xref: /linux/kernel/printk/printk.c (revision a76053707dbf0dc020a73b4d90cd952409ef3691)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 	.name = "console_lock"
99 };
100 #endif
101 
102 enum devkmsg_log_bits {
103 	__DEVKMSG_LOG_BIT_ON = 0,
104 	__DEVKMSG_LOG_BIT_OFF,
105 	__DEVKMSG_LOG_BIT_LOCK,
106 };
107 
108 enum devkmsg_log_masks {
109 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
110 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
111 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113 
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT	0
116 
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 
119 static int __control_devkmsg(char *str)
120 {
121 	size_t len;
122 
123 	if (!str)
124 		return -EINVAL;
125 
126 	len = str_has_prefix(str, "on");
127 	if (len) {
128 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 		return len;
130 	}
131 
132 	len = str_has_prefix(str, "off");
133 	if (len) {
134 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 		return len;
136 	}
137 
138 	len = str_has_prefix(str, "ratelimit");
139 	if (len) {
140 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 		return len;
142 	}
143 
144 	return -EINVAL;
145 }
146 
147 static int __init control_devkmsg(char *str)
148 {
149 	if (__control_devkmsg(str) < 0)
150 		return 1;
151 
152 	/*
153 	 * Set sysctl string accordingly:
154 	 */
155 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 		strcpy(devkmsg_log_str, "on");
157 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 		strcpy(devkmsg_log_str, "off");
159 	/* else "ratelimit" which is set by default. */
160 
161 	/*
162 	 * Sysctl cannot change it anymore. The kernel command line setting of
163 	 * this parameter is to force the setting to be permanent throughout the
164 	 * runtime of the system. This is a precation measure against userspace
165 	 * trying to be a smarta** and attempting to change it up on us.
166 	 */
167 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168 
169 	return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172 
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174 
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 			      void *buffer, size_t *lenp, loff_t *ppos)
177 {
178 	char old_str[DEVKMSG_STR_MAX_SIZE];
179 	unsigned int old;
180 	int err;
181 
182 	if (write) {
183 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 			return -EINVAL;
185 
186 		old = devkmsg_log;
187 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 	}
189 
190 	err = proc_dostring(table, write, buffer, lenp, ppos);
191 	if (err)
192 		return err;
193 
194 	if (write) {
195 		err = __control_devkmsg(devkmsg_log_str);
196 
197 		/*
198 		 * Do not accept an unknown string OR a known string with
199 		 * trailing crap...
200 		 */
201 		if (err < 0 || (err + 1 != *lenp)) {
202 
203 			/* ... and restore old setting. */
204 			devkmsg_log = old;
205 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206 
207 			return -EINVAL;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216 
217 /*
218  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219  * macros instead of functions so that _RET_IP_ contains useful information.
220  */
221 #define down_console_sem() do { \
222 	down(&console_sem);\
223 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225 
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 	int lock_failed;
229 	unsigned long flags;
230 
231 	/*
232 	 * Here and in __up_console_sem() we need to be in safe mode,
233 	 * because spindump/WARN/etc from under console ->lock will
234 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 	 */
236 	printk_safe_enter_irqsave(flags);
237 	lock_failed = down_trylock(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 
240 	if (lock_failed)
241 		return 1;
242 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 	return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246 
247 static void __up_console_sem(unsigned long ip)
248 {
249 	unsigned long flags;
250 
251 	mutex_release(&console_lock_dep_map, ip);
252 
253 	printk_safe_enter_irqsave(flags);
254 	up(&console_sem);
255 	printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258 
259 /*
260  * This is used for debugging the mess that is the VT code by
261  * keeping track if we have the console semaphore held. It's
262  * definitely not the perfect debug tool (we don't know if _WE_
263  * hold it and are racing, but it helps tracking those weird code
264  * paths in the console code where we end up in places I want
265  * locked without the console semaphore held).
266  */
267 static int console_locked, console_suspended;
268 
269 /*
270  * If exclusive_console is non-NULL then only this console is to be printed to.
271  */
272 static struct console *exclusive_console;
273 
274 /*
275  *	Array of consoles built from command line options (console=)
276  */
277 
278 #define MAX_CMDLINECONSOLES 8
279 
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281 
282 static int preferred_console = -1;
283 static bool has_preferred_console;
284 int console_set_on_cmdline;
285 EXPORT_SYMBOL(console_set_on_cmdline);
286 
287 /* Flag: console code may call schedule() */
288 static int console_may_schedule;
289 
290 enum con_msg_format_flags {
291 	MSG_FORMAT_DEFAULT	= 0,
292 	MSG_FORMAT_SYSLOG	= (1 << 0),
293 };
294 
295 static int console_msg_format = MSG_FORMAT_DEFAULT;
296 
297 /*
298  * The printk log buffer consists of a sequenced collection of records, each
299  * containing variable length message text. Every record also contains its
300  * own meta-data (@info).
301  *
302  * Every record meta-data carries the timestamp in microseconds, as well as
303  * the standard userspace syslog level and syslog facility. The usual kernel
304  * messages use LOG_KERN; userspace-injected messages always carry a matching
305  * syslog facility, by default LOG_USER. The origin of every message can be
306  * reliably determined that way.
307  *
308  * The human readable log message of a record is available in @text, the
309  * length of the message text in @text_len. The stored message is not
310  * terminated.
311  *
312  * Optionally, a record can carry a dictionary of properties (key/value
313  * pairs), to provide userspace with a machine-readable message context.
314  *
315  * Examples for well-defined, commonly used property names are:
316  *   DEVICE=b12:8               device identifier
317  *                                b12:8         block dev_t
318  *                                c127:3        char dev_t
319  *                                n8            netdev ifindex
320  *                                +sound:card0  subsystem:devname
321  *   SUBSYSTEM=pci              driver-core subsystem name
322  *
323  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
324  * and values are terminated by a '\0' character.
325  *
326  * Example of record values:
327  *   record.text_buf                = "it's a line" (unterminated)
328  *   record.info.seq                = 56
329  *   record.info.ts_nsec            = 36863
330  *   record.info.text_len           = 11
331  *   record.info.facility           = 0 (LOG_KERN)
332  *   record.info.flags              = 0
333  *   record.info.level              = 3 (LOG_ERR)
334  *   record.info.caller_id          = 299 (task 299)
335  *   record.info.dev_info.subsystem = "pci" (terminated)
336  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
337  *
338  * The 'struct printk_info' buffer must never be directly exported to
339  * userspace, it is a kernel-private implementation detail that might
340  * need to be changed in the future, when the requirements change.
341  *
342  * /dev/kmsg exports the structured data in the following line format:
343  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344  *
345  * Users of the export format should ignore possible additional values
346  * separated by ',', and find the message after the ';' character.
347  *
348  * The optional key/value pairs are attached as continuation lines starting
349  * with a space character and terminated by a newline. All possible
350  * non-prinatable characters are escaped in the "\xff" notation.
351  */
352 
353 enum log_flags {
354 	LOG_NEWLINE	= 2,	/* text ended with a newline */
355 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
356 };
357 
358 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
359 static DEFINE_RAW_SPINLOCK(syslog_lock);
360 
361 #ifdef CONFIG_PRINTK
362 DECLARE_WAIT_QUEUE_HEAD(log_wait);
363 /* All 3 protected by @syslog_lock. */
364 /* the next printk record to read by syslog(READ) or /proc/kmsg */
365 static u64 syslog_seq;
366 static size_t syslog_partial;
367 static bool syslog_time;
368 
369 /* All 3 protected by @console_sem. */
370 /* the next printk record to write to the console */
371 static u64 console_seq;
372 static u64 exclusive_console_stop_seq;
373 static unsigned long console_dropped;
374 
375 struct latched_seq {
376 	seqcount_latch_t	latch;
377 	u64			val[2];
378 };
379 
380 /*
381  * The next printk record to read after the last 'clear' command. There are
382  * two copies (updated with seqcount_latch) so that reads can locklessly
383  * access a valid value. Writers are synchronized by @syslog_lock.
384  */
385 static struct latched_seq clear_seq = {
386 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
387 	.val[0]		= 0,
388 	.val[1]		= 0,
389 };
390 
391 #ifdef CONFIG_PRINTK_CALLER
392 #define PREFIX_MAX		48
393 #else
394 #define PREFIX_MAX		32
395 #endif
396 
397 /* the maximum size of a formatted record (i.e. with prefix added per line) */
398 #define CONSOLE_LOG_MAX		1024
399 
400 /* the maximum size allowed to be reserved for a record */
401 #define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
402 
403 #define LOG_LEVEL(v)		((v) & 0x07)
404 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
405 
406 /* record buffer */
407 #define LOG_ALIGN __alignof__(unsigned long)
408 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
409 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
410 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
411 static char *log_buf = __log_buf;
412 static u32 log_buf_len = __LOG_BUF_LEN;
413 
414 /*
415  * Define the average message size. This only affects the number of
416  * descriptors that will be available. Underestimating is better than
417  * overestimating (too many available descriptors is better than not enough).
418  */
419 #define PRB_AVGBITS 5	/* 32 character average length */
420 
421 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
422 #error CONFIG_LOG_BUF_SHIFT value too small.
423 #endif
424 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
425 		 PRB_AVGBITS, &__log_buf[0]);
426 
427 static struct printk_ringbuffer printk_rb_dynamic;
428 
429 static struct printk_ringbuffer *prb = &printk_rb_static;
430 
431 /*
432  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
433  * per_cpu_areas are initialised. This variable is set to true when
434  * it's safe to access per-CPU data.
435  */
436 static bool __printk_percpu_data_ready __read_mostly;
437 
438 bool printk_percpu_data_ready(void)
439 {
440 	return __printk_percpu_data_ready;
441 }
442 
443 /* Must be called under syslog_lock. */
444 static void latched_seq_write(struct latched_seq *ls, u64 val)
445 {
446 	raw_write_seqcount_latch(&ls->latch);
447 	ls->val[0] = val;
448 	raw_write_seqcount_latch(&ls->latch);
449 	ls->val[1] = val;
450 }
451 
452 /* Can be called from any context. */
453 static u64 latched_seq_read_nolock(struct latched_seq *ls)
454 {
455 	unsigned int seq;
456 	unsigned int idx;
457 	u64 val;
458 
459 	do {
460 		seq = raw_read_seqcount_latch(&ls->latch);
461 		idx = seq & 0x1;
462 		val = ls->val[idx];
463 	} while (read_seqcount_latch_retry(&ls->latch, seq));
464 
465 	return val;
466 }
467 
468 /* Return log buffer address */
469 char *log_buf_addr_get(void)
470 {
471 	return log_buf;
472 }
473 
474 /* Return log buffer size */
475 u32 log_buf_len_get(void)
476 {
477 	return log_buf_len;
478 }
479 
480 /*
481  * Define how much of the log buffer we could take at maximum. The value
482  * must be greater than two. Note that only half of the buffer is available
483  * when the index points to the middle.
484  */
485 #define MAX_LOG_TAKE_PART 4
486 static const char trunc_msg[] = "<truncated>";
487 
488 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
489 {
490 	/*
491 	 * The message should not take the whole buffer. Otherwise, it might
492 	 * get removed too soon.
493 	 */
494 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
495 
496 	if (*text_len > max_text_len)
497 		*text_len = max_text_len;
498 
499 	/* enable the warning message (if there is room) */
500 	*trunc_msg_len = strlen(trunc_msg);
501 	if (*text_len >= *trunc_msg_len)
502 		*text_len -= *trunc_msg_len;
503 	else
504 		*trunc_msg_len = 0;
505 }
506 
507 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
508 
509 static int syslog_action_restricted(int type)
510 {
511 	if (dmesg_restrict)
512 		return 1;
513 	/*
514 	 * Unless restricted, we allow "read all" and "get buffer size"
515 	 * for everybody.
516 	 */
517 	return type != SYSLOG_ACTION_READ_ALL &&
518 	       type != SYSLOG_ACTION_SIZE_BUFFER;
519 }
520 
521 static int check_syslog_permissions(int type, int source)
522 {
523 	/*
524 	 * If this is from /proc/kmsg and we've already opened it, then we've
525 	 * already done the capabilities checks at open time.
526 	 */
527 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
528 		goto ok;
529 
530 	if (syslog_action_restricted(type)) {
531 		if (capable(CAP_SYSLOG))
532 			goto ok;
533 		/*
534 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
535 		 * a warning.
536 		 */
537 		if (capable(CAP_SYS_ADMIN)) {
538 			pr_warn_once("%s (%d): Attempt to access syslog with "
539 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
540 				     "(deprecated).\n",
541 				 current->comm, task_pid_nr(current));
542 			goto ok;
543 		}
544 		return -EPERM;
545 	}
546 ok:
547 	return security_syslog(type);
548 }
549 
550 static void append_char(char **pp, char *e, char c)
551 {
552 	if (*pp < e)
553 		*(*pp)++ = c;
554 }
555 
556 static ssize_t info_print_ext_header(char *buf, size_t size,
557 				     struct printk_info *info)
558 {
559 	u64 ts_usec = info->ts_nsec;
560 	char caller[20];
561 #ifdef CONFIG_PRINTK_CALLER
562 	u32 id = info->caller_id;
563 
564 	snprintf(caller, sizeof(caller), ",caller=%c%u",
565 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
566 #else
567 	caller[0] = '\0';
568 #endif
569 
570 	do_div(ts_usec, 1000);
571 
572 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
573 			 (info->facility << 3) | info->level, info->seq,
574 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
575 }
576 
577 static ssize_t msg_add_ext_text(char *buf, size_t size,
578 				const char *text, size_t text_len,
579 				unsigned char endc)
580 {
581 	char *p = buf, *e = buf + size;
582 	size_t i;
583 
584 	/* escape non-printable characters */
585 	for (i = 0; i < text_len; i++) {
586 		unsigned char c = text[i];
587 
588 		if (c < ' ' || c >= 127 || c == '\\')
589 			p += scnprintf(p, e - p, "\\x%02x", c);
590 		else
591 			append_char(&p, e, c);
592 	}
593 	append_char(&p, e, endc);
594 
595 	return p - buf;
596 }
597 
598 static ssize_t msg_add_dict_text(char *buf, size_t size,
599 				 const char *key, const char *val)
600 {
601 	size_t val_len = strlen(val);
602 	ssize_t len;
603 
604 	if (!val_len)
605 		return 0;
606 
607 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
608 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
609 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
610 
611 	return len;
612 }
613 
614 static ssize_t msg_print_ext_body(char *buf, size_t size,
615 				  char *text, size_t text_len,
616 				  struct dev_printk_info *dev_info)
617 {
618 	ssize_t len;
619 
620 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
621 
622 	if (!dev_info)
623 		goto out;
624 
625 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
626 				 dev_info->subsystem);
627 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
628 				 dev_info->device);
629 out:
630 	return len;
631 }
632 
633 /* /dev/kmsg - userspace message inject/listen interface */
634 struct devkmsg_user {
635 	atomic64_t seq;
636 	struct ratelimit_state rs;
637 	struct mutex lock;
638 	char buf[CONSOLE_EXT_LOG_MAX];
639 
640 	struct printk_info info;
641 	char text_buf[CONSOLE_EXT_LOG_MAX];
642 	struct printk_record record;
643 };
644 
645 static __printf(3, 4) __cold
646 int devkmsg_emit(int facility, int level, const char *fmt, ...)
647 {
648 	va_list args;
649 	int r;
650 
651 	va_start(args, fmt);
652 	r = vprintk_emit(facility, level, NULL, fmt, args);
653 	va_end(args);
654 
655 	return r;
656 }
657 
658 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
659 {
660 	char *buf, *line;
661 	int level = default_message_loglevel;
662 	int facility = 1;	/* LOG_USER */
663 	struct file *file = iocb->ki_filp;
664 	struct devkmsg_user *user = file->private_data;
665 	size_t len = iov_iter_count(from);
666 	ssize_t ret = len;
667 
668 	if (!user || len > LOG_LINE_MAX)
669 		return -EINVAL;
670 
671 	/* Ignore when user logging is disabled. */
672 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
673 		return len;
674 
675 	/* Ratelimit when not explicitly enabled. */
676 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
677 		if (!___ratelimit(&user->rs, current->comm))
678 			return ret;
679 	}
680 
681 	buf = kmalloc(len+1, GFP_KERNEL);
682 	if (buf == NULL)
683 		return -ENOMEM;
684 
685 	buf[len] = '\0';
686 	if (!copy_from_iter_full(buf, len, from)) {
687 		kfree(buf);
688 		return -EFAULT;
689 	}
690 
691 	/*
692 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
693 	 * the decimal value represents 32bit, the lower 3 bit are the log
694 	 * level, the rest are the log facility.
695 	 *
696 	 * If no prefix or no userspace facility is specified, we
697 	 * enforce LOG_USER, to be able to reliably distinguish
698 	 * kernel-generated messages from userspace-injected ones.
699 	 */
700 	line = buf;
701 	if (line[0] == '<') {
702 		char *endp = NULL;
703 		unsigned int u;
704 
705 		u = simple_strtoul(line + 1, &endp, 10);
706 		if (endp && endp[0] == '>') {
707 			level = LOG_LEVEL(u);
708 			if (LOG_FACILITY(u) != 0)
709 				facility = LOG_FACILITY(u);
710 			endp++;
711 			line = endp;
712 		}
713 	}
714 
715 	devkmsg_emit(facility, level, "%s", line);
716 	kfree(buf);
717 	return ret;
718 }
719 
720 static ssize_t devkmsg_read(struct file *file, char __user *buf,
721 			    size_t count, loff_t *ppos)
722 {
723 	struct devkmsg_user *user = file->private_data;
724 	struct printk_record *r = &user->record;
725 	size_t len;
726 	ssize_t ret;
727 
728 	if (!user)
729 		return -EBADF;
730 
731 	ret = mutex_lock_interruptible(&user->lock);
732 	if (ret)
733 		return ret;
734 
735 	printk_safe_enter_irq();
736 	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
737 		if (file->f_flags & O_NONBLOCK) {
738 			ret = -EAGAIN;
739 			printk_safe_exit_irq();
740 			goto out;
741 		}
742 
743 		printk_safe_exit_irq();
744 		ret = wait_event_interruptible(log_wait,
745 				prb_read_valid(prb, atomic64_read(&user->seq), r));
746 		if (ret)
747 			goto out;
748 		printk_safe_enter_irq();
749 	}
750 
751 	if (r->info->seq != atomic64_read(&user->seq)) {
752 		/* our last seen message is gone, return error and reset */
753 		atomic64_set(&user->seq, r->info->seq);
754 		ret = -EPIPE;
755 		printk_safe_exit_irq();
756 		goto out;
757 	}
758 
759 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
760 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
761 				  &r->text_buf[0], r->info->text_len,
762 				  &r->info->dev_info);
763 
764 	atomic64_set(&user->seq, r->info->seq + 1);
765 	printk_safe_exit_irq();
766 
767 	if (len > count) {
768 		ret = -EINVAL;
769 		goto out;
770 	}
771 
772 	if (copy_to_user(buf, user->buf, len)) {
773 		ret = -EFAULT;
774 		goto out;
775 	}
776 	ret = len;
777 out:
778 	mutex_unlock(&user->lock);
779 	return ret;
780 }
781 
782 /*
783  * Be careful when modifying this function!!!
784  *
785  * Only few operations are supported because the device works only with the
786  * entire variable length messages (records). Non-standard values are
787  * returned in the other cases and has been this way for quite some time.
788  * User space applications might depend on this behavior.
789  */
790 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
791 {
792 	struct devkmsg_user *user = file->private_data;
793 	loff_t ret = 0;
794 
795 	if (!user)
796 		return -EBADF;
797 	if (offset)
798 		return -ESPIPE;
799 
800 	printk_safe_enter_irq();
801 	switch (whence) {
802 	case SEEK_SET:
803 		/* the first record */
804 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
805 		break;
806 	case SEEK_DATA:
807 		/*
808 		 * The first record after the last SYSLOG_ACTION_CLEAR,
809 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
810 		 * changes no global state, and does not clear anything.
811 		 */
812 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
813 		break;
814 	case SEEK_END:
815 		/* after the last record */
816 		atomic64_set(&user->seq, prb_next_seq(prb));
817 		break;
818 	default:
819 		ret = -EINVAL;
820 	}
821 	printk_safe_exit_irq();
822 	return ret;
823 }
824 
825 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
826 {
827 	struct devkmsg_user *user = file->private_data;
828 	struct printk_info info;
829 	__poll_t ret = 0;
830 
831 	if (!user)
832 		return EPOLLERR|EPOLLNVAL;
833 
834 	poll_wait(file, &log_wait, wait);
835 
836 	printk_safe_enter_irq();
837 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
838 		/* return error when data has vanished underneath us */
839 		if (info.seq != atomic64_read(&user->seq))
840 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
841 		else
842 			ret = EPOLLIN|EPOLLRDNORM;
843 	}
844 	printk_safe_exit_irq();
845 
846 	return ret;
847 }
848 
849 static int devkmsg_open(struct inode *inode, struct file *file)
850 {
851 	struct devkmsg_user *user;
852 	int err;
853 
854 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
855 		return -EPERM;
856 
857 	/* write-only does not need any file context */
858 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
859 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
860 					       SYSLOG_FROM_READER);
861 		if (err)
862 			return err;
863 	}
864 
865 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
866 	if (!user)
867 		return -ENOMEM;
868 
869 	ratelimit_default_init(&user->rs);
870 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
871 
872 	mutex_init(&user->lock);
873 
874 	prb_rec_init_rd(&user->record, &user->info,
875 			&user->text_buf[0], sizeof(user->text_buf));
876 
877 	printk_safe_enter_irq();
878 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
879 	printk_safe_exit_irq();
880 
881 	file->private_data = user;
882 	return 0;
883 }
884 
885 static int devkmsg_release(struct inode *inode, struct file *file)
886 {
887 	struct devkmsg_user *user = file->private_data;
888 
889 	if (!user)
890 		return 0;
891 
892 	ratelimit_state_exit(&user->rs);
893 
894 	mutex_destroy(&user->lock);
895 	kfree(user);
896 	return 0;
897 }
898 
899 const struct file_operations kmsg_fops = {
900 	.open = devkmsg_open,
901 	.read = devkmsg_read,
902 	.write_iter = devkmsg_write,
903 	.llseek = devkmsg_llseek,
904 	.poll = devkmsg_poll,
905 	.release = devkmsg_release,
906 };
907 
908 #ifdef CONFIG_CRASH_CORE
909 /*
910  * This appends the listed symbols to /proc/vmcore
911  *
912  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
913  * obtain access to symbols that are otherwise very difficult to locate.  These
914  * symbols are specifically used so that utilities can access and extract the
915  * dmesg log from a vmcore file after a crash.
916  */
917 void log_buf_vmcoreinfo_setup(void)
918 {
919 	struct dev_printk_info *dev_info = NULL;
920 
921 	VMCOREINFO_SYMBOL(prb);
922 	VMCOREINFO_SYMBOL(printk_rb_static);
923 	VMCOREINFO_SYMBOL(clear_seq);
924 
925 	/*
926 	 * Export struct size and field offsets. User space tools can
927 	 * parse it and detect any changes to structure down the line.
928 	 */
929 
930 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
931 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
932 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
933 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
934 
935 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
936 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
937 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
938 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
939 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
940 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
941 
942 	VMCOREINFO_STRUCT_SIZE(prb_desc);
943 	VMCOREINFO_OFFSET(prb_desc, state_var);
944 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
945 
946 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
947 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
948 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
949 
950 	VMCOREINFO_STRUCT_SIZE(printk_info);
951 	VMCOREINFO_OFFSET(printk_info, seq);
952 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
953 	VMCOREINFO_OFFSET(printk_info, text_len);
954 	VMCOREINFO_OFFSET(printk_info, caller_id);
955 	VMCOREINFO_OFFSET(printk_info, dev_info);
956 
957 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
958 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
959 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
960 	VMCOREINFO_OFFSET(dev_printk_info, device);
961 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
962 
963 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
964 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
965 	VMCOREINFO_OFFSET(prb_data_ring, data);
966 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
967 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
968 
969 	VMCOREINFO_SIZE(atomic_long_t);
970 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
971 
972 	VMCOREINFO_STRUCT_SIZE(latched_seq);
973 	VMCOREINFO_OFFSET(latched_seq, val);
974 }
975 #endif
976 
977 /* requested log_buf_len from kernel cmdline */
978 static unsigned long __initdata new_log_buf_len;
979 
980 /* we practice scaling the ring buffer by powers of 2 */
981 static void __init log_buf_len_update(u64 size)
982 {
983 	if (size > (u64)LOG_BUF_LEN_MAX) {
984 		size = (u64)LOG_BUF_LEN_MAX;
985 		pr_err("log_buf over 2G is not supported.\n");
986 	}
987 
988 	if (size)
989 		size = roundup_pow_of_two(size);
990 	if (size > log_buf_len)
991 		new_log_buf_len = (unsigned long)size;
992 }
993 
994 /* save requested log_buf_len since it's too early to process it */
995 static int __init log_buf_len_setup(char *str)
996 {
997 	u64 size;
998 
999 	if (!str)
1000 		return -EINVAL;
1001 
1002 	size = memparse(str, &str);
1003 
1004 	log_buf_len_update(size);
1005 
1006 	return 0;
1007 }
1008 early_param("log_buf_len", log_buf_len_setup);
1009 
1010 #ifdef CONFIG_SMP
1011 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1012 
1013 static void __init log_buf_add_cpu(void)
1014 {
1015 	unsigned int cpu_extra;
1016 
1017 	/*
1018 	 * archs should set up cpu_possible_bits properly with
1019 	 * set_cpu_possible() after setup_arch() but just in
1020 	 * case lets ensure this is valid.
1021 	 */
1022 	if (num_possible_cpus() == 1)
1023 		return;
1024 
1025 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1026 
1027 	/* by default this will only continue through for large > 64 CPUs */
1028 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1029 		return;
1030 
1031 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1032 		__LOG_CPU_MAX_BUF_LEN);
1033 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1034 		cpu_extra);
1035 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1036 
1037 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1038 }
1039 #else /* !CONFIG_SMP */
1040 static inline void log_buf_add_cpu(void) {}
1041 #endif /* CONFIG_SMP */
1042 
1043 static void __init set_percpu_data_ready(void)
1044 {
1045 	printk_safe_init();
1046 	/* Make sure we set this flag only after printk_safe() init is done */
1047 	barrier();
1048 	__printk_percpu_data_ready = true;
1049 }
1050 
1051 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1052 				     struct printk_record *r)
1053 {
1054 	struct prb_reserved_entry e;
1055 	struct printk_record dest_r;
1056 
1057 	prb_rec_init_wr(&dest_r, r->info->text_len);
1058 
1059 	if (!prb_reserve(&e, rb, &dest_r))
1060 		return 0;
1061 
1062 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1063 	dest_r.info->text_len = r->info->text_len;
1064 	dest_r.info->facility = r->info->facility;
1065 	dest_r.info->level = r->info->level;
1066 	dest_r.info->flags = r->info->flags;
1067 	dest_r.info->ts_nsec = r->info->ts_nsec;
1068 	dest_r.info->caller_id = r->info->caller_id;
1069 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1070 
1071 	prb_final_commit(&e);
1072 
1073 	return prb_record_text_space(&e);
1074 }
1075 
1076 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1077 
1078 void __init setup_log_buf(int early)
1079 {
1080 	struct printk_info *new_infos;
1081 	unsigned int new_descs_count;
1082 	struct prb_desc *new_descs;
1083 	struct printk_info info;
1084 	struct printk_record r;
1085 	size_t new_descs_size;
1086 	size_t new_infos_size;
1087 	unsigned long flags;
1088 	char *new_log_buf;
1089 	unsigned int free;
1090 	u64 seq;
1091 
1092 	/*
1093 	 * Some archs call setup_log_buf() multiple times - first is very
1094 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1095 	 * are initialised.
1096 	 */
1097 	if (!early)
1098 		set_percpu_data_ready();
1099 
1100 	if (log_buf != __log_buf)
1101 		return;
1102 
1103 	if (!early && !new_log_buf_len)
1104 		log_buf_add_cpu();
1105 
1106 	if (!new_log_buf_len)
1107 		return;
1108 
1109 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1110 	if (new_descs_count == 0) {
1111 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1112 		return;
1113 	}
1114 
1115 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1116 	if (unlikely(!new_log_buf)) {
1117 		pr_err("log_buf_len: %lu text bytes not available\n",
1118 		       new_log_buf_len);
1119 		return;
1120 	}
1121 
1122 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1123 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1124 	if (unlikely(!new_descs)) {
1125 		pr_err("log_buf_len: %zu desc bytes not available\n",
1126 		       new_descs_size);
1127 		goto err_free_log_buf;
1128 	}
1129 
1130 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1131 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1132 	if (unlikely(!new_infos)) {
1133 		pr_err("log_buf_len: %zu info bytes not available\n",
1134 		       new_infos_size);
1135 		goto err_free_descs;
1136 	}
1137 
1138 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1139 
1140 	prb_init(&printk_rb_dynamic,
1141 		 new_log_buf, ilog2(new_log_buf_len),
1142 		 new_descs, ilog2(new_descs_count),
1143 		 new_infos);
1144 
1145 	printk_safe_enter_irqsave(flags);
1146 
1147 	log_buf_len = new_log_buf_len;
1148 	log_buf = new_log_buf;
1149 	new_log_buf_len = 0;
1150 
1151 	free = __LOG_BUF_LEN;
1152 	prb_for_each_record(0, &printk_rb_static, seq, &r)
1153 		free -= add_to_rb(&printk_rb_dynamic, &r);
1154 
1155 	/*
1156 	 * This is early enough that everything is still running on the
1157 	 * boot CPU and interrupts are disabled. So no new messages will
1158 	 * appear during the transition to the dynamic buffer.
1159 	 */
1160 	prb = &printk_rb_dynamic;
1161 
1162 	printk_safe_exit_irqrestore(flags);
1163 
1164 	if (seq != prb_next_seq(&printk_rb_static)) {
1165 		pr_err("dropped %llu messages\n",
1166 		       prb_next_seq(&printk_rb_static) - seq);
1167 	}
1168 
1169 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1170 	pr_info("early log buf free: %u(%u%%)\n",
1171 		free, (free * 100) / __LOG_BUF_LEN);
1172 	return;
1173 
1174 err_free_descs:
1175 	memblock_free(__pa(new_descs), new_descs_size);
1176 err_free_log_buf:
1177 	memblock_free(__pa(new_log_buf), new_log_buf_len);
1178 }
1179 
1180 static bool __read_mostly ignore_loglevel;
1181 
1182 static int __init ignore_loglevel_setup(char *str)
1183 {
1184 	ignore_loglevel = true;
1185 	pr_info("debug: ignoring loglevel setting.\n");
1186 
1187 	return 0;
1188 }
1189 
1190 early_param("ignore_loglevel", ignore_loglevel_setup);
1191 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1192 MODULE_PARM_DESC(ignore_loglevel,
1193 		 "ignore loglevel setting (prints all kernel messages to the console)");
1194 
1195 static bool suppress_message_printing(int level)
1196 {
1197 	return (level >= console_loglevel && !ignore_loglevel);
1198 }
1199 
1200 #ifdef CONFIG_BOOT_PRINTK_DELAY
1201 
1202 static int boot_delay; /* msecs delay after each printk during bootup */
1203 static unsigned long long loops_per_msec;	/* based on boot_delay */
1204 
1205 static int __init boot_delay_setup(char *str)
1206 {
1207 	unsigned long lpj;
1208 
1209 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1210 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1211 
1212 	get_option(&str, &boot_delay);
1213 	if (boot_delay > 10 * 1000)
1214 		boot_delay = 0;
1215 
1216 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1217 		"HZ: %d, loops_per_msec: %llu\n",
1218 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1219 	return 0;
1220 }
1221 early_param("boot_delay", boot_delay_setup);
1222 
1223 static void boot_delay_msec(int level)
1224 {
1225 	unsigned long long k;
1226 	unsigned long timeout;
1227 
1228 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1229 		|| suppress_message_printing(level)) {
1230 		return;
1231 	}
1232 
1233 	k = (unsigned long long)loops_per_msec * boot_delay;
1234 
1235 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1236 	while (k) {
1237 		k--;
1238 		cpu_relax();
1239 		/*
1240 		 * use (volatile) jiffies to prevent
1241 		 * compiler reduction; loop termination via jiffies
1242 		 * is secondary and may or may not happen.
1243 		 */
1244 		if (time_after(jiffies, timeout))
1245 			break;
1246 		touch_nmi_watchdog();
1247 	}
1248 }
1249 #else
1250 static inline void boot_delay_msec(int level)
1251 {
1252 }
1253 #endif
1254 
1255 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1256 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1257 
1258 static size_t print_syslog(unsigned int level, char *buf)
1259 {
1260 	return sprintf(buf, "<%u>", level);
1261 }
1262 
1263 static size_t print_time(u64 ts, char *buf)
1264 {
1265 	unsigned long rem_nsec = do_div(ts, 1000000000);
1266 
1267 	return sprintf(buf, "[%5lu.%06lu]",
1268 		       (unsigned long)ts, rem_nsec / 1000);
1269 }
1270 
1271 #ifdef CONFIG_PRINTK_CALLER
1272 static size_t print_caller(u32 id, char *buf)
1273 {
1274 	char caller[12];
1275 
1276 	snprintf(caller, sizeof(caller), "%c%u",
1277 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1278 	return sprintf(buf, "[%6s]", caller);
1279 }
1280 #else
1281 #define print_caller(id, buf) 0
1282 #endif
1283 
1284 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1285 				bool time, char *buf)
1286 {
1287 	size_t len = 0;
1288 
1289 	if (syslog)
1290 		len = print_syslog((info->facility << 3) | info->level, buf);
1291 
1292 	if (time)
1293 		len += print_time(info->ts_nsec, buf + len);
1294 
1295 	len += print_caller(info->caller_id, buf + len);
1296 
1297 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1298 		buf[len++] = ' ';
1299 		buf[len] = '\0';
1300 	}
1301 
1302 	return len;
1303 }
1304 
1305 /*
1306  * Prepare the record for printing. The text is shifted within the given
1307  * buffer to avoid a need for another one. The following operations are
1308  * done:
1309  *
1310  *   - Add prefix for each line.
1311  *   - Drop truncated lines that no longer fit into the buffer.
1312  *   - Add the trailing newline that has been removed in vprintk_store().
1313  *   - Add a string terminator.
1314  *
1315  * Since the produced string is always terminated, the maximum possible
1316  * return value is @r->text_buf_size - 1;
1317  *
1318  * Return: The length of the updated/prepared text, including the added
1319  * prefixes and the newline. The terminator is not counted. The dropped
1320  * line(s) are not counted.
1321  */
1322 static size_t record_print_text(struct printk_record *r, bool syslog,
1323 				bool time)
1324 {
1325 	size_t text_len = r->info->text_len;
1326 	size_t buf_size = r->text_buf_size;
1327 	char *text = r->text_buf;
1328 	char prefix[PREFIX_MAX];
1329 	bool truncated = false;
1330 	size_t prefix_len;
1331 	size_t line_len;
1332 	size_t len = 0;
1333 	char *next;
1334 
1335 	/*
1336 	 * If the message was truncated because the buffer was not large
1337 	 * enough, treat the available text as if it were the full text.
1338 	 */
1339 	if (text_len > buf_size)
1340 		text_len = buf_size;
1341 
1342 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1343 
1344 	/*
1345 	 * @text_len: bytes of unprocessed text
1346 	 * @line_len: bytes of current line _without_ newline
1347 	 * @text:     pointer to beginning of current line
1348 	 * @len:      number of bytes prepared in r->text_buf
1349 	 */
1350 	for (;;) {
1351 		next = memchr(text, '\n', text_len);
1352 		if (next) {
1353 			line_len = next - text;
1354 		} else {
1355 			/* Drop truncated line(s). */
1356 			if (truncated)
1357 				break;
1358 			line_len = text_len;
1359 		}
1360 
1361 		/*
1362 		 * Truncate the text if there is not enough space to add the
1363 		 * prefix and a trailing newline and a terminator.
1364 		 */
1365 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1366 			/* Drop even the current line if no space. */
1367 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1368 				break;
1369 
1370 			text_len = buf_size - len - prefix_len - 1 - 1;
1371 			truncated = true;
1372 		}
1373 
1374 		memmove(text + prefix_len, text, text_len);
1375 		memcpy(text, prefix, prefix_len);
1376 
1377 		/*
1378 		 * Increment the prepared length to include the text and
1379 		 * prefix that were just moved+copied. Also increment for the
1380 		 * newline at the end of this line. If this is the last line,
1381 		 * there is no newline, but it will be added immediately below.
1382 		 */
1383 		len += prefix_len + line_len + 1;
1384 		if (text_len == line_len) {
1385 			/*
1386 			 * This is the last line. Add the trailing newline
1387 			 * removed in vprintk_store().
1388 			 */
1389 			text[prefix_len + line_len] = '\n';
1390 			break;
1391 		}
1392 
1393 		/*
1394 		 * Advance beyond the added prefix and the related line with
1395 		 * its newline.
1396 		 */
1397 		text += prefix_len + line_len + 1;
1398 
1399 		/*
1400 		 * The remaining text has only decreased by the line with its
1401 		 * newline.
1402 		 *
1403 		 * Note that @text_len can become zero. It happens when @text
1404 		 * ended with a newline (either due to truncation or the
1405 		 * original string ending with "\n\n"). The loop is correctly
1406 		 * repeated and (if not truncated) an empty line with a prefix
1407 		 * will be prepared.
1408 		 */
1409 		text_len -= line_len + 1;
1410 	}
1411 
1412 	/*
1413 	 * If a buffer was provided, it will be terminated. Space for the
1414 	 * string terminator is guaranteed to be available. The terminator is
1415 	 * not counted in the return value.
1416 	 */
1417 	if (buf_size > 0)
1418 		r->text_buf[len] = 0;
1419 
1420 	return len;
1421 }
1422 
1423 static size_t get_record_print_text_size(struct printk_info *info,
1424 					 unsigned int line_count,
1425 					 bool syslog, bool time)
1426 {
1427 	char prefix[PREFIX_MAX];
1428 	size_t prefix_len;
1429 
1430 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1431 
1432 	/*
1433 	 * Each line will be preceded with a prefix. The intermediate
1434 	 * newlines are already within the text, but a final trailing
1435 	 * newline will be added.
1436 	 */
1437 	return ((prefix_len * line_count) + info->text_len + 1);
1438 }
1439 
1440 /*
1441  * Beginning with @start_seq, find the first record where it and all following
1442  * records up to (but not including) @max_seq fit into @size.
1443  *
1444  * @max_seq is simply an upper bound and does not need to exist. If the caller
1445  * does not require an upper bound, -1 can be used for @max_seq.
1446  */
1447 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1448 				  bool syslog, bool time)
1449 {
1450 	struct printk_info info;
1451 	unsigned int line_count;
1452 	size_t len = 0;
1453 	u64 seq;
1454 
1455 	/* Determine the size of the records up to @max_seq. */
1456 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1457 		if (info.seq >= max_seq)
1458 			break;
1459 		len += get_record_print_text_size(&info, line_count, syslog, time);
1460 	}
1461 
1462 	/*
1463 	 * Adjust the upper bound for the next loop to avoid subtracting
1464 	 * lengths that were never added.
1465 	 */
1466 	if (seq < max_seq)
1467 		max_seq = seq;
1468 
1469 	/*
1470 	 * Move first record forward until length fits into the buffer. Ignore
1471 	 * newest messages that were not counted in the above cycle. Messages
1472 	 * might appear and get lost in the meantime. This is a best effort
1473 	 * that prevents an infinite loop that could occur with a retry.
1474 	 */
1475 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1476 		if (len <= size || info.seq >= max_seq)
1477 			break;
1478 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1479 	}
1480 
1481 	return seq;
1482 }
1483 
1484 static int syslog_print(char __user *buf, int size)
1485 {
1486 	struct printk_info info;
1487 	struct printk_record r;
1488 	char *text;
1489 	int len = 0;
1490 
1491 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1492 	if (!text)
1493 		return -ENOMEM;
1494 
1495 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1496 
1497 	while (size > 0) {
1498 		size_t n;
1499 		size_t skip;
1500 
1501 		printk_safe_enter_irq();
1502 		raw_spin_lock(&syslog_lock);
1503 		if (!prb_read_valid(prb, syslog_seq, &r)) {
1504 			raw_spin_unlock(&syslog_lock);
1505 			printk_safe_exit_irq();
1506 			break;
1507 		}
1508 		if (r.info->seq != syslog_seq) {
1509 			/* message is gone, move to next valid one */
1510 			syslog_seq = r.info->seq;
1511 			syslog_partial = 0;
1512 		}
1513 
1514 		/*
1515 		 * To keep reading/counting partial line consistent,
1516 		 * use printk_time value as of the beginning of a line.
1517 		 */
1518 		if (!syslog_partial)
1519 			syslog_time = printk_time;
1520 
1521 		skip = syslog_partial;
1522 		n = record_print_text(&r, true, syslog_time);
1523 		if (n - syslog_partial <= size) {
1524 			/* message fits into buffer, move forward */
1525 			syslog_seq = r.info->seq + 1;
1526 			n -= syslog_partial;
1527 			syslog_partial = 0;
1528 		} else if (!len){
1529 			/* partial read(), remember position */
1530 			n = size;
1531 			syslog_partial += n;
1532 		} else
1533 			n = 0;
1534 		raw_spin_unlock(&syslog_lock);
1535 		printk_safe_exit_irq();
1536 
1537 		if (!n)
1538 			break;
1539 
1540 		if (copy_to_user(buf, text + skip, n)) {
1541 			if (!len)
1542 				len = -EFAULT;
1543 			break;
1544 		}
1545 
1546 		len += n;
1547 		size -= n;
1548 		buf += n;
1549 	}
1550 
1551 	kfree(text);
1552 	return len;
1553 }
1554 
1555 static int syslog_print_all(char __user *buf, int size, bool clear)
1556 {
1557 	struct printk_info info;
1558 	struct printk_record r;
1559 	char *text;
1560 	int len = 0;
1561 	u64 seq;
1562 	bool time;
1563 
1564 	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1565 	if (!text)
1566 		return -ENOMEM;
1567 
1568 	time = printk_time;
1569 	printk_safe_enter_irq();
1570 	/*
1571 	 * Find first record that fits, including all following records,
1572 	 * into the user-provided buffer for this dump.
1573 	 */
1574 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1575 				     size, true, time);
1576 
1577 	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1578 
1579 	len = 0;
1580 	prb_for_each_record(seq, prb, seq, &r) {
1581 		int textlen;
1582 
1583 		textlen = record_print_text(&r, true, time);
1584 
1585 		if (len + textlen > size) {
1586 			seq--;
1587 			break;
1588 		}
1589 
1590 		printk_safe_exit_irq();
1591 		if (copy_to_user(buf + len, text, textlen))
1592 			len = -EFAULT;
1593 		else
1594 			len += textlen;
1595 		printk_safe_enter_irq();
1596 
1597 		if (len < 0)
1598 			break;
1599 	}
1600 
1601 	if (clear) {
1602 		raw_spin_lock(&syslog_lock);
1603 		latched_seq_write(&clear_seq, seq);
1604 		raw_spin_unlock(&syslog_lock);
1605 	}
1606 	printk_safe_exit_irq();
1607 
1608 	kfree(text);
1609 	return len;
1610 }
1611 
1612 static void syslog_clear(void)
1613 {
1614 	printk_safe_enter_irq();
1615 	raw_spin_lock(&syslog_lock);
1616 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1617 	raw_spin_unlock(&syslog_lock);
1618 	printk_safe_exit_irq();
1619 }
1620 
1621 /* Return a consistent copy of @syslog_seq. */
1622 static u64 read_syslog_seq_irq(void)
1623 {
1624 	u64 seq;
1625 
1626 	raw_spin_lock_irq(&syslog_lock);
1627 	seq = syslog_seq;
1628 	raw_spin_unlock_irq(&syslog_lock);
1629 
1630 	return seq;
1631 }
1632 
1633 int do_syslog(int type, char __user *buf, int len, int source)
1634 {
1635 	struct printk_info info;
1636 	bool clear = false;
1637 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1638 	int error;
1639 
1640 	error = check_syslog_permissions(type, source);
1641 	if (error)
1642 		return error;
1643 
1644 	switch (type) {
1645 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1646 		break;
1647 	case SYSLOG_ACTION_OPEN:	/* Open log */
1648 		break;
1649 	case SYSLOG_ACTION_READ:	/* Read from log */
1650 		if (!buf || len < 0)
1651 			return -EINVAL;
1652 		if (!len)
1653 			return 0;
1654 		if (!access_ok(buf, len))
1655 			return -EFAULT;
1656 
1657 		error = wait_event_interruptible(log_wait,
1658 				prb_read_valid(prb, read_syslog_seq_irq(), NULL));
1659 		if (error)
1660 			return error;
1661 		error = syslog_print(buf, len);
1662 		break;
1663 	/* Read/clear last kernel messages */
1664 	case SYSLOG_ACTION_READ_CLEAR:
1665 		clear = true;
1666 		fallthrough;
1667 	/* Read last kernel messages */
1668 	case SYSLOG_ACTION_READ_ALL:
1669 		if (!buf || len < 0)
1670 			return -EINVAL;
1671 		if (!len)
1672 			return 0;
1673 		if (!access_ok(buf, len))
1674 			return -EFAULT;
1675 		error = syslog_print_all(buf, len, clear);
1676 		break;
1677 	/* Clear ring buffer */
1678 	case SYSLOG_ACTION_CLEAR:
1679 		syslog_clear();
1680 		break;
1681 	/* Disable logging to console */
1682 	case SYSLOG_ACTION_CONSOLE_OFF:
1683 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1684 			saved_console_loglevel = console_loglevel;
1685 		console_loglevel = minimum_console_loglevel;
1686 		break;
1687 	/* Enable logging to console */
1688 	case SYSLOG_ACTION_CONSOLE_ON:
1689 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1690 			console_loglevel = saved_console_loglevel;
1691 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1692 		}
1693 		break;
1694 	/* Set level of messages printed to console */
1695 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1696 		if (len < 1 || len > 8)
1697 			return -EINVAL;
1698 		if (len < minimum_console_loglevel)
1699 			len = minimum_console_loglevel;
1700 		console_loglevel = len;
1701 		/* Implicitly re-enable logging to console */
1702 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1703 		break;
1704 	/* Number of chars in the log buffer */
1705 	case SYSLOG_ACTION_SIZE_UNREAD:
1706 		printk_safe_enter_irq();
1707 		raw_spin_lock(&syslog_lock);
1708 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1709 			/* No unread messages. */
1710 			raw_spin_unlock(&syslog_lock);
1711 			printk_safe_exit_irq();
1712 			return 0;
1713 		}
1714 		if (info.seq != syslog_seq) {
1715 			/* messages are gone, move to first one */
1716 			syslog_seq = info.seq;
1717 			syslog_partial = 0;
1718 		}
1719 		if (source == SYSLOG_FROM_PROC) {
1720 			/*
1721 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1722 			 * for pending data, not the size; return the count of
1723 			 * records, not the length.
1724 			 */
1725 			error = prb_next_seq(prb) - syslog_seq;
1726 		} else {
1727 			bool time = syslog_partial ? syslog_time : printk_time;
1728 			unsigned int line_count;
1729 			u64 seq;
1730 
1731 			prb_for_each_info(syslog_seq, prb, seq, &info,
1732 					  &line_count) {
1733 				error += get_record_print_text_size(&info, line_count,
1734 								    true, time);
1735 				time = printk_time;
1736 			}
1737 			error -= syslog_partial;
1738 		}
1739 		raw_spin_unlock(&syslog_lock);
1740 		printk_safe_exit_irq();
1741 		break;
1742 	/* Size of the log buffer */
1743 	case SYSLOG_ACTION_SIZE_BUFFER:
1744 		error = log_buf_len;
1745 		break;
1746 	default:
1747 		error = -EINVAL;
1748 		break;
1749 	}
1750 
1751 	return error;
1752 }
1753 
1754 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1755 {
1756 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1757 }
1758 
1759 /*
1760  * Special console_lock variants that help to reduce the risk of soft-lockups.
1761  * They allow to pass console_lock to another printk() call using a busy wait.
1762  */
1763 
1764 #ifdef CONFIG_LOCKDEP
1765 static struct lockdep_map console_owner_dep_map = {
1766 	.name = "console_owner"
1767 };
1768 #endif
1769 
1770 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1771 static struct task_struct *console_owner;
1772 static bool console_waiter;
1773 
1774 /**
1775  * console_lock_spinning_enable - mark beginning of code where another
1776  *	thread might safely busy wait
1777  *
1778  * This basically converts console_lock into a spinlock. This marks
1779  * the section where the console_lock owner can not sleep, because
1780  * there may be a waiter spinning (like a spinlock). Also it must be
1781  * ready to hand over the lock at the end of the section.
1782  */
1783 static void console_lock_spinning_enable(void)
1784 {
1785 	raw_spin_lock(&console_owner_lock);
1786 	console_owner = current;
1787 	raw_spin_unlock(&console_owner_lock);
1788 
1789 	/* The waiter may spin on us after setting console_owner */
1790 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1791 }
1792 
1793 /**
1794  * console_lock_spinning_disable_and_check - mark end of code where another
1795  *	thread was able to busy wait and check if there is a waiter
1796  *
1797  * This is called at the end of the section where spinning is allowed.
1798  * It has two functions. First, it is a signal that it is no longer
1799  * safe to start busy waiting for the lock. Second, it checks if
1800  * there is a busy waiter and passes the lock rights to her.
1801  *
1802  * Important: Callers lose the lock if there was a busy waiter.
1803  *	They must not touch items synchronized by console_lock
1804  *	in this case.
1805  *
1806  * Return: 1 if the lock rights were passed, 0 otherwise.
1807  */
1808 static int console_lock_spinning_disable_and_check(void)
1809 {
1810 	int waiter;
1811 
1812 	raw_spin_lock(&console_owner_lock);
1813 	waiter = READ_ONCE(console_waiter);
1814 	console_owner = NULL;
1815 	raw_spin_unlock(&console_owner_lock);
1816 
1817 	if (!waiter) {
1818 		spin_release(&console_owner_dep_map, _THIS_IP_);
1819 		return 0;
1820 	}
1821 
1822 	/* The waiter is now free to continue */
1823 	WRITE_ONCE(console_waiter, false);
1824 
1825 	spin_release(&console_owner_dep_map, _THIS_IP_);
1826 
1827 	/*
1828 	 * Hand off console_lock to waiter. The waiter will perform
1829 	 * the up(). After this, the waiter is the console_lock owner.
1830 	 */
1831 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1832 	return 1;
1833 }
1834 
1835 /**
1836  * console_trylock_spinning - try to get console_lock by busy waiting
1837  *
1838  * This allows to busy wait for the console_lock when the current
1839  * owner is running in specially marked sections. It means that
1840  * the current owner is running and cannot reschedule until it
1841  * is ready to lose the lock.
1842  *
1843  * Return: 1 if we got the lock, 0 othrewise
1844  */
1845 static int console_trylock_spinning(void)
1846 {
1847 	struct task_struct *owner = NULL;
1848 	bool waiter;
1849 	bool spin = false;
1850 	unsigned long flags;
1851 
1852 	if (console_trylock())
1853 		return 1;
1854 
1855 	printk_safe_enter_irqsave(flags);
1856 
1857 	raw_spin_lock(&console_owner_lock);
1858 	owner = READ_ONCE(console_owner);
1859 	waiter = READ_ONCE(console_waiter);
1860 	if (!waiter && owner && owner != current) {
1861 		WRITE_ONCE(console_waiter, true);
1862 		spin = true;
1863 	}
1864 	raw_spin_unlock(&console_owner_lock);
1865 
1866 	/*
1867 	 * If there is an active printk() writing to the
1868 	 * consoles, instead of having it write our data too,
1869 	 * see if we can offload that load from the active
1870 	 * printer, and do some printing ourselves.
1871 	 * Go into a spin only if there isn't already a waiter
1872 	 * spinning, and there is an active printer, and
1873 	 * that active printer isn't us (recursive printk?).
1874 	 */
1875 	if (!spin) {
1876 		printk_safe_exit_irqrestore(flags);
1877 		return 0;
1878 	}
1879 
1880 	/* We spin waiting for the owner to release us */
1881 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1882 	/* Owner will clear console_waiter on hand off */
1883 	while (READ_ONCE(console_waiter))
1884 		cpu_relax();
1885 	spin_release(&console_owner_dep_map, _THIS_IP_);
1886 
1887 	printk_safe_exit_irqrestore(flags);
1888 	/*
1889 	 * The owner passed the console lock to us.
1890 	 * Since we did not spin on console lock, annotate
1891 	 * this as a trylock. Otherwise lockdep will
1892 	 * complain.
1893 	 */
1894 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1895 
1896 	return 1;
1897 }
1898 
1899 /*
1900  * Call the console drivers, asking them to write out
1901  * log_buf[start] to log_buf[end - 1].
1902  * The console_lock must be held.
1903  */
1904 static void call_console_drivers(const char *ext_text, size_t ext_len,
1905 				 const char *text, size_t len)
1906 {
1907 	static char dropped_text[64];
1908 	size_t dropped_len = 0;
1909 	struct console *con;
1910 
1911 	trace_console_rcuidle(text, len);
1912 
1913 	if (!console_drivers)
1914 		return;
1915 
1916 	if (console_dropped) {
1917 		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1918 				       "** %lu printk messages dropped **\n",
1919 				       console_dropped);
1920 		console_dropped = 0;
1921 	}
1922 
1923 	for_each_console(con) {
1924 		if (exclusive_console && con != exclusive_console)
1925 			continue;
1926 		if (!(con->flags & CON_ENABLED))
1927 			continue;
1928 		if (!con->write)
1929 			continue;
1930 		if (!cpu_online(smp_processor_id()) &&
1931 		    !(con->flags & CON_ANYTIME))
1932 			continue;
1933 		if (con->flags & CON_EXTENDED)
1934 			con->write(con, ext_text, ext_len);
1935 		else {
1936 			if (dropped_len)
1937 				con->write(con, dropped_text, dropped_len);
1938 			con->write(con, text, len);
1939 		}
1940 	}
1941 }
1942 
1943 int printk_delay_msec __read_mostly;
1944 
1945 static inline void printk_delay(void)
1946 {
1947 	if (unlikely(printk_delay_msec)) {
1948 		int m = printk_delay_msec;
1949 
1950 		while (m--) {
1951 			mdelay(1);
1952 			touch_nmi_watchdog();
1953 		}
1954 	}
1955 }
1956 
1957 static inline u32 printk_caller_id(void)
1958 {
1959 	return in_task() ? task_pid_nr(current) :
1960 		0x80000000 + raw_smp_processor_id();
1961 }
1962 
1963 /**
1964  * parse_prefix - Parse level and control flags.
1965  *
1966  * @text:     The terminated text message.
1967  * @level:    A pointer to the current level value, will be updated.
1968  * @lflags:   A pointer to the current log flags, will be updated.
1969  *
1970  * @level may be NULL if the caller is not interested in the parsed value.
1971  * Otherwise the variable pointed to by @level must be set to
1972  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
1973  *
1974  * @lflags may be NULL if the caller is not interested in the parsed value.
1975  * Otherwise the variable pointed to by @lflags will be OR'd with the parsed
1976  * value.
1977  *
1978  * Return: The length of the parsed level and control flags.
1979  */
1980 static u16 parse_prefix(char *text, int *level, enum log_flags *lflags)
1981 {
1982 	u16 prefix_len = 0;
1983 	int kern_level;
1984 
1985 	while (*text) {
1986 		kern_level = printk_get_level(text);
1987 		if (!kern_level)
1988 			break;
1989 
1990 		switch (kern_level) {
1991 		case '0' ... '7':
1992 			if (level && *level == LOGLEVEL_DEFAULT)
1993 				*level = kern_level - '0';
1994 			break;
1995 		case 'c':	/* KERN_CONT */
1996 			if (lflags)
1997 				*lflags |= LOG_CONT;
1998 		}
1999 
2000 		prefix_len += 2;
2001 		text += 2;
2002 	}
2003 
2004 	return prefix_len;
2005 }
2006 
2007 static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags,
2008 			 const char *fmt, va_list args)
2009 {
2010 	u16 text_len;
2011 
2012 	text_len = vscnprintf(text, size, fmt, args);
2013 
2014 	/* Mark and strip a trailing newline. */
2015 	if (text_len && text[text_len - 1] == '\n') {
2016 		text_len--;
2017 		*lflags |= LOG_NEWLINE;
2018 	}
2019 
2020 	/* Strip log level and control flags. */
2021 	if (facility == 0) {
2022 		u16 prefix_len;
2023 
2024 		prefix_len = parse_prefix(text, NULL, NULL);
2025 		if (prefix_len) {
2026 			text_len -= prefix_len;
2027 			memmove(text, text + prefix_len, text_len);
2028 		}
2029 	}
2030 
2031 	return text_len;
2032 }
2033 
2034 __printf(4, 0)
2035 int vprintk_store(int facility, int level,
2036 		  const struct dev_printk_info *dev_info,
2037 		  const char *fmt, va_list args)
2038 {
2039 	const u32 caller_id = printk_caller_id();
2040 	struct prb_reserved_entry e;
2041 	enum log_flags lflags = 0;
2042 	struct printk_record r;
2043 	u16 trunc_msg_len = 0;
2044 	char prefix_buf[8];
2045 	u16 reserve_size;
2046 	va_list args2;
2047 	u16 text_len;
2048 	u64 ts_nsec;
2049 
2050 	/*
2051 	 * Since the duration of printk() can vary depending on the message
2052 	 * and state of the ringbuffer, grab the timestamp now so that it is
2053 	 * close to the call of printk(). This provides a more deterministic
2054 	 * timestamp with respect to the caller.
2055 	 */
2056 	ts_nsec = local_clock();
2057 
2058 	/*
2059 	 * The sprintf needs to come first since the syslog prefix might be
2060 	 * passed in as a parameter. An extra byte must be reserved so that
2061 	 * later the vscnprintf() into the reserved buffer has room for the
2062 	 * terminating '\0', which is not counted by vsnprintf().
2063 	 */
2064 	va_copy(args2, args);
2065 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2066 	va_end(args2);
2067 
2068 	if (reserve_size > LOG_LINE_MAX)
2069 		reserve_size = LOG_LINE_MAX;
2070 
2071 	/* Extract log level or control flags. */
2072 	if (facility == 0)
2073 		parse_prefix(&prefix_buf[0], &level, &lflags);
2074 
2075 	if (level == LOGLEVEL_DEFAULT)
2076 		level = default_message_loglevel;
2077 
2078 	if (dev_info)
2079 		lflags |= LOG_NEWLINE;
2080 
2081 	if (lflags & LOG_CONT) {
2082 		prb_rec_init_wr(&r, reserve_size);
2083 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2084 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2085 						 facility, &lflags, fmt, args);
2086 			r.info->text_len += text_len;
2087 
2088 			if (lflags & LOG_NEWLINE) {
2089 				r.info->flags |= LOG_NEWLINE;
2090 				prb_final_commit(&e);
2091 			} else {
2092 				prb_commit(&e);
2093 			}
2094 
2095 			return text_len;
2096 		}
2097 	}
2098 
2099 	/*
2100 	 * Explicitly initialize the record before every prb_reserve() call.
2101 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2102 	 * structure when they fail.
2103 	 */
2104 	prb_rec_init_wr(&r, reserve_size);
2105 	if (!prb_reserve(&e, prb, &r)) {
2106 		/* truncate the message if it is too long for empty buffer */
2107 		truncate_msg(&reserve_size, &trunc_msg_len);
2108 
2109 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2110 		if (!prb_reserve(&e, prb, &r))
2111 			return 0;
2112 	}
2113 
2114 	/* fill message */
2115 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args);
2116 	if (trunc_msg_len)
2117 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2118 	r.info->text_len = text_len + trunc_msg_len;
2119 	r.info->facility = facility;
2120 	r.info->level = level & 7;
2121 	r.info->flags = lflags & 0x1f;
2122 	r.info->ts_nsec = ts_nsec;
2123 	r.info->caller_id = caller_id;
2124 	if (dev_info)
2125 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2126 
2127 	/* A message without a trailing newline can be continued. */
2128 	if (!(lflags & LOG_NEWLINE))
2129 		prb_commit(&e);
2130 	else
2131 		prb_final_commit(&e);
2132 
2133 	return (text_len + trunc_msg_len);
2134 }
2135 
2136 asmlinkage int vprintk_emit(int facility, int level,
2137 			    const struct dev_printk_info *dev_info,
2138 			    const char *fmt, va_list args)
2139 {
2140 	int printed_len;
2141 	bool in_sched = false;
2142 	unsigned long flags;
2143 
2144 	/* Suppress unimportant messages after panic happens */
2145 	if (unlikely(suppress_printk))
2146 		return 0;
2147 
2148 	if (level == LOGLEVEL_SCHED) {
2149 		level = LOGLEVEL_DEFAULT;
2150 		in_sched = true;
2151 	}
2152 
2153 	boot_delay_msec(level);
2154 	printk_delay();
2155 
2156 	printk_safe_enter_irqsave(flags);
2157 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2158 	printk_safe_exit_irqrestore(flags);
2159 
2160 	/* If called from the scheduler, we can not call up(). */
2161 	if (!in_sched) {
2162 		/*
2163 		 * Disable preemption to avoid being preempted while holding
2164 		 * console_sem which would prevent anyone from printing to
2165 		 * console
2166 		 */
2167 		preempt_disable();
2168 		/*
2169 		 * Try to acquire and then immediately release the console
2170 		 * semaphore.  The release will print out buffers and wake up
2171 		 * /dev/kmsg and syslog() users.
2172 		 */
2173 		if (console_trylock_spinning())
2174 			console_unlock();
2175 		preempt_enable();
2176 	}
2177 
2178 	wake_up_klogd();
2179 	return printed_len;
2180 }
2181 EXPORT_SYMBOL(vprintk_emit);
2182 
2183 int vprintk_default(const char *fmt, va_list args)
2184 {
2185 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2186 }
2187 EXPORT_SYMBOL_GPL(vprintk_default);
2188 
2189 /**
2190  * printk - print a kernel message
2191  * @fmt: format string
2192  *
2193  * This is printk(). It can be called from any context. We want it to work.
2194  *
2195  * We try to grab the console_lock. If we succeed, it's easy - we log the
2196  * output and call the console drivers.  If we fail to get the semaphore, we
2197  * place the output into the log buffer and return. The current holder of
2198  * the console_sem will notice the new output in console_unlock(); and will
2199  * send it to the consoles before releasing the lock.
2200  *
2201  * One effect of this deferred printing is that code which calls printk() and
2202  * then changes console_loglevel may break. This is because console_loglevel
2203  * is inspected when the actual printing occurs.
2204  *
2205  * See also:
2206  * printf(3)
2207  *
2208  * See the vsnprintf() documentation for format string extensions over C99.
2209  */
2210 asmlinkage __visible int printk(const char *fmt, ...)
2211 {
2212 	va_list args;
2213 	int r;
2214 
2215 	va_start(args, fmt);
2216 	r = vprintk(fmt, args);
2217 	va_end(args);
2218 
2219 	return r;
2220 }
2221 EXPORT_SYMBOL(printk);
2222 
2223 #else /* CONFIG_PRINTK */
2224 
2225 #define CONSOLE_LOG_MAX		0
2226 #define printk_time		false
2227 
2228 #define prb_read_valid(rb, seq, r)	false
2229 #define prb_first_valid_seq(rb)		0
2230 
2231 static u64 syslog_seq;
2232 static u64 console_seq;
2233 static u64 exclusive_console_stop_seq;
2234 static unsigned long console_dropped;
2235 
2236 static size_t record_print_text(const struct printk_record *r,
2237 				bool syslog, bool time)
2238 {
2239 	return 0;
2240 }
2241 static ssize_t info_print_ext_header(char *buf, size_t size,
2242 				     struct printk_info *info)
2243 {
2244 	return 0;
2245 }
2246 static ssize_t msg_print_ext_body(char *buf, size_t size,
2247 				  char *text, size_t text_len,
2248 				  struct dev_printk_info *dev_info) { return 0; }
2249 static void console_lock_spinning_enable(void) { }
2250 static int console_lock_spinning_disable_and_check(void) { return 0; }
2251 static void call_console_drivers(const char *ext_text, size_t ext_len,
2252 				 const char *text, size_t len) {}
2253 static bool suppress_message_printing(int level) { return false; }
2254 
2255 #endif /* CONFIG_PRINTK */
2256 
2257 #ifdef CONFIG_EARLY_PRINTK
2258 struct console *early_console;
2259 
2260 asmlinkage __visible void early_printk(const char *fmt, ...)
2261 {
2262 	va_list ap;
2263 	char buf[512];
2264 	int n;
2265 
2266 	if (!early_console)
2267 		return;
2268 
2269 	va_start(ap, fmt);
2270 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2271 	va_end(ap);
2272 
2273 	early_console->write(early_console, buf, n);
2274 }
2275 #endif
2276 
2277 static int __add_preferred_console(char *name, int idx, char *options,
2278 				   char *brl_options, bool user_specified)
2279 {
2280 	struct console_cmdline *c;
2281 	int i;
2282 
2283 	/*
2284 	 *	See if this tty is not yet registered, and
2285 	 *	if we have a slot free.
2286 	 */
2287 	for (i = 0, c = console_cmdline;
2288 	     i < MAX_CMDLINECONSOLES && c->name[0];
2289 	     i++, c++) {
2290 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2291 			if (!brl_options)
2292 				preferred_console = i;
2293 			if (user_specified)
2294 				c->user_specified = true;
2295 			return 0;
2296 		}
2297 	}
2298 	if (i == MAX_CMDLINECONSOLES)
2299 		return -E2BIG;
2300 	if (!brl_options)
2301 		preferred_console = i;
2302 	strlcpy(c->name, name, sizeof(c->name));
2303 	c->options = options;
2304 	c->user_specified = user_specified;
2305 	braille_set_options(c, brl_options);
2306 
2307 	c->index = idx;
2308 	return 0;
2309 }
2310 
2311 static int __init console_msg_format_setup(char *str)
2312 {
2313 	if (!strcmp(str, "syslog"))
2314 		console_msg_format = MSG_FORMAT_SYSLOG;
2315 	if (!strcmp(str, "default"))
2316 		console_msg_format = MSG_FORMAT_DEFAULT;
2317 	return 1;
2318 }
2319 __setup("console_msg_format=", console_msg_format_setup);
2320 
2321 /*
2322  * Set up a console.  Called via do_early_param() in init/main.c
2323  * for each "console=" parameter in the boot command line.
2324  */
2325 static int __init console_setup(char *str)
2326 {
2327 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2328 	char *s, *options, *brl_options = NULL;
2329 	int idx;
2330 
2331 	/*
2332 	 * console="" or console=null have been suggested as a way to
2333 	 * disable console output. Use ttynull that has been created
2334 	 * for exactly this purpose.
2335 	 */
2336 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2337 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2338 		return 1;
2339 	}
2340 
2341 	if (_braille_console_setup(&str, &brl_options))
2342 		return 1;
2343 
2344 	/*
2345 	 * Decode str into name, index, options.
2346 	 */
2347 	if (str[0] >= '0' && str[0] <= '9') {
2348 		strcpy(buf, "ttyS");
2349 		strncpy(buf + 4, str, sizeof(buf) - 5);
2350 	} else {
2351 		strncpy(buf, str, sizeof(buf) - 1);
2352 	}
2353 	buf[sizeof(buf) - 1] = 0;
2354 	options = strchr(str, ',');
2355 	if (options)
2356 		*(options++) = 0;
2357 #ifdef __sparc__
2358 	if (!strcmp(str, "ttya"))
2359 		strcpy(buf, "ttyS0");
2360 	if (!strcmp(str, "ttyb"))
2361 		strcpy(buf, "ttyS1");
2362 #endif
2363 	for (s = buf; *s; s++)
2364 		if (isdigit(*s) || *s == ',')
2365 			break;
2366 	idx = simple_strtoul(s, NULL, 10);
2367 	*s = 0;
2368 
2369 	__add_preferred_console(buf, idx, options, brl_options, true);
2370 	console_set_on_cmdline = 1;
2371 	return 1;
2372 }
2373 __setup("console=", console_setup);
2374 
2375 /**
2376  * add_preferred_console - add a device to the list of preferred consoles.
2377  * @name: device name
2378  * @idx: device index
2379  * @options: options for this console
2380  *
2381  * The last preferred console added will be used for kernel messages
2382  * and stdin/out/err for init.  Normally this is used by console_setup
2383  * above to handle user-supplied console arguments; however it can also
2384  * be used by arch-specific code either to override the user or more
2385  * commonly to provide a default console (ie from PROM variables) when
2386  * the user has not supplied one.
2387  */
2388 int add_preferred_console(char *name, int idx, char *options)
2389 {
2390 	return __add_preferred_console(name, idx, options, NULL, false);
2391 }
2392 
2393 bool console_suspend_enabled = true;
2394 EXPORT_SYMBOL(console_suspend_enabled);
2395 
2396 static int __init console_suspend_disable(char *str)
2397 {
2398 	console_suspend_enabled = false;
2399 	return 1;
2400 }
2401 __setup("no_console_suspend", console_suspend_disable);
2402 module_param_named(console_suspend, console_suspend_enabled,
2403 		bool, S_IRUGO | S_IWUSR);
2404 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2405 	" and hibernate operations");
2406 
2407 /**
2408  * suspend_console - suspend the console subsystem
2409  *
2410  * This disables printk() while we go into suspend states
2411  */
2412 void suspend_console(void)
2413 {
2414 	if (!console_suspend_enabled)
2415 		return;
2416 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2417 	console_lock();
2418 	console_suspended = 1;
2419 	up_console_sem();
2420 }
2421 
2422 void resume_console(void)
2423 {
2424 	if (!console_suspend_enabled)
2425 		return;
2426 	down_console_sem();
2427 	console_suspended = 0;
2428 	console_unlock();
2429 }
2430 
2431 /**
2432  * console_cpu_notify - print deferred console messages after CPU hotplug
2433  * @cpu: unused
2434  *
2435  * If printk() is called from a CPU that is not online yet, the messages
2436  * will be printed on the console only if there are CON_ANYTIME consoles.
2437  * This function is called when a new CPU comes online (or fails to come
2438  * up) or goes offline.
2439  */
2440 static int console_cpu_notify(unsigned int cpu)
2441 {
2442 	if (!cpuhp_tasks_frozen) {
2443 		/* If trylock fails, someone else is doing the printing */
2444 		if (console_trylock())
2445 			console_unlock();
2446 	}
2447 	return 0;
2448 }
2449 
2450 /**
2451  * console_lock - lock the console system for exclusive use.
2452  *
2453  * Acquires a lock which guarantees that the caller has
2454  * exclusive access to the console system and the console_drivers list.
2455  *
2456  * Can sleep, returns nothing.
2457  */
2458 void console_lock(void)
2459 {
2460 	might_sleep();
2461 
2462 	down_console_sem();
2463 	if (console_suspended)
2464 		return;
2465 	console_locked = 1;
2466 	console_may_schedule = 1;
2467 }
2468 EXPORT_SYMBOL(console_lock);
2469 
2470 /**
2471  * console_trylock - try to lock the console system for exclusive use.
2472  *
2473  * Try to acquire a lock which guarantees that the caller has exclusive
2474  * access to the console system and the console_drivers list.
2475  *
2476  * returns 1 on success, and 0 on failure to acquire the lock.
2477  */
2478 int console_trylock(void)
2479 {
2480 	if (down_trylock_console_sem())
2481 		return 0;
2482 	if (console_suspended) {
2483 		up_console_sem();
2484 		return 0;
2485 	}
2486 	console_locked = 1;
2487 	console_may_schedule = 0;
2488 	return 1;
2489 }
2490 EXPORT_SYMBOL(console_trylock);
2491 
2492 int is_console_locked(void)
2493 {
2494 	return console_locked;
2495 }
2496 EXPORT_SYMBOL(is_console_locked);
2497 
2498 /*
2499  * Check if we have any console that is capable of printing while cpu is
2500  * booting or shutting down. Requires console_sem.
2501  */
2502 static int have_callable_console(void)
2503 {
2504 	struct console *con;
2505 
2506 	for_each_console(con)
2507 		if ((con->flags & CON_ENABLED) &&
2508 				(con->flags & CON_ANYTIME))
2509 			return 1;
2510 
2511 	return 0;
2512 }
2513 
2514 /*
2515  * Can we actually use the console at this time on this cpu?
2516  *
2517  * Console drivers may assume that per-cpu resources have been allocated. So
2518  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2519  * call them until this CPU is officially up.
2520  */
2521 static inline int can_use_console(void)
2522 {
2523 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2524 }
2525 
2526 /**
2527  * console_unlock - unlock the console system
2528  *
2529  * Releases the console_lock which the caller holds on the console system
2530  * and the console driver list.
2531  *
2532  * While the console_lock was held, console output may have been buffered
2533  * by printk().  If this is the case, console_unlock(); emits
2534  * the output prior to releasing the lock.
2535  *
2536  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2537  *
2538  * console_unlock(); may be called from any context.
2539  */
2540 void console_unlock(void)
2541 {
2542 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2543 	static char text[CONSOLE_LOG_MAX];
2544 	unsigned long flags;
2545 	bool do_cond_resched, retry;
2546 	struct printk_info info;
2547 	struct printk_record r;
2548 
2549 	if (console_suspended) {
2550 		up_console_sem();
2551 		return;
2552 	}
2553 
2554 	prb_rec_init_rd(&r, &info, text, sizeof(text));
2555 
2556 	/*
2557 	 * Console drivers are called with interrupts disabled, so
2558 	 * @console_may_schedule should be cleared before; however, we may
2559 	 * end up dumping a lot of lines, for example, if called from
2560 	 * console registration path, and should invoke cond_resched()
2561 	 * between lines if allowable.  Not doing so can cause a very long
2562 	 * scheduling stall on a slow console leading to RCU stall and
2563 	 * softlockup warnings which exacerbate the issue with more
2564 	 * messages practically incapacitating the system.
2565 	 *
2566 	 * console_trylock() is not able to detect the preemptive
2567 	 * context reliably. Therefore the value must be stored before
2568 	 * and cleared after the "again" goto label.
2569 	 */
2570 	do_cond_resched = console_may_schedule;
2571 again:
2572 	console_may_schedule = 0;
2573 
2574 	/*
2575 	 * We released the console_sem lock, so we need to recheck if
2576 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2577 	 * console.
2578 	 */
2579 	if (!can_use_console()) {
2580 		console_locked = 0;
2581 		up_console_sem();
2582 		return;
2583 	}
2584 
2585 	for (;;) {
2586 		size_t ext_len = 0;
2587 		size_t len;
2588 
2589 		printk_safe_enter_irqsave(flags);
2590 skip:
2591 		if (!prb_read_valid(prb, console_seq, &r))
2592 			break;
2593 
2594 		if (console_seq != r.info->seq) {
2595 			console_dropped += r.info->seq - console_seq;
2596 			console_seq = r.info->seq;
2597 		}
2598 
2599 		if (suppress_message_printing(r.info->level)) {
2600 			/*
2601 			 * Skip record we have buffered and already printed
2602 			 * directly to the console when we received it, and
2603 			 * record that has level above the console loglevel.
2604 			 */
2605 			console_seq++;
2606 			goto skip;
2607 		}
2608 
2609 		/* Output to all consoles once old messages replayed. */
2610 		if (unlikely(exclusive_console &&
2611 			     console_seq >= exclusive_console_stop_seq)) {
2612 			exclusive_console = NULL;
2613 		}
2614 
2615 		/*
2616 		 * Handle extended console text first because later
2617 		 * record_print_text() will modify the record buffer in-place.
2618 		 */
2619 		if (nr_ext_console_drivers) {
2620 			ext_len = info_print_ext_header(ext_text,
2621 						sizeof(ext_text),
2622 						r.info);
2623 			ext_len += msg_print_ext_body(ext_text + ext_len,
2624 						sizeof(ext_text) - ext_len,
2625 						&r.text_buf[0],
2626 						r.info->text_len,
2627 						&r.info->dev_info);
2628 		}
2629 		len = record_print_text(&r,
2630 				console_msg_format & MSG_FORMAT_SYSLOG,
2631 				printk_time);
2632 		console_seq++;
2633 
2634 		/*
2635 		 * While actively printing out messages, if another printk()
2636 		 * were to occur on another CPU, it may wait for this one to
2637 		 * finish. This task can not be preempted if there is a
2638 		 * waiter waiting to take over.
2639 		 */
2640 		console_lock_spinning_enable();
2641 
2642 		stop_critical_timings();	/* don't trace print latency */
2643 		call_console_drivers(ext_text, ext_len, text, len);
2644 		start_critical_timings();
2645 
2646 		if (console_lock_spinning_disable_and_check()) {
2647 			printk_safe_exit_irqrestore(flags);
2648 			return;
2649 		}
2650 
2651 		printk_safe_exit_irqrestore(flags);
2652 
2653 		if (do_cond_resched)
2654 			cond_resched();
2655 	}
2656 
2657 	console_locked = 0;
2658 
2659 	up_console_sem();
2660 
2661 	/*
2662 	 * Someone could have filled up the buffer again, so re-check if there's
2663 	 * something to flush. In case we cannot trylock the console_sem again,
2664 	 * there's a new owner and the console_unlock() from them will do the
2665 	 * flush, no worries.
2666 	 */
2667 	retry = prb_read_valid(prb, console_seq, NULL);
2668 	printk_safe_exit_irqrestore(flags);
2669 
2670 	if (retry && console_trylock())
2671 		goto again;
2672 }
2673 EXPORT_SYMBOL(console_unlock);
2674 
2675 /**
2676  * console_conditional_schedule - yield the CPU if required
2677  *
2678  * If the console code is currently allowed to sleep, and
2679  * if this CPU should yield the CPU to another task, do
2680  * so here.
2681  *
2682  * Must be called within console_lock();.
2683  */
2684 void __sched console_conditional_schedule(void)
2685 {
2686 	if (console_may_schedule)
2687 		cond_resched();
2688 }
2689 EXPORT_SYMBOL(console_conditional_schedule);
2690 
2691 void console_unblank(void)
2692 {
2693 	struct console *c;
2694 
2695 	/*
2696 	 * console_unblank can no longer be called in interrupt context unless
2697 	 * oops_in_progress is set to 1..
2698 	 */
2699 	if (oops_in_progress) {
2700 		if (down_trylock_console_sem() != 0)
2701 			return;
2702 	} else
2703 		console_lock();
2704 
2705 	console_locked = 1;
2706 	console_may_schedule = 0;
2707 	for_each_console(c)
2708 		if ((c->flags & CON_ENABLED) && c->unblank)
2709 			c->unblank();
2710 	console_unlock();
2711 }
2712 
2713 /**
2714  * console_flush_on_panic - flush console content on panic
2715  * @mode: flush all messages in buffer or just the pending ones
2716  *
2717  * Immediately output all pending messages no matter what.
2718  */
2719 void console_flush_on_panic(enum con_flush_mode mode)
2720 {
2721 	/*
2722 	 * If someone else is holding the console lock, trylock will fail
2723 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2724 	 * that messages are flushed out.  As this can be called from any
2725 	 * context and we don't want to get preempted while flushing,
2726 	 * ensure may_schedule is cleared.
2727 	 */
2728 	console_trylock();
2729 	console_may_schedule = 0;
2730 
2731 	if (mode == CONSOLE_REPLAY_ALL) {
2732 		unsigned long flags;
2733 
2734 		printk_safe_enter_irqsave(flags);
2735 		console_seq = prb_first_valid_seq(prb);
2736 		printk_safe_exit_irqrestore(flags);
2737 	}
2738 	console_unlock();
2739 }
2740 
2741 /*
2742  * Return the console tty driver structure and its associated index
2743  */
2744 struct tty_driver *console_device(int *index)
2745 {
2746 	struct console *c;
2747 	struct tty_driver *driver = NULL;
2748 
2749 	console_lock();
2750 	for_each_console(c) {
2751 		if (!c->device)
2752 			continue;
2753 		driver = c->device(c, index);
2754 		if (driver)
2755 			break;
2756 	}
2757 	console_unlock();
2758 	return driver;
2759 }
2760 
2761 /*
2762  * Prevent further output on the passed console device so that (for example)
2763  * serial drivers can disable console output before suspending a port, and can
2764  * re-enable output afterwards.
2765  */
2766 void console_stop(struct console *console)
2767 {
2768 	console_lock();
2769 	console->flags &= ~CON_ENABLED;
2770 	console_unlock();
2771 }
2772 EXPORT_SYMBOL(console_stop);
2773 
2774 void console_start(struct console *console)
2775 {
2776 	console_lock();
2777 	console->flags |= CON_ENABLED;
2778 	console_unlock();
2779 }
2780 EXPORT_SYMBOL(console_start);
2781 
2782 static int __read_mostly keep_bootcon;
2783 
2784 static int __init keep_bootcon_setup(char *str)
2785 {
2786 	keep_bootcon = 1;
2787 	pr_info("debug: skip boot console de-registration.\n");
2788 
2789 	return 0;
2790 }
2791 
2792 early_param("keep_bootcon", keep_bootcon_setup);
2793 
2794 /*
2795  * This is called by register_console() to try to match
2796  * the newly registered console with any of the ones selected
2797  * by either the command line or add_preferred_console() and
2798  * setup/enable it.
2799  *
2800  * Care need to be taken with consoles that are statically
2801  * enabled such as netconsole
2802  */
2803 static int try_enable_new_console(struct console *newcon, bool user_specified)
2804 {
2805 	struct console_cmdline *c;
2806 	int i, err;
2807 
2808 	for (i = 0, c = console_cmdline;
2809 	     i < MAX_CMDLINECONSOLES && c->name[0];
2810 	     i++, c++) {
2811 		if (c->user_specified != user_specified)
2812 			continue;
2813 		if (!newcon->match ||
2814 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2815 			/* default matching */
2816 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2817 			if (strcmp(c->name, newcon->name) != 0)
2818 				continue;
2819 			if (newcon->index >= 0 &&
2820 			    newcon->index != c->index)
2821 				continue;
2822 			if (newcon->index < 0)
2823 				newcon->index = c->index;
2824 
2825 			if (_braille_register_console(newcon, c))
2826 				return 0;
2827 
2828 			if (newcon->setup &&
2829 			    (err = newcon->setup(newcon, c->options)) != 0)
2830 				return err;
2831 		}
2832 		newcon->flags |= CON_ENABLED;
2833 		if (i == preferred_console) {
2834 			newcon->flags |= CON_CONSDEV;
2835 			has_preferred_console = true;
2836 		}
2837 		return 0;
2838 	}
2839 
2840 	/*
2841 	 * Some consoles, such as pstore and netconsole, can be enabled even
2842 	 * without matching. Accept the pre-enabled consoles only when match()
2843 	 * and setup() had a chance to be called.
2844 	 */
2845 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2846 		return 0;
2847 
2848 	return -ENOENT;
2849 }
2850 
2851 /*
2852  * The console driver calls this routine during kernel initialization
2853  * to register the console printing procedure with printk() and to
2854  * print any messages that were printed by the kernel before the
2855  * console driver was initialized.
2856  *
2857  * This can happen pretty early during the boot process (because of
2858  * early_printk) - sometimes before setup_arch() completes - be careful
2859  * of what kernel features are used - they may not be initialised yet.
2860  *
2861  * There are two types of consoles - bootconsoles (early_printk) and
2862  * "real" consoles (everything which is not a bootconsole) which are
2863  * handled differently.
2864  *  - Any number of bootconsoles can be registered at any time.
2865  *  - As soon as a "real" console is registered, all bootconsoles
2866  *    will be unregistered automatically.
2867  *  - Once a "real" console is registered, any attempt to register a
2868  *    bootconsoles will be rejected
2869  */
2870 void register_console(struct console *newcon)
2871 {
2872 	unsigned long flags;
2873 	struct console *bcon = NULL;
2874 	int err;
2875 
2876 	for_each_console(bcon) {
2877 		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2878 					 bcon->name, bcon->index))
2879 			return;
2880 	}
2881 
2882 	/*
2883 	 * before we register a new CON_BOOT console, make sure we don't
2884 	 * already have a valid console
2885 	 */
2886 	if (newcon->flags & CON_BOOT) {
2887 		for_each_console(bcon) {
2888 			if (!(bcon->flags & CON_BOOT)) {
2889 				pr_info("Too late to register bootconsole %s%d\n",
2890 					newcon->name, newcon->index);
2891 				return;
2892 			}
2893 		}
2894 	}
2895 
2896 	if (console_drivers && console_drivers->flags & CON_BOOT)
2897 		bcon = console_drivers;
2898 
2899 	if (!has_preferred_console || bcon || !console_drivers)
2900 		has_preferred_console = preferred_console >= 0;
2901 
2902 	/*
2903 	 *	See if we want to use this console driver. If we
2904 	 *	didn't select a console we take the first one
2905 	 *	that registers here.
2906 	 */
2907 	if (!has_preferred_console) {
2908 		if (newcon->index < 0)
2909 			newcon->index = 0;
2910 		if (newcon->setup == NULL ||
2911 		    newcon->setup(newcon, NULL) == 0) {
2912 			newcon->flags |= CON_ENABLED;
2913 			if (newcon->device) {
2914 				newcon->flags |= CON_CONSDEV;
2915 				has_preferred_console = true;
2916 			}
2917 		}
2918 	}
2919 
2920 	/* See if this console matches one we selected on the command line */
2921 	err = try_enable_new_console(newcon, true);
2922 
2923 	/* If not, try to match against the platform default(s) */
2924 	if (err == -ENOENT)
2925 		err = try_enable_new_console(newcon, false);
2926 
2927 	/* printk() messages are not printed to the Braille console. */
2928 	if (err || newcon->flags & CON_BRL)
2929 		return;
2930 
2931 	/*
2932 	 * If we have a bootconsole, and are switching to a real console,
2933 	 * don't print everything out again, since when the boot console, and
2934 	 * the real console are the same physical device, it's annoying to
2935 	 * see the beginning boot messages twice
2936 	 */
2937 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2938 		newcon->flags &= ~CON_PRINTBUFFER;
2939 
2940 	/*
2941 	 *	Put this console in the list - keep the
2942 	 *	preferred driver at the head of the list.
2943 	 */
2944 	console_lock();
2945 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2946 		newcon->next = console_drivers;
2947 		console_drivers = newcon;
2948 		if (newcon->next)
2949 			newcon->next->flags &= ~CON_CONSDEV;
2950 		/* Ensure this flag is always set for the head of the list */
2951 		newcon->flags |= CON_CONSDEV;
2952 	} else {
2953 		newcon->next = console_drivers->next;
2954 		console_drivers->next = newcon;
2955 	}
2956 
2957 	if (newcon->flags & CON_EXTENDED)
2958 		nr_ext_console_drivers++;
2959 
2960 	if (newcon->flags & CON_PRINTBUFFER) {
2961 		/*
2962 		 * console_unlock(); will print out the buffered messages
2963 		 * for us.
2964 		 *
2965 		 * We're about to replay the log buffer.  Only do this to the
2966 		 * just-registered console to avoid excessive message spam to
2967 		 * the already-registered consoles.
2968 		 *
2969 		 * Set exclusive_console with disabled interrupts to reduce
2970 		 * race window with eventual console_flush_on_panic() that
2971 		 * ignores console_lock.
2972 		 */
2973 		exclusive_console = newcon;
2974 		exclusive_console_stop_seq = console_seq;
2975 
2976 		/* Get a consistent copy of @syslog_seq. */
2977 		raw_spin_lock_irqsave(&syslog_lock, flags);
2978 		console_seq = syslog_seq;
2979 		raw_spin_unlock_irqrestore(&syslog_lock, flags);
2980 	}
2981 	console_unlock();
2982 	console_sysfs_notify();
2983 
2984 	/*
2985 	 * By unregistering the bootconsoles after we enable the real console
2986 	 * we get the "console xxx enabled" message on all the consoles -
2987 	 * boot consoles, real consoles, etc - this is to ensure that end
2988 	 * users know there might be something in the kernel's log buffer that
2989 	 * went to the bootconsole (that they do not see on the real console)
2990 	 */
2991 	pr_info("%sconsole [%s%d] enabled\n",
2992 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2993 		newcon->name, newcon->index);
2994 	if (bcon &&
2995 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2996 	    !keep_bootcon) {
2997 		/* We need to iterate through all boot consoles, to make
2998 		 * sure we print everything out, before we unregister them.
2999 		 */
3000 		for_each_console(bcon)
3001 			if (bcon->flags & CON_BOOT)
3002 				unregister_console(bcon);
3003 	}
3004 }
3005 EXPORT_SYMBOL(register_console);
3006 
3007 int unregister_console(struct console *console)
3008 {
3009 	struct console *con;
3010 	int res;
3011 
3012 	pr_info("%sconsole [%s%d] disabled\n",
3013 		(console->flags & CON_BOOT) ? "boot" : "" ,
3014 		console->name, console->index);
3015 
3016 	res = _braille_unregister_console(console);
3017 	if (res < 0)
3018 		return res;
3019 	if (res > 0)
3020 		return 0;
3021 
3022 	res = -ENODEV;
3023 	console_lock();
3024 	if (console_drivers == console) {
3025 		console_drivers=console->next;
3026 		res = 0;
3027 	} else {
3028 		for_each_console(con) {
3029 			if (con->next == console) {
3030 				con->next = console->next;
3031 				res = 0;
3032 				break;
3033 			}
3034 		}
3035 	}
3036 
3037 	if (res)
3038 		goto out_disable_unlock;
3039 
3040 	if (console->flags & CON_EXTENDED)
3041 		nr_ext_console_drivers--;
3042 
3043 	/*
3044 	 * If this isn't the last console and it has CON_CONSDEV set, we
3045 	 * need to set it on the next preferred console.
3046 	 */
3047 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
3048 		console_drivers->flags |= CON_CONSDEV;
3049 
3050 	console->flags &= ~CON_ENABLED;
3051 	console_unlock();
3052 	console_sysfs_notify();
3053 
3054 	if (console->exit)
3055 		res = console->exit(console);
3056 
3057 	return res;
3058 
3059 out_disable_unlock:
3060 	console->flags &= ~CON_ENABLED;
3061 	console_unlock();
3062 
3063 	return res;
3064 }
3065 EXPORT_SYMBOL(unregister_console);
3066 
3067 /*
3068  * Initialize the console device. This is called *early*, so
3069  * we can't necessarily depend on lots of kernel help here.
3070  * Just do some early initializations, and do the complex setup
3071  * later.
3072  */
3073 void __init console_init(void)
3074 {
3075 	int ret;
3076 	initcall_t call;
3077 	initcall_entry_t *ce;
3078 
3079 	/* Setup the default TTY line discipline. */
3080 	n_tty_init();
3081 
3082 	/*
3083 	 * set up the console device so that later boot sequences can
3084 	 * inform about problems etc..
3085 	 */
3086 	ce = __con_initcall_start;
3087 	trace_initcall_level("console");
3088 	while (ce < __con_initcall_end) {
3089 		call = initcall_from_entry(ce);
3090 		trace_initcall_start(call);
3091 		ret = call();
3092 		trace_initcall_finish(call, ret);
3093 		ce++;
3094 	}
3095 }
3096 
3097 /*
3098  * Some boot consoles access data that is in the init section and which will
3099  * be discarded after the initcalls have been run. To make sure that no code
3100  * will access this data, unregister the boot consoles in a late initcall.
3101  *
3102  * If for some reason, such as deferred probe or the driver being a loadable
3103  * module, the real console hasn't registered yet at this point, there will
3104  * be a brief interval in which no messages are logged to the console, which
3105  * makes it difficult to diagnose problems that occur during this time.
3106  *
3107  * To mitigate this problem somewhat, only unregister consoles whose memory
3108  * intersects with the init section. Note that all other boot consoles will
3109  * get unregistered when the real preferred console is registered.
3110  */
3111 static int __init printk_late_init(void)
3112 {
3113 	struct console *con;
3114 	int ret;
3115 
3116 	for_each_console(con) {
3117 		if (!(con->flags & CON_BOOT))
3118 			continue;
3119 
3120 		/* Check addresses that might be used for enabled consoles. */
3121 		if (init_section_intersects(con, sizeof(*con)) ||
3122 		    init_section_contains(con->write, 0) ||
3123 		    init_section_contains(con->read, 0) ||
3124 		    init_section_contains(con->device, 0) ||
3125 		    init_section_contains(con->unblank, 0) ||
3126 		    init_section_contains(con->data, 0)) {
3127 			/*
3128 			 * Please, consider moving the reported consoles out
3129 			 * of the init section.
3130 			 */
3131 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3132 				con->name, con->index);
3133 			unregister_console(con);
3134 		}
3135 	}
3136 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3137 					console_cpu_notify);
3138 	WARN_ON(ret < 0);
3139 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3140 					console_cpu_notify, NULL);
3141 	WARN_ON(ret < 0);
3142 	return 0;
3143 }
3144 late_initcall(printk_late_init);
3145 
3146 #if defined CONFIG_PRINTK
3147 /*
3148  * Delayed printk version, for scheduler-internal messages:
3149  */
3150 #define PRINTK_PENDING_WAKEUP	0x01
3151 #define PRINTK_PENDING_OUTPUT	0x02
3152 
3153 static DEFINE_PER_CPU(int, printk_pending);
3154 
3155 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3156 {
3157 	int pending = __this_cpu_xchg(printk_pending, 0);
3158 
3159 	if (pending & PRINTK_PENDING_OUTPUT) {
3160 		/* If trylock fails, someone else is doing the printing */
3161 		if (console_trylock())
3162 			console_unlock();
3163 	}
3164 
3165 	if (pending & PRINTK_PENDING_WAKEUP)
3166 		wake_up_interruptible(&log_wait);
3167 }
3168 
3169 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3170 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3171 
3172 void wake_up_klogd(void)
3173 {
3174 	if (!printk_percpu_data_ready())
3175 		return;
3176 
3177 	preempt_disable();
3178 	if (waitqueue_active(&log_wait)) {
3179 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3180 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3181 	}
3182 	preempt_enable();
3183 }
3184 
3185 void defer_console_output(void)
3186 {
3187 	if (!printk_percpu_data_ready())
3188 		return;
3189 
3190 	preempt_disable();
3191 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3192 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3193 	preempt_enable();
3194 }
3195 
3196 int vprintk_deferred(const char *fmt, va_list args)
3197 {
3198 	int r;
3199 
3200 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3201 	defer_console_output();
3202 
3203 	return r;
3204 }
3205 
3206 int printk_deferred(const char *fmt, ...)
3207 {
3208 	va_list args;
3209 	int r;
3210 
3211 	va_start(args, fmt);
3212 	r = vprintk_deferred(fmt, args);
3213 	va_end(args);
3214 
3215 	return r;
3216 }
3217 
3218 /*
3219  * printk rate limiting, lifted from the networking subsystem.
3220  *
3221  * This enforces a rate limit: not more than 10 kernel messages
3222  * every 5s to make a denial-of-service attack impossible.
3223  */
3224 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3225 
3226 int __printk_ratelimit(const char *func)
3227 {
3228 	return ___ratelimit(&printk_ratelimit_state, func);
3229 }
3230 EXPORT_SYMBOL(__printk_ratelimit);
3231 
3232 /**
3233  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3234  * @caller_jiffies: pointer to caller's state
3235  * @interval_msecs: minimum interval between prints
3236  *
3237  * printk_timed_ratelimit() returns true if more than @interval_msecs
3238  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3239  * returned true.
3240  */
3241 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3242 			unsigned int interval_msecs)
3243 {
3244 	unsigned long elapsed = jiffies - *caller_jiffies;
3245 
3246 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3247 		return false;
3248 
3249 	*caller_jiffies = jiffies;
3250 	return true;
3251 }
3252 EXPORT_SYMBOL(printk_timed_ratelimit);
3253 
3254 static DEFINE_SPINLOCK(dump_list_lock);
3255 static LIST_HEAD(dump_list);
3256 
3257 /**
3258  * kmsg_dump_register - register a kernel log dumper.
3259  * @dumper: pointer to the kmsg_dumper structure
3260  *
3261  * Adds a kernel log dumper to the system. The dump callback in the
3262  * structure will be called when the kernel oopses or panics and must be
3263  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3264  */
3265 int kmsg_dump_register(struct kmsg_dumper *dumper)
3266 {
3267 	unsigned long flags;
3268 	int err = -EBUSY;
3269 
3270 	/* The dump callback needs to be set */
3271 	if (!dumper->dump)
3272 		return -EINVAL;
3273 
3274 	spin_lock_irqsave(&dump_list_lock, flags);
3275 	/* Don't allow registering multiple times */
3276 	if (!dumper->registered) {
3277 		dumper->registered = 1;
3278 		list_add_tail_rcu(&dumper->list, &dump_list);
3279 		err = 0;
3280 	}
3281 	spin_unlock_irqrestore(&dump_list_lock, flags);
3282 
3283 	return err;
3284 }
3285 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3286 
3287 /**
3288  * kmsg_dump_unregister - unregister a kmsg dumper.
3289  * @dumper: pointer to the kmsg_dumper structure
3290  *
3291  * Removes a dump device from the system. Returns zero on success and
3292  * %-EINVAL otherwise.
3293  */
3294 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3295 {
3296 	unsigned long flags;
3297 	int err = -EINVAL;
3298 
3299 	spin_lock_irqsave(&dump_list_lock, flags);
3300 	if (dumper->registered) {
3301 		dumper->registered = 0;
3302 		list_del_rcu(&dumper->list);
3303 		err = 0;
3304 	}
3305 	spin_unlock_irqrestore(&dump_list_lock, flags);
3306 	synchronize_rcu();
3307 
3308 	return err;
3309 }
3310 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3311 
3312 static bool always_kmsg_dump;
3313 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3314 
3315 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3316 {
3317 	switch (reason) {
3318 	case KMSG_DUMP_PANIC:
3319 		return "Panic";
3320 	case KMSG_DUMP_OOPS:
3321 		return "Oops";
3322 	case KMSG_DUMP_EMERG:
3323 		return "Emergency";
3324 	case KMSG_DUMP_SHUTDOWN:
3325 		return "Shutdown";
3326 	default:
3327 		return "Unknown";
3328 	}
3329 }
3330 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3331 
3332 /**
3333  * kmsg_dump - dump kernel log to kernel message dumpers.
3334  * @reason: the reason (oops, panic etc) for dumping
3335  *
3336  * Call each of the registered dumper's dump() callback, which can
3337  * retrieve the kmsg records with kmsg_dump_get_line() or
3338  * kmsg_dump_get_buffer().
3339  */
3340 void kmsg_dump(enum kmsg_dump_reason reason)
3341 {
3342 	struct kmsg_dumper *dumper;
3343 
3344 	rcu_read_lock();
3345 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3346 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3347 
3348 		/*
3349 		 * If client has not provided a specific max_reason, default
3350 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3351 		 */
3352 		if (max_reason == KMSG_DUMP_UNDEF) {
3353 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3354 							KMSG_DUMP_OOPS;
3355 		}
3356 		if (reason > max_reason)
3357 			continue;
3358 
3359 		/* invoke dumper which will iterate over records */
3360 		dumper->dump(dumper, reason);
3361 	}
3362 	rcu_read_unlock();
3363 }
3364 
3365 /**
3366  * kmsg_dump_get_line - retrieve one kmsg log line
3367  * @iter: kmsg dump iterator
3368  * @syslog: include the "<4>" prefixes
3369  * @line: buffer to copy the line to
3370  * @size: maximum size of the buffer
3371  * @len: length of line placed into buffer
3372  *
3373  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3374  * record, and copy one record into the provided buffer.
3375  *
3376  * Consecutive calls will return the next available record moving
3377  * towards the end of the buffer with the youngest messages.
3378  *
3379  * A return value of FALSE indicates that there are no more records to
3380  * read.
3381  */
3382 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3383 			char *line, size_t size, size_t *len)
3384 {
3385 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3386 	struct printk_info info;
3387 	unsigned int line_count;
3388 	struct printk_record r;
3389 	unsigned long flags;
3390 	size_t l = 0;
3391 	bool ret = false;
3392 
3393 	if (iter->cur_seq < min_seq)
3394 		iter->cur_seq = min_seq;
3395 
3396 	printk_safe_enter_irqsave(flags);
3397 	prb_rec_init_rd(&r, &info, line, size);
3398 
3399 	/* Read text or count text lines? */
3400 	if (line) {
3401 		if (!prb_read_valid(prb, iter->cur_seq, &r))
3402 			goto out;
3403 		l = record_print_text(&r, syslog, printk_time);
3404 	} else {
3405 		if (!prb_read_valid_info(prb, iter->cur_seq,
3406 					 &info, &line_count)) {
3407 			goto out;
3408 		}
3409 		l = get_record_print_text_size(&info, line_count, syslog,
3410 					       printk_time);
3411 
3412 	}
3413 
3414 	iter->cur_seq = r.info->seq + 1;
3415 	ret = true;
3416 out:
3417 	printk_safe_exit_irqrestore(flags);
3418 	if (len)
3419 		*len = l;
3420 	return ret;
3421 }
3422 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3423 
3424 /**
3425  * kmsg_dump_get_buffer - copy kmsg log lines
3426  * @iter: kmsg dump iterator
3427  * @syslog: include the "<4>" prefixes
3428  * @buf: buffer to copy the line to
3429  * @size: maximum size of the buffer
3430  * @len_out: length of line placed into buffer
3431  *
3432  * Start at the end of the kmsg buffer and fill the provided buffer
3433  * with as many of the *youngest* kmsg records that fit into it.
3434  * If the buffer is large enough, all available kmsg records will be
3435  * copied with a single call.
3436  *
3437  * Consecutive calls will fill the buffer with the next block of
3438  * available older records, not including the earlier retrieved ones.
3439  *
3440  * A return value of FALSE indicates that there are no more records to
3441  * read.
3442  */
3443 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3444 			  char *buf, size_t size, size_t *len_out)
3445 {
3446 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3447 	struct printk_info info;
3448 	struct printk_record r;
3449 	unsigned long flags;
3450 	u64 seq;
3451 	u64 next_seq;
3452 	size_t len = 0;
3453 	bool ret = false;
3454 	bool time = printk_time;
3455 
3456 	if (!buf || !size)
3457 		goto out;
3458 
3459 	if (iter->cur_seq < min_seq)
3460 		iter->cur_seq = min_seq;
3461 
3462 	printk_safe_enter_irqsave(flags);
3463 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3464 		if (info.seq != iter->cur_seq) {
3465 			/* messages are gone, move to first available one */
3466 			iter->cur_seq = info.seq;
3467 		}
3468 	}
3469 
3470 	/* last entry */
3471 	if (iter->cur_seq >= iter->next_seq) {
3472 		printk_safe_exit_irqrestore(flags);
3473 		goto out;
3474 	}
3475 
3476 	/*
3477 	 * Find first record that fits, including all following records,
3478 	 * into the user-provided buffer for this dump. Pass in size-1
3479 	 * because this function (by way of record_print_text()) will
3480 	 * not write more than size-1 bytes of text into @buf.
3481 	 */
3482 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3483 				     size - 1, syslog, time);
3484 
3485 	/*
3486 	 * Next kmsg_dump_get_buffer() invocation will dump block of
3487 	 * older records stored right before this one.
3488 	 */
3489 	next_seq = seq;
3490 
3491 	prb_rec_init_rd(&r, &info, buf, size);
3492 
3493 	len = 0;
3494 	prb_for_each_record(seq, prb, seq, &r) {
3495 		if (r.info->seq >= iter->next_seq)
3496 			break;
3497 
3498 		len += record_print_text(&r, syslog, time);
3499 
3500 		/* Adjust record to store to remaining buffer space. */
3501 		prb_rec_init_rd(&r, &info, buf + len, size - len);
3502 	}
3503 
3504 	iter->next_seq = next_seq;
3505 	ret = true;
3506 	printk_safe_exit_irqrestore(flags);
3507 out:
3508 	if (len_out)
3509 		*len_out = len;
3510 	return ret;
3511 }
3512 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3513 
3514 /**
3515  * kmsg_dump_rewind - reset the iterator
3516  * @iter: kmsg dump iterator
3517  *
3518  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3519  * kmsg_dump_get_buffer() can be called again and used multiple
3520  * times within the same dumper.dump() callback.
3521  */
3522 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
3523 {
3524 	unsigned long flags;
3525 
3526 	printk_safe_enter_irqsave(flags);
3527 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3528 	iter->next_seq = prb_next_seq(prb);
3529 	printk_safe_exit_irqrestore(flags);
3530 }
3531 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3532 
3533 #endif
3534 
3535 #ifdef CONFIG_SMP
3536 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3537 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3538 
3539 /**
3540  * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3541  *                               spinning lock is not owned by any CPU.
3542  *
3543  * Context: Any context.
3544  */
3545 void __printk_wait_on_cpu_lock(void)
3546 {
3547 	do {
3548 		cpu_relax();
3549 	} while (atomic_read(&printk_cpulock_owner) != -1);
3550 }
3551 EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3552 
3553 /**
3554  * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3555  *                          spinning lock.
3556  *
3557  * If no processor has the lock, the calling processor takes the lock and
3558  * becomes the owner. If the calling processor is already the owner of the
3559  * lock, this function succeeds immediately.
3560  *
3561  * Context: Any context. Expects interrupts to be disabled.
3562  * Return: 1 on success, otherwise 0.
3563  */
3564 int __printk_cpu_trylock(void)
3565 {
3566 	int cpu;
3567 	int old;
3568 
3569 	cpu = smp_processor_id();
3570 
3571 	/*
3572 	 * Guarantee loads and stores from this CPU when it is the lock owner
3573 	 * are _not_ visible to the previous lock owner. This pairs with
3574 	 * __printk_cpu_unlock:B.
3575 	 *
3576 	 * Memory barrier involvement:
3577 	 *
3578 	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3579 	 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3580 	 *
3581 	 * Relies on:
3582 	 *
3583 	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3584 	 * of the previous CPU
3585 	 *    matching
3586 	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3587 	 * of this CPU
3588 	 */
3589 	old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3590 				     cpu); /* LMM(__printk_cpu_trylock:A) */
3591 	if (old == -1) {
3592 		/*
3593 		 * This CPU is now the owner and begins loading/storing
3594 		 * data: LMM(__printk_cpu_trylock:B)
3595 		 */
3596 		return 1;
3597 
3598 	} else if (old == cpu) {
3599 		/* This CPU is already the owner. */
3600 		atomic_inc(&printk_cpulock_nested);
3601 		return 1;
3602 	}
3603 
3604 	return 0;
3605 }
3606 EXPORT_SYMBOL(__printk_cpu_trylock);
3607 
3608 /**
3609  * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
3610  *
3611  * The calling processor must be the owner of the lock.
3612  *
3613  * Context: Any context. Expects interrupts to be disabled.
3614  */
3615 void __printk_cpu_unlock(void)
3616 {
3617 	if (atomic_read(&printk_cpulock_nested)) {
3618 		atomic_dec(&printk_cpulock_nested);
3619 		return;
3620 	}
3621 
3622 	/*
3623 	 * This CPU is finished loading/storing data:
3624 	 * LMM(__printk_cpu_unlock:A)
3625 	 */
3626 
3627 	/*
3628 	 * Guarantee loads and stores from this CPU when it was the
3629 	 * lock owner are visible to the next lock owner. This pairs
3630 	 * with __printk_cpu_trylock:A.
3631 	 *
3632 	 * Memory barrier involvement:
3633 	 *
3634 	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3635 	 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3636 	 *
3637 	 * Relies on:
3638 	 *
3639 	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3640 	 * of this CPU
3641 	 *    matching
3642 	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3643 	 * of the next CPU
3644 	 */
3645 	atomic_set_release(&printk_cpulock_owner,
3646 			   -1); /* LMM(__printk_cpu_unlock:B) */
3647 }
3648 EXPORT_SYMBOL(__printk_cpu_unlock);
3649 #endif /* CONFIG_SMP */
3650