcon->next->flags &= ~CON_CONSDEV;
2547 	} else {
2548 		newcon->next = console_drivers->next;
2549 		console_drivers->next = newcon;
2550 	}
2551 
2552 	if (newcon->flags & CON_EXTENDED)
2553 		if (!nr_ext_console_drivers++)
2554 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2555 
2556 	if (newcon->flags & CON_PRINTBUFFER) {
2557 		/*
2558 		 * console_unlock(); will print out the buffered messages
2559 		 * for us.
2560 		 */
2561 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2562 		console_seq = syslog_seq;
2563 		console_idx = syslog_idx;
2564 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2565 		/*
2566 		 * We're about to replay the log buffer.  Only do this to the
2567 		 * just-registered console to avoid excessive message spam to
2568 		 * the already-registered consoles.
2569 		 */
2570 		exclusive_console = newcon;
2571 	}
2572 	console_unlock();
2573 	console_sysfs_notify();
2574 
2575 	/*
2576 	 * By unregistering the bootconsoles after we enable the real console
2577 	 * we get the "console xxx enabled" message on all the consoles -
2578 	 * boot consoles, real consoles, etc - this is to ensure that end
2579 	 * users know there might be something in the kernel's log buffer that
2580 	 * went to the bootconsole (that they do not see on the real console)
2581 	 */
2582 	pr_info("%sconsole [%s%d] enabled\n",
2583 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2584 		newcon->name, newcon->index);
2585 	if (bcon &&
2586 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2587 	    !keep_bootcon) {
2588 		/* We need to iterate through all boot consoles, to make
2589 		 * sure we print everything out, before we unregister them.
2590 		 */
2591 		for_each_console(bcon)
2592 			if (bcon->flags & CON_BOOT)
2593 				unregister_console(bcon);
2594 	}
2595 }
2596 EXPORT_SYMBOL(register_console);
2597 
2598 int unregister_console(struct console *console)
2599 {
2600         struct console *a, *b;
2601 	int res;
2602 
2603 	pr_info("%sconsole [%s%d] disabled\n",
2604 		(console->flags & CON_BOOT) ? "boot" : "" ,
2605 		console->name, console->index);
2606 
2607 	res = _braille_unregister_console(console);
2608 	if (res)
2609 		return res;
2610 
2611 	res = 1;
2612 	console_lock();
2613 	if (console_drivers == console) {
2614 		console_drivers=console->next;
2615 		res = 0;
2616 	} else if (console_drivers) {
2617 		for (a=console_drivers->next, b=console_drivers ;
2618 		     a; b=a, a=b->next) {
2619 			if (a == console) {
2620 				b->next = a->next;
2621 				res = 0;
2622 				break;
2623 			}
2624 		}
2625 	}
2626 
2627 	if (!res && (console->flags & CON_EXTENDED))
2628 		nr_ext_console_drivers--;
2629 
2630 	/*
2631 	 * If this isn't the last console and it has CON_CONSDEV set, we
2632 	 * need to set it on the next preferred console.
2633 	 */
2634 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2635 		console_drivers->flags |= CON_CONSDEV;
2636 
2637 	console->flags &= ~CON_ENABLED;
2638 	console_unlock();
2639 	console_sysfs_notify();
2640 	return res;
2641 }
2642 EXPORT_SYMBOL(unregister_console);
2643 
2644 /*
2645  * Some boot consoles access data that is in the init section and which will
2646  * be discarded after the initcalls have been run. To make sure that no code
2647  * will access this data, unregister the boot consoles in a late initcall.
2648  *
2649  * If for some reason, such as deferred probe or the driver being a loadable
2650  * module, the real console hasn't registered yet at this point, there will
2651  * be a brief interval in which no messages are logged to the console, which
2652  * makes it difficult to diagnose problems that occur during this time.
2653  *
2654  * To mitigate this problem somewhat, only unregister consoles whose memory
2655  * intersects with the init section. Note that code exists elsewhere to get
2656  * rid of the boot console as soon as the proper console shows up, so there
2657  * won't be side-effects from postponing the removal.
2658  */
2659 static int __init printk_late_init(void)
2660 {
2661 	struct console *con;
2662 	int ret;
2663 
2664 	for_each_console(con) {
2665 		if (!keep_bootcon && con->flags & CON_BOOT) {
2666 			/*
2667 			 * Make sure to unregister boot consoles whose data
2668 			 * resides in the init section before the init section
2669 			 * is discarded. Boot consoles whose data will stick
2670 			 * around will automatically be unregistered when the
2671 			 * proper console replaces them.
2672 			 */
2673 			if (init_section_intersects(con, sizeof(*con)))
2674 				unregister_console(con);
2675 		}
2676 	}
2677 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2678 					console_cpu_notify);
2679 	WARN_ON(ret < 0);
2680 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2681 					console_cpu_notify, NULL);
2682 	WARN_ON(ret < 0);
2683 	return 0;
2684 }
2685 late_initcall(printk_late_init);
2686 
2687 #if defined CONFIG_PRINTK
2688 /*
2689  * Delayed printk version, for scheduler-internal messages:
2690  */
2691 #define PRINTK_PENDING_WAKEUP	0x01
2692 #define PRINTK_PENDING_OUTPUT	0x02
2693 
2694 static DEFINE_PER_CPU(int, printk_pending);
2695 
2696 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2697 {
2698 	int pending = __this_cpu_xchg(printk_pending, 0);
2699 
2700 	if (pending & PRINTK_PENDING_OUTPUT) {
2701 		/* If trylock fails, someone else is doing the printing */
2702 		if (console_trylock())
2703 			console_unlock();
2704 	}
2705 
2706 	if (pending & PRINTK_PENDING_WAKEUP)
2707 		wake_up_interruptible(&log_wait);
2708 }
2709 
2710 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2711 	.func = wake_up_klogd_work_func,
2712 	.flags = IRQ_WORK_LAZY,
2713 };
2714 
2715 void wake_up_klogd(void)
2716 {
2717 	preempt_disable();
2718 	if (waitqueue_active(&log_wait)) {
2719 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2720 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2721 	}
2722 	preempt_enable();
2723 }
2724 
2725 int printk_deferred(const char *fmt, ...)
2726 {
2727 	va_list args;
2728 	int r;
2729 
2730 	preempt_disable();
2731 	va_start(args, fmt);
2732 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2733 	va_end(args);
2734 
2735 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2736 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2737 	preempt_enable();
2738 
2739 	return r;
2740 }
2741 
2742 /*
2743  * printk rate limiting, lifted from the networking subsystem.
2744  *
2745  * This enforces a rate limit: not more than 10 kernel messages
2746  * every 5s to make a denial-of-service attack impossible.
2747  */
2748 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2749 
2750 int __printk_ratelimit(const char *func)
2751 {
2752 	return ___ratelimit(&printk_ratelimit_state, func);
2753 }
2754 EXPORT_SYMBOL(__printk_ratelimit);
2755 
2756 /**
2757  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2758  * @caller_jiffies: pointer to caller's state
2759  * @interval_msecs: minimum interval between prints
2760  *
2761  * printk_timed_ratelimit() returns true if more than @interval_msecs
2762  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2763  * returned true.
2764  */
2765 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2766 			unsigned int interval_msecs)
2767 {
2768 	unsigned long elapsed = jiffies - *caller_jiffies;
2769 
2770 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2771 		return false;
2772 
2773 	*caller_jiffies = jiffies;
2774 	return true;
2775 }
2776 EXPORT_SYMBOL(printk_timed_ratelimit);
2777 
2778 static DEFINE_SPINLOCK(dump_list_lock);
2779 static LIST_HEAD(dump_list);
2780 
2781 /**
2782  * kmsg_dump_register - register a kernel log dumper.
2783  * @dumper: pointer to the kmsg_dumper structure
2784  *
2785  * Adds a kernel log dumper to the system. The dump callback in the
2786  * structure will be called when the kernel oopses or panics and must be
2787  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2788  */
2789 int kmsg_dump_register(struct kmsg_dumper *dumper)
2790 {
2791 	unsigned long flags;
2792 	int err = -EBUSY;
2793 
2794 	/* The dump callback needs to be set */
2795 	if (!dumper->dump)
2796 		return -EINVAL;
2797 
2798 	spin_lock_irqsave(&dump_list_lock, flags);
2799 	/* Don't allow registering multiple times */
2800 	if (!dumper->registered) {
2801 		dumper->registered = 1;
2802 		list_add_tail_rcu(&dumper->list, &dump_list);
2803 		err = 0;
2804 	}
2805 	spin_unlock_irqrestore(&dump_list_lock, flags);
2806 
2807 	return err;
2808 }
2809 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2810 
2811 /**
2812  * kmsg_dump_unregister - unregister a kmsg dumper.
2813  * @dumper: pointer to the kmsg_dumper structure
2814  *
2815  * Removes a dump device from the system. Returns zero on success and
2816  * %-EINVAL otherwise.
2817  */
2818 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2819 {
2820 	unsigned long flags;
2821 	int err = -EINVAL;
2822 
2823 	spin_lock_irqsave(&dump_list_lock, flags);
2824 	if (dumper->registered) {
2825 		dumper->registered = 0;
2826 		list_del_rcu(&dumper->list);
2827 		err = 0;
2828 	}
2829 	spin_unlock_irqrestore(&dump_list_lock, flags);
2830 	synchronize_rcu();
2831 
2832 	return err;
2833 }
2834 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2835 
2836 static bool always_kmsg_dump;
2837 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2838 
2839 /**
2840  * kmsg_dump - dump kernel log to kernel message dumpers.
2841  * @reason: the reason (oops, panic etc) for dumping
2842  *
2843  * Call each of the registered dumper's dump() callback, which can
2844  * retrieve the kmsg records with kmsg_dump_get_line() or
2845  * kmsg_dump_get_buffer().
2846  */
2847 void kmsg_dump(enum kmsg_dump_reason reason)
2848 {
2849 	struct kmsg_dumper *dumper;
2850 	unsigned long flags;
2851 
2852 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2853 		return;
2854 
2855 	rcu_read_lock();
2856 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2857 		if (dumper->max_reason && reason > dumper->max_reason)
2858 			continue;
2859 
2860 		/* initialize iterator with data about the stored records */
2861 		dumper->active = true;
2862 
2863 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2864 		dumper->cur_seq = clear_seq;
2865 		dumper->cur_idx = clear_idx;
2866 		dumper->next_seq = log_next_seq;
2867 		dumper->next_idx = log_next_idx;
2868 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2869 
2870 		/* invoke dumper which will iterate over records */
2871 		dumper->dump(dumper, reason);
2872 
2873 		/* reset iterator */
2874 		dumper->active = false;
2875 	}
2876 	rcu_read_unlock();
2877 }
2878 
2879 /**
2880  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2881  * @dumper: registered kmsg dumper
2882  * @syslog: include the "<4>" prefixes
2883  * @line: buffer to copy the line to
2884  * @size: maximum size of the buffer
2885  * @len: length of line placed into buffer
2886  *
2887  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2888  * record, and copy one record into the provided buffer.
2889  *
2890  * Consecutive calls will return the next available record moving
2891  * towards the end of the buffer with the youngest messages.
2892  *
2893  * A return value of FALSE indicates that there are no more records to
2894  * read.
2895  *
2896  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2897  */
2898 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2899 			       char *line, size_t size, size_t *len)
2900 {
2901 	struct printk_log *msg;
2902 	size_t l = 0;
2903 	bool ret = false;
2904 
2905 	if (!dumper->active)
2906 		goto out;
2907 
2908 	if (dumper->cur_seq < log_first_seq) {
2909 		/* messages are gone, move to first available one */
2910 		dumper->cur_seq = log_first_seq;
2911 		dumper->cur_idx = log_first_idx;
2912 	}
2913 
2914 	/* last entry */
2915 	if (dumper->cur_seq >= log_next_seq)
2916 		goto out;
2917 
2918 	msg = log_from_idx(dumper->cur_idx);
2919 	l = msg_print_text(msg, syslog, line, size);
2920 
2921 	dumper->cur_idx = log_next(dumper->cur_idx);
2922 	dumper->cur_seq++;
2923 	ret = true;
2924 out:
2925 	if (len)
2926 		*len = l;
2927 	return ret;
2928 }
2929 
2930 /**
2931  * kmsg_dump_get_line - retrieve one kmsg log line
2932  * @dumper: registered kmsg dumper
2933  * @syslog: include the "<4>" prefixes
2934  * @line: buffer to copy the line to
2935  * @size: maximum size of the buffer
2936  * @len: length of line placed into buffer
2937  *
2938  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2939  * record, and copy one record into the provided buffer.
2940  *
2941  * Consecutive calls will return the next available record moving
2942  * towards the end of the buffer with the youngest messages.
2943  *
2944  * A return value of FALSE indicates that there are no more records to
2945  * read.
2946  */
2947 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2948 			char *line, size_t size, size_t *len)
2949 {
2950 	unsigned long flags;
2951 	bool ret;
2952 
2953 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2954 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2955 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2956 
2957 	return ret;
2958 }
2959 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2960 
2961 /**
2962  * kmsg_dump_get_buffer - copy kmsg log lines
2963  * @dumper: registered kmsg dumper
2964  * @syslog: include the "<4>" prefixes
2965  * @buf: buffer to copy the line to
2966  * @size: maximum size of the buffer
2967  * @len: length of line placed into buffer
2968  *
2969  * Start at the end of the kmsg buffer and fill the provided buffer
2970  * with as many of the the *youngest* kmsg records that fit into it.
2971  * If the buffer is large enough, all available kmsg records will be
2972  * copied with a single call.
2973  *
2974  * Consecutive calls will fill the buffer with the next block of
2975  * available older records, not including the earlier retrieved ones.
2976  *
2977  * A return value of FALSE indicates that there are no more records to
2978  * read.
2979  */
2980 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2981 			  char *buf, size_t size, size_t *len)
2982 {
2983 	unsigned long flags;
2984 	u64 seq;
2985 	u32 idx;
2986 	u64 next_seq;
2987 	u32 next_idx;
2988 	size_t l = 0;
2989 	bool ret = false;
2990 
2991 	if (!dumper->active)
2992 		goto out;
2993 
2994 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2995 	if (dumper->cur_seq < log_first_seq) {
2996 		/* messages are gone, move to first available one */
2997 		dumper->cur_seq = log_first_seq;
2998 		dumper->cur_idx = log_first_idx;
2999 	}
3000 
3001 	/* last entry */
3002 	if (dumper->cur_seq >= dumper->next_seq) {
3003 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3004 		goto out;
3005 	}
3006 
3007 	/* calculate length of entire buffer */
3008 	seq = dumper->cur_seq;
3009 	idx = dumper->cur_idx;
3010 	while (seq < dumper->next_seq) {
3011 		struct printk_log *msg = log_from_idx(idx);
3012 
3013 		l += msg_print_text(msg, true, NULL, 0);
3014 		idx = log_next(idx);
3015 		seq++;
3016 	}
3017 
3018 	/* move first record forward until length fits into the buffer */
3019 	seq = dumper->cur_seq;
3020 	idx = dumper->cur_idx;
3021 	while (l > size && seq < dumper->next_seq) {
3022 		struct printk_log *msg = log_from_idx(idx);
3023 
3024 		l -= msg_print_text(msg, true, NULL, 0);
3025 		idx = log_next(idx);
3026 		seq++;
3027 	}
3028 
3029 	/* last message in next interation */
3030 	next_seq = seq;
3031 	next_idx = idx;
3032 
3033 	l = 0;
3034 	while (seq < dumper->next_seq) {
3035 		struct printk_log *msg = log_from_idx(idx);
3036 
3037 		l += msg_print_text(msg, syslog, buf + l, size - l);
3038 		idx = log_next(idx);
3039 		seq++;
3040 	}
3041 
3042 	dumper->next_seq = next_seq;
3043 	dumper->next_idx = next_idx;
3044 	ret = true;
3045 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3046 out:
3047 	if (len)
3048 		*len = l;
3049 	return ret;
3050 }
3051 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3052 
3053 /**
3054  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3055  * @dumper: registered kmsg dumper
3056  *
3057  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3058  * kmsg_dump_get_buffer() can be called again and used multiple
3059  * times within the same dumper.dump() callback.
3060  *
3061  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3062  */
3063 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3064 {
3065 	dumper->cur_seq = clear_seq;
3066 	dumper->cur_idx = clear_idx;
3067 	dumper->next_seq = log_next_seq;
3068 	dumper->next_idx = log_next_idx;
3069 }
3070 
3071 /**
3072  * kmsg_dump_rewind - reset the interator
3073  * @dumper: registered kmsg dumper
3074  *
3075  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3076  * kmsg_dump_get_buffer() can be called again and used multiple
3077  * times within the same dumper.dump() callback.
3078  */
3079 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3080 {
3081 	unsigned long flags;
3082 
3083 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3084 	kmsg_dump_rewind_nolock(dumper);
3085 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3086 }
3087 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3088 
3089 static char dump_stack_arch_desc_str[128];
3090 
3091 /**
3092  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3093  * @fmt: printf-style format string
3094  * @...: arguments for the format string
3095  *
3096  * The configured string will be printed right after utsname during task
3097  * dumps.  Usually used to add arch-specific system identifiers.  If an
3098  * arch wants to make use of such an ID string, it should initialize this
3099  * as soon as possible during boot.
3100  */
3101 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3102 {
3103 	va_list args;
3104 
3105 	va_start(args, fmt);
3106 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3107 		  fmt, args);
3108 	va_end(args);
3109 }
3110 
3111 /**
3112  * dump_stack_print_info - print generic debug info for dump_stack()
3113  * @log_lvl: log level
3114  *
3115  * Arch-specific dump_stack() implementations can use this function to
3116  * print out the same debug information as the generic dump_stack().
3117  */
3118 void dump_stack_print_info(const char *log_lvl)
3119 {
3120 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3121 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3122 	       print_tainted(), init_utsname()->release,
3123 	       (int)strcspn(init_utsname()->version, " "),
3124 	       init_utsname()->version);
3125 
3126 	if (dump_stack_arch_desc_str[0] != '\0')
3127 		printk("%sHardware name: %s\n",
3128 		       log_lvl, dump_stack_arch_desc_str);
3129 
3130 	print_worker_info(log_lvl, current);
3131 }
3132 
3133 /**
3134  * show_regs_print_info - print generic debug info for show_regs()
3135  * @log_lvl: log level
3136  *
3137  * show_regs() implementations can use this function to print out generic
3138  * debug information.
3139  */
3140 void show_regs_print_info(const char *log_lvl)
3141 {
3142 	dump_stack_print_info(log_lvl);
3143 
3144 	printk("%stask: %p task.stack: %p\n",
3145 	       log_lvl, current, task_stack_page(current));
3146 }
3147 
3148 #endif
3149