xref: /linux/kernel/printk/printk.c (revision 9e56ff53b4115875667760445b028357848b4748)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
75 
76 /*
77  * Low level drivers may need that to know if they can schedule in
78  * their unblank() callback or not. So let's export it.
79  */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82 
83 /*
84  * console_mutex protects console_list updates and console->flags updates.
85  * The flags are synchronized only for consoles that are registered, i.e.
86  * accessible via the console list.
87  */
88 static DEFINE_MUTEX(console_mutex);
89 
90 /*
91  * console_sem protects updates to console->seq
92  * and also provides serialization for console printing.
93  */
94 static DEFINE_SEMAPHORE(console_sem, 1);
95 HLIST_HEAD(console_list);
96 EXPORT_SYMBOL_GPL(console_list);
97 DEFINE_STATIC_SRCU(console_srcu);
98 
99 /*
100  * System may need to suppress printk message under certain
101  * circumstances, like after kernel panic happens.
102  */
103 int __read_mostly suppress_printk;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lockdep_map console_lock_dep_map = {
107 	.name = "console_lock"
108 };
109 
110 void lockdep_assert_console_list_lock_held(void)
111 {
112 	lockdep_assert_held(&console_mutex);
113 }
114 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
115 #endif
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 bool console_srcu_read_lock_is_held(void)
119 {
120 	return srcu_read_lock_held(&console_srcu);
121 }
122 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
123 #endif
124 
125 enum devkmsg_log_bits {
126 	__DEVKMSG_LOG_BIT_ON = 0,
127 	__DEVKMSG_LOG_BIT_OFF,
128 	__DEVKMSG_LOG_BIT_LOCK,
129 };
130 
131 enum devkmsg_log_masks {
132 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
133 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
134 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
135 };
136 
137 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
138 #define DEVKMSG_LOG_MASK_DEFAULT	0
139 
140 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 
142 static int __control_devkmsg(char *str)
143 {
144 	size_t len;
145 
146 	if (!str)
147 		return -EINVAL;
148 
149 	len = str_has_prefix(str, "on");
150 	if (len) {
151 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
152 		return len;
153 	}
154 
155 	len = str_has_prefix(str, "off");
156 	if (len) {
157 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
158 		return len;
159 	}
160 
161 	len = str_has_prefix(str, "ratelimit");
162 	if (len) {
163 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
164 		return len;
165 	}
166 
167 	return -EINVAL;
168 }
169 
170 static int __init control_devkmsg(char *str)
171 {
172 	if (__control_devkmsg(str) < 0) {
173 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
174 		return 1;
175 	}
176 
177 	/*
178 	 * Set sysctl string accordingly:
179 	 */
180 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
181 		strcpy(devkmsg_log_str, "on");
182 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
183 		strcpy(devkmsg_log_str, "off");
184 	/* else "ratelimit" which is set by default. */
185 
186 	/*
187 	 * Sysctl cannot change it anymore. The kernel command line setting of
188 	 * this parameter is to force the setting to be permanent throughout the
189 	 * runtime of the system. This is a precation measure against userspace
190 	 * trying to be a smarta** and attempting to change it up on us.
191 	 */
192 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
193 
194 	return 1;
195 }
196 __setup("printk.devkmsg=", control_devkmsg);
197 
198 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
199 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
200 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
201 			      void *buffer, size_t *lenp, loff_t *ppos)
202 {
203 	char old_str[DEVKMSG_STR_MAX_SIZE];
204 	unsigned int old;
205 	int err;
206 
207 	if (write) {
208 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
209 			return -EINVAL;
210 
211 		old = devkmsg_log;
212 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
213 	}
214 
215 	err = proc_dostring(table, write, buffer, lenp, ppos);
216 	if (err)
217 		return err;
218 
219 	if (write) {
220 		err = __control_devkmsg(devkmsg_log_str);
221 
222 		/*
223 		 * Do not accept an unknown string OR a known string with
224 		 * trailing crap...
225 		 */
226 		if (err < 0 || (err + 1 != *lenp)) {
227 
228 			/* ... and restore old setting. */
229 			devkmsg_log = old;
230 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
231 
232 			return -EINVAL;
233 		}
234 	}
235 
236 	return 0;
237 }
238 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
239 
240 /**
241  * console_list_lock - Lock the console list
242  *
243  * For console list or console->flags updates
244  */
245 void console_list_lock(void)
246 {
247 	/*
248 	 * In unregister_console() and console_force_preferred_locked(),
249 	 * synchronize_srcu() is called with the console_list_lock held.
250 	 * Therefore it is not allowed that the console_list_lock is taken
251 	 * with the srcu_lock held.
252 	 *
253 	 * Detecting if this context is really in the read-side critical
254 	 * section is only possible if the appropriate debug options are
255 	 * enabled.
256 	 */
257 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
258 		     srcu_read_lock_held(&console_srcu));
259 
260 	mutex_lock(&console_mutex);
261 }
262 EXPORT_SYMBOL(console_list_lock);
263 
264 /**
265  * console_list_unlock - Unlock the console list
266  *
267  * Counterpart to console_list_lock()
268  */
269 void console_list_unlock(void)
270 {
271 	mutex_unlock(&console_mutex);
272 }
273 EXPORT_SYMBOL(console_list_unlock);
274 
275 /**
276  * console_srcu_read_lock - Register a new reader for the
277  *	SRCU-protected console list
278  *
279  * Use for_each_console_srcu() to iterate the console list
280  *
281  * Context: Any context.
282  * Return: A cookie to pass to console_srcu_read_unlock().
283  */
284 int console_srcu_read_lock(void)
285 {
286 	return srcu_read_lock_nmisafe(&console_srcu);
287 }
288 EXPORT_SYMBOL(console_srcu_read_lock);
289 
290 /**
291  * console_srcu_read_unlock - Unregister an old reader from
292  *	the SRCU-protected console list
293  * @cookie: cookie returned from console_srcu_read_lock()
294  *
295  * Counterpart to console_srcu_read_lock()
296  */
297 void console_srcu_read_unlock(int cookie)
298 {
299 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
300 }
301 EXPORT_SYMBOL(console_srcu_read_unlock);
302 
303 /*
304  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
305  * macros instead of functions so that _RET_IP_ contains useful information.
306  */
307 #define down_console_sem() do { \
308 	down(&console_sem);\
309 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
310 } while (0)
311 
312 static int __down_trylock_console_sem(unsigned long ip)
313 {
314 	int lock_failed;
315 	unsigned long flags;
316 
317 	/*
318 	 * Here and in __up_console_sem() we need to be in safe mode,
319 	 * because spindump/WARN/etc from under console ->lock will
320 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
321 	 */
322 	printk_safe_enter_irqsave(flags);
323 	lock_failed = down_trylock(&console_sem);
324 	printk_safe_exit_irqrestore(flags);
325 
326 	if (lock_failed)
327 		return 1;
328 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
329 	return 0;
330 }
331 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
332 
333 static void __up_console_sem(unsigned long ip)
334 {
335 	unsigned long flags;
336 
337 	mutex_release(&console_lock_dep_map, ip);
338 
339 	printk_safe_enter_irqsave(flags);
340 	up(&console_sem);
341 	printk_safe_exit_irqrestore(flags);
342 }
343 #define up_console_sem() __up_console_sem(_RET_IP_)
344 
345 static bool panic_in_progress(void)
346 {
347 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
348 }
349 
350 /*
351  * This is used for debugging the mess that is the VT code by
352  * keeping track if we have the console semaphore held. It's
353  * definitely not the perfect debug tool (we don't know if _WE_
354  * hold it and are racing, but it helps tracking those weird code
355  * paths in the console code where we end up in places I want
356  * locked without the console semaphore held).
357  */
358 static int console_locked;
359 
360 /*
361  *	Array of consoles built from command line options (console=)
362  */
363 
364 #define MAX_CMDLINECONSOLES 8
365 
366 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
367 
368 static int preferred_console = -1;
369 int console_set_on_cmdline;
370 EXPORT_SYMBOL(console_set_on_cmdline);
371 
372 /* Flag: console code may call schedule() */
373 static int console_may_schedule;
374 
375 enum con_msg_format_flags {
376 	MSG_FORMAT_DEFAULT	= 0,
377 	MSG_FORMAT_SYSLOG	= (1 << 0),
378 };
379 
380 static int console_msg_format = MSG_FORMAT_DEFAULT;
381 
382 /*
383  * The printk log buffer consists of a sequenced collection of records, each
384  * containing variable length message text. Every record also contains its
385  * own meta-data (@info).
386  *
387  * Every record meta-data carries the timestamp in microseconds, as well as
388  * the standard userspace syslog level and syslog facility. The usual kernel
389  * messages use LOG_KERN; userspace-injected messages always carry a matching
390  * syslog facility, by default LOG_USER. The origin of every message can be
391  * reliably determined that way.
392  *
393  * The human readable log message of a record is available in @text, the
394  * length of the message text in @text_len. The stored message is not
395  * terminated.
396  *
397  * Optionally, a record can carry a dictionary of properties (key/value
398  * pairs), to provide userspace with a machine-readable message context.
399  *
400  * Examples for well-defined, commonly used property names are:
401  *   DEVICE=b12:8               device identifier
402  *                                b12:8         block dev_t
403  *                                c127:3        char dev_t
404  *                                n8            netdev ifindex
405  *                                +sound:card0  subsystem:devname
406  *   SUBSYSTEM=pci              driver-core subsystem name
407  *
408  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
409  * and values are terminated by a '\0' character.
410  *
411  * Example of record values:
412  *   record.text_buf                = "it's a line" (unterminated)
413  *   record.info.seq                = 56
414  *   record.info.ts_nsec            = 36863
415  *   record.info.text_len           = 11
416  *   record.info.facility           = 0 (LOG_KERN)
417  *   record.info.flags              = 0
418  *   record.info.level              = 3 (LOG_ERR)
419  *   record.info.caller_id          = 299 (task 299)
420  *   record.info.dev_info.subsystem = "pci" (terminated)
421  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
422  *
423  * The 'struct printk_info' buffer must never be directly exported to
424  * userspace, it is a kernel-private implementation detail that might
425  * need to be changed in the future, when the requirements change.
426  *
427  * /dev/kmsg exports the structured data in the following line format:
428  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
429  *
430  * Users of the export format should ignore possible additional values
431  * separated by ',', and find the message after the ';' character.
432  *
433  * The optional key/value pairs are attached as continuation lines starting
434  * with a space character and terminated by a newline. All possible
435  * non-prinatable characters are escaped in the "\xff" notation.
436  */
437 
438 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
439 static DEFINE_MUTEX(syslog_lock);
440 
441 #ifdef CONFIG_PRINTK
442 /*
443  * During panic, heavy printk by other CPUs can delay the
444  * panic and risk deadlock on console resources.
445  */
446 static int __read_mostly suppress_panic_printk;
447 
448 DECLARE_WAIT_QUEUE_HEAD(log_wait);
449 /* All 3 protected by @syslog_lock. */
450 /* the next printk record to read by syslog(READ) or /proc/kmsg */
451 static u64 syslog_seq;
452 static size_t syslog_partial;
453 static bool syslog_time;
454 
455 struct latched_seq {
456 	seqcount_latch_t	latch;
457 	u64			val[2];
458 };
459 
460 /*
461  * The next printk record to read after the last 'clear' command. There are
462  * two copies (updated with seqcount_latch) so that reads can locklessly
463  * access a valid value. Writers are synchronized by @syslog_lock.
464  */
465 static struct latched_seq clear_seq = {
466 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
467 	.val[0]		= 0,
468 	.val[1]		= 0,
469 };
470 
471 #define LOG_LEVEL(v)		((v) & 0x07)
472 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
473 
474 /* record buffer */
475 #define LOG_ALIGN __alignof__(unsigned long)
476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
477 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
479 static char *log_buf = __log_buf;
480 static u32 log_buf_len = __LOG_BUF_LEN;
481 
482 /*
483  * Define the average message size. This only affects the number of
484  * descriptors that will be available. Underestimating is better than
485  * overestimating (too many available descriptors is better than not enough).
486  */
487 #define PRB_AVGBITS 5	/* 32 character average length */
488 
489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
490 #error CONFIG_LOG_BUF_SHIFT value too small.
491 #endif
492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
493 		 PRB_AVGBITS, &__log_buf[0]);
494 
495 static struct printk_ringbuffer printk_rb_dynamic;
496 
497 struct printk_ringbuffer *prb = &printk_rb_static;
498 
499 /*
500  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
501  * per_cpu_areas are initialised. This variable is set to true when
502  * it's safe to access per-CPU data.
503  */
504 static bool __printk_percpu_data_ready __ro_after_init;
505 
506 bool printk_percpu_data_ready(void)
507 {
508 	return __printk_percpu_data_ready;
509 }
510 
511 /* Must be called under syslog_lock. */
512 static void latched_seq_write(struct latched_seq *ls, u64 val)
513 {
514 	raw_write_seqcount_latch(&ls->latch);
515 	ls->val[0] = val;
516 	raw_write_seqcount_latch(&ls->latch);
517 	ls->val[1] = val;
518 }
519 
520 /* Can be called from any context. */
521 static u64 latched_seq_read_nolock(struct latched_seq *ls)
522 {
523 	unsigned int seq;
524 	unsigned int idx;
525 	u64 val;
526 
527 	do {
528 		seq = raw_read_seqcount_latch(&ls->latch);
529 		idx = seq & 0x1;
530 		val = ls->val[idx];
531 	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
532 
533 	return val;
534 }
535 
536 /* Return log buffer address */
537 char *log_buf_addr_get(void)
538 {
539 	return log_buf;
540 }
541 
542 /* Return log buffer size */
543 u32 log_buf_len_get(void)
544 {
545 	return log_buf_len;
546 }
547 
548 /*
549  * Define how much of the log buffer we could take at maximum. The value
550  * must be greater than two. Note that only half of the buffer is available
551  * when the index points to the middle.
552  */
553 #define MAX_LOG_TAKE_PART 4
554 static const char trunc_msg[] = "<truncated>";
555 
556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
557 {
558 	/*
559 	 * The message should not take the whole buffer. Otherwise, it might
560 	 * get removed too soon.
561 	 */
562 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
563 
564 	if (*text_len > max_text_len)
565 		*text_len = max_text_len;
566 
567 	/* enable the warning message (if there is room) */
568 	*trunc_msg_len = strlen(trunc_msg);
569 	if (*text_len >= *trunc_msg_len)
570 		*text_len -= *trunc_msg_len;
571 	else
572 		*trunc_msg_len = 0;
573 }
574 
575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
576 
577 static int syslog_action_restricted(int type)
578 {
579 	if (dmesg_restrict)
580 		return 1;
581 	/*
582 	 * Unless restricted, we allow "read all" and "get buffer size"
583 	 * for everybody.
584 	 */
585 	return type != SYSLOG_ACTION_READ_ALL &&
586 	       type != SYSLOG_ACTION_SIZE_BUFFER;
587 }
588 
589 static int check_syslog_permissions(int type, int source)
590 {
591 	/*
592 	 * If this is from /proc/kmsg and we've already opened it, then we've
593 	 * already done the capabilities checks at open time.
594 	 */
595 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
596 		goto ok;
597 
598 	if (syslog_action_restricted(type)) {
599 		if (capable(CAP_SYSLOG))
600 			goto ok;
601 		/*
602 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
603 		 * a warning.
604 		 */
605 		if (capable(CAP_SYS_ADMIN)) {
606 			pr_warn_once("%s (%d): Attempt to access syslog with "
607 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
608 				     "(deprecated).\n",
609 				 current->comm, task_pid_nr(current));
610 			goto ok;
611 		}
612 		return -EPERM;
613 	}
614 ok:
615 	return security_syslog(type);
616 }
617 
618 static void append_char(char **pp, char *e, char c)
619 {
620 	if (*pp < e)
621 		*(*pp)++ = c;
622 }
623 
624 static ssize_t info_print_ext_header(char *buf, size_t size,
625 				     struct printk_info *info)
626 {
627 	u64 ts_usec = info->ts_nsec;
628 	char caller[20];
629 #ifdef CONFIG_PRINTK_CALLER
630 	u32 id = info->caller_id;
631 
632 	snprintf(caller, sizeof(caller), ",caller=%c%u",
633 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
634 #else
635 	caller[0] = '\0';
636 #endif
637 
638 	do_div(ts_usec, 1000);
639 
640 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
641 			 (info->facility << 3) | info->level, info->seq,
642 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
643 }
644 
645 static ssize_t msg_add_ext_text(char *buf, size_t size,
646 				const char *text, size_t text_len,
647 				unsigned char endc)
648 {
649 	char *p = buf, *e = buf + size;
650 	size_t i;
651 
652 	/* escape non-printable characters */
653 	for (i = 0; i < text_len; i++) {
654 		unsigned char c = text[i];
655 
656 		if (c < ' ' || c >= 127 || c == '\\')
657 			p += scnprintf(p, e - p, "\\x%02x", c);
658 		else
659 			append_char(&p, e, c);
660 	}
661 	append_char(&p, e, endc);
662 
663 	return p - buf;
664 }
665 
666 static ssize_t msg_add_dict_text(char *buf, size_t size,
667 				 const char *key, const char *val)
668 {
669 	size_t val_len = strlen(val);
670 	ssize_t len;
671 
672 	if (!val_len)
673 		return 0;
674 
675 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
676 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
677 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
678 
679 	return len;
680 }
681 
682 static ssize_t msg_print_ext_body(char *buf, size_t size,
683 				  char *text, size_t text_len,
684 				  struct dev_printk_info *dev_info)
685 {
686 	ssize_t len;
687 
688 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
689 
690 	if (!dev_info)
691 		goto out;
692 
693 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
694 				 dev_info->subsystem);
695 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
696 				 dev_info->device);
697 out:
698 	return len;
699 }
700 
701 /* /dev/kmsg - userspace message inject/listen interface */
702 struct devkmsg_user {
703 	atomic64_t seq;
704 	struct ratelimit_state rs;
705 	struct mutex lock;
706 	struct printk_buffers pbufs;
707 };
708 
709 static __printf(3, 4) __cold
710 int devkmsg_emit(int facility, int level, const char *fmt, ...)
711 {
712 	va_list args;
713 	int r;
714 
715 	va_start(args, fmt);
716 	r = vprintk_emit(facility, level, NULL, fmt, args);
717 	va_end(args);
718 
719 	return r;
720 }
721 
722 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
723 {
724 	char *buf, *line;
725 	int level = default_message_loglevel;
726 	int facility = 1;	/* LOG_USER */
727 	struct file *file = iocb->ki_filp;
728 	struct devkmsg_user *user = file->private_data;
729 	size_t len = iov_iter_count(from);
730 	ssize_t ret = len;
731 
732 	if (len > PRINTKRB_RECORD_MAX)
733 		return -EINVAL;
734 
735 	/* Ignore when user logging is disabled. */
736 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
737 		return len;
738 
739 	/* Ratelimit when not explicitly enabled. */
740 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
741 		if (!___ratelimit(&user->rs, current->comm))
742 			return ret;
743 	}
744 
745 	buf = kmalloc(len+1, GFP_KERNEL);
746 	if (buf == NULL)
747 		return -ENOMEM;
748 
749 	buf[len] = '\0';
750 	if (!copy_from_iter_full(buf, len, from)) {
751 		kfree(buf);
752 		return -EFAULT;
753 	}
754 
755 	/*
756 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
757 	 * the decimal value represents 32bit, the lower 3 bit are the log
758 	 * level, the rest are the log facility.
759 	 *
760 	 * If no prefix or no userspace facility is specified, we
761 	 * enforce LOG_USER, to be able to reliably distinguish
762 	 * kernel-generated messages from userspace-injected ones.
763 	 */
764 	line = buf;
765 	if (line[0] == '<') {
766 		char *endp = NULL;
767 		unsigned int u;
768 
769 		u = simple_strtoul(line + 1, &endp, 10);
770 		if (endp && endp[0] == '>') {
771 			level = LOG_LEVEL(u);
772 			if (LOG_FACILITY(u) != 0)
773 				facility = LOG_FACILITY(u);
774 			endp++;
775 			line = endp;
776 		}
777 	}
778 
779 	devkmsg_emit(facility, level, "%s", line);
780 	kfree(buf);
781 	return ret;
782 }
783 
784 static ssize_t devkmsg_read(struct file *file, char __user *buf,
785 			    size_t count, loff_t *ppos)
786 {
787 	struct devkmsg_user *user = file->private_data;
788 	char *outbuf = &user->pbufs.outbuf[0];
789 	struct printk_message pmsg = {
790 		.pbufs = &user->pbufs,
791 	};
792 	ssize_t ret;
793 
794 	ret = mutex_lock_interruptible(&user->lock);
795 	if (ret)
796 		return ret;
797 
798 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
799 		if (file->f_flags & O_NONBLOCK) {
800 			ret = -EAGAIN;
801 			goto out;
802 		}
803 
804 		/*
805 		 * Guarantee this task is visible on the waitqueue before
806 		 * checking the wake condition.
807 		 *
808 		 * The full memory barrier within set_current_state() of
809 		 * prepare_to_wait_event() pairs with the full memory barrier
810 		 * within wq_has_sleeper().
811 		 *
812 		 * This pairs with __wake_up_klogd:A.
813 		 */
814 		ret = wait_event_interruptible(log_wait,
815 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
816 							false)); /* LMM(devkmsg_read:A) */
817 		if (ret)
818 			goto out;
819 	}
820 
821 	if (pmsg.dropped) {
822 		/* our last seen message is gone, return error and reset */
823 		atomic64_set(&user->seq, pmsg.seq);
824 		ret = -EPIPE;
825 		goto out;
826 	}
827 
828 	atomic64_set(&user->seq, pmsg.seq + 1);
829 
830 	if (pmsg.outbuf_len > count) {
831 		ret = -EINVAL;
832 		goto out;
833 	}
834 
835 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
836 		ret = -EFAULT;
837 		goto out;
838 	}
839 	ret = pmsg.outbuf_len;
840 out:
841 	mutex_unlock(&user->lock);
842 	return ret;
843 }
844 
845 /*
846  * Be careful when modifying this function!!!
847  *
848  * Only few operations are supported because the device works only with the
849  * entire variable length messages (records). Non-standard values are
850  * returned in the other cases and has been this way for quite some time.
851  * User space applications might depend on this behavior.
852  */
853 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
854 {
855 	struct devkmsg_user *user = file->private_data;
856 	loff_t ret = 0;
857 
858 	if (offset)
859 		return -ESPIPE;
860 
861 	switch (whence) {
862 	case SEEK_SET:
863 		/* the first record */
864 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
865 		break;
866 	case SEEK_DATA:
867 		/*
868 		 * The first record after the last SYSLOG_ACTION_CLEAR,
869 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
870 		 * changes no global state, and does not clear anything.
871 		 */
872 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
873 		break;
874 	case SEEK_END:
875 		/* after the last record */
876 		atomic64_set(&user->seq, prb_next_seq(prb));
877 		break;
878 	default:
879 		ret = -EINVAL;
880 	}
881 	return ret;
882 }
883 
884 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
885 {
886 	struct devkmsg_user *user = file->private_data;
887 	struct printk_info info;
888 	__poll_t ret = 0;
889 
890 	poll_wait(file, &log_wait, wait);
891 
892 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
893 		/* return error when data has vanished underneath us */
894 		if (info.seq != atomic64_read(&user->seq))
895 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
896 		else
897 			ret = EPOLLIN|EPOLLRDNORM;
898 	}
899 
900 	return ret;
901 }
902 
903 static int devkmsg_open(struct inode *inode, struct file *file)
904 {
905 	struct devkmsg_user *user;
906 	int err;
907 
908 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
909 		return -EPERM;
910 
911 	/* write-only does not need any file context */
912 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
913 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
914 					       SYSLOG_FROM_READER);
915 		if (err)
916 			return err;
917 	}
918 
919 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
920 	if (!user)
921 		return -ENOMEM;
922 
923 	ratelimit_default_init(&user->rs);
924 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
925 
926 	mutex_init(&user->lock);
927 
928 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
929 
930 	file->private_data = user;
931 	return 0;
932 }
933 
934 static int devkmsg_release(struct inode *inode, struct file *file)
935 {
936 	struct devkmsg_user *user = file->private_data;
937 
938 	ratelimit_state_exit(&user->rs);
939 
940 	mutex_destroy(&user->lock);
941 	kvfree(user);
942 	return 0;
943 }
944 
945 const struct file_operations kmsg_fops = {
946 	.open = devkmsg_open,
947 	.read = devkmsg_read,
948 	.write_iter = devkmsg_write,
949 	.llseek = devkmsg_llseek,
950 	.poll = devkmsg_poll,
951 	.release = devkmsg_release,
952 };
953 
954 #ifdef CONFIG_CRASH_CORE
955 /*
956  * This appends the listed symbols to /proc/vmcore
957  *
958  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
959  * obtain access to symbols that are otherwise very difficult to locate.  These
960  * symbols are specifically used so that utilities can access and extract the
961  * dmesg log from a vmcore file after a crash.
962  */
963 void log_buf_vmcoreinfo_setup(void)
964 {
965 	struct dev_printk_info *dev_info = NULL;
966 
967 	VMCOREINFO_SYMBOL(prb);
968 	VMCOREINFO_SYMBOL(printk_rb_static);
969 	VMCOREINFO_SYMBOL(clear_seq);
970 
971 	/*
972 	 * Export struct size and field offsets. User space tools can
973 	 * parse it and detect any changes to structure down the line.
974 	 */
975 
976 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
977 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
978 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
979 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
980 
981 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
982 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
983 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
984 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
985 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
986 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
987 
988 	VMCOREINFO_STRUCT_SIZE(prb_desc);
989 	VMCOREINFO_OFFSET(prb_desc, state_var);
990 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
991 
992 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
993 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
994 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
995 
996 	VMCOREINFO_STRUCT_SIZE(printk_info);
997 	VMCOREINFO_OFFSET(printk_info, seq);
998 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
999 	VMCOREINFO_OFFSET(printk_info, text_len);
1000 	VMCOREINFO_OFFSET(printk_info, caller_id);
1001 	VMCOREINFO_OFFSET(printk_info, dev_info);
1002 
1003 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1004 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1005 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1006 	VMCOREINFO_OFFSET(dev_printk_info, device);
1007 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1008 
1009 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1010 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1011 	VMCOREINFO_OFFSET(prb_data_ring, data);
1012 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1013 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1014 
1015 	VMCOREINFO_SIZE(atomic_long_t);
1016 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1017 
1018 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1019 	VMCOREINFO_OFFSET(latched_seq, val);
1020 }
1021 #endif
1022 
1023 /* requested log_buf_len from kernel cmdline */
1024 static unsigned long __initdata new_log_buf_len;
1025 
1026 /* we practice scaling the ring buffer by powers of 2 */
1027 static void __init log_buf_len_update(u64 size)
1028 {
1029 	if (size > (u64)LOG_BUF_LEN_MAX) {
1030 		size = (u64)LOG_BUF_LEN_MAX;
1031 		pr_err("log_buf over 2G is not supported.\n");
1032 	}
1033 
1034 	if (size)
1035 		size = roundup_pow_of_two(size);
1036 	if (size > log_buf_len)
1037 		new_log_buf_len = (unsigned long)size;
1038 }
1039 
1040 /* save requested log_buf_len since it's too early to process it */
1041 static int __init log_buf_len_setup(char *str)
1042 {
1043 	u64 size;
1044 
1045 	if (!str)
1046 		return -EINVAL;
1047 
1048 	size = memparse(str, &str);
1049 
1050 	log_buf_len_update(size);
1051 
1052 	return 0;
1053 }
1054 early_param("log_buf_len", log_buf_len_setup);
1055 
1056 #ifdef CONFIG_SMP
1057 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1058 
1059 static void __init log_buf_add_cpu(void)
1060 {
1061 	unsigned int cpu_extra;
1062 
1063 	/*
1064 	 * archs should set up cpu_possible_bits properly with
1065 	 * set_cpu_possible() after setup_arch() but just in
1066 	 * case lets ensure this is valid.
1067 	 */
1068 	if (num_possible_cpus() == 1)
1069 		return;
1070 
1071 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1072 
1073 	/* by default this will only continue through for large > 64 CPUs */
1074 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1075 		return;
1076 
1077 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1078 		__LOG_CPU_MAX_BUF_LEN);
1079 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1080 		cpu_extra);
1081 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1082 
1083 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1084 }
1085 #else /* !CONFIG_SMP */
1086 static inline void log_buf_add_cpu(void) {}
1087 #endif /* CONFIG_SMP */
1088 
1089 static void __init set_percpu_data_ready(void)
1090 {
1091 	__printk_percpu_data_ready = true;
1092 }
1093 
1094 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1095 				     struct printk_record *r)
1096 {
1097 	struct prb_reserved_entry e;
1098 	struct printk_record dest_r;
1099 
1100 	prb_rec_init_wr(&dest_r, r->info->text_len);
1101 
1102 	if (!prb_reserve(&e, rb, &dest_r))
1103 		return 0;
1104 
1105 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1106 	dest_r.info->text_len = r->info->text_len;
1107 	dest_r.info->facility = r->info->facility;
1108 	dest_r.info->level = r->info->level;
1109 	dest_r.info->flags = r->info->flags;
1110 	dest_r.info->ts_nsec = r->info->ts_nsec;
1111 	dest_r.info->caller_id = r->info->caller_id;
1112 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1113 
1114 	prb_final_commit(&e);
1115 
1116 	return prb_record_text_space(&e);
1117 }
1118 
1119 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1120 
1121 void __init setup_log_buf(int early)
1122 {
1123 	struct printk_info *new_infos;
1124 	unsigned int new_descs_count;
1125 	struct prb_desc *new_descs;
1126 	struct printk_info info;
1127 	struct printk_record r;
1128 	unsigned int text_size;
1129 	size_t new_descs_size;
1130 	size_t new_infos_size;
1131 	unsigned long flags;
1132 	char *new_log_buf;
1133 	unsigned int free;
1134 	u64 seq;
1135 
1136 	/*
1137 	 * Some archs call setup_log_buf() multiple times - first is very
1138 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1139 	 * are initialised.
1140 	 */
1141 	if (!early)
1142 		set_percpu_data_ready();
1143 
1144 	if (log_buf != __log_buf)
1145 		return;
1146 
1147 	if (!early && !new_log_buf_len)
1148 		log_buf_add_cpu();
1149 
1150 	if (!new_log_buf_len)
1151 		return;
1152 
1153 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1154 	if (new_descs_count == 0) {
1155 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1156 		return;
1157 	}
1158 
1159 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1160 	if (unlikely(!new_log_buf)) {
1161 		pr_err("log_buf_len: %lu text bytes not available\n",
1162 		       new_log_buf_len);
1163 		return;
1164 	}
1165 
1166 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1167 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1168 	if (unlikely(!new_descs)) {
1169 		pr_err("log_buf_len: %zu desc bytes not available\n",
1170 		       new_descs_size);
1171 		goto err_free_log_buf;
1172 	}
1173 
1174 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1175 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1176 	if (unlikely(!new_infos)) {
1177 		pr_err("log_buf_len: %zu info bytes not available\n",
1178 		       new_infos_size);
1179 		goto err_free_descs;
1180 	}
1181 
1182 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1183 
1184 	prb_init(&printk_rb_dynamic,
1185 		 new_log_buf, ilog2(new_log_buf_len),
1186 		 new_descs, ilog2(new_descs_count),
1187 		 new_infos);
1188 
1189 	local_irq_save(flags);
1190 
1191 	log_buf_len = new_log_buf_len;
1192 	log_buf = new_log_buf;
1193 	new_log_buf_len = 0;
1194 
1195 	free = __LOG_BUF_LEN;
1196 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1197 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1198 		if (text_size > free)
1199 			free = 0;
1200 		else
1201 			free -= text_size;
1202 	}
1203 
1204 	prb = &printk_rb_dynamic;
1205 
1206 	local_irq_restore(flags);
1207 
1208 	/*
1209 	 * Copy any remaining messages that might have appeared from
1210 	 * NMI context after copying but before switching to the
1211 	 * dynamic buffer.
1212 	 */
1213 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1214 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1215 		if (text_size > free)
1216 			free = 0;
1217 		else
1218 			free -= text_size;
1219 	}
1220 
1221 	if (seq != prb_next_seq(&printk_rb_static)) {
1222 		pr_err("dropped %llu messages\n",
1223 		       prb_next_seq(&printk_rb_static) - seq);
1224 	}
1225 
1226 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1227 	pr_info("early log buf free: %u(%u%%)\n",
1228 		free, (free * 100) / __LOG_BUF_LEN);
1229 	return;
1230 
1231 err_free_descs:
1232 	memblock_free(new_descs, new_descs_size);
1233 err_free_log_buf:
1234 	memblock_free(new_log_buf, new_log_buf_len);
1235 }
1236 
1237 static bool __read_mostly ignore_loglevel;
1238 
1239 static int __init ignore_loglevel_setup(char *str)
1240 {
1241 	ignore_loglevel = true;
1242 	pr_info("debug: ignoring loglevel setting.\n");
1243 
1244 	return 0;
1245 }
1246 
1247 early_param("ignore_loglevel", ignore_loglevel_setup);
1248 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1249 MODULE_PARM_DESC(ignore_loglevel,
1250 		 "ignore loglevel setting (prints all kernel messages to the console)");
1251 
1252 static bool suppress_message_printing(int level)
1253 {
1254 	return (level >= console_loglevel && !ignore_loglevel);
1255 }
1256 
1257 #ifdef CONFIG_BOOT_PRINTK_DELAY
1258 
1259 static int boot_delay; /* msecs delay after each printk during bootup */
1260 static unsigned long long loops_per_msec;	/* based on boot_delay */
1261 
1262 static int __init boot_delay_setup(char *str)
1263 {
1264 	unsigned long lpj;
1265 
1266 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1267 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1268 
1269 	get_option(&str, &boot_delay);
1270 	if (boot_delay > 10 * 1000)
1271 		boot_delay = 0;
1272 
1273 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1274 		"HZ: %d, loops_per_msec: %llu\n",
1275 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1276 	return 0;
1277 }
1278 early_param("boot_delay", boot_delay_setup);
1279 
1280 static void boot_delay_msec(int level)
1281 {
1282 	unsigned long long k;
1283 	unsigned long timeout;
1284 
1285 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1286 		|| suppress_message_printing(level)) {
1287 		return;
1288 	}
1289 
1290 	k = (unsigned long long)loops_per_msec * boot_delay;
1291 
1292 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1293 	while (k) {
1294 		k--;
1295 		cpu_relax();
1296 		/*
1297 		 * use (volatile) jiffies to prevent
1298 		 * compiler reduction; loop termination via jiffies
1299 		 * is secondary and may or may not happen.
1300 		 */
1301 		if (time_after(jiffies, timeout))
1302 			break;
1303 		touch_nmi_watchdog();
1304 	}
1305 }
1306 #else
1307 static inline void boot_delay_msec(int level)
1308 {
1309 }
1310 #endif
1311 
1312 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1313 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1314 
1315 static size_t print_syslog(unsigned int level, char *buf)
1316 {
1317 	return sprintf(buf, "<%u>", level);
1318 }
1319 
1320 static size_t print_time(u64 ts, char *buf)
1321 {
1322 	unsigned long rem_nsec = do_div(ts, 1000000000);
1323 
1324 	return sprintf(buf, "[%5lu.%06lu]",
1325 		       (unsigned long)ts, rem_nsec / 1000);
1326 }
1327 
1328 #ifdef CONFIG_PRINTK_CALLER
1329 static size_t print_caller(u32 id, char *buf)
1330 {
1331 	char caller[12];
1332 
1333 	snprintf(caller, sizeof(caller), "%c%u",
1334 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1335 	return sprintf(buf, "[%6s]", caller);
1336 }
1337 #else
1338 #define print_caller(id, buf) 0
1339 #endif
1340 
1341 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1342 				bool time, char *buf)
1343 {
1344 	size_t len = 0;
1345 
1346 	if (syslog)
1347 		len = print_syslog((info->facility << 3) | info->level, buf);
1348 
1349 	if (time)
1350 		len += print_time(info->ts_nsec, buf + len);
1351 
1352 	len += print_caller(info->caller_id, buf + len);
1353 
1354 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1355 		buf[len++] = ' ';
1356 		buf[len] = '\0';
1357 	}
1358 
1359 	return len;
1360 }
1361 
1362 /*
1363  * Prepare the record for printing. The text is shifted within the given
1364  * buffer to avoid a need for another one. The following operations are
1365  * done:
1366  *
1367  *   - Add prefix for each line.
1368  *   - Drop truncated lines that no longer fit into the buffer.
1369  *   - Add the trailing newline that has been removed in vprintk_store().
1370  *   - Add a string terminator.
1371  *
1372  * Since the produced string is always terminated, the maximum possible
1373  * return value is @r->text_buf_size - 1;
1374  *
1375  * Return: The length of the updated/prepared text, including the added
1376  * prefixes and the newline. The terminator is not counted. The dropped
1377  * line(s) are not counted.
1378  */
1379 static size_t record_print_text(struct printk_record *r, bool syslog,
1380 				bool time)
1381 {
1382 	size_t text_len = r->info->text_len;
1383 	size_t buf_size = r->text_buf_size;
1384 	char *text = r->text_buf;
1385 	char prefix[PRINTK_PREFIX_MAX];
1386 	bool truncated = false;
1387 	size_t prefix_len;
1388 	size_t line_len;
1389 	size_t len = 0;
1390 	char *next;
1391 
1392 	/*
1393 	 * If the message was truncated because the buffer was not large
1394 	 * enough, treat the available text as if it were the full text.
1395 	 */
1396 	if (text_len > buf_size)
1397 		text_len = buf_size;
1398 
1399 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1400 
1401 	/*
1402 	 * @text_len: bytes of unprocessed text
1403 	 * @line_len: bytes of current line _without_ newline
1404 	 * @text:     pointer to beginning of current line
1405 	 * @len:      number of bytes prepared in r->text_buf
1406 	 */
1407 	for (;;) {
1408 		next = memchr(text, '\n', text_len);
1409 		if (next) {
1410 			line_len = next - text;
1411 		} else {
1412 			/* Drop truncated line(s). */
1413 			if (truncated)
1414 				break;
1415 			line_len = text_len;
1416 		}
1417 
1418 		/*
1419 		 * Truncate the text if there is not enough space to add the
1420 		 * prefix and a trailing newline and a terminator.
1421 		 */
1422 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1423 			/* Drop even the current line if no space. */
1424 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1425 				break;
1426 
1427 			text_len = buf_size - len - prefix_len - 1 - 1;
1428 			truncated = true;
1429 		}
1430 
1431 		memmove(text + prefix_len, text, text_len);
1432 		memcpy(text, prefix, prefix_len);
1433 
1434 		/*
1435 		 * Increment the prepared length to include the text and
1436 		 * prefix that were just moved+copied. Also increment for the
1437 		 * newline at the end of this line. If this is the last line,
1438 		 * there is no newline, but it will be added immediately below.
1439 		 */
1440 		len += prefix_len + line_len + 1;
1441 		if (text_len == line_len) {
1442 			/*
1443 			 * This is the last line. Add the trailing newline
1444 			 * removed in vprintk_store().
1445 			 */
1446 			text[prefix_len + line_len] = '\n';
1447 			break;
1448 		}
1449 
1450 		/*
1451 		 * Advance beyond the added prefix and the related line with
1452 		 * its newline.
1453 		 */
1454 		text += prefix_len + line_len + 1;
1455 
1456 		/*
1457 		 * The remaining text has only decreased by the line with its
1458 		 * newline.
1459 		 *
1460 		 * Note that @text_len can become zero. It happens when @text
1461 		 * ended with a newline (either due to truncation or the
1462 		 * original string ending with "\n\n"). The loop is correctly
1463 		 * repeated and (if not truncated) an empty line with a prefix
1464 		 * will be prepared.
1465 		 */
1466 		text_len -= line_len + 1;
1467 	}
1468 
1469 	/*
1470 	 * If a buffer was provided, it will be terminated. Space for the
1471 	 * string terminator is guaranteed to be available. The terminator is
1472 	 * not counted in the return value.
1473 	 */
1474 	if (buf_size > 0)
1475 		r->text_buf[len] = 0;
1476 
1477 	return len;
1478 }
1479 
1480 static size_t get_record_print_text_size(struct printk_info *info,
1481 					 unsigned int line_count,
1482 					 bool syslog, bool time)
1483 {
1484 	char prefix[PRINTK_PREFIX_MAX];
1485 	size_t prefix_len;
1486 
1487 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1488 
1489 	/*
1490 	 * Each line will be preceded with a prefix. The intermediate
1491 	 * newlines are already within the text, but a final trailing
1492 	 * newline will be added.
1493 	 */
1494 	return ((prefix_len * line_count) + info->text_len + 1);
1495 }
1496 
1497 /*
1498  * Beginning with @start_seq, find the first record where it and all following
1499  * records up to (but not including) @max_seq fit into @size.
1500  *
1501  * @max_seq is simply an upper bound and does not need to exist. If the caller
1502  * does not require an upper bound, -1 can be used for @max_seq.
1503  */
1504 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1505 				  bool syslog, bool time)
1506 {
1507 	struct printk_info info;
1508 	unsigned int line_count;
1509 	size_t len = 0;
1510 	u64 seq;
1511 
1512 	/* Determine the size of the records up to @max_seq. */
1513 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1514 		if (info.seq >= max_seq)
1515 			break;
1516 		len += get_record_print_text_size(&info, line_count, syslog, time);
1517 	}
1518 
1519 	/*
1520 	 * Adjust the upper bound for the next loop to avoid subtracting
1521 	 * lengths that were never added.
1522 	 */
1523 	if (seq < max_seq)
1524 		max_seq = seq;
1525 
1526 	/*
1527 	 * Move first record forward until length fits into the buffer. Ignore
1528 	 * newest messages that were not counted in the above cycle. Messages
1529 	 * might appear and get lost in the meantime. This is a best effort
1530 	 * that prevents an infinite loop that could occur with a retry.
1531 	 */
1532 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1533 		if (len <= size || info.seq >= max_seq)
1534 			break;
1535 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1536 	}
1537 
1538 	return seq;
1539 }
1540 
1541 /* The caller is responsible for making sure @size is greater than 0. */
1542 static int syslog_print(char __user *buf, int size)
1543 {
1544 	struct printk_info info;
1545 	struct printk_record r;
1546 	char *text;
1547 	int len = 0;
1548 	u64 seq;
1549 
1550 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1551 	if (!text)
1552 		return -ENOMEM;
1553 
1554 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1555 
1556 	mutex_lock(&syslog_lock);
1557 
1558 	/*
1559 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1560 	 * change while waiting.
1561 	 */
1562 	do {
1563 		seq = syslog_seq;
1564 
1565 		mutex_unlock(&syslog_lock);
1566 		/*
1567 		 * Guarantee this task is visible on the waitqueue before
1568 		 * checking the wake condition.
1569 		 *
1570 		 * The full memory barrier within set_current_state() of
1571 		 * prepare_to_wait_event() pairs with the full memory barrier
1572 		 * within wq_has_sleeper().
1573 		 *
1574 		 * This pairs with __wake_up_klogd:A.
1575 		 */
1576 		len = wait_event_interruptible(log_wait,
1577 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1578 		mutex_lock(&syslog_lock);
1579 
1580 		if (len)
1581 			goto out;
1582 	} while (syslog_seq != seq);
1583 
1584 	/*
1585 	 * Copy records that fit into the buffer. The above cycle makes sure
1586 	 * that the first record is always available.
1587 	 */
1588 	do {
1589 		size_t n;
1590 		size_t skip;
1591 		int err;
1592 
1593 		if (!prb_read_valid(prb, syslog_seq, &r))
1594 			break;
1595 
1596 		if (r.info->seq != syslog_seq) {
1597 			/* message is gone, move to next valid one */
1598 			syslog_seq = r.info->seq;
1599 			syslog_partial = 0;
1600 		}
1601 
1602 		/*
1603 		 * To keep reading/counting partial line consistent,
1604 		 * use printk_time value as of the beginning of a line.
1605 		 */
1606 		if (!syslog_partial)
1607 			syslog_time = printk_time;
1608 
1609 		skip = syslog_partial;
1610 		n = record_print_text(&r, true, syslog_time);
1611 		if (n - syslog_partial <= size) {
1612 			/* message fits into buffer, move forward */
1613 			syslog_seq = r.info->seq + 1;
1614 			n -= syslog_partial;
1615 			syslog_partial = 0;
1616 		} else if (!len){
1617 			/* partial read(), remember position */
1618 			n = size;
1619 			syslog_partial += n;
1620 		} else
1621 			n = 0;
1622 
1623 		if (!n)
1624 			break;
1625 
1626 		mutex_unlock(&syslog_lock);
1627 		err = copy_to_user(buf, text + skip, n);
1628 		mutex_lock(&syslog_lock);
1629 
1630 		if (err) {
1631 			if (!len)
1632 				len = -EFAULT;
1633 			break;
1634 		}
1635 
1636 		len += n;
1637 		size -= n;
1638 		buf += n;
1639 	} while (size);
1640 out:
1641 	mutex_unlock(&syslog_lock);
1642 	kfree(text);
1643 	return len;
1644 }
1645 
1646 static int syslog_print_all(char __user *buf, int size, bool clear)
1647 {
1648 	struct printk_info info;
1649 	struct printk_record r;
1650 	char *text;
1651 	int len = 0;
1652 	u64 seq;
1653 	bool time;
1654 
1655 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1656 	if (!text)
1657 		return -ENOMEM;
1658 
1659 	time = printk_time;
1660 	/*
1661 	 * Find first record that fits, including all following records,
1662 	 * into the user-provided buffer for this dump.
1663 	 */
1664 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1665 				     size, true, time);
1666 
1667 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1668 
1669 	prb_for_each_record(seq, prb, seq, &r) {
1670 		int textlen;
1671 
1672 		textlen = record_print_text(&r, true, time);
1673 
1674 		if (len + textlen > size) {
1675 			seq--;
1676 			break;
1677 		}
1678 
1679 		if (copy_to_user(buf + len, text, textlen))
1680 			len = -EFAULT;
1681 		else
1682 			len += textlen;
1683 
1684 		if (len < 0)
1685 			break;
1686 	}
1687 
1688 	if (clear) {
1689 		mutex_lock(&syslog_lock);
1690 		latched_seq_write(&clear_seq, seq);
1691 		mutex_unlock(&syslog_lock);
1692 	}
1693 
1694 	kfree(text);
1695 	return len;
1696 }
1697 
1698 static void syslog_clear(void)
1699 {
1700 	mutex_lock(&syslog_lock);
1701 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1702 	mutex_unlock(&syslog_lock);
1703 }
1704 
1705 int do_syslog(int type, char __user *buf, int len, int source)
1706 {
1707 	struct printk_info info;
1708 	bool clear = false;
1709 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1710 	int error;
1711 
1712 	error = check_syslog_permissions(type, source);
1713 	if (error)
1714 		return error;
1715 
1716 	switch (type) {
1717 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1718 		break;
1719 	case SYSLOG_ACTION_OPEN:	/* Open log */
1720 		break;
1721 	case SYSLOG_ACTION_READ:	/* Read from log */
1722 		if (!buf || len < 0)
1723 			return -EINVAL;
1724 		if (!len)
1725 			return 0;
1726 		if (!access_ok(buf, len))
1727 			return -EFAULT;
1728 		error = syslog_print(buf, len);
1729 		break;
1730 	/* Read/clear last kernel messages */
1731 	case SYSLOG_ACTION_READ_CLEAR:
1732 		clear = true;
1733 		fallthrough;
1734 	/* Read last kernel messages */
1735 	case SYSLOG_ACTION_READ_ALL:
1736 		if (!buf || len < 0)
1737 			return -EINVAL;
1738 		if (!len)
1739 			return 0;
1740 		if (!access_ok(buf, len))
1741 			return -EFAULT;
1742 		error = syslog_print_all(buf, len, clear);
1743 		break;
1744 	/* Clear ring buffer */
1745 	case SYSLOG_ACTION_CLEAR:
1746 		syslog_clear();
1747 		break;
1748 	/* Disable logging to console */
1749 	case SYSLOG_ACTION_CONSOLE_OFF:
1750 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1751 			saved_console_loglevel = console_loglevel;
1752 		console_loglevel = minimum_console_loglevel;
1753 		break;
1754 	/* Enable logging to console */
1755 	case SYSLOG_ACTION_CONSOLE_ON:
1756 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1757 			console_loglevel = saved_console_loglevel;
1758 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1759 		}
1760 		break;
1761 	/* Set level of messages printed to console */
1762 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1763 		if (len < 1 || len > 8)
1764 			return -EINVAL;
1765 		if (len < minimum_console_loglevel)
1766 			len = minimum_console_loglevel;
1767 		console_loglevel = len;
1768 		/* Implicitly re-enable logging to console */
1769 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1770 		break;
1771 	/* Number of chars in the log buffer */
1772 	case SYSLOG_ACTION_SIZE_UNREAD:
1773 		mutex_lock(&syslog_lock);
1774 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1775 			/* No unread messages. */
1776 			mutex_unlock(&syslog_lock);
1777 			return 0;
1778 		}
1779 		if (info.seq != syslog_seq) {
1780 			/* messages are gone, move to first one */
1781 			syslog_seq = info.seq;
1782 			syslog_partial = 0;
1783 		}
1784 		if (source == SYSLOG_FROM_PROC) {
1785 			/*
1786 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1787 			 * for pending data, not the size; return the count of
1788 			 * records, not the length.
1789 			 */
1790 			error = prb_next_seq(prb) - syslog_seq;
1791 		} else {
1792 			bool time = syslog_partial ? syslog_time : printk_time;
1793 			unsigned int line_count;
1794 			u64 seq;
1795 
1796 			prb_for_each_info(syslog_seq, prb, seq, &info,
1797 					  &line_count) {
1798 				error += get_record_print_text_size(&info, line_count,
1799 								    true, time);
1800 				time = printk_time;
1801 			}
1802 			error -= syslog_partial;
1803 		}
1804 		mutex_unlock(&syslog_lock);
1805 		break;
1806 	/* Size of the log buffer */
1807 	case SYSLOG_ACTION_SIZE_BUFFER:
1808 		error = log_buf_len;
1809 		break;
1810 	default:
1811 		error = -EINVAL;
1812 		break;
1813 	}
1814 
1815 	return error;
1816 }
1817 
1818 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1819 {
1820 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1821 }
1822 
1823 /*
1824  * Special console_lock variants that help to reduce the risk of soft-lockups.
1825  * They allow to pass console_lock to another printk() call using a busy wait.
1826  */
1827 
1828 #ifdef CONFIG_LOCKDEP
1829 static struct lockdep_map console_owner_dep_map = {
1830 	.name = "console_owner"
1831 };
1832 #endif
1833 
1834 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1835 static struct task_struct *console_owner;
1836 static bool console_waiter;
1837 
1838 /**
1839  * console_lock_spinning_enable - mark beginning of code where another
1840  *	thread might safely busy wait
1841  *
1842  * This basically converts console_lock into a spinlock. This marks
1843  * the section where the console_lock owner can not sleep, because
1844  * there may be a waiter spinning (like a spinlock). Also it must be
1845  * ready to hand over the lock at the end of the section.
1846  */
1847 static void console_lock_spinning_enable(void)
1848 {
1849 	raw_spin_lock(&console_owner_lock);
1850 	console_owner = current;
1851 	raw_spin_unlock(&console_owner_lock);
1852 
1853 	/* The waiter may spin on us after setting console_owner */
1854 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1855 }
1856 
1857 /**
1858  * console_lock_spinning_disable_and_check - mark end of code where another
1859  *	thread was able to busy wait and check if there is a waiter
1860  * @cookie: cookie returned from console_srcu_read_lock()
1861  *
1862  * This is called at the end of the section where spinning is allowed.
1863  * It has two functions. First, it is a signal that it is no longer
1864  * safe to start busy waiting for the lock. Second, it checks if
1865  * there is a busy waiter and passes the lock rights to her.
1866  *
1867  * Important: Callers lose both the console_lock and the SRCU read lock if
1868  *	there was a busy waiter. They must not touch items synchronized by
1869  *	console_lock or SRCU read lock in this case.
1870  *
1871  * Return: 1 if the lock rights were passed, 0 otherwise.
1872  */
1873 static int console_lock_spinning_disable_and_check(int cookie)
1874 {
1875 	int waiter;
1876 
1877 	raw_spin_lock(&console_owner_lock);
1878 	waiter = READ_ONCE(console_waiter);
1879 	console_owner = NULL;
1880 	raw_spin_unlock(&console_owner_lock);
1881 
1882 	if (!waiter) {
1883 		spin_release(&console_owner_dep_map, _THIS_IP_);
1884 		return 0;
1885 	}
1886 
1887 	/* The waiter is now free to continue */
1888 	WRITE_ONCE(console_waiter, false);
1889 
1890 	spin_release(&console_owner_dep_map, _THIS_IP_);
1891 
1892 	/*
1893 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1894 	 * releasing the console_lock.
1895 	 */
1896 	console_srcu_read_unlock(cookie);
1897 
1898 	/*
1899 	 * Hand off console_lock to waiter. The waiter will perform
1900 	 * the up(). After this, the waiter is the console_lock owner.
1901 	 */
1902 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1903 	return 1;
1904 }
1905 
1906 /**
1907  * console_trylock_spinning - try to get console_lock by busy waiting
1908  *
1909  * This allows to busy wait for the console_lock when the current
1910  * owner is running in specially marked sections. It means that
1911  * the current owner is running and cannot reschedule until it
1912  * is ready to lose the lock.
1913  *
1914  * Return: 1 if we got the lock, 0 othrewise
1915  */
1916 static int console_trylock_spinning(void)
1917 {
1918 	struct task_struct *owner = NULL;
1919 	bool waiter;
1920 	bool spin = false;
1921 	unsigned long flags;
1922 
1923 	if (console_trylock())
1924 		return 1;
1925 
1926 	/*
1927 	 * It's unsafe to spin once a panic has begun. If we are the
1928 	 * panic CPU, we may have already halted the owner of the
1929 	 * console_sem. If we are not the panic CPU, then we should
1930 	 * avoid taking console_sem, so the panic CPU has a better
1931 	 * chance of cleanly acquiring it later.
1932 	 */
1933 	if (panic_in_progress())
1934 		return 0;
1935 
1936 	printk_safe_enter_irqsave(flags);
1937 
1938 	raw_spin_lock(&console_owner_lock);
1939 	owner = READ_ONCE(console_owner);
1940 	waiter = READ_ONCE(console_waiter);
1941 	if (!waiter && owner && owner != current) {
1942 		WRITE_ONCE(console_waiter, true);
1943 		spin = true;
1944 	}
1945 	raw_spin_unlock(&console_owner_lock);
1946 
1947 	/*
1948 	 * If there is an active printk() writing to the
1949 	 * consoles, instead of having it write our data too,
1950 	 * see if we can offload that load from the active
1951 	 * printer, and do some printing ourselves.
1952 	 * Go into a spin only if there isn't already a waiter
1953 	 * spinning, and there is an active printer, and
1954 	 * that active printer isn't us (recursive printk?).
1955 	 */
1956 	if (!spin) {
1957 		printk_safe_exit_irqrestore(flags);
1958 		return 0;
1959 	}
1960 
1961 	/* We spin waiting for the owner to release us */
1962 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1963 	/* Owner will clear console_waiter on hand off */
1964 	while (READ_ONCE(console_waiter))
1965 		cpu_relax();
1966 	spin_release(&console_owner_dep_map, _THIS_IP_);
1967 
1968 	printk_safe_exit_irqrestore(flags);
1969 	/*
1970 	 * The owner passed the console lock to us.
1971 	 * Since we did not spin on console lock, annotate
1972 	 * this as a trylock. Otherwise lockdep will
1973 	 * complain.
1974 	 */
1975 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1976 
1977 	return 1;
1978 }
1979 
1980 /*
1981  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1982  * additional NMI context per CPU is also separately tracked. Until per-CPU
1983  * is available, a separate "early tracking" is performed.
1984  */
1985 static DEFINE_PER_CPU(u8, printk_count);
1986 static u8 printk_count_early;
1987 #ifdef CONFIG_HAVE_NMI
1988 static DEFINE_PER_CPU(u8, printk_count_nmi);
1989 static u8 printk_count_nmi_early;
1990 #endif
1991 
1992 /*
1993  * Recursion is limited to keep the output sane. printk() should not require
1994  * more than 1 level of recursion (allowing, for example, printk() to trigger
1995  * a WARN), but a higher value is used in case some printk-internal errors
1996  * exist, such as the ringbuffer validation checks failing.
1997  */
1998 #define PRINTK_MAX_RECURSION 3
1999 
2000 /*
2001  * Return a pointer to the dedicated counter for the CPU+context of the
2002  * caller.
2003  */
2004 static u8 *__printk_recursion_counter(void)
2005 {
2006 #ifdef CONFIG_HAVE_NMI
2007 	if (in_nmi()) {
2008 		if (printk_percpu_data_ready())
2009 			return this_cpu_ptr(&printk_count_nmi);
2010 		return &printk_count_nmi_early;
2011 	}
2012 #endif
2013 	if (printk_percpu_data_ready())
2014 		return this_cpu_ptr(&printk_count);
2015 	return &printk_count_early;
2016 }
2017 
2018 /*
2019  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2020  * The caller must check the boolean return value to see if the recursion is
2021  * allowed. On failure, interrupts are not disabled.
2022  *
2023  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2024  * that is passed to printk_exit_irqrestore().
2025  */
2026 #define printk_enter_irqsave(recursion_ptr, flags)	\
2027 ({							\
2028 	bool success = true;				\
2029 							\
2030 	typecheck(u8 *, recursion_ptr);			\
2031 	local_irq_save(flags);				\
2032 	(recursion_ptr) = __printk_recursion_counter();	\
2033 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2034 		local_irq_restore(flags);		\
2035 		success = false;			\
2036 	} else {					\
2037 		(*(recursion_ptr))++;			\
2038 	}						\
2039 	success;					\
2040 })
2041 
2042 /* Exit recursion tracking, restoring interrupts. */
2043 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2044 	do {						\
2045 		typecheck(u8 *, recursion_ptr);		\
2046 		(*(recursion_ptr))--;			\
2047 		local_irq_restore(flags);		\
2048 	} while (0)
2049 
2050 int printk_delay_msec __read_mostly;
2051 
2052 static inline void printk_delay(int level)
2053 {
2054 	boot_delay_msec(level);
2055 
2056 	if (unlikely(printk_delay_msec)) {
2057 		int m = printk_delay_msec;
2058 
2059 		while (m--) {
2060 			mdelay(1);
2061 			touch_nmi_watchdog();
2062 		}
2063 	}
2064 }
2065 
2066 static inline u32 printk_caller_id(void)
2067 {
2068 	return in_task() ? task_pid_nr(current) :
2069 		0x80000000 + smp_processor_id();
2070 }
2071 
2072 /**
2073  * printk_parse_prefix - Parse level and control flags.
2074  *
2075  * @text:     The terminated text message.
2076  * @level:    A pointer to the current level value, will be updated.
2077  * @flags:    A pointer to the current printk_info flags, will be updated.
2078  *
2079  * @level may be NULL if the caller is not interested in the parsed value.
2080  * Otherwise the variable pointed to by @level must be set to
2081  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2082  *
2083  * @flags may be NULL if the caller is not interested in the parsed value.
2084  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2085  * value.
2086  *
2087  * Return: The length of the parsed level and control flags.
2088  */
2089 u16 printk_parse_prefix(const char *text, int *level,
2090 			enum printk_info_flags *flags)
2091 {
2092 	u16 prefix_len = 0;
2093 	int kern_level;
2094 
2095 	while (*text) {
2096 		kern_level = printk_get_level(text);
2097 		if (!kern_level)
2098 			break;
2099 
2100 		switch (kern_level) {
2101 		case '0' ... '7':
2102 			if (level && *level == LOGLEVEL_DEFAULT)
2103 				*level = kern_level - '0';
2104 			break;
2105 		case 'c':	/* KERN_CONT */
2106 			if (flags)
2107 				*flags |= LOG_CONT;
2108 		}
2109 
2110 		prefix_len += 2;
2111 		text += 2;
2112 	}
2113 
2114 	return prefix_len;
2115 }
2116 
2117 __printf(5, 0)
2118 static u16 printk_sprint(char *text, u16 size, int facility,
2119 			 enum printk_info_flags *flags, const char *fmt,
2120 			 va_list args)
2121 {
2122 	u16 text_len;
2123 
2124 	text_len = vscnprintf(text, size, fmt, args);
2125 
2126 	/* Mark and strip a trailing newline. */
2127 	if (text_len && text[text_len - 1] == '\n') {
2128 		text_len--;
2129 		*flags |= LOG_NEWLINE;
2130 	}
2131 
2132 	/* Strip log level and control flags. */
2133 	if (facility == 0) {
2134 		u16 prefix_len;
2135 
2136 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2137 		if (prefix_len) {
2138 			text_len -= prefix_len;
2139 			memmove(text, text + prefix_len, text_len);
2140 		}
2141 	}
2142 
2143 	trace_console(text, text_len);
2144 
2145 	return text_len;
2146 }
2147 
2148 __printf(4, 0)
2149 int vprintk_store(int facility, int level,
2150 		  const struct dev_printk_info *dev_info,
2151 		  const char *fmt, va_list args)
2152 {
2153 	struct prb_reserved_entry e;
2154 	enum printk_info_flags flags = 0;
2155 	struct printk_record r;
2156 	unsigned long irqflags;
2157 	u16 trunc_msg_len = 0;
2158 	char prefix_buf[8];
2159 	u8 *recursion_ptr;
2160 	u16 reserve_size;
2161 	va_list args2;
2162 	u32 caller_id;
2163 	u16 text_len;
2164 	int ret = 0;
2165 	u64 ts_nsec;
2166 
2167 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2168 		return 0;
2169 
2170 	/*
2171 	 * Since the duration of printk() can vary depending on the message
2172 	 * and state of the ringbuffer, grab the timestamp now so that it is
2173 	 * close to the call of printk(). This provides a more deterministic
2174 	 * timestamp with respect to the caller.
2175 	 */
2176 	ts_nsec = local_clock();
2177 
2178 	caller_id = printk_caller_id();
2179 
2180 	/*
2181 	 * The sprintf needs to come first since the syslog prefix might be
2182 	 * passed in as a parameter. An extra byte must be reserved so that
2183 	 * later the vscnprintf() into the reserved buffer has room for the
2184 	 * terminating '\0', which is not counted by vsnprintf().
2185 	 */
2186 	va_copy(args2, args);
2187 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2188 	va_end(args2);
2189 
2190 	if (reserve_size > PRINTKRB_RECORD_MAX)
2191 		reserve_size = PRINTKRB_RECORD_MAX;
2192 
2193 	/* Extract log level or control flags. */
2194 	if (facility == 0)
2195 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2196 
2197 	if (level == LOGLEVEL_DEFAULT)
2198 		level = default_message_loglevel;
2199 
2200 	if (dev_info)
2201 		flags |= LOG_NEWLINE;
2202 
2203 	if (flags & LOG_CONT) {
2204 		prb_rec_init_wr(&r, reserve_size);
2205 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2206 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2207 						 facility, &flags, fmt, args);
2208 			r.info->text_len += text_len;
2209 
2210 			if (flags & LOG_NEWLINE) {
2211 				r.info->flags |= LOG_NEWLINE;
2212 				prb_final_commit(&e);
2213 			} else {
2214 				prb_commit(&e);
2215 			}
2216 
2217 			ret = text_len;
2218 			goto out;
2219 		}
2220 	}
2221 
2222 	/*
2223 	 * Explicitly initialize the record before every prb_reserve() call.
2224 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2225 	 * structure when they fail.
2226 	 */
2227 	prb_rec_init_wr(&r, reserve_size);
2228 	if (!prb_reserve(&e, prb, &r)) {
2229 		/* truncate the message if it is too long for empty buffer */
2230 		truncate_msg(&reserve_size, &trunc_msg_len);
2231 
2232 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2233 		if (!prb_reserve(&e, prb, &r))
2234 			goto out;
2235 	}
2236 
2237 	/* fill message */
2238 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2239 	if (trunc_msg_len)
2240 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2241 	r.info->text_len = text_len + trunc_msg_len;
2242 	r.info->facility = facility;
2243 	r.info->level = level & 7;
2244 	r.info->flags = flags & 0x1f;
2245 	r.info->ts_nsec = ts_nsec;
2246 	r.info->caller_id = caller_id;
2247 	if (dev_info)
2248 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2249 
2250 	/* A message without a trailing newline can be continued. */
2251 	if (!(flags & LOG_NEWLINE))
2252 		prb_commit(&e);
2253 	else
2254 		prb_final_commit(&e);
2255 
2256 	ret = text_len + trunc_msg_len;
2257 out:
2258 	printk_exit_irqrestore(recursion_ptr, irqflags);
2259 	return ret;
2260 }
2261 
2262 asmlinkage int vprintk_emit(int facility, int level,
2263 			    const struct dev_printk_info *dev_info,
2264 			    const char *fmt, va_list args)
2265 {
2266 	int printed_len;
2267 	bool in_sched = false;
2268 
2269 	/* Suppress unimportant messages after panic happens */
2270 	if (unlikely(suppress_printk))
2271 		return 0;
2272 
2273 	if (unlikely(suppress_panic_printk) &&
2274 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2275 		return 0;
2276 
2277 	if (level == LOGLEVEL_SCHED) {
2278 		level = LOGLEVEL_DEFAULT;
2279 		in_sched = true;
2280 	}
2281 
2282 	printk_delay(level);
2283 
2284 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2285 
2286 	/* If called from the scheduler, we can not call up(). */
2287 	if (!in_sched) {
2288 		/*
2289 		 * The caller may be holding system-critical or
2290 		 * timing-sensitive locks. Disable preemption during
2291 		 * printing of all remaining records to all consoles so that
2292 		 * this context can return as soon as possible. Hopefully
2293 		 * another printk() caller will take over the printing.
2294 		 */
2295 		preempt_disable();
2296 		/*
2297 		 * Try to acquire and then immediately release the console
2298 		 * semaphore. The release will print out buffers. With the
2299 		 * spinning variant, this context tries to take over the
2300 		 * printing from another printing context.
2301 		 */
2302 		if (console_trylock_spinning())
2303 			console_unlock();
2304 		preempt_enable();
2305 	}
2306 
2307 	if (in_sched)
2308 		defer_console_output();
2309 	else
2310 		wake_up_klogd();
2311 
2312 	return printed_len;
2313 }
2314 EXPORT_SYMBOL(vprintk_emit);
2315 
2316 int vprintk_default(const char *fmt, va_list args)
2317 {
2318 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2319 }
2320 EXPORT_SYMBOL_GPL(vprintk_default);
2321 
2322 asmlinkage __visible int _printk(const char *fmt, ...)
2323 {
2324 	va_list args;
2325 	int r;
2326 
2327 	va_start(args, fmt);
2328 	r = vprintk(fmt, args);
2329 	va_end(args);
2330 
2331 	return r;
2332 }
2333 EXPORT_SYMBOL(_printk);
2334 
2335 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2336 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2337 
2338 #else /* CONFIG_PRINTK */
2339 
2340 #define printk_time		false
2341 
2342 #define prb_read_valid(rb, seq, r)	false
2343 #define prb_first_valid_seq(rb)		0
2344 #define prb_next_seq(rb)		0
2345 
2346 static u64 syslog_seq;
2347 
2348 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2349 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2350 
2351 #endif /* CONFIG_PRINTK */
2352 
2353 #ifdef CONFIG_EARLY_PRINTK
2354 struct console *early_console;
2355 
2356 asmlinkage __visible void early_printk(const char *fmt, ...)
2357 {
2358 	va_list ap;
2359 	char buf[512];
2360 	int n;
2361 
2362 	if (!early_console)
2363 		return;
2364 
2365 	va_start(ap, fmt);
2366 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2367 	va_end(ap);
2368 
2369 	early_console->write(early_console, buf, n);
2370 }
2371 #endif
2372 
2373 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2374 {
2375 	if (!user_specified)
2376 		return;
2377 
2378 	/*
2379 	 * @c console was defined by the user on the command line.
2380 	 * Do not clear when added twice also by SPCR or the device tree.
2381 	 */
2382 	c->user_specified = true;
2383 	/* At least one console defined by the user on the command line. */
2384 	console_set_on_cmdline = 1;
2385 }
2386 
2387 static int __add_preferred_console(const char *name, const short idx, char *options,
2388 				   char *brl_options, bool user_specified)
2389 {
2390 	struct console_cmdline *c;
2391 	int i;
2392 
2393 	/*
2394 	 * We use a signed short index for struct console for device drivers to
2395 	 * indicate a not yet assigned index or port. However, a negative index
2396 	 * value is not valid for preferred console.
2397 	 */
2398 	if (idx < 0)
2399 		return -EINVAL;
2400 
2401 	/*
2402 	 *	See if this tty is not yet registered, and
2403 	 *	if we have a slot free.
2404 	 */
2405 	for (i = 0, c = console_cmdline;
2406 	     i < MAX_CMDLINECONSOLES && c->name[0];
2407 	     i++, c++) {
2408 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2409 			if (!brl_options)
2410 				preferred_console = i;
2411 			set_user_specified(c, user_specified);
2412 			return 0;
2413 		}
2414 	}
2415 	if (i == MAX_CMDLINECONSOLES)
2416 		return -E2BIG;
2417 	if (!brl_options)
2418 		preferred_console = i;
2419 	strscpy(c->name, name, sizeof(c->name));
2420 	c->options = options;
2421 	set_user_specified(c, user_specified);
2422 	braille_set_options(c, brl_options);
2423 
2424 	c->index = idx;
2425 	return 0;
2426 }
2427 
2428 static int __init console_msg_format_setup(char *str)
2429 {
2430 	if (!strcmp(str, "syslog"))
2431 		console_msg_format = MSG_FORMAT_SYSLOG;
2432 	if (!strcmp(str, "default"))
2433 		console_msg_format = MSG_FORMAT_DEFAULT;
2434 	return 1;
2435 }
2436 __setup("console_msg_format=", console_msg_format_setup);
2437 
2438 /*
2439  * Set up a console.  Called via do_early_param() in init/main.c
2440  * for each "console=" parameter in the boot command line.
2441  */
2442 static int __init console_setup(char *str)
2443 {
2444 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2445 	char *s, *options, *brl_options = NULL;
2446 	int idx;
2447 
2448 	/*
2449 	 * console="" or console=null have been suggested as a way to
2450 	 * disable console output. Use ttynull that has been created
2451 	 * for exactly this purpose.
2452 	 */
2453 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2454 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2455 		return 1;
2456 	}
2457 
2458 	if (_braille_console_setup(&str, &brl_options))
2459 		return 1;
2460 
2461 	/*
2462 	 * Decode str into name, index, options.
2463 	 */
2464 	if (str[0] >= '0' && str[0] <= '9') {
2465 		strcpy(buf, "ttyS");
2466 		strncpy(buf + 4, str, sizeof(buf) - 5);
2467 	} else {
2468 		strncpy(buf, str, sizeof(buf) - 1);
2469 	}
2470 	buf[sizeof(buf) - 1] = 0;
2471 	options = strchr(str, ',');
2472 	if (options)
2473 		*(options++) = 0;
2474 #ifdef __sparc__
2475 	if (!strcmp(str, "ttya"))
2476 		strcpy(buf, "ttyS0");
2477 	if (!strcmp(str, "ttyb"))
2478 		strcpy(buf, "ttyS1");
2479 #endif
2480 	for (s = buf; *s; s++)
2481 		if (isdigit(*s) || *s == ',')
2482 			break;
2483 	idx = simple_strtoul(s, NULL, 10);
2484 	*s = 0;
2485 
2486 	__add_preferred_console(buf, idx, options, brl_options, true);
2487 	return 1;
2488 }
2489 __setup("console=", console_setup);
2490 
2491 /**
2492  * add_preferred_console - add a device to the list of preferred consoles.
2493  * @name: device name
2494  * @idx: device index
2495  * @options: options for this console
2496  *
2497  * The last preferred console added will be used for kernel messages
2498  * and stdin/out/err for init.  Normally this is used by console_setup
2499  * above to handle user-supplied console arguments; however it can also
2500  * be used by arch-specific code either to override the user or more
2501  * commonly to provide a default console (ie from PROM variables) when
2502  * the user has not supplied one.
2503  */
2504 int add_preferred_console(const char *name, const short idx, char *options)
2505 {
2506 	return __add_preferred_console(name, idx, options, NULL, false);
2507 }
2508 
2509 bool console_suspend_enabled = true;
2510 EXPORT_SYMBOL(console_suspend_enabled);
2511 
2512 static int __init console_suspend_disable(char *str)
2513 {
2514 	console_suspend_enabled = false;
2515 	return 1;
2516 }
2517 __setup("no_console_suspend", console_suspend_disable);
2518 module_param_named(console_suspend, console_suspend_enabled,
2519 		bool, S_IRUGO | S_IWUSR);
2520 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2521 	" and hibernate operations");
2522 
2523 static bool printk_console_no_auto_verbose;
2524 
2525 void console_verbose(void)
2526 {
2527 	if (console_loglevel && !printk_console_no_auto_verbose)
2528 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2529 }
2530 EXPORT_SYMBOL_GPL(console_verbose);
2531 
2532 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2533 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2534 
2535 /**
2536  * suspend_console - suspend the console subsystem
2537  *
2538  * This disables printk() while we go into suspend states
2539  */
2540 void suspend_console(void)
2541 {
2542 	struct console *con;
2543 
2544 	if (!console_suspend_enabled)
2545 		return;
2546 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2547 	pr_flush(1000, true);
2548 
2549 	console_list_lock();
2550 	for_each_console(con)
2551 		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2552 	console_list_unlock();
2553 
2554 	/*
2555 	 * Ensure that all SRCU list walks have completed. All printing
2556 	 * contexts must be able to see that they are suspended so that it
2557 	 * is guaranteed that all printing has stopped when this function
2558 	 * completes.
2559 	 */
2560 	synchronize_srcu(&console_srcu);
2561 }
2562 
2563 void resume_console(void)
2564 {
2565 	struct console *con;
2566 
2567 	if (!console_suspend_enabled)
2568 		return;
2569 
2570 	console_list_lock();
2571 	for_each_console(con)
2572 		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2573 	console_list_unlock();
2574 
2575 	/*
2576 	 * Ensure that all SRCU list walks have completed. All printing
2577 	 * contexts must be able to see they are no longer suspended so
2578 	 * that they are guaranteed to wake up and resume printing.
2579 	 */
2580 	synchronize_srcu(&console_srcu);
2581 
2582 	pr_flush(1000, true);
2583 }
2584 
2585 /**
2586  * console_cpu_notify - print deferred console messages after CPU hotplug
2587  * @cpu: unused
2588  *
2589  * If printk() is called from a CPU that is not online yet, the messages
2590  * will be printed on the console only if there are CON_ANYTIME consoles.
2591  * This function is called when a new CPU comes online (or fails to come
2592  * up) or goes offline.
2593  */
2594 static int console_cpu_notify(unsigned int cpu)
2595 {
2596 	if (!cpuhp_tasks_frozen) {
2597 		/* If trylock fails, someone else is doing the printing */
2598 		if (console_trylock())
2599 			console_unlock();
2600 	}
2601 	return 0;
2602 }
2603 
2604 /*
2605  * Return true if a panic is in progress on a remote CPU.
2606  *
2607  * On true, the local CPU should immediately release any printing resources
2608  * that may be needed by the panic CPU.
2609  */
2610 bool other_cpu_in_panic(void)
2611 {
2612 	if (!panic_in_progress())
2613 		return false;
2614 
2615 	/*
2616 	 * We can use raw_smp_processor_id() here because it is impossible for
2617 	 * the task to be migrated to the panic_cpu, or away from it. If
2618 	 * panic_cpu has already been set, and we're not currently executing on
2619 	 * that CPU, then we never will be.
2620 	 */
2621 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2622 }
2623 
2624 /**
2625  * console_lock - block the console subsystem from printing
2626  *
2627  * Acquires a lock which guarantees that no consoles will
2628  * be in or enter their write() callback.
2629  *
2630  * Can sleep, returns nothing.
2631  */
2632 void console_lock(void)
2633 {
2634 	might_sleep();
2635 
2636 	/* On panic, the console_lock must be left to the panic cpu. */
2637 	while (other_cpu_in_panic())
2638 		msleep(1000);
2639 
2640 	down_console_sem();
2641 	console_locked = 1;
2642 	console_may_schedule = 1;
2643 }
2644 EXPORT_SYMBOL(console_lock);
2645 
2646 /**
2647  * console_trylock - try to block the console subsystem from printing
2648  *
2649  * Try to acquire a lock which guarantees that no consoles will
2650  * be in or enter their write() callback.
2651  *
2652  * returns 1 on success, and 0 on failure to acquire the lock.
2653  */
2654 int console_trylock(void)
2655 {
2656 	/* On panic, the console_lock must be left to the panic cpu. */
2657 	if (other_cpu_in_panic())
2658 		return 0;
2659 	if (down_trylock_console_sem())
2660 		return 0;
2661 	console_locked = 1;
2662 	console_may_schedule = 0;
2663 	return 1;
2664 }
2665 EXPORT_SYMBOL(console_trylock);
2666 
2667 int is_console_locked(void)
2668 {
2669 	return console_locked;
2670 }
2671 EXPORT_SYMBOL(is_console_locked);
2672 
2673 /*
2674  * Check if the given console is currently capable and allowed to print
2675  * records.
2676  *
2677  * Requires the console_srcu_read_lock.
2678  */
2679 static inline bool console_is_usable(struct console *con)
2680 {
2681 	short flags = console_srcu_read_flags(con);
2682 
2683 	if (!(flags & CON_ENABLED))
2684 		return false;
2685 
2686 	if ((flags & CON_SUSPENDED))
2687 		return false;
2688 
2689 	if (!con->write)
2690 		return false;
2691 
2692 	/*
2693 	 * Console drivers may assume that per-cpu resources have been
2694 	 * allocated. So unless they're explicitly marked as being able to
2695 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2696 	 */
2697 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2698 		return false;
2699 
2700 	return true;
2701 }
2702 
2703 static void __console_unlock(void)
2704 {
2705 	console_locked = 0;
2706 	up_console_sem();
2707 }
2708 
2709 #ifdef CONFIG_PRINTK
2710 
2711 /*
2712  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2713  * is achieved by shifting the existing message over and inserting the dropped
2714  * message.
2715  *
2716  * @pmsg is the printk message to prepend.
2717  *
2718  * @dropped is the dropped count to report in the dropped message.
2719  *
2720  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2721  * the dropped message, the message text will be sufficiently truncated.
2722  *
2723  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2724  */
2725 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2726 {
2727 	struct printk_buffers *pbufs = pmsg->pbufs;
2728 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2729 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2730 	char *scratchbuf = &pbufs->scratchbuf[0];
2731 	char *outbuf = &pbufs->outbuf[0];
2732 	size_t len;
2733 
2734 	len = scnprintf(scratchbuf, scratchbuf_sz,
2735 		       "** %lu printk messages dropped **\n", dropped);
2736 
2737 	/*
2738 	 * Make sure outbuf is sufficiently large before prepending.
2739 	 * Keep at least the prefix when the message must be truncated.
2740 	 * It is a rather theoretical problem when someone tries to
2741 	 * use a minimalist buffer.
2742 	 */
2743 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2744 		return;
2745 
2746 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2747 		/* Truncate the message, but keep it terminated. */
2748 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2749 		outbuf[pmsg->outbuf_len] = 0;
2750 	}
2751 
2752 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2753 	memcpy(outbuf, scratchbuf, len);
2754 	pmsg->outbuf_len += len;
2755 }
2756 
2757 /*
2758  * Read and format the specified record (or a later record if the specified
2759  * record is not available).
2760  *
2761  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2762  * struct printk_buffers.
2763  *
2764  * @seq is the record to read and format. If it is not available, the next
2765  * valid record is read.
2766  *
2767  * @is_extended specifies if the message should be formatted for extended
2768  * console output.
2769  *
2770  * @may_supress specifies if records may be skipped based on loglevel.
2771  *
2772  * Returns false if no record is available. Otherwise true and all fields
2773  * of @pmsg are valid. (See the documentation of struct printk_message
2774  * for information about the @pmsg fields.)
2775  */
2776 bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2777 			     bool is_extended, bool may_suppress)
2778 {
2779 	static int panic_console_dropped;
2780 
2781 	struct printk_buffers *pbufs = pmsg->pbufs;
2782 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2783 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2784 	char *scratchbuf = &pbufs->scratchbuf[0];
2785 	char *outbuf = &pbufs->outbuf[0];
2786 	struct printk_info info;
2787 	struct printk_record r;
2788 	size_t len = 0;
2789 
2790 	/*
2791 	 * Formatting extended messages requires a separate buffer, so use the
2792 	 * scratch buffer to read in the ringbuffer text.
2793 	 *
2794 	 * Formatting normal messages is done in-place, so read the ringbuffer
2795 	 * text directly into the output buffer.
2796 	 */
2797 	if (is_extended)
2798 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2799 	else
2800 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2801 
2802 	if (!prb_read_valid(prb, seq, &r))
2803 		return false;
2804 
2805 	pmsg->seq = r.info->seq;
2806 	pmsg->dropped = r.info->seq - seq;
2807 
2808 	/*
2809 	 * Check for dropped messages in panic here so that printk
2810 	 * suppression can occur as early as possible if necessary.
2811 	 */
2812 	if (pmsg->dropped &&
2813 	    panic_in_progress() &&
2814 	    panic_console_dropped++ > 10) {
2815 		suppress_panic_printk = 1;
2816 		pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2817 	}
2818 
2819 	/* Skip record that has level above the console loglevel. */
2820 	if (may_suppress && suppress_message_printing(r.info->level))
2821 		goto out;
2822 
2823 	if (is_extended) {
2824 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2825 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2826 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2827 	} else {
2828 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2829 	}
2830 out:
2831 	pmsg->outbuf_len = len;
2832 	return true;
2833 }
2834 
2835 /*
2836  * Used as the printk buffers for non-panic, serialized console printing.
2837  * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
2838  * Its usage requires the console_lock held.
2839  */
2840 struct printk_buffers printk_shared_pbufs;
2841 
2842 /*
2843  * Print one record for the given console. The record printed is whatever
2844  * record is the next available record for the given console.
2845  *
2846  * @handover will be set to true if a printk waiter has taken over the
2847  * console_lock, in which case the caller is no longer holding both the
2848  * console_lock and the SRCU read lock. Otherwise it is set to false.
2849  *
2850  * @cookie is the cookie from the SRCU read lock.
2851  *
2852  * Returns false if the given console has no next record to print, otherwise
2853  * true.
2854  *
2855  * Requires the console_lock and the SRCU read lock.
2856  */
2857 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2858 {
2859 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2860 	char *outbuf = &printk_shared_pbufs.outbuf[0];
2861 	struct printk_message pmsg = {
2862 		.pbufs = &printk_shared_pbufs,
2863 	};
2864 	unsigned long flags;
2865 
2866 	*handover = false;
2867 
2868 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2869 		return false;
2870 
2871 	con->dropped += pmsg.dropped;
2872 
2873 	/* Skip messages of formatted length 0. */
2874 	if (pmsg.outbuf_len == 0) {
2875 		con->seq = pmsg.seq + 1;
2876 		goto skip;
2877 	}
2878 
2879 	if (con->dropped && !is_extended) {
2880 		console_prepend_dropped(&pmsg, con->dropped);
2881 		con->dropped = 0;
2882 	}
2883 
2884 	/*
2885 	 * While actively printing out messages, if another printk()
2886 	 * were to occur on another CPU, it may wait for this one to
2887 	 * finish. This task can not be preempted if there is a
2888 	 * waiter waiting to take over.
2889 	 *
2890 	 * Interrupts are disabled because the hand over to a waiter
2891 	 * must not be interrupted until the hand over is completed
2892 	 * (@console_waiter is cleared).
2893 	 */
2894 	printk_safe_enter_irqsave(flags);
2895 	console_lock_spinning_enable();
2896 
2897 	/* Do not trace print latency. */
2898 	stop_critical_timings();
2899 
2900 	/* Write everything out to the hardware. */
2901 	con->write(con, outbuf, pmsg.outbuf_len);
2902 
2903 	start_critical_timings();
2904 
2905 	con->seq = pmsg.seq + 1;
2906 
2907 	*handover = console_lock_spinning_disable_and_check(cookie);
2908 	printk_safe_exit_irqrestore(flags);
2909 skip:
2910 	return true;
2911 }
2912 
2913 #else
2914 
2915 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2916 {
2917 	*handover = false;
2918 	return false;
2919 }
2920 
2921 #endif /* CONFIG_PRINTK */
2922 
2923 /*
2924  * Print out all remaining records to all consoles.
2925  *
2926  * @do_cond_resched is set by the caller. It can be true only in schedulable
2927  * context.
2928  *
2929  * @next_seq is set to the sequence number after the last available record.
2930  * The value is valid only when this function returns true. It means that all
2931  * usable consoles are completely flushed.
2932  *
2933  * @handover will be set to true if a printk waiter has taken over the
2934  * console_lock, in which case the caller is no longer holding the
2935  * console_lock. Otherwise it is set to false.
2936  *
2937  * Returns true when there was at least one usable console and all messages
2938  * were flushed to all usable consoles. A returned false informs the caller
2939  * that everything was not flushed (either there were no usable consoles or
2940  * another context has taken over printing or it is a panic situation and this
2941  * is not the panic CPU). Regardless the reason, the caller should assume it
2942  * is not useful to immediately try again.
2943  *
2944  * Requires the console_lock.
2945  */
2946 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2947 {
2948 	bool any_usable = false;
2949 	struct console *con;
2950 	bool any_progress;
2951 	int cookie;
2952 
2953 	*next_seq = 0;
2954 	*handover = false;
2955 
2956 	do {
2957 		any_progress = false;
2958 
2959 		cookie = console_srcu_read_lock();
2960 		for_each_console_srcu(con) {
2961 			bool progress;
2962 
2963 			if (!console_is_usable(con))
2964 				continue;
2965 			any_usable = true;
2966 
2967 			progress = console_emit_next_record(con, handover, cookie);
2968 
2969 			/*
2970 			 * If a handover has occurred, the SRCU read lock
2971 			 * is already released.
2972 			 */
2973 			if (*handover)
2974 				return false;
2975 
2976 			/* Track the next of the highest seq flushed. */
2977 			if (con->seq > *next_seq)
2978 				*next_seq = con->seq;
2979 
2980 			if (!progress)
2981 				continue;
2982 			any_progress = true;
2983 
2984 			/* Allow panic_cpu to take over the consoles safely. */
2985 			if (other_cpu_in_panic())
2986 				goto abandon;
2987 
2988 			if (do_cond_resched)
2989 				cond_resched();
2990 		}
2991 		console_srcu_read_unlock(cookie);
2992 	} while (any_progress);
2993 
2994 	return any_usable;
2995 
2996 abandon:
2997 	console_srcu_read_unlock(cookie);
2998 	return false;
2999 }
3000 
3001 /**
3002  * console_unlock - unblock the console subsystem from printing
3003  *
3004  * Releases the console_lock which the caller holds to block printing of
3005  * the console subsystem.
3006  *
3007  * While the console_lock was held, console output may have been buffered
3008  * by printk().  If this is the case, console_unlock(); emits
3009  * the output prior to releasing the lock.
3010  *
3011  * console_unlock(); may be called from any context.
3012  */
3013 void console_unlock(void)
3014 {
3015 	bool do_cond_resched;
3016 	bool handover;
3017 	bool flushed;
3018 	u64 next_seq;
3019 
3020 	/*
3021 	 * Console drivers are called with interrupts disabled, so
3022 	 * @console_may_schedule should be cleared before; however, we may
3023 	 * end up dumping a lot of lines, for example, if called from
3024 	 * console registration path, and should invoke cond_resched()
3025 	 * between lines if allowable.  Not doing so can cause a very long
3026 	 * scheduling stall on a slow console leading to RCU stall and
3027 	 * softlockup warnings which exacerbate the issue with more
3028 	 * messages practically incapacitating the system. Therefore, create
3029 	 * a local to use for the printing loop.
3030 	 */
3031 	do_cond_resched = console_may_schedule;
3032 
3033 	do {
3034 		console_may_schedule = 0;
3035 
3036 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3037 		if (!handover)
3038 			__console_unlock();
3039 
3040 		/*
3041 		 * Abort if there was a failure to flush all messages to all
3042 		 * usable consoles. Either it is not possible to flush (in
3043 		 * which case it would be an infinite loop of retrying) or
3044 		 * another context has taken over printing.
3045 		 */
3046 		if (!flushed)
3047 			break;
3048 
3049 		/*
3050 		 * Some context may have added new records after
3051 		 * console_flush_all() but before unlocking the console.
3052 		 * Re-check if there is a new record to flush. If the trylock
3053 		 * fails, another context is already handling the printing.
3054 		 */
3055 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3056 }
3057 EXPORT_SYMBOL(console_unlock);
3058 
3059 /**
3060  * console_conditional_schedule - yield the CPU if required
3061  *
3062  * If the console code is currently allowed to sleep, and
3063  * if this CPU should yield the CPU to another task, do
3064  * so here.
3065  *
3066  * Must be called within console_lock();.
3067  */
3068 void __sched console_conditional_schedule(void)
3069 {
3070 	if (console_may_schedule)
3071 		cond_resched();
3072 }
3073 EXPORT_SYMBOL(console_conditional_schedule);
3074 
3075 void console_unblank(void)
3076 {
3077 	bool found_unblank = false;
3078 	struct console *c;
3079 	int cookie;
3080 
3081 	/*
3082 	 * First check if there are any consoles implementing the unblank()
3083 	 * callback. If not, there is no reason to continue and take the
3084 	 * console lock, which in particular can be dangerous if
3085 	 * @oops_in_progress is set.
3086 	 */
3087 	cookie = console_srcu_read_lock();
3088 	for_each_console_srcu(c) {
3089 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3090 			found_unblank = true;
3091 			break;
3092 		}
3093 	}
3094 	console_srcu_read_unlock(cookie);
3095 	if (!found_unblank)
3096 		return;
3097 
3098 	/*
3099 	 * Stop console printing because the unblank() callback may
3100 	 * assume the console is not within its write() callback.
3101 	 *
3102 	 * If @oops_in_progress is set, this may be an atomic context.
3103 	 * In that case, attempt a trylock as best-effort.
3104 	 */
3105 	if (oops_in_progress) {
3106 		/* Semaphores are not NMI-safe. */
3107 		if (in_nmi())
3108 			return;
3109 
3110 		/*
3111 		 * Attempting to trylock the console lock can deadlock
3112 		 * if another CPU was stopped while modifying the
3113 		 * semaphore. "Hope and pray" that this is not the
3114 		 * current situation.
3115 		 */
3116 		if (down_trylock_console_sem() != 0)
3117 			return;
3118 	} else
3119 		console_lock();
3120 
3121 	console_locked = 1;
3122 	console_may_schedule = 0;
3123 
3124 	cookie = console_srcu_read_lock();
3125 	for_each_console_srcu(c) {
3126 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3127 			c->unblank();
3128 	}
3129 	console_srcu_read_unlock(cookie);
3130 
3131 	console_unlock();
3132 
3133 	if (!oops_in_progress)
3134 		pr_flush(1000, true);
3135 }
3136 
3137 /**
3138  * console_flush_on_panic - flush console content on panic
3139  * @mode: flush all messages in buffer or just the pending ones
3140  *
3141  * Immediately output all pending messages no matter what.
3142  */
3143 void console_flush_on_panic(enum con_flush_mode mode)
3144 {
3145 	bool handover;
3146 	u64 next_seq;
3147 
3148 	/*
3149 	 * Ignore the console lock and flush out the messages. Attempting a
3150 	 * trylock would not be useful because:
3151 	 *
3152 	 *   - if it is contended, it must be ignored anyway
3153 	 *   - console_lock() and console_trylock() block and fail
3154 	 *     respectively in panic for non-panic CPUs
3155 	 *   - semaphores are not NMI-safe
3156 	 */
3157 
3158 	/*
3159 	 * If another context is holding the console lock,
3160 	 * @console_may_schedule might be set. Clear it so that
3161 	 * this context does not call cond_resched() while flushing.
3162 	 */
3163 	console_may_schedule = 0;
3164 
3165 	if (mode == CONSOLE_REPLAY_ALL) {
3166 		struct console *c;
3167 		short flags;
3168 		int cookie;
3169 		u64 seq;
3170 
3171 		seq = prb_first_valid_seq(prb);
3172 
3173 		cookie = console_srcu_read_lock();
3174 		for_each_console_srcu(c) {
3175 			flags = console_srcu_read_flags(c);
3176 
3177 			if (flags & CON_NBCON) {
3178 				nbcon_seq_force(c, seq);
3179 			} else {
3180 				/*
3181 				 * This is an unsynchronized assignment. On
3182 				 * panic legacy consoles are only best effort.
3183 				 */
3184 				c->seq = seq;
3185 			}
3186 		}
3187 		console_srcu_read_unlock(cookie);
3188 	}
3189 
3190 	console_flush_all(false, &next_seq, &handover);
3191 }
3192 
3193 /*
3194  * Return the console tty driver structure and its associated index
3195  */
3196 struct tty_driver *console_device(int *index)
3197 {
3198 	struct console *c;
3199 	struct tty_driver *driver = NULL;
3200 	int cookie;
3201 
3202 	/*
3203 	 * Take console_lock to serialize device() callback with
3204 	 * other console operations. For example, fg_console is
3205 	 * modified under console_lock when switching vt.
3206 	 */
3207 	console_lock();
3208 
3209 	cookie = console_srcu_read_lock();
3210 	for_each_console_srcu(c) {
3211 		if (!c->device)
3212 			continue;
3213 		driver = c->device(c, index);
3214 		if (driver)
3215 			break;
3216 	}
3217 	console_srcu_read_unlock(cookie);
3218 
3219 	console_unlock();
3220 	return driver;
3221 }
3222 
3223 /*
3224  * Prevent further output on the passed console device so that (for example)
3225  * serial drivers can disable console output before suspending a port, and can
3226  * re-enable output afterwards.
3227  */
3228 void console_stop(struct console *console)
3229 {
3230 	__pr_flush(console, 1000, true);
3231 	console_list_lock();
3232 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3233 	console_list_unlock();
3234 
3235 	/*
3236 	 * Ensure that all SRCU list walks have completed. All contexts must
3237 	 * be able to see that this console is disabled so that (for example)
3238 	 * the caller can suspend the port without risk of another context
3239 	 * using the port.
3240 	 */
3241 	synchronize_srcu(&console_srcu);
3242 }
3243 EXPORT_SYMBOL(console_stop);
3244 
3245 void console_start(struct console *console)
3246 {
3247 	console_list_lock();
3248 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3249 	console_list_unlock();
3250 	__pr_flush(console, 1000, true);
3251 }
3252 EXPORT_SYMBOL(console_start);
3253 
3254 static int __read_mostly keep_bootcon;
3255 
3256 static int __init keep_bootcon_setup(char *str)
3257 {
3258 	keep_bootcon = 1;
3259 	pr_info("debug: skip boot console de-registration.\n");
3260 
3261 	return 0;
3262 }
3263 
3264 early_param("keep_bootcon", keep_bootcon_setup);
3265 
3266 /*
3267  * This is called by register_console() to try to match
3268  * the newly registered console with any of the ones selected
3269  * by either the command line or add_preferred_console() and
3270  * setup/enable it.
3271  *
3272  * Care need to be taken with consoles that are statically
3273  * enabled such as netconsole
3274  */
3275 static int try_enable_preferred_console(struct console *newcon,
3276 					bool user_specified)
3277 {
3278 	struct console_cmdline *c;
3279 	int i, err;
3280 
3281 	for (i = 0, c = console_cmdline;
3282 	     i < MAX_CMDLINECONSOLES && c->name[0];
3283 	     i++, c++) {
3284 		if (c->user_specified != user_specified)
3285 			continue;
3286 		if (!newcon->match ||
3287 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3288 			/* default matching */
3289 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3290 			if (strcmp(c->name, newcon->name) != 0)
3291 				continue;
3292 			if (newcon->index >= 0 &&
3293 			    newcon->index != c->index)
3294 				continue;
3295 			if (newcon->index < 0)
3296 				newcon->index = c->index;
3297 
3298 			if (_braille_register_console(newcon, c))
3299 				return 0;
3300 
3301 			if (newcon->setup &&
3302 			    (err = newcon->setup(newcon, c->options)) != 0)
3303 				return err;
3304 		}
3305 		newcon->flags |= CON_ENABLED;
3306 		if (i == preferred_console)
3307 			newcon->flags |= CON_CONSDEV;
3308 		return 0;
3309 	}
3310 
3311 	/*
3312 	 * Some consoles, such as pstore and netconsole, can be enabled even
3313 	 * without matching. Accept the pre-enabled consoles only when match()
3314 	 * and setup() had a chance to be called.
3315 	 */
3316 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3317 		return 0;
3318 
3319 	return -ENOENT;
3320 }
3321 
3322 /* Try to enable the console unconditionally */
3323 static void try_enable_default_console(struct console *newcon)
3324 {
3325 	if (newcon->index < 0)
3326 		newcon->index = 0;
3327 
3328 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3329 		return;
3330 
3331 	newcon->flags |= CON_ENABLED;
3332 
3333 	if (newcon->device)
3334 		newcon->flags |= CON_CONSDEV;
3335 }
3336 
3337 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3338 {
3339 	struct console *con;
3340 	bool handover;
3341 
3342 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3343 		/* Get a consistent copy of @syslog_seq. */
3344 		mutex_lock(&syslog_lock);
3345 		newcon->seq = syslog_seq;
3346 		mutex_unlock(&syslog_lock);
3347 	} else {
3348 		/* Begin with next message added to ringbuffer. */
3349 		newcon->seq = prb_next_seq(prb);
3350 
3351 		/*
3352 		 * If any enabled boot consoles are due to be unregistered
3353 		 * shortly, some may not be caught up and may be the same
3354 		 * device as @newcon. Since it is not known which boot console
3355 		 * is the same device, flush all consoles and, if necessary,
3356 		 * start with the message of the enabled boot console that is
3357 		 * the furthest behind.
3358 		 */
3359 		if (bootcon_registered && !keep_bootcon) {
3360 			/*
3361 			 * Hold the console_lock to stop console printing and
3362 			 * guarantee safe access to console->seq.
3363 			 */
3364 			console_lock();
3365 
3366 			/*
3367 			 * Flush all consoles and set the console to start at
3368 			 * the next unprinted sequence number.
3369 			 */
3370 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3371 				/*
3372 				 * Flushing failed. Just choose the lowest
3373 				 * sequence of the enabled boot consoles.
3374 				 */
3375 
3376 				/*
3377 				 * If there was a handover, this context no
3378 				 * longer holds the console_lock.
3379 				 */
3380 				if (handover)
3381 					console_lock();
3382 
3383 				newcon->seq = prb_next_seq(prb);
3384 				for_each_console(con) {
3385 					if ((con->flags & CON_BOOT) &&
3386 					    (con->flags & CON_ENABLED) &&
3387 					    con->seq < newcon->seq) {
3388 						newcon->seq = con->seq;
3389 					}
3390 				}
3391 			}
3392 
3393 			console_unlock();
3394 		}
3395 	}
3396 }
3397 
3398 #define console_first()				\
3399 	hlist_entry(console_list.first, struct console, node)
3400 
3401 static int unregister_console_locked(struct console *console);
3402 
3403 /*
3404  * The console driver calls this routine during kernel initialization
3405  * to register the console printing procedure with printk() and to
3406  * print any messages that were printed by the kernel before the
3407  * console driver was initialized.
3408  *
3409  * This can happen pretty early during the boot process (because of
3410  * early_printk) - sometimes before setup_arch() completes - be careful
3411  * of what kernel features are used - they may not be initialised yet.
3412  *
3413  * There are two types of consoles - bootconsoles (early_printk) and
3414  * "real" consoles (everything which is not a bootconsole) which are
3415  * handled differently.
3416  *  - Any number of bootconsoles can be registered at any time.
3417  *  - As soon as a "real" console is registered, all bootconsoles
3418  *    will be unregistered automatically.
3419  *  - Once a "real" console is registered, any attempt to register a
3420  *    bootconsoles will be rejected
3421  */
3422 void register_console(struct console *newcon)
3423 {
3424 	struct console *con;
3425 	bool bootcon_registered = false;
3426 	bool realcon_registered = false;
3427 	int err;
3428 
3429 	console_list_lock();
3430 
3431 	for_each_console(con) {
3432 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3433 					 con->name, con->index)) {
3434 			goto unlock;
3435 		}
3436 
3437 		if (con->flags & CON_BOOT)
3438 			bootcon_registered = true;
3439 		else
3440 			realcon_registered = true;
3441 	}
3442 
3443 	/* Do not register boot consoles when there already is a real one. */
3444 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3445 		pr_info("Too late to register bootconsole %s%d\n",
3446 			newcon->name, newcon->index);
3447 		goto unlock;
3448 	}
3449 
3450 	if (newcon->flags & CON_NBCON) {
3451 		/*
3452 		 * Ensure the nbcon console buffers can be allocated
3453 		 * before modifying any global data.
3454 		 */
3455 		if (!nbcon_alloc(newcon))
3456 			goto unlock;
3457 	}
3458 
3459 	/*
3460 	 * See if we want to enable this console driver by default.
3461 	 *
3462 	 * Nope when a console is preferred by the command line, device
3463 	 * tree, or SPCR.
3464 	 *
3465 	 * The first real console with tty binding (driver) wins. More
3466 	 * consoles might get enabled before the right one is found.
3467 	 *
3468 	 * Note that a console with tty binding will have CON_CONSDEV
3469 	 * flag set and will be first in the list.
3470 	 */
3471 	if (preferred_console < 0) {
3472 		if (hlist_empty(&console_list) || !console_first()->device ||
3473 		    console_first()->flags & CON_BOOT) {
3474 			try_enable_default_console(newcon);
3475 		}
3476 	}
3477 
3478 	/* See if this console matches one we selected on the command line */
3479 	err = try_enable_preferred_console(newcon, true);
3480 
3481 	/* If not, try to match against the platform default(s) */
3482 	if (err == -ENOENT)
3483 		err = try_enable_preferred_console(newcon, false);
3484 
3485 	/* printk() messages are not printed to the Braille console. */
3486 	if (err || newcon->flags & CON_BRL) {
3487 		if (newcon->flags & CON_NBCON)
3488 			nbcon_free(newcon);
3489 		goto unlock;
3490 	}
3491 
3492 	/*
3493 	 * If we have a bootconsole, and are switching to a real console,
3494 	 * don't print everything out again, since when the boot console, and
3495 	 * the real console are the same physical device, it's annoying to
3496 	 * see the beginning boot messages twice
3497 	 */
3498 	if (bootcon_registered &&
3499 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3500 		newcon->flags &= ~CON_PRINTBUFFER;
3501 	}
3502 
3503 	newcon->dropped = 0;
3504 	console_init_seq(newcon, bootcon_registered);
3505 
3506 	if (newcon->flags & CON_NBCON)
3507 		nbcon_init(newcon);
3508 
3509 	/*
3510 	 * Put this console in the list - keep the
3511 	 * preferred driver at the head of the list.
3512 	 */
3513 	if (hlist_empty(&console_list)) {
3514 		/* Ensure CON_CONSDEV is always set for the head. */
3515 		newcon->flags |= CON_CONSDEV;
3516 		hlist_add_head_rcu(&newcon->node, &console_list);
3517 
3518 	} else if (newcon->flags & CON_CONSDEV) {
3519 		/* Only the new head can have CON_CONSDEV set. */
3520 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3521 		hlist_add_head_rcu(&newcon->node, &console_list);
3522 
3523 	} else {
3524 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3525 	}
3526 
3527 	/*
3528 	 * No need to synchronize SRCU here! The caller does not rely
3529 	 * on all contexts being able to see the new console before
3530 	 * register_console() completes.
3531 	 */
3532 
3533 	console_sysfs_notify();
3534 
3535 	/*
3536 	 * By unregistering the bootconsoles after we enable the real console
3537 	 * we get the "console xxx enabled" message on all the consoles -
3538 	 * boot consoles, real consoles, etc - this is to ensure that end
3539 	 * users know there might be something in the kernel's log buffer that
3540 	 * went to the bootconsole (that they do not see on the real console)
3541 	 */
3542 	con_printk(KERN_INFO, newcon, "enabled\n");
3543 	if (bootcon_registered &&
3544 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3545 	    !keep_bootcon) {
3546 		struct hlist_node *tmp;
3547 
3548 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3549 			if (con->flags & CON_BOOT)
3550 				unregister_console_locked(con);
3551 		}
3552 	}
3553 unlock:
3554 	console_list_unlock();
3555 }
3556 EXPORT_SYMBOL(register_console);
3557 
3558 /* Must be called under console_list_lock(). */
3559 static int unregister_console_locked(struct console *console)
3560 {
3561 	int res;
3562 
3563 	lockdep_assert_console_list_lock_held();
3564 
3565 	con_printk(KERN_INFO, console, "disabled\n");
3566 
3567 	res = _braille_unregister_console(console);
3568 	if (res < 0)
3569 		return res;
3570 	if (res > 0)
3571 		return 0;
3572 
3573 	/* Disable it unconditionally */
3574 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3575 
3576 	if (!console_is_registered_locked(console))
3577 		return -ENODEV;
3578 
3579 	hlist_del_init_rcu(&console->node);
3580 
3581 	/*
3582 	 * <HISTORICAL>
3583 	 * If this isn't the last console and it has CON_CONSDEV set, we
3584 	 * need to set it on the next preferred console.
3585 	 * </HISTORICAL>
3586 	 *
3587 	 * The above makes no sense as there is no guarantee that the next
3588 	 * console has any device attached. Oh well....
3589 	 */
3590 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3591 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3592 
3593 	/*
3594 	 * Ensure that all SRCU list walks have completed. All contexts
3595 	 * must not be able to see this console in the list so that any
3596 	 * exit/cleanup routines can be performed safely.
3597 	 */
3598 	synchronize_srcu(&console_srcu);
3599 
3600 	if (console->flags & CON_NBCON)
3601 		nbcon_free(console);
3602 
3603 	console_sysfs_notify();
3604 
3605 	if (console->exit)
3606 		res = console->exit(console);
3607 
3608 	return res;
3609 }
3610 
3611 int unregister_console(struct console *console)
3612 {
3613 	int res;
3614 
3615 	console_list_lock();
3616 	res = unregister_console_locked(console);
3617 	console_list_unlock();
3618 	return res;
3619 }
3620 EXPORT_SYMBOL(unregister_console);
3621 
3622 /**
3623  * console_force_preferred_locked - force a registered console preferred
3624  * @con: The registered console to force preferred.
3625  *
3626  * Must be called under console_list_lock().
3627  */
3628 void console_force_preferred_locked(struct console *con)
3629 {
3630 	struct console *cur_pref_con;
3631 
3632 	if (!console_is_registered_locked(con))
3633 		return;
3634 
3635 	cur_pref_con = console_first();
3636 
3637 	/* Already preferred? */
3638 	if (cur_pref_con == con)
3639 		return;
3640 
3641 	/*
3642 	 * Delete, but do not re-initialize the entry. This allows the console
3643 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3644 	 * checks), even though it was briefly removed from the console list.
3645 	 */
3646 	hlist_del_rcu(&con->node);
3647 
3648 	/*
3649 	 * Ensure that all SRCU list walks have completed so that the console
3650 	 * can be added to the beginning of the console list and its forward
3651 	 * list pointer can be re-initialized.
3652 	 */
3653 	synchronize_srcu(&console_srcu);
3654 
3655 	con->flags |= CON_CONSDEV;
3656 	WARN_ON(!con->device);
3657 
3658 	/* Only the new head can have CON_CONSDEV set. */
3659 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3660 	hlist_add_head_rcu(&con->node, &console_list);
3661 }
3662 EXPORT_SYMBOL(console_force_preferred_locked);
3663 
3664 /*
3665  * Initialize the console device. This is called *early*, so
3666  * we can't necessarily depend on lots of kernel help here.
3667  * Just do some early initializations, and do the complex setup
3668  * later.
3669  */
3670 void __init console_init(void)
3671 {
3672 	int ret;
3673 	initcall_t call;
3674 	initcall_entry_t *ce;
3675 
3676 	/* Setup the default TTY line discipline. */
3677 	n_tty_init();
3678 
3679 	/*
3680 	 * set up the console device so that later boot sequences can
3681 	 * inform about problems etc..
3682 	 */
3683 	ce = __con_initcall_start;
3684 	trace_initcall_level("console");
3685 	while (ce < __con_initcall_end) {
3686 		call = initcall_from_entry(ce);
3687 		trace_initcall_start(call);
3688 		ret = call();
3689 		trace_initcall_finish(call, ret);
3690 		ce++;
3691 	}
3692 }
3693 
3694 /*
3695  * Some boot consoles access data that is in the init section and which will
3696  * be discarded after the initcalls have been run. To make sure that no code
3697  * will access this data, unregister the boot consoles in a late initcall.
3698  *
3699  * If for some reason, such as deferred probe or the driver being a loadable
3700  * module, the real console hasn't registered yet at this point, there will
3701  * be a brief interval in which no messages are logged to the console, which
3702  * makes it difficult to diagnose problems that occur during this time.
3703  *
3704  * To mitigate this problem somewhat, only unregister consoles whose memory
3705  * intersects with the init section. Note that all other boot consoles will
3706  * get unregistered when the real preferred console is registered.
3707  */
3708 static int __init printk_late_init(void)
3709 {
3710 	struct hlist_node *tmp;
3711 	struct console *con;
3712 	int ret;
3713 
3714 	console_list_lock();
3715 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3716 		if (!(con->flags & CON_BOOT))
3717 			continue;
3718 
3719 		/* Check addresses that might be used for enabled consoles. */
3720 		if (init_section_intersects(con, sizeof(*con)) ||
3721 		    init_section_contains(con->write, 0) ||
3722 		    init_section_contains(con->read, 0) ||
3723 		    init_section_contains(con->device, 0) ||
3724 		    init_section_contains(con->unblank, 0) ||
3725 		    init_section_contains(con->data, 0)) {
3726 			/*
3727 			 * Please, consider moving the reported consoles out
3728 			 * of the init section.
3729 			 */
3730 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3731 				con->name, con->index);
3732 			unregister_console_locked(con);
3733 		}
3734 	}
3735 	console_list_unlock();
3736 
3737 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3738 					console_cpu_notify);
3739 	WARN_ON(ret < 0);
3740 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3741 					console_cpu_notify, NULL);
3742 	WARN_ON(ret < 0);
3743 	printk_sysctl_init();
3744 	return 0;
3745 }
3746 late_initcall(printk_late_init);
3747 
3748 #if defined CONFIG_PRINTK
3749 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3750 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3751 {
3752 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
3753 	unsigned long remaining_jiffies = timeout_jiffies;
3754 	struct console *c;
3755 	u64 last_diff = 0;
3756 	u64 printk_seq;
3757 	short flags;
3758 	int cookie;
3759 	u64 diff;
3760 	u64 seq;
3761 
3762 	might_sleep();
3763 
3764 	seq = prb_next_seq(prb);
3765 
3766 	/* Flush the consoles so that records up to @seq are printed. */
3767 	console_lock();
3768 	console_unlock();
3769 
3770 	for (;;) {
3771 		unsigned long begin_jiffies;
3772 		unsigned long slept_jiffies;
3773 
3774 		diff = 0;
3775 
3776 		/*
3777 		 * Hold the console_lock to guarantee safe access to
3778 		 * console->seq. Releasing console_lock flushes more
3779 		 * records in case @seq is still not printed on all
3780 		 * usable consoles.
3781 		 */
3782 		console_lock();
3783 
3784 		cookie = console_srcu_read_lock();
3785 		for_each_console_srcu(c) {
3786 			if (con && con != c)
3787 				continue;
3788 
3789 			flags = console_srcu_read_flags(c);
3790 
3791 			/*
3792 			 * If consoles are not usable, it cannot be expected
3793 			 * that they make forward progress, so only increment
3794 			 * @diff for usable consoles.
3795 			 */
3796 			if (!console_is_usable(c))
3797 				continue;
3798 
3799 			if (flags & CON_NBCON) {
3800 				printk_seq = nbcon_seq_read(c);
3801 			} else {
3802 				printk_seq = c->seq;
3803 			}
3804 
3805 			if (printk_seq < seq)
3806 				diff += seq - printk_seq;
3807 		}
3808 		console_srcu_read_unlock(cookie);
3809 
3810 		if (diff != last_diff && reset_on_progress)
3811 			remaining_jiffies = timeout_jiffies;
3812 
3813 		console_unlock();
3814 
3815 		/* Note: @diff is 0 if there are no usable consoles. */
3816 		if (diff == 0 || remaining_jiffies == 0)
3817 			break;
3818 
3819 		/* msleep(1) might sleep much longer. Check time by jiffies. */
3820 		begin_jiffies = jiffies;
3821 		msleep(1);
3822 		slept_jiffies = jiffies - begin_jiffies;
3823 
3824 		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
3825 
3826 		last_diff = diff;
3827 	}
3828 
3829 	return (diff == 0);
3830 }
3831 
3832 /**
3833  * pr_flush() - Wait for printing threads to catch up.
3834  *
3835  * @timeout_ms:        The maximum time (in ms) to wait.
3836  * @reset_on_progress: Reset the timeout if forward progress is seen.
3837  *
3838  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3839  * represents infinite waiting.
3840  *
3841  * If @reset_on_progress is true, the timeout will be reset whenever any
3842  * printer has been seen to make some forward progress.
3843  *
3844  * Context: Process context. May sleep while acquiring console lock.
3845  * Return: true if all usable printers are caught up.
3846  */
3847 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3848 {
3849 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3850 }
3851 
3852 /*
3853  * Delayed printk version, for scheduler-internal messages:
3854  */
3855 #define PRINTK_PENDING_WAKEUP	0x01
3856 #define PRINTK_PENDING_OUTPUT	0x02
3857 
3858 static DEFINE_PER_CPU(int, printk_pending);
3859 
3860 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3861 {
3862 	int pending = this_cpu_xchg(printk_pending, 0);
3863 
3864 	if (pending & PRINTK_PENDING_OUTPUT) {
3865 		/* If trylock fails, someone else is doing the printing */
3866 		if (console_trylock())
3867 			console_unlock();
3868 	}
3869 
3870 	if (pending & PRINTK_PENDING_WAKEUP)
3871 		wake_up_interruptible(&log_wait);
3872 }
3873 
3874 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3875 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3876 
3877 static void __wake_up_klogd(int val)
3878 {
3879 	if (!printk_percpu_data_ready())
3880 		return;
3881 
3882 	preempt_disable();
3883 	/*
3884 	 * Guarantee any new records can be seen by tasks preparing to wait
3885 	 * before this context checks if the wait queue is empty.
3886 	 *
3887 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3888 	 * memory barrier within set_current_state() of
3889 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3890 	 * the waiter but before it has checked the wait condition.
3891 	 *
3892 	 * This pairs with devkmsg_read:A and syslog_print:A.
3893 	 */
3894 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3895 	    (val & PRINTK_PENDING_OUTPUT)) {
3896 		this_cpu_or(printk_pending, val);
3897 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3898 	}
3899 	preempt_enable();
3900 }
3901 
3902 /**
3903  * wake_up_klogd - Wake kernel logging daemon
3904  *
3905  * Use this function when new records have been added to the ringbuffer
3906  * and the console printing of those records has already occurred or is
3907  * known to be handled by some other context. This function will only
3908  * wake the logging daemon.
3909  *
3910  * Context: Any context.
3911  */
3912 void wake_up_klogd(void)
3913 {
3914 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3915 }
3916 
3917 /**
3918  * defer_console_output - Wake kernel logging daemon and trigger
3919  *	console printing in a deferred context
3920  *
3921  * Use this function when new records have been added to the ringbuffer,
3922  * this context is responsible for console printing those records, but
3923  * the current context is not allowed to perform the console printing.
3924  * Trigger an irq_work context to perform the console printing. This
3925  * function also wakes the logging daemon.
3926  *
3927  * Context: Any context.
3928  */
3929 void defer_console_output(void)
3930 {
3931 	/*
3932 	 * New messages may have been added directly to the ringbuffer
3933 	 * using vprintk_store(), so wake any waiters as well.
3934 	 */
3935 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3936 }
3937 
3938 void printk_trigger_flush(void)
3939 {
3940 	defer_console_output();
3941 }
3942 
3943 int vprintk_deferred(const char *fmt, va_list args)
3944 {
3945 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3946 }
3947 
3948 int _printk_deferred(const char *fmt, ...)
3949 {
3950 	va_list args;
3951 	int r;
3952 
3953 	va_start(args, fmt);
3954 	r = vprintk_deferred(fmt, args);
3955 	va_end(args);
3956 
3957 	return r;
3958 }
3959 
3960 /*
3961  * printk rate limiting, lifted from the networking subsystem.
3962  *
3963  * This enforces a rate limit: not more than 10 kernel messages
3964  * every 5s to make a denial-of-service attack impossible.
3965  */
3966 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3967 
3968 int __printk_ratelimit(const char *func)
3969 {
3970 	return ___ratelimit(&printk_ratelimit_state, func);
3971 }
3972 EXPORT_SYMBOL(__printk_ratelimit);
3973 
3974 /**
3975  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3976  * @caller_jiffies: pointer to caller's state
3977  * @interval_msecs: minimum interval between prints
3978  *
3979  * printk_timed_ratelimit() returns true if more than @interval_msecs
3980  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3981  * returned true.
3982  */
3983 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3984 			unsigned int interval_msecs)
3985 {
3986 	unsigned long elapsed = jiffies - *caller_jiffies;
3987 
3988 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3989 		return false;
3990 
3991 	*caller_jiffies = jiffies;
3992 	return true;
3993 }
3994 EXPORT_SYMBOL(printk_timed_ratelimit);
3995 
3996 static DEFINE_SPINLOCK(dump_list_lock);
3997 static LIST_HEAD(dump_list);
3998 
3999 /**
4000  * kmsg_dump_register - register a kernel log dumper.
4001  * @dumper: pointer to the kmsg_dumper structure
4002  *
4003  * Adds a kernel log dumper to the system. The dump callback in the
4004  * structure will be called when the kernel oopses or panics and must be
4005  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4006  */
4007 int kmsg_dump_register(struct kmsg_dumper *dumper)
4008 {
4009 	unsigned long flags;
4010 	int err = -EBUSY;
4011 
4012 	/* The dump callback needs to be set */
4013 	if (!dumper->dump)
4014 		return -EINVAL;
4015 
4016 	spin_lock_irqsave(&dump_list_lock, flags);
4017 	/* Don't allow registering multiple times */
4018 	if (!dumper->registered) {
4019 		dumper->registered = 1;
4020 		list_add_tail_rcu(&dumper->list, &dump_list);
4021 		err = 0;
4022 	}
4023 	spin_unlock_irqrestore(&dump_list_lock, flags);
4024 
4025 	return err;
4026 }
4027 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4028 
4029 /**
4030  * kmsg_dump_unregister - unregister a kmsg dumper.
4031  * @dumper: pointer to the kmsg_dumper structure
4032  *
4033  * Removes a dump device from the system. Returns zero on success and
4034  * %-EINVAL otherwise.
4035  */
4036 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4037 {
4038 	unsigned long flags;
4039 	int err = -EINVAL;
4040 
4041 	spin_lock_irqsave(&dump_list_lock, flags);
4042 	if (dumper->registered) {
4043 		dumper->registered = 0;
4044 		list_del_rcu(&dumper->list);
4045 		err = 0;
4046 	}
4047 	spin_unlock_irqrestore(&dump_list_lock, flags);
4048 	synchronize_rcu();
4049 
4050 	return err;
4051 }
4052 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4053 
4054 static bool always_kmsg_dump;
4055 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4056 
4057 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4058 {
4059 	switch (reason) {
4060 	case KMSG_DUMP_PANIC:
4061 		return "Panic";
4062 	case KMSG_DUMP_OOPS:
4063 		return "Oops";
4064 	case KMSG_DUMP_EMERG:
4065 		return "Emergency";
4066 	case KMSG_DUMP_SHUTDOWN:
4067 		return "Shutdown";
4068 	default:
4069 		return "Unknown";
4070 	}
4071 }
4072 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4073 
4074 /**
4075  * kmsg_dump - dump kernel log to kernel message dumpers.
4076  * @reason: the reason (oops, panic etc) for dumping
4077  *
4078  * Call each of the registered dumper's dump() callback, which can
4079  * retrieve the kmsg records with kmsg_dump_get_line() or
4080  * kmsg_dump_get_buffer().
4081  */
4082 void kmsg_dump(enum kmsg_dump_reason reason)
4083 {
4084 	struct kmsg_dumper *dumper;
4085 
4086 	rcu_read_lock();
4087 	list_for_each_entry_rcu(dumper, &dump_list, list) {
4088 		enum kmsg_dump_reason max_reason = dumper->max_reason;
4089 
4090 		/*
4091 		 * If client has not provided a specific max_reason, default
4092 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4093 		 */
4094 		if (max_reason == KMSG_DUMP_UNDEF) {
4095 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4096 							KMSG_DUMP_OOPS;
4097 		}
4098 		if (reason > max_reason)
4099 			continue;
4100 
4101 		/* invoke dumper which will iterate over records */
4102 		dumper->dump(dumper, reason);
4103 	}
4104 	rcu_read_unlock();
4105 }
4106 
4107 /**
4108  * kmsg_dump_get_line - retrieve one kmsg log line
4109  * @iter: kmsg dump iterator
4110  * @syslog: include the "<4>" prefixes
4111  * @line: buffer to copy the line to
4112  * @size: maximum size of the buffer
4113  * @len: length of line placed into buffer
4114  *
4115  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4116  * record, and copy one record into the provided buffer.
4117  *
4118  * Consecutive calls will return the next available record moving
4119  * towards the end of the buffer with the youngest messages.
4120  *
4121  * A return value of FALSE indicates that there are no more records to
4122  * read.
4123  */
4124 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4125 			char *line, size_t size, size_t *len)
4126 {
4127 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4128 	struct printk_info info;
4129 	unsigned int line_count;
4130 	struct printk_record r;
4131 	size_t l = 0;
4132 	bool ret = false;
4133 
4134 	if (iter->cur_seq < min_seq)
4135 		iter->cur_seq = min_seq;
4136 
4137 	prb_rec_init_rd(&r, &info, line, size);
4138 
4139 	/* Read text or count text lines? */
4140 	if (line) {
4141 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4142 			goto out;
4143 		l = record_print_text(&r, syslog, printk_time);
4144 	} else {
4145 		if (!prb_read_valid_info(prb, iter->cur_seq,
4146 					 &info, &line_count)) {
4147 			goto out;
4148 		}
4149 		l = get_record_print_text_size(&info, line_count, syslog,
4150 					       printk_time);
4151 
4152 	}
4153 
4154 	iter->cur_seq = r.info->seq + 1;
4155 	ret = true;
4156 out:
4157 	if (len)
4158 		*len = l;
4159 	return ret;
4160 }
4161 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4162 
4163 /**
4164  * kmsg_dump_get_buffer - copy kmsg log lines
4165  * @iter: kmsg dump iterator
4166  * @syslog: include the "<4>" prefixes
4167  * @buf: buffer to copy the line to
4168  * @size: maximum size of the buffer
4169  * @len_out: length of line placed into buffer
4170  *
4171  * Start at the end of the kmsg buffer and fill the provided buffer
4172  * with as many of the *youngest* kmsg records that fit into it.
4173  * If the buffer is large enough, all available kmsg records will be
4174  * copied with a single call.
4175  *
4176  * Consecutive calls will fill the buffer with the next block of
4177  * available older records, not including the earlier retrieved ones.
4178  *
4179  * A return value of FALSE indicates that there are no more records to
4180  * read.
4181  */
4182 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4183 			  char *buf, size_t size, size_t *len_out)
4184 {
4185 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4186 	struct printk_info info;
4187 	struct printk_record r;
4188 	u64 seq;
4189 	u64 next_seq;
4190 	size_t len = 0;
4191 	bool ret = false;
4192 	bool time = printk_time;
4193 
4194 	if (!buf || !size)
4195 		goto out;
4196 
4197 	if (iter->cur_seq < min_seq)
4198 		iter->cur_seq = min_seq;
4199 
4200 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4201 		if (info.seq != iter->cur_seq) {
4202 			/* messages are gone, move to first available one */
4203 			iter->cur_seq = info.seq;
4204 		}
4205 	}
4206 
4207 	/* last entry */
4208 	if (iter->cur_seq >= iter->next_seq)
4209 		goto out;
4210 
4211 	/*
4212 	 * Find first record that fits, including all following records,
4213 	 * into the user-provided buffer for this dump. Pass in size-1
4214 	 * because this function (by way of record_print_text()) will
4215 	 * not write more than size-1 bytes of text into @buf.
4216 	 */
4217 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4218 				     size - 1, syslog, time);
4219 
4220 	/*
4221 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4222 	 * older records stored right before this one.
4223 	 */
4224 	next_seq = seq;
4225 
4226 	prb_rec_init_rd(&r, &info, buf, size);
4227 
4228 	prb_for_each_record(seq, prb, seq, &r) {
4229 		if (r.info->seq >= iter->next_seq)
4230 			break;
4231 
4232 		len += record_print_text(&r, syslog, time);
4233 
4234 		/* Adjust record to store to remaining buffer space. */
4235 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4236 	}
4237 
4238 	iter->next_seq = next_seq;
4239 	ret = true;
4240 out:
4241 	if (len_out)
4242 		*len_out = len;
4243 	return ret;
4244 }
4245 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4246 
4247 /**
4248  * kmsg_dump_rewind - reset the iterator
4249  * @iter: kmsg dump iterator
4250  *
4251  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4252  * kmsg_dump_get_buffer() can be called again and used multiple
4253  * times within the same dumper.dump() callback.
4254  */
4255 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4256 {
4257 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4258 	iter->next_seq = prb_next_seq(prb);
4259 }
4260 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4261 
4262 #endif
4263 
4264 #ifdef CONFIG_SMP
4265 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4266 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4267 
4268 /**
4269  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4270  *                            spinning lock is not owned by any CPU.
4271  *
4272  * Context: Any context.
4273  */
4274 void __printk_cpu_sync_wait(void)
4275 {
4276 	do {
4277 		cpu_relax();
4278 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4279 }
4280 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4281 
4282 /**
4283  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4284  *                               spinning lock.
4285  *
4286  * If no processor has the lock, the calling processor takes the lock and
4287  * becomes the owner. If the calling processor is already the owner of the
4288  * lock, this function succeeds immediately.
4289  *
4290  * Context: Any context. Expects interrupts to be disabled.
4291  * Return: 1 on success, otherwise 0.
4292  */
4293 int __printk_cpu_sync_try_get(void)
4294 {
4295 	int cpu;
4296 	int old;
4297 
4298 	cpu = smp_processor_id();
4299 
4300 	/*
4301 	 * Guarantee loads and stores from this CPU when it is the lock owner
4302 	 * are _not_ visible to the previous lock owner. This pairs with
4303 	 * __printk_cpu_sync_put:B.
4304 	 *
4305 	 * Memory barrier involvement:
4306 	 *
4307 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4308 	 * then __printk_cpu_sync_put:A can never read from
4309 	 * __printk_cpu_sync_try_get:B.
4310 	 *
4311 	 * Relies on:
4312 	 *
4313 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4314 	 * of the previous CPU
4315 	 *    matching
4316 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4317 	 * __printk_cpu_sync_try_get:B of this CPU
4318 	 */
4319 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4320 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4321 	if (old == -1) {
4322 		/*
4323 		 * This CPU is now the owner and begins loading/storing
4324 		 * data: LMM(__printk_cpu_sync_try_get:B)
4325 		 */
4326 		return 1;
4327 
4328 	} else if (old == cpu) {
4329 		/* This CPU is already the owner. */
4330 		atomic_inc(&printk_cpu_sync_nested);
4331 		return 1;
4332 	}
4333 
4334 	return 0;
4335 }
4336 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4337 
4338 /**
4339  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4340  *
4341  * The calling processor must be the owner of the lock.
4342  *
4343  * Context: Any context. Expects interrupts to be disabled.
4344  */
4345 void __printk_cpu_sync_put(void)
4346 {
4347 	if (atomic_read(&printk_cpu_sync_nested)) {
4348 		atomic_dec(&printk_cpu_sync_nested);
4349 		return;
4350 	}
4351 
4352 	/*
4353 	 * This CPU is finished loading/storing data:
4354 	 * LMM(__printk_cpu_sync_put:A)
4355 	 */
4356 
4357 	/*
4358 	 * Guarantee loads and stores from this CPU when it was the
4359 	 * lock owner are visible to the next lock owner. This pairs
4360 	 * with __printk_cpu_sync_try_get:A.
4361 	 *
4362 	 * Memory barrier involvement:
4363 	 *
4364 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4365 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4366 	 *
4367 	 * Relies on:
4368 	 *
4369 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4370 	 * of this CPU
4371 	 *    matching
4372 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4373 	 * __printk_cpu_sync_try_get:B of the next CPU
4374 	 */
4375 	atomic_set_release(&printk_cpu_sync_owner,
4376 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4377 }
4378 EXPORT_SYMBOL(__printk_cpu_sync_put);
4379 #endif /* CONFIG_SMP */
4380