xref: /linux/kernel/printk/printk.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 	.name = "console_lock"
99 };
100 #endif
101 
102 enum devkmsg_log_bits {
103 	__DEVKMSG_LOG_BIT_ON = 0,
104 	__DEVKMSG_LOG_BIT_OFF,
105 	__DEVKMSG_LOG_BIT_LOCK,
106 };
107 
108 enum devkmsg_log_masks {
109 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
110 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
111 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113 
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT	0
116 
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 
119 static int __control_devkmsg(char *str)
120 {
121 	size_t len;
122 
123 	if (!str)
124 		return -EINVAL;
125 
126 	len = str_has_prefix(str, "on");
127 	if (len) {
128 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 		return len;
130 	}
131 
132 	len = str_has_prefix(str, "off");
133 	if (len) {
134 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 		return len;
136 	}
137 
138 	len = str_has_prefix(str, "ratelimit");
139 	if (len) {
140 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 		return len;
142 	}
143 
144 	return -EINVAL;
145 }
146 
147 static int __init control_devkmsg(char *str)
148 {
149 	if (__control_devkmsg(str) < 0)
150 		return 1;
151 
152 	/*
153 	 * Set sysctl string accordingly:
154 	 */
155 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 		strcpy(devkmsg_log_str, "on");
157 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 		strcpy(devkmsg_log_str, "off");
159 	/* else "ratelimit" which is set by default. */
160 
161 	/*
162 	 * Sysctl cannot change it anymore. The kernel command line setting of
163 	 * this parameter is to force the setting to be permanent throughout the
164 	 * runtime of the system. This is a precation measure against userspace
165 	 * trying to be a smarta** and attempting to change it up on us.
166 	 */
167 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168 
169 	return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172 
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174 
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 			      void *buffer, size_t *lenp, loff_t *ppos)
177 {
178 	char old_str[DEVKMSG_STR_MAX_SIZE];
179 	unsigned int old;
180 	int err;
181 
182 	if (write) {
183 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 			return -EINVAL;
185 
186 		old = devkmsg_log;
187 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 	}
189 
190 	err = proc_dostring(table, write, buffer, lenp, ppos);
191 	if (err)
192 		return err;
193 
194 	if (write) {
195 		err = __control_devkmsg(devkmsg_log_str);
196 
197 		/*
198 		 * Do not accept an unknown string OR a known string with
199 		 * trailing crap...
200 		 */
201 		if (err < 0 || (err + 1 != *lenp)) {
202 
203 			/* ... and restore old setting. */
204 			devkmsg_log = old;
205 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206 
207 			return -EINVAL;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216 
217 /*
218  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219  * macros instead of functions so that _RET_IP_ contains useful information.
220  */
221 #define down_console_sem() do { \
222 	down(&console_sem);\
223 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225 
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 	int lock_failed;
229 	unsigned long flags;
230 
231 	/*
232 	 * Here and in __up_console_sem() we need to be in safe mode,
233 	 * because spindump/WARN/etc from under console ->lock will
234 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 	 */
236 	printk_safe_enter_irqsave(flags);
237 	lock_failed = down_trylock(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 
240 	if (lock_failed)
241 		return 1;
242 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 	return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246 
247 static void __up_console_sem(unsigned long ip)
248 {
249 	unsigned long flags;
250 
251 	mutex_release(&console_lock_dep_map, ip);
252 
253 	printk_safe_enter_irqsave(flags);
254 	up(&console_sem);
255 	printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258 
259 /*
260  * This is used for debugging the mess that is the VT code by
261  * keeping track if we have the console semaphore held. It's
262  * definitely not the perfect debug tool (we don't know if _WE_
263  * hold it and are racing, but it helps tracking those weird code
264  * paths in the console code where we end up in places I want
265  * locked without the console sempahore held).
266  */
267 static int console_locked, console_suspended;
268 
269 /*
270  * If exclusive_console is non-NULL then only this console is to be printed to.
271  */
272 static struct console *exclusive_console;
273 
274 /*
275  *	Array of consoles built from command line options (console=)
276  */
277 
278 #define MAX_CMDLINECONSOLES 8
279 
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281 
282 static int preferred_console = -1;
283 static bool has_preferred_console;
284 int console_set_on_cmdline;
285 EXPORT_SYMBOL(console_set_on_cmdline);
286 
287 /* Flag: console code may call schedule() */
288 static int console_may_schedule;
289 
290 enum con_msg_format_flags {
291 	MSG_FORMAT_DEFAULT	= 0,
292 	MSG_FORMAT_SYSLOG	= (1 << 0),
293 };
294 
295 static int console_msg_format = MSG_FORMAT_DEFAULT;
296 
297 /*
298  * The printk log buffer consists of a sequenced collection of records, each
299  * containing variable length message text. Every record also contains its
300  * own meta-data (@info).
301  *
302  * Every record meta-data carries the timestamp in microseconds, as well as
303  * the standard userspace syslog level and syslog facility. The usual kernel
304  * messages use LOG_KERN; userspace-injected messages always carry a matching
305  * syslog facility, by default LOG_USER. The origin of every message can be
306  * reliably determined that way.
307  *
308  * The human readable log message of a record is available in @text, the
309  * length of the message text in @text_len. The stored message is not
310  * terminated.
311  *
312  * Optionally, a record can carry a dictionary of properties (key/value
313  * pairs), to provide userspace with a machine-readable message context.
314  *
315  * Examples for well-defined, commonly used property names are:
316  *   DEVICE=b12:8               device identifier
317  *                                b12:8         block dev_t
318  *                                c127:3        char dev_t
319  *                                n8            netdev ifindex
320  *                                +sound:card0  subsystem:devname
321  *   SUBSYSTEM=pci              driver-core subsystem name
322  *
323  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
324  * and values are terminated by a '\0' character.
325  *
326  * Example of record values:
327  *   record.text_buf                = "it's a line" (unterminated)
328  *   record.info.seq                = 56
329  *   record.info.ts_nsec            = 36863
330  *   record.info.text_len           = 11
331  *   record.info.facility           = 0 (LOG_KERN)
332  *   record.info.flags              = 0
333  *   record.info.level              = 3 (LOG_ERR)
334  *   record.info.caller_id          = 299 (task 299)
335  *   record.info.dev_info.subsystem = "pci" (terminated)
336  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
337  *
338  * The 'struct printk_info' buffer must never be directly exported to
339  * userspace, it is a kernel-private implementation detail that might
340  * need to be changed in the future, when the requirements change.
341  *
342  * /dev/kmsg exports the structured data in the following line format:
343  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344  *
345  * Users of the export format should ignore possible additional values
346  * separated by ',', and find the message after the ';' character.
347  *
348  * The optional key/value pairs are attached as continuation lines starting
349  * with a space character and terminated by a newline. All possible
350  * non-prinatable characters are escaped in the "\xff" notation.
351  */
352 
353 enum log_flags {
354 	LOG_NEWLINE	= 2,	/* text ended with a newline */
355 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
356 };
357 
358 /*
359  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
360  * within the scheduler's rq lock. It must be released before calling
361  * console_unlock() or anything else that might wake up a process.
362  */
363 DEFINE_RAW_SPINLOCK(logbuf_lock);
364 
365 /*
366  * Helper macros to lock/unlock logbuf_lock and switch between
367  * printk-safe/unsafe modes.
368  */
369 #define logbuf_lock_irq()				\
370 	do {						\
371 		printk_safe_enter_irq();		\
372 		raw_spin_lock(&logbuf_lock);		\
373 	} while (0)
374 
375 #define logbuf_unlock_irq()				\
376 	do {						\
377 		raw_spin_unlock(&logbuf_lock);		\
378 		printk_safe_exit_irq();			\
379 	} while (0)
380 
381 #define logbuf_lock_irqsave(flags)			\
382 	do {						\
383 		printk_safe_enter_irqsave(flags);	\
384 		raw_spin_lock(&logbuf_lock);		\
385 	} while (0)
386 
387 #define logbuf_unlock_irqrestore(flags)		\
388 	do {						\
389 		raw_spin_unlock(&logbuf_lock);		\
390 		printk_safe_exit_irqrestore(flags);	\
391 	} while (0)
392 
393 #ifdef CONFIG_PRINTK
394 DECLARE_WAIT_QUEUE_HEAD(log_wait);
395 /* the next printk record to read by syslog(READ) or /proc/kmsg */
396 static u64 syslog_seq;
397 static size_t syslog_partial;
398 static bool syslog_time;
399 
400 /* the next printk record to write to the console */
401 static u64 console_seq;
402 static u64 exclusive_console_stop_seq;
403 static unsigned long console_dropped;
404 
405 /* the next printk record to read after the last 'clear' command */
406 static u64 clear_seq;
407 
408 #ifdef CONFIG_PRINTK_CALLER
409 #define PREFIX_MAX		48
410 #else
411 #define PREFIX_MAX		32
412 #endif
413 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
414 
415 #define LOG_LEVEL(v)		((v) & 0x07)
416 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
417 
418 /* record buffer */
419 #define LOG_ALIGN __alignof__(unsigned long)
420 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
421 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
422 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
423 static char *log_buf = __log_buf;
424 static u32 log_buf_len = __LOG_BUF_LEN;
425 
426 /*
427  * Define the average message size. This only affects the number of
428  * descriptors that will be available. Underestimating is better than
429  * overestimating (too many available descriptors is better than not enough).
430  */
431 #define PRB_AVGBITS 5	/* 32 character average length */
432 
433 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
434 #error CONFIG_LOG_BUF_SHIFT value too small.
435 #endif
436 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
437 		 PRB_AVGBITS, &__log_buf[0]);
438 
439 static struct printk_ringbuffer printk_rb_dynamic;
440 
441 static struct printk_ringbuffer *prb = &printk_rb_static;
442 
443 /*
444  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
445  * per_cpu_areas are initialised. This variable is set to true when
446  * it's safe to access per-CPU data.
447  */
448 static bool __printk_percpu_data_ready __read_mostly;
449 
450 bool printk_percpu_data_ready(void)
451 {
452 	return __printk_percpu_data_ready;
453 }
454 
455 /* Return log buffer address */
456 char *log_buf_addr_get(void)
457 {
458 	return log_buf;
459 }
460 
461 /* Return log buffer size */
462 u32 log_buf_len_get(void)
463 {
464 	return log_buf_len;
465 }
466 
467 /*
468  * Define how much of the log buffer we could take at maximum. The value
469  * must be greater than two. Note that only half of the buffer is available
470  * when the index points to the middle.
471  */
472 #define MAX_LOG_TAKE_PART 4
473 static const char trunc_msg[] = "<truncated>";
474 
475 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
476 {
477 	/*
478 	 * The message should not take the whole buffer. Otherwise, it might
479 	 * get removed too soon.
480 	 */
481 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
482 
483 	if (*text_len > max_text_len)
484 		*text_len = max_text_len;
485 
486 	/* enable the warning message (if there is room) */
487 	*trunc_msg_len = strlen(trunc_msg);
488 	if (*text_len >= *trunc_msg_len)
489 		*text_len -= *trunc_msg_len;
490 	else
491 		*trunc_msg_len = 0;
492 }
493 
494 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
495 
496 static int syslog_action_restricted(int type)
497 {
498 	if (dmesg_restrict)
499 		return 1;
500 	/*
501 	 * Unless restricted, we allow "read all" and "get buffer size"
502 	 * for everybody.
503 	 */
504 	return type != SYSLOG_ACTION_READ_ALL &&
505 	       type != SYSLOG_ACTION_SIZE_BUFFER;
506 }
507 
508 static int check_syslog_permissions(int type, int source)
509 {
510 	/*
511 	 * If this is from /proc/kmsg and we've already opened it, then we've
512 	 * already done the capabilities checks at open time.
513 	 */
514 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
515 		goto ok;
516 
517 	if (syslog_action_restricted(type)) {
518 		if (capable(CAP_SYSLOG))
519 			goto ok;
520 		/*
521 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
522 		 * a warning.
523 		 */
524 		if (capable(CAP_SYS_ADMIN)) {
525 			pr_warn_once("%s (%d): Attempt to access syslog with "
526 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
527 				     "(deprecated).\n",
528 				 current->comm, task_pid_nr(current));
529 			goto ok;
530 		}
531 		return -EPERM;
532 	}
533 ok:
534 	return security_syslog(type);
535 }
536 
537 static void append_char(char **pp, char *e, char c)
538 {
539 	if (*pp < e)
540 		*(*pp)++ = c;
541 }
542 
543 static ssize_t info_print_ext_header(char *buf, size_t size,
544 				     struct printk_info *info)
545 {
546 	u64 ts_usec = info->ts_nsec;
547 	char caller[20];
548 #ifdef CONFIG_PRINTK_CALLER
549 	u32 id = info->caller_id;
550 
551 	snprintf(caller, sizeof(caller), ",caller=%c%u",
552 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
553 #else
554 	caller[0] = '\0';
555 #endif
556 
557 	do_div(ts_usec, 1000);
558 
559 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
560 			 (info->facility << 3) | info->level, info->seq,
561 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
562 }
563 
564 static ssize_t msg_add_ext_text(char *buf, size_t size,
565 				const char *text, size_t text_len,
566 				unsigned char endc)
567 {
568 	char *p = buf, *e = buf + size;
569 	size_t i;
570 
571 	/* escape non-printable characters */
572 	for (i = 0; i < text_len; i++) {
573 		unsigned char c = text[i];
574 
575 		if (c < ' ' || c >= 127 || c == '\\')
576 			p += scnprintf(p, e - p, "\\x%02x", c);
577 		else
578 			append_char(&p, e, c);
579 	}
580 	append_char(&p, e, endc);
581 
582 	return p - buf;
583 }
584 
585 static ssize_t msg_add_dict_text(char *buf, size_t size,
586 				 const char *key, const char *val)
587 {
588 	size_t val_len = strlen(val);
589 	ssize_t len;
590 
591 	if (!val_len)
592 		return 0;
593 
594 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
595 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
596 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
597 
598 	return len;
599 }
600 
601 static ssize_t msg_print_ext_body(char *buf, size_t size,
602 				  char *text, size_t text_len,
603 				  struct dev_printk_info *dev_info)
604 {
605 	ssize_t len;
606 
607 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
608 
609 	if (!dev_info)
610 		goto out;
611 
612 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
613 				 dev_info->subsystem);
614 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
615 				 dev_info->device);
616 out:
617 	return len;
618 }
619 
620 /* /dev/kmsg - userspace message inject/listen interface */
621 struct devkmsg_user {
622 	u64 seq;
623 	struct ratelimit_state rs;
624 	struct mutex lock;
625 	char buf[CONSOLE_EXT_LOG_MAX];
626 
627 	struct printk_info info;
628 	char text_buf[CONSOLE_EXT_LOG_MAX];
629 	struct printk_record record;
630 };
631 
632 static __printf(3, 4) __cold
633 int devkmsg_emit(int facility, int level, const char *fmt, ...)
634 {
635 	va_list args;
636 	int r;
637 
638 	va_start(args, fmt);
639 	r = vprintk_emit(facility, level, NULL, fmt, args);
640 	va_end(args);
641 
642 	return r;
643 }
644 
645 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
646 {
647 	char *buf, *line;
648 	int level = default_message_loglevel;
649 	int facility = 1;	/* LOG_USER */
650 	struct file *file = iocb->ki_filp;
651 	struct devkmsg_user *user = file->private_data;
652 	size_t len = iov_iter_count(from);
653 	ssize_t ret = len;
654 
655 	if (!user || len > LOG_LINE_MAX)
656 		return -EINVAL;
657 
658 	/* Ignore when user logging is disabled. */
659 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
660 		return len;
661 
662 	/* Ratelimit when not explicitly enabled. */
663 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
664 		if (!___ratelimit(&user->rs, current->comm))
665 			return ret;
666 	}
667 
668 	buf = kmalloc(len+1, GFP_KERNEL);
669 	if (buf == NULL)
670 		return -ENOMEM;
671 
672 	buf[len] = '\0';
673 	if (!copy_from_iter_full(buf, len, from)) {
674 		kfree(buf);
675 		return -EFAULT;
676 	}
677 
678 	/*
679 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
680 	 * the decimal value represents 32bit, the lower 3 bit are the log
681 	 * level, the rest are the log facility.
682 	 *
683 	 * If no prefix or no userspace facility is specified, we
684 	 * enforce LOG_USER, to be able to reliably distinguish
685 	 * kernel-generated messages from userspace-injected ones.
686 	 */
687 	line = buf;
688 	if (line[0] == '<') {
689 		char *endp = NULL;
690 		unsigned int u;
691 
692 		u = simple_strtoul(line + 1, &endp, 10);
693 		if (endp && endp[0] == '>') {
694 			level = LOG_LEVEL(u);
695 			if (LOG_FACILITY(u) != 0)
696 				facility = LOG_FACILITY(u);
697 			endp++;
698 			line = endp;
699 		}
700 	}
701 
702 	devkmsg_emit(facility, level, "%s", line);
703 	kfree(buf);
704 	return ret;
705 }
706 
707 static ssize_t devkmsg_read(struct file *file, char __user *buf,
708 			    size_t count, loff_t *ppos)
709 {
710 	struct devkmsg_user *user = file->private_data;
711 	struct printk_record *r = &user->record;
712 	size_t len;
713 	ssize_t ret;
714 
715 	if (!user)
716 		return -EBADF;
717 
718 	ret = mutex_lock_interruptible(&user->lock);
719 	if (ret)
720 		return ret;
721 
722 	logbuf_lock_irq();
723 	if (!prb_read_valid(prb, user->seq, r)) {
724 		if (file->f_flags & O_NONBLOCK) {
725 			ret = -EAGAIN;
726 			logbuf_unlock_irq();
727 			goto out;
728 		}
729 
730 		logbuf_unlock_irq();
731 		ret = wait_event_interruptible(log_wait,
732 					prb_read_valid(prb, user->seq, r));
733 		if (ret)
734 			goto out;
735 		logbuf_lock_irq();
736 	}
737 
738 	if (r->info->seq != user->seq) {
739 		/* our last seen message is gone, return error and reset */
740 		user->seq = r->info->seq;
741 		ret = -EPIPE;
742 		logbuf_unlock_irq();
743 		goto out;
744 	}
745 
746 	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
747 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
748 				  &r->text_buf[0], r->info->text_len,
749 				  &r->info->dev_info);
750 
751 	user->seq = r->info->seq + 1;
752 	logbuf_unlock_irq();
753 
754 	if (len > count) {
755 		ret = -EINVAL;
756 		goto out;
757 	}
758 
759 	if (copy_to_user(buf, user->buf, len)) {
760 		ret = -EFAULT;
761 		goto out;
762 	}
763 	ret = len;
764 out:
765 	mutex_unlock(&user->lock);
766 	return ret;
767 }
768 
769 /*
770  * Be careful when modifying this function!!!
771  *
772  * Only few operations are supported because the device works only with the
773  * entire variable length messages (records). Non-standard values are
774  * returned in the other cases and has been this way for quite some time.
775  * User space applications might depend on this behavior.
776  */
777 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
778 {
779 	struct devkmsg_user *user = file->private_data;
780 	loff_t ret = 0;
781 
782 	if (!user)
783 		return -EBADF;
784 	if (offset)
785 		return -ESPIPE;
786 
787 	logbuf_lock_irq();
788 	switch (whence) {
789 	case SEEK_SET:
790 		/* the first record */
791 		user->seq = prb_first_valid_seq(prb);
792 		break;
793 	case SEEK_DATA:
794 		/*
795 		 * The first record after the last SYSLOG_ACTION_CLEAR,
796 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
797 		 * changes no global state, and does not clear anything.
798 		 */
799 		user->seq = clear_seq;
800 		break;
801 	case SEEK_END:
802 		/* after the last record */
803 		user->seq = prb_next_seq(prb);
804 		break;
805 	default:
806 		ret = -EINVAL;
807 	}
808 	logbuf_unlock_irq();
809 	return ret;
810 }
811 
812 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
813 {
814 	struct devkmsg_user *user = file->private_data;
815 	struct printk_info info;
816 	__poll_t ret = 0;
817 
818 	if (!user)
819 		return EPOLLERR|EPOLLNVAL;
820 
821 	poll_wait(file, &log_wait, wait);
822 
823 	logbuf_lock_irq();
824 	if (prb_read_valid_info(prb, user->seq, &info, NULL)) {
825 		/* return error when data has vanished underneath us */
826 		if (info.seq != user->seq)
827 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
828 		else
829 			ret = EPOLLIN|EPOLLRDNORM;
830 	}
831 	logbuf_unlock_irq();
832 
833 	return ret;
834 }
835 
836 static int devkmsg_open(struct inode *inode, struct file *file)
837 {
838 	struct devkmsg_user *user;
839 	int err;
840 
841 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
842 		return -EPERM;
843 
844 	/* write-only does not need any file context */
845 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
846 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
847 					       SYSLOG_FROM_READER);
848 		if (err)
849 			return err;
850 	}
851 
852 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
853 	if (!user)
854 		return -ENOMEM;
855 
856 	ratelimit_default_init(&user->rs);
857 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
858 
859 	mutex_init(&user->lock);
860 
861 	prb_rec_init_rd(&user->record, &user->info,
862 			&user->text_buf[0], sizeof(user->text_buf));
863 
864 	logbuf_lock_irq();
865 	user->seq = prb_first_valid_seq(prb);
866 	logbuf_unlock_irq();
867 
868 	file->private_data = user;
869 	return 0;
870 }
871 
872 static int devkmsg_release(struct inode *inode, struct file *file)
873 {
874 	struct devkmsg_user *user = file->private_data;
875 
876 	if (!user)
877 		return 0;
878 
879 	ratelimit_state_exit(&user->rs);
880 
881 	mutex_destroy(&user->lock);
882 	kfree(user);
883 	return 0;
884 }
885 
886 const struct file_operations kmsg_fops = {
887 	.open = devkmsg_open,
888 	.read = devkmsg_read,
889 	.write_iter = devkmsg_write,
890 	.llseek = devkmsg_llseek,
891 	.poll = devkmsg_poll,
892 	.release = devkmsg_release,
893 };
894 
895 #ifdef CONFIG_CRASH_CORE
896 /*
897  * This appends the listed symbols to /proc/vmcore
898  *
899  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
900  * obtain access to symbols that are otherwise very difficult to locate.  These
901  * symbols are specifically used so that utilities can access and extract the
902  * dmesg log from a vmcore file after a crash.
903  */
904 void log_buf_vmcoreinfo_setup(void)
905 {
906 	struct dev_printk_info *dev_info = NULL;
907 
908 	VMCOREINFO_SYMBOL(prb);
909 	VMCOREINFO_SYMBOL(printk_rb_static);
910 	VMCOREINFO_SYMBOL(clear_seq);
911 
912 	/*
913 	 * Export struct size and field offsets. User space tools can
914 	 * parse it and detect any changes to structure down the line.
915 	 */
916 
917 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
918 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
919 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
920 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
921 
922 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
923 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
924 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
925 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
926 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
927 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
928 
929 	VMCOREINFO_STRUCT_SIZE(prb_desc);
930 	VMCOREINFO_OFFSET(prb_desc, state_var);
931 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
932 
933 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
934 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
935 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
936 
937 	VMCOREINFO_STRUCT_SIZE(printk_info);
938 	VMCOREINFO_OFFSET(printk_info, seq);
939 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
940 	VMCOREINFO_OFFSET(printk_info, text_len);
941 	VMCOREINFO_OFFSET(printk_info, caller_id);
942 	VMCOREINFO_OFFSET(printk_info, dev_info);
943 
944 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
945 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
946 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
947 	VMCOREINFO_OFFSET(dev_printk_info, device);
948 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
949 
950 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
951 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
952 	VMCOREINFO_OFFSET(prb_data_ring, data);
953 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
954 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
955 
956 	VMCOREINFO_SIZE(atomic_long_t);
957 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
958 }
959 #endif
960 
961 /* requested log_buf_len from kernel cmdline */
962 static unsigned long __initdata new_log_buf_len;
963 
964 /* we practice scaling the ring buffer by powers of 2 */
965 static void __init log_buf_len_update(u64 size)
966 {
967 	if (size > (u64)LOG_BUF_LEN_MAX) {
968 		size = (u64)LOG_BUF_LEN_MAX;
969 		pr_err("log_buf over 2G is not supported.\n");
970 	}
971 
972 	if (size)
973 		size = roundup_pow_of_two(size);
974 	if (size > log_buf_len)
975 		new_log_buf_len = (unsigned long)size;
976 }
977 
978 /* save requested log_buf_len since it's too early to process it */
979 static int __init log_buf_len_setup(char *str)
980 {
981 	u64 size;
982 
983 	if (!str)
984 		return -EINVAL;
985 
986 	size = memparse(str, &str);
987 
988 	log_buf_len_update(size);
989 
990 	return 0;
991 }
992 early_param("log_buf_len", log_buf_len_setup);
993 
994 #ifdef CONFIG_SMP
995 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
996 
997 static void __init log_buf_add_cpu(void)
998 {
999 	unsigned int cpu_extra;
1000 
1001 	/*
1002 	 * archs should set up cpu_possible_bits properly with
1003 	 * set_cpu_possible() after setup_arch() but just in
1004 	 * case lets ensure this is valid.
1005 	 */
1006 	if (num_possible_cpus() == 1)
1007 		return;
1008 
1009 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1010 
1011 	/* by default this will only continue through for large > 64 CPUs */
1012 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1013 		return;
1014 
1015 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1016 		__LOG_CPU_MAX_BUF_LEN);
1017 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1018 		cpu_extra);
1019 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1020 
1021 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1022 }
1023 #else /* !CONFIG_SMP */
1024 static inline void log_buf_add_cpu(void) {}
1025 #endif /* CONFIG_SMP */
1026 
1027 static void __init set_percpu_data_ready(void)
1028 {
1029 	printk_safe_init();
1030 	/* Make sure we set this flag only after printk_safe() init is done */
1031 	barrier();
1032 	__printk_percpu_data_ready = true;
1033 }
1034 
1035 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1036 				     struct printk_record *r)
1037 {
1038 	struct prb_reserved_entry e;
1039 	struct printk_record dest_r;
1040 
1041 	prb_rec_init_wr(&dest_r, r->info->text_len);
1042 
1043 	if (!prb_reserve(&e, rb, &dest_r))
1044 		return 0;
1045 
1046 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1047 	dest_r.info->text_len = r->info->text_len;
1048 	dest_r.info->facility = r->info->facility;
1049 	dest_r.info->level = r->info->level;
1050 	dest_r.info->flags = r->info->flags;
1051 	dest_r.info->ts_nsec = r->info->ts_nsec;
1052 	dest_r.info->caller_id = r->info->caller_id;
1053 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1054 
1055 	prb_final_commit(&e);
1056 
1057 	return prb_record_text_space(&e);
1058 }
1059 
1060 static char setup_text_buf[LOG_LINE_MAX] __initdata;
1061 
1062 void __init setup_log_buf(int early)
1063 {
1064 	struct printk_info *new_infos;
1065 	unsigned int new_descs_count;
1066 	struct prb_desc *new_descs;
1067 	struct printk_info info;
1068 	struct printk_record r;
1069 	size_t new_descs_size;
1070 	size_t new_infos_size;
1071 	unsigned long flags;
1072 	char *new_log_buf;
1073 	unsigned int free;
1074 	u64 seq;
1075 
1076 	/*
1077 	 * Some archs call setup_log_buf() multiple times - first is very
1078 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1079 	 * are initialised.
1080 	 */
1081 	if (!early)
1082 		set_percpu_data_ready();
1083 
1084 	if (log_buf != __log_buf)
1085 		return;
1086 
1087 	if (!early && !new_log_buf_len)
1088 		log_buf_add_cpu();
1089 
1090 	if (!new_log_buf_len)
1091 		return;
1092 
1093 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1094 	if (new_descs_count == 0) {
1095 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1096 		return;
1097 	}
1098 
1099 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1100 	if (unlikely(!new_log_buf)) {
1101 		pr_err("log_buf_len: %lu text bytes not available\n",
1102 		       new_log_buf_len);
1103 		return;
1104 	}
1105 
1106 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1107 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1108 	if (unlikely(!new_descs)) {
1109 		pr_err("log_buf_len: %zu desc bytes not available\n",
1110 		       new_descs_size);
1111 		goto err_free_log_buf;
1112 	}
1113 
1114 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1115 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1116 	if (unlikely(!new_infos)) {
1117 		pr_err("log_buf_len: %zu info bytes not available\n",
1118 		       new_infos_size);
1119 		goto err_free_descs;
1120 	}
1121 
1122 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1123 
1124 	prb_init(&printk_rb_dynamic,
1125 		 new_log_buf, ilog2(new_log_buf_len),
1126 		 new_descs, ilog2(new_descs_count),
1127 		 new_infos);
1128 
1129 	printk_safe_enter_irqsave(flags);
1130 
1131 	log_buf_len = new_log_buf_len;
1132 	log_buf = new_log_buf;
1133 	new_log_buf_len = 0;
1134 
1135 	free = __LOG_BUF_LEN;
1136 	prb_for_each_record(0, &printk_rb_static, seq, &r)
1137 		free -= add_to_rb(&printk_rb_dynamic, &r);
1138 
1139 	/*
1140 	 * This is early enough that everything is still running on the
1141 	 * boot CPU and interrupts are disabled. So no new messages will
1142 	 * appear during the transition to the dynamic buffer.
1143 	 */
1144 	prb = &printk_rb_dynamic;
1145 
1146 	printk_safe_exit_irqrestore(flags);
1147 
1148 	if (seq != prb_next_seq(&printk_rb_static)) {
1149 		pr_err("dropped %llu messages\n",
1150 		       prb_next_seq(&printk_rb_static) - seq);
1151 	}
1152 
1153 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1154 	pr_info("early log buf free: %u(%u%%)\n",
1155 		free, (free * 100) / __LOG_BUF_LEN);
1156 	return;
1157 
1158 err_free_descs:
1159 	memblock_free(__pa(new_descs), new_descs_size);
1160 err_free_log_buf:
1161 	memblock_free(__pa(new_log_buf), new_log_buf_len);
1162 }
1163 
1164 static bool __read_mostly ignore_loglevel;
1165 
1166 static int __init ignore_loglevel_setup(char *str)
1167 {
1168 	ignore_loglevel = true;
1169 	pr_info("debug: ignoring loglevel setting.\n");
1170 
1171 	return 0;
1172 }
1173 
1174 early_param("ignore_loglevel", ignore_loglevel_setup);
1175 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1176 MODULE_PARM_DESC(ignore_loglevel,
1177 		 "ignore loglevel setting (prints all kernel messages to the console)");
1178 
1179 static bool suppress_message_printing(int level)
1180 {
1181 	return (level >= console_loglevel && !ignore_loglevel);
1182 }
1183 
1184 #ifdef CONFIG_BOOT_PRINTK_DELAY
1185 
1186 static int boot_delay; /* msecs delay after each printk during bootup */
1187 static unsigned long long loops_per_msec;	/* based on boot_delay */
1188 
1189 static int __init boot_delay_setup(char *str)
1190 {
1191 	unsigned long lpj;
1192 
1193 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1194 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1195 
1196 	get_option(&str, &boot_delay);
1197 	if (boot_delay > 10 * 1000)
1198 		boot_delay = 0;
1199 
1200 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1201 		"HZ: %d, loops_per_msec: %llu\n",
1202 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1203 	return 0;
1204 }
1205 early_param("boot_delay", boot_delay_setup);
1206 
1207 static void boot_delay_msec(int level)
1208 {
1209 	unsigned long long k;
1210 	unsigned long timeout;
1211 
1212 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1213 		|| suppress_message_printing(level)) {
1214 		return;
1215 	}
1216 
1217 	k = (unsigned long long)loops_per_msec * boot_delay;
1218 
1219 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1220 	while (k) {
1221 		k--;
1222 		cpu_relax();
1223 		/*
1224 		 * use (volatile) jiffies to prevent
1225 		 * compiler reduction; loop termination via jiffies
1226 		 * is secondary and may or may not happen.
1227 		 */
1228 		if (time_after(jiffies, timeout))
1229 			break;
1230 		touch_nmi_watchdog();
1231 	}
1232 }
1233 #else
1234 static inline void boot_delay_msec(int level)
1235 {
1236 }
1237 #endif
1238 
1239 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1240 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1241 
1242 static size_t print_syslog(unsigned int level, char *buf)
1243 {
1244 	return sprintf(buf, "<%u>", level);
1245 }
1246 
1247 static size_t print_time(u64 ts, char *buf)
1248 {
1249 	unsigned long rem_nsec = do_div(ts, 1000000000);
1250 
1251 	return sprintf(buf, "[%5lu.%06lu]",
1252 		       (unsigned long)ts, rem_nsec / 1000);
1253 }
1254 
1255 #ifdef CONFIG_PRINTK_CALLER
1256 static size_t print_caller(u32 id, char *buf)
1257 {
1258 	char caller[12];
1259 
1260 	snprintf(caller, sizeof(caller), "%c%u",
1261 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1262 	return sprintf(buf, "[%6s]", caller);
1263 }
1264 #else
1265 #define print_caller(id, buf) 0
1266 #endif
1267 
1268 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1269 				bool time, char *buf)
1270 {
1271 	size_t len = 0;
1272 
1273 	if (syslog)
1274 		len = print_syslog((info->facility << 3) | info->level, buf);
1275 
1276 	if (time)
1277 		len += print_time(info->ts_nsec, buf + len);
1278 
1279 	len += print_caller(info->caller_id, buf + len);
1280 
1281 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1282 		buf[len++] = ' ';
1283 		buf[len] = '\0';
1284 	}
1285 
1286 	return len;
1287 }
1288 
1289 /*
1290  * Prepare the record for printing. The text is shifted within the given
1291  * buffer to avoid a need for another one. The following operations are
1292  * done:
1293  *
1294  *   - Add prefix for each line.
1295  *   - Drop truncated lines that no longer fit into the buffer.
1296  *   - Add the trailing newline that has been removed in vprintk_store().
1297  *   - Add a string terminator.
1298  *
1299  * Since the produced string is always terminated, the maximum possible
1300  * return value is @r->text_buf_size - 1;
1301  *
1302  * Return: The length of the updated/prepared text, including the added
1303  * prefixes and the newline. The terminator is not counted. The dropped
1304  * line(s) are not counted.
1305  */
1306 static size_t record_print_text(struct printk_record *r, bool syslog,
1307 				bool time)
1308 {
1309 	size_t text_len = r->info->text_len;
1310 	size_t buf_size = r->text_buf_size;
1311 	char *text = r->text_buf;
1312 	char prefix[PREFIX_MAX];
1313 	bool truncated = false;
1314 	size_t prefix_len;
1315 	size_t line_len;
1316 	size_t len = 0;
1317 	char *next;
1318 
1319 	/*
1320 	 * If the message was truncated because the buffer was not large
1321 	 * enough, treat the available text as if it were the full text.
1322 	 */
1323 	if (text_len > buf_size)
1324 		text_len = buf_size;
1325 
1326 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1327 
1328 	/*
1329 	 * @text_len: bytes of unprocessed text
1330 	 * @line_len: bytes of current line _without_ newline
1331 	 * @text:     pointer to beginning of current line
1332 	 * @len:      number of bytes prepared in r->text_buf
1333 	 */
1334 	for (;;) {
1335 		next = memchr(text, '\n', text_len);
1336 		if (next) {
1337 			line_len = next - text;
1338 		} else {
1339 			/* Drop truncated line(s). */
1340 			if (truncated)
1341 				break;
1342 			line_len = text_len;
1343 		}
1344 
1345 		/*
1346 		 * Truncate the text if there is not enough space to add the
1347 		 * prefix and a trailing newline and a terminator.
1348 		 */
1349 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1350 			/* Drop even the current line if no space. */
1351 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1352 				break;
1353 
1354 			text_len = buf_size - len - prefix_len - 1 - 1;
1355 			truncated = true;
1356 		}
1357 
1358 		memmove(text + prefix_len, text, text_len);
1359 		memcpy(text, prefix, prefix_len);
1360 
1361 		/*
1362 		 * Increment the prepared length to include the text and
1363 		 * prefix that were just moved+copied. Also increment for the
1364 		 * newline at the end of this line. If this is the last line,
1365 		 * there is no newline, but it will be added immediately below.
1366 		 */
1367 		len += prefix_len + line_len + 1;
1368 		if (text_len == line_len) {
1369 			/*
1370 			 * This is the last line. Add the trailing newline
1371 			 * removed in vprintk_store().
1372 			 */
1373 			text[prefix_len + line_len] = '\n';
1374 			break;
1375 		}
1376 
1377 		/*
1378 		 * Advance beyond the added prefix and the related line with
1379 		 * its newline.
1380 		 */
1381 		text += prefix_len + line_len + 1;
1382 
1383 		/*
1384 		 * The remaining text has only decreased by the line with its
1385 		 * newline.
1386 		 *
1387 		 * Note that @text_len can become zero. It happens when @text
1388 		 * ended with a newline (either due to truncation or the
1389 		 * original string ending with "\n\n"). The loop is correctly
1390 		 * repeated and (if not truncated) an empty line with a prefix
1391 		 * will be prepared.
1392 		 */
1393 		text_len -= line_len + 1;
1394 	}
1395 
1396 	/*
1397 	 * If a buffer was provided, it will be terminated. Space for the
1398 	 * string terminator is guaranteed to be available. The terminator is
1399 	 * not counted in the return value.
1400 	 */
1401 	if (buf_size > 0)
1402 		r->text_buf[len] = 0;
1403 
1404 	return len;
1405 }
1406 
1407 static size_t get_record_print_text_size(struct printk_info *info,
1408 					 unsigned int line_count,
1409 					 bool syslog, bool time)
1410 {
1411 	char prefix[PREFIX_MAX];
1412 	size_t prefix_len;
1413 
1414 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1415 
1416 	/*
1417 	 * Each line will be preceded with a prefix. The intermediate
1418 	 * newlines are already within the text, but a final trailing
1419 	 * newline will be added.
1420 	 */
1421 	return ((prefix_len * line_count) + info->text_len + 1);
1422 }
1423 
1424 static int syslog_print(char __user *buf, int size)
1425 {
1426 	struct printk_info info;
1427 	struct printk_record r;
1428 	char *text;
1429 	int len = 0;
1430 
1431 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1432 	if (!text)
1433 		return -ENOMEM;
1434 
1435 	prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX);
1436 
1437 	while (size > 0) {
1438 		size_t n;
1439 		size_t skip;
1440 
1441 		logbuf_lock_irq();
1442 		if (!prb_read_valid(prb, syslog_seq, &r)) {
1443 			logbuf_unlock_irq();
1444 			break;
1445 		}
1446 		if (r.info->seq != syslog_seq) {
1447 			/* message is gone, move to next valid one */
1448 			syslog_seq = r.info->seq;
1449 			syslog_partial = 0;
1450 		}
1451 
1452 		/*
1453 		 * To keep reading/counting partial line consistent,
1454 		 * use printk_time value as of the beginning of a line.
1455 		 */
1456 		if (!syslog_partial)
1457 			syslog_time = printk_time;
1458 
1459 		skip = syslog_partial;
1460 		n = record_print_text(&r, true, syslog_time);
1461 		if (n - syslog_partial <= size) {
1462 			/* message fits into buffer, move forward */
1463 			syslog_seq = r.info->seq + 1;
1464 			n -= syslog_partial;
1465 			syslog_partial = 0;
1466 		} else if (!len){
1467 			/* partial read(), remember position */
1468 			n = size;
1469 			syslog_partial += n;
1470 		} else
1471 			n = 0;
1472 		logbuf_unlock_irq();
1473 
1474 		if (!n)
1475 			break;
1476 
1477 		if (copy_to_user(buf, text + skip, n)) {
1478 			if (!len)
1479 				len = -EFAULT;
1480 			break;
1481 		}
1482 
1483 		len += n;
1484 		size -= n;
1485 		buf += n;
1486 	}
1487 
1488 	kfree(text);
1489 	return len;
1490 }
1491 
1492 static int syslog_print_all(char __user *buf, int size, bool clear)
1493 {
1494 	struct printk_info info;
1495 	unsigned int line_count;
1496 	struct printk_record r;
1497 	char *text;
1498 	int len = 0;
1499 	u64 seq;
1500 	bool time;
1501 
1502 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1503 	if (!text)
1504 		return -ENOMEM;
1505 
1506 	time = printk_time;
1507 	logbuf_lock_irq();
1508 	/*
1509 	 * Find first record that fits, including all following records,
1510 	 * into the user-provided buffer for this dump.
1511 	 */
1512 	prb_for_each_info(clear_seq, prb, seq, &info, &line_count)
1513 		len += get_record_print_text_size(&info, line_count, true, time);
1514 
1515 	/* move first record forward until length fits into the buffer */
1516 	prb_for_each_info(clear_seq, prb, seq, &info, &line_count) {
1517 		if (len <= size)
1518 			break;
1519 		len -= get_record_print_text_size(&info, line_count, true, time);
1520 	}
1521 
1522 	prb_rec_init_rd(&r, &info, text, LOG_LINE_MAX + PREFIX_MAX);
1523 
1524 	len = 0;
1525 	prb_for_each_record(seq, prb, seq, &r) {
1526 		int textlen;
1527 
1528 		textlen = record_print_text(&r, true, time);
1529 
1530 		if (len + textlen > size) {
1531 			seq--;
1532 			break;
1533 		}
1534 
1535 		logbuf_unlock_irq();
1536 		if (copy_to_user(buf + len, text, textlen))
1537 			len = -EFAULT;
1538 		else
1539 			len += textlen;
1540 		logbuf_lock_irq();
1541 
1542 		if (len < 0)
1543 			break;
1544 	}
1545 
1546 	if (clear)
1547 		clear_seq = seq;
1548 	logbuf_unlock_irq();
1549 
1550 	kfree(text);
1551 	return len;
1552 }
1553 
1554 static void syslog_clear(void)
1555 {
1556 	logbuf_lock_irq();
1557 	clear_seq = prb_next_seq(prb);
1558 	logbuf_unlock_irq();
1559 }
1560 
1561 int do_syslog(int type, char __user *buf, int len, int source)
1562 {
1563 	struct printk_info info;
1564 	bool clear = false;
1565 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1566 	int error;
1567 
1568 	error = check_syslog_permissions(type, source);
1569 	if (error)
1570 		return error;
1571 
1572 	switch (type) {
1573 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1574 		break;
1575 	case SYSLOG_ACTION_OPEN:	/* Open log */
1576 		break;
1577 	case SYSLOG_ACTION_READ:	/* Read from log */
1578 		if (!buf || len < 0)
1579 			return -EINVAL;
1580 		if (!len)
1581 			return 0;
1582 		if (!access_ok(buf, len))
1583 			return -EFAULT;
1584 		error = wait_event_interruptible(log_wait,
1585 				prb_read_valid(prb, syslog_seq, NULL));
1586 		if (error)
1587 			return error;
1588 		error = syslog_print(buf, len);
1589 		break;
1590 	/* Read/clear last kernel messages */
1591 	case SYSLOG_ACTION_READ_CLEAR:
1592 		clear = true;
1593 		fallthrough;
1594 	/* Read last kernel messages */
1595 	case SYSLOG_ACTION_READ_ALL:
1596 		if (!buf || len < 0)
1597 			return -EINVAL;
1598 		if (!len)
1599 			return 0;
1600 		if (!access_ok(buf, len))
1601 			return -EFAULT;
1602 		error = syslog_print_all(buf, len, clear);
1603 		break;
1604 	/* Clear ring buffer */
1605 	case SYSLOG_ACTION_CLEAR:
1606 		syslog_clear();
1607 		break;
1608 	/* Disable logging to console */
1609 	case SYSLOG_ACTION_CONSOLE_OFF:
1610 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1611 			saved_console_loglevel = console_loglevel;
1612 		console_loglevel = minimum_console_loglevel;
1613 		break;
1614 	/* Enable logging to console */
1615 	case SYSLOG_ACTION_CONSOLE_ON:
1616 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1617 			console_loglevel = saved_console_loglevel;
1618 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1619 		}
1620 		break;
1621 	/* Set level of messages printed to console */
1622 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1623 		if (len < 1 || len > 8)
1624 			return -EINVAL;
1625 		if (len < minimum_console_loglevel)
1626 			len = minimum_console_loglevel;
1627 		console_loglevel = len;
1628 		/* Implicitly re-enable logging to console */
1629 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1630 		break;
1631 	/* Number of chars in the log buffer */
1632 	case SYSLOG_ACTION_SIZE_UNREAD:
1633 		logbuf_lock_irq();
1634 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1635 			/* No unread messages. */
1636 			logbuf_unlock_irq();
1637 			return 0;
1638 		}
1639 		if (info.seq != syslog_seq) {
1640 			/* messages are gone, move to first one */
1641 			syslog_seq = info.seq;
1642 			syslog_partial = 0;
1643 		}
1644 		if (source == SYSLOG_FROM_PROC) {
1645 			/*
1646 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1647 			 * for pending data, not the size; return the count of
1648 			 * records, not the length.
1649 			 */
1650 			error = prb_next_seq(prb) - syslog_seq;
1651 		} else {
1652 			bool time = syslog_partial ? syslog_time : printk_time;
1653 			unsigned int line_count;
1654 			u64 seq;
1655 
1656 			prb_for_each_info(syslog_seq, prb, seq, &info,
1657 					  &line_count) {
1658 				error += get_record_print_text_size(&info, line_count,
1659 								    true, time);
1660 				time = printk_time;
1661 			}
1662 			error -= syslog_partial;
1663 		}
1664 		logbuf_unlock_irq();
1665 		break;
1666 	/* Size of the log buffer */
1667 	case SYSLOG_ACTION_SIZE_BUFFER:
1668 		error = log_buf_len;
1669 		break;
1670 	default:
1671 		error = -EINVAL;
1672 		break;
1673 	}
1674 
1675 	return error;
1676 }
1677 
1678 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1679 {
1680 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1681 }
1682 
1683 /*
1684  * Special console_lock variants that help to reduce the risk of soft-lockups.
1685  * They allow to pass console_lock to another printk() call using a busy wait.
1686  */
1687 
1688 #ifdef CONFIG_LOCKDEP
1689 static struct lockdep_map console_owner_dep_map = {
1690 	.name = "console_owner"
1691 };
1692 #endif
1693 
1694 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1695 static struct task_struct *console_owner;
1696 static bool console_waiter;
1697 
1698 /**
1699  * console_lock_spinning_enable - mark beginning of code where another
1700  *	thread might safely busy wait
1701  *
1702  * This basically converts console_lock into a spinlock. This marks
1703  * the section where the console_lock owner can not sleep, because
1704  * there may be a waiter spinning (like a spinlock). Also it must be
1705  * ready to hand over the lock at the end of the section.
1706  */
1707 static void console_lock_spinning_enable(void)
1708 {
1709 	raw_spin_lock(&console_owner_lock);
1710 	console_owner = current;
1711 	raw_spin_unlock(&console_owner_lock);
1712 
1713 	/* The waiter may spin on us after setting console_owner */
1714 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1715 }
1716 
1717 /**
1718  * console_lock_spinning_disable_and_check - mark end of code where another
1719  *	thread was able to busy wait and check if there is a waiter
1720  *
1721  * This is called at the end of the section where spinning is allowed.
1722  * It has two functions. First, it is a signal that it is no longer
1723  * safe to start busy waiting for the lock. Second, it checks if
1724  * there is a busy waiter and passes the lock rights to her.
1725  *
1726  * Important: Callers lose the lock if there was a busy waiter.
1727  *	They must not touch items synchronized by console_lock
1728  *	in this case.
1729  *
1730  * Return: 1 if the lock rights were passed, 0 otherwise.
1731  */
1732 static int console_lock_spinning_disable_and_check(void)
1733 {
1734 	int waiter;
1735 
1736 	raw_spin_lock(&console_owner_lock);
1737 	waiter = READ_ONCE(console_waiter);
1738 	console_owner = NULL;
1739 	raw_spin_unlock(&console_owner_lock);
1740 
1741 	if (!waiter) {
1742 		spin_release(&console_owner_dep_map, _THIS_IP_);
1743 		return 0;
1744 	}
1745 
1746 	/* The waiter is now free to continue */
1747 	WRITE_ONCE(console_waiter, false);
1748 
1749 	spin_release(&console_owner_dep_map, _THIS_IP_);
1750 
1751 	/*
1752 	 * Hand off console_lock to waiter. The waiter will perform
1753 	 * the up(). After this, the waiter is the console_lock owner.
1754 	 */
1755 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1756 	return 1;
1757 }
1758 
1759 /**
1760  * console_trylock_spinning - try to get console_lock by busy waiting
1761  *
1762  * This allows to busy wait for the console_lock when the current
1763  * owner is running in specially marked sections. It means that
1764  * the current owner is running and cannot reschedule until it
1765  * is ready to lose the lock.
1766  *
1767  * Return: 1 if we got the lock, 0 othrewise
1768  */
1769 static int console_trylock_spinning(void)
1770 {
1771 	struct task_struct *owner = NULL;
1772 	bool waiter;
1773 	bool spin = false;
1774 	unsigned long flags;
1775 
1776 	if (console_trylock())
1777 		return 1;
1778 
1779 	printk_safe_enter_irqsave(flags);
1780 
1781 	raw_spin_lock(&console_owner_lock);
1782 	owner = READ_ONCE(console_owner);
1783 	waiter = READ_ONCE(console_waiter);
1784 	if (!waiter && owner && owner != current) {
1785 		WRITE_ONCE(console_waiter, true);
1786 		spin = true;
1787 	}
1788 	raw_spin_unlock(&console_owner_lock);
1789 
1790 	/*
1791 	 * If there is an active printk() writing to the
1792 	 * consoles, instead of having it write our data too,
1793 	 * see if we can offload that load from the active
1794 	 * printer, and do some printing ourselves.
1795 	 * Go into a spin only if there isn't already a waiter
1796 	 * spinning, and there is an active printer, and
1797 	 * that active printer isn't us (recursive printk?).
1798 	 */
1799 	if (!spin) {
1800 		printk_safe_exit_irqrestore(flags);
1801 		return 0;
1802 	}
1803 
1804 	/* We spin waiting for the owner to release us */
1805 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1806 	/* Owner will clear console_waiter on hand off */
1807 	while (READ_ONCE(console_waiter))
1808 		cpu_relax();
1809 	spin_release(&console_owner_dep_map, _THIS_IP_);
1810 
1811 	printk_safe_exit_irqrestore(flags);
1812 	/*
1813 	 * The owner passed the console lock to us.
1814 	 * Since we did not spin on console lock, annotate
1815 	 * this as a trylock. Otherwise lockdep will
1816 	 * complain.
1817 	 */
1818 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1819 
1820 	return 1;
1821 }
1822 
1823 /*
1824  * Call the console drivers, asking them to write out
1825  * log_buf[start] to log_buf[end - 1].
1826  * The console_lock must be held.
1827  */
1828 static void call_console_drivers(const char *ext_text, size_t ext_len,
1829 				 const char *text, size_t len)
1830 {
1831 	static char dropped_text[64];
1832 	size_t dropped_len = 0;
1833 	struct console *con;
1834 
1835 	trace_console_rcuidle(text, len);
1836 
1837 	if (!console_drivers)
1838 		return;
1839 
1840 	if (console_dropped) {
1841 		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1842 				       "** %lu printk messages dropped **\n",
1843 				       console_dropped);
1844 		console_dropped = 0;
1845 	}
1846 
1847 	for_each_console(con) {
1848 		if (exclusive_console && con != exclusive_console)
1849 			continue;
1850 		if (!(con->flags & CON_ENABLED))
1851 			continue;
1852 		if (!con->write)
1853 			continue;
1854 		if (!cpu_online(smp_processor_id()) &&
1855 		    !(con->flags & CON_ANYTIME))
1856 			continue;
1857 		if (con->flags & CON_EXTENDED)
1858 			con->write(con, ext_text, ext_len);
1859 		else {
1860 			if (dropped_len)
1861 				con->write(con, dropped_text, dropped_len);
1862 			con->write(con, text, len);
1863 		}
1864 	}
1865 }
1866 
1867 int printk_delay_msec __read_mostly;
1868 
1869 static inline void printk_delay(void)
1870 {
1871 	if (unlikely(printk_delay_msec)) {
1872 		int m = printk_delay_msec;
1873 
1874 		while (m--) {
1875 			mdelay(1);
1876 			touch_nmi_watchdog();
1877 		}
1878 	}
1879 }
1880 
1881 static inline u32 printk_caller_id(void)
1882 {
1883 	return in_task() ? task_pid_nr(current) :
1884 		0x80000000 + raw_smp_processor_id();
1885 }
1886 
1887 /**
1888  * parse_prefix - Parse level and control flags.
1889  *
1890  * @text:     The terminated text message.
1891  * @level:    A pointer to the current level value, will be updated.
1892  * @lflags:   A pointer to the current log flags, will be updated.
1893  *
1894  * @level may be NULL if the caller is not interested in the parsed value.
1895  * Otherwise the variable pointed to by @level must be set to
1896  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
1897  *
1898  * @lflags may be NULL if the caller is not interested in the parsed value.
1899  * Otherwise the variable pointed to by @lflags will be OR'd with the parsed
1900  * value.
1901  *
1902  * Return: The length of the parsed level and control flags.
1903  */
1904 static u16 parse_prefix(char *text, int *level, enum log_flags *lflags)
1905 {
1906 	u16 prefix_len = 0;
1907 	int kern_level;
1908 
1909 	while (*text) {
1910 		kern_level = printk_get_level(text);
1911 		if (!kern_level)
1912 			break;
1913 
1914 		switch (kern_level) {
1915 		case '0' ... '7':
1916 			if (level && *level == LOGLEVEL_DEFAULT)
1917 				*level = kern_level - '0';
1918 			break;
1919 		case 'c':	/* KERN_CONT */
1920 			if (lflags)
1921 				*lflags |= LOG_CONT;
1922 		}
1923 
1924 		prefix_len += 2;
1925 		text += 2;
1926 	}
1927 
1928 	return prefix_len;
1929 }
1930 
1931 static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags,
1932 			 const char *fmt, va_list args)
1933 {
1934 	u16 text_len;
1935 
1936 	text_len = vscnprintf(text, size, fmt, args);
1937 
1938 	/* Mark and strip a trailing newline. */
1939 	if (text_len && text[text_len - 1] == '\n') {
1940 		text_len--;
1941 		*lflags |= LOG_NEWLINE;
1942 	}
1943 
1944 	/* Strip log level and control flags. */
1945 	if (facility == 0) {
1946 		u16 prefix_len;
1947 
1948 		prefix_len = parse_prefix(text, NULL, NULL);
1949 		if (prefix_len) {
1950 			text_len -= prefix_len;
1951 			memmove(text, text + prefix_len, text_len);
1952 		}
1953 	}
1954 
1955 	return text_len;
1956 }
1957 
1958 __printf(4, 0)
1959 int vprintk_store(int facility, int level,
1960 		  const struct dev_printk_info *dev_info,
1961 		  const char *fmt, va_list args)
1962 {
1963 	const u32 caller_id = printk_caller_id();
1964 	struct prb_reserved_entry e;
1965 	enum log_flags lflags = 0;
1966 	struct printk_record r;
1967 	u16 trunc_msg_len = 0;
1968 	char prefix_buf[8];
1969 	u16 reserve_size;
1970 	va_list args2;
1971 	u16 text_len;
1972 	u64 ts_nsec;
1973 
1974 	/*
1975 	 * Since the duration of printk() can vary depending on the message
1976 	 * and state of the ringbuffer, grab the timestamp now so that it is
1977 	 * close to the call of printk(). This provides a more deterministic
1978 	 * timestamp with respect to the caller.
1979 	 */
1980 	ts_nsec = local_clock();
1981 
1982 	/*
1983 	 * The sprintf needs to come first since the syslog prefix might be
1984 	 * passed in as a parameter. An extra byte must be reserved so that
1985 	 * later the vscnprintf() into the reserved buffer has room for the
1986 	 * terminating '\0', which is not counted by vsnprintf().
1987 	 */
1988 	va_copy(args2, args);
1989 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
1990 	va_end(args2);
1991 
1992 	if (reserve_size > LOG_LINE_MAX)
1993 		reserve_size = LOG_LINE_MAX;
1994 
1995 	/* Extract log level or control flags. */
1996 	if (facility == 0)
1997 		parse_prefix(&prefix_buf[0], &level, &lflags);
1998 
1999 	if (level == LOGLEVEL_DEFAULT)
2000 		level = default_message_loglevel;
2001 
2002 	if (dev_info)
2003 		lflags |= LOG_NEWLINE;
2004 
2005 	if (lflags & LOG_CONT) {
2006 		prb_rec_init_wr(&r, reserve_size);
2007 		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2008 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2009 						 facility, &lflags, fmt, args);
2010 			r.info->text_len += text_len;
2011 
2012 			if (lflags & LOG_NEWLINE) {
2013 				r.info->flags |= LOG_NEWLINE;
2014 				prb_final_commit(&e);
2015 			} else {
2016 				prb_commit(&e);
2017 			}
2018 
2019 			return text_len;
2020 		}
2021 	}
2022 
2023 	/*
2024 	 * Explicitly initialize the record before every prb_reserve() call.
2025 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2026 	 * structure when they fail.
2027 	 */
2028 	prb_rec_init_wr(&r, reserve_size);
2029 	if (!prb_reserve(&e, prb, &r)) {
2030 		/* truncate the message if it is too long for empty buffer */
2031 		truncate_msg(&reserve_size, &trunc_msg_len);
2032 
2033 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2034 		if (!prb_reserve(&e, prb, &r))
2035 			return 0;
2036 	}
2037 
2038 	/* fill message */
2039 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args);
2040 	if (trunc_msg_len)
2041 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2042 	r.info->text_len = text_len + trunc_msg_len;
2043 	r.info->facility = facility;
2044 	r.info->level = level & 7;
2045 	r.info->flags = lflags & 0x1f;
2046 	r.info->ts_nsec = ts_nsec;
2047 	r.info->caller_id = caller_id;
2048 	if (dev_info)
2049 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2050 
2051 	/* A message without a trailing newline can be continued. */
2052 	if (!(lflags & LOG_NEWLINE))
2053 		prb_commit(&e);
2054 	else
2055 		prb_final_commit(&e);
2056 
2057 	return (text_len + trunc_msg_len);
2058 }
2059 
2060 asmlinkage int vprintk_emit(int facility, int level,
2061 			    const struct dev_printk_info *dev_info,
2062 			    const char *fmt, va_list args)
2063 {
2064 	int printed_len;
2065 	bool in_sched = false;
2066 	unsigned long flags;
2067 
2068 	/* Suppress unimportant messages after panic happens */
2069 	if (unlikely(suppress_printk))
2070 		return 0;
2071 
2072 	if (level == LOGLEVEL_SCHED) {
2073 		level = LOGLEVEL_DEFAULT;
2074 		in_sched = true;
2075 	}
2076 
2077 	boot_delay_msec(level);
2078 	printk_delay();
2079 
2080 	printk_safe_enter_irqsave(flags);
2081 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2082 	printk_safe_exit_irqrestore(flags);
2083 
2084 	/* If called from the scheduler, we can not call up(). */
2085 	if (!in_sched) {
2086 		/*
2087 		 * Disable preemption to avoid being preempted while holding
2088 		 * console_sem which would prevent anyone from printing to
2089 		 * console
2090 		 */
2091 		preempt_disable();
2092 		/*
2093 		 * Try to acquire and then immediately release the console
2094 		 * semaphore.  The release will print out buffers and wake up
2095 		 * /dev/kmsg and syslog() users.
2096 		 */
2097 		if (console_trylock_spinning())
2098 			console_unlock();
2099 		preempt_enable();
2100 	}
2101 
2102 	wake_up_klogd();
2103 	return printed_len;
2104 }
2105 EXPORT_SYMBOL(vprintk_emit);
2106 
2107 asmlinkage int vprintk(const char *fmt, va_list args)
2108 {
2109 	return vprintk_func(fmt, args);
2110 }
2111 EXPORT_SYMBOL(vprintk);
2112 
2113 int vprintk_default(const char *fmt, va_list args)
2114 {
2115 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2116 }
2117 EXPORT_SYMBOL_GPL(vprintk_default);
2118 
2119 /**
2120  * printk - print a kernel message
2121  * @fmt: format string
2122  *
2123  * This is printk(). It can be called from any context. We want it to work.
2124  *
2125  * We try to grab the console_lock. If we succeed, it's easy - we log the
2126  * output and call the console drivers.  If we fail to get the semaphore, we
2127  * place the output into the log buffer and return. The current holder of
2128  * the console_sem will notice the new output in console_unlock(); and will
2129  * send it to the consoles before releasing the lock.
2130  *
2131  * One effect of this deferred printing is that code which calls printk() and
2132  * then changes console_loglevel may break. This is because console_loglevel
2133  * is inspected when the actual printing occurs.
2134  *
2135  * See also:
2136  * printf(3)
2137  *
2138  * See the vsnprintf() documentation for format string extensions over C99.
2139  */
2140 asmlinkage __visible int printk(const char *fmt, ...)
2141 {
2142 	va_list args;
2143 	int r;
2144 
2145 	va_start(args, fmt);
2146 	r = vprintk_func(fmt, args);
2147 	va_end(args);
2148 
2149 	return r;
2150 }
2151 EXPORT_SYMBOL(printk);
2152 
2153 #else /* CONFIG_PRINTK */
2154 
2155 #define LOG_LINE_MAX		0
2156 #define PREFIX_MAX		0
2157 #define printk_time		false
2158 
2159 #define prb_read_valid(rb, seq, r)	false
2160 #define prb_first_valid_seq(rb)		0
2161 
2162 static u64 syslog_seq;
2163 static u64 console_seq;
2164 static u64 exclusive_console_stop_seq;
2165 static unsigned long console_dropped;
2166 
2167 static size_t record_print_text(const struct printk_record *r,
2168 				bool syslog, bool time)
2169 {
2170 	return 0;
2171 }
2172 static ssize_t info_print_ext_header(char *buf, size_t size,
2173 				     struct printk_info *info)
2174 {
2175 	return 0;
2176 }
2177 static ssize_t msg_print_ext_body(char *buf, size_t size,
2178 				  char *text, size_t text_len,
2179 				  struct dev_printk_info *dev_info) { return 0; }
2180 static void console_lock_spinning_enable(void) { }
2181 static int console_lock_spinning_disable_and_check(void) { return 0; }
2182 static void call_console_drivers(const char *ext_text, size_t ext_len,
2183 				 const char *text, size_t len) {}
2184 static bool suppress_message_printing(int level) { return false; }
2185 
2186 #endif /* CONFIG_PRINTK */
2187 
2188 #ifdef CONFIG_EARLY_PRINTK
2189 struct console *early_console;
2190 
2191 asmlinkage __visible void early_printk(const char *fmt, ...)
2192 {
2193 	va_list ap;
2194 	char buf[512];
2195 	int n;
2196 
2197 	if (!early_console)
2198 		return;
2199 
2200 	va_start(ap, fmt);
2201 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2202 	va_end(ap);
2203 
2204 	early_console->write(early_console, buf, n);
2205 }
2206 #endif
2207 
2208 static int __add_preferred_console(char *name, int idx, char *options,
2209 				   char *brl_options, bool user_specified)
2210 {
2211 	struct console_cmdline *c;
2212 	int i;
2213 
2214 	/*
2215 	 *	See if this tty is not yet registered, and
2216 	 *	if we have a slot free.
2217 	 */
2218 	for (i = 0, c = console_cmdline;
2219 	     i < MAX_CMDLINECONSOLES && c->name[0];
2220 	     i++, c++) {
2221 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2222 			if (!brl_options)
2223 				preferred_console = i;
2224 			if (user_specified)
2225 				c->user_specified = true;
2226 			return 0;
2227 		}
2228 	}
2229 	if (i == MAX_CMDLINECONSOLES)
2230 		return -E2BIG;
2231 	if (!brl_options)
2232 		preferred_console = i;
2233 	strlcpy(c->name, name, sizeof(c->name));
2234 	c->options = options;
2235 	c->user_specified = user_specified;
2236 	braille_set_options(c, brl_options);
2237 
2238 	c->index = idx;
2239 	return 0;
2240 }
2241 
2242 static int __init console_msg_format_setup(char *str)
2243 {
2244 	if (!strcmp(str, "syslog"))
2245 		console_msg_format = MSG_FORMAT_SYSLOG;
2246 	if (!strcmp(str, "default"))
2247 		console_msg_format = MSG_FORMAT_DEFAULT;
2248 	return 1;
2249 }
2250 __setup("console_msg_format=", console_msg_format_setup);
2251 
2252 /*
2253  * Set up a console.  Called via do_early_param() in init/main.c
2254  * for each "console=" parameter in the boot command line.
2255  */
2256 static int __init console_setup(char *str)
2257 {
2258 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2259 	char *s, *options, *brl_options = NULL;
2260 	int idx;
2261 
2262 	/*
2263 	 * console="" or console=null have been suggested as a way to
2264 	 * disable console output. Use ttynull that has been created
2265 	 * for exacly this purpose.
2266 	 */
2267 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2268 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2269 		return 1;
2270 	}
2271 
2272 	if (_braille_console_setup(&str, &brl_options))
2273 		return 1;
2274 
2275 	/*
2276 	 * Decode str into name, index, options.
2277 	 */
2278 	if (str[0] >= '0' && str[0] <= '9') {
2279 		strcpy(buf, "ttyS");
2280 		strncpy(buf + 4, str, sizeof(buf) - 5);
2281 	} else {
2282 		strncpy(buf, str, sizeof(buf) - 1);
2283 	}
2284 	buf[sizeof(buf) - 1] = 0;
2285 	options = strchr(str, ',');
2286 	if (options)
2287 		*(options++) = 0;
2288 #ifdef __sparc__
2289 	if (!strcmp(str, "ttya"))
2290 		strcpy(buf, "ttyS0");
2291 	if (!strcmp(str, "ttyb"))
2292 		strcpy(buf, "ttyS1");
2293 #endif
2294 	for (s = buf; *s; s++)
2295 		if (isdigit(*s) || *s == ',')
2296 			break;
2297 	idx = simple_strtoul(s, NULL, 10);
2298 	*s = 0;
2299 
2300 	__add_preferred_console(buf, idx, options, brl_options, true);
2301 	console_set_on_cmdline = 1;
2302 	return 1;
2303 }
2304 __setup("console=", console_setup);
2305 
2306 /**
2307  * add_preferred_console - add a device to the list of preferred consoles.
2308  * @name: device name
2309  * @idx: device index
2310  * @options: options for this console
2311  *
2312  * The last preferred console added will be used for kernel messages
2313  * and stdin/out/err for init.  Normally this is used by console_setup
2314  * above to handle user-supplied console arguments; however it can also
2315  * be used by arch-specific code either to override the user or more
2316  * commonly to provide a default console (ie from PROM variables) when
2317  * the user has not supplied one.
2318  */
2319 int add_preferred_console(char *name, int idx, char *options)
2320 {
2321 	return __add_preferred_console(name, idx, options, NULL, false);
2322 }
2323 
2324 bool console_suspend_enabled = true;
2325 EXPORT_SYMBOL(console_suspend_enabled);
2326 
2327 static int __init console_suspend_disable(char *str)
2328 {
2329 	console_suspend_enabled = false;
2330 	return 1;
2331 }
2332 __setup("no_console_suspend", console_suspend_disable);
2333 module_param_named(console_suspend, console_suspend_enabled,
2334 		bool, S_IRUGO | S_IWUSR);
2335 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2336 	" and hibernate operations");
2337 
2338 /**
2339  * suspend_console - suspend the console subsystem
2340  *
2341  * This disables printk() while we go into suspend states
2342  */
2343 void suspend_console(void)
2344 {
2345 	if (!console_suspend_enabled)
2346 		return;
2347 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2348 	console_lock();
2349 	console_suspended = 1;
2350 	up_console_sem();
2351 }
2352 
2353 void resume_console(void)
2354 {
2355 	if (!console_suspend_enabled)
2356 		return;
2357 	down_console_sem();
2358 	console_suspended = 0;
2359 	console_unlock();
2360 }
2361 
2362 /**
2363  * console_cpu_notify - print deferred console messages after CPU hotplug
2364  * @cpu: unused
2365  *
2366  * If printk() is called from a CPU that is not online yet, the messages
2367  * will be printed on the console only if there are CON_ANYTIME consoles.
2368  * This function is called when a new CPU comes online (or fails to come
2369  * up) or goes offline.
2370  */
2371 static int console_cpu_notify(unsigned int cpu)
2372 {
2373 	if (!cpuhp_tasks_frozen) {
2374 		/* If trylock fails, someone else is doing the printing */
2375 		if (console_trylock())
2376 			console_unlock();
2377 	}
2378 	return 0;
2379 }
2380 
2381 /**
2382  * console_lock - lock the console system for exclusive use.
2383  *
2384  * Acquires a lock which guarantees that the caller has
2385  * exclusive access to the console system and the console_drivers list.
2386  *
2387  * Can sleep, returns nothing.
2388  */
2389 void console_lock(void)
2390 {
2391 	might_sleep();
2392 
2393 	down_console_sem();
2394 	if (console_suspended)
2395 		return;
2396 	console_locked = 1;
2397 	console_may_schedule = 1;
2398 }
2399 EXPORT_SYMBOL(console_lock);
2400 
2401 /**
2402  * console_trylock - try to lock the console system for exclusive use.
2403  *
2404  * Try to acquire a lock which guarantees that the caller has exclusive
2405  * access to the console system and the console_drivers list.
2406  *
2407  * returns 1 on success, and 0 on failure to acquire the lock.
2408  */
2409 int console_trylock(void)
2410 {
2411 	if (down_trylock_console_sem())
2412 		return 0;
2413 	if (console_suspended) {
2414 		up_console_sem();
2415 		return 0;
2416 	}
2417 	console_locked = 1;
2418 	console_may_schedule = 0;
2419 	return 1;
2420 }
2421 EXPORT_SYMBOL(console_trylock);
2422 
2423 int is_console_locked(void)
2424 {
2425 	return console_locked;
2426 }
2427 EXPORT_SYMBOL(is_console_locked);
2428 
2429 /*
2430  * Check if we have any console that is capable of printing while cpu is
2431  * booting or shutting down. Requires console_sem.
2432  */
2433 static int have_callable_console(void)
2434 {
2435 	struct console *con;
2436 
2437 	for_each_console(con)
2438 		if ((con->flags & CON_ENABLED) &&
2439 				(con->flags & CON_ANYTIME))
2440 			return 1;
2441 
2442 	return 0;
2443 }
2444 
2445 /*
2446  * Can we actually use the console at this time on this cpu?
2447  *
2448  * Console drivers may assume that per-cpu resources have been allocated. So
2449  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2450  * call them until this CPU is officially up.
2451  */
2452 static inline int can_use_console(void)
2453 {
2454 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2455 }
2456 
2457 /**
2458  * console_unlock - unlock the console system
2459  *
2460  * Releases the console_lock which the caller holds on the console system
2461  * and the console driver list.
2462  *
2463  * While the console_lock was held, console output may have been buffered
2464  * by printk().  If this is the case, console_unlock(); emits
2465  * the output prior to releasing the lock.
2466  *
2467  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2468  *
2469  * console_unlock(); may be called from any context.
2470  */
2471 void console_unlock(void)
2472 {
2473 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2474 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2475 	unsigned long flags;
2476 	bool do_cond_resched, retry;
2477 	struct printk_info info;
2478 	struct printk_record r;
2479 
2480 	if (console_suspended) {
2481 		up_console_sem();
2482 		return;
2483 	}
2484 
2485 	prb_rec_init_rd(&r, &info, text, sizeof(text));
2486 
2487 	/*
2488 	 * Console drivers are called with interrupts disabled, so
2489 	 * @console_may_schedule should be cleared before; however, we may
2490 	 * end up dumping a lot of lines, for example, if called from
2491 	 * console registration path, and should invoke cond_resched()
2492 	 * between lines if allowable.  Not doing so can cause a very long
2493 	 * scheduling stall on a slow console leading to RCU stall and
2494 	 * softlockup warnings which exacerbate the issue with more
2495 	 * messages practically incapacitating the system.
2496 	 *
2497 	 * console_trylock() is not able to detect the preemptive
2498 	 * context reliably. Therefore the value must be stored before
2499 	 * and cleared after the "again" goto label.
2500 	 */
2501 	do_cond_resched = console_may_schedule;
2502 again:
2503 	console_may_schedule = 0;
2504 
2505 	/*
2506 	 * We released the console_sem lock, so we need to recheck if
2507 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2508 	 * console.
2509 	 */
2510 	if (!can_use_console()) {
2511 		console_locked = 0;
2512 		up_console_sem();
2513 		return;
2514 	}
2515 
2516 	for (;;) {
2517 		size_t ext_len = 0;
2518 		size_t len;
2519 
2520 		printk_safe_enter_irqsave(flags);
2521 		raw_spin_lock(&logbuf_lock);
2522 skip:
2523 		if (!prb_read_valid(prb, console_seq, &r))
2524 			break;
2525 
2526 		if (console_seq != r.info->seq) {
2527 			console_dropped += r.info->seq - console_seq;
2528 			console_seq = r.info->seq;
2529 		}
2530 
2531 		if (suppress_message_printing(r.info->level)) {
2532 			/*
2533 			 * Skip record we have buffered and already printed
2534 			 * directly to the console when we received it, and
2535 			 * record that has level above the console loglevel.
2536 			 */
2537 			console_seq++;
2538 			goto skip;
2539 		}
2540 
2541 		/* Output to all consoles once old messages replayed. */
2542 		if (unlikely(exclusive_console &&
2543 			     console_seq >= exclusive_console_stop_seq)) {
2544 			exclusive_console = NULL;
2545 		}
2546 
2547 		/*
2548 		 * Handle extended console text first because later
2549 		 * record_print_text() will modify the record buffer in-place.
2550 		 */
2551 		if (nr_ext_console_drivers) {
2552 			ext_len = info_print_ext_header(ext_text,
2553 						sizeof(ext_text),
2554 						r.info);
2555 			ext_len += msg_print_ext_body(ext_text + ext_len,
2556 						sizeof(ext_text) - ext_len,
2557 						&r.text_buf[0],
2558 						r.info->text_len,
2559 						&r.info->dev_info);
2560 		}
2561 		len = record_print_text(&r,
2562 				console_msg_format & MSG_FORMAT_SYSLOG,
2563 				printk_time);
2564 		console_seq++;
2565 		raw_spin_unlock(&logbuf_lock);
2566 
2567 		/*
2568 		 * While actively printing out messages, if another printk()
2569 		 * were to occur on another CPU, it may wait for this one to
2570 		 * finish. This task can not be preempted if there is a
2571 		 * waiter waiting to take over.
2572 		 */
2573 		console_lock_spinning_enable();
2574 
2575 		stop_critical_timings();	/* don't trace print latency */
2576 		call_console_drivers(ext_text, ext_len, text, len);
2577 		start_critical_timings();
2578 
2579 		if (console_lock_spinning_disable_and_check()) {
2580 			printk_safe_exit_irqrestore(flags);
2581 			return;
2582 		}
2583 
2584 		printk_safe_exit_irqrestore(flags);
2585 
2586 		if (do_cond_resched)
2587 			cond_resched();
2588 	}
2589 
2590 	console_locked = 0;
2591 
2592 	raw_spin_unlock(&logbuf_lock);
2593 
2594 	up_console_sem();
2595 
2596 	/*
2597 	 * Someone could have filled up the buffer again, so re-check if there's
2598 	 * something to flush. In case we cannot trylock the console_sem again,
2599 	 * there's a new owner and the console_unlock() from them will do the
2600 	 * flush, no worries.
2601 	 */
2602 	raw_spin_lock(&logbuf_lock);
2603 	retry = prb_read_valid(prb, console_seq, NULL);
2604 	raw_spin_unlock(&logbuf_lock);
2605 	printk_safe_exit_irqrestore(flags);
2606 
2607 	if (retry && console_trylock())
2608 		goto again;
2609 }
2610 EXPORT_SYMBOL(console_unlock);
2611 
2612 /**
2613  * console_conditional_schedule - yield the CPU if required
2614  *
2615  * If the console code is currently allowed to sleep, and
2616  * if this CPU should yield the CPU to another task, do
2617  * so here.
2618  *
2619  * Must be called within console_lock();.
2620  */
2621 void __sched console_conditional_schedule(void)
2622 {
2623 	if (console_may_schedule)
2624 		cond_resched();
2625 }
2626 EXPORT_SYMBOL(console_conditional_schedule);
2627 
2628 void console_unblank(void)
2629 {
2630 	struct console *c;
2631 
2632 	/*
2633 	 * console_unblank can no longer be called in interrupt context unless
2634 	 * oops_in_progress is set to 1..
2635 	 */
2636 	if (oops_in_progress) {
2637 		if (down_trylock_console_sem() != 0)
2638 			return;
2639 	} else
2640 		console_lock();
2641 
2642 	console_locked = 1;
2643 	console_may_schedule = 0;
2644 	for_each_console(c)
2645 		if ((c->flags & CON_ENABLED) && c->unblank)
2646 			c->unblank();
2647 	console_unlock();
2648 }
2649 
2650 /**
2651  * console_flush_on_panic - flush console content on panic
2652  * @mode: flush all messages in buffer or just the pending ones
2653  *
2654  * Immediately output all pending messages no matter what.
2655  */
2656 void console_flush_on_panic(enum con_flush_mode mode)
2657 {
2658 	/*
2659 	 * If someone else is holding the console lock, trylock will fail
2660 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2661 	 * that messages are flushed out.  As this can be called from any
2662 	 * context and we don't want to get preempted while flushing,
2663 	 * ensure may_schedule is cleared.
2664 	 */
2665 	console_trylock();
2666 	console_may_schedule = 0;
2667 
2668 	if (mode == CONSOLE_REPLAY_ALL) {
2669 		unsigned long flags;
2670 
2671 		logbuf_lock_irqsave(flags);
2672 		console_seq = prb_first_valid_seq(prb);
2673 		logbuf_unlock_irqrestore(flags);
2674 	}
2675 	console_unlock();
2676 }
2677 
2678 /*
2679  * Return the console tty driver structure and its associated index
2680  */
2681 struct tty_driver *console_device(int *index)
2682 {
2683 	struct console *c;
2684 	struct tty_driver *driver = NULL;
2685 
2686 	console_lock();
2687 	for_each_console(c) {
2688 		if (!c->device)
2689 			continue;
2690 		driver = c->device(c, index);
2691 		if (driver)
2692 			break;
2693 	}
2694 	console_unlock();
2695 	return driver;
2696 }
2697 
2698 /*
2699  * Prevent further output on the passed console device so that (for example)
2700  * serial drivers can disable console output before suspending a port, and can
2701  * re-enable output afterwards.
2702  */
2703 void console_stop(struct console *console)
2704 {
2705 	console_lock();
2706 	console->flags &= ~CON_ENABLED;
2707 	console_unlock();
2708 }
2709 EXPORT_SYMBOL(console_stop);
2710 
2711 void console_start(struct console *console)
2712 {
2713 	console_lock();
2714 	console->flags |= CON_ENABLED;
2715 	console_unlock();
2716 }
2717 EXPORT_SYMBOL(console_start);
2718 
2719 static int __read_mostly keep_bootcon;
2720 
2721 static int __init keep_bootcon_setup(char *str)
2722 {
2723 	keep_bootcon = 1;
2724 	pr_info("debug: skip boot console de-registration.\n");
2725 
2726 	return 0;
2727 }
2728 
2729 early_param("keep_bootcon", keep_bootcon_setup);
2730 
2731 /*
2732  * This is called by register_console() to try to match
2733  * the newly registered console with any of the ones selected
2734  * by either the command line or add_preferred_console() and
2735  * setup/enable it.
2736  *
2737  * Care need to be taken with consoles that are statically
2738  * enabled such as netconsole
2739  */
2740 static int try_enable_new_console(struct console *newcon, bool user_specified)
2741 {
2742 	struct console_cmdline *c;
2743 	int i, err;
2744 
2745 	for (i = 0, c = console_cmdline;
2746 	     i < MAX_CMDLINECONSOLES && c->name[0];
2747 	     i++, c++) {
2748 		if (c->user_specified != user_specified)
2749 			continue;
2750 		if (!newcon->match ||
2751 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2752 			/* default matching */
2753 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2754 			if (strcmp(c->name, newcon->name) != 0)
2755 				continue;
2756 			if (newcon->index >= 0 &&
2757 			    newcon->index != c->index)
2758 				continue;
2759 			if (newcon->index < 0)
2760 				newcon->index = c->index;
2761 
2762 			if (_braille_register_console(newcon, c))
2763 				return 0;
2764 
2765 			if (newcon->setup &&
2766 			    (err = newcon->setup(newcon, c->options)) != 0)
2767 				return err;
2768 		}
2769 		newcon->flags |= CON_ENABLED;
2770 		if (i == preferred_console) {
2771 			newcon->flags |= CON_CONSDEV;
2772 			has_preferred_console = true;
2773 		}
2774 		return 0;
2775 	}
2776 
2777 	/*
2778 	 * Some consoles, such as pstore and netconsole, can be enabled even
2779 	 * without matching. Accept the pre-enabled consoles only when match()
2780 	 * and setup() had a chance to be called.
2781 	 */
2782 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2783 		return 0;
2784 
2785 	return -ENOENT;
2786 }
2787 
2788 /*
2789  * The console driver calls this routine during kernel initialization
2790  * to register the console printing procedure with printk() and to
2791  * print any messages that were printed by the kernel before the
2792  * console driver was initialized.
2793  *
2794  * This can happen pretty early during the boot process (because of
2795  * early_printk) - sometimes before setup_arch() completes - be careful
2796  * of what kernel features are used - they may not be initialised yet.
2797  *
2798  * There are two types of consoles - bootconsoles (early_printk) and
2799  * "real" consoles (everything which is not a bootconsole) which are
2800  * handled differently.
2801  *  - Any number of bootconsoles can be registered at any time.
2802  *  - As soon as a "real" console is registered, all bootconsoles
2803  *    will be unregistered automatically.
2804  *  - Once a "real" console is registered, any attempt to register a
2805  *    bootconsoles will be rejected
2806  */
2807 void register_console(struct console *newcon)
2808 {
2809 	unsigned long flags;
2810 	struct console *bcon = NULL;
2811 	int err;
2812 
2813 	for_each_console(bcon) {
2814 		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2815 					 bcon->name, bcon->index))
2816 			return;
2817 	}
2818 
2819 	/*
2820 	 * before we register a new CON_BOOT console, make sure we don't
2821 	 * already have a valid console
2822 	 */
2823 	if (newcon->flags & CON_BOOT) {
2824 		for_each_console(bcon) {
2825 			if (!(bcon->flags & CON_BOOT)) {
2826 				pr_info("Too late to register bootconsole %s%d\n",
2827 					newcon->name, newcon->index);
2828 				return;
2829 			}
2830 		}
2831 	}
2832 
2833 	if (console_drivers && console_drivers->flags & CON_BOOT)
2834 		bcon = console_drivers;
2835 
2836 	if (!has_preferred_console || bcon || !console_drivers)
2837 		has_preferred_console = preferred_console >= 0;
2838 
2839 	/*
2840 	 *	See if we want to use this console driver. If we
2841 	 *	didn't select a console we take the first one
2842 	 *	that registers here.
2843 	 */
2844 	if (!has_preferred_console) {
2845 		if (newcon->index < 0)
2846 			newcon->index = 0;
2847 		if (newcon->setup == NULL ||
2848 		    newcon->setup(newcon, NULL) == 0) {
2849 			newcon->flags |= CON_ENABLED;
2850 			if (newcon->device) {
2851 				newcon->flags |= CON_CONSDEV;
2852 				has_preferred_console = true;
2853 			}
2854 		}
2855 	}
2856 
2857 	/* See if this console matches one we selected on the command line */
2858 	err = try_enable_new_console(newcon, true);
2859 
2860 	/* If not, try to match against the platform default(s) */
2861 	if (err == -ENOENT)
2862 		err = try_enable_new_console(newcon, false);
2863 
2864 	/* printk() messages are not printed to the Braille console. */
2865 	if (err || newcon->flags & CON_BRL)
2866 		return;
2867 
2868 	/*
2869 	 * If we have a bootconsole, and are switching to a real console,
2870 	 * don't print everything out again, since when the boot console, and
2871 	 * the real console are the same physical device, it's annoying to
2872 	 * see the beginning boot messages twice
2873 	 */
2874 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2875 		newcon->flags &= ~CON_PRINTBUFFER;
2876 
2877 	/*
2878 	 *	Put this console in the list - keep the
2879 	 *	preferred driver at the head of the list.
2880 	 */
2881 	console_lock();
2882 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2883 		newcon->next = console_drivers;
2884 		console_drivers = newcon;
2885 		if (newcon->next)
2886 			newcon->next->flags &= ~CON_CONSDEV;
2887 		/* Ensure this flag is always set for the head of the list */
2888 		newcon->flags |= CON_CONSDEV;
2889 	} else {
2890 		newcon->next = console_drivers->next;
2891 		console_drivers->next = newcon;
2892 	}
2893 
2894 	if (newcon->flags & CON_EXTENDED)
2895 		nr_ext_console_drivers++;
2896 
2897 	if (newcon->flags & CON_PRINTBUFFER) {
2898 		/*
2899 		 * console_unlock(); will print out the buffered messages
2900 		 * for us.
2901 		 */
2902 		logbuf_lock_irqsave(flags);
2903 		/*
2904 		 * We're about to replay the log buffer.  Only do this to the
2905 		 * just-registered console to avoid excessive message spam to
2906 		 * the already-registered consoles.
2907 		 *
2908 		 * Set exclusive_console with disabled interrupts to reduce
2909 		 * race window with eventual console_flush_on_panic() that
2910 		 * ignores console_lock.
2911 		 */
2912 		exclusive_console = newcon;
2913 		exclusive_console_stop_seq = console_seq;
2914 		console_seq = syslog_seq;
2915 		logbuf_unlock_irqrestore(flags);
2916 	}
2917 	console_unlock();
2918 	console_sysfs_notify();
2919 
2920 	/*
2921 	 * By unregistering the bootconsoles after we enable the real console
2922 	 * we get the "console xxx enabled" message on all the consoles -
2923 	 * boot consoles, real consoles, etc - this is to ensure that end
2924 	 * users know there might be something in the kernel's log buffer that
2925 	 * went to the bootconsole (that they do not see on the real console)
2926 	 */
2927 	pr_info("%sconsole [%s%d] enabled\n",
2928 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2929 		newcon->name, newcon->index);
2930 	if (bcon &&
2931 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2932 	    !keep_bootcon) {
2933 		/* We need to iterate through all boot consoles, to make
2934 		 * sure we print everything out, before we unregister them.
2935 		 */
2936 		for_each_console(bcon)
2937 			if (bcon->flags & CON_BOOT)
2938 				unregister_console(bcon);
2939 	}
2940 }
2941 EXPORT_SYMBOL(register_console);
2942 
2943 int unregister_console(struct console *console)
2944 {
2945 	struct console *con;
2946 	int res;
2947 
2948 	pr_info("%sconsole [%s%d] disabled\n",
2949 		(console->flags & CON_BOOT) ? "boot" : "" ,
2950 		console->name, console->index);
2951 
2952 	res = _braille_unregister_console(console);
2953 	if (res < 0)
2954 		return res;
2955 	if (res > 0)
2956 		return 0;
2957 
2958 	res = -ENODEV;
2959 	console_lock();
2960 	if (console_drivers == console) {
2961 		console_drivers=console->next;
2962 		res = 0;
2963 	} else {
2964 		for_each_console(con) {
2965 			if (con->next == console) {
2966 				con->next = console->next;
2967 				res = 0;
2968 				break;
2969 			}
2970 		}
2971 	}
2972 
2973 	if (res)
2974 		goto out_disable_unlock;
2975 
2976 	if (console->flags & CON_EXTENDED)
2977 		nr_ext_console_drivers--;
2978 
2979 	/*
2980 	 * If this isn't the last console and it has CON_CONSDEV set, we
2981 	 * need to set it on the next preferred console.
2982 	 */
2983 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2984 		console_drivers->flags |= CON_CONSDEV;
2985 
2986 	console->flags &= ~CON_ENABLED;
2987 	console_unlock();
2988 	console_sysfs_notify();
2989 
2990 	if (console->exit)
2991 		res = console->exit(console);
2992 
2993 	return res;
2994 
2995 out_disable_unlock:
2996 	console->flags &= ~CON_ENABLED;
2997 	console_unlock();
2998 
2999 	return res;
3000 }
3001 EXPORT_SYMBOL(unregister_console);
3002 
3003 /*
3004  * Initialize the console device. This is called *early*, so
3005  * we can't necessarily depend on lots of kernel help here.
3006  * Just do some early initializations, and do the complex setup
3007  * later.
3008  */
3009 void __init console_init(void)
3010 {
3011 	int ret;
3012 	initcall_t call;
3013 	initcall_entry_t *ce;
3014 
3015 	/* Setup the default TTY line discipline. */
3016 	n_tty_init();
3017 
3018 	/*
3019 	 * set up the console device so that later boot sequences can
3020 	 * inform about problems etc..
3021 	 */
3022 	ce = __con_initcall_start;
3023 	trace_initcall_level("console");
3024 	while (ce < __con_initcall_end) {
3025 		call = initcall_from_entry(ce);
3026 		trace_initcall_start(call);
3027 		ret = call();
3028 		trace_initcall_finish(call, ret);
3029 		ce++;
3030 	}
3031 }
3032 
3033 /*
3034  * Some boot consoles access data that is in the init section and which will
3035  * be discarded after the initcalls have been run. To make sure that no code
3036  * will access this data, unregister the boot consoles in a late initcall.
3037  *
3038  * If for some reason, such as deferred probe or the driver being a loadable
3039  * module, the real console hasn't registered yet at this point, there will
3040  * be a brief interval in which no messages are logged to the console, which
3041  * makes it difficult to diagnose problems that occur during this time.
3042  *
3043  * To mitigate this problem somewhat, only unregister consoles whose memory
3044  * intersects with the init section. Note that all other boot consoles will
3045  * get unregistred when the real preferred console is registered.
3046  */
3047 static int __init printk_late_init(void)
3048 {
3049 	struct console *con;
3050 	int ret;
3051 
3052 	for_each_console(con) {
3053 		if (!(con->flags & CON_BOOT))
3054 			continue;
3055 
3056 		/* Check addresses that might be used for enabled consoles. */
3057 		if (init_section_intersects(con, sizeof(*con)) ||
3058 		    init_section_contains(con->write, 0) ||
3059 		    init_section_contains(con->read, 0) ||
3060 		    init_section_contains(con->device, 0) ||
3061 		    init_section_contains(con->unblank, 0) ||
3062 		    init_section_contains(con->data, 0)) {
3063 			/*
3064 			 * Please, consider moving the reported consoles out
3065 			 * of the init section.
3066 			 */
3067 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3068 				con->name, con->index);
3069 			unregister_console(con);
3070 		}
3071 	}
3072 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3073 					console_cpu_notify);
3074 	WARN_ON(ret < 0);
3075 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3076 					console_cpu_notify, NULL);
3077 	WARN_ON(ret < 0);
3078 	return 0;
3079 }
3080 late_initcall(printk_late_init);
3081 
3082 #if defined CONFIG_PRINTK
3083 /*
3084  * Delayed printk version, for scheduler-internal messages:
3085  */
3086 #define PRINTK_PENDING_WAKEUP	0x01
3087 #define PRINTK_PENDING_OUTPUT	0x02
3088 
3089 static DEFINE_PER_CPU(int, printk_pending);
3090 
3091 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3092 {
3093 	int pending = __this_cpu_xchg(printk_pending, 0);
3094 
3095 	if (pending & PRINTK_PENDING_OUTPUT) {
3096 		/* If trylock fails, someone else is doing the printing */
3097 		if (console_trylock())
3098 			console_unlock();
3099 	}
3100 
3101 	if (pending & PRINTK_PENDING_WAKEUP)
3102 		wake_up_interruptible(&log_wait);
3103 }
3104 
3105 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3106 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3107 
3108 void wake_up_klogd(void)
3109 {
3110 	if (!printk_percpu_data_ready())
3111 		return;
3112 
3113 	preempt_disable();
3114 	if (waitqueue_active(&log_wait)) {
3115 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3116 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3117 	}
3118 	preempt_enable();
3119 }
3120 
3121 void defer_console_output(void)
3122 {
3123 	if (!printk_percpu_data_ready())
3124 		return;
3125 
3126 	preempt_disable();
3127 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3128 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3129 	preempt_enable();
3130 }
3131 
3132 int vprintk_deferred(const char *fmt, va_list args)
3133 {
3134 	int r;
3135 
3136 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3137 	defer_console_output();
3138 
3139 	return r;
3140 }
3141 
3142 int printk_deferred(const char *fmt, ...)
3143 {
3144 	va_list args;
3145 	int r;
3146 
3147 	va_start(args, fmt);
3148 	r = vprintk_deferred(fmt, args);
3149 	va_end(args);
3150 
3151 	return r;
3152 }
3153 
3154 /*
3155  * printk rate limiting, lifted from the networking subsystem.
3156  *
3157  * This enforces a rate limit: not more than 10 kernel messages
3158  * every 5s to make a denial-of-service attack impossible.
3159  */
3160 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3161 
3162 int __printk_ratelimit(const char *func)
3163 {
3164 	return ___ratelimit(&printk_ratelimit_state, func);
3165 }
3166 EXPORT_SYMBOL(__printk_ratelimit);
3167 
3168 /**
3169  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3170  * @caller_jiffies: pointer to caller's state
3171  * @interval_msecs: minimum interval between prints
3172  *
3173  * printk_timed_ratelimit() returns true if more than @interval_msecs
3174  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3175  * returned true.
3176  */
3177 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3178 			unsigned int interval_msecs)
3179 {
3180 	unsigned long elapsed = jiffies - *caller_jiffies;
3181 
3182 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3183 		return false;
3184 
3185 	*caller_jiffies = jiffies;
3186 	return true;
3187 }
3188 EXPORT_SYMBOL(printk_timed_ratelimit);
3189 
3190 static DEFINE_SPINLOCK(dump_list_lock);
3191 static LIST_HEAD(dump_list);
3192 
3193 /**
3194  * kmsg_dump_register - register a kernel log dumper.
3195  * @dumper: pointer to the kmsg_dumper structure
3196  *
3197  * Adds a kernel log dumper to the system. The dump callback in the
3198  * structure will be called when the kernel oopses or panics and must be
3199  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3200  */
3201 int kmsg_dump_register(struct kmsg_dumper *dumper)
3202 {
3203 	unsigned long flags;
3204 	int err = -EBUSY;
3205 
3206 	/* The dump callback needs to be set */
3207 	if (!dumper->dump)
3208 		return -EINVAL;
3209 
3210 	spin_lock_irqsave(&dump_list_lock, flags);
3211 	/* Don't allow registering multiple times */
3212 	if (!dumper->registered) {
3213 		dumper->registered = 1;
3214 		list_add_tail_rcu(&dumper->list, &dump_list);
3215 		err = 0;
3216 	}
3217 	spin_unlock_irqrestore(&dump_list_lock, flags);
3218 
3219 	return err;
3220 }
3221 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3222 
3223 /**
3224  * kmsg_dump_unregister - unregister a kmsg dumper.
3225  * @dumper: pointer to the kmsg_dumper structure
3226  *
3227  * Removes a dump device from the system. Returns zero on success and
3228  * %-EINVAL otherwise.
3229  */
3230 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3231 {
3232 	unsigned long flags;
3233 	int err = -EINVAL;
3234 
3235 	spin_lock_irqsave(&dump_list_lock, flags);
3236 	if (dumper->registered) {
3237 		dumper->registered = 0;
3238 		list_del_rcu(&dumper->list);
3239 		err = 0;
3240 	}
3241 	spin_unlock_irqrestore(&dump_list_lock, flags);
3242 	synchronize_rcu();
3243 
3244 	return err;
3245 }
3246 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3247 
3248 static bool always_kmsg_dump;
3249 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3250 
3251 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3252 {
3253 	switch (reason) {
3254 	case KMSG_DUMP_PANIC:
3255 		return "Panic";
3256 	case KMSG_DUMP_OOPS:
3257 		return "Oops";
3258 	case KMSG_DUMP_EMERG:
3259 		return "Emergency";
3260 	case KMSG_DUMP_SHUTDOWN:
3261 		return "Shutdown";
3262 	default:
3263 		return "Unknown";
3264 	}
3265 }
3266 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3267 
3268 /**
3269  * kmsg_dump - dump kernel log to kernel message dumpers.
3270  * @reason: the reason (oops, panic etc) for dumping
3271  *
3272  * Call each of the registered dumper's dump() callback, which can
3273  * retrieve the kmsg records with kmsg_dump_get_line() or
3274  * kmsg_dump_get_buffer().
3275  */
3276 void kmsg_dump(enum kmsg_dump_reason reason)
3277 {
3278 	struct kmsg_dumper *dumper;
3279 	unsigned long flags;
3280 
3281 	rcu_read_lock();
3282 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3283 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3284 
3285 		/*
3286 		 * If client has not provided a specific max_reason, default
3287 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3288 		 */
3289 		if (max_reason == KMSG_DUMP_UNDEF) {
3290 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3291 							KMSG_DUMP_OOPS;
3292 		}
3293 		if (reason > max_reason)
3294 			continue;
3295 
3296 		/* initialize iterator with data about the stored records */
3297 		dumper->active = true;
3298 
3299 		logbuf_lock_irqsave(flags);
3300 		dumper->cur_seq = clear_seq;
3301 		dumper->next_seq = prb_next_seq(prb);
3302 		logbuf_unlock_irqrestore(flags);
3303 
3304 		/* invoke dumper which will iterate over records */
3305 		dumper->dump(dumper, reason);
3306 
3307 		/* reset iterator */
3308 		dumper->active = false;
3309 	}
3310 	rcu_read_unlock();
3311 }
3312 
3313 /**
3314  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3315  * @dumper: registered kmsg dumper
3316  * @syslog: include the "<4>" prefixes
3317  * @line: buffer to copy the line to
3318  * @size: maximum size of the buffer
3319  * @len: length of line placed into buffer
3320  *
3321  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3322  * record, and copy one record into the provided buffer.
3323  *
3324  * Consecutive calls will return the next available record moving
3325  * towards the end of the buffer with the youngest messages.
3326  *
3327  * A return value of FALSE indicates that there are no more records to
3328  * read.
3329  *
3330  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3331  */
3332 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3333 			       char *line, size_t size, size_t *len)
3334 {
3335 	struct printk_info info;
3336 	unsigned int line_count;
3337 	struct printk_record r;
3338 	size_t l = 0;
3339 	bool ret = false;
3340 
3341 	prb_rec_init_rd(&r, &info, line, size);
3342 
3343 	if (!dumper->active)
3344 		goto out;
3345 
3346 	/* Read text or count text lines? */
3347 	if (line) {
3348 		if (!prb_read_valid(prb, dumper->cur_seq, &r))
3349 			goto out;
3350 		l = record_print_text(&r, syslog, printk_time);
3351 	} else {
3352 		if (!prb_read_valid_info(prb, dumper->cur_seq,
3353 					 &info, &line_count)) {
3354 			goto out;
3355 		}
3356 		l = get_record_print_text_size(&info, line_count, syslog,
3357 					       printk_time);
3358 
3359 	}
3360 
3361 	dumper->cur_seq = r.info->seq + 1;
3362 	ret = true;
3363 out:
3364 	if (len)
3365 		*len = l;
3366 	return ret;
3367 }
3368 
3369 /**
3370  * kmsg_dump_get_line - retrieve one kmsg log line
3371  * @dumper: registered kmsg dumper
3372  * @syslog: include the "<4>" prefixes
3373  * @line: buffer to copy the line to
3374  * @size: maximum size of the buffer
3375  * @len: length of line placed into buffer
3376  *
3377  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3378  * record, and copy one record into the provided buffer.
3379  *
3380  * Consecutive calls will return the next available record moving
3381  * towards the end of the buffer with the youngest messages.
3382  *
3383  * A return value of FALSE indicates that there are no more records to
3384  * read.
3385  */
3386 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3387 			char *line, size_t size, size_t *len)
3388 {
3389 	unsigned long flags;
3390 	bool ret;
3391 
3392 	logbuf_lock_irqsave(flags);
3393 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3394 	logbuf_unlock_irqrestore(flags);
3395 
3396 	return ret;
3397 }
3398 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3399 
3400 /**
3401  * kmsg_dump_get_buffer - copy kmsg log lines
3402  * @dumper: registered kmsg dumper
3403  * @syslog: include the "<4>" prefixes
3404  * @buf: buffer to copy the line to
3405  * @size: maximum size of the buffer
3406  * @len: length of line placed into buffer
3407  *
3408  * Start at the end of the kmsg buffer and fill the provided buffer
3409  * with as many of the *youngest* kmsg records that fit into it.
3410  * If the buffer is large enough, all available kmsg records will be
3411  * copied with a single call.
3412  *
3413  * Consecutive calls will fill the buffer with the next block of
3414  * available older records, not including the earlier retrieved ones.
3415  *
3416  * A return value of FALSE indicates that there are no more records to
3417  * read.
3418  */
3419 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3420 			  char *buf, size_t size, size_t *len)
3421 {
3422 	struct printk_info info;
3423 	unsigned int line_count;
3424 	struct printk_record r;
3425 	unsigned long flags;
3426 	u64 seq;
3427 	u64 next_seq;
3428 	size_t l = 0;
3429 	bool ret = false;
3430 	bool time = printk_time;
3431 
3432 	prb_rec_init_rd(&r, &info, buf, size);
3433 
3434 	if (!dumper->active || !buf || !size)
3435 		goto out;
3436 
3437 	logbuf_lock_irqsave(flags);
3438 	if (prb_read_valid_info(prb, dumper->cur_seq, &info, NULL)) {
3439 		if (info.seq != dumper->cur_seq) {
3440 			/* messages are gone, move to first available one */
3441 			dumper->cur_seq = info.seq;
3442 		}
3443 	}
3444 
3445 	/* last entry */
3446 	if (dumper->cur_seq >= dumper->next_seq) {
3447 		logbuf_unlock_irqrestore(flags);
3448 		goto out;
3449 	}
3450 
3451 	/* calculate length of entire buffer */
3452 	seq = dumper->cur_seq;
3453 	while (prb_read_valid_info(prb, seq, &info, &line_count)) {
3454 		if (r.info->seq >= dumper->next_seq)
3455 			break;
3456 		l += get_record_print_text_size(&info, line_count, syslog, time);
3457 		seq = r.info->seq + 1;
3458 	}
3459 
3460 	/* move first record forward until length fits into the buffer */
3461 	seq = dumper->cur_seq;
3462 	while (l >= size && prb_read_valid_info(prb, seq,
3463 						&info, &line_count)) {
3464 		if (r.info->seq >= dumper->next_seq)
3465 			break;
3466 		l -= get_record_print_text_size(&info, line_count, syslog, time);
3467 		seq = r.info->seq + 1;
3468 	}
3469 
3470 	/* last message in next interation */
3471 	next_seq = seq;
3472 
3473 	/* actually read text into the buffer now */
3474 	l = 0;
3475 	while (prb_read_valid(prb, seq, &r)) {
3476 		if (r.info->seq >= dumper->next_seq)
3477 			break;
3478 
3479 		l += record_print_text(&r, syslog, time);
3480 
3481 		/* adjust record to store to remaining buffer space */
3482 		prb_rec_init_rd(&r, &info, buf + l, size - l);
3483 
3484 		seq = r.info->seq + 1;
3485 	}
3486 
3487 	dumper->next_seq = next_seq;
3488 	ret = true;
3489 	logbuf_unlock_irqrestore(flags);
3490 out:
3491 	if (len)
3492 		*len = l;
3493 	return ret;
3494 }
3495 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3496 
3497 /**
3498  * kmsg_dump_rewind_nolock - reset the iterator (unlocked version)
3499  * @dumper: registered kmsg dumper
3500  *
3501  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3502  * kmsg_dump_get_buffer() can be called again and used multiple
3503  * times within the same dumper.dump() callback.
3504  *
3505  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3506  */
3507 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3508 {
3509 	dumper->cur_seq = clear_seq;
3510 	dumper->next_seq = prb_next_seq(prb);
3511 }
3512 
3513 /**
3514  * kmsg_dump_rewind - reset the iterator
3515  * @dumper: registered kmsg dumper
3516  *
3517  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3518  * kmsg_dump_get_buffer() can be called again and used multiple
3519  * times within the same dumper.dump() callback.
3520  */
3521 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3522 {
3523 	unsigned long flags;
3524 
3525 	logbuf_lock_irqsave(flags);
3526 	kmsg_dump_rewind_nolock(dumper);
3527 	logbuf_unlock_irqrestore(flags);
3528 }
3529 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3530 
3531 #endif
3532