1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/kexec.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/notifier.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/utsname.h> 47 #include <linux/ctype.h> 48 #include <linux/uio.h> 49 50 #include <asm/uaccess.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 58 int console_printk[4] = { 59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 63 }; 64 65 /* 66 * Low level drivers may need that to know if they can schedule in 67 * their unblank() callback or not. So let's export it. 68 */ 69 int oops_in_progress; 70 EXPORT_SYMBOL(oops_in_progress); 71 72 /* 73 * console_sem protects the console_drivers list, and also 74 * provides serialisation for access to the entire console 75 * driver system. 76 */ 77 static DEFINE_SEMAPHORE(console_sem); 78 struct console *console_drivers; 79 EXPORT_SYMBOL_GPL(console_drivers); 80 81 #ifdef CONFIG_LOCKDEP 82 static struct lockdep_map console_lock_dep_map = { 83 .name = "console_lock" 84 }; 85 #endif 86 87 /* 88 * Number of registered extended console drivers. 89 * 90 * If extended consoles are present, in-kernel cont reassembly is disabled 91 * and each fragment is stored as a separate log entry with proper 92 * continuation flag so that every emitted message has full metadata. This 93 * doesn't change the result for regular consoles or /proc/kmsg. For 94 * /dev/kmsg, as long as the reader concatenates messages according to 95 * consecutive continuation flags, the end result should be the same too. 96 */ 97 static int nr_ext_console_drivers; 98 99 /* 100 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 101 * macros instead of functions so that _RET_IP_ contains useful information. 102 */ 103 #define down_console_sem() do { \ 104 down(&console_sem);\ 105 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 106 } while (0) 107 108 static int __down_trylock_console_sem(unsigned long ip) 109 { 110 if (down_trylock(&console_sem)) 111 return 1; 112 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 113 return 0; 114 } 115 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 116 117 #define up_console_sem() do { \ 118 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 119 up(&console_sem);\ 120 } while (0) 121 122 /* 123 * This is used for debugging the mess that is the VT code by 124 * keeping track if we have the console semaphore held. It's 125 * definitely not the perfect debug tool (we don't know if _WE_ 126 * hold it and are racing, but it helps tracking those weird code 127 * paths in the console code where we end up in places I want 128 * locked without the console sempahore held). 129 */ 130 static int console_locked, console_suspended; 131 132 /* 133 * If exclusive_console is non-NULL then only this console is to be printed to. 134 */ 135 static struct console *exclusive_console; 136 137 /* 138 * Array of consoles built from command line options (console=) 139 */ 140 141 #define MAX_CMDLINECONSOLES 8 142 143 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 144 145 static int selected_console = -1; 146 static int preferred_console = -1; 147 int console_set_on_cmdline; 148 EXPORT_SYMBOL(console_set_on_cmdline); 149 150 /* Flag: console code may call schedule() */ 151 static int console_may_schedule; 152 153 /* 154 * The printk log buffer consists of a chain of concatenated variable 155 * length records. Every record starts with a record header, containing 156 * the overall length of the record. 157 * 158 * The heads to the first and last entry in the buffer, as well as the 159 * sequence numbers of these entries are maintained when messages are 160 * stored. 161 * 162 * If the heads indicate available messages, the length in the header 163 * tells the start next message. A length == 0 for the next message 164 * indicates a wrap-around to the beginning of the buffer. 165 * 166 * Every record carries the monotonic timestamp in microseconds, as well as 167 * the standard userspace syslog level and syslog facility. The usual 168 * kernel messages use LOG_KERN; userspace-injected messages always carry 169 * a matching syslog facility, by default LOG_USER. The origin of every 170 * message can be reliably determined that way. 171 * 172 * The human readable log message directly follows the message header. The 173 * length of the message text is stored in the header, the stored message 174 * is not terminated. 175 * 176 * Optionally, a message can carry a dictionary of properties (key/value pairs), 177 * to provide userspace with a machine-readable message context. 178 * 179 * Examples for well-defined, commonly used property names are: 180 * DEVICE=b12:8 device identifier 181 * b12:8 block dev_t 182 * c127:3 char dev_t 183 * n8 netdev ifindex 184 * +sound:card0 subsystem:devname 185 * SUBSYSTEM=pci driver-core subsystem name 186 * 187 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 188 * follows directly after a '=' character. Every property is terminated by 189 * a '\0' character. The last property is not terminated. 190 * 191 * Example of a message structure: 192 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 193 * 0008 34 00 record is 52 bytes long 194 * 000a 0b 00 text is 11 bytes long 195 * 000c 1f 00 dictionary is 23 bytes long 196 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 197 * 0010 69 74 27 73 20 61 20 6c "it's a l" 198 * 69 6e 65 "ine" 199 * 001b 44 45 56 49 43 "DEVIC" 200 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 201 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 202 * 67 "g" 203 * 0032 00 00 00 padding to next message header 204 * 205 * The 'struct printk_log' buffer header must never be directly exported to 206 * userspace, it is a kernel-private implementation detail that might 207 * need to be changed in the future, when the requirements change. 208 * 209 * /dev/kmsg exports the structured data in the following line format: 210 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 211 * 212 * Users of the export format should ignore possible additional values 213 * separated by ',', and find the message after the ';' character. 214 * 215 * The optional key/value pairs are attached as continuation lines starting 216 * with a space character and terminated by a newline. All possible 217 * non-prinatable characters are escaped in the "\xff" notation. 218 */ 219 220 enum log_flags { 221 LOG_NOCONS = 1, /* already flushed, do not print to console */ 222 LOG_NEWLINE = 2, /* text ended with a newline */ 223 LOG_PREFIX = 4, /* text started with a prefix */ 224 LOG_CONT = 8, /* text is a fragment of a continuation line */ 225 }; 226 227 struct printk_log { 228 u64 ts_nsec; /* timestamp in nanoseconds */ 229 u16 len; /* length of entire record */ 230 u16 text_len; /* length of text buffer */ 231 u16 dict_len; /* length of dictionary buffer */ 232 u8 facility; /* syslog facility */ 233 u8 flags:5; /* internal record flags */ 234 u8 level:3; /* syslog level */ 235 }; 236 237 /* 238 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 239 * within the scheduler's rq lock. It must be released before calling 240 * console_unlock() or anything else that might wake up a process. 241 */ 242 static DEFINE_RAW_SPINLOCK(logbuf_lock); 243 244 #ifdef CONFIG_PRINTK 245 DECLARE_WAIT_QUEUE_HEAD(log_wait); 246 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 247 static u64 syslog_seq; 248 static u32 syslog_idx; 249 static enum log_flags syslog_prev; 250 static size_t syslog_partial; 251 252 /* index and sequence number of the first record stored in the buffer */ 253 static u64 log_first_seq; 254 static u32 log_first_idx; 255 256 /* index and sequence number of the next record to store in the buffer */ 257 static u64 log_next_seq; 258 static u32 log_next_idx; 259 260 /* the next printk record to write to the console */ 261 static u64 console_seq; 262 static u32 console_idx; 263 static enum log_flags console_prev; 264 265 /* the next printk record to read after the last 'clear' command */ 266 static u64 clear_seq; 267 static u32 clear_idx; 268 269 #define PREFIX_MAX 32 270 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 271 272 #define LOG_LEVEL(v) ((v) & 0x07) 273 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 274 275 /* record buffer */ 276 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 277 #define LOG_ALIGN 4 278 #else 279 #define LOG_ALIGN __alignof__(struct printk_log) 280 #endif 281 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 282 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 283 static char *log_buf = __log_buf; 284 static u32 log_buf_len = __LOG_BUF_LEN; 285 286 /* Return log buffer address */ 287 char *log_buf_addr_get(void) 288 { 289 return log_buf; 290 } 291 292 /* Return log buffer size */ 293 u32 log_buf_len_get(void) 294 { 295 return log_buf_len; 296 } 297 298 /* human readable text of the record */ 299 static char *log_text(const struct printk_log *msg) 300 { 301 return (char *)msg + sizeof(struct printk_log); 302 } 303 304 /* optional key/value pair dictionary attached to the record */ 305 static char *log_dict(const struct printk_log *msg) 306 { 307 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 308 } 309 310 /* get record by index; idx must point to valid msg */ 311 static struct printk_log *log_from_idx(u32 idx) 312 { 313 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 314 315 /* 316 * A length == 0 record is the end of buffer marker. Wrap around and 317 * read the message at the start of the buffer. 318 */ 319 if (!msg->len) 320 return (struct printk_log *)log_buf; 321 return msg; 322 } 323 324 /* get next record; idx must point to valid msg */ 325 static u32 log_next(u32 idx) 326 { 327 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 328 329 /* length == 0 indicates the end of the buffer; wrap */ 330 /* 331 * A length == 0 record is the end of buffer marker. Wrap around and 332 * read the message at the start of the buffer as *this* one, and 333 * return the one after that. 334 */ 335 if (!msg->len) { 336 msg = (struct printk_log *)log_buf; 337 return msg->len; 338 } 339 return idx + msg->len; 340 } 341 342 /* 343 * Check whether there is enough free space for the given message. 344 * 345 * The same values of first_idx and next_idx mean that the buffer 346 * is either empty or full. 347 * 348 * If the buffer is empty, we must respect the position of the indexes. 349 * They cannot be reset to the beginning of the buffer. 350 */ 351 static int logbuf_has_space(u32 msg_size, bool empty) 352 { 353 u32 free; 354 355 if (log_next_idx > log_first_idx || empty) 356 free = max(log_buf_len - log_next_idx, log_first_idx); 357 else 358 free = log_first_idx - log_next_idx; 359 360 /* 361 * We need space also for an empty header that signalizes wrapping 362 * of the buffer. 363 */ 364 return free >= msg_size + sizeof(struct printk_log); 365 } 366 367 static int log_make_free_space(u32 msg_size) 368 { 369 while (log_first_seq < log_next_seq) { 370 if (logbuf_has_space(msg_size, false)) 371 return 0; 372 /* drop old messages until we have enough contiguous space */ 373 log_first_idx = log_next(log_first_idx); 374 log_first_seq++; 375 } 376 377 /* sequence numbers are equal, so the log buffer is empty */ 378 if (logbuf_has_space(msg_size, true)) 379 return 0; 380 381 return -ENOMEM; 382 } 383 384 /* compute the message size including the padding bytes */ 385 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 386 { 387 u32 size; 388 389 size = sizeof(struct printk_log) + text_len + dict_len; 390 *pad_len = (-size) & (LOG_ALIGN - 1); 391 size += *pad_len; 392 393 return size; 394 } 395 396 /* 397 * Define how much of the log buffer we could take at maximum. The value 398 * must be greater than two. Note that only half of the buffer is available 399 * when the index points to the middle. 400 */ 401 #define MAX_LOG_TAKE_PART 4 402 static const char trunc_msg[] = "<truncated>"; 403 404 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 405 u16 *dict_len, u32 *pad_len) 406 { 407 /* 408 * The message should not take the whole buffer. Otherwise, it might 409 * get removed too soon. 410 */ 411 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 412 if (*text_len > max_text_len) 413 *text_len = max_text_len; 414 /* enable the warning message */ 415 *trunc_msg_len = strlen(trunc_msg); 416 /* disable the "dict" completely */ 417 *dict_len = 0; 418 /* compute the size again, count also the warning message */ 419 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 420 } 421 422 /* insert record into the buffer, discard old ones, update heads */ 423 static int log_store(int facility, int level, 424 enum log_flags flags, u64 ts_nsec, 425 const char *dict, u16 dict_len, 426 const char *text, u16 text_len) 427 { 428 struct printk_log *msg; 429 u32 size, pad_len; 430 u16 trunc_msg_len = 0; 431 432 /* number of '\0' padding bytes to next message */ 433 size = msg_used_size(text_len, dict_len, &pad_len); 434 435 if (log_make_free_space(size)) { 436 /* truncate the message if it is too long for empty buffer */ 437 size = truncate_msg(&text_len, &trunc_msg_len, 438 &dict_len, &pad_len); 439 /* survive when the log buffer is too small for trunc_msg */ 440 if (log_make_free_space(size)) 441 return 0; 442 } 443 444 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 445 /* 446 * This message + an additional empty header does not fit 447 * at the end of the buffer. Add an empty header with len == 0 448 * to signify a wrap around. 449 */ 450 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 451 log_next_idx = 0; 452 } 453 454 /* fill message */ 455 msg = (struct printk_log *)(log_buf + log_next_idx); 456 memcpy(log_text(msg), text, text_len); 457 msg->text_len = text_len; 458 if (trunc_msg_len) { 459 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 460 msg->text_len += trunc_msg_len; 461 } 462 memcpy(log_dict(msg), dict, dict_len); 463 msg->dict_len = dict_len; 464 msg->facility = facility; 465 msg->level = level & 7; 466 msg->flags = flags & 0x1f; 467 if (ts_nsec > 0) 468 msg->ts_nsec = ts_nsec; 469 else 470 msg->ts_nsec = local_clock(); 471 memset(log_dict(msg) + dict_len, 0, pad_len); 472 msg->len = size; 473 474 /* insert message */ 475 log_next_idx += msg->len; 476 log_next_seq++; 477 478 return msg->text_len; 479 } 480 481 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 482 483 static int syslog_action_restricted(int type) 484 { 485 if (dmesg_restrict) 486 return 1; 487 /* 488 * Unless restricted, we allow "read all" and "get buffer size" 489 * for everybody. 490 */ 491 return type != SYSLOG_ACTION_READ_ALL && 492 type != SYSLOG_ACTION_SIZE_BUFFER; 493 } 494 495 int check_syslog_permissions(int type, int source) 496 { 497 /* 498 * If this is from /proc/kmsg and we've already opened it, then we've 499 * already done the capabilities checks at open time. 500 */ 501 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 502 goto ok; 503 504 if (syslog_action_restricted(type)) { 505 if (capable(CAP_SYSLOG)) 506 goto ok; 507 /* 508 * For historical reasons, accept CAP_SYS_ADMIN too, with 509 * a warning. 510 */ 511 if (capable(CAP_SYS_ADMIN)) { 512 pr_warn_once("%s (%d): Attempt to access syslog with " 513 "CAP_SYS_ADMIN but no CAP_SYSLOG " 514 "(deprecated).\n", 515 current->comm, task_pid_nr(current)); 516 goto ok; 517 } 518 return -EPERM; 519 } 520 ok: 521 return security_syslog(type); 522 } 523 EXPORT_SYMBOL_GPL(check_syslog_permissions); 524 525 static void append_char(char **pp, char *e, char c) 526 { 527 if (*pp < e) 528 *(*pp)++ = c; 529 } 530 531 static ssize_t msg_print_ext_header(char *buf, size_t size, 532 struct printk_log *msg, u64 seq, 533 enum log_flags prev_flags) 534 { 535 u64 ts_usec = msg->ts_nsec; 536 char cont = '-'; 537 538 do_div(ts_usec, 1000); 539 540 /* 541 * If we couldn't merge continuation line fragments during the print, 542 * export the stored flags to allow an optional external merge of the 543 * records. Merging the records isn't always neccessarily correct, like 544 * when we hit a race during printing. In most cases though, it produces 545 * better readable output. 'c' in the record flags mark the first 546 * fragment of a line, '+' the following. 547 */ 548 if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT)) 549 cont = 'c'; 550 else if ((msg->flags & LOG_CONT) || 551 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 552 cont = '+'; 553 554 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 555 (msg->facility << 3) | msg->level, seq, ts_usec, cont); 556 } 557 558 static ssize_t msg_print_ext_body(char *buf, size_t size, 559 char *dict, size_t dict_len, 560 char *text, size_t text_len) 561 { 562 char *p = buf, *e = buf + size; 563 size_t i; 564 565 /* escape non-printable characters */ 566 for (i = 0; i < text_len; i++) { 567 unsigned char c = text[i]; 568 569 if (c < ' ' || c >= 127 || c == '\\') 570 p += scnprintf(p, e - p, "\\x%02x", c); 571 else 572 append_char(&p, e, c); 573 } 574 append_char(&p, e, '\n'); 575 576 if (dict_len) { 577 bool line = true; 578 579 for (i = 0; i < dict_len; i++) { 580 unsigned char c = dict[i]; 581 582 if (line) { 583 append_char(&p, e, ' '); 584 line = false; 585 } 586 587 if (c == '\0') { 588 append_char(&p, e, '\n'); 589 line = true; 590 continue; 591 } 592 593 if (c < ' ' || c >= 127 || c == '\\') { 594 p += scnprintf(p, e - p, "\\x%02x", c); 595 continue; 596 } 597 598 append_char(&p, e, c); 599 } 600 append_char(&p, e, '\n'); 601 } 602 603 return p - buf; 604 } 605 606 /* /dev/kmsg - userspace message inject/listen interface */ 607 struct devkmsg_user { 608 u64 seq; 609 u32 idx; 610 enum log_flags prev; 611 struct mutex lock; 612 char buf[CONSOLE_EXT_LOG_MAX]; 613 }; 614 615 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 616 { 617 char *buf, *line; 618 int level = default_message_loglevel; 619 int facility = 1; /* LOG_USER */ 620 size_t len = iov_iter_count(from); 621 ssize_t ret = len; 622 623 if (len > LOG_LINE_MAX) 624 return -EINVAL; 625 buf = kmalloc(len+1, GFP_KERNEL); 626 if (buf == NULL) 627 return -ENOMEM; 628 629 buf[len] = '\0'; 630 if (copy_from_iter(buf, len, from) != len) { 631 kfree(buf); 632 return -EFAULT; 633 } 634 635 /* 636 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 637 * the decimal value represents 32bit, the lower 3 bit are the log 638 * level, the rest are the log facility. 639 * 640 * If no prefix or no userspace facility is specified, we 641 * enforce LOG_USER, to be able to reliably distinguish 642 * kernel-generated messages from userspace-injected ones. 643 */ 644 line = buf; 645 if (line[0] == '<') { 646 char *endp = NULL; 647 unsigned int u; 648 649 u = simple_strtoul(line + 1, &endp, 10); 650 if (endp && endp[0] == '>') { 651 level = LOG_LEVEL(u); 652 if (LOG_FACILITY(u) != 0) 653 facility = LOG_FACILITY(u); 654 endp++; 655 len -= endp - line; 656 line = endp; 657 } 658 } 659 660 printk_emit(facility, level, NULL, 0, "%s", line); 661 kfree(buf); 662 return ret; 663 } 664 665 static ssize_t devkmsg_read(struct file *file, char __user *buf, 666 size_t count, loff_t *ppos) 667 { 668 struct devkmsg_user *user = file->private_data; 669 struct printk_log *msg; 670 size_t len; 671 ssize_t ret; 672 673 if (!user) 674 return -EBADF; 675 676 ret = mutex_lock_interruptible(&user->lock); 677 if (ret) 678 return ret; 679 raw_spin_lock_irq(&logbuf_lock); 680 while (user->seq == log_next_seq) { 681 if (file->f_flags & O_NONBLOCK) { 682 ret = -EAGAIN; 683 raw_spin_unlock_irq(&logbuf_lock); 684 goto out; 685 } 686 687 raw_spin_unlock_irq(&logbuf_lock); 688 ret = wait_event_interruptible(log_wait, 689 user->seq != log_next_seq); 690 if (ret) 691 goto out; 692 raw_spin_lock_irq(&logbuf_lock); 693 } 694 695 if (user->seq < log_first_seq) { 696 /* our last seen message is gone, return error and reset */ 697 user->idx = log_first_idx; 698 user->seq = log_first_seq; 699 ret = -EPIPE; 700 raw_spin_unlock_irq(&logbuf_lock); 701 goto out; 702 } 703 704 msg = log_from_idx(user->idx); 705 len = msg_print_ext_header(user->buf, sizeof(user->buf), 706 msg, user->seq, user->prev); 707 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 708 log_dict(msg), msg->dict_len, 709 log_text(msg), msg->text_len); 710 711 user->prev = msg->flags; 712 user->idx = log_next(user->idx); 713 user->seq++; 714 raw_spin_unlock_irq(&logbuf_lock); 715 716 if (len > count) { 717 ret = -EINVAL; 718 goto out; 719 } 720 721 if (copy_to_user(buf, user->buf, len)) { 722 ret = -EFAULT; 723 goto out; 724 } 725 ret = len; 726 out: 727 mutex_unlock(&user->lock); 728 return ret; 729 } 730 731 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 732 { 733 struct devkmsg_user *user = file->private_data; 734 loff_t ret = 0; 735 736 if (!user) 737 return -EBADF; 738 if (offset) 739 return -ESPIPE; 740 741 raw_spin_lock_irq(&logbuf_lock); 742 switch (whence) { 743 case SEEK_SET: 744 /* the first record */ 745 user->idx = log_first_idx; 746 user->seq = log_first_seq; 747 break; 748 case SEEK_DATA: 749 /* 750 * The first record after the last SYSLOG_ACTION_CLEAR, 751 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 752 * changes no global state, and does not clear anything. 753 */ 754 user->idx = clear_idx; 755 user->seq = clear_seq; 756 break; 757 case SEEK_END: 758 /* after the last record */ 759 user->idx = log_next_idx; 760 user->seq = log_next_seq; 761 break; 762 default: 763 ret = -EINVAL; 764 } 765 raw_spin_unlock_irq(&logbuf_lock); 766 return ret; 767 } 768 769 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 770 { 771 struct devkmsg_user *user = file->private_data; 772 int ret = 0; 773 774 if (!user) 775 return POLLERR|POLLNVAL; 776 777 poll_wait(file, &log_wait, wait); 778 779 raw_spin_lock_irq(&logbuf_lock); 780 if (user->seq < log_next_seq) { 781 /* return error when data has vanished underneath us */ 782 if (user->seq < log_first_seq) 783 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 784 else 785 ret = POLLIN|POLLRDNORM; 786 } 787 raw_spin_unlock_irq(&logbuf_lock); 788 789 return ret; 790 } 791 792 static int devkmsg_open(struct inode *inode, struct file *file) 793 { 794 struct devkmsg_user *user; 795 int err; 796 797 /* write-only does not need any file context */ 798 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 799 return 0; 800 801 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 802 SYSLOG_FROM_READER); 803 if (err) 804 return err; 805 806 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 807 if (!user) 808 return -ENOMEM; 809 810 mutex_init(&user->lock); 811 812 raw_spin_lock_irq(&logbuf_lock); 813 user->idx = log_first_idx; 814 user->seq = log_first_seq; 815 raw_spin_unlock_irq(&logbuf_lock); 816 817 file->private_data = user; 818 return 0; 819 } 820 821 static int devkmsg_release(struct inode *inode, struct file *file) 822 { 823 struct devkmsg_user *user = file->private_data; 824 825 if (!user) 826 return 0; 827 828 mutex_destroy(&user->lock); 829 kfree(user); 830 return 0; 831 } 832 833 const struct file_operations kmsg_fops = { 834 .open = devkmsg_open, 835 .read = devkmsg_read, 836 .write_iter = devkmsg_write, 837 .llseek = devkmsg_llseek, 838 .poll = devkmsg_poll, 839 .release = devkmsg_release, 840 }; 841 842 #ifdef CONFIG_KEXEC_CORE 843 /* 844 * This appends the listed symbols to /proc/vmcore 845 * 846 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 847 * obtain access to symbols that are otherwise very difficult to locate. These 848 * symbols are specifically used so that utilities can access and extract the 849 * dmesg log from a vmcore file after a crash. 850 */ 851 void log_buf_kexec_setup(void) 852 { 853 VMCOREINFO_SYMBOL(log_buf); 854 VMCOREINFO_SYMBOL(log_buf_len); 855 VMCOREINFO_SYMBOL(log_first_idx); 856 VMCOREINFO_SYMBOL(log_next_idx); 857 /* 858 * Export struct printk_log size and field offsets. User space tools can 859 * parse it and detect any changes to structure down the line. 860 */ 861 VMCOREINFO_STRUCT_SIZE(printk_log); 862 VMCOREINFO_OFFSET(printk_log, ts_nsec); 863 VMCOREINFO_OFFSET(printk_log, len); 864 VMCOREINFO_OFFSET(printk_log, text_len); 865 VMCOREINFO_OFFSET(printk_log, dict_len); 866 } 867 #endif 868 869 /* requested log_buf_len from kernel cmdline */ 870 static unsigned long __initdata new_log_buf_len; 871 872 /* we practice scaling the ring buffer by powers of 2 */ 873 static void __init log_buf_len_update(unsigned size) 874 { 875 if (size) 876 size = roundup_pow_of_two(size); 877 if (size > log_buf_len) 878 new_log_buf_len = size; 879 } 880 881 /* save requested log_buf_len since it's too early to process it */ 882 static int __init log_buf_len_setup(char *str) 883 { 884 unsigned size = memparse(str, &str); 885 886 log_buf_len_update(size); 887 888 return 0; 889 } 890 early_param("log_buf_len", log_buf_len_setup); 891 892 #ifdef CONFIG_SMP 893 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 894 895 static void __init log_buf_add_cpu(void) 896 { 897 unsigned int cpu_extra; 898 899 /* 900 * archs should set up cpu_possible_bits properly with 901 * set_cpu_possible() after setup_arch() but just in 902 * case lets ensure this is valid. 903 */ 904 if (num_possible_cpus() == 1) 905 return; 906 907 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 908 909 /* by default this will only continue through for large > 64 CPUs */ 910 if (cpu_extra <= __LOG_BUF_LEN / 2) 911 return; 912 913 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 914 __LOG_CPU_MAX_BUF_LEN); 915 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 916 cpu_extra); 917 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 918 919 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 920 } 921 #else /* !CONFIG_SMP */ 922 static inline void log_buf_add_cpu(void) {} 923 #endif /* CONFIG_SMP */ 924 925 void __init setup_log_buf(int early) 926 { 927 unsigned long flags; 928 char *new_log_buf; 929 int free; 930 931 if (log_buf != __log_buf) 932 return; 933 934 if (!early && !new_log_buf_len) 935 log_buf_add_cpu(); 936 937 if (!new_log_buf_len) 938 return; 939 940 if (early) { 941 new_log_buf = 942 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 943 } else { 944 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 945 LOG_ALIGN); 946 } 947 948 if (unlikely(!new_log_buf)) { 949 pr_err("log_buf_len: %ld bytes not available\n", 950 new_log_buf_len); 951 return; 952 } 953 954 raw_spin_lock_irqsave(&logbuf_lock, flags); 955 log_buf_len = new_log_buf_len; 956 log_buf = new_log_buf; 957 new_log_buf_len = 0; 958 free = __LOG_BUF_LEN - log_next_idx; 959 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 960 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 961 962 pr_info("log_buf_len: %d bytes\n", log_buf_len); 963 pr_info("early log buf free: %d(%d%%)\n", 964 free, (free * 100) / __LOG_BUF_LEN); 965 } 966 967 static bool __read_mostly ignore_loglevel; 968 969 static int __init ignore_loglevel_setup(char *str) 970 { 971 ignore_loglevel = true; 972 pr_info("debug: ignoring loglevel setting.\n"); 973 974 return 0; 975 } 976 977 early_param("ignore_loglevel", ignore_loglevel_setup); 978 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 979 MODULE_PARM_DESC(ignore_loglevel, 980 "ignore loglevel setting (prints all kernel messages to the console)"); 981 982 #ifdef CONFIG_BOOT_PRINTK_DELAY 983 984 static int boot_delay; /* msecs delay after each printk during bootup */ 985 static unsigned long long loops_per_msec; /* based on boot_delay */ 986 987 static int __init boot_delay_setup(char *str) 988 { 989 unsigned long lpj; 990 991 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 992 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 993 994 get_option(&str, &boot_delay); 995 if (boot_delay > 10 * 1000) 996 boot_delay = 0; 997 998 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 999 "HZ: %d, loops_per_msec: %llu\n", 1000 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1001 return 0; 1002 } 1003 early_param("boot_delay", boot_delay_setup); 1004 1005 static void boot_delay_msec(int level) 1006 { 1007 unsigned long long k; 1008 unsigned long timeout; 1009 1010 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 1011 || (level >= console_loglevel && !ignore_loglevel)) { 1012 return; 1013 } 1014 1015 k = (unsigned long long)loops_per_msec * boot_delay; 1016 1017 timeout = jiffies + msecs_to_jiffies(boot_delay); 1018 while (k) { 1019 k--; 1020 cpu_relax(); 1021 /* 1022 * use (volatile) jiffies to prevent 1023 * compiler reduction; loop termination via jiffies 1024 * is secondary and may or may not happen. 1025 */ 1026 if (time_after(jiffies, timeout)) 1027 break; 1028 touch_nmi_watchdog(); 1029 } 1030 } 1031 #else 1032 static inline void boot_delay_msec(int level) 1033 { 1034 } 1035 #endif 1036 1037 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1038 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1039 1040 static size_t print_time(u64 ts, char *buf) 1041 { 1042 unsigned long rem_nsec; 1043 1044 if (!printk_time) 1045 return 0; 1046 1047 rem_nsec = do_div(ts, 1000000000); 1048 1049 if (!buf) 1050 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1051 1052 return sprintf(buf, "[%5lu.%06lu] ", 1053 (unsigned long)ts, rem_nsec / 1000); 1054 } 1055 1056 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1057 { 1058 size_t len = 0; 1059 unsigned int prefix = (msg->facility << 3) | msg->level; 1060 1061 if (syslog) { 1062 if (buf) { 1063 len += sprintf(buf, "<%u>", prefix); 1064 } else { 1065 len += 3; 1066 if (prefix > 999) 1067 len += 3; 1068 else if (prefix > 99) 1069 len += 2; 1070 else if (prefix > 9) 1071 len++; 1072 } 1073 } 1074 1075 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1076 return len; 1077 } 1078 1079 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1080 bool syslog, char *buf, size_t size) 1081 { 1082 const char *text = log_text(msg); 1083 size_t text_size = msg->text_len; 1084 bool prefix = true; 1085 bool newline = true; 1086 size_t len = 0; 1087 1088 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1089 prefix = false; 1090 1091 if (msg->flags & LOG_CONT) { 1092 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1093 prefix = false; 1094 1095 if (!(msg->flags & LOG_NEWLINE)) 1096 newline = false; 1097 } 1098 1099 do { 1100 const char *next = memchr(text, '\n', text_size); 1101 size_t text_len; 1102 1103 if (next) { 1104 text_len = next - text; 1105 next++; 1106 text_size -= next - text; 1107 } else { 1108 text_len = text_size; 1109 } 1110 1111 if (buf) { 1112 if (print_prefix(msg, syslog, NULL) + 1113 text_len + 1 >= size - len) 1114 break; 1115 1116 if (prefix) 1117 len += print_prefix(msg, syslog, buf + len); 1118 memcpy(buf + len, text, text_len); 1119 len += text_len; 1120 if (next || newline) 1121 buf[len++] = '\n'; 1122 } else { 1123 /* SYSLOG_ACTION_* buffer size only calculation */ 1124 if (prefix) 1125 len += print_prefix(msg, syslog, NULL); 1126 len += text_len; 1127 if (next || newline) 1128 len++; 1129 } 1130 1131 prefix = true; 1132 text = next; 1133 } while (text); 1134 1135 return len; 1136 } 1137 1138 static int syslog_print(char __user *buf, int size) 1139 { 1140 char *text; 1141 struct printk_log *msg; 1142 int len = 0; 1143 1144 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1145 if (!text) 1146 return -ENOMEM; 1147 1148 while (size > 0) { 1149 size_t n; 1150 size_t skip; 1151 1152 raw_spin_lock_irq(&logbuf_lock); 1153 if (syslog_seq < log_first_seq) { 1154 /* messages are gone, move to first one */ 1155 syslog_seq = log_first_seq; 1156 syslog_idx = log_first_idx; 1157 syslog_prev = 0; 1158 syslog_partial = 0; 1159 } 1160 if (syslog_seq == log_next_seq) { 1161 raw_spin_unlock_irq(&logbuf_lock); 1162 break; 1163 } 1164 1165 skip = syslog_partial; 1166 msg = log_from_idx(syslog_idx); 1167 n = msg_print_text(msg, syslog_prev, true, text, 1168 LOG_LINE_MAX + PREFIX_MAX); 1169 if (n - syslog_partial <= size) { 1170 /* message fits into buffer, move forward */ 1171 syslog_idx = log_next(syslog_idx); 1172 syslog_seq++; 1173 syslog_prev = msg->flags; 1174 n -= syslog_partial; 1175 syslog_partial = 0; 1176 } else if (!len){ 1177 /* partial read(), remember position */ 1178 n = size; 1179 syslog_partial += n; 1180 } else 1181 n = 0; 1182 raw_spin_unlock_irq(&logbuf_lock); 1183 1184 if (!n) 1185 break; 1186 1187 if (copy_to_user(buf, text + skip, n)) { 1188 if (!len) 1189 len = -EFAULT; 1190 break; 1191 } 1192 1193 len += n; 1194 size -= n; 1195 buf += n; 1196 } 1197 1198 kfree(text); 1199 return len; 1200 } 1201 1202 static int syslog_print_all(char __user *buf, int size, bool clear) 1203 { 1204 char *text; 1205 int len = 0; 1206 1207 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1208 if (!text) 1209 return -ENOMEM; 1210 1211 raw_spin_lock_irq(&logbuf_lock); 1212 if (buf) { 1213 u64 next_seq; 1214 u64 seq; 1215 u32 idx; 1216 enum log_flags prev; 1217 1218 if (clear_seq < log_first_seq) { 1219 /* messages are gone, move to first available one */ 1220 clear_seq = log_first_seq; 1221 clear_idx = log_first_idx; 1222 } 1223 1224 /* 1225 * Find first record that fits, including all following records, 1226 * into the user-provided buffer for this dump. 1227 */ 1228 seq = clear_seq; 1229 idx = clear_idx; 1230 prev = 0; 1231 while (seq < log_next_seq) { 1232 struct printk_log *msg = log_from_idx(idx); 1233 1234 len += msg_print_text(msg, prev, true, NULL, 0); 1235 prev = msg->flags; 1236 idx = log_next(idx); 1237 seq++; 1238 } 1239 1240 /* move first record forward until length fits into the buffer */ 1241 seq = clear_seq; 1242 idx = clear_idx; 1243 prev = 0; 1244 while (len > size && seq < log_next_seq) { 1245 struct printk_log *msg = log_from_idx(idx); 1246 1247 len -= msg_print_text(msg, prev, true, NULL, 0); 1248 prev = msg->flags; 1249 idx = log_next(idx); 1250 seq++; 1251 } 1252 1253 /* last message fitting into this dump */ 1254 next_seq = log_next_seq; 1255 1256 len = 0; 1257 while (len >= 0 && seq < next_seq) { 1258 struct printk_log *msg = log_from_idx(idx); 1259 int textlen; 1260 1261 textlen = msg_print_text(msg, prev, true, text, 1262 LOG_LINE_MAX + PREFIX_MAX); 1263 if (textlen < 0) { 1264 len = textlen; 1265 break; 1266 } 1267 idx = log_next(idx); 1268 seq++; 1269 prev = msg->flags; 1270 1271 raw_spin_unlock_irq(&logbuf_lock); 1272 if (copy_to_user(buf + len, text, textlen)) 1273 len = -EFAULT; 1274 else 1275 len += textlen; 1276 raw_spin_lock_irq(&logbuf_lock); 1277 1278 if (seq < log_first_seq) { 1279 /* messages are gone, move to next one */ 1280 seq = log_first_seq; 1281 idx = log_first_idx; 1282 prev = 0; 1283 } 1284 } 1285 } 1286 1287 if (clear) { 1288 clear_seq = log_next_seq; 1289 clear_idx = log_next_idx; 1290 } 1291 raw_spin_unlock_irq(&logbuf_lock); 1292 1293 kfree(text); 1294 return len; 1295 } 1296 1297 int do_syslog(int type, char __user *buf, int len, int source) 1298 { 1299 bool clear = false; 1300 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1301 int error; 1302 1303 error = check_syslog_permissions(type, source); 1304 if (error) 1305 goto out; 1306 1307 switch (type) { 1308 case SYSLOG_ACTION_CLOSE: /* Close log */ 1309 break; 1310 case SYSLOG_ACTION_OPEN: /* Open log */ 1311 break; 1312 case SYSLOG_ACTION_READ: /* Read from log */ 1313 error = -EINVAL; 1314 if (!buf || len < 0) 1315 goto out; 1316 error = 0; 1317 if (!len) 1318 goto out; 1319 if (!access_ok(VERIFY_WRITE, buf, len)) { 1320 error = -EFAULT; 1321 goto out; 1322 } 1323 error = wait_event_interruptible(log_wait, 1324 syslog_seq != log_next_seq); 1325 if (error) 1326 goto out; 1327 error = syslog_print(buf, len); 1328 break; 1329 /* Read/clear last kernel messages */ 1330 case SYSLOG_ACTION_READ_CLEAR: 1331 clear = true; 1332 /* FALL THRU */ 1333 /* Read last kernel messages */ 1334 case SYSLOG_ACTION_READ_ALL: 1335 error = -EINVAL; 1336 if (!buf || len < 0) 1337 goto out; 1338 error = 0; 1339 if (!len) 1340 goto out; 1341 if (!access_ok(VERIFY_WRITE, buf, len)) { 1342 error = -EFAULT; 1343 goto out; 1344 } 1345 error = syslog_print_all(buf, len, clear); 1346 break; 1347 /* Clear ring buffer */ 1348 case SYSLOG_ACTION_CLEAR: 1349 syslog_print_all(NULL, 0, true); 1350 break; 1351 /* Disable logging to console */ 1352 case SYSLOG_ACTION_CONSOLE_OFF: 1353 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1354 saved_console_loglevel = console_loglevel; 1355 console_loglevel = minimum_console_loglevel; 1356 break; 1357 /* Enable logging to console */ 1358 case SYSLOG_ACTION_CONSOLE_ON: 1359 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1360 console_loglevel = saved_console_loglevel; 1361 saved_console_loglevel = LOGLEVEL_DEFAULT; 1362 } 1363 break; 1364 /* Set level of messages printed to console */ 1365 case SYSLOG_ACTION_CONSOLE_LEVEL: 1366 error = -EINVAL; 1367 if (len < 1 || len > 8) 1368 goto out; 1369 if (len < minimum_console_loglevel) 1370 len = minimum_console_loglevel; 1371 console_loglevel = len; 1372 /* Implicitly re-enable logging to console */ 1373 saved_console_loglevel = LOGLEVEL_DEFAULT; 1374 error = 0; 1375 break; 1376 /* Number of chars in the log buffer */ 1377 case SYSLOG_ACTION_SIZE_UNREAD: 1378 raw_spin_lock_irq(&logbuf_lock); 1379 if (syslog_seq < log_first_seq) { 1380 /* messages are gone, move to first one */ 1381 syslog_seq = log_first_seq; 1382 syslog_idx = log_first_idx; 1383 syslog_prev = 0; 1384 syslog_partial = 0; 1385 } 1386 if (source == SYSLOG_FROM_PROC) { 1387 /* 1388 * Short-cut for poll(/"proc/kmsg") which simply checks 1389 * for pending data, not the size; return the count of 1390 * records, not the length. 1391 */ 1392 error = log_next_seq - syslog_seq; 1393 } else { 1394 u64 seq = syslog_seq; 1395 u32 idx = syslog_idx; 1396 enum log_flags prev = syslog_prev; 1397 1398 error = 0; 1399 while (seq < log_next_seq) { 1400 struct printk_log *msg = log_from_idx(idx); 1401 1402 error += msg_print_text(msg, prev, true, NULL, 0); 1403 idx = log_next(idx); 1404 seq++; 1405 prev = msg->flags; 1406 } 1407 error -= syslog_partial; 1408 } 1409 raw_spin_unlock_irq(&logbuf_lock); 1410 break; 1411 /* Size of the log buffer */ 1412 case SYSLOG_ACTION_SIZE_BUFFER: 1413 error = log_buf_len; 1414 break; 1415 default: 1416 error = -EINVAL; 1417 break; 1418 } 1419 out: 1420 return error; 1421 } 1422 1423 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1424 { 1425 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1426 } 1427 1428 /* 1429 * Call the console drivers, asking them to write out 1430 * log_buf[start] to log_buf[end - 1]. 1431 * The console_lock must be held. 1432 */ 1433 static void call_console_drivers(int level, 1434 const char *ext_text, size_t ext_len, 1435 const char *text, size_t len) 1436 { 1437 struct console *con; 1438 1439 trace_console(text, len); 1440 1441 if (level >= console_loglevel && !ignore_loglevel) 1442 return; 1443 if (!console_drivers) 1444 return; 1445 1446 for_each_console(con) { 1447 if (exclusive_console && con != exclusive_console) 1448 continue; 1449 if (!(con->flags & CON_ENABLED)) 1450 continue; 1451 if (!con->write) 1452 continue; 1453 if (!cpu_online(smp_processor_id()) && 1454 !(con->flags & CON_ANYTIME)) 1455 continue; 1456 if (con->flags & CON_EXTENDED) 1457 con->write(con, ext_text, ext_len); 1458 else 1459 con->write(con, text, len); 1460 } 1461 } 1462 1463 /* 1464 * Zap console related locks when oopsing. 1465 * To leave time for slow consoles to print a full oops, 1466 * only zap at most once every 30 seconds. 1467 */ 1468 static void zap_locks(void) 1469 { 1470 static unsigned long oops_timestamp; 1471 1472 if (time_after_eq(jiffies, oops_timestamp) && 1473 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1474 return; 1475 1476 oops_timestamp = jiffies; 1477 1478 debug_locks_off(); 1479 /* If a crash is occurring, make sure we can't deadlock */ 1480 raw_spin_lock_init(&logbuf_lock); 1481 /* And make sure that we print immediately */ 1482 sema_init(&console_sem, 1); 1483 } 1484 1485 /* 1486 * Check if we have any console that is capable of printing while cpu is 1487 * booting or shutting down. Requires console_sem. 1488 */ 1489 static int have_callable_console(void) 1490 { 1491 struct console *con; 1492 1493 for_each_console(con) 1494 if (con->flags & CON_ANYTIME) 1495 return 1; 1496 1497 return 0; 1498 } 1499 1500 /* 1501 * Can we actually use the console at this time on this cpu? 1502 * 1503 * Console drivers may assume that per-cpu resources have been allocated. So 1504 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1505 * call them until this CPU is officially up. 1506 */ 1507 static inline int can_use_console(unsigned int cpu) 1508 { 1509 return cpu_online(cpu) || have_callable_console(); 1510 } 1511 1512 /* 1513 * Try to get console ownership to actually show the kernel 1514 * messages from a 'printk'. Return true (and with the 1515 * console_lock held, and 'console_locked' set) if it 1516 * is successful, false otherwise. 1517 */ 1518 static int console_trylock_for_printk(void) 1519 { 1520 unsigned int cpu = smp_processor_id(); 1521 1522 if (!console_trylock()) 1523 return 0; 1524 /* 1525 * If we can't use the console, we need to release the console 1526 * semaphore by hand to avoid flushing the buffer. We need to hold the 1527 * console semaphore in order to do this test safely. 1528 */ 1529 if (!can_use_console(cpu)) { 1530 console_locked = 0; 1531 up_console_sem(); 1532 return 0; 1533 } 1534 return 1; 1535 } 1536 1537 int printk_delay_msec __read_mostly; 1538 1539 static inline void printk_delay(void) 1540 { 1541 if (unlikely(printk_delay_msec)) { 1542 int m = printk_delay_msec; 1543 1544 while (m--) { 1545 mdelay(1); 1546 touch_nmi_watchdog(); 1547 } 1548 } 1549 } 1550 1551 /* 1552 * Continuation lines are buffered, and not committed to the record buffer 1553 * until the line is complete, or a race forces it. The line fragments 1554 * though, are printed immediately to the consoles to ensure everything has 1555 * reached the console in case of a kernel crash. 1556 */ 1557 static struct cont { 1558 char buf[LOG_LINE_MAX]; 1559 size_t len; /* length == 0 means unused buffer */ 1560 size_t cons; /* bytes written to console */ 1561 struct task_struct *owner; /* task of first print*/ 1562 u64 ts_nsec; /* time of first print */ 1563 u8 level; /* log level of first message */ 1564 u8 facility; /* log facility of first message */ 1565 enum log_flags flags; /* prefix, newline flags */ 1566 bool flushed:1; /* buffer sealed and committed */ 1567 } cont; 1568 1569 static void cont_flush(enum log_flags flags) 1570 { 1571 if (cont.flushed) 1572 return; 1573 if (cont.len == 0) 1574 return; 1575 1576 if (cont.cons) { 1577 /* 1578 * If a fragment of this line was directly flushed to the 1579 * console; wait for the console to pick up the rest of the 1580 * line. LOG_NOCONS suppresses a duplicated output. 1581 */ 1582 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1583 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1584 cont.flags = flags; 1585 cont.flushed = true; 1586 } else { 1587 /* 1588 * If no fragment of this line ever reached the console, 1589 * just submit it to the store and free the buffer. 1590 */ 1591 log_store(cont.facility, cont.level, flags, 0, 1592 NULL, 0, cont.buf, cont.len); 1593 cont.len = 0; 1594 } 1595 } 1596 1597 static bool cont_add(int facility, int level, const char *text, size_t len) 1598 { 1599 if (cont.len && cont.flushed) 1600 return false; 1601 1602 /* 1603 * If ext consoles are present, flush and skip in-kernel 1604 * continuation. See nr_ext_console_drivers definition. Also, if 1605 * the line gets too long, split it up in separate records. 1606 */ 1607 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1608 cont_flush(LOG_CONT); 1609 return false; 1610 } 1611 1612 if (!cont.len) { 1613 cont.facility = facility; 1614 cont.level = level; 1615 cont.owner = current; 1616 cont.ts_nsec = local_clock(); 1617 cont.flags = 0; 1618 cont.cons = 0; 1619 cont.flushed = false; 1620 } 1621 1622 memcpy(cont.buf + cont.len, text, len); 1623 cont.len += len; 1624 1625 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1626 cont_flush(LOG_CONT); 1627 1628 return true; 1629 } 1630 1631 static size_t cont_print_text(char *text, size_t size) 1632 { 1633 size_t textlen = 0; 1634 size_t len; 1635 1636 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1637 textlen += print_time(cont.ts_nsec, text); 1638 size -= textlen; 1639 } 1640 1641 len = cont.len - cont.cons; 1642 if (len > 0) { 1643 if (len+1 > size) 1644 len = size-1; 1645 memcpy(text + textlen, cont.buf + cont.cons, len); 1646 textlen += len; 1647 cont.cons = cont.len; 1648 } 1649 1650 if (cont.flushed) { 1651 if (cont.flags & LOG_NEWLINE) 1652 text[textlen++] = '\n'; 1653 /* got everything, release buffer */ 1654 cont.len = 0; 1655 } 1656 return textlen; 1657 } 1658 1659 asmlinkage int vprintk_emit(int facility, int level, 1660 const char *dict, size_t dictlen, 1661 const char *fmt, va_list args) 1662 { 1663 static int recursion_bug; 1664 static char textbuf[LOG_LINE_MAX]; 1665 char *text = textbuf; 1666 size_t text_len = 0; 1667 enum log_flags lflags = 0; 1668 unsigned long flags; 1669 int this_cpu; 1670 int printed_len = 0; 1671 bool in_sched = false; 1672 /* cpu currently holding logbuf_lock in this function */ 1673 static unsigned int logbuf_cpu = UINT_MAX; 1674 1675 if (level == LOGLEVEL_SCHED) { 1676 level = LOGLEVEL_DEFAULT; 1677 in_sched = true; 1678 } 1679 1680 boot_delay_msec(level); 1681 printk_delay(); 1682 1683 /* This stops the holder of console_sem just where we want him */ 1684 local_irq_save(flags); 1685 this_cpu = smp_processor_id(); 1686 1687 /* 1688 * Ouch, printk recursed into itself! 1689 */ 1690 if (unlikely(logbuf_cpu == this_cpu)) { 1691 /* 1692 * If a crash is occurring during printk() on this CPU, 1693 * then try to get the crash message out but make sure 1694 * we can't deadlock. Otherwise just return to avoid the 1695 * recursion and return - but flag the recursion so that 1696 * it can be printed at the next appropriate moment: 1697 */ 1698 if (!oops_in_progress && !lockdep_recursing(current)) { 1699 recursion_bug = 1; 1700 local_irq_restore(flags); 1701 return 0; 1702 } 1703 zap_locks(); 1704 } 1705 1706 lockdep_off(); 1707 raw_spin_lock(&logbuf_lock); 1708 logbuf_cpu = this_cpu; 1709 1710 if (unlikely(recursion_bug)) { 1711 static const char recursion_msg[] = 1712 "BUG: recent printk recursion!"; 1713 1714 recursion_bug = 0; 1715 /* emit KERN_CRIT message */ 1716 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1717 NULL, 0, recursion_msg, 1718 strlen(recursion_msg)); 1719 } 1720 1721 /* 1722 * The printf needs to come first; we need the syslog 1723 * prefix which might be passed-in as a parameter. 1724 */ 1725 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1726 1727 /* mark and strip a trailing newline */ 1728 if (text_len && text[text_len-1] == '\n') { 1729 text_len--; 1730 lflags |= LOG_NEWLINE; 1731 } 1732 1733 /* strip kernel syslog prefix and extract log level or control flags */ 1734 if (facility == 0) { 1735 int kern_level = printk_get_level(text); 1736 1737 if (kern_level) { 1738 const char *end_of_header = printk_skip_level(text); 1739 switch (kern_level) { 1740 case '0' ... '7': 1741 if (level == LOGLEVEL_DEFAULT) 1742 level = kern_level - '0'; 1743 /* fallthrough */ 1744 case 'd': /* KERN_DEFAULT */ 1745 lflags |= LOG_PREFIX; 1746 } 1747 /* 1748 * No need to check length here because vscnprintf 1749 * put '\0' at the end of the string. Only valid and 1750 * newly printed level is detected. 1751 */ 1752 text_len -= end_of_header - text; 1753 text = (char *)end_of_header; 1754 } 1755 } 1756 1757 if (level == LOGLEVEL_DEFAULT) 1758 level = default_message_loglevel; 1759 1760 if (dict) 1761 lflags |= LOG_PREFIX|LOG_NEWLINE; 1762 1763 if (!(lflags & LOG_NEWLINE)) { 1764 /* 1765 * Flush the conflicting buffer. An earlier newline was missing, 1766 * or another task also prints continuation lines. 1767 */ 1768 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1769 cont_flush(LOG_NEWLINE); 1770 1771 /* buffer line if possible, otherwise store it right away */ 1772 if (cont_add(facility, level, text, text_len)) 1773 printed_len += text_len; 1774 else 1775 printed_len += log_store(facility, level, 1776 lflags | LOG_CONT, 0, 1777 dict, dictlen, text, text_len); 1778 } else { 1779 bool stored = false; 1780 1781 /* 1782 * If an earlier newline was missing and it was the same task, 1783 * either merge it with the current buffer and flush, or if 1784 * there was a race with interrupts (prefix == true) then just 1785 * flush it out and store this line separately. 1786 * If the preceding printk was from a different task and missed 1787 * a newline, flush and append the newline. 1788 */ 1789 if (cont.len) { 1790 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1791 stored = cont_add(facility, level, text, 1792 text_len); 1793 cont_flush(LOG_NEWLINE); 1794 } 1795 1796 if (stored) 1797 printed_len += text_len; 1798 else 1799 printed_len += log_store(facility, level, lflags, 0, 1800 dict, dictlen, text, text_len); 1801 } 1802 1803 logbuf_cpu = UINT_MAX; 1804 raw_spin_unlock(&logbuf_lock); 1805 lockdep_on(); 1806 local_irq_restore(flags); 1807 1808 /* If called from the scheduler, we can not call up(). */ 1809 if (!in_sched) { 1810 lockdep_off(); 1811 /* 1812 * Disable preemption to avoid being preempted while holding 1813 * console_sem which would prevent anyone from printing to 1814 * console 1815 */ 1816 preempt_disable(); 1817 1818 /* 1819 * Try to acquire and then immediately release the console 1820 * semaphore. The release will print out buffers and wake up 1821 * /dev/kmsg and syslog() users. 1822 */ 1823 if (console_trylock_for_printk()) 1824 console_unlock(); 1825 preempt_enable(); 1826 lockdep_on(); 1827 } 1828 1829 return printed_len; 1830 } 1831 EXPORT_SYMBOL(vprintk_emit); 1832 1833 asmlinkage int vprintk(const char *fmt, va_list args) 1834 { 1835 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1836 } 1837 EXPORT_SYMBOL(vprintk); 1838 1839 asmlinkage int printk_emit(int facility, int level, 1840 const char *dict, size_t dictlen, 1841 const char *fmt, ...) 1842 { 1843 va_list args; 1844 int r; 1845 1846 va_start(args, fmt); 1847 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1848 va_end(args); 1849 1850 return r; 1851 } 1852 EXPORT_SYMBOL(printk_emit); 1853 1854 int vprintk_default(const char *fmt, va_list args) 1855 { 1856 int r; 1857 1858 #ifdef CONFIG_KGDB_KDB 1859 if (unlikely(kdb_trap_printk)) { 1860 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1861 return r; 1862 } 1863 #endif 1864 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1865 1866 return r; 1867 } 1868 EXPORT_SYMBOL_GPL(vprintk_default); 1869 1870 /* 1871 * This allows printk to be diverted to another function per cpu. 1872 * This is useful for calling printk functions from within NMI 1873 * without worrying about race conditions that can lock up the 1874 * box. 1875 */ 1876 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default; 1877 1878 /** 1879 * printk - print a kernel message 1880 * @fmt: format string 1881 * 1882 * This is printk(). It can be called from any context. We want it to work. 1883 * 1884 * We try to grab the console_lock. If we succeed, it's easy - we log the 1885 * output and call the console drivers. If we fail to get the semaphore, we 1886 * place the output into the log buffer and return. The current holder of 1887 * the console_sem will notice the new output in console_unlock(); and will 1888 * send it to the consoles before releasing the lock. 1889 * 1890 * One effect of this deferred printing is that code which calls printk() and 1891 * then changes console_loglevel may break. This is because console_loglevel 1892 * is inspected when the actual printing occurs. 1893 * 1894 * See also: 1895 * printf(3) 1896 * 1897 * See the vsnprintf() documentation for format string extensions over C99. 1898 */ 1899 asmlinkage __visible int printk(const char *fmt, ...) 1900 { 1901 printk_func_t vprintk_func; 1902 va_list args; 1903 int r; 1904 1905 va_start(args, fmt); 1906 1907 /* 1908 * If a caller overrides the per_cpu printk_func, then it needs 1909 * to disable preemption when calling printk(). Otherwise 1910 * the printk_func should be set to the default. No need to 1911 * disable preemption here. 1912 */ 1913 vprintk_func = this_cpu_read(printk_func); 1914 r = vprintk_func(fmt, args); 1915 1916 va_end(args); 1917 1918 return r; 1919 } 1920 EXPORT_SYMBOL(printk); 1921 1922 #else /* CONFIG_PRINTK */ 1923 1924 #define LOG_LINE_MAX 0 1925 #define PREFIX_MAX 0 1926 1927 static u64 syslog_seq; 1928 static u32 syslog_idx; 1929 static u64 console_seq; 1930 static u32 console_idx; 1931 static enum log_flags syslog_prev; 1932 static u64 log_first_seq; 1933 static u32 log_first_idx; 1934 static u64 log_next_seq; 1935 static enum log_flags console_prev; 1936 static struct cont { 1937 size_t len; 1938 size_t cons; 1939 u8 level; 1940 bool flushed:1; 1941 } cont; 1942 static char *log_text(const struct printk_log *msg) { return NULL; } 1943 static char *log_dict(const struct printk_log *msg) { return NULL; } 1944 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1945 static u32 log_next(u32 idx) { return 0; } 1946 static ssize_t msg_print_ext_header(char *buf, size_t size, 1947 struct printk_log *msg, u64 seq, 1948 enum log_flags prev_flags) { return 0; } 1949 static ssize_t msg_print_ext_body(char *buf, size_t size, 1950 char *dict, size_t dict_len, 1951 char *text, size_t text_len) { return 0; } 1952 static void call_console_drivers(int level, 1953 const char *ext_text, size_t ext_len, 1954 const char *text, size_t len) {} 1955 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1956 bool syslog, char *buf, size_t size) { return 0; } 1957 static size_t cont_print_text(char *text, size_t size) { return 0; } 1958 1959 /* Still needs to be defined for users */ 1960 DEFINE_PER_CPU(printk_func_t, printk_func); 1961 1962 #endif /* CONFIG_PRINTK */ 1963 1964 #ifdef CONFIG_EARLY_PRINTK 1965 struct console *early_console; 1966 1967 asmlinkage __visible void early_printk(const char *fmt, ...) 1968 { 1969 va_list ap; 1970 char buf[512]; 1971 int n; 1972 1973 if (!early_console) 1974 return; 1975 1976 va_start(ap, fmt); 1977 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1978 va_end(ap); 1979 1980 early_console->write(early_console, buf, n); 1981 } 1982 #endif 1983 1984 static int __add_preferred_console(char *name, int idx, char *options, 1985 char *brl_options) 1986 { 1987 struct console_cmdline *c; 1988 int i; 1989 1990 /* 1991 * See if this tty is not yet registered, and 1992 * if we have a slot free. 1993 */ 1994 for (i = 0, c = console_cmdline; 1995 i < MAX_CMDLINECONSOLES && c->name[0]; 1996 i++, c++) { 1997 if (strcmp(c->name, name) == 0 && c->index == idx) { 1998 if (!brl_options) 1999 selected_console = i; 2000 return 0; 2001 } 2002 } 2003 if (i == MAX_CMDLINECONSOLES) 2004 return -E2BIG; 2005 if (!brl_options) 2006 selected_console = i; 2007 strlcpy(c->name, name, sizeof(c->name)); 2008 c->options = options; 2009 braille_set_options(c, brl_options); 2010 2011 c->index = idx; 2012 return 0; 2013 } 2014 /* 2015 * Set up a console. Called via do_early_param() in init/main.c 2016 * for each "console=" parameter in the boot command line. 2017 */ 2018 static int __init console_setup(char *str) 2019 { 2020 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2021 char *s, *options, *brl_options = NULL; 2022 int idx; 2023 2024 if (_braille_console_setup(&str, &brl_options)) 2025 return 1; 2026 2027 /* 2028 * Decode str into name, index, options. 2029 */ 2030 if (str[0] >= '0' && str[0] <= '9') { 2031 strcpy(buf, "ttyS"); 2032 strncpy(buf + 4, str, sizeof(buf) - 5); 2033 } else { 2034 strncpy(buf, str, sizeof(buf) - 1); 2035 } 2036 buf[sizeof(buf) - 1] = 0; 2037 options = strchr(str, ','); 2038 if (options) 2039 *(options++) = 0; 2040 #ifdef __sparc__ 2041 if (!strcmp(str, "ttya")) 2042 strcpy(buf, "ttyS0"); 2043 if (!strcmp(str, "ttyb")) 2044 strcpy(buf, "ttyS1"); 2045 #endif 2046 for (s = buf; *s; s++) 2047 if (isdigit(*s) || *s == ',') 2048 break; 2049 idx = simple_strtoul(s, NULL, 10); 2050 *s = 0; 2051 2052 __add_preferred_console(buf, idx, options, brl_options); 2053 console_set_on_cmdline = 1; 2054 return 1; 2055 } 2056 __setup("console=", console_setup); 2057 2058 /** 2059 * add_preferred_console - add a device to the list of preferred consoles. 2060 * @name: device name 2061 * @idx: device index 2062 * @options: options for this console 2063 * 2064 * The last preferred console added will be used for kernel messages 2065 * and stdin/out/err for init. Normally this is used by console_setup 2066 * above to handle user-supplied console arguments; however it can also 2067 * be used by arch-specific code either to override the user or more 2068 * commonly to provide a default console (ie from PROM variables) when 2069 * the user has not supplied one. 2070 */ 2071 int add_preferred_console(char *name, int idx, char *options) 2072 { 2073 return __add_preferred_console(name, idx, options, NULL); 2074 } 2075 2076 bool console_suspend_enabled = true; 2077 EXPORT_SYMBOL(console_suspend_enabled); 2078 2079 static int __init console_suspend_disable(char *str) 2080 { 2081 console_suspend_enabled = false; 2082 return 1; 2083 } 2084 __setup("no_console_suspend", console_suspend_disable); 2085 module_param_named(console_suspend, console_suspend_enabled, 2086 bool, S_IRUGO | S_IWUSR); 2087 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2088 " and hibernate operations"); 2089 2090 /** 2091 * suspend_console - suspend the console subsystem 2092 * 2093 * This disables printk() while we go into suspend states 2094 */ 2095 void suspend_console(void) 2096 { 2097 if (!console_suspend_enabled) 2098 return; 2099 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2100 console_lock(); 2101 console_suspended = 1; 2102 up_console_sem(); 2103 } 2104 2105 void resume_console(void) 2106 { 2107 if (!console_suspend_enabled) 2108 return; 2109 down_console_sem(); 2110 console_suspended = 0; 2111 console_unlock(); 2112 } 2113 2114 /** 2115 * console_cpu_notify - print deferred console messages after CPU hotplug 2116 * @self: notifier struct 2117 * @action: CPU hotplug event 2118 * @hcpu: unused 2119 * 2120 * If printk() is called from a CPU that is not online yet, the messages 2121 * will be spooled but will not show up on the console. This function is 2122 * called when a new CPU comes online (or fails to come up), and ensures 2123 * that any such output gets printed. 2124 */ 2125 static int console_cpu_notify(struct notifier_block *self, 2126 unsigned long action, void *hcpu) 2127 { 2128 switch (action) { 2129 case CPU_ONLINE: 2130 case CPU_DEAD: 2131 case CPU_DOWN_FAILED: 2132 case CPU_UP_CANCELED: 2133 console_lock(); 2134 console_unlock(); 2135 } 2136 return NOTIFY_OK; 2137 } 2138 2139 /** 2140 * console_lock - lock the console system for exclusive use. 2141 * 2142 * Acquires a lock which guarantees that the caller has 2143 * exclusive access to the console system and the console_drivers list. 2144 * 2145 * Can sleep, returns nothing. 2146 */ 2147 void console_lock(void) 2148 { 2149 might_sleep(); 2150 2151 down_console_sem(); 2152 if (console_suspended) 2153 return; 2154 console_locked = 1; 2155 console_may_schedule = 1; 2156 } 2157 EXPORT_SYMBOL(console_lock); 2158 2159 /** 2160 * console_trylock - try to lock the console system for exclusive use. 2161 * 2162 * Try to acquire a lock which guarantees that the caller has exclusive 2163 * access to the console system and the console_drivers list. 2164 * 2165 * returns 1 on success, and 0 on failure to acquire the lock. 2166 */ 2167 int console_trylock(void) 2168 { 2169 if (down_trylock_console_sem()) 2170 return 0; 2171 if (console_suspended) { 2172 up_console_sem(); 2173 return 0; 2174 } 2175 console_locked = 1; 2176 console_may_schedule = 0; 2177 return 1; 2178 } 2179 EXPORT_SYMBOL(console_trylock); 2180 2181 int is_console_locked(void) 2182 { 2183 return console_locked; 2184 } 2185 2186 static void console_cont_flush(char *text, size_t size) 2187 { 2188 unsigned long flags; 2189 size_t len; 2190 2191 raw_spin_lock_irqsave(&logbuf_lock, flags); 2192 2193 if (!cont.len) 2194 goto out; 2195 2196 /* 2197 * We still queue earlier records, likely because the console was 2198 * busy. The earlier ones need to be printed before this one, we 2199 * did not flush any fragment so far, so just let it queue up. 2200 */ 2201 if (console_seq < log_next_seq && !cont.cons) 2202 goto out; 2203 2204 len = cont_print_text(text, size); 2205 raw_spin_unlock(&logbuf_lock); 2206 stop_critical_timings(); 2207 call_console_drivers(cont.level, NULL, 0, text, len); 2208 start_critical_timings(); 2209 local_irq_restore(flags); 2210 return; 2211 out: 2212 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2213 } 2214 2215 /** 2216 * console_unlock - unlock the console system 2217 * 2218 * Releases the console_lock which the caller holds on the console system 2219 * and the console driver list. 2220 * 2221 * While the console_lock was held, console output may have been buffered 2222 * by printk(). If this is the case, console_unlock(); emits 2223 * the output prior to releasing the lock. 2224 * 2225 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2226 * 2227 * console_unlock(); may be called from any context. 2228 */ 2229 void console_unlock(void) 2230 { 2231 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2232 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2233 static u64 seen_seq; 2234 unsigned long flags; 2235 bool wake_klogd = false; 2236 bool retry; 2237 2238 if (console_suspended) { 2239 up_console_sem(); 2240 return; 2241 } 2242 2243 console_may_schedule = 0; 2244 2245 /* flush buffered message fragment immediately to console */ 2246 console_cont_flush(text, sizeof(text)); 2247 again: 2248 for (;;) { 2249 struct printk_log *msg; 2250 size_t ext_len = 0; 2251 size_t len; 2252 int level; 2253 2254 raw_spin_lock_irqsave(&logbuf_lock, flags); 2255 if (seen_seq != log_next_seq) { 2256 wake_klogd = true; 2257 seen_seq = log_next_seq; 2258 } 2259 2260 if (console_seq < log_first_seq) { 2261 len = sprintf(text, "** %u printk messages dropped ** ", 2262 (unsigned)(log_first_seq - console_seq)); 2263 2264 /* messages are gone, move to first one */ 2265 console_seq = log_first_seq; 2266 console_idx = log_first_idx; 2267 console_prev = 0; 2268 } else { 2269 len = 0; 2270 } 2271 skip: 2272 if (console_seq == log_next_seq) 2273 break; 2274 2275 msg = log_from_idx(console_idx); 2276 if (msg->flags & LOG_NOCONS) { 2277 /* 2278 * Skip record we have buffered and already printed 2279 * directly to the console when we received it. 2280 */ 2281 console_idx = log_next(console_idx); 2282 console_seq++; 2283 /* 2284 * We will get here again when we register a new 2285 * CON_PRINTBUFFER console. Clear the flag so we 2286 * will properly dump everything later. 2287 */ 2288 msg->flags &= ~LOG_NOCONS; 2289 console_prev = msg->flags; 2290 goto skip; 2291 } 2292 2293 level = msg->level; 2294 len += msg_print_text(msg, console_prev, false, 2295 text + len, sizeof(text) - len); 2296 if (nr_ext_console_drivers) { 2297 ext_len = msg_print_ext_header(ext_text, 2298 sizeof(ext_text), 2299 msg, console_seq, console_prev); 2300 ext_len += msg_print_ext_body(ext_text + ext_len, 2301 sizeof(ext_text) - ext_len, 2302 log_dict(msg), msg->dict_len, 2303 log_text(msg), msg->text_len); 2304 } 2305 console_idx = log_next(console_idx); 2306 console_seq++; 2307 console_prev = msg->flags; 2308 raw_spin_unlock(&logbuf_lock); 2309 2310 stop_critical_timings(); /* don't trace print latency */ 2311 call_console_drivers(level, ext_text, ext_len, text, len); 2312 start_critical_timings(); 2313 local_irq_restore(flags); 2314 } 2315 console_locked = 0; 2316 2317 /* Release the exclusive_console once it is used */ 2318 if (unlikely(exclusive_console)) 2319 exclusive_console = NULL; 2320 2321 raw_spin_unlock(&logbuf_lock); 2322 2323 up_console_sem(); 2324 2325 /* 2326 * Someone could have filled up the buffer again, so re-check if there's 2327 * something to flush. In case we cannot trylock the console_sem again, 2328 * there's a new owner and the console_unlock() from them will do the 2329 * flush, no worries. 2330 */ 2331 raw_spin_lock(&logbuf_lock); 2332 retry = console_seq != log_next_seq; 2333 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2334 2335 if (retry && console_trylock()) 2336 goto again; 2337 2338 if (wake_klogd) 2339 wake_up_klogd(); 2340 } 2341 EXPORT_SYMBOL(console_unlock); 2342 2343 /** 2344 * console_conditional_schedule - yield the CPU if required 2345 * 2346 * If the console code is currently allowed to sleep, and 2347 * if this CPU should yield the CPU to another task, do 2348 * so here. 2349 * 2350 * Must be called within console_lock();. 2351 */ 2352 void __sched console_conditional_schedule(void) 2353 { 2354 if (console_may_schedule) 2355 cond_resched(); 2356 } 2357 EXPORT_SYMBOL(console_conditional_schedule); 2358 2359 void console_unblank(void) 2360 { 2361 struct console *c; 2362 2363 /* 2364 * console_unblank can no longer be called in interrupt context unless 2365 * oops_in_progress is set to 1.. 2366 */ 2367 if (oops_in_progress) { 2368 if (down_trylock_console_sem() != 0) 2369 return; 2370 } else 2371 console_lock(); 2372 2373 console_locked = 1; 2374 console_may_schedule = 0; 2375 for_each_console(c) 2376 if ((c->flags & CON_ENABLED) && c->unblank) 2377 c->unblank(); 2378 console_unlock(); 2379 } 2380 2381 /* 2382 * Return the console tty driver structure and its associated index 2383 */ 2384 struct tty_driver *console_device(int *index) 2385 { 2386 struct console *c; 2387 struct tty_driver *driver = NULL; 2388 2389 console_lock(); 2390 for_each_console(c) { 2391 if (!c->device) 2392 continue; 2393 driver = c->device(c, index); 2394 if (driver) 2395 break; 2396 } 2397 console_unlock(); 2398 return driver; 2399 } 2400 2401 /* 2402 * Prevent further output on the passed console device so that (for example) 2403 * serial drivers can disable console output before suspending a port, and can 2404 * re-enable output afterwards. 2405 */ 2406 void console_stop(struct console *console) 2407 { 2408 console_lock(); 2409 console->flags &= ~CON_ENABLED; 2410 console_unlock(); 2411 } 2412 EXPORT_SYMBOL(console_stop); 2413 2414 void console_start(struct console *console) 2415 { 2416 console_lock(); 2417 console->flags |= CON_ENABLED; 2418 console_unlock(); 2419 } 2420 EXPORT_SYMBOL(console_start); 2421 2422 static int __read_mostly keep_bootcon; 2423 2424 static int __init keep_bootcon_setup(char *str) 2425 { 2426 keep_bootcon = 1; 2427 pr_info("debug: skip boot console de-registration.\n"); 2428 2429 return 0; 2430 } 2431 2432 early_param("keep_bootcon", keep_bootcon_setup); 2433 2434 /* 2435 * The console driver calls this routine during kernel initialization 2436 * to register the console printing procedure with printk() and to 2437 * print any messages that were printed by the kernel before the 2438 * console driver was initialized. 2439 * 2440 * This can happen pretty early during the boot process (because of 2441 * early_printk) - sometimes before setup_arch() completes - be careful 2442 * of what kernel features are used - they may not be initialised yet. 2443 * 2444 * There are two types of consoles - bootconsoles (early_printk) and 2445 * "real" consoles (everything which is not a bootconsole) which are 2446 * handled differently. 2447 * - Any number of bootconsoles can be registered at any time. 2448 * - As soon as a "real" console is registered, all bootconsoles 2449 * will be unregistered automatically. 2450 * - Once a "real" console is registered, any attempt to register a 2451 * bootconsoles will be rejected 2452 */ 2453 void register_console(struct console *newcon) 2454 { 2455 int i; 2456 unsigned long flags; 2457 struct console *bcon = NULL; 2458 struct console_cmdline *c; 2459 2460 if (console_drivers) 2461 for_each_console(bcon) 2462 if (WARN(bcon == newcon, 2463 "console '%s%d' already registered\n", 2464 bcon->name, bcon->index)) 2465 return; 2466 2467 /* 2468 * before we register a new CON_BOOT console, make sure we don't 2469 * already have a valid console 2470 */ 2471 if (console_drivers && newcon->flags & CON_BOOT) { 2472 /* find the last or real console */ 2473 for_each_console(bcon) { 2474 if (!(bcon->flags & CON_BOOT)) { 2475 pr_info("Too late to register bootconsole %s%d\n", 2476 newcon->name, newcon->index); 2477 return; 2478 } 2479 } 2480 } 2481 2482 if (console_drivers && console_drivers->flags & CON_BOOT) 2483 bcon = console_drivers; 2484 2485 if (preferred_console < 0 || bcon || !console_drivers) 2486 preferred_console = selected_console; 2487 2488 /* 2489 * See if we want to use this console driver. If we 2490 * didn't select a console we take the first one 2491 * that registers here. 2492 */ 2493 if (preferred_console < 0) { 2494 if (newcon->index < 0) 2495 newcon->index = 0; 2496 if (newcon->setup == NULL || 2497 newcon->setup(newcon, NULL) == 0) { 2498 newcon->flags |= CON_ENABLED; 2499 if (newcon->device) { 2500 newcon->flags |= CON_CONSDEV; 2501 preferred_console = 0; 2502 } 2503 } 2504 } 2505 2506 /* 2507 * See if this console matches one we selected on 2508 * the command line. 2509 */ 2510 for (i = 0, c = console_cmdline; 2511 i < MAX_CMDLINECONSOLES && c->name[0]; 2512 i++, c++) { 2513 if (!newcon->match || 2514 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2515 /* default matching */ 2516 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2517 if (strcmp(c->name, newcon->name) != 0) 2518 continue; 2519 if (newcon->index >= 0 && 2520 newcon->index != c->index) 2521 continue; 2522 if (newcon->index < 0) 2523 newcon->index = c->index; 2524 2525 if (_braille_register_console(newcon, c)) 2526 return; 2527 2528 if (newcon->setup && 2529 newcon->setup(newcon, c->options) != 0) 2530 break; 2531 } 2532 2533 newcon->flags |= CON_ENABLED; 2534 if (i == selected_console) { 2535 newcon->flags |= CON_CONSDEV; 2536 preferred_console = selected_console; 2537 } 2538 break; 2539 } 2540 2541 if (!(newcon->flags & CON_ENABLED)) 2542 return; 2543 2544 /* 2545 * If we have a bootconsole, and are switching to a real console, 2546 * don't print everything out again, since when the boot console, and 2547 * the real console are the same physical device, it's annoying to 2548 * see the beginning boot messages twice 2549 */ 2550 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2551 newcon->flags &= ~CON_PRINTBUFFER; 2552 2553 /* 2554 * Put this console in the list - keep the 2555 * preferred driver at the head of the list. 2556 */ 2557 console_lock(); 2558 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2559 newcon->next = console_drivers; 2560 console_drivers = newcon; 2561 if (newcon->next) 2562 newcon->next->flags &= ~CON_CONSDEV; 2563 } else { 2564 newcon->next = console_drivers->next; 2565 console_drivers->next = newcon; 2566 } 2567 2568 if (newcon->flags & CON_EXTENDED) 2569 if (!nr_ext_console_drivers++) 2570 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2571 2572 if (newcon->flags & CON_PRINTBUFFER) { 2573 /* 2574 * console_unlock(); will print out the buffered messages 2575 * for us. 2576 */ 2577 raw_spin_lock_irqsave(&logbuf_lock, flags); 2578 console_seq = syslog_seq; 2579 console_idx = syslog_idx; 2580 console_prev = syslog_prev; 2581 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2582 /* 2583 * We're about to replay the log buffer. Only do this to the 2584 * just-registered console to avoid excessive message spam to 2585 * the already-registered consoles. 2586 */ 2587 exclusive_console = newcon; 2588 } 2589 console_unlock(); 2590 console_sysfs_notify(); 2591 2592 /* 2593 * By unregistering the bootconsoles after we enable the real console 2594 * we get the "console xxx enabled" message on all the consoles - 2595 * boot consoles, real consoles, etc - this is to ensure that end 2596 * users know there might be something in the kernel's log buffer that 2597 * went to the bootconsole (that they do not see on the real console) 2598 */ 2599 pr_info("%sconsole [%s%d] enabled\n", 2600 (newcon->flags & CON_BOOT) ? "boot" : "" , 2601 newcon->name, newcon->index); 2602 if (bcon && 2603 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2604 !keep_bootcon) { 2605 /* We need to iterate through all boot consoles, to make 2606 * sure we print everything out, before we unregister them. 2607 */ 2608 for_each_console(bcon) 2609 if (bcon->flags & CON_BOOT) 2610 unregister_console(bcon); 2611 } 2612 } 2613 EXPORT_SYMBOL(register_console); 2614 2615 int unregister_console(struct console *console) 2616 { 2617 struct console *a, *b; 2618 int res; 2619 2620 pr_info("%sconsole [%s%d] disabled\n", 2621 (console->flags & CON_BOOT) ? "boot" : "" , 2622 console->name, console->index); 2623 2624 res = _braille_unregister_console(console); 2625 if (res) 2626 return res; 2627 2628 res = 1; 2629 console_lock(); 2630 if (console_drivers == console) { 2631 console_drivers=console->next; 2632 res = 0; 2633 } else if (console_drivers) { 2634 for (a=console_drivers->next, b=console_drivers ; 2635 a; b=a, a=b->next) { 2636 if (a == console) { 2637 b->next = a->next; 2638 res = 0; 2639 break; 2640 } 2641 } 2642 } 2643 2644 if (!res && (console->flags & CON_EXTENDED)) 2645 nr_ext_console_drivers--; 2646 2647 /* 2648 * If this isn't the last console and it has CON_CONSDEV set, we 2649 * need to set it on the next preferred console. 2650 */ 2651 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2652 console_drivers->flags |= CON_CONSDEV; 2653 2654 console->flags &= ~CON_ENABLED; 2655 console_unlock(); 2656 console_sysfs_notify(); 2657 return res; 2658 } 2659 EXPORT_SYMBOL(unregister_console); 2660 2661 static int __init printk_late_init(void) 2662 { 2663 struct console *con; 2664 2665 for_each_console(con) { 2666 if (!keep_bootcon && con->flags & CON_BOOT) { 2667 unregister_console(con); 2668 } 2669 } 2670 hotcpu_notifier(console_cpu_notify, 0); 2671 return 0; 2672 } 2673 late_initcall(printk_late_init); 2674 2675 #if defined CONFIG_PRINTK 2676 /* 2677 * Delayed printk version, for scheduler-internal messages: 2678 */ 2679 #define PRINTK_PENDING_WAKEUP 0x01 2680 #define PRINTK_PENDING_OUTPUT 0x02 2681 2682 static DEFINE_PER_CPU(int, printk_pending); 2683 2684 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2685 { 2686 int pending = __this_cpu_xchg(printk_pending, 0); 2687 2688 if (pending & PRINTK_PENDING_OUTPUT) { 2689 /* If trylock fails, someone else is doing the printing */ 2690 if (console_trylock()) 2691 console_unlock(); 2692 } 2693 2694 if (pending & PRINTK_PENDING_WAKEUP) 2695 wake_up_interruptible(&log_wait); 2696 } 2697 2698 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2699 .func = wake_up_klogd_work_func, 2700 .flags = IRQ_WORK_LAZY, 2701 }; 2702 2703 void wake_up_klogd(void) 2704 { 2705 preempt_disable(); 2706 if (waitqueue_active(&log_wait)) { 2707 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2708 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2709 } 2710 preempt_enable(); 2711 } 2712 2713 int printk_deferred(const char *fmt, ...) 2714 { 2715 va_list args; 2716 int r; 2717 2718 preempt_disable(); 2719 va_start(args, fmt); 2720 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2721 va_end(args); 2722 2723 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2724 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2725 preempt_enable(); 2726 2727 return r; 2728 } 2729 2730 /* 2731 * printk rate limiting, lifted from the networking subsystem. 2732 * 2733 * This enforces a rate limit: not more than 10 kernel messages 2734 * every 5s to make a denial-of-service attack impossible. 2735 */ 2736 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2737 2738 int __printk_ratelimit(const char *func) 2739 { 2740 return ___ratelimit(&printk_ratelimit_state, func); 2741 } 2742 EXPORT_SYMBOL(__printk_ratelimit); 2743 2744 /** 2745 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2746 * @caller_jiffies: pointer to caller's state 2747 * @interval_msecs: minimum interval between prints 2748 * 2749 * printk_timed_ratelimit() returns true if more than @interval_msecs 2750 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2751 * returned true. 2752 */ 2753 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2754 unsigned int interval_msecs) 2755 { 2756 unsigned long elapsed = jiffies - *caller_jiffies; 2757 2758 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2759 return false; 2760 2761 *caller_jiffies = jiffies; 2762 return true; 2763 } 2764 EXPORT_SYMBOL(printk_timed_ratelimit); 2765 2766 static DEFINE_SPINLOCK(dump_list_lock); 2767 static LIST_HEAD(dump_list); 2768 2769 /** 2770 * kmsg_dump_register - register a kernel log dumper. 2771 * @dumper: pointer to the kmsg_dumper structure 2772 * 2773 * Adds a kernel log dumper to the system. The dump callback in the 2774 * structure will be called when the kernel oopses or panics and must be 2775 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2776 */ 2777 int kmsg_dump_register(struct kmsg_dumper *dumper) 2778 { 2779 unsigned long flags; 2780 int err = -EBUSY; 2781 2782 /* The dump callback needs to be set */ 2783 if (!dumper->dump) 2784 return -EINVAL; 2785 2786 spin_lock_irqsave(&dump_list_lock, flags); 2787 /* Don't allow registering multiple times */ 2788 if (!dumper->registered) { 2789 dumper->registered = 1; 2790 list_add_tail_rcu(&dumper->list, &dump_list); 2791 err = 0; 2792 } 2793 spin_unlock_irqrestore(&dump_list_lock, flags); 2794 2795 return err; 2796 } 2797 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2798 2799 /** 2800 * kmsg_dump_unregister - unregister a kmsg dumper. 2801 * @dumper: pointer to the kmsg_dumper structure 2802 * 2803 * Removes a dump device from the system. Returns zero on success and 2804 * %-EINVAL otherwise. 2805 */ 2806 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2807 { 2808 unsigned long flags; 2809 int err = -EINVAL; 2810 2811 spin_lock_irqsave(&dump_list_lock, flags); 2812 if (dumper->registered) { 2813 dumper->registered = 0; 2814 list_del_rcu(&dumper->list); 2815 err = 0; 2816 } 2817 spin_unlock_irqrestore(&dump_list_lock, flags); 2818 synchronize_rcu(); 2819 2820 return err; 2821 } 2822 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2823 2824 static bool always_kmsg_dump; 2825 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2826 2827 /** 2828 * kmsg_dump - dump kernel log to kernel message dumpers. 2829 * @reason: the reason (oops, panic etc) for dumping 2830 * 2831 * Call each of the registered dumper's dump() callback, which can 2832 * retrieve the kmsg records with kmsg_dump_get_line() or 2833 * kmsg_dump_get_buffer(). 2834 */ 2835 void kmsg_dump(enum kmsg_dump_reason reason) 2836 { 2837 struct kmsg_dumper *dumper; 2838 unsigned long flags; 2839 2840 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2841 return; 2842 2843 rcu_read_lock(); 2844 list_for_each_entry_rcu(dumper, &dump_list, list) { 2845 if (dumper->max_reason && reason > dumper->max_reason) 2846 continue; 2847 2848 /* initialize iterator with data about the stored records */ 2849 dumper->active = true; 2850 2851 raw_spin_lock_irqsave(&logbuf_lock, flags); 2852 dumper->cur_seq = clear_seq; 2853 dumper->cur_idx = clear_idx; 2854 dumper->next_seq = log_next_seq; 2855 dumper->next_idx = log_next_idx; 2856 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2857 2858 /* invoke dumper which will iterate over records */ 2859 dumper->dump(dumper, reason); 2860 2861 /* reset iterator */ 2862 dumper->active = false; 2863 } 2864 rcu_read_unlock(); 2865 } 2866 2867 /** 2868 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2869 * @dumper: registered kmsg dumper 2870 * @syslog: include the "<4>" prefixes 2871 * @line: buffer to copy the line to 2872 * @size: maximum size of the buffer 2873 * @len: length of line placed into buffer 2874 * 2875 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2876 * record, and copy one record into the provided buffer. 2877 * 2878 * Consecutive calls will return the next available record moving 2879 * towards the end of the buffer with the youngest messages. 2880 * 2881 * A return value of FALSE indicates that there are no more records to 2882 * read. 2883 * 2884 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2885 */ 2886 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2887 char *line, size_t size, size_t *len) 2888 { 2889 struct printk_log *msg; 2890 size_t l = 0; 2891 bool ret = false; 2892 2893 if (!dumper->active) 2894 goto out; 2895 2896 if (dumper->cur_seq < log_first_seq) { 2897 /* messages are gone, move to first available one */ 2898 dumper->cur_seq = log_first_seq; 2899 dumper->cur_idx = log_first_idx; 2900 } 2901 2902 /* last entry */ 2903 if (dumper->cur_seq >= log_next_seq) 2904 goto out; 2905 2906 msg = log_from_idx(dumper->cur_idx); 2907 l = msg_print_text(msg, 0, syslog, line, size); 2908 2909 dumper->cur_idx = log_next(dumper->cur_idx); 2910 dumper->cur_seq++; 2911 ret = true; 2912 out: 2913 if (len) 2914 *len = l; 2915 return ret; 2916 } 2917 2918 /** 2919 * kmsg_dump_get_line - retrieve one kmsg log line 2920 * @dumper: registered kmsg dumper 2921 * @syslog: include the "<4>" prefixes 2922 * @line: buffer to copy the line to 2923 * @size: maximum size of the buffer 2924 * @len: length of line placed into buffer 2925 * 2926 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2927 * record, and copy one record into the provided buffer. 2928 * 2929 * Consecutive calls will return the next available record moving 2930 * towards the end of the buffer with the youngest messages. 2931 * 2932 * A return value of FALSE indicates that there are no more records to 2933 * read. 2934 */ 2935 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2936 char *line, size_t size, size_t *len) 2937 { 2938 unsigned long flags; 2939 bool ret; 2940 2941 raw_spin_lock_irqsave(&logbuf_lock, flags); 2942 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2943 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2944 2945 return ret; 2946 } 2947 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2948 2949 /** 2950 * kmsg_dump_get_buffer - copy kmsg log lines 2951 * @dumper: registered kmsg dumper 2952 * @syslog: include the "<4>" prefixes 2953 * @buf: buffer to copy the line to 2954 * @size: maximum size of the buffer 2955 * @len: length of line placed into buffer 2956 * 2957 * Start at the end of the kmsg buffer and fill the provided buffer 2958 * with as many of the the *youngest* kmsg records that fit into it. 2959 * If the buffer is large enough, all available kmsg records will be 2960 * copied with a single call. 2961 * 2962 * Consecutive calls will fill the buffer with the next block of 2963 * available older records, not including the earlier retrieved ones. 2964 * 2965 * A return value of FALSE indicates that there are no more records to 2966 * read. 2967 */ 2968 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2969 char *buf, size_t size, size_t *len) 2970 { 2971 unsigned long flags; 2972 u64 seq; 2973 u32 idx; 2974 u64 next_seq; 2975 u32 next_idx; 2976 enum log_flags prev; 2977 size_t l = 0; 2978 bool ret = false; 2979 2980 if (!dumper->active) 2981 goto out; 2982 2983 raw_spin_lock_irqsave(&logbuf_lock, flags); 2984 if (dumper->cur_seq < log_first_seq) { 2985 /* messages are gone, move to first available one */ 2986 dumper->cur_seq = log_first_seq; 2987 dumper->cur_idx = log_first_idx; 2988 } 2989 2990 /* last entry */ 2991 if (dumper->cur_seq >= dumper->next_seq) { 2992 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2993 goto out; 2994 } 2995 2996 /* calculate length of entire buffer */ 2997 seq = dumper->cur_seq; 2998 idx = dumper->cur_idx; 2999 prev = 0; 3000 while (seq < dumper->next_seq) { 3001 struct printk_log *msg = log_from_idx(idx); 3002 3003 l += msg_print_text(msg, prev, true, NULL, 0); 3004 idx = log_next(idx); 3005 seq++; 3006 prev = msg->flags; 3007 } 3008 3009 /* move first record forward until length fits into the buffer */ 3010 seq = dumper->cur_seq; 3011 idx = dumper->cur_idx; 3012 prev = 0; 3013 while (l > size && seq < dumper->next_seq) { 3014 struct printk_log *msg = log_from_idx(idx); 3015 3016 l -= msg_print_text(msg, prev, true, NULL, 0); 3017 idx = log_next(idx); 3018 seq++; 3019 prev = msg->flags; 3020 } 3021 3022 /* last message in next interation */ 3023 next_seq = seq; 3024 next_idx = idx; 3025 3026 l = 0; 3027 while (seq < dumper->next_seq) { 3028 struct printk_log *msg = log_from_idx(idx); 3029 3030 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 3031 idx = log_next(idx); 3032 seq++; 3033 prev = msg->flags; 3034 } 3035 3036 dumper->next_seq = next_seq; 3037 dumper->next_idx = next_idx; 3038 ret = true; 3039 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3040 out: 3041 if (len) 3042 *len = l; 3043 return ret; 3044 } 3045 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3046 3047 /** 3048 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3049 * @dumper: registered kmsg dumper 3050 * 3051 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3052 * kmsg_dump_get_buffer() can be called again and used multiple 3053 * times within the same dumper.dump() callback. 3054 * 3055 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3056 */ 3057 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3058 { 3059 dumper->cur_seq = clear_seq; 3060 dumper->cur_idx = clear_idx; 3061 dumper->next_seq = log_next_seq; 3062 dumper->next_idx = log_next_idx; 3063 } 3064 3065 /** 3066 * kmsg_dump_rewind - reset the interator 3067 * @dumper: registered kmsg dumper 3068 * 3069 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3070 * kmsg_dump_get_buffer() can be called again and used multiple 3071 * times within the same dumper.dump() callback. 3072 */ 3073 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3074 { 3075 unsigned long flags; 3076 3077 raw_spin_lock_irqsave(&logbuf_lock, flags); 3078 kmsg_dump_rewind_nolock(dumper); 3079 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3080 } 3081 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3082 3083 static char dump_stack_arch_desc_str[128]; 3084 3085 /** 3086 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3087 * @fmt: printf-style format string 3088 * @...: arguments for the format string 3089 * 3090 * The configured string will be printed right after utsname during task 3091 * dumps. Usually used to add arch-specific system identifiers. If an 3092 * arch wants to make use of such an ID string, it should initialize this 3093 * as soon as possible during boot. 3094 */ 3095 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3096 { 3097 va_list args; 3098 3099 va_start(args, fmt); 3100 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3101 fmt, args); 3102 va_end(args); 3103 } 3104 3105 /** 3106 * dump_stack_print_info - print generic debug info for dump_stack() 3107 * @log_lvl: log level 3108 * 3109 * Arch-specific dump_stack() implementations can use this function to 3110 * print out the same debug information as the generic dump_stack(). 3111 */ 3112 void dump_stack_print_info(const char *log_lvl) 3113 { 3114 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3115 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3116 print_tainted(), init_utsname()->release, 3117 (int)strcspn(init_utsname()->version, " "), 3118 init_utsname()->version); 3119 3120 if (dump_stack_arch_desc_str[0] != '\0') 3121 printk("%sHardware name: %s\n", 3122 log_lvl, dump_stack_arch_desc_str); 3123 3124 print_worker_info(log_lvl, current); 3125 } 3126 3127 /** 3128 * show_regs_print_info - print generic debug info for show_regs() 3129 * @log_lvl: log level 3130 * 3131 * show_regs() implementations can use this function to print out generic 3132 * debug information. 3133 */ 3134 void show_regs_print_info(const char *log_lvl) 3135 { 3136 dump_stack_print_info(log_lvl); 3137 3138 printk("%stask: %p ti: %p task.ti: %p\n", 3139 log_lvl, current, current_thread_info(), 3140 task_thread_info(current)); 3141 } 3142 3143 #endif 3144