1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/syscore_ops.h> 38 #include <linux/vmcore_info.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #include <trace/events/initcall.h> 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/printk.h> 58 59 #include "printk_ringbuffer.h" 60 #include "console_cmdline.h" 61 #include "braille.h" 62 #include "internal.h" 63 64 int console_printk[4] = { 65 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 66 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 67 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 68 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 69 }; 70 EXPORT_SYMBOL_GPL(console_printk); 71 72 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 73 EXPORT_SYMBOL(ignore_console_lock_warning); 74 75 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 76 77 /* 78 * Low level drivers may need that to know if they can schedule in 79 * their unblank() callback or not. So let's export it. 80 */ 81 int oops_in_progress; 82 EXPORT_SYMBOL(oops_in_progress); 83 84 /* 85 * console_mutex protects console_list updates and console->flags updates. 86 * The flags are synchronized only for consoles that are registered, i.e. 87 * accessible via the console list. 88 */ 89 static DEFINE_MUTEX(console_mutex); 90 91 /* 92 * console_sem protects updates to console->seq 93 * and also provides serialization for console printing. 94 */ 95 static DEFINE_SEMAPHORE(console_sem, 1); 96 HLIST_HEAD(console_list); 97 EXPORT_SYMBOL_GPL(console_list); 98 DEFINE_STATIC_SRCU(console_srcu); 99 100 /* 101 * System may need to suppress printk message under certain 102 * circumstances, like after kernel panic happens. 103 */ 104 int __read_mostly suppress_printk; 105 106 #ifdef CONFIG_LOCKDEP 107 static struct lockdep_map console_lock_dep_map = { 108 .name = "console_lock" 109 }; 110 111 void lockdep_assert_console_list_lock_held(void) 112 { 113 lockdep_assert_held(&console_mutex); 114 } 115 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 116 #endif 117 118 #ifdef CONFIG_DEBUG_LOCK_ALLOC 119 bool console_srcu_read_lock_is_held(void) 120 { 121 return srcu_read_lock_held(&console_srcu); 122 } 123 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 124 #endif 125 126 enum devkmsg_log_bits { 127 __DEVKMSG_LOG_BIT_ON = 0, 128 __DEVKMSG_LOG_BIT_OFF, 129 __DEVKMSG_LOG_BIT_LOCK, 130 }; 131 132 enum devkmsg_log_masks { 133 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 134 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 135 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 136 }; 137 138 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 139 #define DEVKMSG_LOG_MASK_DEFAULT 0 140 141 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 142 143 static int __control_devkmsg(char *str) 144 { 145 size_t len; 146 147 if (!str) 148 return -EINVAL; 149 150 len = str_has_prefix(str, "on"); 151 if (len) { 152 devkmsg_log = DEVKMSG_LOG_MASK_ON; 153 return len; 154 } 155 156 len = str_has_prefix(str, "off"); 157 if (len) { 158 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 159 return len; 160 } 161 162 len = str_has_prefix(str, "ratelimit"); 163 if (len) { 164 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 165 return len; 166 } 167 168 return -EINVAL; 169 } 170 171 static int __init control_devkmsg(char *str) 172 { 173 if (__control_devkmsg(str) < 0) { 174 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 175 return 1; 176 } 177 178 /* 179 * Set sysctl string accordingly: 180 */ 181 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 182 strscpy(devkmsg_log_str, "on"); 183 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 184 strscpy(devkmsg_log_str, "off"); 185 /* else "ratelimit" which is set by default. */ 186 187 /* 188 * Sysctl cannot change it anymore. The kernel command line setting of 189 * this parameter is to force the setting to be permanent throughout the 190 * runtime of the system. This is a precation measure against userspace 191 * trying to be a smarta** and attempting to change it up on us. 192 */ 193 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 194 195 return 1; 196 } 197 __setup("printk.devkmsg=", control_devkmsg); 198 199 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 200 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 201 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write, 202 void *buffer, size_t *lenp, loff_t *ppos) 203 { 204 char old_str[DEVKMSG_STR_MAX_SIZE]; 205 unsigned int old; 206 int err; 207 208 if (write) { 209 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 210 return -EINVAL; 211 212 old = devkmsg_log; 213 strscpy(old_str, devkmsg_log_str); 214 } 215 216 err = proc_dostring(table, write, buffer, lenp, ppos); 217 if (err) 218 return err; 219 220 if (write) { 221 err = __control_devkmsg(devkmsg_log_str); 222 223 /* 224 * Do not accept an unknown string OR a known string with 225 * trailing crap... 226 */ 227 if (err < 0 || (err + 1 != *lenp)) { 228 229 /* ... and restore old setting. */ 230 devkmsg_log = old; 231 strscpy(devkmsg_log_str, old_str); 232 233 return -EINVAL; 234 } 235 } 236 237 return 0; 238 } 239 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 240 241 /** 242 * console_list_lock - Lock the console list 243 * 244 * For console list or console->flags updates 245 */ 246 void console_list_lock(void) 247 { 248 /* 249 * In unregister_console() and console_force_preferred_locked(), 250 * synchronize_srcu() is called with the console_list_lock held. 251 * Therefore it is not allowed that the console_list_lock is taken 252 * with the srcu_lock held. 253 * 254 * Detecting if this context is really in the read-side critical 255 * section is only possible if the appropriate debug options are 256 * enabled. 257 */ 258 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 259 srcu_read_lock_held(&console_srcu)); 260 261 mutex_lock(&console_mutex); 262 } 263 EXPORT_SYMBOL(console_list_lock); 264 265 /** 266 * console_list_unlock - Unlock the console list 267 * 268 * Counterpart to console_list_lock() 269 */ 270 void console_list_unlock(void) 271 { 272 mutex_unlock(&console_mutex); 273 } 274 EXPORT_SYMBOL(console_list_unlock); 275 276 /** 277 * console_srcu_read_lock - Register a new reader for the 278 * SRCU-protected console list 279 * 280 * Use for_each_console_srcu() to iterate the console list 281 * 282 * Context: Any context. 283 * Return: A cookie to pass to console_srcu_read_unlock(). 284 */ 285 int console_srcu_read_lock(void) 286 __acquires(&console_srcu) 287 { 288 return srcu_read_lock_nmisafe(&console_srcu); 289 } 290 EXPORT_SYMBOL(console_srcu_read_lock); 291 292 /** 293 * console_srcu_read_unlock - Unregister an old reader from 294 * the SRCU-protected console list 295 * @cookie: cookie returned from console_srcu_read_lock() 296 * 297 * Counterpart to console_srcu_read_lock() 298 */ 299 void console_srcu_read_unlock(int cookie) 300 __releases(&console_srcu) 301 { 302 srcu_read_unlock_nmisafe(&console_srcu, cookie); 303 } 304 EXPORT_SYMBOL(console_srcu_read_unlock); 305 306 /* 307 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 308 * macros instead of functions so that _RET_IP_ contains useful information. 309 */ 310 #define down_console_sem() do { \ 311 down(&console_sem);\ 312 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 313 } while (0) 314 315 static int __down_trylock_console_sem(unsigned long ip) 316 { 317 int lock_failed; 318 unsigned long flags; 319 320 /* 321 * Here and in __up_console_sem() we need to be in safe mode, 322 * because spindump/WARN/etc from under console ->lock will 323 * deadlock in printk()->down_trylock_console_sem() otherwise. 324 */ 325 printk_safe_enter_irqsave(flags); 326 lock_failed = down_trylock(&console_sem); 327 printk_safe_exit_irqrestore(flags); 328 329 if (lock_failed) 330 return 1; 331 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 332 return 0; 333 } 334 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 335 336 static void __up_console_sem(unsigned long ip) 337 { 338 unsigned long flags; 339 340 mutex_release(&console_lock_dep_map, ip); 341 342 printk_safe_enter_irqsave(flags); 343 up(&console_sem); 344 printk_safe_exit_irqrestore(flags); 345 } 346 #define up_console_sem() __up_console_sem(_RET_IP_) 347 348 static bool panic_in_progress(void) 349 { 350 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 351 } 352 353 /* Return true if a panic is in progress on the current CPU. */ 354 bool this_cpu_in_panic(void) 355 { 356 /* 357 * We can use raw_smp_processor_id() here because it is impossible for 358 * the task to be migrated to the panic_cpu, or away from it. If 359 * panic_cpu has already been set, and we're not currently executing on 360 * that CPU, then we never will be. 361 */ 362 return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id()); 363 } 364 365 /* 366 * Return true if a panic is in progress on a remote CPU. 367 * 368 * On true, the local CPU should immediately release any printing resources 369 * that may be needed by the panic CPU. 370 */ 371 bool other_cpu_in_panic(void) 372 { 373 return (panic_in_progress() && !this_cpu_in_panic()); 374 } 375 376 /* 377 * This is used for debugging the mess that is the VT code by 378 * keeping track if we have the console semaphore held. It's 379 * definitely not the perfect debug tool (we don't know if _WE_ 380 * hold it and are racing, but it helps tracking those weird code 381 * paths in the console code where we end up in places I want 382 * locked without the console semaphore held). 383 */ 384 static int console_locked; 385 386 /* 387 * Array of consoles built from command line options (console=) 388 */ 389 390 #define MAX_CMDLINECONSOLES 8 391 392 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 393 394 static int preferred_console = -1; 395 int console_set_on_cmdline; 396 EXPORT_SYMBOL(console_set_on_cmdline); 397 398 /* Flag: console code may call schedule() */ 399 static int console_may_schedule; 400 401 enum con_msg_format_flags { 402 MSG_FORMAT_DEFAULT = 0, 403 MSG_FORMAT_SYSLOG = (1 << 0), 404 }; 405 406 static int console_msg_format = MSG_FORMAT_DEFAULT; 407 408 /* 409 * The printk log buffer consists of a sequenced collection of records, each 410 * containing variable length message text. Every record also contains its 411 * own meta-data (@info). 412 * 413 * Every record meta-data carries the timestamp in microseconds, as well as 414 * the standard userspace syslog level and syslog facility. The usual kernel 415 * messages use LOG_KERN; userspace-injected messages always carry a matching 416 * syslog facility, by default LOG_USER. The origin of every message can be 417 * reliably determined that way. 418 * 419 * The human readable log message of a record is available in @text, the 420 * length of the message text in @text_len. The stored message is not 421 * terminated. 422 * 423 * Optionally, a record can carry a dictionary of properties (key/value 424 * pairs), to provide userspace with a machine-readable message context. 425 * 426 * Examples for well-defined, commonly used property names are: 427 * DEVICE=b12:8 device identifier 428 * b12:8 block dev_t 429 * c127:3 char dev_t 430 * n8 netdev ifindex 431 * +sound:card0 subsystem:devname 432 * SUBSYSTEM=pci driver-core subsystem name 433 * 434 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 435 * and values are terminated by a '\0' character. 436 * 437 * Example of record values: 438 * record.text_buf = "it's a line" (unterminated) 439 * record.info.seq = 56 440 * record.info.ts_nsec = 36863 441 * record.info.text_len = 11 442 * record.info.facility = 0 (LOG_KERN) 443 * record.info.flags = 0 444 * record.info.level = 3 (LOG_ERR) 445 * record.info.caller_id = 299 (task 299) 446 * record.info.dev_info.subsystem = "pci" (terminated) 447 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 448 * 449 * The 'struct printk_info' buffer must never be directly exported to 450 * userspace, it is a kernel-private implementation detail that might 451 * need to be changed in the future, when the requirements change. 452 * 453 * /dev/kmsg exports the structured data in the following line format: 454 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 455 * 456 * Users of the export format should ignore possible additional values 457 * separated by ',', and find the message after the ';' character. 458 * 459 * The optional key/value pairs are attached as continuation lines starting 460 * with a space character and terminated by a newline. All possible 461 * non-prinatable characters are escaped in the "\xff" notation. 462 */ 463 464 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 465 static DEFINE_MUTEX(syslog_lock); 466 467 /* 468 * Specifies if a legacy console is registered. If legacy consoles are 469 * present, it is necessary to perform the console lock/unlock dance 470 * whenever console flushing should occur. 471 */ 472 bool have_legacy_console; 473 474 /* 475 * Specifies if an nbcon console is registered. If nbcon consoles are present, 476 * synchronous printing of legacy consoles will not occur during panic until 477 * the backtrace has been stored to the ringbuffer. 478 */ 479 bool have_nbcon_console; 480 481 /* 482 * Specifies if a boot console is registered. If boot consoles are present, 483 * nbcon consoles cannot print simultaneously and must be synchronized by 484 * the console lock. This is because boot consoles and nbcon consoles may 485 * have mapped the same hardware. 486 */ 487 bool have_boot_console; 488 489 /* See printk_legacy_allow_panic_sync() for details. */ 490 bool legacy_allow_panic_sync; 491 492 #ifdef CONFIG_PRINTK 493 DECLARE_WAIT_QUEUE_HEAD(log_wait); 494 static DECLARE_WAIT_QUEUE_HEAD(legacy_wait); 495 /* All 3 protected by @syslog_lock. */ 496 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 497 static u64 syslog_seq; 498 static size_t syslog_partial; 499 static bool syslog_time; 500 501 /* True when _all_ printer threads are available for printing. */ 502 bool printk_kthreads_running; 503 504 struct latched_seq { 505 seqcount_latch_t latch; 506 u64 val[2]; 507 }; 508 509 /* 510 * The next printk record to read after the last 'clear' command. There are 511 * two copies (updated with seqcount_latch) so that reads can locklessly 512 * access a valid value. Writers are synchronized by @syslog_lock. 513 */ 514 static struct latched_seq clear_seq = { 515 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 516 .val[0] = 0, 517 .val[1] = 0, 518 }; 519 520 #define LOG_LEVEL(v) ((v) & 0x07) 521 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 522 523 /* record buffer */ 524 #define LOG_ALIGN __alignof__(unsigned long) 525 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 526 #define LOG_BUF_LEN_MAX ((u32)1 << 31) 527 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 528 static char *log_buf = __log_buf; 529 static u32 log_buf_len = __LOG_BUF_LEN; 530 531 /* 532 * Define the average message size. This only affects the number of 533 * descriptors that will be available. Underestimating is better than 534 * overestimating (too many available descriptors is better than not enough). 535 */ 536 #define PRB_AVGBITS 5 /* 32 character average length */ 537 538 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 539 #error CONFIG_LOG_BUF_SHIFT value too small. 540 #endif 541 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 542 PRB_AVGBITS, &__log_buf[0]); 543 544 static struct printk_ringbuffer printk_rb_dynamic; 545 546 struct printk_ringbuffer *prb = &printk_rb_static; 547 548 /* 549 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 550 * per_cpu_areas are initialised. This variable is set to true when 551 * it's safe to access per-CPU data. 552 */ 553 static bool __printk_percpu_data_ready __ro_after_init; 554 555 bool printk_percpu_data_ready(void) 556 { 557 return __printk_percpu_data_ready; 558 } 559 560 /* Must be called under syslog_lock. */ 561 static void latched_seq_write(struct latched_seq *ls, u64 val) 562 { 563 write_seqcount_latch_begin(&ls->latch); 564 ls->val[0] = val; 565 write_seqcount_latch(&ls->latch); 566 ls->val[1] = val; 567 write_seqcount_latch_end(&ls->latch); 568 } 569 570 /* Can be called from any context. */ 571 static u64 latched_seq_read_nolock(struct latched_seq *ls) 572 { 573 unsigned int seq; 574 unsigned int idx; 575 u64 val; 576 577 do { 578 seq = read_seqcount_latch(&ls->latch); 579 idx = seq & 0x1; 580 val = ls->val[idx]; 581 } while (read_seqcount_latch_retry(&ls->latch, seq)); 582 583 return val; 584 } 585 586 /* Return log buffer address */ 587 char *log_buf_addr_get(void) 588 { 589 return log_buf; 590 } 591 592 /* Return log buffer size */ 593 u32 log_buf_len_get(void) 594 { 595 return log_buf_len; 596 } 597 598 /* 599 * Define how much of the log buffer we could take at maximum. The value 600 * must be greater than two. Note that only half of the buffer is available 601 * when the index points to the middle. 602 */ 603 #define MAX_LOG_TAKE_PART 4 604 static const char trunc_msg[] = "<truncated>"; 605 606 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 607 { 608 /* 609 * The message should not take the whole buffer. Otherwise, it might 610 * get removed too soon. 611 */ 612 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 613 614 if (*text_len > max_text_len) 615 *text_len = max_text_len; 616 617 /* enable the warning message (if there is room) */ 618 *trunc_msg_len = strlen(trunc_msg); 619 if (*text_len >= *trunc_msg_len) 620 *text_len -= *trunc_msg_len; 621 else 622 *trunc_msg_len = 0; 623 } 624 625 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 626 627 static int syslog_action_restricted(int type) 628 { 629 if (dmesg_restrict) 630 return 1; 631 /* 632 * Unless restricted, we allow "read all" and "get buffer size" 633 * for everybody. 634 */ 635 return type != SYSLOG_ACTION_READ_ALL && 636 type != SYSLOG_ACTION_SIZE_BUFFER; 637 } 638 639 static int check_syslog_permissions(int type, int source) 640 { 641 /* 642 * If this is from /proc/kmsg and we've already opened it, then we've 643 * already done the capabilities checks at open time. 644 */ 645 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 646 goto ok; 647 648 if (syslog_action_restricted(type)) { 649 if (capable(CAP_SYSLOG)) 650 goto ok; 651 return -EPERM; 652 } 653 ok: 654 return security_syslog(type); 655 } 656 657 static void append_char(char **pp, char *e, char c) 658 { 659 if (*pp < e) 660 *(*pp)++ = c; 661 } 662 663 static ssize_t info_print_ext_header(char *buf, size_t size, 664 struct printk_info *info) 665 { 666 u64 ts_usec = info->ts_nsec; 667 char caller[20]; 668 #ifdef CONFIG_PRINTK_CALLER 669 u32 id = info->caller_id; 670 671 snprintf(caller, sizeof(caller), ",caller=%c%u", 672 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 673 #else 674 caller[0] = '\0'; 675 #endif 676 677 do_div(ts_usec, 1000); 678 679 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 680 (info->facility << 3) | info->level, info->seq, 681 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 682 } 683 684 static ssize_t msg_add_ext_text(char *buf, size_t size, 685 const char *text, size_t text_len, 686 unsigned char endc) 687 { 688 char *p = buf, *e = buf + size; 689 size_t i; 690 691 /* escape non-printable characters */ 692 for (i = 0; i < text_len; i++) { 693 unsigned char c = text[i]; 694 695 if (c < ' ' || c >= 127 || c == '\\') 696 p += scnprintf(p, e - p, "\\x%02x", c); 697 else 698 append_char(&p, e, c); 699 } 700 append_char(&p, e, endc); 701 702 return p - buf; 703 } 704 705 static ssize_t msg_add_dict_text(char *buf, size_t size, 706 const char *key, const char *val) 707 { 708 size_t val_len = strlen(val); 709 ssize_t len; 710 711 if (!val_len) 712 return 0; 713 714 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 715 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 716 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 717 718 return len; 719 } 720 721 static ssize_t msg_print_ext_body(char *buf, size_t size, 722 char *text, size_t text_len, 723 struct dev_printk_info *dev_info) 724 { 725 ssize_t len; 726 727 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 728 729 if (!dev_info) 730 goto out; 731 732 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 733 dev_info->subsystem); 734 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 735 dev_info->device); 736 out: 737 return len; 738 } 739 740 /* /dev/kmsg - userspace message inject/listen interface */ 741 struct devkmsg_user { 742 atomic64_t seq; 743 struct ratelimit_state rs; 744 struct mutex lock; 745 struct printk_buffers pbufs; 746 }; 747 748 static __printf(3, 4) __cold 749 int devkmsg_emit(int facility, int level, const char *fmt, ...) 750 { 751 va_list args; 752 int r; 753 754 va_start(args, fmt); 755 r = vprintk_emit(facility, level, NULL, fmt, args); 756 va_end(args); 757 758 return r; 759 } 760 761 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 762 { 763 char *buf, *line; 764 int level = default_message_loglevel; 765 int facility = 1; /* LOG_USER */ 766 struct file *file = iocb->ki_filp; 767 struct devkmsg_user *user = file->private_data; 768 size_t len = iov_iter_count(from); 769 ssize_t ret = len; 770 771 if (len > PRINTKRB_RECORD_MAX) 772 return -EINVAL; 773 774 /* Ignore when user logging is disabled. */ 775 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 776 return len; 777 778 /* Ratelimit when not explicitly enabled. */ 779 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 780 if (!___ratelimit(&user->rs, current->comm)) 781 return ret; 782 } 783 784 buf = kmalloc(len+1, GFP_KERNEL); 785 if (buf == NULL) 786 return -ENOMEM; 787 788 buf[len] = '\0'; 789 if (!copy_from_iter_full(buf, len, from)) { 790 kfree(buf); 791 return -EFAULT; 792 } 793 794 /* 795 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 796 * the decimal value represents 32bit, the lower 3 bit are the log 797 * level, the rest are the log facility. 798 * 799 * If no prefix or no userspace facility is specified, we 800 * enforce LOG_USER, to be able to reliably distinguish 801 * kernel-generated messages from userspace-injected ones. 802 */ 803 line = buf; 804 if (line[0] == '<') { 805 char *endp = NULL; 806 unsigned int u; 807 808 u = simple_strtoul(line + 1, &endp, 10); 809 if (endp && endp[0] == '>') { 810 level = LOG_LEVEL(u); 811 if (LOG_FACILITY(u) != 0) 812 facility = LOG_FACILITY(u); 813 endp++; 814 line = endp; 815 } 816 } 817 818 devkmsg_emit(facility, level, "%s", line); 819 kfree(buf); 820 return ret; 821 } 822 823 static ssize_t devkmsg_read(struct file *file, char __user *buf, 824 size_t count, loff_t *ppos) 825 { 826 struct devkmsg_user *user = file->private_data; 827 char *outbuf = &user->pbufs.outbuf[0]; 828 struct printk_message pmsg = { 829 .pbufs = &user->pbufs, 830 }; 831 ssize_t ret; 832 833 ret = mutex_lock_interruptible(&user->lock); 834 if (ret) 835 return ret; 836 837 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 838 if (file->f_flags & O_NONBLOCK) { 839 ret = -EAGAIN; 840 goto out; 841 } 842 843 /* 844 * Guarantee this task is visible on the waitqueue before 845 * checking the wake condition. 846 * 847 * The full memory barrier within set_current_state() of 848 * prepare_to_wait_event() pairs with the full memory barrier 849 * within wq_has_sleeper(). 850 * 851 * This pairs with __wake_up_klogd:A. 852 */ 853 ret = wait_event_interruptible(log_wait, 854 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 855 false)); /* LMM(devkmsg_read:A) */ 856 if (ret) 857 goto out; 858 } 859 860 if (pmsg.dropped) { 861 /* our last seen message is gone, return error and reset */ 862 atomic64_set(&user->seq, pmsg.seq); 863 ret = -EPIPE; 864 goto out; 865 } 866 867 atomic64_set(&user->seq, pmsg.seq + 1); 868 869 if (pmsg.outbuf_len > count) { 870 ret = -EINVAL; 871 goto out; 872 } 873 874 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 875 ret = -EFAULT; 876 goto out; 877 } 878 ret = pmsg.outbuf_len; 879 out: 880 mutex_unlock(&user->lock); 881 return ret; 882 } 883 884 /* 885 * Be careful when modifying this function!!! 886 * 887 * Only few operations are supported because the device works only with the 888 * entire variable length messages (records). Non-standard values are 889 * returned in the other cases and has been this way for quite some time. 890 * User space applications might depend on this behavior. 891 */ 892 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 893 { 894 struct devkmsg_user *user = file->private_data; 895 loff_t ret = 0; 896 897 if (offset) 898 return -ESPIPE; 899 900 switch (whence) { 901 case SEEK_SET: 902 /* the first record */ 903 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 904 break; 905 case SEEK_DATA: 906 /* 907 * The first record after the last SYSLOG_ACTION_CLEAR, 908 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 909 * changes no global state, and does not clear anything. 910 */ 911 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 912 break; 913 case SEEK_END: 914 /* after the last record */ 915 atomic64_set(&user->seq, prb_next_seq(prb)); 916 break; 917 default: 918 ret = -EINVAL; 919 } 920 return ret; 921 } 922 923 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 924 { 925 struct devkmsg_user *user = file->private_data; 926 struct printk_info info; 927 __poll_t ret = 0; 928 929 poll_wait(file, &log_wait, wait); 930 931 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 932 /* return error when data has vanished underneath us */ 933 if (info.seq != atomic64_read(&user->seq)) 934 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 935 else 936 ret = EPOLLIN|EPOLLRDNORM; 937 } 938 939 return ret; 940 } 941 942 static int devkmsg_open(struct inode *inode, struct file *file) 943 { 944 struct devkmsg_user *user; 945 int err; 946 947 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 948 return -EPERM; 949 950 /* write-only does not need any file context */ 951 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 952 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 953 SYSLOG_FROM_READER); 954 if (err) 955 return err; 956 } 957 958 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 959 if (!user) 960 return -ENOMEM; 961 962 ratelimit_default_init(&user->rs); 963 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 964 965 mutex_init(&user->lock); 966 967 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 968 969 file->private_data = user; 970 return 0; 971 } 972 973 static int devkmsg_release(struct inode *inode, struct file *file) 974 { 975 struct devkmsg_user *user = file->private_data; 976 977 ratelimit_state_exit(&user->rs); 978 979 mutex_destroy(&user->lock); 980 kvfree(user); 981 return 0; 982 } 983 984 const struct file_operations kmsg_fops = { 985 .open = devkmsg_open, 986 .read = devkmsg_read, 987 .write_iter = devkmsg_write, 988 .llseek = devkmsg_llseek, 989 .poll = devkmsg_poll, 990 .release = devkmsg_release, 991 }; 992 993 #ifdef CONFIG_VMCORE_INFO 994 /* 995 * This appends the listed symbols to /proc/vmcore 996 * 997 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 998 * obtain access to symbols that are otherwise very difficult to locate. These 999 * symbols are specifically used so that utilities can access and extract the 1000 * dmesg log from a vmcore file after a crash. 1001 */ 1002 void log_buf_vmcoreinfo_setup(void) 1003 { 1004 struct dev_printk_info *dev_info = NULL; 1005 1006 VMCOREINFO_SYMBOL(prb); 1007 VMCOREINFO_SYMBOL(printk_rb_static); 1008 VMCOREINFO_SYMBOL(clear_seq); 1009 1010 /* 1011 * Export struct size and field offsets. User space tools can 1012 * parse it and detect any changes to structure down the line. 1013 */ 1014 1015 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 1016 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 1017 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 1018 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 1019 1020 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 1021 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 1022 VMCOREINFO_OFFSET(prb_desc_ring, descs); 1023 VMCOREINFO_OFFSET(prb_desc_ring, infos); 1024 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 1025 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 1026 1027 VMCOREINFO_STRUCT_SIZE(prb_desc); 1028 VMCOREINFO_OFFSET(prb_desc, state_var); 1029 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 1030 1031 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 1032 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 1033 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1034 1035 VMCOREINFO_STRUCT_SIZE(printk_info); 1036 VMCOREINFO_OFFSET(printk_info, seq); 1037 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1038 VMCOREINFO_OFFSET(printk_info, text_len); 1039 VMCOREINFO_OFFSET(printk_info, caller_id); 1040 VMCOREINFO_OFFSET(printk_info, dev_info); 1041 1042 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1043 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1044 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1045 VMCOREINFO_OFFSET(dev_printk_info, device); 1046 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1047 1048 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1049 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1050 VMCOREINFO_OFFSET(prb_data_ring, data); 1051 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1052 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1053 1054 VMCOREINFO_SIZE(atomic_long_t); 1055 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1056 1057 VMCOREINFO_STRUCT_SIZE(latched_seq); 1058 VMCOREINFO_OFFSET(latched_seq, val); 1059 } 1060 #endif 1061 1062 /* requested log_buf_len from kernel cmdline */ 1063 static unsigned long __initdata new_log_buf_len; 1064 1065 /* we practice scaling the ring buffer by powers of 2 */ 1066 static void __init log_buf_len_update(u64 size) 1067 { 1068 if (size > (u64)LOG_BUF_LEN_MAX) { 1069 size = (u64)LOG_BUF_LEN_MAX; 1070 pr_err("log_buf over 2G is not supported.\n"); 1071 } 1072 1073 if (size) 1074 size = roundup_pow_of_two(size); 1075 if (size > log_buf_len) 1076 new_log_buf_len = (unsigned long)size; 1077 } 1078 1079 /* save requested log_buf_len since it's too early to process it */ 1080 static int __init log_buf_len_setup(char *str) 1081 { 1082 u64 size; 1083 1084 if (!str) 1085 return -EINVAL; 1086 1087 size = memparse(str, &str); 1088 1089 log_buf_len_update(size); 1090 1091 return 0; 1092 } 1093 early_param("log_buf_len", log_buf_len_setup); 1094 1095 #ifdef CONFIG_SMP 1096 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1097 1098 static void __init log_buf_add_cpu(void) 1099 { 1100 unsigned int cpu_extra; 1101 1102 /* 1103 * archs should set up cpu_possible_bits properly with 1104 * set_cpu_possible() after setup_arch() but just in 1105 * case lets ensure this is valid. 1106 */ 1107 if (num_possible_cpus() == 1) 1108 return; 1109 1110 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1111 1112 /* by default this will only continue through for large > 64 CPUs */ 1113 if (cpu_extra <= __LOG_BUF_LEN / 2) 1114 return; 1115 1116 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1117 __LOG_CPU_MAX_BUF_LEN); 1118 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1119 cpu_extra); 1120 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1121 1122 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1123 } 1124 #else /* !CONFIG_SMP */ 1125 static inline void log_buf_add_cpu(void) {} 1126 #endif /* CONFIG_SMP */ 1127 1128 static void __init set_percpu_data_ready(void) 1129 { 1130 __printk_percpu_data_ready = true; 1131 } 1132 1133 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1134 struct printk_record *r) 1135 { 1136 struct prb_reserved_entry e; 1137 struct printk_record dest_r; 1138 1139 prb_rec_init_wr(&dest_r, r->info->text_len); 1140 1141 if (!prb_reserve(&e, rb, &dest_r)) 1142 return 0; 1143 1144 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1145 dest_r.info->text_len = r->info->text_len; 1146 dest_r.info->facility = r->info->facility; 1147 dest_r.info->level = r->info->level; 1148 dest_r.info->flags = r->info->flags; 1149 dest_r.info->ts_nsec = r->info->ts_nsec; 1150 dest_r.info->caller_id = r->info->caller_id; 1151 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1152 1153 prb_final_commit(&e); 1154 1155 return prb_record_text_space(&e); 1156 } 1157 1158 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1159 1160 static void print_log_buf_usage_stats(void) 1161 { 1162 unsigned int descs_count = log_buf_len >> PRB_AVGBITS; 1163 size_t meta_data_size; 1164 1165 meta_data_size = descs_count * (sizeof(struct prb_desc) + sizeof(struct printk_info)); 1166 1167 pr_info("log buffer data + meta data: %u + %zu = %zu bytes\n", 1168 log_buf_len, meta_data_size, log_buf_len + meta_data_size); 1169 } 1170 1171 void __init setup_log_buf(int early) 1172 { 1173 struct printk_info *new_infos; 1174 unsigned int new_descs_count; 1175 struct prb_desc *new_descs; 1176 struct printk_info info; 1177 struct printk_record r; 1178 unsigned int text_size; 1179 size_t new_descs_size; 1180 size_t new_infos_size; 1181 unsigned long flags; 1182 char *new_log_buf; 1183 unsigned int free; 1184 u64 seq; 1185 1186 /* 1187 * Some archs call setup_log_buf() multiple times - first is very 1188 * early, e.g. from setup_arch(), and second - when percpu_areas 1189 * are initialised. 1190 */ 1191 if (!early) 1192 set_percpu_data_ready(); 1193 1194 if (log_buf != __log_buf) 1195 return; 1196 1197 if (!early && !new_log_buf_len) 1198 log_buf_add_cpu(); 1199 1200 if (!new_log_buf_len) { 1201 /* Show the memory stats only once. */ 1202 if (!early) 1203 goto out; 1204 1205 return; 1206 } 1207 1208 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1209 if (new_descs_count == 0) { 1210 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1211 goto out; 1212 } 1213 1214 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1215 if (unlikely(!new_log_buf)) { 1216 pr_err("log_buf_len: %lu text bytes not available\n", 1217 new_log_buf_len); 1218 goto out; 1219 } 1220 1221 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1222 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1223 if (unlikely(!new_descs)) { 1224 pr_err("log_buf_len: %zu desc bytes not available\n", 1225 new_descs_size); 1226 goto err_free_log_buf; 1227 } 1228 1229 new_infos_size = new_descs_count * sizeof(struct printk_info); 1230 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1231 if (unlikely(!new_infos)) { 1232 pr_err("log_buf_len: %zu info bytes not available\n", 1233 new_infos_size); 1234 goto err_free_descs; 1235 } 1236 1237 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1238 1239 prb_init(&printk_rb_dynamic, 1240 new_log_buf, ilog2(new_log_buf_len), 1241 new_descs, ilog2(new_descs_count), 1242 new_infos); 1243 1244 local_irq_save(flags); 1245 1246 log_buf_len = new_log_buf_len; 1247 log_buf = new_log_buf; 1248 new_log_buf_len = 0; 1249 1250 free = __LOG_BUF_LEN; 1251 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1252 text_size = add_to_rb(&printk_rb_dynamic, &r); 1253 if (text_size > free) 1254 free = 0; 1255 else 1256 free -= text_size; 1257 } 1258 1259 prb = &printk_rb_dynamic; 1260 1261 local_irq_restore(flags); 1262 1263 /* 1264 * Copy any remaining messages that might have appeared from 1265 * NMI context after copying but before switching to the 1266 * dynamic buffer. 1267 */ 1268 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1269 text_size = add_to_rb(&printk_rb_dynamic, &r); 1270 if (text_size > free) 1271 free = 0; 1272 else 1273 free -= text_size; 1274 } 1275 1276 if (seq != prb_next_seq(&printk_rb_static)) { 1277 pr_err("dropped %llu messages\n", 1278 prb_next_seq(&printk_rb_static) - seq); 1279 } 1280 1281 print_log_buf_usage_stats(); 1282 pr_info("early log buf free: %u(%u%%)\n", 1283 free, (free * 100) / __LOG_BUF_LEN); 1284 return; 1285 1286 err_free_descs: 1287 memblock_free(new_descs, new_descs_size); 1288 err_free_log_buf: 1289 memblock_free(new_log_buf, new_log_buf_len); 1290 out: 1291 print_log_buf_usage_stats(); 1292 } 1293 1294 static bool __read_mostly ignore_loglevel; 1295 1296 static int __init ignore_loglevel_setup(char *str) 1297 { 1298 ignore_loglevel = true; 1299 pr_info("debug: ignoring loglevel setting.\n"); 1300 1301 return 0; 1302 } 1303 1304 early_param("ignore_loglevel", ignore_loglevel_setup); 1305 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1306 MODULE_PARM_DESC(ignore_loglevel, 1307 "ignore loglevel setting (prints all kernel messages to the console)"); 1308 1309 static bool suppress_message_printing(int level) 1310 { 1311 return (level >= console_loglevel && !ignore_loglevel); 1312 } 1313 1314 #ifdef CONFIG_BOOT_PRINTK_DELAY 1315 1316 static int boot_delay; /* msecs delay after each printk during bootup */ 1317 static unsigned long long loops_per_msec; /* based on boot_delay */ 1318 1319 static int __init boot_delay_setup(char *str) 1320 { 1321 unsigned long lpj; 1322 1323 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1324 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1325 1326 get_option(&str, &boot_delay); 1327 if (boot_delay > 10 * 1000) 1328 boot_delay = 0; 1329 1330 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1331 "HZ: %d, loops_per_msec: %llu\n", 1332 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1333 return 0; 1334 } 1335 early_param("boot_delay", boot_delay_setup); 1336 1337 static void boot_delay_msec(int level) 1338 { 1339 unsigned long long k; 1340 unsigned long timeout; 1341 bool suppress = !is_printk_force_console() && 1342 suppress_message_printing(level); 1343 1344 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) || suppress) 1345 return; 1346 1347 k = (unsigned long long)loops_per_msec * boot_delay; 1348 1349 timeout = jiffies + msecs_to_jiffies(boot_delay); 1350 while (k) { 1351 k--; 1352 cpu_relax(); 1353 /* 1354 * use (volatile) jiffies to prevent 1355 * compiler reduction; loop termination via jiffies 1356 * is secondary and may or may not happen. 1357 */ 1358 if (time_after(jiffies, timeout)) 1359 break; 1360 touch_nmi_watchdog(); 1361 } 1362 } 1363 #else 1364 static inline void boot_delay_msec(int level) 1365 { 1366 } 1367 #endif 1368 1369 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1370 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1371 1372 static size_t print_syslog(unsigned int level, char *buf) 1373 { 1374 return sprintf(buf, "<%u>", level); 1375 } 1376 1377 static size_t print_time(u64 ts, char *buf) 1378 { 1379 unsigned long rem_nsec = do_div(ts, 1000000000); 1380 1381 return sprintf(buf, "[%5lu.%06lu]", 1382 (unsigned long)ts, rem_nsec / 1000); 1383 } 1384 1385 #ifdef CONFIG_PRINTK_CALLER 1386 static size_t print_caller(u32 id, char *buf) 1387 { 1388 char caller[12]; 1389 1390 snprintf(caller, sizeof(caller), "%c%u", 1391 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1392 return sprintf(buf, "[%6s]", caller); 1393 } 1394 #else 1395 #define print_caller(id, buf) 0 1396 #endif 1397 1398 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1399 bool time, char *buf) 1400 { 1401 size_t len = 0; 1402 1403 if (syslog) 1404 len = print_syslog((info->facility << 3) | info->level, buf); 1405 1406 if (time) 1407 len += print_time(info->ts_nsec, buf + len); 1408 1409 len += print_caller(info->caller_id, buf + len); 1410 1411 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1412 buf[len++] = ' '; 1413 buf[len] = '\0'; 1414 } 1415 1416 return len; 1417 } 1418 1419 /* 1420 * Prepare the record for printing. The text is shifted within the given 1421 * buffer to avoid a need for another one. The following operations are 1422 * done: 1423 * 1424 * - Add prefix for each line. 1425 * - Drop truncated lines that no longer fit into the buffer. 1426 * - Add the trailing newline that has been removed in vprintk_store(). 1427 * - Add a string terminator. 1428 * 1429 * Since the produced string is always terminated, the maximum possible 1430 * return value is @r->text_buf_size - 1; 1431 * 1432 * Return: The length of the updated/prepared text, including the added 1433 * prefixes and the newline. The terminator is not counted. The dropped 1434 * line(s) are not counted. 1435 */ 1436 static size_t record_print_text(struct printk_record *r, bool syslog, 1437 bool time) 1438 { 1439 size_t text_len = r->info->text_len; 1440 size_t buf_size = r->text_buf_size; 1441 char *text = r->text_buf; 1442 char prefix[PRINTK_PREFIX_MAX]; 1443 bool truncated = false; 1444 size_t prefix_len; 1445 size_t line_len; 1446 size_t len = 0; 1447 char *next; 1448 1449 /* 1450 * If the message was truncated because the buffer was not large 1451 * enough, treat the available text as if it were the full text. 1452 */ 1453 if (text_len > buf_size) 1454 text_len = buf_size; 1455 1456 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1457 1458 /* 1459 * @text_len: bytes of unprocessed text 1460 * @line_len: bytes of current line _without_ newline 1461 * @text: pointer to beginning of current line 1462 * @len: number of bytes prepared in r->text_buf 1463 */ 1464 for (;;) { 1465 next = memchr(text, '\n', text_len); 1466 if (next) { 1467 line_len = next - text; 1468 } else { 1469 /* Drop truncated line(s). */ 1470 if (truncated) 1471 break; 1472 line_len = text_len; 1473 } 1474 1475 /* 1476 * Truncate the text if there is not enough space to add the 1477 * prefix and a trailing newline and a terminator. 1478 */ 1479 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1480 /* Drop even the current line if no space. */ 1481 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1482 break; 1483 1484 text_len = buf_size - len - prefix_len - 1 - 1; 1485 truncated = true; 1486 } 1487 1488 memmove(text + prefix_len, text, text_len); 1489 memcpy(text, prefix, prefix_len); 1490 1491 /* 1492 * Increment the prepared length to include the text and 1493 * prefix that were just moved+copied. Also increment for the 1494 * newline at the end of this line. If this is the last line, 1495 * there is no newline, but it will be added immediately below. 1496 */ 1497 len += prefix_len + line_len + 1; 1498 if (text_len == line_len) { 1499 /* 1500 * This is the last line. Add the trailing newline 1501 * removed in vprintk_store(). 1502 */ 1503 text[prefix_len + line_len] = '\n'; 1504 break; 1505 } 1506 1507 /* 1508 * Advance beyond the added prefix and the related line with 1509 * its newline. 1510 */ 1511 text += prefix_len + line_len + 1; 1512 1513 /* 1514 * The remaining text has only decreased by the line with its 1515 * newline. 1516 * 1517 * Note that @text_len can become zero. It happens when @text 1518 * ended with a newline (either due to truncation or the 1519 * original string ending with "\n\n"). The loop is correctly 1520 * repeated and (if not truncated) an empty line with a prefix 1521 * will be prepared. 1522 */ 1523 text_len -= line_len + 1; 1524 } 1525 1526 /* 1527 * If a buffer was provided, it will be terminated. Space for the 1528 * string terminator is guaranteed to be available. The terminator is 1529 * not counted in the return value. 1530 */ 1531 if (buf_size > 0) 1532 r->text_buf[len] = 0; 1533 1534 return len; 1535 } 1536 1537 static size_t get_record_print_text_size(struct printk_info *info, 1538 unsigned int line_count, 1539 bool syslog, bool time) 1540 { 1541 char prefix[PRINTK_PREFIX_MAX]; 1542 size_t prefix_len; 1543 1544 prefix_len = info_print_prefix(info, syslog, time, prefix); 1545 1546 /* 1547 * Each line will be preceded with a prefix. The intermediate 1548 * newlines are already within the text, but a final trailing 1549 * newline will be added. 1550 */ 1551 return ((prefix_len * line_count) + info->text_len + 1); 1552 } 1553 1554 /* 1555 * Beginning with @start_seq, find the first record where it and all following 1556 * records up to (but not including) @max_seq fit into @size. 1557 * 1558 * @max_seq is simply an upper bound and does not need to exist. If the caller 1559 * does not require an upper bound, -1 can be used for @max_seq. 1560 */ 1561 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1562 bool syslog, bool time) 1563 { 1564 struct printk_info info; 1565 unsigned int line_count; 1566 size_t len = 0; 1567 u64 seq; 1568 1569 /* Determine the size of the records up to @max_seq. */ 1570 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1571 if (info.seq >= max_seq) 1572 break; 1573 len += get_record_print_text_size(&info, line_count, syslog, time); 1574 } 1575 1576 /* 1577 * Adjust the upper bound for the next loop to avoid subtracting 1578 * lengths that were never added. 1579 */ 1580 if (seq < max_seq) 1581 max_seq = seq; 1582 1583 /* 1584 * Move first record forward until length fits into the buffer. Ignore 1585 * newest messages that were not counted in the above cycle. Messages 1586 * might appear and get lost in the meantime. This is a best effort 1587 * that prevents an infinite loop that could occur with a retry. 1588 */ 1589 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1590 if (len <= size || info.seq >= max_seq) 1591 break; 1592 len -= get_record_print_text_size(&info, line_count, syslog, time); 1593 } 1594 1595 return seq; 1596 } 1597 1598 /* The caller is responsible for making sure @size is greater than 0. */ 1599 static int syslog_print(char __user *buf, int size) 1600 { 1601 struct printk_info info; 1602 struct printk_record r; 1603 char *text; 1604 int len = 0; 1605 u64 seq; 1606 1607 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1608 if (!text) 1609 return -ENOMEM; 1610 1611 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1612 1613 mutex_lock(&syslog_lock); 1614 1615 /* 1616 * Wait for the @syslog_seq record to be available. @syslog_seq may 1617 * change while waiting. 1618 */ 1619 do { 1620 seq = syslog_seq; 1621 1622 mutex_unlock(&syslog_lock); 1623 /* 1624 * Guarantee this task is visible on the waitqueue before 1625 * checking the wake condition. 1626 * 1627 * The full memory barrier within set_current_state() of 1628 * prepare_to_wait_event() pairs with the full memory barrier 1629 * within wq_has_sleeper(). 1630 * 1631 * This pairs with __wake_up_klogd:A. 1632 */ 1633 len = wait_event_interruptible(log_wait, 1634 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1635 mutex_lock(&syslog_lock); 1636 1637 if (len) 1638 goto out; 1639 } while (syslog_seq != seq); 1640 1641 /* 1642 * Copy records that fit into the buffer. The above cycle makes sure 1643 * that the first record is always available. 1644 */ 1645 do { 1646 size_t n; 1647 size_t skip; 1648 int err; 1649 1650 if (!prb_read_valid(prb, syslog_seq, &r)) 1651 break; 1652 1653 if (r.info->seq != syslog_seq) { 1654 /* message is gone, move to next valid one */ 1655 syslog_seq = r.info->seq; 1656 syslog_partial = 0; 1657 } 1658 1659 /* 1660 * To keep reading/counting partial line consistent, 1661 * use printk_time value as of the beginning of a line. 1662 */ 1663 if (!syslog_partial) 1664 syslog_time = printk_time; 1665 1666 skip = syslog_partial; 1667 n = record_print_text(&r, true, syslog_time); 1668 if (n - syslog_partial <= size) { 1669 /* message fits into buffer, move forward */ 1670 syslog_seq = r.info->seq + 1; 1671 n -= syslog_partial; 1672 syslog_partial = 0; 1673 } else if (!len){ 1674 /* partial read(), remember position */ 1675 n = size; 1676 syslog_partial += n; 1677 } else 1678 n = 0; 1679 1680 if (!n) 1681 break; 1682 1683 mutex_unlock(&syslog_lock); 1684 err = copy_to_user(buf, text + skip, n); 1685 mutex_lock(&syslog_lock); 1686 1687 if (err) { 1688 if (!len) 1689 len = -EFAULT; 1690 break; 1691 } 1692 1693 len += n; 1694 size -= n; 1695 buf += n; 1696 } while (size); 1697 out: 1698 mutex_unlock(&syslog_lock); 1699 kfree(text); 1700 return len; 1701 } 1702 1703 static int syslog_print_all(char __user *buf, int size, bool clear) 1704 { 1705 struct printk_info info; 1706 struct printk_record r; 1707 char *text; 1708 int len = 0; 1709 u64 seq; 1710 bool time; 1711 1712 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1713 if (!text) 1714 return -ENOMEM; 1715 1716 time = printk_time; 1717 /* 1718 * Find first record that fits, including all following records, 1719 * into the user-provided buffer for this dump. 1720 */ 1721 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1722 size, true, time); 1723 1724 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1725 1726 prb_for_each_record(seq, prb, seq, &r) { 1727 int textlen; 1728 1729 textlen = record_print_text(&r, true, time); 1730 1731 if (len + textlen > size) { 1732 seq--; 1733 break; 1734 } 1735 1736 if (copy_to_user(buf + len, text, textlen)) 1737 len = -EFAULT; 1738 else 1739 len += textlen; 1740 1741 if (len < 0) 1742 break; 1743 } 1744 1745 if (clear) { 1746 mutex_lock(&syslog_lock); 1747 latched_seq_write(&clear_seq, seq); 1748 mutex_unlock(&syslog_lock); 1749 } 1750 1751 kfree(text); 1752 return len; 1753 } 1754 1755 static void syslog_clear(void) 1756 { 1757 mutex_lock(&syslog_lock); 1758 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1759 mutex_unlock(&syslog_lock); 1760 } 1761 1762 int do_syslog(int type, char __user *buf, int len, int source) 1763 { 1764 struct printk_info info; 1765 bool clear = false; 1766 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1767 int error; 1768 1769 error = check_syslog_permissions(type, source); 1770 if (error) 1771 return error; 1772 1773 switch (type) { 1774 case SYSLOG_ACTION_CLOSE: /* Close log */ 1775 break; 1776 case SYSLOG_ACTION_OPEN: /* Open log */ 1777 break; 1778 case SYSLOG_ACTION_READ: /* Read from log */ 1779 if (!buf || len < 0) 1780 return -EINVAL; 1781 if (!len) 1782 return 0; 1783 if (!access_ok(buf, len)) 1784 return -EFAULT; 1785 error = syslog_print(buf, len); 1786 break; 1787 /* Read/clear last kernel messages */ 1788 case SYSLOG_ACTION_READ_CLEAR: 1789 clear = true; 1790 fallthrough; 1791 /* Read last kernel messages */ 1792 case SYSLOG_ACTION_READ_ALL: 1793 if (!buf || len < 0) 1794 return -EINVAL; 1795 if (!len) 1796 return 0; 1797 if (!access_ok(buf, len)) 1798 return -EFAULT; 1799 error = syslog_print_all(buf, len, clear); 1800 break; 1801 /* Clear ring buffer */ 1802 case SYSLOG_ACTION_CLEAR: 1803 syslog_clear(); 1804 break; 1805 /* Disable logging to console */ 1806 case SYSLOG_ACTION_CONSOLE_OFF: 1807 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1808 saved_console_loglevel = console_loglevel; 1809 console_loglevel = minimum_console_loglevel; 1810 break; 1811 /* Enable logging to console */ 1812 case SYSLOG_ACTION_CONSOLE_ON: 1813 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1814 console_loglevel = saved_console_loglevel; 1815 saved_console_loglevel = LOGLEVEL_DEFAULT; 1816 } 1817 break; 1818 /* Set level of messages printed to console */ 1819 case SYSLOG_ACTION_CONSOLE_LEVEL: 1820 if (len < 1 || len > 8) 1821 return -EINVAL; 1822 if (len < minimum_console_loglevel) 1823 len = minimum_console_loglevel; 1824 console_loglevel = len; 1825 /* Implicitly re-enable logging to console */ 1826 saved_console_loglevel = LOGLEVEL_DEFAULT; 1827 break; 1828 /* Number of chars in the log buffer */ 1829 case SYSLOG_ACTION_SIZE_UNREAD: 1830 mutex_lock(&syslog_lock); 1831 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1832 /* No unread messages. */ 1833 mutex_unlock(&syslog_lock); 1834 return 0; 1835 } 1836 if (info.seq != syslog_seq) { 1837 /* messages are gone, move to first one */ 1838 syslog_seq = info.seq; 1839 syslog_partial = 0; 1840 } 1841 if (source == SYSLOG_FROM_PROC) { 1842 /* 1843 * Short-cut for poll(/"proc/kmsg") which simply checks 1844 * for pending data, not the size; return the count of 1845 * records, not the length. 1846 */ 1847 error = prb_next_seq(prb) - syslog_seq; 1848 } else { 1849 bool time = syslog_partial ? syslog_time : printk_time; 1850 unsigned int line_count; 1851 u64 seq; 1852 1853 prb_for_each_info(syslog_seq, prb, seq, &info, 1854 &line_count) { 1855 error += get_record_print_text_size(&info, line_count, 1856 true, time); 1857 time = printk_time; 1858 } 1859 error -= syslog_partial; 1860 } 1861 mutex_unlock(&syslog_lock); 1862 break; 1863 /* Size of the log buffer */ 1864 case SYSLOG_ACTION_SIZE_BUFFER: 1865 error = log_buf_len; 1866 break; 1867 default: 1868 error = -EINVAL; 1869 break; 1870 } 1871 1872 return error; 1873 } 1874 1875 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1876 { 1877 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1878 } 1879 1880 /* 1881 * Special console_lock variants that help to reduce the risk of soft-lockups. 1882 * They allow to pass console_lock to another printk() call using a busy wait. 1883 */ 1884 1885 #ifdef CONFIG_LOCKDEP 1886 static struct lockdep_map console_owner_dep_map = { 1887 .name = "console_owner" 1888 }; 1889 #endif 1890 1891 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1892 static struct task_struct *console_owner; 1893 static bool console_waiter; 1894 1895 /** 1896 * console_lock_spinning_enable - mark beginning of code where another 1897 * thread might safely busy wait 1898 * 1899 * This basically converts console_lock into a spinlock. This marks 1900 * the section where the console_lock owner can not sleep, because 1901 * there may be a waiter spinning (like a spinlock). Also it must be 1902 * ready to hand over the lock at the end of the section. 1903 */ 1904 void console_lock_spinning_enable(void) 1905 { 1906 /* 1907 * Do not use spinning in panic(). The panic CPU wants to keep the lock. 1908 * Non-panic CPUs abandon the flush anyway. 1909 * 1910 * Just keep the lockdep annotation. The panic-CPU should avoid 1911 * taking console_owner_lock because it might cause a deadlock. 1912 * This looks like the easiest way how to prevent false lockdep 1913 * reports without handling races a lockless way. 1914 */ 1915 if (panic_in_progress()) 1916 goto lockdep; 1917 1918 raw_spin_lock(&console_owner_lock); 1919 console_owner = current; 1920 raw_spin_unlock(&console_owner_lock); 1921 1922 lockdep: 1923 /* The waiter may spin on us after setting console_owner */ 1924 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1925 } 1926 1927 /** 1928 * console_lock_spinning_disable_and_check - mark end of code where another 1929 * thread was able to busy wait and check if there is a waiter 1930 * @cookie: cookie returned from console_srcu_read_lock() 1931 * 1932 * This is called at the end of the section where spinning is allowed. 1933 * It has two functions. First, it is a signal that it is no longer 1934 * safe to start busy waiting for the lock. Second, it checks if 1935 * there is a busy waiter and passes the lock rights to her. 1936 * 1937 * Important: Callers lose both the console_lock and the SRCU read lock if 1938 * there was a busy waiter. They must not touch items synchronized by 1939 * console_lock or SRCU read lock in this case. 1940 * 1941 * Return: 1 if the lock rights were passed, 0 otherwise. 1942 */ 1943 int console_lock_spinning_disable_and_check(int cookie) 1944 { 1945 int waiter; 1946 1947 /* 1948 * Ignore spinning waiters during panic() because they might get stopped 1949 * or blocked at any time, 1950 * 1951 * It is safe because nobody is allowed to start spinning during panic 1952 * in the first place. If there has been a waiter then non panic CPUs 1953 * might stay spinning. They would get stopped anyway. The panic context 1954 * will never start spinning and an interrupted spin on panic CPU will 1955 * never continue. 1956 */ 1957 if (panic_in_progress()) { 1958 /* Keep lockdep happy. */ 1959 spin_release(&console_owner_dep_map, _THIS_IP_); 1960 return 0; 1961 } 1962 1963 raw_spin_lock(&console_owner_lock); 1964 waiter = READ_ONCE(console_waiter); 1965 console_owner = NULL; 1966 raw_spin_unlock(&console_owner_lock); 1967 1968 if (!waiter) { 1969 spin_release(&console_owner_dep_map, _THIS_IP_); 1970 return 0; 1971 } 1972 1973 /* The waiter is now free to continue */ 1974 WRITE_ONCE(console_waiter, false); 1975 1976 spin_release(&console_owner_dep_map, _THIS_IP_); 1977 1978 /* 1979 * Preserve lockdep lock ordering. Release the SRCU read lock before 1980 * releasing the console_lock. 1981 */ 1982 console_srcu_read_unlock(cookie); 1983 1984 /* 1985 * Hand off console_lock to waiter. The waiter will perform 1986 * the up(). After this, the waiter is the console_lock owner. 1987 */ 1988 mutex_release(&console_lock_dep_map, _THIS_IP_); 1989 return 1; 1990 } 1991 1992 /** 1993 * console_trylock_spinning - try to get console_lock by busy waiting 1994 * 1995 * This allows to busy wait for the console_lock when the current 1996 * owner is running in specially marked sections. It means that 1997 * the current owner is running and cannot reschedule until it 1998 * is ready to lose the lock. 1999 * 2000 * Return: 1 if we got the lock, 0 othrewise 2001 */ 2002 static int console_trylock_spinning(void) 2003 { 2004 struct task_struct *owner = NULL; 2005 bool waiter; 2006 bool spin = false; 2007 unsigned long flags; 2008 2009 if (console_trylock()) 2010 return 1; 2011 2012 /* 2013 * It's unsafe to spin once a panic has begun. If we are the 2014 * panic CPU, we may have already halted the owner of the 2015 * console_sem. If we are not the panic CPU, then we should 2016 * avoid taking console_sem, so the panic CPU has a better 2017 * chance of cleanly acquiring it later. 2018 */ 2019 if (panic_in_progress()) 2020 return 0; 2021 2022 printk_safe_enter_irqsave(flags); 2023 2024 raw_spin_lock(&console_owner_lock); 2025 owner = READ_ONCE(console_owner); 2026 waiter = READ_ONCE(console_waiter); 2027 if (!waiter && owner && owner != current) { 2028 WRITE_ONCE(console_waiter, true); 2029 spin = true; 2030 } 2031 raw_spin_unlock(&console_owner_lock); 2032 2033 /* 2034 * If there is an active printk() writing to the 2035 * consoles, instead of having it write our data too, 2036 * see if we can offload that load from the active 2037 * printer, and do some printing ourselves. 2038 * Go into a spin only if there isn't already a waiter 2039 * spinning, and there is an active printer, and 2040 * that active printer isn't us (recursive printk?). 2041 */ 2042 if (!spin) { 2043 printk_safe_exit_irqrestore(flags); 2044 return 0; 2045 } 2046 2047 /* We spin waiting for the owner to release us */ 2048 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 2049 /* Owner will clear console_waiter on hand off */ 2050 while (READ_ONCE(console_waiter)) 2051 cpu_relax(); 2052 spin_release(&console_owner_dep_map, _THIS_IP_); 2053 2054 printk_safe_exit_irqrestore(flags); 2055 /* 2056 * The owner passed the console lock to us. 2057 * Since we did not spin on console lock, annotate 2058 * this as a trylock. Otherwise lockdep will 2059 * complain. 2060 */ 2061 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 2062 2063 /* 2064 * Update @console_may_schedule for trylock because the previous 2065 * owner may have been schedulable. 2066 */ 2067 console_may_schedule = 0; 2068 2069 return 1; 2070 } 2071 2072 /* 2073 * Recursion is tracked separately on each CPU. If NMIs are supported, an 2074 * additional NMI context per CPU is also separately tracked. Until per-CPU 2075 * is available, a separate "early tracking" is performed. 2076 */ 2077 static DEFINE_PER_CPU(u8, printk_count); 2078 static u8 printk_count_early; 2079 #ifdef CONFIG_HAVE_NMI 2080 static DEFINE_PER_CPU(u8, printk_count_nmi); 2081 static u8 printk_count_nmi_early; 2082 #endif 2083 2084 /* 2085 * Recursion is limited to keep the output sane. printk() should not require 2086 * more than 1 level of recursion (allowing, for example, printk() to trigger 2087 * a WARN), but a higher value is used in case some printk-internal errors 2088 * exist, such as the ringbuffer validation checks failing. 2089 */ 2090 #define PRINTK_MAX_RECURSION 3 2091 2092 /* 2093 * Return a pointer to the dedicated counter for the CPU+context of the 2094 * caller. 2095 */ 2096 static u8 *__printk_recursion_counter(void) 2097 { 2098 #ifdef CONFIG_HAVE_NMI 2099 if (in_nmi()) { 2100 if (printk_percpu_data_ready()) 2101 return this_cpu_ptr(&printk_count_nmi); 2102 return &printk_count_nmi_early; 2103 } 2104 #endif 2105 if (printk_percpu_data_ready()) 2106 return this_cpu_ptr(&printk_count); 2107 return &printk_count_early; 2108 } 2109 2110 /* 2111 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2112 * The caller must check the boolean return value to see if the recursion is 2113 * allowed. On failure, interrupts are not disabled. 2114 * 2115 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2116 * that is passed to printk_exit_irqrestore(). 2117 */ 2118 #define printk_enter_irqsave(recursion_ptr, flags) \ 2119 ({ \ 2120 bool success = true; \ 2121 \ 2122 typecheck(u8 *, recursion_ptr); \ 2123 local_irq_save(flags); \ 2124 (recursion_ptr) = __printk_recursion_counter(); \ 2125 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2126 local_irq_restore(flags); \ 2127 success = false; \ 2128 } else { \ 2129 (*(recursion_ptr))++; \ 2130 } \ 2131 success; \ 2132 }) 2133 2134 /* Exit recursion tracking, restoring interrupts. */ 2135 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2136 do { \ 2137 typecheck(u8 *, recursion_ptr); \ 2138 (*(recursion_ptr))--; \ 2139 local_irq_restore(flags); \ 2140 } while (0) 2141 2142 int printk_delay_msec __read_mostly; 2143 2144 static inline void printk_delay(int level) 2145 { 2146 boot_delay_msec(level); 2147 2148 if (unlikely(printk_delay_msec)) { 2149 int m = printk_delay_msec; 2150 2151 while (m--) { 2152 mdelay(1); 2153 touch_nmi_watchdog(); 2154 } 2155 } 2156 } 2157 2158 static inline u32 printk_caller_id(void) 2159 { 2160 return in_task() ? task_pid_nr(current) : 2161 0x80000000 + smp_processor_id(); 2162 } 2163 2164 /** 2165 * printk_parse_prefix - Parse level and control flags. 2166 * 2167 * @text: The terminated text message. 2168 * @level: A pointer to the current level value, will be updated. 2169 * @flags: A pointer to the current printk_info flags, will be updated. 2170 * 2171 * @level may be NULL if the caller is not interested in the parsed value. 2172 * Otherwise the variable pointed to by @level must be set to 2173 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2174 * 2175 * @flags may be NULL if the caller is not interested in the parsed value. 2176 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2177 * value. 2178 * 2179 * Return: The length of the parsed level and control flags. 2180 */ 2181 u16 printk_parse_prefix(const char *text, int *level, 2182 enum printk_info_flags *flags) 2183 { 2184 u16 prefix_len = 0; 2185 int kern_level; 2186 2187 while (*text) { 2188 kern_level = printk_get_level(text); 2189 if (!kern_level) 2190 break; 2191 2192 switch (kern_level) { 2193 case '0' ... '7': 2194 if (level && *level == LOGLEVEL_DEFAULT) 2195 *level = kern_level - '0'; 2196 break; 2197 case 'c': /* KERN_CONT */ 2198 if (flags) 2199 *flags |= LOG_CONT; 2200 } 2201 2202 prefix_len += 2; 2203 text += 2; 2204 } 2205 2206 return prefix_len; 2207 } 2208 2209 __printf(5, 0) 2210 static u16 printk_sprint(char *text, u16 size, int facility, 2211 enum printk_info_flags *flags, const char *fmt, 2212 va_list args) 2213 { 2214 u16 text_len; 2215 2216 text_len = vscnprintf(text, size, fmt, args); 2217 2218 /* Mark and strip a trailing newline. */ 2219 if (text_len && text[text_len - 1] == '\n') { 2220 text_len--; 2221 *flags |= LOG_NEWLINE; 2222 } 2223 2224 /* Strip log level and control flags. */ 2225 if (facility == 0) { 2226 u16 prefix_len; 2227 2228 prefix_len = printk_parse_prefix(text, NULL, NULL); 2229 if (prefix_len) { 2230 text_len -= prefix_len; 2231 memmove(text, text + prefix_len, text_len); 2232 } 2233 } 2234 2235 trace_console(text, text_len); 2236 2237 return text_len; 2238 } 2239 2240 __printf(4, 0) 2241 int vprintk_store(int facility, int level, 2242 const struct dev_printk_info *dev_info, 2243 const char *fmt, va_list args) 2244 { 2245 struct prb_reserved_entry e; 2246 enum printk_info_flags flags = 0; 2247 struct printk_record r; 2248 unsigned long irqflags; 2249 u16 trunc_msg_len = 0; 2250 char prefix_buf[8]; 2251 u8 *recursion_ptr; 2252 u16 reserve_size; 2253 va_list args2; 2254 u32 caller_id; 2255 u16 text_len; 2256 int ret = 0; 2257 u64 ts_nsec; 2258 2259 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2260 return 0; 2261 2262 /* 2263 * Since the duration of printk() can vary depending on the message 2264 * and state of the ringbuffer, grab the timestamp now so that it is 2265 * close to the call of printk(). This provides a more deterministic 2266 * timestamp with respect to the caller. 2267 */ 2268 ts_nsec = local_clock(); 2269 2270 caller_id = printk_caller_id(); 2271 2272 /* 2273 * The sprintf needs to come first since the syslog prefix might be 2274 * passed in as a parameter. An extra byte must be reserved so that 2275 * later the vscnprintf() into the reserved buffer has room for the 2276 * terminating '\0', which is not counted by vsnprintf(). 2277 */ 2278 va_copy(args2, args); 2279 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2280 va_end(args2); 2281 2282 if (reserve_size > PRINTKRB_RECORD_MAX) 2283 reserve_size = PRINTKRB_RECORD_MAX; 2284 2285 /* Extract log level or control flags. */ 2286 if (facility == 0) 2287 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2288 2289 if (level == LOGLEVEL_DEFAULT) 2290 level = default_message_loglevel; 2291 2292 if (dev_info) 2293 flags |= LOG_NEWLINE; 2294 2295 if (is_printk_force_console()) 2296 flags |= LOG_FORCE_CON; 2297 2298 if (flags & LOG_CONT) { 2299 prb_rec_init_wr(&r, reserve_size); 2300 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2301 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2302 facility, &flags, fmt, args); 2303 r.info->text_len += text_len; 2304 2305 if (flags & LOG_FORCE_CON) 2306 r.info->flags |= LOG_FORCE_CON; 2307 2308 if (flags & LOG_NEWLINE) { 2309 r.info->flags |= LOG_NEWLINE; 2310 prb_final_commit(&e); 2311 } else { 2312 prb_commit(&e); 2313 } 2314 2315 ret = text_len; 2316 goto out; 2317 } 2318 } 2319 2320 /* 2321 * Explicitly initialize the record before every prb_reserve() call. 2322 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2323 * structure when they fail. 2324 */ 2325 prb_rec_init_wr(&r, reserve_size); 2326 if (!prb_reserve(&e, prb, &r)) { 2327 /* truncate the message if it is too long for empty buffer */ 2328 truncate_msg(&reserve_size, &trunc_msg_len); 2329 2330 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2331 if (!prb_reserve(&e, prb, &r)) 2332 goto out; 2333 } 2334 2335 /* fill message */ 2336 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2337 if (trunc_msg_len) 2338 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2339 r.info->text_len = text_len + trunc_msg_len; 2340 r.info->facility = facility; 2341 r.info->level = level & 7; 2342 r.info->flags = flags & 0x1f; 2343 r.info->ts_nsec = ts_nsec; 2344 r.info->caller_id = caller_id; 2345 if (dev_info) 2346 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2347 2348 /* A message without a trailing newline can be continued. */ 2349 if (!(flags & LOG_NEWLINE)) 2350 prb_commit(&e); 2351 else 2352 prb_final_commit(&e); 2353 2354 ret = text_len + trunc_msg_len; 2355 out: 2356 printk_exit_irqrestore(recursion_ptr, irqflags); 2357 return ret; 2358 } 2359 2360 /* 2361 * This acts as a one-way switch to allow legacy consoles to print from 2362 * the printk() caller context on a panic CPU. It also attempts to flush 2363 * the legacy consoles in this context. 2364 */ 2365 void printk_legacy_allow_panic_sync(void) 2366 { 2367 struct console_flush_type ft; 2368 2369 legacy_allow_panic_sync = true; 2370 2371 printk_get_console_flush_type(&ft); 2372 if (ft.legacy_direct) { 2373 if (console_trylock()) 2374 console_unlock(); 2375 } 2376 } 2377 2378 asmlinkage int vprintk_emit(int facility, int level, 2379 const struct dev_printk_info *dev_info, 2380 const char *fmt, va_list args) 2381 { 2382 struct console_flush_type ft; 2383 int printed_len; 2384 2385 /* Suppress unimportant messages after panic happens */ 2386 if (unlikely(suppress_printk)) 2387 return 0; 2388 2389 /* 2390 * The messages on the panic CPU are the most important. If 2391 * non-panic CPUs are generating any messages, they will be 2392 * silently dropped. 2393 */ 2394 if (other_cpu_in_panic() && !panic_triggering_all_cpu_backtrace) 2395 return 0; 2396 2397 printk_get_console_flush_type(&ft); 2398 2399 /* If called from the scheduler, we can not call up(). */ 2400 if (level == LOGLEVEL_SCHED) { 2401 level = LOGLEVEL_DEFAULT; 2402 ft.legacy_offload |= ft.legacy_direct; 2403 ft.legacy_direct = false; 2404 } 2405 2406 printk_delay(level); 2407 2408 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2409 2410 if (ft.nbcon_atomic) 2411 nbcon_atomic_flush_pending(); 2412 2413 if (ft.nbcon_offload) 2414 nbcon_kthreads_wake(); 2415 2416 if (ft.legacy_direct) { 2417 /* 2418 * The caller may be holding system-critical or 2419 * timing-sensitive locks. Disable preemption during 2420 * printing of all remaining records to all consoles so that 2421 * this context can return as soon as possible. Hopefully 2422 * another printk() caller will take over the printing. 2423 */ 2424 preempt_disable(); 2425 /* 2426 * Try to acquire and then immediately release the console 2427 * semaphore. The release will print out buffers. With the 2428 * spinning variant, this context tries to take over the 2429 * printing from another printing context. 2430 */ 2431 if (console_trylock_spinning()) 2432 console_unlock(); 2433 preempt_enable(); 2434 } 2435 2436 if (ft.legacy_offload) 2437 defer_console_output(); 2438 else 2439 wake_up_klogd(); 2440 2441 return printed_len; 2442 } 2443 EXPORT_SYMBOL(vprintk_emit); 2444 2445 int vprintk_default(const char *fmt, va_list args) 2446 { 2447 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2448 } 2449 EXPORT_SYMBOL_GPL(vprintk_default); 2450 2451 asmlinkage __visible int _printk(const char *fmt, ...) 2452 { 2453 va_list args; 2454 int r; 2455 2456 va_start(args, fmt); 2457 r = vprintk(fmt, args); 2458 va_end(args); 2459 2460 return r; 2461 } 2462 EXPORT_SYMBOL(_printk); 2463 2464 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2465 2466 #else /* CONFIG_PRINTK */ 2467 2468 #define printk_time false 2469 2470 #define prb_read_valid(rb, seq, r) false 2471 #define prb_first_valid_seq(rb) 0 2472 #define prb_next_seq(rb) 0 2473 2474 static u64 syslog_seq; 2475 2476 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2477 2478 #endif /* CONFIG_PRINTK */ 2479 2480 #ifdef CONFIG_EARLY_PRINTK 2481 struct console *early_console; 2482 2483 asmlinkage __visible void early_printk(const char *fmt, ...) 2484 { 2485 va_list ap; 2486 char buf[512]; 2487 int n; 2488 2489 if (!early_console) 2490 return; 2491 2492 va_start(ap, fmt); 2493 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2494 va_end(ap); 2495 2496 early_console->write(early_console, buf, n); 2497 } 2498 #endif 2499 2500 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2501 { 2502 if (!user_specified) 2503 return; 2504 2505 /* 2506 * @c console was defined by the user on the command line. 2507 * Do not clear when added twice also by SPCR or the device tree. 2508 */ 2509 c->user_specified = true; 2510 /* At least one console defined by the user on the command line. */ 2511 console_set_on_cmdline = 1; 2512 } 2513 2514 static int __add_preferred_console(const char *name, const short idx, 2515 const char *devname, char *options, 2516 char *brl_options, bool user_specified) 2517 { 2518 struct console_cmdline *c; 2519 int i; 2520 2521 if (!name && !devname) 2522 return -EINVAL; 2523 2524 /* 2525 * We use a signed short index for struct console for device drivers to 2526 * indicate a not yet assigned index or port. However, a negative index 2527 * value is not valid when the console name and index are defined on 2528 * the command line. 2529 */ 2530 if (name && idx < 0) 2531 return -EINVAL; 2532 2533 /* 2534 * See if this tty is not yet registered, and 2535 * if we have a slot free. 2536 */ 2537 for (i = 0, c = console_cmdline; 2538 i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 2539 i++, c++) { 2540 if ((name && strcmp(c->name, name) == 0 && c->index == idx) || 2541 (devname && strcmp(c->devname, devname) == 0)) { 2542 if (!brl_options) 2543 preferred_console = i; 2544 set_user_specified(c, user_specified); 2545 return 0; 2546 } 2547 } 2548 if (i == MAX_CMDLINECONSOLES) 2549 return -E2BIG; 2550 if (!brl_options) 2551 preferred_console = i; 2552 if (name) 2553 strscpy(c->name, name); 2554 if (devname) 2555 strscpy(c->devname, devname); 2556 c->options = options; 2557 set_user_specified(c, user_specified); 2558 braille_set_options(c, brl_options); 2559 2560 c->index = idx; 2561 return 0; 2562 } 2563 2564 static int __init console_msg_format_setup(char *str) 2565 { 2566 if (!strcmp(str, "syslog")) 2567 console_msg_format = MSG_FORMAT_SYSLOG; 2568 if (!strcmp(str, "default")) 2569 console_msg_format = MSG_FORMAT_DEFAULT; 2570 return 1; 2571 } 2572 __setup("console_msg_format=", console_msg_format_setup); 2573 2574 /* 2575 * Set up a console. Called via do_early_param() in init/main.c 2576 * for each "console=" parameter in the boot command line. 2577 */ 2578 static int __init console_setup(char *str) 2579 { 2580 static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4); 2581 char buf[sizeof(console_cmdline[0].devname)]; 2582 char *brl_options = NULL; 2583 char *ttyname = NULL; 2584 char *devname = NULL; 2585 char *options; 2586 char *s; 2587 int idx; 2588 2589 /* 2590 * console="" or console=null have been suggested as a way to 2591 * disable console output. Use ttynull that has been created 2592 * for exactly this purpose. 2593 */ 2594 if (str[0] == 0 || strcmp(str, "null") == 0) { 2595 __add_preferred_console("ttynull", 0, NULL, NULL, NULL, true); 2596 return 1; 2597 } 2598 2599 if (_braille_console_setup(&str, &brl_options)) 2600 return 1; 2601 2602 /* For a DEVNAME:0.0 style console the character device is unknown early */ 2603 if (strchr(str, ':')) 2604 devname = buf; 2605 else 2606 ttyname = buf; 2607 2608 /* 2609 * Decode str into name, index, options. 2610 */ 2611 if (ttyname && isdigit(str[0])) 2612 scnprintf(buf, sizeof(buf), "ttyS%s", str); 2613 else 2614 strscpy(buf, str); 2615 2616 options = strchr(str, ','); 2617 if (options) 2618 *(options++) = 0; 2619 2620 #ifdef __sparc__ 2621 if (!strcmp(str, "ttya")) 2622 strscpy(buf, "ttyS0"); 2623 if (!strcmp(str, "ttyb")) 2624 strscpy(buf, "ttyS1"); 2625 #endif 2626 2627 for (s = buf; *s; s++) 2628 if ((ttyname && isdigit(*s)) || *s == ',') 2629 break; 2630 2631 /* @idx will get defined when devname matches. */ 2632 if (devname) 2633 idx = -1; 2634 else 2635 idx = simple_strtoul(s, NULL, 10); 2636 2637 *s = 0; 2638 2639 __add_preferred_console(ttyname, idx, devname, options, brl_options, true); 2640 return 1; 2641 } 2642 __setup("console=", console_setup); 2643 2644 /** 2645 * add_preferred_console - add a device to the list of preferred consoles. 2646 * @name: device name 2647 * @idx: device index 2648 * @options: options for this console 2649 * 2650 * The last preferred console added will be used for kernel messages 2651 * and stdin/out/err for init. Normally this is used by console_setup 2652 * above to handle user-supplied console arguments; however it can also 2653 * be used by arch-specific code either to override the user or more 2654 * commonly to provide a default console (ie from PROM variables) when 2655 * the user has not supplied one. 2656 */ 2657 int add_preferred_console(const char *name, const short idx, char *options) 2658 { 2659 return __add_preferred_console(name, idx, NULL, options, NULL, false); 2660 } 2661 2662 /** 2663 * match_devname_and_update_preferred_console - Update a preferred console 2664 * when matching devname is found. 2665 * @devname: DEVNAME:0.0 style device name 2666 * @name: Name of the corresponding console driver, e.g. "ttyS" 2667 * @idx: Console index, e.g. port number. 2668 * 2669 * The function checks whether a device with the given @devname is 2670 * preferred via the console=DEVNAME:0.0 command line option. 2671 * It fills the missing console driver name and console index 2672 * so that a later register_console() call could find (match) 2673 * and enable this device. 2674 * 2675 * It might be used when a driver subsystem initializes particular 2676 * devices with already known DEVNAME:0.0 style names. And it 2677 * could predict which console driver name and index this device 2678 * would later get associated with. 2679 * 2680 * Return: 0 on success, negative error code on failure. 2681 */ 2682 int match_devname_and_update_preferred_console(const char *devname, 2683 const char *name, 2684 const short idx) 2685 { 2686 struct console_cmdline *c = console_cmdline; 2687 int i; 2688 2689 if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0) 2690 return -EINVAL; 2691 2692 for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 2693 i++, c++) { 2694 if (!strcmp(devname, c->devname)) { 2695 pr_info("associate the preferred console \"%s\" with \"%s%d\"\n", 2696 devname, name, idx); 2697 strscpy(c->name, name); 2698 c->index = idx; 2699 return 0; 2700 } 2701 } 2702 2703 return -ENOENT; 2704 } 2705 EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console); 2706 2707 bool console_suspend_enabled = true; 2708 EXPORT_SYMBOL(console_suspend_enabled); 2709 2710 static int __init console_suspend_disable(char *str) 2711 { 2712 console_suspend_enabled = false; 2713 return 1; 2714 } 2715 __setup("no_console_suspend", console_suspend_disable); 2716 module_param_named(console_suspend, console_suspend_enabled, 2717 bool, S_IRUGO | S_IWUSR); 2718 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2719 " and hibernate operations"); 2720 2721 static bool printk_console_no_auto_verbose; 2722 2723 void console_verbose(void) 2724 { 2725 if (console_loglevel && !printk_console_no_auto_verbose) 2726 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2727 } 2728 EXPORT_SYMBOL_GPL(console_verbose); 2729 2730 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2731 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2732 2733 /** 2734 * suspend_console - suspend the console subsystem 2735 * 2736 * This disables printk() while we go into suspend states 2737 */ 2738 void suspend_console(void) 2739 { 2740 struct console *con; 2741 2742 if (!console_suspend_enabled) 2743 return; 2744 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2745 pr_flush(1000, true); 2746 2747 console_list_lock(); 2748 for_each_console(con) 2749 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2750 console_list_unlock(); 2751 2752 /* 2753 * Ensure that all SRCU list walks have completed. All printing 2754 * contexts must be able to see that they are suspended so that it 2755 * is guaranteed that all printing has stopped when this function 2756 * completes. 2757 */ 2758 synchronize_srcu(&console_srcu); 2759 } 2760 2761 void resume_console(void) 2762 { 2763 struct console_flush_type ft; 2764 struct console *con; 2765 2766 if (!console_suspend_enabled) 2767 return; 2768 2769 console_list_lock(); 2770 for_each_console(con) 2771 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2772 console_list_unlock(); 2773 2774 /* 2775 * Ensure that all SRCU list walks have completed. All printing 2776 * contexts must be able to see they are no longer suspended so 2777 * that they are guaranteed to wake up and resume printing. 2778 */ 2779 synchronize_srcu(&console_srcu); 2780 2781 printk_get_console_flush_type(&ft); 2782 if (ft.nbcon_offload) 2783 nbcon_kthreads_wake(); 2784 if (ft.legacy_offload) 2785 defer_console_output(); 2786 2787 pr_flush(1000, true); 2788 } 2789 2790 /** 2791 * console_cpu_notify - print deferred console messages after CPU hotplug 2792 * @cpu: unused 2793 * 2794 * If printk() is called from a CPU that is not online yet, the messages 2795 * will be printed on the console only if there are CON_ANYTIME consoles. 2796 * This function is called when a new CPU comes online (or fails to come 2797 * up) or goes offline. 2798 */ 2799 static int console_cpu_notify(unsigned int cpu) 2800 { 2801 struct console_flush_type ft; 2802 2803 if (!cpuhp_tasks_frozen) { 2804 printk_get_console_flush_type(&ft); 2805 if (ft.nbcon_atomic) 2806 nbcon_atomic_flush_pending(); 2807 if (ft.legacy_direct) { 2808 if (console_trylock()) 2809 console_unlock(); 2810 } 2811 } 2812 return 0; 2813 } 2814 2815 /** 2816 * console_lock - block the console subsystem from printing 2817 * 2818 * Acquires a lock which guarantees that no consoles will 2819 * be in or enter their write() callback. 2820 * 2821 * Can sleep, returns nothing. 2822 */ 2823 void console_lock(void) 2824 { 2825 might_sleep(); 2826 2827 /* On panic, the console_lock must be left to the panic cpu. */ 2828 while (other_cpu_in_panic()) 2829 msleep(1000); 2830 2831 down_console_sem(); 2832 console_locked = 1; 2833 console_may_schedule = 1; 2834 } 2835 EXPORT_SYMBOL(console_lock); 2836 2837 /** 2838 * console_trylock - try to block the console subsystem from printing 2839 * 2840 * Try to acquire a lock which guarantees that no consoles will 2841 * be in or enter their write() callback. 2842 * 2843 * returns 1 on success, and 0 on failure to acquire the lock. 2844 */ 2845 int console_trylock(void) 2846 { 2847 /* On panic, the console_lock must be left to the panic cpu. */ 2848 if (other_cpu_in_panic()) 2849 return 0; 2850 if (down_trylock_console_sem()) 2851 return 0; 2852 console_locked = 1; 2853 console_may_schedule = 0; 2854 return 1; 2855 } 2856 EXPORT_SYMBOL(console_trylock); 2857 2858 int is_console_locked(void) 2859 { 2860 return console_locked; 2861 } 2862 EXPORT_SYMBOL(is_console_locked); 2863 2864 static void __console_unlock(void) 2865 { 2866 console_locked = 0; 2867 up_console_sem(); 2868 } 2869 2870 #ifdef CONFIG_PRINTK 2871 2872 /* 2873 * Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting 2874 * the existing message over and inserting the scratchbuf message. 2875 * 2876 * @pmsg is the original printk message. 2877 * @fmt is the printf format of the message which will prepend the existing one. 2878 * 2879 * If there is not enough space in @pmsg->pbufs->outbuf, the existing 2880 * message text will be sufficiently truncated. 2881 * 2882 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2883 */ 2884 __printf(2, 3) 2885 static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...) 2886 { 2887 struct printk_buffers *pbufs = pmsg->pbufs; 2888 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2889 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2890 char *scratchbuf = &pbufs->scratchbuf[0]; 2891 char *outbuf = &pbufs->outbuf[0]; 2892 va_list args; 2893 size_t len; 2894 2895 va_start(args, fmt); 2896 len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args); 2897 va_end(args); 2898 2899 /* 2900 * Make sure outbuf is sufficiently large before prepending. 2901 * Keep at least the prefix when the message must be truncated. 2902 * It is a rather theoretical problem when someone tries to 2903 * use a minimalist buffer. 2904 */ 2905 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2906 return; 2907 2908 if (pmsg->outbuf_len + len >= outbuf_sz) { 2909 /* Truncate the message, but keep it terminated. */ 2910 pmsg->outbuf_len = outbuf_sz - (len + 1); 2911 outbuf[pmsg->outbuf_len] = 0; 2912 } 2913 2914 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2915 memcpy(outbuf, scratchbuf, len); 2916 pmsg->outbuf_len += len; 2917 } 2918 2919 /* 2920 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". 2921 * @pmsg->outbuf_len is updated appropriately. 2922 * 2923 * @pmsg is the printk message to prepend. 2924 * 2925 * @dropped is the dropped count to report in the dropped message. 2926 */ 2927 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2928 { 2929 console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped); 2930 } 2931 2932 /* 2933 * Prepend the message in @pmsg->pbufs->outbuf with a "replay message". 2934 * @pmsg->outbuf_len is updated appropriately. 2935 * 2936 * @pmsg is the printk message to prepend. 2937 */ 2938 void console_prepend_replay(struct printk_message *pmsg) 2939 { 2940 console_prepend_message(pmsg, "** replaying previous printk message **\n"); 2941 } 2942 2943 /* 2944 * Read and format the specified record (or a later record if the specified 2945 * record is not available). 2946 * 2947 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2948 * struct printk_buffers. 2949 * 2950 * @seq is the record to read and format. If it is not available, the next 2951 * valid record is read. 2952 * 2953 * @is_extended specifies if the message should be formatted for extended 2954 * console output. 2955 * 2956 * @may_supress specifies if records may be skipped based on loglevel. 2957 * 2958 * Returns false if no record is available. Otherwise true and all fields 2959 * of @pmsg are valid. (See the documentation of struct printk_message 2960 * for information about the @pmsg fields.) 2961 */ 2962 bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2963 bool is_extended, bool may_suppress) 2964 { 2965 struct printk_buffers *pbufs = pmsg->pbufs; 2966 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2967 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2968 char *scratchbuf = &pbufs->scratchbuf[0]; 2969 char *outbuf = &pbufs->outbuf[0]; 2970 struct printk_info info; 2971 struct printk_record r; 2972 size_t len = 0; 2973 bool force_con; 2974 2975 /* 2976 * Formatting extended messages requires a separate buffer, so use the 2977 * scratch buffer to read in the ringbuffer text. 2978 * 2979 * Formatting normal messages is done in-place, so read the ringbuffer 2980 * text directly into the output buffer. 2981 */ 2982 if (is_extended) 2983 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2984 else 2985 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2986 2987 if (!prb_read_valid(prb, seq, &r)) 2988 return false; 2989 2990 pmsg->seq = r.info->seq; 2991 pmsg->dropped = r.info->seq - seq; 2992 force_con = r.info->flags & LOG_FORCE_CON; 2993 2994 /* 2995 * Skip records that are not forced to be printed on consoles and that 2996 * has level above the console loglevel. 2997 */ 2998 if (!force_con && may_suppress && suppress_message_printing(r.info->level)) 2999 goto out; 3000 3001 if (is_extended) { 3002 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 3003 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 3004 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 3005 } else { 3006 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 3007 } 3008 out: 3009 pmsg->outbuf_len = len; 3010 return true; 3011 } 3012 3013 /* 3014 * Legacy console printing from printk() caller context does not respect 3015 * raw_spinlock/spinlock nesting. For !PREEMPT_RT the lockdep warning is a 3016 * false positive. For PREEMPT_RT the false positive condition does not 3017 * occur. 3018 * 3019 * This map is used to temporarily establish LD_WAIT_SLEEP context for the 3020 * console write() callback when legacy printing to avoid false positive 3021 * lockdep complaints, thus allowing lockdep to continue to function for 3022 * real issues. 3023 */ 3024 #ifdef CONFIG_PREEMPT_RT 3025 static inline void printk_legacy_allow_spinlock_enter(void) { } 3026 static inline void printk_legacy_allow_spinlock_exit(void) { } 3027 #else 3028 static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_SLEEP); 3029 3030 static inline void printk_legacy_allow_spinlock_enter(void) 3031 { 3032 lock_map_acquire_try(&printk_legacy_map); 3033 } 3034 3035 static inline void printk_legacy_allow_spinlock_exit(void) 3036 { 3037 lock_map_release(&printk_legacy_map); 3038 } 3039 #endif /* CONFIG_PREEMPT_RT */ 3040 3041 /* 3042 * Used as the printk buffers for non-panic, serialized console printing. 3043 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles. 3044 * Its usage requires the console_lock held. 3045 */ 3046 struct printk_buffers printk_shared_pbufs; 3047 3048 /* 3049 * Print one record for the given console. The record printed is whatever 3050 * record is the next available record for the given console. 3051 * 3052 * @handover will be set to true if a printk waiter has taken over the 3053 * console_lock, in which case the caller is no longer holding both the 3054 * console_lock and the SRCU read lock. Otherwise it is set to false. 3055 * 3056 * @cookie is the cookie from the SRCU read lock. 3057 * 3058 * Returns false if the given console has no next record to print, otherwise 3059 * true. 3060 * 3061 * Requires the console_lock and the SRCU read lock. 3062 */ 3063 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 3064 { 3065 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 3066 char *outbuf = &printk_shared_pbufs.outbuf[0]; 3067 struct printk_message pmsg = { 3068 .pbufs = &printk_shared_pbufs, 3069 }; 3070 unsigned long flags; 3071 3072 *handover = false; 3073 3074 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 3075 return false; 3076 3077 con->dropped += pmsg.dropped; 3078 3079 /* Skip messages of formatted length 0. */ 3080 if (pmsg.outbuf_len == 0) { 3081 con->seq = pmsg.seq + 1; 3082 goto skip; 3083 } 3084 3085 if (con->dropped && !is_extended) { 3086 console_prepend_dropped(&pmsg, con->dropped); 3087 con->dropped = 0; 3088 } 3089 3090 /* Write everything out to the hardware. */ 3091 3092 if (force_legacy_kthread() && !panic_in_progress()) { 3093 /* 3094 * With forced threading this function is in a task context 3095 * (either legacy kthread or get_init_console_seq()). There 3096 * is no need for concern about printk reentrance, handovers, 3097 * or lockdep complaints. 3098 */ 3099 3100 con->write(con, outbuf, pmsg.outbuf_len); 3101 con->seq = pmsg.seq + 1; 3102 } else { 3103 /* 3104 * While actively printing out messages, if another printk() 3105 * were to occur on another CPU, it may wait for this one to 3106 * finish. This task can not be preempted if there is a 3107 * waiter waiting to take over. 3108 * 3109 * Interrupts are disabled because the hand over to a waiter 3110 * must not be interrupted until the hand over is completed 3111 * (@console_waiter is cleared). 3112 */ 3113 printk_safe_enter_irqsave(flags); 3114 console_lock_spinning_enable(); 3115 3116 /* Do not trace print latency. */ 3117 stop_critical_timings(); 3118 3119 printk_legacy_allow_spinlock_enter(); 3120 con->write(con, outbuf, pmsg.outbuf_len); 3121 printk_legacy_allow_spinlock_exit(); 3122 3123 start_critical_timings(); 3124 3125 con->seq = pmsg.seq + 1; 3126 3127 *handover = console_lock_spinning_disable_and_check(cookie); 3128 printk_safe_exit_irqrestore(flags); 3129 } 3130 skip: 3131 return true; 3132 } 3133 3134 #else 3135 3136 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 3137 { 3138 *handover = false; 3139 return false; 3140 } 3141 3142 static inline void printk_kthreads_check_locked(void) { } 3143 3144 #endif /* CONFIG_PRINTK */ 3145 3146 /* 3147 * Print out all remaining records to all consoles. 3148 * 3149 * @do_cond_resched is set by the caller. It can be true only in schedulable 3150 * context. 3151 * 3152 * @next_seq is set to the sequence number after the last available record. 3153 * The value is valid only when this function returns true. It means that all 3154 * usable consoles are completely flushed. 3155 * 3156 * @handover will be set to true if a printk waiter has taken over the 3157 * console_lock, in which case the caller is no longer holding the 3158 * console_lock. Otherwise it is set to false. 3159 * 3160 * Returns true when there was at least one usable console and all messages 3161 * were flushed to all usable consoles. A returned false informs the caller 3162 * that everything was not flushed (either there were no usable consoles or 3163 * another context has taken over printing or it is a panic situation and this 3164 * is not the panic CPU). Regardless the reason, the caller should assume it 3165 * is not useful to immediately try again. 3166 * 3167 * Requires the console_lock. 3168 */ 3169 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 3170 { 3171 struct console_flush_type ft; 3172 bool any_usable = false; 3173 struct console *con; 3174 bool any_progress; 3175 int cookie; 3176 3177 *next_seq = 0; 3178 *handover = false; 3179 3180 do { 3181 any_progress = false; 3182 3183 printk_get_console_flush_type(&ft); 3184 3185 cookie = console_srcu_read_lock(); 3186 for_each_console_srcu(con) { 3187 short flags = console_srcu_read_flags(con); 3188 u64 printk_seq; 3189 bool progress; 3190 3191 /* 3192 * console_flush_all() is only responsible for nbcon 3193 * consoles when the nbcon consoles cannot print via 3194 * their atomic or threaded flushing. 3195 */ 3196 if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload)) 3197 continue; 3198 3199 if (!console_is_usable(con, flags, !do_cond_resched)) 3200 continue; 3201 any_usable = true; 3202 3203 if (flags & CON_NBCON) { 3204 progress = nbcon_legacy_emit_next_record(con, handover, cookie, 3205 !do_cond_resched); 3206 printk_seq = nbcon_seq_read(con); 3207 } else { 3208 progress = console_emit_next_record(con, handover, cookie); 3209 printk_seq = con->seq; 3210 } 3211 3212 /* 3213 * If a handover has occurred, the SRCU read lock 3214 * is already released. 3215 */ 3216 if (*handover) 3217 return false; 3218 3219 /* Track the next of the highest seq flushed. */ 3220 if (printk_seq > *next_seq) 3221 *next_seq = printk_seq; 3222 3223 if (!progress) 3224 continue; 3225 any_progress = true; 3226 3227 /* Allow panic_cpu to take over the consoles safely. */ 3228 if (other_cpu_in_panic()) 3229 goto abandon; 3230 3231 if (do_cond_resched) 3232 cond_resched(); 3233 } 3234 console_srcu_read_unlock(cookie); 3235 } while (any_progress); 3236 3237 return any_usable; 3238 3239 abandon: 3240 console_srcu_read_unlock(cookie); 3241 return false; 3242 } 3243 3244 static void __console_flush_and_unlock(void) 3245 { 3246 bool do_cond_resched; 3247 bool handover; 3248 bool flushed; 3249 u64 next_seq; 3250 3251 /* 3252 * Console drivers are called with interrupts disabled, so 3253 * @console_may_schedule should be cleared before; however, we may 3254 * end up dumping a lot of lines, for example, if called from 3255 * console registration path, and should invoke cond_resched() 3256 * between lines if allowable. Not doing so can cause a very long 3257 * scheduling stall on a slow console leading to RCU stall and 3258 * softlockup warnings which exacerbate the issue with more 3259 * messages practically incapacitating the system. Therefore, create 3260 * a local to use for the printing loop. 3261 */ 3262 do_cond_resched = console_may_schedule; 3263 3264 do { 3265 console_may_schedule = 0; 3266 3267 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3268 if (!handover) 3269 __console_unlock(); 3270 3271 /* 3272 * Abort if there was a failure to flush all messages to all 3273 * usable consoles. Either it is not possible to flush (in 3274 * which case it would be an infinite loop of retrying) or 3275 * another context has taken over printing. 3276 */ 3277 if (!flushed) 3278 break; 3279 3280 /* 3281 * Some context may have added new records after 3282 * console_flush_all() but before unlocking the console. 3283 * Re-check if there is a new record to flush. If the trylock 3284 * fails, another context is already handling the printing. 3285 */ 3286 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3287 } 3288 3289 /** 3290 * console_unlock - unblock the legacy console subsystem from printing 3291 * 3292 * Releases the console_lock which the caller holds to block printing of 3293 * the legacy console subsystem. 3294 * 3295 * While the console_lock was held, console output may have been buffered 3296 * by printk(). If this is the case, console_unlock() emits the output on 3297 * legacy consoles prior to releasing the lock. 3298 * 3299 * console_unlock(); may be called from any context. 3300 */ 3301 void console_unlock(void) 3302 { 3303 struct console_flush_type ft; 3304 3305 printk_get_console_flush_type(&ft); 3306 if (ft.legacy_direct) 3307 __console_flush_and_unlock(); 3308 else 3309 __console_unlock(); 3310 } 3311 EXPORT_SYMBOL(console_unlock); 3312 3313 /** 3314 * console_conditional_schedule - yield the CPU if required 3315 * 3316 * If the console code is currently allowed to sleep, and 3317 * if this CPU should yield the CPU to another task, do 3318 * so here. 3319 * 3320 * Must be called within console_lock();. 3321 */ 3322 void __sched console_conditional_schedule(void) 3323 { 3324 if (console_may_schedule) 3325 cond_resched(); 3326 } 3327 EXPORT_SYMBOL(console_conditional_schedule); 3328 3329 void console_unblank(void) 3330 { 3331 bool found_unblank = false; 3332 struct console *c; 3333 int cookie; 3334 3335 /* 3336 * First check if there are any consoles implementing the unblank() 3337 * callback. If not, there is no reason to continue and take the 3338 * console lock, which in particular can be dangerous if 3339 * @oops_in_progress is set. 3340 */ 3341 cookie = console_srcu_read_lock(); 3342 for_each_console_srcu(c) { 3343 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) { 3344 found_unblank = true; 3345 break; 3346 } 3347 } 3348 console_srcu_read_unlock(cookie); 3349 if (!found_unblank) 3350 return; 3351 3352 /* 3353 * Stop console printing because the unblank() callback may 3354 * assume the console is not within its write() callback. 3355 * 3356 * If @oops_in_progress is set, this may be an atomic context. 3357 * In that case, attempt a trylock as best-effort. 3358 */ 3359 if (oops_in_progress) { 3360 /* Semaphores are not NMI-safe. */ 3361 if (in_nmi()) 3362 return; 3363 3364 /* 3365 * Attempting to trylock the console lock can deadlock 3366 * if another CPU was stopped while modifying the 3367 * semaphore. "Hope and pray" that this is not the 3368 * current situation. 3369 */ 3370 if (down_trylock_console_sem() != 0) 3371 return; 3372 } else 3373 console_lock(); 3374 3375 console_locked = 1; 3376 console_may_schedule = 0; 3377 3378 cookie = console_srcu_read_lock(); 3379 for_each_console_srcu(c) { 3380 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3381 c->unblank(); 3382 } 3383 console_srcu_read_unlock(cookie); 3384 3385 console_unlock(); 3386 3387 if (!oops_in_progress) 3388 pr_flush(1000, true); 3389 } 3390 3391 /* 3392 * Rewind all consoles to the oldest available record. 3393 * 3394 * IMPORTANT: The function is safe only when called under 3395 * console_lock(). It is not enforced because 3396 * it is used as a best effort in panic(). 3397 */ 3398 static void __console_rewind_all(void) 3399 { 3400 struct console *c; 3401 short flags; 3402 int cookie; 3403 u64 seq; 3404 3405 seq = prb_first_valid_seq(prb); 3406 3407 cookie = console_srcu_read_lock(); 3408 for_each_console_srcu(c) { 3409 flags = console_srcu_read_flags(c); 3410 3411 if (flags & CON_NBCON) { 3412 nbcon_seq_force(c, seq); 3413 } else { 3414 /* 3415 * This assignment is safe only when called under 3416 * console_lock(). On panic, legacy consoles are 3417 * only best effort. 3418 */ 3419 c->seq = seq; 3420 } 3421 } 3422 console_srcu_read_unlock(cookie); 3423 } 3424 3425 /** 3426 * console_flush_on_panic - flush console content on panic 3427 * @mode: flush all messages in buffer or just the pending ones 3428 * 3429 * Immediately output all pending messages no matter what. 3430 */ 3431 void console_flush_on_panic(enum con_flush_mode mode) 3432 { 3433 struct console_flush_type ft; 3434 bool handover; 3435 u64 next_seq; 3436 3437 /* 3438 * Ignore the console lock and flush out the messages. Attempting a 3439 * trylock would not be useful because: 3440 * 3441 * - if it is contended, it must be ignored anyway 3442 * - console_lock() and console_trylock() block and fail 3443 * respectively in panic for non-panic CPUs 3444 * - semaphores are not NMI-safe 3445 */ 3446 3447 /* 3448 * If another context is holding the console lock, 3449 * @console_may_schedule might be set. Clear it so that 3450 * this context does not call cond_resched() while flushing. 3451 */ 3452 console_may_schedule = 0; 3453 3454 if (mode == CONSOLE_REPLAY_ALL) 3455 __console_rewind_all(); 3456 3457 printk_get_console_flush_type(&ft); 3458 if (ft.nbcon_atomic) 3459 nbcon_atomic_flush_pending(); 3460 3461 /* Flush legacy consoles once allowed, even when dangerous. */ 3462 if (legacy_allow_panic_sync) 3463 console_flush_all(false, &next_seq, &handover); 3464 } 3465 3466 /* 3467 * Return the console tty driver structure and its associated index 3468 */ 3469 struct tty_driver *console_device(int *index) 3470 { 3471 struct console *c; 3472 struct tty_driver *driver = NULL; 3473 int cookie; 3474 3475 /* 3476 * Take console_lock to serialize device() callback with 3477 * other console operations. For example, fg_console is 3478 * modified under console_lock when switching vt. 3479 */ 3480 console_lock(); 3481 3482 cookie = console_srcu_read_lock(); 3483 for_each_console_srcu(c) { 3484 if (!c->device) 3485 continue; 3486 driver = c->device(c, index); 3487 if (driver) 3488 break; 3489 } 3490 console_srcu_read_unlock(cookie); 3491 3492 console_unlock(); 3493 return driver; 3494 } 3495 3496 /* 3497 * Prevent further output on the passed console device so that (for example) 3498 * serial drivers can disable console output before suspending a port, and can 3499 * re-enable output afterwards. 3500 */ 3501 void console_stop(struct console *console) 3502 { 3503 __pr_flush(console, 1000, true); 3504 console_list_lock(); 3505 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3506 console_list_unlock(); 3507 3508 /* 3509 * Ensure that all SRCU list walks have completed. All contexts must 3510 * be able to see that this console is disabled so that (for example) 3511 * the caller can suspend the port without risk of another context 3512 * using the port. 3513 */ 3514 synchronize_srcu(&console_srcu); 3515 } 3516 EXPORT_SYMBOL(console_stop); 3517 3518 void console_start(struct console *console) 3519 { 3520 struct console_flush_type ft; 3521 bool is_nbcon; 3522 3523 console_list_lock(); 3524 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3525 is_nbcon = console->flags & CON_NBCON; 3526 console_list_unlock(); 3527 3528 /* 3529 * Ensure that all SRCU list walks have completed. The related 3530 * printing context must be able to see it is enabled so that 3531 * it is guaranteed to wake up and resume printing. 3532 */ 3533 synchronize_srcu(&console_srcu); 3534 3535 printk_get_console_flush_type(&ft); 3536 if (is_nbcon && ft.nbcon_offload) 3537 nbcon_kthread_wake(console); 3538 else if (ft.legacy_offload) 3539 defer_console_output(); 3540 3541 __pr_flush(console, 1000, true); 3542 } 3543 EXPORT_SYMBOL(console_start); 3544 3545 #ifdef CONFIG_PRINTK 3546 static int unregister_console_locked(struct console *console); 3547 3548 /* True when system boot is far enough to create printer threads. */ 3549 static bool printk_kthreads_ready __ro_after_init; 3550 3551 static struct task_struct *printk_legacy_kthread; 3552 3553 static bool legacy_kthread_should_wakeup(void) 3554 { 3555 struct console_flush_type ft; 3556 struct console *con; 3557 bool ret = false; 3558 int cookie; 3559 3560 if (kthread_should_stop()) 3561 return true; 3562 3563 printk_get_console_flush_type(&ft); 3564 3565 cookie = console_srcu_read_lock(); 3566 for_each_console_srcu(con) { 3567 short flags = console_srcu_read_flags(con); 3568 u64 printk_seq; 3569 3570 /* 3571 * The legacy printer thread is only responsible for nbcon 3572 * consoles when the nbcon consoles cannot print via their 3573 * atomic or threaded flushing. 3574 */ 3575 if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload)) 3576 continue; 3577 3578 if (!console_is_usable(con, flags, false)) 3579 continue; 3580 3581 if (flags & CON_NBCON) { 3582 printk_seq = nbcon_seq_read(con); 3583 } else { 3584 /* 3585 * It is safe to read @seq because only this 3586 * thread context updates @seq. 3587 */ 3588 printk_seq = con->seq; 3589 } 3590 3591 if (prb_read_valid(prb, printk_seq, NULL)) { 3592 ret = true; 3593 break; 3594 } 3595 } 3596 console_srcu_read_unlock(cookie); 3597 3598 return ret; 3599 } 3600 3601 static int legacy_kthread_func(void *unused) 3602 { 3603 for (;;) { 3604 wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup()); 3605 3606 if (kthread_should_stop()) 3607 break; 3608 3609 console_lock(); 3610 __console_flush_and_unlock(); 3611 } 3612 3613 return 0; 3614 } 3615 3616 static bool legacy_kthread_create(void) 3617 { 3618 struct task_struct *kt; 3619 3620 lockdep_assert_console_list_lock_held(); 3621 3622 kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy"); 3623 if (WARN_ON(IS_ERR(kt))) { 3624 pr_err("failed to start legacy printing thread\n"); 3625 return false; 3626 } 3627 3628 printk_legacy_kthread = kt; 3629 3630 /* 3631 * It is important that console printing threads are scheduled 3632 * shortly after a printk call and with generous runtime budgets. 3633 */ 3634 sched_set_normal(printk_legacy_kthread, -20); 3635 3636 return true; 3637 } 3638 3639 /** 3640 * printk_kthreads_shutdown - shutdown all threaded printers 3641 * 3642 * On system shutdown all threaded printers are stopped. This allows printk 3643 * to transition back to atomic printing, thus providing a robust mechanism 3644 * for the final shutdown/reboot messages to be output. 3645 */ 3646 static void printk_kthreads_shutdown(void) 3647 { 3648 struct console *con; 3649 3650 console_list_lock(); 3651 if (printk_kthreads_running) { 3652 printk_kthreads_running = false; 3653 3654 for_each_console(con) { 3655 if (con->flags & CON_NBCON) 3656 nbcon_kthread_stop(con); 3657 } 3658 3659 /* 3660 * The threads may have been stopped while printing a 3661 * backlog. Flush any records left over. 3662 */ 3663 nbcon_atomic_flush_pending(); 3664 } 3665 console_list_unlock(); 3666 } 3667 3668 static struct syscore_ops printk_syscore_ops = { 3669 .shutdown = printk_kthreads_shutdown, 3670 }; 3671 3672 /* 3673 * If appropriate, start nbcon kthreads and set @printk_kthreads_running. 3674 * If any kthreads fail to start, those consoles are unregistered. 3675 * 3676 * Must be called under console_list_lock(). 3677 */ 3678 static void printk_kthreads_check_locked(void) 3679 { 3680 struct hlist_node *tmp; 3681 struct console *con; 3682 3683 lockdep_assert_console_list_lock_held(); 3684 3685 if (!printk_kthreads_ready) 3686 return; 3687 3688 if (have_legacy_console || have_boot_console) { 3689 if (!printk_legacy_kthread && 3690 force_legacy_kthread() && 3691 !legacy_kthread_create()) { 3692 /* 3693 * All legacy consoles must be unregistered. If there 3694 * are any nbcon consoles, they will set up their own 3695 * kthread. 3696 */ 3697 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3698 if (con->flags & CON_NBCON) 3699 continue; 3700 3701 unregister_console_locked(con); 3702 } 3703 } 3704 } else if (printk_legacy_kthread) { 3705 kthread_stop(printk_legacy_kthread); 3706 printk_legacy_kthread = NULL; 3707 } 3708 3709 /* 3710 * Printer threads cannot be started as long as any boot console is 3711 * registered because there is no way to synchronize the hardware 3712 * registers between boot console code and regular console code. 3713 * It can only be known that there will be no new boot consoles when 3714 * an nbcon console is registered. 3715 */ 3716 if (have_boot_console || !have_nbcon_console) { 3717 /* Clear flag in case all nbcon consoles unregistered. */ 3718 printk_kthreads_running = false; 3719 return; 3720 } 3721 3722 if (printk_kthreads_running) 3723 return; 3724 3725 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3726 if (!(con->flags & CON_NBCON)) 3727 continue; 3728 3729 if (!nbcon_kthread_create(con)) 3730 unregister_console_locked(con); 3731 } 3732 3733 printk_kthreads_running = true; 3734 } 3735 3736 static int __init printk_set_kthreads_ready(void) 3737 { 3738 register_syscore_ops(&printk_syscore_ops); 3739 3740 console_list_lock(); 3741 printk_kthreads_ready = true; 3742 printk_kthreads_check_locked(); 3743 console_list_unlock(); 3744 3745 return 0; 3746 } 3747 early_initcall(printk_set_kthreads_ready); 3748 #endif /* CONFIG_PRINTK */ 3749 3750 static int __read_mostly keep_bootcon; 3751 3752 static int __init keep_bootcon_setup(char *str) 3753 { 3754 keep_bootcon = 1; 3755 pr_info("debug: skip boot console de-registration.\n"); 3756 3757 return 0; 3758 } 3759 3760 early_param("keep_bootcon", keep_bootcon_setup); 3761 3762 static int console_call_setup(struct console *newcon, char *options) 3763 { 3764 int err; 3765 3766 if (!newcon->setup) 3767 return 0; 3768 3769 /* Synchronize with possible boot console. */ 3770 console_lock(); 3771 err = newcon->setup(newcon, options); 3772 console_unlock(); 3773 3774 return err; 3775 } 3776 3777 /* 3778 * This is called by register_console() to try to match 3779 * the newly registered console with any of the ones selected 3780 * by either the command line or add_preferred_console() and 3781 * setup/enable it. 3782 * 3783 * Care need to be taken with consoles that are statically 3784 * enabled such as netconsole 3785 */ 3786 static int try_enable_preferred_console(struct console *newcon, 3787 bool user_specified) 3788 { 3789 struct console_cmdline *c; 3790 int i, err; 3791 3792 for (i = 0, c = console_cmdline; 3793 i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 3794 i++, c++) { 3795 /* Console not yet initialized? */ 3796 if (!c->name[0]) 3797 continue; 3798 if (c->user_specified != user_specified) 3799 continue; 3800 if (!newcon->match || 3801 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3802 /* default matching */ 3803 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3804 if (strcmp(c->name, newcon->name) != 0) 3805 continue; 3806 if (newcon->index >= 0 && 3807 newcon->index != c->index) 3808 continue; 3809 if (newcon->index < 0) 3810 newcon->index = c->index; 3811 3812 if (_braille_register_console(newcon, c)) 3813 return 0; 3814 3815 err = console_call_setup(newcon, c->options); 3816 if (err) 3817 return err; 3818 } 3819 newcon->flags |= CON_ENABLED; 3820 if (i == preferred_console) 3821 newcon->flags |= CON_CONSDEV; 3822 return 0; 3823 } 3824 3825 /* 3826 * Some consoles, such as pstore and netconsole, can be enabled even 3827 * without matching. Accept the pre-enabled consoles only when match() 3828 * and setup() had a chance to be called. 3829 */ 3830 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3831 return 0; 3832 3833 return -ENOENT; 3834 } 3835 3836 /* Try to enable the console unconditionally */ 3837 static void try_enable_default_console(struct console *newcon) 3838 { 3839 if (newcon->index < 0) 3840 newcon->index = 0; 3841 3842 if (console_call_setup(newcon, NULL) != 0) 3843 return; 3844 3845 newcon->flags |= CON_ENABLED; 3846 3847 if (newcon->device) 3848 newcon->flags |= CON_CONSDEV; 3849 } 3850 3851 /* Return the starting sequence number for a newly registered console. */ 3852 static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered) 3853 { 3854 struct console *con; 3855 bool handover; 3856 u64 init_seq; 3857 3858 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3859 /* Get a consistent copy of @syslog_seq. */ 3860 mutex_lock(&syslog_lock); 3861 init_seq = syslog_seq; 3862 mutex_unlock(&syslog_lock); 3863 } else { 3864 /* Begin with next message added to ringbuffer. */ 3865 init_seq = prb_next_seq(prb); 3866 3867 /* 3868 * If any enabled boot consoles are due to be unregistered 3869 * shortly, some may not be caught up and may be the same 3870 * device as @newcon. Since it is not known which boot console 3871 * is the same device, flush all consoles and, if necessary, 3872 * start with the message of the enabled boot console that is 3873 * the furthest behind. 3874 */ 3875 if (bootcon_registered && !keep_bootcon) { 3876 /* 3877 * Hold the console_lock to stop console printing and 3878 * guarantee safe access to console->seq. 3879 */ 3880 console_lock(); 3881 3882 /* 3883 * Flush all consoles and set the console to start at 3884 * the next unprinted sequence number. 3885 */ 3886 if (!console_flush_all(true, &init_seq, &handover)) { 3887 /* 3888 * Flushing failed. Just choose the lowest 3889 * sequence of the enabled boot consoles. 3890 */ 3891 3892 /* 3893 * If there was a handover, this context no 3894 * longer holds the console_lock. 3895 */ 3896 if (handover) 3897 console_lock(); 3898 3899 init_seq = prb_next_seq(prb); 3900 for_each_console(con) { 3901 u64 seq; 3902 3903 if (!(con->flags & CON_BOOT) || 3904 !(con->flags & CON_ENABLED)) { 3905 continue; 3906 } 3907 3908 if (con->flags & CON_NBCON) 3909 seq = nbcon_seq_read(con); 3910 else 3911 seq = con->seq; 3912 3913 if (seq < init_seq) 3914 init_seq = seq; 3915 } 3916 } 3917 3918 console_unlock(); 3919 } 3920 } 3921 3922 return init_seq; 3923 } 3924 3925 #define console_first() \ 3926 hlist_entry(console_list.first, struct console, node) 3927 3928 static int unregister_console_locked(struct console *console); 3929 3930 /* 3931 * The console driver calls this routine during kernel initialization 3932 * to register the console printing procedure with printk() and to 3933 * print any messages that were printed by the kernel before the 3934 * console driver was initialized. 3935 * 3936 * This can happen pretty early during the boot process (because of 3937 * early_printk) - sometimes before setup_arch() completes - be careful 3938 * of what kernel features are used - they may not be initialised yet. 3939 * 3940 * There are two types of consoles - bootconsoles (early_printk) and 3941 * "real" consoles (everything which is not a bootconsole) which are 3942 * handled differently. 3943 * - Any number of bootconsoles can be registered at any time. 3944 * - As soon as a "real" console is registered, all bootconsoles 3945 * will be unregistered automatically. 3946 * - Once a "real" console is registered, any attempt to register a 3947 * bootconsoles will be rejected 3948 */ 3949 void register_console(struct console *newcon) 3950 { 3951 bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic; 3952 bool bootcon_registered = false; 3953 bool realcon_registered = false; 3954 struct console *con; 3955 unsigned long flags; 3956 u64 init_seq; 3957 int err; 3958 3959 console_list_lock(); 3960 3961 for_each_console(con) { 3962 if (WARN(con == newcon, "console '%s%d' already registered\n", 3963 con->name, con->index)) { 3964 goto unlock; 3965 } 3966 3967 if (con->flags & CON_BOOT) 3968 bootcon_registered = true; 3969 else 3970 realcon_registered = true; 3971 } 3972 3973 /* Do not register boot consoles when there already is a real one. */ 3974 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3975 pr_info("Too late to register bootconsole %s%d\n", 3976 newcon->name, newcon->index); 3977 goto unlock; 3978 } 3979 3980 if (newcon->flags & CON_NBCON) { 3981 /* 3982 * Ensure the nbcon console buffers can be allocated 3983 * before modifying any global data. 3984 */ 3985 if (!nbcon_alloc(newcon)) 3986 goto unlock; 3987 } 3988 3989 /* 3990 * See if we want to enable this console driver by default. 3991 * 3992 * Nope when a console is preferred by the command line, device 3993 * tree, or SPCR. 3994 * 3995 * The first real console with tty binding (driver) wins. More 3996 * consoles might get enabled before the right one is found. 3997 * 3998 * Note that a console with tty binding will have CON_CONSDEV 3999 * flag set and will be first in the list. 4000 */ 4001 if (preferred_console < 0) { 4002 if (hlist_empty(&console_list) || !console_first()->device || 4003 console_first()->flags & CON_BOOT) { 4004 try_enable_default_console(newcon); 4005 } 4006 } 4007 4008 /* See if this console matches one we selected on the command line */ 4009 err = try_enable_preferred_console(newcon, true); 4010 4011 /* If not, try to match against the platform default(s) */ 4012 if (err == -ENOENT) 4013 err = try_enable_preferred_console(newcon, false); 4014 4015 /* printk() messages are not printed to the Braille console. */ 4016 if (err || newcon->flags & CON_BRL) { 4017 if (newcon->flags & CON_NBCON) 4018 nbcon_free(newcon); 4019 goto unlock; 4020 } 4021 4022 /* 4023 * If we have a bootconsole, and are switching to a real console, 4024 * don't print everything out again, since when the boot console, and 4025 * the real console are the same physical device, it's annoying to 4026 * see the beginning boot messages twice 4027 */ 4028 if (bootcon_registered && 4029 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 4030 newcon->flags &= ~CON_PRINTBUFFER; 4031 } 4032 4033 newcon->dropped = 0; 4034 init_seq = get_init_console_seq(newcon, bootcon_registered); 4035 4036 if (newcon->flags & CON_NBCON) { 4037 have_nbcon_console = true; 4038 nbcon_seq_force(newcon, init_seq); 4039 } else { 4040 have_legacy_console = true; 4041 newcon->seq = init_seq; 4042 } 4043 4044 if (newcon->flags & CON_BOOT) 4045 have_boot_console = true; 4046 4047 /* 4048 * If another context is actively using the hardware of this new 4049 * console, it will not be aware of the nbcon synchronization. This 4050 * is a risk that two contexts could access the hardware 4051 * simultaneously if this new console is used for atomic printing 4052 * and the other context is still using the hardware. 4053 * 4054 * Use the driver synchronization to ensure that the hardware is not 4055 * in use while this new console transitions to being registered. 4056 */ 4057 if (use_device_lock) 4058 newcon->device_lock(newcon, &flags); 4059 4060 /* 4061 * Put this console in the list - keep the 4062 * preferred driver at the head of the list. 4063 */ 4064 if (hlist_empty(&console_list)) { 4065 /* Ensure CON_CONSDEV is always set for the head. */ 4066 newcon->flags |= CON_CONSDEV; 4067 hlist_add_head_rcu(&newcon->node, &console_list); 4068 4069 } else if (newcon->flags & CON_CONSDEV) { 4070 /* Only the new head can have CON_CONSDEV set. */ 4071 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 4072 hlist_add_head_rcu(&newcon->node, &console_list); 4073 4074 } else { 4075 hlist_add_behind_rcu(&newcon->node, console_list.first); 4076 } 4077 4078 /* 4079 * No need to synchronize SRCU here! The caller does not rely 4080 * on all contexts being able to see the new console before 4081 * register_console() completes. 4082 */ 4083 4084 /* This new console is now registered. */ 4085 if (use_device_lock) 4086 newcon->device_unlock(newcon, flags); 4087 4088 console_sysfs_notify(); 4089 4090 /* 4091 * By unregistering the bootconsoles after we enable the real console 4092 * we get the "console xxx enabled" message on all the consoles - 4093 * boot consoles, real consoles, etc - this is to ensure that end 4094 * users know there might be something in the kernel's log buffer that 4095 * went to the bootconsole (that they do not see on the real console) 4096 */ 4097 con_printk(KERN_INFO, newcon, "enabled\n"); 4098 if (bootcon_registered && 4099 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 4100 !keep_bootcon) { 4101 struct hlist_node *tmp; 4102 4103 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 4104 if (con->flags & CON_BOOT) 4105 unregister_console_locked(con); 4106 } 4107 } 4108 4109 /* Changed console list, may require printer threads to start/stop. */ 4110 printk_kthreads_check_locked(); 4111 unlock: 4112 console_list_unlock(); 4113 } 4114 EXPORT_SYMBOL(register_console); 4115 4116 /* Must be called under console_list_lock(). */ 4117 static int unregister_console_locked(struct console *console) 4118 { 4119 bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic; 4120 bool found_legacy_con = false; 4121 bool found_nbcon_con = false; 4122 bool found_boot_con = false; 4123 unsigned long flags; 4124 struct console *c; 4125 int res; 4126 4127 lockdep_assert_console_list_lock_held(); 4128 4129 con_printk(KERN_INFO, console, "disabled\n"); 4130 4131 res = _braille_unregister_console(console); 4132 if (res < 0) 4133 return res; 4134 if (res > 0) 4135 return 0; 4136 4137 if (!console_is_registered_locked(console)) 4138 res = -ENODEV; 4139 else if (console_is_usable(console, console->flags, true)) 4140 __pr_flush(console, 1000, true); 4141 4142 /* Disable it unconditionally */ 4143 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 4144 4145 if (res < 0) 4146 return res; 4147 4148 /* 4149 * Use the driver synchronization to ensure that the hardware is not 4150 * in use while this console transitions to being unregistered. 4151 */ 4152 if (use_device_lock) 4153 console->device_lock(console, &flags); 4154 4155 hlist_del_init_rcu(&console->node); 4156 4157 if (use_device_lock) 4158 console->device_unlock(console, flags); 4159 4160 /* 4161 * <HISTORICAL> 4162 * If this isn't the last console and it has CON_CONSDEV set, we 4163 * need to set it on the next preferred console. 4164 * </HISTORICAL> 4165 * 4166 * The above makes no sense as there is no guarantee that the next 4167 * console has any device attached. Oh well.... 4168 */ 4169 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 4170 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 4171 4172 /* 4173 * Ensure that all SRCU list walks have completed. All contexts 4174 * must not be able to see this console in the list so that any 4175 * exit/cleanup routines can be performed safely. 4176 */ 4177 synchronize_srcu(&console_srcu); 4178 4179 if (console->flags & CON_NBCON) 4180 nbcon_free(console); 4181 4182 console_sysfs_notify(); 4183 4184 if (console->exit) 4185 res = console->exit(console); 4186 4187 /* 4188 * With this console gone, the global flags tracking registered 4189 * console types may have changed. Update them. 4190 */ 4191 for_each_console(c) { 4192 if (c->flags & CON_BOOT) 4193 found_boot_con = true; 4194 4195 if (c->flags & CON_NBCON) 4196 found_nbcon_con = true; 4197 else 4198 found_legacy_con = true; 4199 } 4200 if (!found_boot_con) 4201 have_boot_console = found_boot_con; 4202 if (!found_legacy_con) 4203 have_legacy_console = found_legacy_con; 4204 if (!found_nbcon_con) 4205 have_nbcon_console = found_nbcon_con; 4206 4207 /* Changed console list, may require printer threads to start/stop. */ 4208 printk_kthreads_check_locked(); 4209 4210 return res; 4211 } 4212 4213 int unregister_console(struct console *console) 4214 { 4215 int res; 4216 4217 console_list_lock(); 4218 res = unregister_console_locked(console); 4219 console_list_unlock(); 4220 return res; 4221 } 4222 EXPORT_SYMBOL(unregister_console); 4223 4224 /** 4225 * console_force_preferred_locked - force a registered console preferred 4226 * @con: The registered console to force preferred. 4227 * 4228 * Must be called under console_list_lock(). 4229 */ 4230 void console_force_preferred_locked(struct console *con) 4231 { 4232 struct console *cur_pref_con; 4233 4234 if (!console_is_registered_locked(con)) 4235 return; 4236 4237 cur_pref_con = console_first(); 4238 4239 /* Already preferred? */ 4240 if (cur_pref_con == con) 4241 return; 4242 4243 /* 4244 * Delete, but do not re-initialize the entry. This allows the console 4245 * to continue to appear registered (via any hlist_unhashed_lockless() 4246 * checks), even though it was briefly removed from the console list. 4247 */ 4248 hlist_del_rcu(&con->node); 4249 4250 /* 4251 * Ensure that all SRCU list walks have completed so that the console 4252 * can be added to the beginning of the console list and its forward 4253 * list pointer can be re-initialized. 4254 */ 4255 synchronize_srcu(&console_srcu); 4256 4257 con->flags |= CON_CONSDEV; 4258 WARN_ON(!con->device); 4259 4260 /* Only the new head can have CON_CONSDEV set. */ 4261 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 4262 hlist_add_head_rcu(&con->node, &console_list); 4263 } 4264 EXPORT_SYMBOL(console_force_preferred_locked); 4265 4266 /* 4267 * Initialize the console device. This is called *early*, so 4268 * we can't necessarily depend on lots of kernel help here. 4269 * Just do some early initializations, and do the complex setup 4270 * later. 4271 */ 4272 void __init console_init(void) 4273 { 4274 int ret; 4275 initcall_t call; 4276 initcall_entry_t *ce; 4277 4278 /* Setup the default TTY line discipline. */ 4279 n_tty_init(); 4280 4281 /* 4282 * set up the console device so that later boot sequences can 4283 * inform about problems etc.. 4284 */ 4285 ce = __con_initcall_start; 4286 trace_initcall_level("console"); 4287 while (ce < __con_initcall_end) { 4288 call = initcall_from_entry(ce); 4289 trace_initcall_start(call); 4290 ret = call(); 4291 trace_initcall_finish(call, ret); 4292 ce++; 4293 } 4294 } 4295 4296 /* 4297 * Some boot consoles access data that is in the init section and which will 4298 * be discarded after the initcalls have been run. To make sure that no code 4299 * will access this data, unregister the boot consoles in a late initcall. 4300 * 4301 * If for some reason, such as deferred probe or the driver being a loadable 4302 * module, the real console hasn't registered yet at this point, there will 4303 * be a brief interval in which no messages are logged to the console, which 4304 * makes it difficult to diagnose problems that occur during this time. 4305 * 4306 * To mitigate this problem somewhat, only unregister consoles whose memory 4307 * intersects with the init section. Note that all other boot consoles will 4308 * get unregistered when the real preferred console is registered. 4309 */ 4310 static int __init printk_late_init(void) 4311 { 4312 struct hlist_node *tmp; 4313 struct console *con; 4314 int ret; 4315 4316 console_list_lock(); 4317 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 4318 if (!(con->flags & CON_BOOT)) 4319 continue; 4320 4321 /* Check addresses that might be used for enabled consoles. */ 4322 if (init_section_intersects(con, sizeof(*con)) || 4323 init_section_contains(con->write, 0) || 4324 init_section_contains(con->read, 0) || 4325 init_section_contains(con->device, 0) || 4326 init_section_contains(con->unblank, 0) || 4327 init_section_contains(con->data, 0)) { 4328 /* 4329 * Please, consider moving the reported consoles out 4330 * of the init section. 4331 */ 4332 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 4333 con->name, con->index); 4334 unregister_console_locked(con); 4335 } 4336 } 4337 console_list_unlock(); 4338 4339 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 4340 console_cpu_notify); 4341 WARN_ON(ret < 0); 4342 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 4343 console_cpu_notify, NULL); 4344 WARN_ON(ret < 0); 4345 printk_sysctl_init(); 4346 return 0; 4347 } 4348 late_initcall(printk_late_init); 4349 4350 #if defined CONFIG_PRINTK 4351 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 4352 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 4353 { 4354 unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms); 4355 unsigned long remaining_jiffies = timeout_jiffies; 4356 struct console_flush_type ft; 4357 struct console *c; 4358 u64 last_diff = 0; 4359 u64 printk_seq; 4360 short flags; 4361 int cookie; 4362 u64 diff; 4363 u64 seq; 4364 4365 /* Sorry, pr_flush() will not work this early. */ 4366 if (system_state < SYSTEM_SCHEDULING) 4367 return false; 4368 4369 might_sleep(); 4370 4371 seq = prb_next_reserve_seq(prb); 4372 4373 /* Flush the consoles so that records up to @seq are printed. */ 4374 printk_get_console_flush_type(&ft); 4375 if (ft.nbcon_atomic) 4376 nbcon_atomic_flush_pending(); 4377 if (ft.legacy_direct) { 4378 console_lock(); 4379 console_unlock(); 4380 } 4381 4382 for (;;) { 4383 unsigned long begin_jiffies; 4384 unsigned long slept_jiffies; 4385 4386 diff = 0; 4387 4388 /* 4389 * Hold the console_lock to guarantee safe access to 4390 * console->seq. Releasing console_lock flushes more 4391 * records in case @seq is still not printed on all 4392 * usable consoles. 4393 * 4394 * Holding the console_lock is not necessary if there 4395 * are no legacy or boot consoles. However, such a 4396 * console could register at any time. Always hold the 4397 * console_lock as a precaution rather than 4398 * synchronizing against register_console(). 4399 */ 4400 console_lock(); 4401 4402 cookie = console_srcu_read_lock(); 4403 for_each_console_srcu(c) { 4404 if (con && con != c) 4405 continue; 4406 4407 flags = console_srcu_read_flags(c); 4408 4409 /* 4410 * If consoles are not usable, it cannot be expected 4411 * that they make forward progress, so only increment 4412 * @diff for usable consoles. 4413 */ 4414 if (!console_is_usable(c, flags, true) && 4415 !console_is_usable(c, flags, false)) { 4416 continue; 4417 } 4418 4419 if (flags & CON_NBCON) { 4420 printk_seq = nbcon_seq_read(c); 4421 } else { 4422 printk_seq = c->seq; 4423 } 4424 4425 if (printk_seq < seq) 4426 diff += seq - printk_seq; 4427 } 4428 console_srcu_read_unlock(cookie); 4429 4430 if (diff != last_diff && reset_on_progress) 4431 remaining_jiffies = timeout_jiffies; 4432 4433 console_unlock(); 4434 4435 /* Note: @diff is 0 if there are no usable consoles. */ 4436 if (diff == 0 || remaining_jiffies == 0) 4437 break; 4438 4439 /* msleep(1) might sleep much longer. Check time by jiffies. */ 4440 begin_jiffies = jiffies; 4441 msleep(1); 4442 slept_jiffies = jiffies - begin_jiffies; 4443 4444 remaining_jiffies -= min(slept_jiffies, remaining_jiffies); 4445 4446 last_diff = diff; 4447 } 4448 4449 return (diff == 0); 4450 } 4451 4452 /** 4453 * pr_flush() - Wait for printing threads to catch up. 4454 * 4455 * @timeout_ms: The maximum time (in ms) to wait. 4456 * @reset_on_progress: Reset the timeout if forward progress is seen. 4457 * 4458 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 4459 * represents infinite waiting. 4460 * 4461 * If @reset_on_progress is true, the timeout will be reset whenever any 4462 * printer has been seen to make some forward progress. 4463 * 4464 * Context: Process context. May sleep while acquiring console lock. 4465 * Return: true if all usable printers are caught up. 4466 */ 4467 bool pr_flush(int timeout_ms, bool reset_on_progress) 4468 { 4469 return __pr_flush(NULL, timeout_ms, reset_on_progress); 4470 } 4471 4472 /* 4473 * Delayed printk version, for scheduler-internal messages: 4474 */ 4475 #define PRINTK_PENDING_WAKEUP 0x01 4476 #define PRINTK_PENDING_OUTPUT 0x02 4477 4478 static DEFINE_PER_CPU(int, printk_pending); 4479 4480 static void wake_up_klogd_work_func(struct irq_work *irq_work) 4481 { 4482 int pending = this_cpu_xchg(printk_pending, 0); 4483 4484 if (pending & PRINTK_PENDING_OUTPUT) { 4485 if (force_legacy_kthread()) { 4486 if (printk_legacy_kthread) 4487 wake_up_interruptible(&legacy_wait); 4488 } else { 4489 if (console_trylock()) 4490 console_unlock(); 4491 } 4492 } 4493 4494 if (pending & PRINTK_PENDING_WAKEUP) 4495 wake_up_interruptible(&log_wait); 4496 } 4497 4498 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 4499 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 4500 4501 static void __wake_up_klogd(int val) 4502 { 4503 if (!printk_percpu_data_ready()) 4504 return; 4505 4506 preempt_disable(); 4507 /* 4508 * Guarantee any new records can be seen by tasks preparing to wait 4509 * before this context checks if the wait queue is empty. 4510 * 4511 * The full memory barrier within wq_has_sleeper() pairs with the full 4512 * memory barrier within set_current_state() of 4513 * prepare_to_wait_event(), which is called after ___wait_event() adds 4514 * the waiter but before it has checked the wait condition. 4515 * 4516 * This pairs with devkmsg_read:A and syslog_print:A. 4517 */ 4518 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 4519 (val & PRINTK_PENDING_OUTPUT)) { 4520 this_cpu_or(printk_pending, val); 4521 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 4522 } 4523 preempt_enable(); 4524 } 4525 4526 /** 4527 * wake_up_klogd - Wake kernel logging daemon 4528 * 4529 * Use this function when new records have been added to the ringbuffer 4530 * and the console printing of those records has already occurred or is 4531 * known to be handled by some other context. This function will only 4532 * wake the logging daemon. 4533 * 4534 * Context: Any context. 4535 */ 4536 void wake_up_klogd(void) 4537 { 4538 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 4539 } 4540 4541 /** 4542 * defer_console_output - Wake kernel logging daemon and trigger 4543 * console printing in a deferred context 4544 * 4545 * Use this function when new records have been added to the ringbuffer, 4546 * this context is responsible for console printing those records, but 4547 * the current context is not allowed to perform the console printing. 4548 * Trigger an irq_work context to perform the console printing. This 4549 * function also wakes the logging daemon. 4550 * 4551 * Context: Any context. 4552 */ 4553 void defer_console_output(void) 4554 { 4555 /* 4556 * New messages may have been added directly to the ringbuffer 4557 * using vprintk_store(), so wake any waiters as well. 4558 */ 4559 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 4560 } 4561 4562 void printk_trigger_flush(void) 4563 { 4564 defer_console_output(); 4565 } 4566 4567 int vprintk_deferred(const char *fmt, va_list args) 4568 { 4569 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 4570 } 4571 4572 int _printk_deferred(const char *fmt, ...) 4573 { 4574 va_list args; 4575 int r; 4576 4577 va_start(args, fmt); 4578 r = vprintk_deferred(fmt, args); 4579 va_end(args); 4580 4581 return r; 4582 } 4583 4584 /* 4585 * printk rate limiting, lifted from the networking subsystem. 4586 * 4587 * This enforces a rate limit: not more than 10 kernel messages 4588 * every 5s to make a denial-of-service attack impossible. 4589 */ 4590 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 4591 4592 int __printk_ratelimit(const char *func) 4593 { 4594 return ___ratelimit(&printk_ratelimit_state, func); 4595 } 4596 EXPORT_SYMBOL(__printk_ratelimit); 4597 4598 /** 4599 * printk_timed_ratelimit - caller-controlled printk ratelimiting 4600 * @caller_jiffies: pointer to caller's state 4601 * @interval_msecs: minimum interval between prints 4602 * 4603 * printk_timed_ratelimit() returns true if more than @interval_msecs 4604 * milliseconds have elapsed since the last time printk_timed_ratelimit() 4605 * returned true. 4606 */ 4607 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 4608 unsigned int interval_msecs) 4609 { 4610 unsigned long elapsed = jiffies - *caller_jiffies; 4611 4612 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 4613 return false; 4614 4615 *caller_jiffies = jiffies; 4616 return true; 4617 } 4618 EXPORT_SYMBOL(printk_timed_ratelimit); 4619 4620 static DEFINE_SPINLOCK(dump_list_lock); 4621 static LIST_HEAD(dump_list); 4622 4623 /** 4624 * kmsg_dump_register - register a kernel log dumper. 4625 * @dumper: pointer to the kmsg_dumper structure 4626 * 4627 * Adds a kernel log dumper to the system. The dump callback in the 4628 * structure will be called when the kernel oopses or panics and must be 4629 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 4630 */ 4631 int kmsg_dump_register(struct kmsg_dumper *dumper) 4632 { 4633 unsigned long flags; 4634 int err = -EBUSY; 4635 4636 /* The dump callback needs to be set */ 4637 if (!dumper->dump) 4638 return -EINVAL; 4639 4640 spin_lock_irqsave(&dump_list_lock, flags); 4641 /* Don't allow registering multiple times */ 4642 if (!dumper->registered) { 4643 dumper->registered = 1; 4644 list_add_tail_rcu(&dumper->list, &dump_list); 4645 err = 0; 4646 } 4647 spin_unlock_irqrestore(&dump_list_lock, flags); 4648 4649 return err; 4650 } 4651 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4652 4653 /** 4654 * kmsg_dump_unregister - unregister a kmsg dumper. 4655 * @dumper: pointer to the kmsg_dumper structure 4656 * 4657 * Removes a dump device from the system. Returns zero on success and 4658 * %-EINVAL otherwise. 4659 */ 4660 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4661 { 4662 unsigned long flags; 4663 int err = -EINVAL; 4664 4665 spin_lock_irqsave(&dump_list_lock, flags); 4666 if (dumper->registered) { 4667 dumper->registered = 0; 4668 list_del_rcu(&dumper->list); 4669 err = 0; 4670 } 4671 spin_unlock_irqrestore(&dump_list_lock, flags); 4672 synchronize_rcu(); 4673 4674 return err; 4675 } 4676 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4677 4678 static bool always_kmsg_dump; 4679 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4680 4681 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4682 { 4683 switch (reason) { 4684 case KMSG_DUMP_PANIC: 4685 return "Panic"; 4686 case KMSG_DUMP_OOPS: 4687 return "Oops"; 4688 case KMSG_DUMP_EMERG: 4689 return "Emergency"; 4690 case KMSG_DUMP_SHUTDOWN: 4691 return "Shutdown"; 4692 default: 4693 return "Unknown"; 4694 } 4695 } 4696 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4697 4698 /** 4699 * kmsg_dump_desc - dump kernel log to kernel message dumpers. 4700 * @reason: the reason (oops, panic etc) for dumping 4701 * @desc: a short string to describe what caused the panic or oops. Can be NULL 4702 * if no additional description is available. 4703 * 4704 * Call each of the registered dumper's dump() callback, which can 4705 * retrieve the kmsg records with kmsg_dump_get_line() or 4706 * kmsg_dump_get_buffer(). 4707 */ 4708 void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc) 4709 { 4710 struct kmsg_dumper *dumper; 4711 struct kmsg_dump_detail detail = { 4712 .reason = reason, 4713 .description = desc}; 4714 4715 rcu_read_lock(); 4716 list_for_each_entry_rcu(dumper, &dump_list, list) { 4717 enum kmsg_dump_reason max_reason = dumper->max_reason; 4718 4719 /* 4720 * If client has not provided a specific max_reason, default 4721 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4722 */ 4723 if (max_reason == KMSG_DUMP_UNDEF) { 4724 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4725 KMSG_DUMP_OOPS; 4726 } 4727 if (reason > max_reason) 4728 continue; 4729 4730 /* invoke dumper which will iterate over records */ 4731 dumper->dump(dumper, &detail); 4732 } 4733 rcu_read_unlock(); 4734 } 4735 4736 /** 4737 * kmsg_dump_get_line - retrieve one kmsg log line 4738 * @iter: kmsg dump iterator 4739 * @syslog: include the "<4>" prefixes 4740 * @line: buffer to copy the line to 4741 * @size: maximum size of the buffer 4742 * @len: length of line placed into buffer 4743 * 4744 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4745 * record, and copy one record into the provided buffer. 4746 * 4747 * Consecutive calls will return the next available record moving 4748 * towards the end of the buffer with the youngest messages. 4749 * 4750 * A return value of FALSE indicates that there are no more records to 4751 * read. 4752 */ 4753 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4754 char *line, size_t size, size_t *len) 4755 { 4756 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4757 struct printk_info info; 4758 unsigned int line_count; 4759 struct printk_record r; 4760 size_t l = 0; 4761 bool ret = false; 4762 4763 if (iter->cur_seq < min_seq) 4764 iter->cur_seq = min_seq; 4765 4766 prb_rec_init_rd(&r, &info, line, size); 4767 4768 /* Read text or count text lines? */ 4769 if (line) { 4770 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4771 goto out; 4772 l = record_print_text(&r, syslog, printk_time); 4773 } else { 4774 if (!prb_read_valid_info(prb, iter->cur_seq, 4775 &info, &line_count)) { 4776 goto out; 4777 } 4778 l = get_record_print_text_size(&info, line_count, syslog, 4779 printk_time); 4780 4781 } 4782 4783 iter->cur_seq = r.info->seq + 1; 4784 ret = true; 4785 out: 4786 if (len) 4787 *len = l; 4788 return ret; 4789 } 4790 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4791 4792 /** 4793 * kmsg_dump_get_buffer - copy kmsg log lines 4794 * @iter: kmsg dump iterator 4795 * @syslog: include the "<4>" prefixes 4796 * @buf: buffer to copy the line to 4797 * @size: maximum size of the buffer 4798 * @len_out: length of line placed into buffer 4799 * 4800 * Start at the end of the kmsg buffer and fill the provided buffer 4801 * with as many of the *youngest* kmsg records that fit into it. 4802 * If the buffer is large enough, all available kmsg records will be 4803 * copied with a single call. 4804 * 4805 * Consecutive calls will fill the buffer with the next block of 4806 * available older records, not including the earlier retrieved ones. 4807 * 4808 * A return value of FALSE indicates that there are no more records to 4809 * read. 4810 */ 4811 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4812 char *buf, size_t size, size_t *len_out) 4813 { 4814 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4815 struct printk_info info; 4816 struct printk_record r; 4817 u64 seq; 4818 u64 next_seq; 4819 size_t len = 0; 4820 bool ret = false; 4821 bool time = printk_time; 4822 4823 if (!buf || !size) 4824 goto out; 4825 4826 if (iter->cur_seq < min_seq) 4827 iter->cur_seq = min_seq; 4828 4829 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4830 if (info.seq != iter->cur_seq) { 4831 /* messages are gone, move to first available one */ 4832 iter->cur_seq = info.seq; 4833 } 4834 } 4835 4836 /* last entry */ 4837 if (iter->cur_seq >= iter->next_seq) 4838 goto out; 4839 4840 /* 4841 * Find first record that fits, including all following records, 4842 * into the user-provided buffer for this dump. Pass in size-1 4843 * because this function (by way of record_print_text()) will 4844 * not write more than size-1 bytes of text into @buf. 4845 */ 4846 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4847 size - 1, syslog, time); 4848 4849 /* 4850 * Next kmsg_dump_get_buffer() invocation will dump block of 4851 * older records stored right before this one. 4852 */ 4853 next_seq = seq; 4854 4855 prb_rec_init_rd(&r, &info, buf, size); 4856 4857 prb_for_each_record(seq, prb, seq, &r) { 4858 if (r.info->seq >= iter->next_seq) 4859 break; 4860 4861 len += record_print_text(&r, syslog, time); 4862 4863 /* Adjust record to store to remaining buffer space. */ 4864 prb_rec_init_rd(&r, &info, buf + len, size - len); 4865 } 4866 4867 iter->next_seq = next_seq; 4868 ret = true; 4869 out: 4870 if (len_out) 4871 *len_out = len; 4872 return ret; 4873 } 4874 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4875 4876 /** 4877 * kmsg_dump_rewind - reset the iterator 4878 * @iter: kmsg dump iterator 4879 * 4880 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4881 * kmsg_dump_get_buffer() can be called again and used multiple 4882 * times within the same dumper.dump() callback. 4883 */ 4884 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4885 { 4886 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4887 iter->next_seq = prb_next_seq(prb); 4888 } 4889 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4890 4891 /** 4892 * console_try_replay_all - try to replay kernel log on consoles 4893 * 4894 * Try to obtain lock on console subsystem and replay all 4895 * available records in printk buffer on the consoles. 4896 * Does nothing if lock is not obtained. 4897 * 4898 * Context: Any, except for NMI. 4899 */ 4900 void console_try_replay_all(void) 4901 { 4902 struct console_flush_type ft; 4903 4904 printk_get_console_flush_type(&ft); 4905 if (console_trylock()) { 4906 __console_rewind_all(); 4907 if (ft.nbcon_atomic) 4908 nbcon_atomic_flush_pending(); 4909 if (ft.nbcon_offload) 4910 nbcon_kthreads_wake(); 4911 if (ft.legacy_offload) 4912 defer_console_output(); 4913 /* Consoles are flushed as part of console_unlock(). */ 4914 console_unlock(); 4915 } 4916 } 4917 #endif 4918 4919 #ifdef CONFIG_SMP 4920 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4921 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4922 4923 bool is_printk_cpu_sync_owner(void) 4924 { 4925 return (atomic_read(&printk_cpu_sync_owner) == raw_smp_processor_id()); 4926 } 4927 4928 /** 4929 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4930 * spinning lock is not owned by any CPU. 4931 * 4932 * Context: Any context. 4933 */ 4934 void __printk_cpu_sync_wait(void) 4935 { 4936 do { 4937 cpu_relax(); 4938 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4939 } 4940 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4941 4942 /** 4943 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4944 * spinning lock. 4945 * 4946 * If no processor has the lock, the calling processor takes the lock and 4947 * becomes the owner. If the calling processor is already the owner of the 4948 * lock, this function succeeds immediately. 4949 * 4950 * Context: Any context. Expects interrupts to be disabled. 4951 * Return: 1 on success, otherwise 0. 4952 */ 4953 int __printk_cpu_sync_try_get(void) 4954 { 4955 int cpu; 4956 int old; 4957 4958 cpu = smp_processor_id(); 4959 4960 /* 4961 * Guarantee loads and stores from this CPU when it is the lock owner 4962 * are _not_ visible to the previous lock owner. This pairs with 4963 * __printk_cpu_sync_put:B. 4964 * 4965 * Memory barrier involvement: 4966 * 4967 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4968 * then __printk_cpu_sync_put:A can never read from 4969 * __printk_cpu_sync_try_get:B. 4970 * 4971 * Relies on: 4972 * 4973 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4974 * of the previous CPU 4975 * matching 4976 * ACQUIRE from __printk_cpu_sync_try_get:A to 4977 * __printk_cpu_sync_try_get:B of this CPU 4978 */ 4979 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4980 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4981 if (old == -1) { 4982 /* 4983 * This CPU is now the owner and begins loading/storing 4984 * data: LMM(__printk_cpu_sync_try_get:B) 4985 */ 4986 return 1; 4987 4988 } else if (old == cpu) { 4989 /* This CPU is already the owner. */ 4990 atomic_inc(&printk_cpu_sync_nested); 4991 return 1; 4992 } 4993 4994 return 0; 4995 } 4996 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4997 4998 /** 4999 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 5000 * 5001 * The calling processor must be the owner of the lock. 5002 * 5003 * Context: Any context. Expects interrupts to be disabled. 5004 */ 5005 void __printk_cpu_sync_put(void) 5006 { 5007 if (atomic_read(&printk_cpu_sync_nested)) { 5008 atomic_dec(&printk_cpu_sync_nested); 5009 return; 5010 } 5011 5012 /* 5013 * This CPU is finished loading/storing data: 5014 * LMM(__printk_cpu_sync_put:A) 5015 */ 5016 5017 /* 5018 * Guarantee loads and stores from this CPU when it was the 5019 * lock owner are visible to the next lock owner. This pairs 5020 * with __printk_cpu_sync_try_get:A. 5021 * 5022 * Memory barrier involvement: 5023 * 5024 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 5025 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 5026 * 5027 * Relies on: 5028 * 5029 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 5030 * of this CPU 5031 * matching 5032 * ACQUIRE from __printk_cpu_sync_try_get:A to 5033 * __printk_cpu_sync_try_get:B of the next CPU 5034 */ 5035 atomic_set_release(&printk_cpu_sync_owner, 5036 -1); /* LMM(__printk_cpu_sync_put:B) */ 5037 } 5038 EXPORT_SYMBOL(__printk_cpu_sync_put); 5039 #endif /* CONFIG_SMP */ 5040