1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/crash_core.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 69 /* 70 * Low level drivers may need that to know if they can schedule in 71 * their unblank() callback or not. So let's export it. 72 */ 73 int oops_in_progress; 74 EXPORT_SYMBOL(oops_in_progress); 75 76 /* 77 * console_sem protects the console_drivers list, and also 78 * provides serialisation for access to the entire console 79 * driver system. 80 */ 81 static DEFINE_SEMAPHORE(console_sem); 82 struct console *console_drivers; 83 EXPORT_SYMBOL_GPL(console_drivers); 84 85 #ifdef CONFIG_LOCKDEP 86 static struct lockdep_map console_lock_dep_map = { 87 .name = "console_lock" 88 }; 89 #endif 90 91 enum devkmsg_log_bits { 92 __DEVKMSG_LOG_BIT_ON = 0, 93 __DEVKMSG_LOG_BIT_OFF, 94 __DEVKMSG_LOG_BIT_LOCK, 95 }; 96 97 enum devkmsg_log_masks { 98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 101 }; 102 103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 104 #define DEVKMSG_LOG_MASK_DEFAULT 0 105 106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 107 108 static int __control_devkmsg(char *str) 109 { 110 if (!str) 111 return -EINVAL; 112 113 if (!strncmp(str, "on", 2)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_ON; 115 return 2; 116 } else if (!strncmp(str, "off", 3)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 118 return 3; 119 } else if (!strncmp(str, "ratelimit", 9)) { 120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 121 return 9; 122 } 123 return -EINVAL; 124 } 125 126 static int __init control_devkmsg(char *str) 127 { 128 if (__control_devkmsg(str) < 0) 129 return 1; 130 131 /* 132 * Set sysctl string accordingly: 133 */ 134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) { 135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 136 strncpy(devkmsg_log_str, "on", 2); 137 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) { 138 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 139 strncpy(devkmsg_log_str, "off", 3); 140 } 141 /* else "ratelimit" which is set by default. */ 142 143 /* 144 * Sysctl cannot change it anymore. The kernel command line setting of 145 * this parameter is to force the setting to be permanent throughout the 146 * runtime of the system. This is a precation measure against userspace 147 * trying to be a smarta** and attempting to change it up on us. 148 */ 149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 150 151 return 0; 152 } 153 __setup("printk.devkmsg=", control_devkmsg); 154 155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 156 157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 158 void __user *buffer, size_t *lenp, loff_t *ppos) 159 { 160 char old_str[DEVKMSG_STR_MAX_SIZE]; 161 unsigned int old; 162 int err; 163 164 if (write) { 165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 166 return -EINVAL; 167 168 old = devkmsg_log; 169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 170 } 171 172 err = proc_dostring(table, write, buffer, lenp, ppos); 173 if (err) 174 return err; 175 176 if (write) { 177 err = __control_devkmsg(devkmsg_log_str); 178 179 /* 180 * Do not accept an unknown string OR a known string with 181 * trailing crap... 182 */ 183 if (err < 0 || (err + 1 != *lenp)) { 184 185 /* ... and restore old setting. */ 186 devkmsg_log = old; 187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 188 189 return -EINVAL; 190 } 191 } 192 193 return 0; 194 } 195 196 /* 197 * Number of registered extended console drivers. 198 * 199 * If extended consoles are present, in-kernel cont reassembly is disabled 200 * and each fragment is stored as a separate log entry with proper 201 * continuation flag so that every emitted message has full metadata. This 202 * doesn't change the result for regular consoles or /proc/kmsg. For 203 * /dev/kmsg, as long as the reader concatenates messages according to 204 * consecutive continuation flags, the end result should be the same too. 205 */ 206 static int nr_ext_console_drivers; 207 208 /* 209 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 210 * macros instead of functions so that _RET_IP_ contains useful information. 211 */ 212 #define down_console_sem() do { \ 213 down(&console_sem);\ 214 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 215 } while (0) 216 217 static int __down_trylock_console_sem(unsigned long ip) 218 { 219 int lock_failed; 220 unsigned long flags; 221 222 /* 223 * Here and in __up_console_sem() we need to be in safe mode, 224 * because spindump/WARN/etc from under console ->lock will 225 * deadlock in printk()->down_trylock_console_sem() otherwise. 226 */ 227 printk_safe_enter_irqsave(flags); 228 lock_failed = down_trylock(&console_sem); 229 printk_safe_exit_irqrestore(flags); 230 231 if (lock_failed) 232 return 1; 233 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 234 return 0; 235 } 236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 237 238 static void __up_console_sem(unsigned long ip) 239 { 240 unsigned long flags; 241 242 mutex_release(&console_lock_dep_map, 1, ip); 243 244 printk_safe_enter_irqsave(flags); 245 up(&console_sem); 246 printk_safe_exit_irqrestore(flags); 247 } 248 #define up_console_sem() __up_console_sem(_RET_IP_) 249 250 /* 251 * This is used for debugging the mess that is the VT code by 252 * keeping track if we have the console semaphore held. It's 253 * definitely not the perfect debug tool (we don't know if _WE_ 254 * hold it and are racing, but it helps tracking those weird code 255 * paths in the console code where we end up in places I want 256 * locked without the console sempahore held). 257 */ 258 static int console_locked, console_suspended; 259 260 /* 261 * If exclusive_console is non-NULL then only this console is to be printed to. 262 */ 263 static struct console *exclusive_console; 264 265 /* 266 * Array of consoles built from command line options (console=) 267 */ 268 269 #define MAX_CMDLINECONSOLES 8 270 271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 272 static int console_cmdline_cnt; 273 274 static int preferred_console = -1; 275 int console_set_on_cmdline; 276 EXPORT_SYMBOL(console_set_on_cmdline); 277 278 /* Flag: console code may call schedule() */ 279 static int console_may_schedule; 280 281 /* 282 * The printk log buffer consists of a chain of concatenated variable 283 * length records. Every record starts with a record header, containing 284 * the overall length of the record. 285 * 286 * The heads to the first and last entry in the buffer, as well as the 287 * sequence numbers of these entries are maintained when messages are 288 * stored. 289 * 290 * If the heads indicate available messages, the length in the header 291 * tells the start next message. A length == 0 for the next message 292 * indicates a wrap-around to the beginning of the buffer. 293 * 294 * Every record carries the monotonic timestamp in microseconds, as well as 295 * the standard userspace syslog level and syslog facility. The usual 296 * kernel messages use LOG_KERN; userspace-injected messages always carry 297 * a matching syslog facility, by default LOG_USER. The origin of every 298 * message can be reliably determined that way. 299 * 300 * The human readable log message directly follows the message header. The 301 * length of the message text is stored in the header, the stored message 302 * is not terminated. 303 * 304 * Optionally, a message can carry a dictionary of properties (key/value pairs), 305 * to provide userspace with a machine-readable message context. 306 * 307 * Examples for well-defined, commonly used property names are: 308 * DEVICE=b12:8 device identifier 309 * b12:8 block dev_t 310 * c127:3 char dev_t 311 * n8 netdev ifindex 312 * +sound:card0 subsystem:devname 313 * SUBSYSTEM=pci driver-core subsystem name 314 * 315 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 316 * follows directly after a '=' character. Every property is terminated by 317 * a '\0' character. The last property is not terminated. 318 * 319 * Example of a message structure: 320 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 321 * 0008 34 00 record is 52 bytes long 322 * 000a 0b 00 text is 11 bytes long 323 * 000c 1f 00 dictionary is 23 bytes long 324 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 325 * 0010 69 74 27 73 20 61 20 6c "it's a l" 326 * 69 6e 65 "ine" 327 * 001b 44 45 56 49 43 "DEVIC" 328 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 329 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 330 * 67 "g" 331 * 0032 00 00 00 padding to next message header 332 * 333 * The 'struct printk_log' buffer header must never be directly exported to 334 * userspace, it is a kernel-private implementation detail that might 335 * need to be changed in the future, when the requirements change. 336 * 337 * /dev/kmsg exports the structured data in the following line format: 338 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 339 * 340 * Users of the export format should ignore possible additional values 341 * separated by ',', and find the message after the ';' character. 342 * 343 * The optional key/value pairs are attached as continuation lines starting 344 * with a space character and terminated by a newline. All possible 345 * non-prinatable characters are escaped in the "\xff" notation. 346 */ 347 348 enum log_flags { 349 LOG_NOCONS = 1, /* already flushed, do not print to console */ 350 LOG_NEWLINE = 2, /* text ended with a newline */ 351 LOG_PREFIX = 4, /* text started with a prefix */ 352 LOG_CONT = 8, /* text is a fragment of a continuation line */ 353 }; 354 355 struct printk_log { 356 u64 ts_nsec; /* timestamp in nanoseconds */ 357 u16 len; /* length of entire record */ 358 u16 text_len; /* length of text buffer */ 359 u16 dict_len; /* length of dictionary buffer */ 360 u8 facility; /* syslog facility */ 361 u8 flags:5; /* internal record flags */ 362 u8 level:3; /* syslog level */ 363 } 364 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 365 __packed __aligned(4) 366 #endif 367 ; 368 369 /* 370 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 371 * within the scheduler's rq lock. It must be released before calling 372 * console_unlock() or anything else that might wake up a process. 373 */ 374 DEFINE_RAW_SPINLOCK(logbuf_lock); 375 376 /* 377 * Helper macros to lock/unlock logbuf_lock and switch between 378 * printk-safe/unsafe modes. 379 */ 380 #define logbuf_lock_irq() \ 381 do { \ 382 printk_safe_enter_irq(); \ 383 raw_spin_lock(&logbuf_lock); \ 384 } while (0) 385 386 #define logbuf_unlock_irq() \ 387 do { \ 388 raw_spin_unlock(&logbuf_lock); \ 389 printk_safe_exit_irq(); \ 390 } while (0) 391 392 #define logbuf_lock_irqsave(flags) \ 393 do { \ 394 printk_safe_enter_irqsave(flags); \ 395 raw_spin_lock(&logbuf_lock); \ 396 } while (0) 397 398 #define logbuf_unlock_irqrestore(flags) \ 399 do { \ 400 raw_spin_unlock(&logbuf_lock); \ 401 printk_safe_exit_irqrestore(flags); \ 402 } while (0) 403 404 #ifdef CONFIG_PRINTK 405 DECLARE_WAIT_QUEUE_HEAD(log_wait); 406 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 407 static u64 syslog_seq; 408 static u32 syslog_idx; 409 static size_t syslog_partial; 410 411 /* index and sequence number of the first record stored in the buffer */ 412 static u64 log_first_seq; 413 static u32 log_first_idx; 414 415 /* index and sequence number of the next record to store in the buffer */ 416 static u64 log_next_seq; 417 static u32 log_next_idx; 418 419 /* the next printk record to write to the console */ 420 static u64 console_seq; 421 static u32 console_idx; 422 423 /* the next printk record to read after the last 'clear' command */ 424 static u64 clear_seq; 425 static u32 clear_idx; 426 427 #define PREFIX_MAX 32 428 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 429 430 #define LOG_LEVEL(v) ((v) & 0x07) 431 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 432 433 /* record buffer */ 434 #define LOG_ALIGN __alignof__(struct printk_log) 435 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 436 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 437 static char *log_buf = __log_buf; 438 static u32 log_buf_len = __LOG_BUF_LEN; 439 440 /* Return log buffer address */ 441 char *log_buf_addr_get(void) 442 { 443 return log_buf; 444 } 445 446 /* Return log buffer size */ 447 u32 log_buf_len_get(void) 448 { 449 return log_buf_len; 450 } 451 452 /* human readable text of the record */ 453 static char *log_text(const struct printk_log *msg) 454 { 455 return (char *)msg + sizeof(struct printk_log); 456 } 457 458 /* optional key/value pair dictionary attached to the record */ 459 static char *log_dict(const struct printk_log *msg) 460 { 461 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 462 } 463 464 /* get record by index; idx must point to valid msg */ 465 static struct printk_log *log_from_idx(u32 idx) 466 { 467 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 468 469 /* 470 * A length == 0 record is the end of buffer marker. Wrap around and 471 * read the message at the start of the buffer. 472 */ 473 if (!msg->len) 474 return (struct printk_log *)log_buf; 475 return msg; 476 } 477 478 /* get next record; idx must point to valid msg */ 479 static u32 log_next(u32 idx) 480 { 481 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 482 483 /* length == 0 indicates the end of the buffer; wrap */ 484 /* 485 * A length == 0 record is the end of buffer marker. Wrap around and 486 * read the message at the start of the buffer as *this* one, and 487 * return the one after that. 488 */ 489 if (!msg->len) { 490 msg = (struct printk_log *)log_buf; 491 return msg->len; 492 } 493 return idx + msg->len; 494 } 495 496 /* 497 * Check whether there is enough free space for the given message. 498 * 499 * The same values of first_idx and next_idx mean that the buffer 500 * is either empty or full. 501 * 502 * If the buffer is empty, we must respect the position of the indexes. 503 * They cannot be reset to the beginning of the buffer. 504 */ 505 static int logbuf_has_space(u32 msg_size, bool empty) 506 { 507 u32 free; 508 509 if (log_next_idx > log_first_idx || empty) 510 free = max(log_buf_len - log_next_idx, log_first_idx); 511 else 512 free = log_first_idx - log_next_idx; 513 514 /* 515 * We need space also for an empty header that signalizes wrapping 516 * of the buffer. 517 */ 518 return free >= msg_size + sizeof(struct printk_log); 519 } 520 521 static int log_make_free_space(u32 msg_size) 522 { 523 while (log_first_seq < log_next_seq && 524 !logbuf_has_space(msg_size, false)) { 525 /* drop old messages until we have enough contiguous space */ 526 log_first_idx = log_next(log_first_idx); 527 log_first_seq++; 528 } 529 530 if (clear_seq < log_first_seq) { 531 clear_seq = log_first_seq; 532 clear_idx = log_first_idx; 533 } 534 535 /* sequence numbers are equal, so the log buffer is empty */ 536 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 537 return 0; 538 539 return -ENOMEM; 540 } 541 542 /* compute the message size including the padding bytes */ 543 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 544 { 545 u32 size; 546 547 size = sizeof(struct printk_log) + text_len + dict_len; 548 *pad_len = (-size) & (LOG_ALIGN - 1); 549 size += *pad_len; 550 551 return size; 552 } 553 554 /* 555 * Define how much of the log buffer we could take at maximum. The value 556 * must be greater than two. Note that only half of the buffer is available 557 * when the index points to the middle. 558 */ 559 #define MAX_LOG_TAKE_PART 4 560 static const char trunc_msg[] = "<truncated>"; 561 562 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 563 u16 *dict_len, u32 *pad_len) 564 { 565 /* 566 * The message should not take the whole buffer. Otherwise, it might 567 * get removed too soon. 568 */ 569 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 570 if (*text_len > max_text_len) 571 *text_len = max_text_len; 572 /* enable the warning message */ 573 *trunc_msg_len = strlen(trunc_msg); 574 /* disable the "dict" completely */ 575 *dict_len = 0; 576 /* compute the size again, count also the warning message */ 577 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 578 } 579 580 /* insert record into the buffer, discard old ones, update heads */ 581 static int log_store(int facility, int level, 582 enum log_flags flags, u64 ts_nsec, 583 const char *dict, u16 dict_len, 584 const char *text, u16 text_len) 585 { 586 struct printk_log *msg; 587 u32 size, pad_len; 588 u16 trunc_msg_len = 0; 589 590 /* number of '\0' padding bytes to next message */ 591 size = msg_used_size(text_len, dict_len, &pad_len); 592 593 if (log_make_free_space(size)) { 594 /* truncate the message if it is too long for empty buffer */ 595 size = truncate_msg(&text_len, &trunc_msg_len, 596 &dict_len, &pad_len); 597 /* survive when the log buffer is too small for trunc_msg */ 598 if (log_make_free_space(size)) 599 return 0; 600 } 601 602 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 603 /* 604 * This message + an additional empty header does not fit 605 * at the end of the buffer. Add an empty header with len == 0 606 * to signify a wrap around. 607 */ 608 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 609 log_next_idx = 0; 610 } 611 612 /* fill message */ 613 msg = (struct printk_log *)(log_buf + log_next_idx); 614 memcpy(log_text(msg), text, text_len); 615 msg->text_len = text_len; 616 if (trunc_msg_len) { 617 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 618 msg->text_len += trunc_msg_len; 619 } 620 memcpy(log_dict(msg), dict, dict_len); 621 msg->dict_len = dict_len; 622 msg->facility = facility; 623 msg->level = level & 7; 624 msg->flags = flags & 0x1f; 625 if (ts_nsec > 0) 626 msg->ts_nsec = ts_nsec; 627 else 628 msg->ts_nsec = local_clock(); 629 memset(log_dict(msg) + dict_len, 0, pad_len); 630 msg->len = size; 631 632 /* insert message */ 633 log_next_idx += msg->len; 634 log_next_seq++; 635 636 return msg->text_len; 637 } 638 639 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 640 641 static int syslog_action_restricted(int type) 642 { 643 if (dmesg_restrict) 644 return 1; 645 /* 646 * Unless restricted, we allow "read all" and "get buffer size" 647 * for everybody. 648 */ 649 return type != SYSLOG_ACTION_READ_ALL && 650 type != SYSLOG_ACTION_SIZE_BUFFER; 651 } 652 653 int check_syslog_permissions(int type, int source) 654 { 655 /* 656 * If this is from /proc/kmsg and we've already opened it, then we've 657 * already done the capabilities checks at open time. 658 */ 659 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 660 goto ok; 661 662 if (syslog_action_restricted(type)) { 663 if (capable(CAP_SYSLOG)) 664 goto ok; 665 /* 666 * For historical reasons, accept CAP_SYS_ADMIN too, with 667 * a warning. 668 */ 669 if (capable(CAP_SYS_ADMIN)) { 670 pr_warn_once("%s (%d): Attempt to access syslog with " 671 "CAP_SYS_ADMIN but no CAP_SYSLOG " 672 "(deprecated).\n", 673 current->comm, task_pid_nr(current)); 674 goto ok; 675 } 676 return -EPERM; 677 } 678 ok: 679 return security_syslog(type); 680 } 681 EXPORT_SYMBOL_GPL(check_syslog_permissions); 682 683 static void append_char(char **pp, char *e, char c) 684 { 685 if (*pp < e) 686 *(*pp)++ = c; 687 } 688 689 static ssize_t msg_print_ext_header(char *buf, size_t size, 690 struct printk_log *msg, u64 seq) 691 { 692 u64 ts_usec = msg->ts_nsec; 693 694 do_div(ts_usec, 1000); 695 696 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 697 (msg->facility << 3) | msg->level, seq, ts_usec, 698 msg->flags & LOG_CONT ? 'c' : '-'); 699 } 700 701 static ssize_t msg_print_ext_body(char *buf, size_t size, 702 char *dict, size_t dict_len, 703 char *text, size_t text_len) 704 { 705 char *p = buf, *e = buf + size; 706 size_t i; 707 708 /* escape non-printable characters */ 709 for (i = 0; i < text_len; i++) { 710 unsigned char c = text[i]; 711 712 if (c < ' ' || c >= 127 || c == '\\') 713 p += scnprintf(p, e - p, "\\x%02x", c); 714 else 715 append_char(&p, e, c); 716 } 717 append_char(&p, e, '\n'); 718 719 if (dict_len) { 720 bool line = true; 721 722 for (i = 0; i < dict_len; i++) { 723 unsigned char c = dict[i]; 724 725 if (line) { 726 append_char(&p, e, ' '); 727 line = false; 728 } 729 730 if (c == '\0') { 731 append_char(&p, e, '\n'); 732 line = true; 733 continue; 734 } 735 736 if (c < ' ' || c >= 127 || c == '\\') { 737 p += scnprintf(p, e - p, "\\x%02x", c); 738 continue; 739 } 740 741 append_char(&p, e, c); 742 } 743 append_char(&p, e, '\n'); 744 } 745 746 return p - buf; 747 } 748 749 /* /dev/kmsg - userspace message inject/listen interface */ 750 struct devkmsg_user { 751 u64 seq; 752 u32 idx; 753 struct ratelimit_state rs; 754 struct mutex lock; 755 char buf[CONSOLE_EXT_LOG_MAX]; 756 }; 757 758 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 759 { 760 char *buf, *line; 761 int level = default_message_loglevel; 762 int facility = 1; /* LOG_USER */ 763 struct file *file = iocb->ki_filp; 764 struct devkmsg_user *user = file->private_data; 765 size_t len = iov_iter_count(from); 766 ssize_t ret = len; 767 768 if (!user || len > LOG_LINE_MAX) 769 return -EINVAL; 770 771 /* Ignore when user logging is disabled. */ 772 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 773 return len; 774 775 /* Ratelimit when not explicitly enabled. */ 776 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 777 if (!___ratelimit(&user->rs, current->comm)) 778 return ret; 779 } 780 781 buf = kmalloc(len+1, GFP_KERNEL); 782 if (buf == NULL) 783 return -ENOMEM; 784 785 buf[len] = '\0'; 786 if (!copy_from_iter_full(buf, len, from)) { 787 kfree(buf); 788 return -EFAULT; 789 } 790 791 /* 792 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 793 * the decimal value represents 32bit, the lower 3 bit are the log 794 * level, the rest are the log facility. 795 * 796 * If no prefix or no userspace facility is specified, we 797 * enforce LOG_USER, to be able to reliably distinguish 798 * kernel-generated messages from userspace-injected ones. 799 */ 800 line = buf; 801 if (line[0] == '<') { 802 char *endp = NULL; 803 unsigned int u; 804 805 u = simple_strtoul(line + 1, &endp, 10); 806 if (endp && endp[0] == '>') { 807 level = LOG_LEVEL(u); 808 if (LOG_FACILITY(u) != 0) 809 facility = LOG_FACILITY(u); 810 endp++; 811 len -= endp - line; 812 line = endp; 813 } 814 } 815 816 printk_emit(facility, level, NULL, 0, "%s", line); 817 kfree(buf); 818 return ret; 819 } 820 821 static ssize_t devkmsg_read(struct file *file, char __user *buf, 822 size_t count, loff_t *ppos) 823 { 824 struct devkmsg_user *user = file->private_data; 825 struct printk_log *msg; 826 size_t len; 827 ssize_t ret; 828 829 if (!user) 830 return -EBADF; 831 832 ret = mutex_lock_interruptible(&user->lock); 833 if (ret) 834 return ret; 835 836 logbuf_lock_irq(); 837 while (user->seq == log_next_seq) { 838 if (file->f_flags & O_NONBLOCK) { 839 ret = -EAGAIN; 840 logbuf_unlock_irq(); 841 goto out; 842 } 843 844 logbuf_unlock_irq(); 845 ret = wait_event_interruptible(log_wait, 846 user->seq != log_next_seq); 847 if (ret) 848 goto out; 849 logbuf_lock_irq(); 850 } 851 852 if (user->seq < log_first_seq) { 853 /* our last seen message is gone, return error and reset */ 854 user->idx = log_first_idx; 855 user->seq = log_first_seq; 856 ret = -EPIPE; 857 logbuf_unlock_irq(); 858 goto out; 859 } 860 861 msg = log_from_idx(user->idx); 862 len = msg_print_ext_header(user->buf, sizeof(user->buf), 863 msg, user->seq); 864 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 865 log_dict(msg), msg->dict_len, 866 log_text(msg), msg->text_len); 867 868 user->idx = log_next(user->idx); 869 user->seq++; 870 logbuf_unlock_irq(); 871 872 if (len > count) { 873 ret = -EINVAL; 874 goto out; 875 } 876 877 if (copy_to_user(buf, user->buf, len)) { 878 ret = -EFAULT; 879 goto out; 880 } 881 ret = len; 882 out: 883 mutex_unlock(&user->lock); 884 return ret; 885 } 886 887 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 888 { 889 struct devkmsg_user *user = file->private_data; 890 loff_t ret = 0; 891 892 if (!user) 893 return -EBADF; 894 if (offset) 895 return -ESPIPE; 896 897 logbuf_lock_irq(); 898 switch (whence) { 899 case SEEK_SET: 900 /* the first record */ 901 user->idx = log_first_idx; 902 user->seq = log_first_seq; 903 break; 904 case SEEK_DATA: 905 /* 906 * The first record after the last SYSLOG_ACTION_CLEAR, 907 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 908 * changes no global state, and does not clear anything. 909 */ 910 user->idx = clear_idx; 911 user->seq = clear_seq; 912 break; 913 case SEEK_END: 914 /* after the last record */ 915 user->idx = log_next_idx; 916 user->seq = log_next_seq; 917 break; 918 default: 919 ret = -EINVAL; 920 } 921 logbuf_unlock_irq(); 922 return ret; 923 } 924 925 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 926 { 927 struct devkmsg_user *user = file->private_data; 928 int ret = 0; 929 930 if (!user) 931 return POLLERR|POLLNVAL; 932 933 poll_wait(file, &log_wait, wait); 934 935 logbuf_lock_irq(); 936 if (user->seq < log_next_seq) { 937 /* return error when data has vanished underneath us */ 938 if (user->seq < log_first_seq) 939 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 940 else 941 ret = POLLIN|POLLRDNORM; 942 } 943 logbuf_unlock_irq(); 944 945 return ret; 946 } 947 948 static int devkmsg_open(struct inode *inode, struct file *file) 949 { 950 struct devkmsg_user *user; 951 int err; 952 953 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 954 return -EPERM; 955 956 /* write-only does not need any file context */ 957 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 958 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 959 SYSLOG_FROM_READER); 960 if (err) 961 return err; 962 } 963 964 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 965 if (!user) 966 return -ENOMEM; 967 968 ratelimit_default_init(&user->rs); 969 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 970 971 mutex_init(&user->lock); 972 973 logbuf_lock_irq(); 974 user->idx = log_first_idx; 975 user->seq = log_first_seq; 976 logbuf_unlock_irq(); 977 978 file->private_data = user; 979 return 0; 980 } 981 982 static int devkmsg_release(struct inode *inode, struct file *file) 983 { 984 struct devkmsg_user *user = file->private_data; 985 986 if (!user) 987 return 0; 988 989 ratelimit_state_exit(&user->rs); 990 991 mutex_destroy(&user->lock); 992 kfree(user); 993 return 0; 994 } 995 996 const struct file_operations kmsg_fops = { 997 .open = devkmsg_open, 998 .read = devkmsg_read, 999 .write_iter = devkmsg_write, 1000 .llseek = devkmsg_llseek, 1001 .poll = devkmsg_poll, 1002 .release = devkmsg_release, 1003 }; 1004 1005 #ifdef CONFIG_CRASH_CORE 1006 /* 1007 * This appends the listed symbols to /proc/vmcore 1008 * 1009 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1010 * obtain access to symbols that are otherwise very difficult to locate. These 1011 * symbols are specifically used so that utilities can access and extract the 1012 * dmesg log from a vmcore file after a crash. 1013 */ 1014 void log_buf_vmcoreinfo_setup(void) 1015 { 1016 VMCOREINFO_SYMBOL(log_buf); 1017 VMCOREINFO_SYMBOL(log_buf_len); 1018 VMCOREINFO_SYMBOL(log_first_idx); 1019 VMCOREINFO_SYMBOL(clear_idx); 1020 VMCOREINFO_SYMBOL(log_next_idx); 1021 /* 1022 * Export struct printk_log size and field offsets. User space tools can 1023 * parse it and detect any changes to structure down the line. 1024 */ 1025 VMCOREINFO_STRUCT_SIZE(printk_log); 1026 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1027 VMCOREINFO_OFFSET(printk_log, len); 1028 VMCOREINFO_OFFSET(printk_log, text_len); 1029 VMCOREINFO_OFFSET(printk_log, dict_len); 1030 } 1031 #endif 1032 1033 /* requested log_buf_len from kernel cmdline */ 1034 static unsigned long __initdata new_log_buf_len; 1035 1036 /* we practice scaling the ring buffer by powers of 2 */ 1037 static void __init log_buf_len_update(unsigned size) 1038 { 1039 if (size) 1040 size = roundup_pow_of_two(size); 1041 if (size > log_buf_len) 1042 new_log_buf_len = size; 1043 } 1044 1045 /* save requested log_buf_len since it's too early to process it */ 1046 static int __init log_buf_len_setup(char *str) 1047 { 1048 unsigned size = memparse(str, &str); 1049 1050 log_buf_len_update(size); 1051 1052 return 0; 1053 } 1054 early_param("log_buf_len", log_buf_len_setup); 1055 1056 #ifdef CONFIG_SMP 1057 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1058 1059 static void __init log_buf_add_cpu(void) 1060 { 1061 unsigned int cpu_extra; 1062 1063 /* 1064 * archs should set up cpu_possible_bits properly with 1065 * set_cpu_possible() after setup_arch() but just in 1066 * case lets ensure this is valid. 1067 */ 1068 if (num_possible_cpus() == 1) 1069 return; 1070 1071 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1072 1073 /* by default this will only continue through for large > 64 CPUs */ 1074 if (cpu_extra <= __LOG_BUF_LEN / 2) 1075 return; 1076 1077 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1078 __LOG_CPU_MAX_BUF_LEN); 1079 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1080 cpu_extra); 1081 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1082 1083 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1084 } 1085 #else /* !CONFIG_SMP */ 1086 static inline void log_buf_add_cpu(void) {} 1087 #endif /* CONFIG_SMP */ 1088 1089 void __init setup_log_buf(int early) 1090 { 1091 unsigned long flags; 1092 char *new_log_buf; 1093 int free; 1094 1095 if (log_buf != __log_buf) 1096 return; 1097 1098 if (!early && !new_log_buf_len) 1099 log_buf_add_cpu(); 1100 1101 if (!new_log_buf_len) 1102 return; 1103 1104 if (early) { 1105 new_log_buf = 1106 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1107 } else { 1108 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1109 LOG_ALIGN); 1110 } 1111 1112 if (unlikely(!new_log_buf)) { 1113 pr_err("log_buf_len: %ld bytes not available\n", 1114 new_log_buf_len); 1115 return; 1116 } 1117 1118 logbuf_lock_irqsave(flags); 1119 log_buf_len = new_log_buf_len; 1120 log_buf = new_log_buf; 1121 new_log_buf_len = 0; 1122 free = __LOG_BUF_LEN - log_next_idx; 1123 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1124 logbuf_unlock_irqrestore(flags); 1125 1126 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1127 pr_info("early log buf free: %d(%d%%)\n", 1128 free, (free * 100) / __LOG_BUF_LEN); 1129 } 1130 1131 static bool __read_mostly ignore_loglevel; 1132 1133 static int __init ignore_loglevel_setup(char *str) 1134 { 1135 ignore_loglevel = true; 1136 pr_info("debug: ignoring loglevel setting.\n"); 1137 1138 return 0; 1139 } 1140 1141 early_param("ignore_loglevel", ignore_loglevel_setup); 1142 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1143 MODULE_PARM_DESC(ignore_loglevel, 1144 "ignore loglevel setting (prints all kernel messages to the console)"); 1145 1146 static bool suppress_message_printing(int level) 1147 { 1148 return (level >= console_loglevel && !ignore_loglevel); 1149 } 1150 1151 #ifdef CONFIG_BOOT_PRINTK_DELAY 1152 1153 static int boot_delay; /* msecs delay after each printk during bootup */ 1154 static unsigned long long loops_per_msec; /* based on boot_delay */ 1155 1156 static int __init boot_delay_setup(char *str) 1157 { 1158 unsigned long lpj; 1159 1160 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1161 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1162 1163 get_option(&str, &boot_delay); 1164 if (boot_delay > 10 * 1000) 1165 boot_delay = 0; 1166 1167 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1168 "HZ: %d, loops_per_msec: %llu\n", 1169 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1170 return 0; 1171 } 1172 early_param("boot_delay", boot_delay_setup); 1173 1174 static void boot_delay_msec(int level) 1175 { 1176 unsigned long long k; 1177 unsigned long timeout; 1178 1179 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1180 || suppress_message_printing(level)) { 1181 return; 1182 } 1183 1184 k = (unsigned long long)loops_per_msec * boot_delay; 1185 1186 timeout = jiffies + msecs_to_jiffies(boot_delay); 1187 while (k) { 1188 k--; 1189 cpu_relax(); 1190 /* 1191 * use (volatile) jiffies to prevent 1192 * compiler reduction; loop termination via jiffies 1193 * is secondary and may or may not happen. 1194 */ 1195 if (time_after(jiffies, timeout)) 1196 break; 1197 touch_nmi_watchdog(); 1198 } 1199 } 1200 #else 1201 static inline void boot_delay_msec(int level) 1202 { 1203 } 1204 #endif 1205 1206 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1207 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1208 1209 static size_t print_time(u64 ts, char *buf) 1210 { 1211 unsigned long rem_nsec; 1212 1213 if (!printk_time) 1214 return 0; 1215 1216 rem_nsec = do_div(ts, 1000000000); 1217 1218 if (!buf) 1219 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1220 1221 return sprintf(buf, "[%5lu.%06lu] ", 1222 (unsigned long)ts, rem_nsec / 1000); 1223 } 1224 1225 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1226 { 1227 size_t len = 0; 1228 unsigned int prefix = (msg->facility << 3) | msg->level; 1229 1230 if (syslog) { 1231 if (buf) { 1232 len += sprintf(buf, "<%u>", prefix); 1233 } else { 1234 len += 3; 1235 if (prefix > 999) 1236 len += 3; 1237 else if (prefix > 99) 1238 len += 2; 1239 else if (prefix > 9) 1240 len++; 1241 } 1242 } 1243 1244 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1245 return len; 1246 } 1247 1248 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1249 { 1250 const char *text = log_text(msg); 1251 size_t text_size = msg->text_len; 1252 size_t len = 0; 1253 1254 do { 1255 const char *next = memchr(text, '\n', text_size); 1256 size_t text_len; 1257 1258 if (next) { 1259 text_len = next - text; 1260 next++; 1261 text_size -= next - text; 1262 } else { 1263 text_len = text_size; 1264 } 1265 1266 if (buf) { 1267 if (print_prefix(msg, syslog, NULL) + 1268 text_len + 1 >= size - len) 1269 break; 1270 1271 len += print_prefix(msg, syslog, buf + len); 1272 memcpy(buf + len, text, text_len); 1273 len += text_len; 1274 buf[len++] = '\n'; 1275 } else { 1276 /* SYSLOG_ACTION_* buffer size only calculation */ 1277 len += print_prefix(msg, syslog, NULL); 1278 len += text_len; 1279 len++; 1280 } 1281 1282 text = next; 1283 } while (text); 1284 1285 return len; 1286 } 1287 1288 static int syslog_print(char __user *buf, int size) 1289 { 1290 char *text; 1291 struct printk_log *msg; 1292 int len = 0; 1293 1294 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1295 if (!text) 1296 return -ENOMEM; 1297 1298 while (size > 0) { 1299 size_t n; 1300 size_t skip; 1301 1302 logbuf_lock_irq(); 1303 if (syslog_seq < log_first_seq) { 1304 /* messages are gone, move to first one */ 1305 syslog_seq = log_first_seq; 1306 syslog_idx = log_first_idx; 1307 syslog_partial = 0; 1308 } 1309 if (syslog_seq == log_next_seq) { 1310 logbuf_unlock_irq(); 1311 break; 1312 } 1313 1314 skip = syslog_partial; 1315 msg = log_from_idx(syslog_idx); 1316 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1317 if (n - syslog_partial <= size) { 1318 /* message fits into buffer, move forward */ 1319 syslog_idx = log_next(syslog_idx); 1320 syslog_seq++; 1321 n -= syslog_partial; 1322 syslog_partial = 0; 1323 } else if (!len){ 1324 /* partial read(), remember position */ 1325 n = size; 1326 syslog_partial += n; 1327 } else 1328 n = 0; 1329 logbuf_unlock_irq(); 1330 1331 if (!n) 1332 break; 1333 1334 if (copy_to_user(buf, text + skip, n)) { 1335 if (!len) 1336 len = -EFAULT; 1337 break; 1338 } 1339 1340 len += n; 1341 size -= n; 1342 buf += n; 1343 } 1344 1345 kfree(text); 1346 return len; 1347 } 1348 1349 static int syslog_print_all(char __user *buf, int size, bool clear) 1350 { 1351 char *text; 1352 int len = 0; 1353 1354 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1355 if (!text) 1356 return -ENOMEM; 1357 1358 logbuf_lock_irq(); 1359 if (buf) { 1360 u64 next_seq; 1361 u64 seq; 1362 u32 idx; 1363 1364 /* 1365 * Find first record that fits, including all following records, 1366 * into the user-provided buffer for this dump. 1367 */ 1368 seq = clear_seq; 1369 idx = clear_idx; 1370 while (seq < log_next_seq) { 1371 struct printk_log *msg = log_from_idx(idx); 1372 1373 len += msg_print_text(msg, true, NULL, 0); 1374 idx = log_next(idx); 1375 seq++; 1376 } 1377 1378 /* move first record forward until length fits into the buffer */ 1379 seq = clear_seq; 1380 idx = clear_idx; 1381 while (len > size && seq < log_next_seq) { 1382 struct printk_log *msg = log_from_idx(idx); 1383 1384 len -= msg_print_text(msg, true, NULL, 0); 1385 idx = log_next(idx); 1386 seq++; 1387 } 1388 1389 /* last message fitting into this dump */ 1390 next_seq = log_next_seq; 1391 1392 len = 0; 1393 while (len >= 0 && seq < next_seq) { 1394 struct printk_log *msg = log_from_idx(idx); 1395 int textlen; 1396 1397 textlen = msg_print_text(msg, true, text, 1398 LOG_LINE_MAX + PREFIX_MAX); 1399 if (textlen < 0) { 1400 len = textlen; 1401 break; 1402 } 1403 idx = log_next(idx); 1404 seq++; 1405 1406 logbuf_unlock_irq(); 1407 if (copy_to_user(buf + len, text, textlen)) 1408 len = -EFAULT; 1409 else 1410 len += textlen; 1411 logbuf_lock_irq(); 1412 1413 if (seq < log_first_seq) { 1414 /* messages are gone, move to next one */ 1415 seq = log_first_seq; 1416 idx = log_first_idx; 1417 } 1418 } 1419 } 1420 1421 if (clear) { 1422 clear_seq = log_next_seq; 1423 clear_idx = log_next_idx; 1424 } 1425 logbuf_unlock_irq(); 1426 1427 kfree(text); 1428 return len; 1429 } 1430 1431 int do_syslog(int type, char __user *buf, int len, int source) 1432 { 1433 bool clear = false; 1434 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1435 int error; 1436 1437 error = check_syslog_permissions(type, source); 1438 if (error) 1439 goto out; 1440 1441 switch (type) { 1442 case SYSLOG_ACTION_CLOSE: /* Close log */ 1443 break; 1444 case SYSLOG_ACTION_OPEN: /* Open log */ 1445 break; 1446 case SYSLOG_ACTION_READ: /* Read from log */ 1447 error = -EINVAL; 1448 if (!buf || len < 0) 1449 goto out; 1450 error = 0; 1451 if (!len) 1452 goto out; 1453 if (!access_ok(VERIFY_WRITE, buf, len)) { 1454 error = -EFAULT; 1455 goto out; 1456 } 1457 error = wait_event_interruptible(log_wait, 1458 syslog_seq != log_next_seq); 1459 if (error) 1460 goto out; 1461 error = syslog_print(buf, len); 1462 break; 1463 /* Read/clear last kernel messages */ 1464 case SYSLOG_ACTION_READ_CLEAR: 1465 clear = true; 1466 /* FALL THRU */ 1467 /* Read last kernel messages */ 1468 case SYSLOG_ACTION_READ_ALL: 1469 error = -EINVAL; 1470 if (!buf || len < 0) 1471 goto out; 1472 error = 0; 1473 if (!len) 1474 goto out; 1475 if (!access_ok(VERIFY_WRITE, buf, len)) { 1476 error = -EFAULT; 1477 goto out; 1478 } 1479 error = syslog_print_all(buf, len, clear); 1480 break; 1481 /* Clear ring buffer */ 1482 case SYSLOG_ACTION_CLEAR: 1483 syslog_print_all(NULL, 0, true); 1484 break; 1485 /* Disable logging to console */ 1486 case SYSLOG_ACTION_CONSOLE_OFF: 1487 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1488 saved_console_loglevel = console_loglevel; 1489 console_loglevel = minimum_console_loglevel; 1490 break; 1491 /* Enable logging to console */ 1492 case SYSLOG_ACTION_CONSOLE_ON: 1493 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1494 console_loglevel = saved_console_loglevel; 1495 saved_console_loglevel = LOGLEVEL_DEFAULT; 1496 } 1497 break; 1498 /* Set level of messages printed to console */ 1499 case SYSLOG_ACTION_CONSOLE_LEVEL: 1500 error = -EINVAL; 1501 if (len < 1 || len > 8) 1502 goto out; 1503 if (len < minimum_console_loglevel) 1504 len = minimum_console_loglevel; 1505 console_loglevel = len; 1506 /* Implicitly re-enable logging to console */ 1507 saved_console_loglevel = LOGLEVEL_DEFAULT; 1508 error = 0; 1509 break; 1510 /* Number of chars in the log buffer */ 1511 case SYSLOG_ACTION_SIZE_UNREAD: 1512 logbuf_lock_irq(); 1513 if (syslog_seq < log_first_seq) { 1514 /* messages are gone, move to first one */ 1515 syslog_seq = log_first_seq; 1516 syslog_idx = log_first_idx; 1517 syslog_partial = 0; 1518 } 1519 if (source == SYSLOG_FROM_PROC) { 1520 /* 1521 * Short-cut for poll(/"proc/kmsg") which simply checks 1522 * for pending data, not the size; return the count of 1523 * records, not the length. 1524 */ 1525 error = log_next_seq - syslog_seq; 1526 } else { 1527 u64 seq = syslog_seq; 1528 u32 idx = syslog_idx; 1529 1530 error = 0; 1531 while (seq < log_next_seq) { 1532 struct printk_log *msg = log_from_idx(idx); 1533 1534 error += msg_print_text(msg, true, NULL, 0); 1535 idx = log_next(idx); 1536 seq++; 1537 } 1538 error -= syslog_partial; 1539 } 1540 logbuf_unlock_irq(); 1541 break; 1542 /* Size of the log buffer */ 1543 case SYSLOG_ACTION_SIZE_BUFFER: 1544 error = log_buf_len; 1545 break; 1546 default: 1547 error = -EINVAL; 1548 break; 1549 } 1550 out: 1551 return error; 1552 } 1553 1554 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1555 { 1556 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1557 } 1558 1559 /* 1560 * Call the console drivers, asking them to write out 1561 * log_buf[start] to log_buf[end - 1]. 1562 * The console_lock must be held. 1563 */ 1564 static void call_console_drivers(const char *ext_text, size_t ext_len, 1565 const char *text, size_t len) 1566 { 1567 struct console *con; 1568 1569 trace_console_rcuidle(text, len); 1570 1571 if (!console_drivers) 1572 return; 1573 1574 for_each_console(con) { 1575 if (exclusive_console && con != exclusive_console) 1576 continue; 1577 if (!(con->flags & CON_ENABLED)) 1578 continue; 1579 if (!con->write) 1580 continue; 1581 if (!cpu_online(smp_processor_id()) && 1582 !(con->flags & CON_ANYTIME)) 1583 continue; 1584 if (con->flags & CON_EXTENDED) 1585 con->write(con, ext_text, ext_len); 1586 else 1587 con->write(con, text, len); 1588 } 1589 } 1590 1591 int printk_delay_msec __read_mostly; 1592 1593 static inline void printk_delay(void) 1594 { 1595 if (unlikely(printk_delay_msec)) { 1596 int m = printk_delay_msec; 1597 1598 while (m--) { 1599 mdelay(1); 1600 touch_nmi_watchdog(); 1601 } 1602 } 1603 } 1604 1605 /* 1606 * Continuation lines are buffered, and not committed to the record buffer 1607 * until the line is complete, or a race forces it. The line fragments 1608 * though, are printed immediately to the consoles to ensure everything has 1609 * reached the console in case of a kernel crash. 1610 */ 1611 static struct cont { 1612 char buf[LOG_LINE_MAX]; 1613 size_t len; /* length == 0 means unused buffer */ 1614 struct task_struct *owner; /* task of first print*/ 1615 u64 ts_nsec; /* time of first print */ 1616 u8 level; /* log level of first message */ 1617 u8 facility; /* log facility of first message */ 1618 enum log_flags flags; /* prefix, newline flags */ 1619 } cont; 1620 1621 static void cont_flush(void) 1622 { 1623 if (cont.len == 0) 1624 return; 1625 1626 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1627 NULL, 0, cont.buf, cont.len); 1628 cont.len = 0; 1629 } 1630 1631 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1632 { 1633 /* 1634 * If ext consoles are present, flush and skip in-kernel 1635 * continuation. See nr_ext_console_drivers definition. Also, if 1636 * the line gets too long, split it up in separate records. 1637 */ 1638 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1639 cont_flush(); 1640 return false; 1641 } 1642 1643 if (!cont.len) { 1644 cont.facility = facility; 1645 cont.level = level; 1646 cont.owner = current; 1647 cont.ts_nsec = local_clock(); 1648 cont.flags = flags; 1649 } 1650 1651 memcpy(cont.buf + cont.len, text, len); 1652 cont.len += len; 1653 1654 // The original flags come from the first line, 1655 // but later continuations can add a newline. 1656 if (flags & LOG_NEWLINE) { 1657 cont.flags |= LOG_NEWLINE; 1658 cont_flush(); 1659 } 1660 1661 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1662 cont_flush(); 1663 1664 return true; 1665 } 1666 1667 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1668 { 1669 /* 1670 * If an earlier line was buffered, and we're a continuation 1671 * write from the same process, try to add it to the buffer. 1672 */ 1673 if (cont.len) { 1674 if (cont.owner == current && (lflags & LOG_CONT)) { 1675 if (cont_add(facility, level, lflags, text, text_len)) 1676 return text_len; 1677 } 1678 /* Otherwise, make sure it's flushed */ 1679 cont_flush(); 1680 } 1681 1682 /* Skip empty continuation lines that couldn't be added - they just flush */ 1683 if (!text_len && (lflags & LOG_CONT)) 1684 return 0; 1685 1686 /* If it doesn't end in a newline, try to buffer the current line */ 1687 if (!(lflags & LOG_NEWLINE)) { 1688 if (cont_add(facility, level, lflags, text, text_len)) 1689 return text_len; 1690 } 1691 1692 /* Store it in the record log */ 1693 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1694 } 1695 1696 asmlinkage int vprintk_emit(int facility, int level, 1697 const char *dict, size_t dictlen, 1698 const char *fmt, va_list args) 1699 { 1700 static char textbuf[LOG_LINE_MAX]; 1701 char *text = textbuf; 1702 size_t text_len = 0; 1703 enum log_flags lflags = 0; 1704 unsigned long flags; 1705 int printed_len = 0; 1706 bool in_sched = false; 1707 1708 if (level == LOGLEVEL_SCHED) { 1709 level = LOGLEVEL_DEFAULT; 1710 in_sched = true; 1711 } 1712 1713 boot_delay_msec(level); 1714 printk_delay(); 1715 1716 /* This stops the holder of console_sem just where we want him */ 1717 logbuf_lock_irqsave(flags); 1718 /* 1719 * The printf needs to come first; we need the syslog 1720 * prefix which might be passed-in as a parameter. 1721 */ 1722 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1723 1724 /* mark and strip a trailing newline */ 1725 if (text_len && text[text_len-1] == '\n') { 1726 text_len--; 1727 lflags |= LOG_NEWLINE; 1728 } 1729 1730 /* strip kernel syslog prefix and extract log level or control flags */ 1731 if (facility == 0) { 1732 int kern_level; 1733 1734 while ((kern_level = printk_get_level(text)) != 0) { 1735 switch (kern_level) { 1736 case '0' ... '7': 1737 if (level == LOGLEVEL_DEFAULT) 1738 level = kern_level - '0'; 1739 /* fallthrough */ 1740 case 'd': /* KERN_DEFAULT */ 1741 lflags |= LOG_PREFIX; 1742 break; 1743 case 'c': /* KERN_CONT */ 1744 lflags |= LOG_CONT; 1745 } 1746 1747 text_len -= 2; 1748 text += 2; 1749 } 1750 } 1751 1752 if (level == LOGLEVEL_DEFAULT) 1753 level = default_message_loglevel; 1754 1755 if (dict) 1756 lflags |= LOG_PREFIX|LOG_NEWLINE; 1757 1758 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len); 1759 1760 logbuf_unlock_irqrestore(flags); 1761 1762 /* If called from the scheduler, we can not call up(). */ 1763 if (!in_sched) { 1764 /* 1765 * Try to acquire and then immediately release the console 1766 * semaphore. The release will print out buffers and wake up 1767 * /dev/kmsg and syslog() users. 1768 */ 1769 if (console_trylock()) 1770 console_unlock(); 1771 } 1772 1773 return printed_len; 1774 } 1775 EXPORT_SYMBOL(vprintk_emit); 1776 1777 asmlinkage int vprintk(const char *fmt, va_list args) 1778 { 1779 return vprintk_func(fmt, args); 1780 } 1781 EXPORT_SYMBOL(vprintk); 1782 1783 asmlinkage int printk_emit(int facility, int level, 1784 const char *dict, size_t dictlen, 1785 const char *fmt, ...) 1786 { 1787 va_list args; 1788 int r; 1789 1790 va_start(args, fmt); 1791 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1792 va_end(args); 1793 1794 return r; 1795 } 1796 EXPORT_SYMBOL(printk_emit); 1797 1798 int vprintk_default(const char *fmt, va_list args) 1799 { 1800 int r; 1801 1802 #ifdef CONFIG_KGDB_KDB 1803 /* Allow to pass printk() to kdb but avoid a recursion. */ 1804 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1805 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1806 return r; 1807 } 1808 #endif 1809 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1810 1811 return r; 1812 } 1813 EXPORT_SYMBOL_GPL(vprintk_default); 1814 1815 /** 1816 * printk - print a kernel message 1817 * @fmt: format string 1818 * 1819 * This is printk(). It can be called from any context. We want it to work. 1820 * 1821 * We try to grab the console_lock. If we succeed, it's easy - we log the 1822 * output and call the console drivers. If we fail to get the semaphore, we 1823 * place the output into the log buffer and return. The current holder of 1824 * the console_sem will notice the new output in console_unlock(); and will 1825 * send it to the consoles before releasing the lock. 1826 * 1827 * One effect of this deferred printing is that code which calls printk() and 1828 * then changes console_loglevel may break. This is because console_loglevel 1829 * is inspected when the actual printing occurs. 1830 * 1831 * See also: 1832 * printf(3) 1833 * 1834 * See the vsnprintf() documentation for format string extensions over C99. 1835 */ 1836 asmlinkage __visible int printk(const char *fmt, ...) 1837 { 1838 va_list args; 1839 int r; 1840 1841 va_start(args, fmt); 1842 r = vprintk_func(fmt, args); 1843 va_end(args); 1844 1845 return r; 1846 } 1847 EXPORT_SYMBOL(printk); 1848 1849 #else /* CONFIG_PRINTK */ 1850 1851 #define LOG_LINE_MAX 0 1852 #define PREFIX_MAX 0 1853 1854 static u64 syslog_seq; 1855 static u32 syslog_idx; 1856 static u64 console_seq; 1857 static u32 console_idx; 1858 static u64 log_first_seq; 1859 static u32 log_first_idx; 1860 static u64 log_next_seq; 1861 static char *log_text(const struct printk_log *msg) { return NULL; } 1862 static char *log_dict(const struct printk_log *msg) { return NULL; } 1863 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1864 static u32 log_next(u32 idx) { return 0; } 1865 static ssize_t msg_print_ext_header(char *buf, size_t size, 1866 struct printk_log *msg, 1867 u64 seq) { return 0; } 1868 static ssize_t msg_print_ext_body(char *buf, size_t size, 1869 char *dict, size_t dict_len, 1870 char *text, size_t text_len) { return 0; } 1871 static void call_console_drivers(const char *ext_text, size_t ext_len, 1872 const char *text, size_t len) {} 1873 static size_t msg_print_text(const struct printk_log *msg, 1874 bool syslog, char *buf, size_t size) { return 0; } 1875 static bool suppress_message_printing(int level) { return false; } 1876 1877 #endif /* CONFIG_PRINTK */ 1878 1879 #ifdef CONFIG_EARLY_PRINTK 1880 struct console *early_console; 1881 1882 asmlinkage __visible void early_printk(const char *fmt, ...) 1883 { 1884 va_list ap; 1885 char buf[512]; 1886 int n; 1887 1888 if (!early_console) 1889 return; 1890 1891 va_start(ap, fmt); 1892 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1893 va_end(ap); 1894 1895 early_console->write(early_console, buf, n); 1896 } 1897 #endif 1898 1899 static int __add_preferred_console(char *name, int idx, char *options, 1900 char *brl_options) 1901 { 1902 struct console_cmdline *c; 1903 int i; 1904 1905 /* 1906 * See if this tty is not yet registered, and 1907 * if we have a slot free. 1908 */ 1909 for (i = 0, c = console_cmdline; i < console_cmdline_cnt; i++, c++) { 1910 if (strcmp(c->name, name) == 0 && c->index == idx) { 1911 if (brl_options) 1912 return 0; 1913 1914 /* 1915 * Maintain an invariant that will help to find if 1916 * the matching console is preferred, see 1917 * register_console(): 1918 * 1919 * The last non-braille console is always 1920 * the preferred one. 1921 */ 1922 if (i != console_cmdline_cnt - 1) 1923 swap(console_cmdline[i], 1924 console_cmdline[console_cmdline_cnt - 1]); 1925 1926 preferred_console = console_cmdline_cnt - 1; 1927 1928 return 0; 1929 } 1930 } 1931 if (i == MAX_CMDLINECONSOLES) 1932 return -E2BIG; 1933 if (!brl_options) 1934 preferred_console = i; 1935 strlcpy(c->name, name, sizeof(c->name)); 1936 c->options = options; 1937 braille_set_options(c, brl_options); 1938 1939 c->index = idx; 1940 console_cmdline_cnt++; 1941 return 0; 1942 } 1943 /* 1944 * Set up a console. Called via do_early_param() in init/main.c 1945 * for each "console=" parameter in the boot command line. 1946 */ 1947 static int __init console_setup(char *str) 1948 { 1949 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1950 char *s, *options, *brl_options = NULL; 1951 int idx; 1952 1953 if (_braille_console_setup(&str, &brl_options)) 1954 return 1; 1955 1956 /* 1957 * Decode str into name, index, options. 1958 */ 1959 if (str[0] >= '0' && str[0] <= '9') { 1960 strcpy(buf, "ttyS"); 1961 strncpy(buf + 4, str, sizeof(buf) - 5); 1962 } else { 1963 strncpy(buf, str, sizeof(buf) - 1); 1964 } 1965 buf[sizeof(buf) - 1] = 0; 1966 options = strchr(str, ','); 1967 if (options) 1968 *(options++) = 0; 1969 #ifdef __sparc__ 1970 if (!strcmp(str, "ttya")) 1971 strcpy(buf, "ttyS0"); 1972 if (!strcmp(str, "ttyb")) 1973 strcpy(buf, "ttyS1"); 1974 #endif 1975 for (s = buf; *s; s++) 1976 if (isdigit(*s) || *s == ',') 1977 break; 1978 idx = simple_strtoul(s, NULL, 10); 1979 *s = 0; 1980 1981 __add_preferred_console(buf, idx, options, brl_options); 1982 console_set_on_cmdline = 1; 1983 return 1; 1984 } 1985 __setup("console=", console_setup); 1986 1987 /** 1988 * add_preferred_console - add a device to the list of preferred consoles. 1989 * @name: device name 1990 * @idx: device index 1991 * @options: options for this console 1992 * 1993 * The last preferred console added will be used for kernel messages 1994 * and stdin/out/err for init. Normally this is used by console_setup 1995 * above to handle user-supplied console arguments; however it can also 1996 * be used by arch-specific code either to override the user or more 1997 * commonly to provide a default console (ie from PROM variables) when 1998 * the user has not supplied one. 1999 */ 2000 int add_preferred_console(char *name, int idx, char *options) 2001 { 2002 return __add_preferred_console(name, idx, options, NULL); 2003 } 2004 2005 bool console_suspend_enabled = true; 2006 EXPORT_SYMBOL(console_suspend_enabled); 2007 2008 static int __init console_suspend_disable(char *str) 2009 { 2010 console_suspend_enabled = false; 2011 return 1; 2012 } 2013 __setup("no_console_suspend", console_suspend_disable); 2014 module_param_named(console_suspend, console_suspend_enabled, 2015 bool, S_IRUGO | S_IWUSR); 2016 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2017 " and hibernate operations"); 2018 2019 /** 2020 * suspend_console - suspend the console subsystem 2021 * 2022 * This disables printk() while we go into suspend states 2023 */ 2024 void suspend_console(void) 2025 { 2026 if (!console_suspend_enabled) 2027 return; 2028 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2029 console_lock(); 2030 console_suspended = 1; 2031 up_console_sem(); 2032 } 2033 2034 void resume_console(void) 2035 { 2036 if (!console_suspend_enabled) 2037 return; 2038 down_console_sem(); 2039 console_suspended = 0; 2040 console_unlock(); 2041 } 2042 2043 /** 2044 * console_cpu_notify - print deferred console messages after CPU hotplug 2045 * @cpu: unused 2046 * 2047 * If printk() is called from a CPU that is not online yet, the messages 2048 * will be printed on the console only if there are CON_ANYTIME consoles. 2049 * This function is called when a new CPU comes online (or fails to come 2050 * up) or goes offline. 2051 */ 2052 static int console_cpu_notify(unsigned int cpu) 2053 { 2054 if (!cpuhp_tasks_frozen) { 2055 /* If trylock fails, someone else is doing the printing */ 2056 if (console_trylock()) 2057 console_unlock(); 2058 } 2059 return 0; 2060 } 2061 2062 /** 2063 * console_lock - lock the console system for exclusive use. 2064 * 2065 * Acquires a lock which guarantees that the caller has 2066 * exclusive access to the console system and the console_drivers list. 2067 * 2068 * Can sleep, returns nothing. 2069 */ 2070 void console_lock(void) 2071 { 2072 might_sleep(); 2073 2074 down_console_sem(); 2075 if (console_suspended) 2076 return; 2077 console_locked = 1; 2078 console_may_schedule = 1; 2079 } 2080 EXPORT_SYMBOL(console_lock); 2081 2082 /** 2083 * console_trylock - try to lock the console system for exclusive use. 2084 * 2085 * Try to acquire a lock which guarantees that the caller has exclusive 2086 * access to the console system and the console_drivers list. 2087 * 2088 * returns 1 on success, and 0 on failure to acquire the lock. 2089 */ 2090 int console_trylock(void) 2091 { 2092 if (down_trylock_console_sem()) 2093 return 0; 2094 if (console_suspended) { 2095 up_console_sem(); 2096 return 0; 2097 } 2098 console_locked = 1; 2099 /* 2100 * When PREEMPT_COUNT disabled we can't reliably detect if it's 2101 * safe to schedule (e.g. calling printk while holding a spin_lock), 2102 * because preempt_disable()/preempt_enable() are just barriers there 2103 * and preempt_count() is always 0. 2104 * 2105 * RCU read sections have a separate preemption counter when 2106 * PREEMPT_RCU enabled thus we must take extra care and check 2107 * rcu_preempt_depth(), otherwise RCU read sections modify 2108 * preempt_count(). 2109 */ 2110 console_may_schedule = !oops_in_progress && 2111 preemptible() && 2112 !rcu_preempt_depth(); 2113 return 1; 2114 } 2115 EXPORT_SYMBOL(console_trylock); 2116 2117 int is_console_locked(void) 2118 { 2119 return console_locked; 2120 } 2121 2122 /* 2123 * Check if we have any console that is capable of printing while cpu is 2124 * booting or shutting down. Requires console_sem. 2125 */ 2126 static int have_callable_console(void) 2127 { 2128 struct console *con; 2129 2130 for_each_console(con) 2131 if ((con->flags & CON_ENABLED) && 2132 (con->flags & CON_ANYTIME)) 2133 return 1; 2134 2135 return 0; 2136 } 2137 2138 /* 2139 * Can we actually use the console at this time on this cpu? 2140 * 2141 * Console drivers may assume that per-cpu resources have been allocated. So 2142 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2143 * call them until this CPU is officially up. 2144 */ 2145 static inline int can_use_console(void) 2146 { 2147 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2148 } 2149 2150 /** 2151 * console_unlock - unlock the console system 2152 * 2153 * Releases the console_lock which the caller holds on the console system 2154 * and the console driver list. 2155 * 2156 * While the console_lock was held, console output may have been buffered 2157 * by printk(). If this is the case, console_unlock(); emits 2158 * the output prior to releasing the lock. 2159 * 2160 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2161 * 2162 * console_unlock(); may be called from any context. 2163 */ 2164 void console_unlock(void) 2165 { 2166 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2167 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2168 static u64 seen_seq; 2169 unsigned long flags; 2170 bool wake_klogd = false; 2171 bool do_cond_resched, retry; 2172 2173 if (console_suspended) { 2174 up_console_sem(); 2175 return; 2176 } 2177 2178 /* 2179 * Console drivers are called with interrupts disabled, so 2180 * @console_may_schedule should be cleared before; however, we may 2181 * end up dumping a lot of lines, for example, if called from 2182 * console registration path, and should invoke cond_resched() 2183 * between lines if allowable. Not doing so can cause a very long 2184 * scheduling stall on a slow console leading to RCU stall and 2185 * softlockup warnings which exacerbate the issue with more 2186 * messages practically incapacitating the system. 2187 * 2188 * console_trylock() is not able to detect the preemptive 2189 * context reliably. Therefore the value must be stored before 2190 * and cleared after the the "again" goto label. 2191 */ 2192 do_cond_resched = console_may_schedule; 2193 again: 2194 console_may_schedule = 0; 2195 2196 /* 2197 * We released the console_sem lock, so we need to recheck if 2198 * cpu is online and (if not) is there at least one CON_ANYTIME 2199 * console. 2200 */ 2201 if (!can_use_console()) { 2202 console_locked = 0; 2203 up_console_sem(); 2204 return; 2205 } 2206 2207 for (;;) { 2208 struct printk_log *msg; 2209 size_t ext_len = 0; 2210 size_t len; 2211 2212 printk_safe_enter_irqsave(flags); 2213 raw_spin_lock(&logbuf_lock); 2214 if (seen_seq != log_next_seq) { 2215 wake_klogd = true; 2216 seen_seq = log_next_seq; 2217 } 2218 2219 if (console_seq < log_first_seq) { 2220 len = sprintf(text, "** %u printk messages dropped ** ", 2221 (unsigned)(log_first_seq - console_seq)); 2222 2223 /* messages are gone, move to first one */ 2224 console_seq = log_first_seq; 2225 console_idx = log_first_idx; 2226 } else { 2227 len = 0; 2228 } 2229 skip: 2230 if (console_seq == log_next_seq) 2231 break; 2232 2233 msg = log_from_idx(console_idx); 2234 if (suppress_message_printing(msg->level)) { 2235 /* 2236 * Skip record we have buffered and already printed 2237 * directly to the console when we received it, and 2238 * record that has level above the console loglevel. 2239 */ 2240 console_idx = log_next(console_idx); 2241 console_seq++; 2242 goto skip; 2243 } 2244 2245 len += msg_print_text(msg, false, text + len, sizeof(text) - len); 2246 if (nr_ext_console_drivers) { 2247 ext_len = msg_print_ext_header(ext_text, 2248 sizeof(ext_text), 2249 msg, console_seq); 2250 ext_len += msg_print_ext_body(ext_text + ext_len, 2251 sizeof(ext_text) - ext_len, 2252 log_dict(msg), msg->dict_len, 2253 log_text(msg), msg->text_len); 2254 } 2255 console_idx = log_next(console_idx); 2256 console_seq++; 2257 raw_spin_unlock(&logbuf_lock); 2258 2259 stop_critical_timings(); /* don't trace print latency */ 2260 call_console_drivers(ext_text, ext_len, text, len); 2261 start_critical_timings(); 2262 printk_safe_exit_irqrestore(flags); 2263 2264 if (do_cond_resched) 2265 cond_resched(); 2266 } 2267 console_locked = 0; 2268 2269 /* Release the exclusive_console once it is used */ 2270 if (unlikely(exclusive_console)) 2271 exclusive_console = NULL; 2272 2273 raw_spin_unlock(&logbuf_lock); 2274 2275 up_console_sem(); 2276 2277 /* 2278 * Someone could have filled up the buffer again, so re-check if there's 2279 * something to flush. In case we cannot trylock the console_sem again, 2280 * there's a new owner and the console_unlock() from them will do the 2281 * flush, no worries. 2282 */ 2283 raw_spin_lock(&logbuf_lock); 2284 retry = console_seq != log_next_seq; 2285 raw_spin_unlock(&logbuf_lock); 2286 printk_safe_exit_irqrestore(flags); 2287 2288 if (retry && console_trylock()) 2289 goto again; 2290 2291 if (wake_klogd) 2292 wake_up_klogd(); 2293 } 2294 EXPORT_SYMBOL(console_unlock); 2295 2296 /** 2297 * console_conditional_schedule - yield the CPU if required 2298 * 2299 * If the console code is currently allowed to sleep, and 2300 * if this CPU should yield the CPU to another task, do 2301 * so here. 2302 * 2303 * Must be called within console_lock();. 2304 */ 2305 void __sched console_conditional_schedule(void) 2306 { 2307 if (console_may_schedule) 2308 cond_resched(); 2309 } 2310 EXPORT_SYMBOL(console_conditional_schedule); 2311 2312 void console_unblank(void) 2313 { 2314 struct console *c; 2315 2316 /* 2317 * console_unblank can no longer be called in interrupt context unless 2318 * oops_in_progress is set to 1.. 2319 */ 2320 if (oops_in_progress) { 2321 if (down_trylock_console_sem() != 0) 2322 return; 2323 } else 2324 console_lock(); 2325 2326 console_locked = 1; 2327 console_may_schedule = 0; 2328 for_each_console(c) 2329 if ((c->flags & CON_ENABLED) && c->unblank) 2330 c->unblank(); 2331 console_unlock(); 2332 } 2333 2334 /** 2335 * console_flush_on_panic - flush console content on panic 2336 * 2337 * Immediately output all pending messages no matter what. 2338 */ 2339 void console_flush_on_panic(void) 2340 { 2341 /* 2342 * If someone else is holding the console lock, trylock will fail 2343 * and may_schedule may be set. Ignore and proceed to unlock so 2344 * that messages are flushed out. As this can be called from any 2345 * context and we don't want to get preempted while flushing, 2346 * ensure may_schedule is cleared. 2347 */ 2348 console_trylock(); 2349 console_may_schedule = 0; 2350 console_unlock(); 2351 } 2352 2353 /* 2354 * Return the console tty driver structure and its associated index 2355 */ 2356 struct tty_driver *console_device(int *index) 2357 { 2358 struct console *c; 2359 struct tty_driver *driver = NULL; 2360 2361 console_lock(); 2362 for_each_console(c) { 2363 if (!c->device) 2364 continue; 2365 driver = c->device(c, index); 2366 if (driver) 2367 break; 2368 } 2369 console_unlock(); 2370 return driver; 2371 } 2372 2373 /* 2374 * Prevent further output on the passed console device so that (for example) 2375 * serial drivers can disable console output before suspending a port, and can 2376 * re-enable output afterwards. 2377 */ 2378 void console_stop(struct console *console) 2379 { 2380 console_lock(); 2381 console->flags &= ~CON_ENABLED; 2382 console_unlock(); 2383 } 2384 EXPORT_SYMBOL(console_stop); 2385 2386 void console_start(struct console *console) 2387 { 2388 console_lock(); 2389 console->flags |= CON_ENABLED; 2390 console_unlock(); 2391 } 2392 EXPORT_SYMBOL(console_start); 2393 2394 static int __read_mostly keep_bootcon; 2395 2396 static int __init keep_bootcon_setup(char *str) 2397 { 2398 keep_bootcon = 1; 2399 pr_info("debug: skip boot console de-registration.\n"); 2400 2401 return 0; 2402 } 2403 2404 early_param("keep_bootcon", keep_bootcon_setup); 2405 2406 /* 2407 * The console driver calls this routine during kernel initialization 2408 * to register the console printing procedure with printk() and to 2409 * print any messages that were printed by the kernel before the 2410 * console driver was initialized. 2411 * 2412 * This can happen pretty early during the boot process (because of 2413 * early_printk) - sometimes before setup_arch() completes - be careful 2414 * of what kernel features are used - they may not be initialised yet. 2415 * 2416 * There are two types of consoles - bootconsoles (early_printk) and 2417 * "real" consoles (everything which is not a bootconsole) which are 2418 * handled differently. 2419 * - Any number of bootconsoles can be registered at any time. 2420 * - As soon as a "real" console is registered, all bootconsoles 2421 * will be unregistered automatically. 2422 * - Once a "real" console is registered, any attempt to register a 2423 * bootconsoles will be rejected 2424 */ 2425 void register_console(struct console *newcon) 2426 { 2427 int i; 2428 unsigned long flags; 2429 struct console *bcon = NULL; 2430 struct console_cmdline *c; 2431 static bool has_preferred; 2432 2433 if (console_drivers) 2434 for_each_console(bcon) 2435 if (WARN(bcon == newcon, 2436 "console '%s%d' already registered\n", 2437 bcon->name, bcon->index)) 2438 return; 2439 2440 /* 2441 * before we register a new CON_BOOT console, make sure we don't 2442 * already have a valid console 2443 */ 2444 if (console_drivers && newcon->flags & CON_BOOT) { 2445 /* find the last or real console */ 2446 for_each_console(bcon) { 2447 if (!(bcon->flags & CON_BOOT)) { 2448 pr_info("Too late to register bootconsole %s%d\n", 2449 newcon->name, newcon->index); 2450 return; 2451 } 2452 } 2453 } 2454 2455 if (console_drivers && console_drivers->flags & CON_BOOT) 2456 bcon = console_drivers; 2457 2458 if (!has_preferred || bcon || !console_drivers) 2459 has_preferred = preferred_console >= 0; 2460 2461 /* 2462 * See if we want to use this console driver. If we 2463 * didn't select a console we take the first one 2464 * that registers here. 2465 */ 2466 if (!has_preferred) { 2467 if (newcon->index < 0) 2468 newcon->index = 0; 2469 if (newcon->setup == NULL || 2470 newcon->setup(newcon, NULL) == 0) { 2471 newcon->flags |= CON_ENABLED; 2472 if (newcon->device) { 2473 newcon->flags |= CON_CONSDEV; 2474 has_preferred = true; 2475 } 2476 } 2477 } 2478 2479 /* 2480 * See if this console matches one we selected on the command line. 2481 * 2482 * There may be several entries in the console_cmdline array matching 2483 * with the same console, one with newcon->match(), another by 2484 * name/index: 2485 * 2486 * pl011,mmio,0x87e024000000,115200 -- added from SPCR 2487 * ttyAMA0 -- added from command line 2488 * 2489 * Traverse the console_cmdline array in reverse order to be 2490 * sure that if this console is preferred then it will be the first 2491 * matching entry. We use the invariant that is maintained in 2492 * __add_preferred_console(). 2493 */ 2494 for (i = console_cmdline_cnt - 1; i >= 0; i--) { 2495 c = console_cmdline + i; 2496 2497 if (!newcon->match || 2498 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2499 /* default matching */ 2500 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2501 if (strcmp(c->name, newcon->name) != 0) 2502 continue; 2503 if (newcon->index >= 0 && 2504 newcon->index != c->index) 2505 continue; 2506 if (newcon->index < 0) 2507 newcon->index = c->index; 2508 2509 if (_braille_register_console(newcon, c)) 2510 return; 2511 2512 if (newcon->setup && 2513 newcon->setup(newcon, c->options) != 0) 2514 break; 2515 } 2516 2517 newcon->flags |= CON_ENABLED; 2518 if (i == preferred_console) { 2519 newcon->flags |= CON_CONSDEV; 2520 has_preferred = true; 2521 } 2522 break; 2523 } 2524 2525 if (!(newcon->flags & CON_ENABLED)) 2526 return; 2527 2528 /* 2529 * If we have a bootconsole, and are switching to a real console, 2530 * don't print everything out again, since when the boot console, and 2531 * the real console are the same physical device, it's annoying to 2532 * see the beginning boot messages twice 2533 */ 2534 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2535 newcon->flags &= ~CON_PRINTBUFFER; 2536 2537 /* 2538 * Put this console in the list - keep the 2539 * preferred driver at the head of the list. 2540 */ 2541 console_lock(); 2542 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2543 newcon->next = console_drivers; 2544 console_drivers = newcon; 2545 if (newcon->next) 2546 newcon->next->flags &= ~CON_CONSDEV; 2547 } else { 2548 newcon->next = console_drivers->next; 2549 console_drivers->next = newcon; 2550 } 2551 2552 if (newcon->flags & CON_EXTENDED) 2553 if (!nr_ext_console_drivers++) 2554 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2555 2556 if (newcon->flags & CON_PRINTBUFFER) { 2557 /* 2558 * console_unlock(); will print out the buffered messages 2559 * for us. 2560 */ 2561 logbuf_lock_irqsave(flags); 2562 console_seq = syslog_seq; 2563 console_idx = syslog_idx; 2564 logbuf_unlock_irqrestore(flags); 2565 /* 2566 * We're about to replay the log buffer. Only do this to the 2567 * just-registered console to avoid excessive message spam to 2568 * the already-registered consoles. 2569 */ 2570 exclusive_console = newcon; 2571 } 2572 console_unlock(); 2573 console_sysfs_notify(); 2574 2575 /* 2576 * By unregistering the bootconsoles after we enable the real console 2577 * we get the "console xxx enabled" message on all the consoles - 2578 * boot consoles, real consoles, etc - this is to ensure that end 2579 * users know there might be something in the kernel's log buffer that 2580 * went to the bootconsole (that they do not see on the real console) 2581 */ 2582 pr_info("%sconsole [%s%d] enabled\n", 2583 (newcon->flags & CON_BOOT) ? "boot" : "" , 2584 newcon->name, newcon->index); 2585 if (bcon && 2586 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2587 !keep_bootcon) { 2588 /* We need to iterate through all boot consoles, to make 2589 * sure we print everything out, before we unregister them. 2590 */ 2591 for_each_console(bcon) 2592 if (bcon->flags & CON_BOOT) 2593 unregister_console(bcon); 2594 } 2595 } 2596 EXPORT_SYMBOL(register_console); 2597 2598 int unregister_console(struct console *console) 2599 { 2600 struct console *a, *b; 2601 int res; 2602 2603 pr_info("%sconsole [%s%d] disabled\n", 2604 (console->flags & CON_BOOT) ? "boot" : "" , 2605 console->name, console->index); 2606 2607 res = _braille_unregister_console(console); 2608 if (res) 2609 return res; 2610 2611 res = 1; 2612 console_lock(); 2613 if (console_drivers == console) { 2614 console_drivers=console->next; 2615 res = 0; 2616 } else if (console_drivers) { 2617 for (a=console_drivers->next, b=console_drivers ; 2618 a; b=a, a=b->next) { 2619 if (a == console) { 2620 b->next = a->next; 2621 res = 0; 2622 break; 2623 } 2624 } 2625 } 2626 2627 if (!res && (console->flags & CON_EXTENDED)) 2628 nr_ext_console_drivers--; 2629 2630 /* 2631 * If this isn't the last console and it has CON_CONSDEV set, we 2632 * need to set it on the next preferred console. 2633 */ 2634 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2635 console_drivers->flags |= CON_CONSDEV; 2636 2637 console->flags &= ~CON_ENABLED; 2638 console_unlock(); 2639 console_sysfs_notify(); 2640 return res; 2641 } 2642 EXPORT_SYMBOL(unregister_console); 2643 2644 /* 2645 * Some boot consoles access data that is in the init section and which will 2646 * be discarded after the initcalls have been run. To make sure that no code 2647 * will access this data, unregister the boot consoles in a late initcall. 2648 * 2649 * If for some reason, such as deferred probe or the driver being a loadable 2650 * module, the real console hasn't registered yet at this point, there will 2651 * be a brief interval in which no messages are logged to the console, which 2652 * makes it difficult to diagnose problems that occur during this time. 2653 * 2654 * To mitigate this problem somewhat, only unregister consoles whose memory 2655 * intersects with the init section. Note that code exists elsewhere to get 2656 * rid of the boot console as soon as the proper console shows up, so there 2657 * won't be side-effects from postponing the removal. 2658 */ 2659 static int __init printk_late_init(void) 2660 { 2661 struct console *con; 2662 int ret; 2663 2664 for_each_console(con) { 2665 if (!keep_bootcon && con->flags & CON_BOOT) { 2666 /* 2667 * Make sure to unregister boot consoles whose data 2668 * resides in the init section before the init section 2669 * is discarded. Boot consoles whose data will stick 2670 * around will automatically be unregistered when the 2671 * proper console replaces them. 2672 */ 2673 if (init_section_intersects(con, sizeof(*con))) 2674 unregister_console(con); 2675 } 2676 } 2677 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2678 console_cpu_notify); 2679 WARN_ON(ret < 0); 2680 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2681 console_cpu_notify, NULL); 2682 WARN_ON(ret < 0); 2683 return 0; 2684 } 2685 late_initcall(printk_late_init); 2686 2687 #if defined CONFIG_PRINTK 2688 /* 2689 * Delayed printk version, for scheduler-internal messages: 2690 */ 2691 #define PRINTK_PENDING_WAKEUP 0x01 2692 #define PRINTK_PENDING_OUTPUT 0x02 2693 2694 static DEFINE_PER_CPU(int, printk_pending); 2695 2696 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2697 { 2698 int pending = __this_cpu_xchg(printk_pending, 0); 2699 2700 if (pending & PRINTK_PENDING_OUTPUT) { 2701 /* If trylock fails, someone else is doing the printing */ 2702 if (console_trylock()) 2703 console_unlock(); 2704 } 2705 2706 if (pending & PRINTK_PENDING_WAKEUP) 2707 wake_up_interruptible(&log_wait); 2708 } 2709 2710 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2711 .func = wake_up_klogd_work_func, 2712 .flags = IRQ_WORK_LAZY, 2713 }; 2714 2715 void wake_up_klogd(void) 2716 { 2717 preempt_disable(); 2718 if (waitqueue_active(&log_wait)) { 2719 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2720 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2721 } 2722 preempt_enable(); 2723 } 2724 2725 int printk_deferred(const char *fmt, ...) 2726 { 2727 va_list args; 2728 int r; 2729 2730 preempt_disable(); 2731 va_start(args, fmt); 2732 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2733 va_end(args); 2734 2735 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2736 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2737 preempt_enable(); 2738 2739 return r; 2740 } 2741 2742 /* 2743 * printk rate limiting, lifted from the networking subsystem. 2744 * 2745 * This enforces a rate limit: not more than 10 kernel messages 2746 * every 5s to make a denial-of-service attack impossible. 2747 */ 2748 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2749 2750 int __printk_ratelimit(const char *func) 2751 { 2752 return ___ratelimit(&printk_ratelimit_state, func); 2753 } 2754 EXPORT_SYMBOL(__printk_ratelimit); 2755 2756 /** 2757 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2758 * @caller_jiffies: pointer to caller's state 2759 * @interval_msecs: minimum interval between prints 2760 * 2761 * printk_timed_ratelimit() returns true if more than @interval_msecs 2762 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2763 * returned true. 2764 */ 2765 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2766 unsigned int interval_msecs) 2767 { 2768 unsigned long elapsed = jiffies - *caller_jiffies; 2769 2770 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2771 return false; 2772 2773 *caller_jiffies = jiffies; 2774 return true; 2775 } 2776 EXPORT_SYMBOL(printk_timed_ratelimit); 2777 2778 static DEFINE_SPINLOCK(dump_list_lock); 2779 static LIST_HEAD(dump_list); 2780 2781 /** 2782 * kmsg_dump_register - register a kernel log dumper. 2783 * @dumper: pointer to the kmsg_dumper structure 2784 * 2785 * Adds a kernel log dumper to the system. The dump callback in the 2786 * structure will be called when the kernel oopses or panics and must be 2787 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2788 */ 2789 int kmsg_dump_register(struct kmsg_dumper *dumper) 2790 { 2791 unsigned long flags; 2792 int err = -EBUSY; 2793 2794 /* The dump callback needs to be set */ 2795 if (!dumper->dump) 2796 return -EINVAL; 2797 2798 spin_lock_irqsave(&dump_list_lock, flags); 2799 /* Don't allow registering multiple times */ 2800 if (!dumper->registered) { 2801 dumper->registered = 1; 2802 list_add_tail_rcu(&dumper->list, &dump_list); 2803 err = 0; 2804 } 2805 spin_unlock_irqrestore(&dump_list_lock, flags); 2806 2807 return err; 2808 } 2809 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2810 2811 /** 2812 * kmsg_dump_unregister - unregister a kmsg dumper. 2813 * @dumper: pointer to the kmsg_dumper structure 2814 * 2815 * Removes a dump device from the system. Returns zero on success and 2816 * %-EINVAL otherwise. 2817 */ 2818 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2819 { 2820 unsigned long flags; 2821 int err = -EINVAL; 2822 2823 spin_lock_irqsave(&dump_list_lock, flags); 2824 if (dumper->registered) { 2825 dumper->registered = 0; 2826 list_del_rcu(&dumper->list); 2827 err = 0; 2828 } 2829 spin_unlock_irqrestore(&dump_list_lock, flags); 2830 synchronize_rcu(); 2831 2832 return err; 2833 } 2834 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2835 2836 static bool always_kmsg_dump; 2837 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2838 2839 /** 2840 * kmsg_dump - dump kernel log to kernel message dumpers. 2841 * @reason: the reason (oops, panic etc) for dumping 2842 * 2843 * Call each of the registered dumper's dump() callback, which can 2844 * retrieve the kmsg records with kmsg_dump_get_line() or 2845 * kmsg_dump_get_buffer(). 2846 */ 2847 void kmsg_dump(enum kmsg_dump_reason reason) 2848 { 2849 struct kmsg_dumper *dumper; 2850 unsigned long flags; 2851 2852 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2853 return; 2854 2855 rcu_read_lock(); 2856 list_for_each_entry_rcu(dumper, &dump_list, list) { 2857 if (dumper->max_reason && reason > dumper->max_reason) 2858 continue; 2859 2860 /* initialize iterator with data about the stored records */ 2861 dumper->active = true; 2862 2863 logbuf_lock_irqsave(flags); 2864 dumper->cur_seq = clear_seq; 2865 dumper->cur_idx = clear_idx; 2866 dumper->next_seq = log_next_seq; 2867 dumper->next_idx = log_next_idx; 2868 logbuf_unlock_irqrestore(flags); 2869 2870 /* invoke dumper which will iterate over records */ 2871 dumper->dump(dumper, reason); 2872 2873 /* reset iterator */ 2874 dumper->active = false; 2875 } 2876 rcu_read_unlock(); 2877 } 2878 2879 /** 2880 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2881 * @dumper: registered kmsg dumper 2882 * @syslog: include the "<4>" prefixes 2883 * @line: buffer to copy the line to 2884 * @size: maximum size of the buffer 2885 * @len: length of line placed into buffer 2886 * 2887 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2888 * record, and copy one record into the provided buffer. 2889 * 2890 * Consecutive calls will return the next available record moving 2891 * towards the end of the buffer with the youngest messages. 2892 * 2893 * A return value of FALSE indicates that there are no more records to 2894 * read. 2895 * 2896 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2897 */ 2898 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2899 char *line, size_t size, size_t *len) 2900 { 2901 struct printk_log *msg; 2902 size_t l = 0; 2903 bool ret = false; 2904 2905 if (!dumper->active) 2906 goto out; 2907 2908 if (dumper->cur_seq < log_first_seq) { 2909 /* messages are gone, move to first available one */ 2910 dumper->cur_seq = log_first_seq; 2911 dumper->cur_idx = log_first_idx; 2912 } 2913 2914 /* last entry */ 2915 if (dumper->cur_seq >= log_next_seq) 2916 goto out; 2917 2918 msg = log_from_idx(dumper->cur_idx); 2919 l = msg_print_text(msg, syslog, line, size); 2920 2921 dumper->cur_idx = log_next(dumper->cur_idx); 2922 dumper->cur_seq++; 2923 ret = true; 2924 out: 2925 if (len) 2926 *len = l; 2927 return ret; 2928 } 2929 2930 /** 2931 * kmsg_dump_get_line - retrieve one kmsg log line 2932 * @dumper: registered kmsg dumper 2933 * @syslog: include the "<4>" prefixes 2934 * @line: buffer to copy the line to 2935 * @size: maximum size of the buffer 2936 * @len: length of line placed into buffer 2937 * 2938 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2939 * record, and copy one record into the provided buffer. 2940 * 2941 * Consecutive calls will return the next available record moving 2942 * towards the end of the buffer with the youngest messages. 2943 * 2944 * A return value of FALSE indicates that there are no more records to 2945 * read. 2946 */ 2947 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2948 char *line, size_t size, size_t *len) 2949 { 2950 unsigned long flags; 2951 bool ret; 2952 2953 logbuf_lock_irqsave(flags); 2954 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2955 logbuf_unlock_irqrestore(flags); 2956 2957 return ret; 2958 } 2959 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2960 2961 /** 2962 * kmsg_dump_get_buffer - copy kmsg log lines 2963 * @dumper: registered kmsg dumper 2964 * @syslog: include the "<4>" prefixes 2965 * @buf: buffer to copy the line to 2966 * @size: maximum size of the buffer 2967 * @len: length of line placed into buffer 2968 * 2969 * Start at the end of the kmsg buffer and fill the provided buffer 2970 * with as many of the the *youngest* kmsg records that fit into it. 2971 * If the buffer is large enough, all available kmsg records will be 2972 * copied with a single call. 2973 * 2974 * Consecutive calls will fill the buffer with the next block of 2975 * available older records, not including the earlier retrieved ones. 2976 * 2977 * A return value of FALSE indicates that there are no more records to 2978 * read. 2979 */ 2980 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2981 char *buf, size_t size, size_t *len) 2982 { 2983 unsigned long flags; 2984 u64 seq; 2985 u32 idx; 2986 u64 next_seq; 2987 u32 next_idx; 2988 size_t l = 0; 2989 bool ret = false; 2990 2991 if (!dumper->active) 2992 goto out; 2993 2994 logbuf_lock_irqsave(flags); 2995 if (dumper->cur_seq < log_first_seq) { 2996 /* messages are gone, move to first available one */ 2997 dumper->cur_seq = log_first_seq; 2998 dumper->cur_idx = log_first_idx; 2999 } 3000 3001 /* last entry */ 3002 if (dumper->cur_seq >= dumper->next_seq) { 3003 logbuf_unlock_irqrestore(flags); 3004 goto out; 3005 } 3006 3007 /* calculate length of entire buffer */ 3008 seq = dumper->cur_seq; 3009 idx = dumper->cur_idx; 3010 while (seq < dumper->next_seq) { 3011 struct printk_log *msg = log_from_idx(idx); 3012 3013 l += msg_print_text(msg, true, NULL, 0); 3014 idx = log_next(idx); 3015 seq++; 3016 } 3017 3018 /* move first record forward until length fits into the buffer */ 3019 seq = dumper->cur_seq; 3020 idx = dumper->cur_idx; 3021 while (l > size && seq < dumper->next_seq) { 3022 struct printk_log *msg = log_from_idx(idx); 3023 3024 l -= msg_print_text(msg, true, NULL, 0); 3025 idx = log_next(idx); 3026 seq++; 3027 } 3028 3029 /* last message in next interation */ 3030 next_seq = seq; 3031 next_idx = idx; 3032 3033 l = 0; 3034 while (seq < dumper->next_seq) { 3035 struct printk_log *msg = log_from_idx(idx); 3036 3037 l += msg_print_text(msg, syslog, buf + l, size - l); 3038 idx = log_next(idx); 3039 seq++; 3040 } 3041 3042 dumper->next_seq = next_seq; 3043 dumper->next_idx = next_idx; 3044 ret = true; 3045 logbuf_unlock_irqrestore(flags); 3046 out: 3047 if (len) 3048 *len = l; 3049 return ret; 3050 } 3051 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3052 3053 /** 3054 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3055 * @dumper: registered kmsg dumper 3056 * 3057 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3058 * kmsg_dump_get_buffer() can be called again and used multiple 3059 * times within the same dumper.dump() callback. 3060 * 3061 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3062 */ 3063 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3064 { 3065 dumper->cur_seq = clear_seq; 3066 dumper->cur_idx = clear_idx; 3067 dumper->next_seq = log_next_seq; 3068 dumper->next_idx = log_next_idx; 3069 } 3070 3071 /** 3072 * kmsg_dump_rewind - reset the interator 3073 * @dumper: registered kmsg dumper 3074 * 3075 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3076 * kmsg_dump_get_buffer() can be called again and used multiple 3077 * times within the same dumper.dump() callback. 3078 */ 3079 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3080 { 3081 unsigned long flags; 3082 3083 logbuf_lock_irqsave(flags); 3084 kmsg_dump_rewind_nolock(dumper); 3085 logbuf_unlock_irqrestore(flags); 3086 } 3087 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3088 3089 static char dump_stack_arch_desc_str[128]; 3090 3091 /** 3092 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3093 * @fmt: printf-style format string 3094 * @...: arguments for the format string 3095 * 3096 * The configured string will be printed right after utsname during task 3097 * dumps. Usually used to add arch-specific system identifiers. If an 3098 * arch wants to make use of such an ID string, it should initialize this 3099 * as soon as possible during boot. 3100 */ 3101 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3102 { 3103 va_list args; 3104 3105 va_start(args, fmt); 3106 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3107 fmt, args); 3108 va_end(args); 3109 } 3110 3111 /** 3112 * dump_stack_print_info - print generic debug info for dump_stack() 3113 * @log_lvl: log level 3114 * 3115 * Arch-specific dump_stack() implementations can use this function to 3116 * print out the same debug information as the generic dump_stack(). 3117 */ 3118 void dump_stack_print_info(const char *log_lvl) 3119 { 3120 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3121 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3122 print_tainted(), init_utsname()->release, 3123 (int)strcspn(init_utsname()->version, " "), 3124 init_utsname()->version); 3125 3126 if (dump_stack_arch_desc_str[0] != '\0') 3127 printk("%sHardware name: %s\n", 3128 log_lvl, dump_stack_arch_desc_str); 3129 3130 print_worker_info(log_lvl, current); 3131 } 3132 3133 /** 3134 * show_regs_print_info - print generic debug info for show_regs() 3135 * @log_lvl: log level 3136 * 3137 * show_regs() implementations can use this function to print out generic 3138 * debug information. 3139 */ 3140 void show_regs_print_info(const char *log_lvl) 3141 { 3142 dump_stack_print_info(log_lvl); 3143 3144 printk("%stask: %p task.stack: %p\n", 3145 log_lvl, current, task_stack_page(current)); 3146 } 3147 3148 #endif 3149