1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/aio.h> 36 #include <linux/syscalls.h> 37 #include <linux/kexec.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/notifier.h> 44 #include <linux/rculist.h> 45 #include <linux/poll.h> 46 #include <linux/irq_work.h> 47 #include <linux/utsname.h> 48 49 #include <asm/uaccess.h> 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/printk.h> 53 54 #include "console_cmdline.h" 55 #include "braille.h" 56 57 int console_printk[4] = { 58 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 59 DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */ 60 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 61 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 62 }; 63 64 /* Deferred messaged from sched code are marked by this special level */ 65 #define SCHED_MESSAGE_LOGLEVEL -2 66 67 /* 68 * Low level drivers may need that to know if they can schedule in 69 * their unblank() callback or not. So let's export it. 70 */ 71 int oops_in_progress; 72 EXPORT_SYMBOL(oops_in_progress); 73 74 /* 75 * console_sem protects the console_drivers list, and also 76 * provides serialisation for access to the entire console 77 * driver system. 78 */ 79 static DEFINE_SEMAPHORE(console_sem); 80 struct console *console_drivers; 81 EXPORT_SYMBOL_GPL(console_drivers); 82 83 #ifdef CONFIG_LOCKDEP 84 static struct lockdep_map console_lock_dep_map = { 85 .name = "console_lock" 86 }; 87 #endif 88 89 /* 90 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 91 * macros instead of functions so that _RET_IP_ contains useful information. 92 */ 93 #define down_console_sem() do { \ 94 down(&console_sem);\ 95 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 96 } while (0) 97 98 static int __down_trylock_console_sem(unsigned long ip) 99 { 100 if (down_trylock(&console_sem)) 101 return 1; 102 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 103 return 0; 104 } 105 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 106 107 #define up_console_sem() do { \ 108 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 109 up(&console_sem);\ 110 } while (0) 111 112 /* 113 * This is used for debugging the mess that is the VT code by 114 * keeping track if we have the console semaphore held. It's 115 * definitely not the perfect debug tool (we don't know if _WE_ 116 * hold it are racing, but it helps tracking those weird code 117 * path in the console code where we end up in places I want 118 * locked without the console sempahore held 119 */ 120 static int console_locked, console_suspended; 121 122 /* 123 * If exclusive_console is non-NULL then only this console is to be printed to. 124 */ 125 static struct console *exclusive_console; 126 127 /* 128 * Array of consoles built from command line options (console=) 129 */ 130 131 #define MAX_CMDLINECONSOLES 8 132 133 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 134 135 static int selected_console = -1; 136 static int preferred_console = -1; 137 int console_set_on_cmdline; 138 EXPORT_SYMBOL(console_set_on_cmdline); 139 140 /* Flag: console code may call schedule() */ 141 static int console_may_schedule; 142 143 /* 144 * The printk log buffer consists of a chain of concatenated variable 145 * length records. Every record starts with a record header, containing 146 * the overall length of the record. 147 * 148 * The heads to the first and last entry in the buffer, as well as the 149 * sequence numbers of these both entries are maintained when messages 150 * are stored.. 151 * 152 * If the heads indicate available messages, the length in the header 153 * tells the start next message. A length == 0 for the next message 154 * indicates a wrap-around to the beginning of the buffer. 155 * 156 * Every record carries the monotonic timestamp in microseconds, as well as 157 * the standard userspace syslog level and syslog facility. The usual 158 * kernel messages use LOG_KERN; userspace-injected messages always carry 159 * a matching syslog facility, by default LOG_USER. The origin of every 160 * message can be reliably determined that way. 161 * 162 * The human readable log message directly follows the message header. The 163 * length of the message text is stored in the header, the stored message 164 * is not terminated. 165 * 166 * Optionally, a message can carry a dictionary of properties (key/value pairs), 167 * to provide userspace with a machine-readable message context. 168 * 169 * Examples for well-defined, commonly used property names are: 170 * DEVICE=b12:8 device identifier 171 * b12:8 block dev_t 172 * c127:3 char dev_t 173 * n8 netdev ifindex 174 * +sound:card0 subsystem:devname 175 * SUBSYSTEM=pci driver-core subsystem name 176 * 177 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 178 * follows directly after a '=' character. Every property is terminated by 179 * a '\0' character. The last property is not terminated. 180 * 181 * Example of a message structure: 182 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 183 * 0008 34 00 record is 52 bytes long 184 * 000a 0b 00 text is 11 bytes long 185 * 000c 1f 00 dictionary is 23 bytes long 186 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 187 * 0010 69 74 27 73 20 61 20 6c "it's a l" 188 * 69 6e 65 "ine" 189 * 001b 44 45 56 49 43 "DEVIC" 190 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 191 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 192 * 67 "g" 193 * 0032 00 00 00 padding to next message header 194 * 195 * The 'struct printk_log' buffer header must never be directly exported to 196 * userspace, it is a kernel-private implementation detail that might 197 * need to be changed in the future, when the requirements change. 198 * 199 * /dev/kmsg exports the structured data in the following line format: 200 * "level,sequnum,timestamp;<message text>\n" 201 * 202 * The optional key/value pairs are attached as continuation lines starting 203 * with a space character and terminated by a newline. All possible 204 * non-prinatable characters are escaped in the "\xff" notation. 205 * 206 * Users of the export format should ignore possible additional values 207 * separated by ',', and find the message after the ';' character. 208 */ 209 210 enum log_flags { 211 LOG_NOCONS = 1, /* already flushed, do not print to console */ 212 LOG_NEWLINE = 2, /* text ended with a newline */ 213 LOG_PREFIX = 4, /* text started with a prefix */ 214 LOG_CONT = 8, /* text is a fragment of a continuation line */ 215 }; 216 217 struct printk_log { 218 u64 ts_nsec; /* timestamp in nanoseconds */ 219 u16 len; /* length of entire record */ 220 u16 text_len; /* length of text buffer */ 221 u16 dict_len; /* length of dictionary buffer */ 222 u8 facility; /* syslog facility */ 223 u8 flags:5; /* internal record flags */ 224 u8 level:3; /* syslog level */ 225 }; 226 227 /* 228 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 229 * within the scheduler's rq lock. It must be released before calling 230 * console_unlock() or anything else that might wake up a process. 231 */ 232 static DEFINE_RAW_SPINLOCK(logbuf_lock); 233 234 #ifdef CONFIG_PRINTK 235 DECLARE_WAIT_QUEUE_HEAD(log_wait); 236 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 237 static u64 syslog_seq; 238 static u32 syslog_idx; 239 static enum log_flags syslog_prev; 240 static size_t syslog_partial; 241 242 /* index and sequence number of the first record stored in the buffer */ 243 static u64 log_first_seq; 244 static u32 log_first_idx; 245 246 /* index and sequence number of the next record to store in the buffer */ 247 static u64 log_next_seq; 248 static u32 log_next_idx; 249 250 /* the next printk record to write to the console */ 251 static u64 console_seq; 252 static u32 console_idx; 253 static enum log_flags console_prev; 254 255 /* the next printk record to read after the last 'clear' command */ 256 static u64 clear_seq; 257 static u32 clear_idx; 258 259 #define PREFIX_MAX 32 260 #define LOG_LINE_MAX 1024 - PREFIX_MAX 261 262 /* record buffer */ 263 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 264 #define LOG_ALIGN 4 265 #else 266 #define LOG_ALIGN __alignof__(struct printk_log) 267 #endif 268 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 269 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 270 static char *log_buf = __log_buf; 271 static u32 log_buf_len = __LOG_BUF_LEN; 272 273 /* human readable text of the record */ 274 static char *log_text(const struct printk_log *msg) 275 { 276 return (char *)msg + sizeof(struct printk_log); 277 } 278 279 /* optional key/value pair dictionary attached to the record */ 280 static char *log_dict(const struct printk_log *msg) 281 { 282 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 283 } 284 285 /* get record by index; idx must point to valid msg */ 286 static struct printk_log *log_from_idx(u32 idx) 287 { 288 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 289 290 /* 291 * A length == 0 record is the end of buffer marker. Wrap around and 292 * read the message at the start of the buffer. 293 */ 294 if (!msg->len) 295 return (struct printk_log *)log_buf; 296 return msg; 297 } 298 299 /* get next record; idx must point to valid msg */ 300 static u32 log_next(u32 idx) 301 { 302 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 303 304 /* length == 0 indicates the end of the buffer; wrap */ 305 /* 306 * A length == 0 record is the end of buffer marker. Wrap around and 307 * read the message at the start of the buffer as *this* one, and 308 * return the one after that. 309 */ 310 if (!msg->len) { 311 msg = (struct printk_log *)log_buf; 312 return msg->len; 313 } 314 return idx + msg->len; 315 } 316 317 /* 318 * Check whether there is enough free space for the given message. 319 * 320 * The same values of first_idx and next_idx mean that the buffer 321 * is either empty or full. 322 * 323 * If the buffer is empty, we must respect the position of the indexes. 324 * They cannot be reset to the beginning of the buffer. 325 */ 326 static int logbuf_has_space(u32 msg_size, bool empty) 327 { 328 u32 free; 329 330 if (log_next_idx > log_first_idx || empty) 331 free = max(log_buf_len - log_next_idx, log_first_idx); 332 else 333 free = log_first_idx - log_next_idx; 334 335 /* 336 * We need space also for an empty header that signalizes wrapping 337 * of the buffer. 338 */ 339 return free >= msg_size + sizeof(struct printk_log); 340 } 341 342 static int log_make_free_space(u32 msg_size) 343 { 344 while (log_first_seq < log_next_seq) { 345 if (logbuf_has_space(msg_size, false)) 346 return 0; 347 /* drop old messages until we have enough continuous space */ 348 log_first_idx = log_next(log_first_idx); 349 log_first_seq++; 350 } 351 352 /* sequence numbers are equal, so the log buffer is empty */ 353 if (logbuf_has_space(msg_size, true)) 354 return 0; 355 356 return -ENOMEM; 357 } 358 359 /* compute the message size including the padding bytes */ 360 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 361 { 362 u32 size; 363 364 size = sizeof(struct printk_log) + text_len + dict_len; 365 *pad_len = (-size) & (LOG_ALIGN - 1); 366 size += *pad_len; 367 368 return size; 369 } 370 371 /* 372 * Define how much of the log buffer we could take at maximum. The value 373 * must be greater than two. Note that only half of the buffer is available 374 * when the index points to the middle. 375 */ 376 #define MAX_LOG_TAKE_PART 4 377 static const char trunc_msg[] = "<truncated>"; 378 379 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 380 u16 *dict_len, u32 *pad_len) 381 { 382 /* 383 * The message should not take the whole buffer. Otherwise, it might 384 * get removed too soon. 385 */ 386 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 387 if (*text_len > max_text_len) 388 *text_len = max_text_len; 389 /* enable the warning message */ 390 *trunc_msg_len = strlen(trunc_msg); 391 /* disable the "dict" completely */ 392 *dict_len = 0; 393 /* compute the size again, count also the warning message */ 394 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 395 } 396 397 /* insert record into the buffer, discard old ones, update heads */ 398 static int log_store(int facility, int level, 399 enum log_flags flags, u64 ts_nsec, 400 const char *dict, u16 dict_len, 401 const char *text, u16 text_len) 402 { 403 struct printk_log *msg; 404 u32 size, pad_len; 405 u16 trunc_msg_len = 0; 406 407 /* number of '\0' padding bytes to next message */ 408 size = msg_used_size(text_len, dict_len, &pad_len); 409 410 if (log_make_free_space(size)) { 411 /* truncate the message if it is too long for empty buffer */ 412 size = truncate_msg(&text_len, &trunc_msg_len, 413 &dict_len, &pad_len); 414 /* survive when the log buffer is too small for trunc_msg */ 415 if (log_make_free_space(size)) 416 return 0; 417 } 418 419 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 420 /* 421 * This message + an additional empty header does not fit 422 * at the end of the buffer. Add an empty header with len == 0 423 * to signify a wrap around. 424 */ 425 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 426 log_next_idx = 0; 427 } 428 429 /* fill message */ 430 msg = (struct printk_log *)(log_buf + log_next_idx); 431 memcpy(log_text(msg), text, text_len); 432 msg->text_len = text_len; 433 if (trunc_msg_len) { 434 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 435 msg->text_len += trunc_msg_len; 436 } 437 memcpy(log_dict(msg), dict, dict_len); 438 msg->dict_len = dict_len; 439 msg->facility = facility; 440 msg->level = level & 7; 441 msg->flags = flags & 0x1f; 442 if (ts_nsec > 0) 443 msg->ts_nsec = ts_nsec; 444 else 445 msg->ts_nsec = local_clock(); 446 memset(log_dict(msg) + dict_len, 0, pad_len); 447 msg->len = size; 448 449 /* insert message */ 450 log_next_idx += msg->len; 451 log_next_seq++; 452 453 return msg->text_len; 454 } 455 456 #ifdef CONFIG_SECURITY_DMESG_RESTRICT 457 int dmesg_restrict = 1; 458 #else 459 int dmesg_restrict; 460 #endif 461 462 static int syslog_action_restricted(int type) 463 { 464 if (dmesg_restrict) 465 return 1; 466 /* 467 * Unless restricted, we allow "read all" and "get buffer size" 468 * for everybody. 469 */ 470 return type != SYSLOG_ACTION_READ_ALL && 471 type != SYSLOG_ACTION_SIZE_BUFFER; 472 } 473 474 static int check_syslog_permissions(int type, bool from_file) 475 { 476 /* 477 * If this is from /proc/kmsg and we've already opened it, then we've 478 * already done the capabilities checks at open time. 479 */ 480 if (from_file && type != SYSLOG_ACTION_OPEN) 481 return 0; 482 483 if (syslog_action_restricted(type)) { 484 if (capable(CAP_SYSLOG)) 485 return 0; 486 /* 487 * For historical reasons, accept CAP_SYS_ADMIN too, with 488 * a warning. 489 */ 490 if (capable(CAP_SYS_ADMIN)) { 491 pr_warn_once("%s (%d): Attempt to access syslog with " 492 "CAP_SYS_ADMIN but no CAP_SYSLOG " 493 "(deprecated).\n", 494 current->comm, task_pid_nr(current)); 495 return 0; 496 } 497 return -EPERM; 498 } 499 return security_syslog(type); 500 } 501 502 503 /* /dev/kmsg - userspace message inject/listen interface */ 504 struct devkmsg_user { 505 u64 seq; 506 u32 idx; 507 enum log_flags prev; 508 struct mutex lock; 509 char buf[8192]; 510 }; 511 512 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv, 513 unsigned long count, loff_t pos) 514 { 515 char *buf, *line; 516 int i; 517 int level = default_message_loglevel; 518 int facility = 1; /* LOG_USER */ 519 size_t len = iov_length(iv, count); 520 ssize_t ret = len; 521 522 if (len > LOG_LINE_MAX) 523 return -EINVAL; 524 buf = kmalloc(len+1, GFP_KERNEL); 525 if (buf == NULL) 526 return -ENOMEM; 527 528 line = buf; 529 for (i = 0; i < count; i++) { 530 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) { 531 ret = -EFAULT; 532 goto out; 533 } 534 line += iv[i].iov_len; 535 } 536 537 /* 538 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 539 * the decimal value represents 32bit, the lower 3 bit are the log 540 * level, the rest are the log facility. 541 * 542 * If no prefix or no userspace facility is specified, we 543 * enforce LOG_USER, to be able to reliably distinguish 544 * kernel-generated messages from userspace-injected ones. 545 */ 546 line = buf; 547 if (line[0] == '<') { 548 char *endp = NULL; 549 550 i = simple_strtoul(line+1, &endp, 10); 551 if (endp && endp[0] == '>') { 552 level = i & 7; 553 if (i >> 3) 554 facility = i >> 3; 555 endp++; 556 len -= endp - line; 557 line = endp; 558 } 559 } 560 line[len] = '\0'; 561 562 printk_emit(facility, level, NULL, 0, "%s", line); 563 out: 564 kfree(buf); 565 return ret; 566 } 567 568 static ssize_t devkmsg_read(struct file *file, char __user *buf, 569 size_t count, loff_t *ppos) 570 { 571 struct devkmsg_user *user = file->private_data; 572 struct printk_log *msg; 573 u64 ts_usec; 574 size_t i; 575 char cont = '-'; 576 size_t len; 577 ssize_t ret; 578 579 if (!user) 580 return -EBADF; 581 582 ret = mutex_lock_interruptible(&user->lock); 583 if (ret) 584 return ret; 585 raw_spin_lock_irq(&logbuf_lock); 586 while (user->seq == log_next_seq) { 587 if (file->f_flags & O_NONBLOCK) { 588 ret = -EAGAIN; 589 raw_spin_unlock_irq(&logbuf_lock); 590 goto out; 591 } 592 593 raw_spin_unlock_irq(&logbuf_lock); 594 ret = wait_event_interruptible(log_wait, 595 user->seq != log_next_seq); 596 if (ret) 597 goto out; 598 raw_spin_lock_irq(&logbuf_lock); 599 } 600 601 if (user->seq < log_first_seq) { 602 /* our last seen message is gone, return error and reset */ 603 user->idx = log_first_idx; 604 user->seq = log_first_seq; 605 ret = -EPIPE; 606 raw_spin_unlock_irq(&logbuf_lock); 607 goto out; 608 } 609 610 msg = log_from_idx(user->idx); 611 ts_usec = msg->ts_nsec; 612 do_div(ts_usec, 1000); 613 614 /* 615 * If we couldn't merge continuation line fragments during the print, 616 * export the stored flags to allow an optional external merge of the 617 * records. Merging the records isn't always neccessarily correct, like 618 * when we hit a race during printing. In most cases though, it produces 619 * better readable output. 'c' in the record flags mark the first 620 * fragment of a line, '+' the following. 621 */ 622 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 623 cont = 'c'; 624 else if ((msg->flags & LOG_CONT) || 625 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 626 cont = '+'; 627 628 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 629 (msg->facility << 3) | msg->level, 630 user->seq, ts_usec, cont); 631 user->prev = msg->flags; 632 633 /* escape non-printable characters */ 634 for (i = 0; i < msg->text_len; i++) { 635 unsigned char c = log_text(msg)[i]; 636 637 if (c < ' ' || c >= 127 || c == '\\') 638 len += sprintf(user->buf + len, "\\x%02x", c); 639 else 640 user->buf[len++] = c; 641 } 642 user->buf[len++] = '\n'; 643 644 if (msg->dict_len) { 645 bool line = true; 646 647 for (i = 0; i < msg->dict_len; i++) { 648 unsigned char c = log_dict(msg)[i]; 649 650 if (line) { 651 user->buf[len++] = ' '; 652 line = false; 653 } 654 655 if (c == '\0') { 656 user->buf[len++] = '\n'; 657 line = true; 658 continue; 659 } 660 661 if (c < ' ' || c >= 127 || c == '\\') { 662 len += sprintf(user->buf + len, "\\x%02x", c); 663 continue; 664 } 665 666 user->buf[len++] = c; 667 } 668 user->buf[len++] = '\n'; 669 } 670 671 user->idx = log_next(user->idx); 672 user->seq++; 673 raw_spin_unlock_irq(&logbuf_lock); 674 675 if (len > count) { 676 ret = -EINVAL; 677 goto out; 678 } 679 680 if (copy_to_user(buf, user->buf, len)) { 681 ret = -EFAULT; 682 goto out; 683 } 684 ret = len; 685 out: 686 mutex_unlock(&user->lock); 687 return ret; 688 } 689 690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 691 { 692 struct devkmsg_user *user = file->private_data; 693 loff_t ret = 0; 694 695 if (!user) 696 return -EBADF; 697 if (offset) 698 return -ESPIPE; 699 700 raw_spin_lock_irq(&logbuf_lock); 701 switch (whence) { 702 case SEEK_SET: 703 /* the first record */ 704 user->idx = log_first_idx; 705 user->seq = log_first_seq; 706 break; 707 case SEEK_DATA: 708 /* 709 * The first record after the last SYSLOG_ACTION_CLEAR, 710 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 711 * changes no global state, and does not clear anything. 712 */ 713 user->idx = clear_idx; 714 user->seq = clear_seq; 715 break; 716 case SEEK_END: 717 /* after the last record */ 718 user->idx = log_next_idx; 719 user->seq = log_next_seq; 720 break; 721 default: 722 ret = -EINVAL; 723 } 724 raw_spin_unlock_irq(&logbuf_lock); 725 return ret; 726 } 727 728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 729 { 730 struct devkmsg_user *user = file->private_data; 731 int ret = 0; 732 733 if (!user) 734 return POLLERR|POLLNVAL; 735 736 poll_wait(file, &log_wait, wait); 737 738 raw_spin_lock_irq(&logbuf_lock); 739 if (user->seq < log_next_seq) { 740 /* return error when data has vanished underneath us */ 741 if (user->seq < log_first_seq) 742 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 743 else 744 ret = POLLIN|POLLRDNORM; 745 } 746 raw_spin_unlock_irq(&logbuf_lock); 747 748 return ret; 749 } 750 751 static int devkmsg_open(struct inode *inode, struct file *file) 752 { 753 struct devkmsg_user *user; 754 int err; 755 756 /* write-only does not need any file context */ 757 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 758 return 0; 759 760 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 761 SYSLOG_FROM_READER); 762 if (err) 763 return err; 764 765 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 766 if (!user) 767 return -ENOMEM; 768 769 mutex_init(&user->lock); 770 771 raw_spin_lock_irq(&logbuf_lock); 772 user->idx = log_first_idx; 773 user->seq = log_first_seq; 774 raw_spin_unlock_irq(&logbuf_lock); 775 776 file->private_data = user; 777 return 0; 778 } 779 780 static int devkmsg_release(struct inode *inode, struct file *file) 781 { 782 struct devkmsg_user *user = file->private_data; 783 784 if (!user) 785 return 0; 786 787 mutex_destroy(&user->lock); 788 kfree(user); 789 return 0; 790 } 791 792 const struct file_operations kmsg_fops = { 793 .open = devkmsg_open, 794 .read = devkmsg_read, 795 .aio_write = devkmsg_writev, 796 .llseek = devkmsg_llseek, 797 .poll = devkmsg_poll, 798 .release = devkmsg_release, 799 }; 800 801 #ifdef CONFIG_KEXEC 802 /* 803 * This appends the listed symbols to /proc/vmcore 804 * 805 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 806 * obtain access to symbols that are otherwise very difficult to locate. These 807 * symbols are specifically used so that utilities can access and extract the 808 * dmesg log from a vmcore file after a crash. 809 */ 810 void log_buf_kexec_setup(void) 811 { 812 VMCOREINFO_SYMBOL(log_buf); 813 VMCOREINFO_SYMBOL(log_buf_len); 814 VMCOREINFO_SYMBOL(log_first_idx); 815 VMCOREINFO_SYMBOL(log_next_idx); 816 /* 817 * Export struct printk_log size and field offsets. User space tools can 818 * parse it and detect any changes to structure down the line. 819 */ 820 VMCOREINFO_STRUCT_SIZE(printk_log); 821 VMCOREINFO_OFFSET(printk_log, ts_nsec); 822 VMCOREINFO_OFFSET(printk_log, len); 823 VMCOREINFO_OFFSET(printk_log, text_len); 824 VMCOREINFO_OFFSET(printk_log, dict_len); 825 } 826 #endif 827 828 /* requested log_buf_len from kernel cmdline */ 829 static unsigned long __initdata new_log_buf_len; 830 831 /* save requested log_buf_len since it's too early to process it */ 832 static int __init log_buf_len_setup(char *str) 833 { 834 unsigned size = memparse(str, &str); 835 836 if (size) 837 size = roundup_pow_of_two(size); 838 if (size > log_buf_len) 839 new_log_buf_len = size; 840 841 return 0; 842 } 843 early_param("log_buf_len", log_buf_len_setup); 844 845 void __init setup_log_buf(int early) 846 { 847 unsigned long flags; 848 char *new_log_buf; 849 int free; 850 851 if (!new_log_buf_len) 852 return; 853 854 if (early) { 855 new_log_buf = 856 memblock_virt_alloc(new_log_buf_len, PAGE_SIZE); 857 } else { 858 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0); 859 } 860 861 if (unlikely(!new_log_buf)) { 862 pr_err("log_buf_len: %ld bytes not available\n", 863 new_log_buf_len); 864 return; 865 } 866 867 raw_spin_lock_irqsave(&logbuf_lock, flags); 868 log_buf_len = new_log_buf_len; 869 log_buf = new_log_buf; 870 new_log_buf_len = 0; 871 free = __LOG_BUF_LEN - log_next_idx; 872 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 873 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 874 875 pr_info("log_buf_len: %d\n", log_buf_len); 876 pr_info("early log buf free: %d(%d%%)\n", 877 free, (free * 100) / __LOG_BUF_LEN); 878 } 879 880 static bool __read_mostly ignore_loglevel; 881 882 static int __init ignore_loglevel_setup(char *str) 883 { 884 ignore_loglevel = 1; 885 pr_info("debug: ignoring loglevel setting.\n"); 886 887 return 0; 888 } 889 890 early_param("ignore_loglevel", ignore_loglevel_setup); 891 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 892 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to" 893 "print all kernel messages to the console."); 894 895 #ifdef CONFIG_BOOT_PRINTK_DELAY 896 897 static int boot_delay; /* msecs delay after each printk during bootup */ 898 static unsigned long long loops_per_msec; /* based on boot_delay */ 899 900 static int __init boot_delay_setup(char *str) 901 { 902 unsigned long lpj; 903 904 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 905 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 906 907 get_option(&str, &boot_delay); 908 if (boot_delay > 10 * 1000) 909 boot_delay = 0; 910 911 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 912 "HZ: %d, loops_per_msec: %llu\n", 913 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 914 return 0; 915 } 916 early_param("boot_delay", boot_delay_setup); 917 918 static void boot_delay_msec(int level) 919 { 920 unsigned long long k; 921 unsigned long timeout; 922 923 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 924 || (level >= console_loglevel && !ignore_loglevel)) { 925 return; 926 } 927 928 k = (unsigned long long)loops_per_msec * boot_delay; 929 930 timeout = jiffies + msecs_to_jiffies(boot_delay); 931 while (k) { 932 k--; 933 cpu_relax(); 934 /* 935 * use (volatile) jiffies to prevent 936 * compiler reduction; loop termination via jiffies 937 * is secondary and may or may not happen. 938 */ 939 if (time_after(jiffies, timeout)) 940 break; 941 touch_nmi_watchdog(); 942 } 943 } 944 #else 945 static inline void boot_delay_msec(int level) 946 { 947 } 948 #endif 949 950 #if defined(CONFIG_PRINTK_TIME) 951 static bool printk_time = 1; 952 #else 953 static bool printk_time; 954 #endif 955 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 956 957 static size_t print_time(u64 ts, char *buf) 958 { 959 unsigned long rem_nsec; 960 961 if (!printk_time) 962 return 0; 963 964 rem_nsec = do_div(ts, 1000000000); 965 966 if (!buf) 967 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 968 969 return sprintf(buf, "[%5lu.%06lu] ", 970 (unsigned long)ts, rem_nsec / 1000); 971 } 972 973 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 974 { 975 size_t len = 0; 976 unsigned int prefix = (msg->facility << 3) | msg->level; 977 978 if (syslog) { 979 if (buf) { 980 len += sprintf(buf, "<%u>", prefix); 981 } else { 982 len += 3; 983 if (prefix > 999) 984 len += 3; 985 else if (prefix > 99) 986 len += 2; 987 else if (prefix > 9) 988 len++; 989 } 990 } 991 992 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 993 return len; 994 } 995 996 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 997 bool syslog, char *buf, size_t size) 998 { 999 const char *text = log_text(msg); 1000 size_t text_size = msg->text_len; 1001 bool prefix = true; 1002 bool newline = true; 1003 size_t len = 0; 1004 1005 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1006 prefix = false; 1007 1008 if (msg->flags & LOG_CONT) { 1009 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1010 prefix = false; 1011 1012 if (!(msg->flags & LOG_NEWLINE)) 1013 newline = false; 1014 } 1015 1016 do { 1017 const char *next = memchr(text, '\n', text_size); 1018 size_t text_len; 1019 1020 if (next) { 1021 text_len = next - text; 1022 next++; 1023 text_size -= next - text; 1024 } else { 1025 text_len = text_size; 1026 } 1027 1028 if (buf) { 1029 if (print_prefix(msg, syslog, NULL) + 1030 text_len + 1 >= size - len) 1031 break; 1032 1033 if (prefix) 1034 len += print_prefix(msg, syslog, buf + len); 1035 memcpy(buf + len, text, text_len); 1036 len += text_len; 1037 if (next || newline) 1038 buf[len++] = '\n'; 1039 } else { 1040 /* SYSLOG_ACTION_* buffer size only calculation */ 1041 if (prefix) 1042 len += print_prefix(msg, syslog, NULL); 1043 len += text_len; 1044 if (next || newline) 1045 len++; 1046 } 1047 1048 prefix = true; 1049 text = next; 1050 } while (text); 1051 1052 return len; 1053 } 1054 1055 static int syslog_print(char __user *buf, int size) 1056 { 1057 char *text; 1058 struct printk_log *msg; 1059 int len = 0; 1060 1061 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1062 if (!text) 1063 return -ENOMEM; 1064 1065 while (size > 0) { 1066 size_t n; 1067 size_t skip; 1068 1069 raw_spin_lock_irq(&logbuf_lock); 1070 if (syslog_seq < log_first_seq) { 1071 /* messages are gone, move to first one */ 1072 syslog_seq = log_first_seq; 1073 syslog_idx = log_first_idx; 1074 syslog_prev = 0; 1075 syslog_partial = 0; 1076 } 1077 if (syslog_seq == log_next_seq) { 1078 raw_spin_unlock_irq(&logbuf_lock); 1079 break; 1080 } 1081 1082 skip = syslog_partial; 1083 msg = log_from_idx(syslog_idx); 1084 n = msg_print_text(msg, syslog_prev, true, text, 1085 LOG_LINE_MAX + PREFIX_MAX); 1086 if (n - syslog_partial <= size) { 1087 /* message fits into buffer, move forward */ 1088 syslog_idx = log_next(syslog_idx); 1089 syslog_seq++; 1090 syslog_prev = msg->flags; 1091 n -= syslog_partial; 1092 syslog_partial = 0; 1093 } else if (!len){ 1094 /* partial read(), remember position */ 1095 n = size; 1096 syslog_partial += n; 1097 } else 1098 n = 0; 1099 raw_spin_unlock_irq(&logbuf_lock); 1100 1101 if (!n) 1102 break; 1103 1104 if (copy_to_user(buf, text + skip, n)) { 1105 if (!len) 1106 len = -EFAULT; 1107 break; 1108 } 1109 1110 len += n; 1111 size -= n; 1112 buf += n; 1113 } 1114 1115 kfree(text); 1116 return len; 1117 } 1118 1119 static int syslog_print_all(char __user *buf, int size, bool clear) 1120 { 1121 char *text; 1122 int len = 0; 1123 1124 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1125 if (!text) 1126 return -ENOMEM; 1127 1128 raw_spin_lock_irq(&logbuf_lock); 1129 if (buf) { 1130 u64 next_seq; 1131 u64 seq; 1132 u32 idx; 1133 enum log_flags prev; 1134 1135 if (clear_seq < log_first_seq) { 1136 /* messages are gone, move to first available one */ 1137 clear_seq = log_first_seq; 1138 clear_idx = log_first_idx; 1139 } 1140 1141 /* 1142 * Find first record that fits, including all following records, 1143 * into the user-provided buffer for this dump. 1144 */ 1145 seq = clear_seq; 1146 idx = clear_idx; 1147 prev = 0; 1148 while (seq < log_next_seq) { 1149 struct printk_log *msg = log_from_idx(idx); 1150 1151 len += msg_print_text(msg, prev, true, NULL, 0); 1152 prev = msg->flags; 1153 idx = log_next(idx); 1154 seq++; 1155 } 1156 1157 /* move first record forward until length fits into the buffer */ 1158 seq = clear_seq; 1159 idx = clear_idx; 1160 prev = 0; 1161 while (len > size && seq < log_next_seq) { 1162 struct printk_log *msg = log_from_idx(idx); 1163 1164 len -= msg_print_text(msg, prev, true, NULL, 0); 1165 prev = msg->flags; 1166 idx = log_next(idx); 1167 seq++; 1168 } 1169 1170 /* last message fitting into this dump */ 1171 next_seq = log_next_seq; 1172 1173 len = 0; 1174 while (len >= 0 && seq < next_seq) { 1175 struct printk_log *msg = log_from_idx(idx); 1176 int textlen; 1177 1178 textlen = msg_print_text(msg, prev, true, text, 1179 LOG_LINE_MAX + PREFIX_MAX); 1180 if (textlen < 0) { 1181 len = textlen; 1182 break; 1183 } 1184 idx = log_next(idx); 1185 seq++; 1186 prev = msg->flags; 1187 1188 raw_spin_unlock_irq(&logbuf_lock); 1189 if (copy_to_user(buf + len, text, textlen)) 1190 len = -EFAULT; 1191 else 1192 len += textlen; 1193 raw_spin_lock_irq(&logbuf_lock); 1194 1195 if (seq < log_first_seq) { 1196 /* messages are gone, move to next one */ 1197 seq = log_first_seq; 1198 idx = log_first_idx; 1199 prev = 0; 1200 } 1201 } 1202 } 1203 1204 if (clear) { 1205 clear_seq = log_next_seq; 1206 clear_idx = log_next_idx; 1207 } 1208 raw_spin_unlock_irq(&logbuf_lock); 1209 1210 kfree(text); 1211 return len; 1212 } 1213 1214 int do_syslog(int type, char __user *buf, int len, bool from_file) 1215 { 1216 bool clear = false; 1217 static int saved_console_loglevel = -1; 1218 int error; 1219 1220 error = check_syslog_permissions(type, from_file); 1221 if (error) 1222 goto out; 1223 1224 error = security_syslog(type); 1225 if (error) 1226 return error; 1227 1228 switch (type) { 1229 case SYSLOG_ACTION_CLOSE: /* Close log */ 1230 break; 1231 case SYSLOG_ACTION_OPEN: /* Open log */ 1232 break; 1233 case SYSLOG_ACTION_READ: /* Read from log */ 1234 error = -EINVAL; 1235 if (!buf || len < 0) 1236 goto out; 1237 error = 0; 1238 if (!len) 1239 goto out; 1240 if (!access_ok(VERIFY_WRITE, buf, len)) { 1241 error = -EFAULT; 1242 goto out; 1243 } 1244 error = wait_event_interruptible(log_wait, 1245 syslog_seq != log_next_seq); 1246 if (error) 1247 goto out; 1248 error = syslog_print(buf, len); 1249 break; 1250 /* Read/clear last kernel messages */ 1251 case SYSLOG_ACTION_READ_CLEAR: 1252 clear = true; 1253 /* FALL THRU */ 1254 /* Read last kernel messages */ 1255 case SYSLOG_ACTION_READ_ALL: 1256 error = -EINVAL; 1257 if (!buf || len < 0) 1258 goto out; 1259 error = 0; 1260 if (!len) 1261 goto out; 1262 if (!access_ok(VERIFY_WRITE, buf, len)) { 1263 error = -EFAULT; 1264 goto out; 1265 } 1266 error = syslog_print_all(buf, len, clear); 1267 break; 1268 /* Clear ring buffer */ 1269 case SYSLOG_ACTION_CLEAR: 1270 syslog_print_all(NULL, 0, true); 1271 break; 1272 /* Disable logging to console */ 1273 case SYSLOG_ACTION_CONSOLE_OFF: 1274 if (saved_console_loglevel == -1) 1275 saved_console_loglevel = console_loglevel; 1276 console_loglevel = minimum_console_loglevel; 1277 break; 1278 /* Enable logging to console */ 1279 case SYSLOG_ACTION_CONSOLE_ON: 1280 if (saved_console_loglevel != -1) { 1281 console_loglevel = saved_console_loglevel; 1282 saved_console_loglevel = -1; 1283 } 1284 break; 1285 /* Set level of messages printed to console */ 1286 case SYSLOG_ACTION_CONSOLE_LEVEL: 1287 error = -EINVAL; 1288 if (len < 1 || len > 8) 1289 goto out; 1290 if (len < minimum_console_loglevel) 1291 len = minimum_console_loglevel; 1292 console_loglevel = len; 1293 /* Implicitly re-enable logging to console */ 1294 saved_console_loglevel = -1; 1295 error = 0; 1296 break; 1297 /* Number of chars in the log buffer */ 1298 case SYSLOG_ACTION_SIZE_UNREAD: 1299 raw_spin_lock_irq(&logbuf_lock); 1300 if (syslog_seq < log_first_seq) { 1301 /* messages are gone, move to first one */ 1302 syslog_seq = log_first_seq; 1303 syslog_idx = log_first_idx; 1304 syslog_prev = 0; 1305 syslog_partial = 0; 1306 } 1307 if (from_file) { 1308 /* 1309 * Short-cut for poll(/"proc/kmsg") which simply checks 1310 * for pending data, not the size; return the count of 1311 * records, not the length. 1312 */ 1313 error = log_next_idx - syslog_idx; 1314 } else { 1315 u64 seq = syslog_seq; 1316 u32 idx = syslog_idx; 1317 enum log_flags prev = syslog_prev; 1318 1319 error = 0; 1320 while (seq < log_next_seq) { 1321 struct printk_log *msg = log_from_idx(idx); 1322 1323 error += msg_print_text(msg, prev, true, NULL, 0); 1324 idx = log_next(idx); 1325 seq++; 1326 prev = msg->flags; 1327 } 1328 error -= syslog_partial; 1329 } 1330 raw_spin_unlock_irq(&logbuf_lock); 1331 break; 1332 /* Size of the log buffer */ 1333 case SYSLOG_ACTION_SIZE_BUFFER: 1334 error = log_buf_len; 1335 break; 1336 default: 1337 error = -EINVAL; 1338 break; 1339 } 1340 out: 1341 return error; 1342 } 1343 1344 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1345 { 1346 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1347 } 1348 1349 /* 1350 * Call the console drivers, asking them to write out 1351 * log_buf[start] to log_buf[end - 1]. 1352 * The console_lock must be held. 1353 */ 1354 static void call_console_drivers(int level, const char *text, size_t len) 1355 { 1356 struct console *con; 1357 1358 trace_console(text, len); 1359 1360 if (level >= console_loglevel && !ignore_loglevel) 1361 return; 1362 if (!console_drivers) 1363 return; 1364 1365 for_each_console(con) { 1366 if (exclusive_console && con != exclusive_console) 1367 continue; 1368 if (!(con->flags & CON_ENABLED)) 1369 continue; 1370 if (!con->write) 1371 continue; 1372 if (!cpu_online(smp_processor_id()) && 1373 !(con->flags & CON_ANYTIME)) 1374 continue; 1375 con->write(con, text, len); 1376 } 1377 } 1378 1379 /* 1380 * Zap console related locks when oopsing. Only zap at most once 1381 * every 10 seconds, to leave time for slow consoles to print a 1382 * full oops. 1383 */ 1384 static void zap_locks(void) 1385 { 1386 static unsigned long oops_timestamp; 1387 1388 if (time_after_eq(jiffies, oops_timestamp) && 1389 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1390 return; 1391 1392 oops_timestamp = jiffies; 1393 1394 debug_locks_off(); 1395 /* If a crash is occurring, make sure we can't deadlock */ 1396 raw_spin_lock_init(&logbuf_lock); 1397 /* And make sure that we print immediately */ 1398 sema_init(&console_sem, 1); 1399 } 1400 1401 /* 1402 * Check if we have any console that is capable of printing while cpu is 1403 * booting or shutting down. Requires console_sem. 1404 */ 1405 static int have_callable_console(void) 1406 { 1407 struct console *con; 1408 1409 for_each_console(con) 1410 if (con->flags & CON_ANYTIME) 1411 return 1; 1412 1413 return 0; 1414 } 1415 1416 /* 1417 * Can we actually use the console at this time on this cpu? 1418 * 1419 * Console drivers may assume that per-cpu resources have 1420 * been allocated. So unless they're explicitly marked as 1421 * being able to cope (CON_ANYTIME) don't call them until 1422 * this CPU is officially up. 1423 */ 1424 static inline int can_use_console(unsigned int cpu) 1425 { 1426 return cpu_online(cpu) || have_callable_console(); 1427 } 1428 1429 /* 1430 * Try to get console ownership to actually show the kernel 1431 * messages from a 'printk'. Return true (and with the 1432 * console_lock held, and 'console_locked' set) if it 1433 * is successful, false otherwise. 1434 */ 1435 static int console_trylock_for_printk(unsigned int cpu) 1436 { 1437 if (!console_trylock()) 1438 return 0; 1439 /* 1440 * If we can't use the console, we need to release the console 1441 * semaphore by hand to avoid flushing the buffer. We need to hold the 1442 * console semaphore in order to do this test safely. 1443 */ 1444 if (!can_use_console(cpu)) { 1445 console_locked = 0; 1446 up_console_sem(); 1447 return 0; 1448 } 1449 return 1; 1450 } 1451 1452 int printk_delay_msec __read_mostly; 1453 1454 static inline void printk_delay(void) 1455 { 1456 if (unlikely(printk_delay_msec)) { 1457 int m = printk_delay_msec; 1458 1459 while (m--) { 1460 mdelay(1); 1461 touch_nmi_watchdog(); 1462 } 1463 } 1464 } 1465 1466 /* 1467 * Continuation lines are buffered, and not committed to the record buffer 1468 * until the line is complete, or a race forces it. The line fragments 1469 * though, are printed immediately to the consoles to ensure everything has 1470 * reached the console in case of a kernel crash. 1471 */ 1472 static struct cont { 1473 char buf[LOG_LINE_MAX]; 1474 size_t len; /* length == 0 means unused buffer */ 1475 size_t cons; /* bytes written to console */ 1476 struct task_struct *owner; /* task of first print*/ 1477 u64 ts_nsec; /* time of first print */ 1478 u8 level; /* log level of first message */ 1479 u8 facility; /* log level of first message */ 1480 enum log_flags flags; /* prefix, newline flags */ 1481 bool flushed:1; /* buffer sealed and committed */ 1482 } cont; 1483 1484 static void cont_flush(enum log_flags flags) 1485 { 1486 if (cont.flushed) 1487 return; 1488 if (cont.len == 0) 1489 return; 1490 1491 if (cont.cons) { 1492 /* 1493 * If a fragment of this line was directly flushed to the 1494 * console; wait for the console to pick up the rest of the 1495 * line. LOG_NOCONS suppresses a duplicated output. 1496 */ 1497 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1498 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1499 cont.flags = flags; 1500 cont.flushed = true; 1501 } else { 1502 /* 1503 * If no fragment of this line ever reached the console, 1504 * just submit it to the store and free the buffer. 1505 */ 1506 log_store(cont.facility, cont.level, flags, 0, 1507 NULL, 0, cont.buf, cont.len); 1508 cont.len = 0; 1509 } 1510 } 1511 1512 static bool cont_add(int facility, int level, const char *text, size_t len) 1513 { 1514 if (cont.len && cont.flushed) 1515 return false; 1516 1517 if (cont.len + len > sizeof(cont.buf)) { 1518 /* the line gets too long, split it up in separate records */ 1519 cont_flush(LOG_CONT); 1520 return false; 1521 } 1522 1523 if (!cont.len) { 1524 cont.facility = facility; 1525 cont.level = level; 1526 cont.owner = current; 1527 cont.ts_nsec = local_clock(); 1528 cont.flags = 0; 1529 cont.cons = 0; 1530 cont.flushed = false; 1531 } 1532 1533 memcpy(cont.buf + cont.len, text, len); 1534 cont.len += len; 1535 1536 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1537 cont_flush(LOG_CONT); 1538 1539 return true; 1540 } 1541 1542 static size_t cont_print_text(char *text, size_t size) 1543 { 1544 size_t textlen = 0; 1545 size_t len; 1546 1547 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1548 textlen += print_time(cont.ts_nsec, text); 1549 size -= textlen; 1550 } 1551 1552 len = cont.len - cont.cons; 1553 if (len > 0) { 1554 if (len+1 > size) 1555 len = size-1; 1556 memcpy(text + textlen, cont.buf + cont.cons, len); 1557 textlen += len; 1558 cont.cons = cont.len; 1559 } 1560 1561 if (cont.flushed) { 1562 if (cont.flags & LOG_NEWLINE) 1563 text[textlen++] = '\n'; 1564 /* got everything, release buffer */ 1565 cont.len = 0; 1566 } 1567 return textlen; 1568 } 1569 1570 asmlinkage int vprintk_emit(int facility, int level, 1571 const char *dict, size_t dictlen, 1572 const char *fmt, va_list args) 1573 { 1574 static int recursion_bug; 1575 static char textbuf[LOG_LINE_MAX]; 1576 char *text = textbuf; 1577 size_t text_len = 0; 1578 enum log_flags lflags = 0; 1579 unsigned long flags; 1580 int this_cpu; 1581 int printed_len = 0; 1582 bool in_sched = false; 1583 /* cpu currently holding logbuf_lock in this function */ 1584 static volatile unsigned int logbuf_cpu = UINT_MAX; 1585 1586 if (level == SCHED_MESSAGE_LOGLEVEL) { 1587 level = -1; 1588 in_sched = true; 1589 } 1590 1591 boot_delay_msec(level); 1592 printk_delay(); 1593 1594 /* This stops the holder of console_sem just where we want him */ 1595 local_irq_save(flags); 1596 this_cpu = smp_processor_id(); 1597 1598 /* 1599 * Ouch, printk recursed into itself! 1600 */ 1601 if (unlikely(logbuf_cpu == this_cpu)) { 1602 /* 1603 * If a crash is occurring during printk() on this CPU, 1604 * then try to get the crash message out but make sure 1605 * we can't deadlock. Otherwise just return to avoid the 1606 * recursion and return - but flag the recursion so that 1607 * it can be printed at the next appropriate moment: 1608 */ 1609 if (!oops_in_progress && !lockdep_recursing(current)) { 1610 recursion_bug = 1; 1611 goto out_restore_irqs; 1612 } 1613 zap_locks(); 1614 } 1615 1616 lockdep_off(); 1617 raw_spin_lock(&logbuf_lock); 1618 logbuf_cpu = this_cpu; 1619 1620 if (recursion_bug) { 1621 static const char recursion_msg[] = 1622 "BUG: recent printk recursion!"; 1623 1624 recursion_bug = 0; 1625 text_len = strlen(recursion_msg); 1626 /* emit KERN_CRIT message */ 1627 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1628 NULL, 0, recursion_msg, text_len); 1629 } 1630 1631 /* 1632 * The printf needs to come first; we need the syslog 1633 * prefix which might be passed-in as a parameter. 1634 */ 1635 if (in_sched) 1636 text_len = scnprintf(text, sizeof(textbuf), 1637 KERN_WARNING "[sched_delayed] "); 1638 1639 text_len += vscnprintf(text + text_len, 1640 sizeof(textbuf) - text_len, fmt, args); 1641 1642 /* mark and strip a trailing newline */ 1643 if (text_len && text[text_len-1] == '\n') { 1644 text_len--; 1645 lflags |= LOG_NEWLINE; 1646 } 1647 1648 /* strip kernel syslog prefix and extract log level or control flags */ 1649 if (facility == 0) { 1650 int kern_level = printk_get_level(text); 1651 1652 if (kern_level) { 1653 const char *end_of_header = printk_skip_level(text); 1654 switch (kern_level) { 1655 case '0' ... '7': 1656 if (level == -1) 1657 level = kern_level - '0'; 1658 case 'd': /* KERN_DEFAULT */ 1659 lflags |= LOG_PREFIX; 1660 } 1661 /* 1662 * No need to check length here because vscnprintf 1663 * put '\0' at the end of the string. Only valid and 1664 * newly printed level is detected. 1665 */ 1666 text_len -= end_of_header - text; 1667 text = (char *)end_of_header; 1668 } 1669 } 1670 1671 if (level == -1) 1672 level = default_message_loglevel; 1673 1674 if (dict) 1675 lflags |= LOG_PREFIX|LOG_NEWLINE; 1676 1677 if (!(lflags & LOG_NEWLINE)) { 1678 /* 1679 * Flush the conflicting buffer. An earlier newline was missing, 1680 * or another task also prints continuation lines. 1681 */ 1682 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1683 cont_flush(LOG_NEWLINE); 1684 1685 /* buffer line if possible, otherwise store it right away */ 1686 if (cont_add(facility, level, text, text_len)) 1687 printed_len += text_len; 1688 else 1689 printed_len += log_store(facility, level, 1690 lflags | LOG_CONT, 0, 1691 dict, dictlen, text, text_len); 1692 } else { 1693 bool stored = false; 1694 1695 /* 1696 * If an earlier newline was missing and it was the same task, 1697 * either merge it with the current buffer and flush, or if 1698 * there was a race with interrupts (prefix == true) then just 1699 * flush it out and store this line separately. 1700 * If the preceding printk was from a different task and missed 1701 * a newline, flush and append the newline. 1702 */ 1703 if (cont.len) { 1704 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1705 stored = cont_add(facility, level, text, 1706 text_len); 1707 cont_flush(LOG_NEWLINE); 1708 } 1709 1710 if (stored) 1711 printed_len += text_len; 1712 else 1713 printed_len += log_store(facility, level, lflags, 0, 1714 dict, dictlen, text, text_len); 1715 } 1716 1717 logbuf_cpu = UINT_MAX; 1718 raw_spin_unlock(&logbuf_lock); 1719 1720 /* If called from the scheduler, we can not call up(). */ 1721 if (!in_sched) { 1722 /* 1723 * Try to acquire and then immediately release the console 1724 * semaphore. The release will print out buffers and wake up 1725 * /dev/kmsg and syslog() users. 1726 */ 1727 if (console_trylock_for_printk(this_cpu)) 1728 console_unlock(); 1729 } 1730 1731 lockdep_on(); 1732 out_restore_irqs: 1733 local_irq_restore(flags); 1734 return printed_len; 1735 } 1736 EXPORT_SYMBOL(vprintk_emit); 1737 1738 asmlinkage int vprintk(const char *fmt, va_list args) 1739 { 1740 return vprintk_emit(0, -1, NULL, 0, fmt, args); 1741 } 1742 EXPORT_SYMBOL(vprintk); 1743 1744 asmlinkage int printk_emit(int facility, int level, 1745 const char *dict, size_t dictlen, 1746 const char *fmt, ...) 1747 { 1748 va_list args; 1749 int r; 1750 1751 va_start(args, fmt); 1752 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1753 va_end(args); 1754 1755 return r; 1756 } 1757 EXPORT_SYMBOL(printk_emit); 1758 1759 /** 1760 * printk - print a kernel message 1761 * @fmt: format string 1762 * 1763 * This is printk(). It can be called from any context. We want it to work. 1764 * 1765 * We try to grab the console_lock. If we succeed, it's easy - we log the 1766 * output and call the console drivers. If we fail to get the semaphore, we 1767 * place the output into the log buffer and return. The current holder of 1768 * the console_sem will notice the new output in console_unlock(); and will 1769 * send it to the consoles before releasing the lock. 1770 * 1771 * One effect of this deferred printing is that code which calls printk() and 1772 * then changes console_loglevel may break. This is because console_loglevel 1773 * is inspected when the actual printing occurs. 1774 * 1775 * See also: 1776 * printf(3) 1777 * 1778 * See the vsnprintf() documentation for format string extensions over C99. 1779 */ 1780 asmlinkage __visible int printk(const char *fmt, ...) 1781 { 1782 va_list args; 1783 int r; 1784 1785 #ifdef CONFIG_KGDB_KDB 1786 if (unlikely(kdb_trap_printk)) { 1787 va_start(args, fmt); 1788 r = vkdb_printf(fmt, args); 1789 va_end(args); 1790 return r; 1791 } 1792 #endif 1793 va_start(args, fmt); 1794 r = vprintk_emit(0, -1, NULL, 0, fmt, args); 1795 va_end(args); 1796 1797 return r; 1798 } 1799 EXPORT_SYMBOL(printk); 1800 1801 #else /* CONFIG_PRINTK */ 1802 1803 #define LOG_LINE_MAX 0 1804 #define PREFIX_MAX 0 1805 #define LOG_LINE_MAX 0 1806 static u64 syslog_seq; 1807 static u32 syslog_idx; 1808 static u64 console_seq; 1809 static u32 console_idx; 1810 static enum log_flags syslog_prev; 1811 static u64 log_first_seq; 1812 static u32 log_first_idx; 1813 static u64 log_next_seq; 1814 static enum log_flags console_prev; 1815 static struct cont { 1816 size_t len; 1817 size_t cons; 1818 u8 level; 1819 bool flushed:1; 1820 } cont; 1821 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1822 static u32 log_next(u32 idx) { return 0; } 1823 static void call_console_drivers(int level, const char *text, size_t len) {} 1824 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1825 bool syslog, char *buf, size_t size) { return 0; } 1826 static size_t cont_print_text(char *text, size_t size) { return 0; } 1827 1828 #endif /* CONFIG_PRINTK */ 1829 1830 #ifdef CONFIG_EARLY_PRINTK 1831 struct console *early_console; 1832 1833 void early_vprintk(const char *fmt, va_list ap) 1834 { 1835 if (early_console) { 1836 char buf[512]; 1837 int n = vscnprintf(buf, sizeof(buf), fmt, ap); 1838 1839 early_console->write(early_console, buf, n); 1840 } 1841 } 1842 1843 asmlinkage __visible void early_printk(const char *fmt, ...) 1844 { 1845 va_list ap; 1846 1847 va_start(ap, fmt); 1848 early_vprintk(fmt, ap); 1849 va_end(ap); 1850 } 1851 #endif 1852 1853 static int __add_preferred_console(char *name, int idx, char *options, 1854 char *brl_options) 1855 { 1856 struct console_cmdline *c; 1857 int i; 1858 1859 /* 1860 * See if this tty is not yet registered, and 1861 * if we have a slot free. 1862 */ 1863 for (i = 0, c = console_cmdline; 1864 i < MAX_CMDLINECONSOLES && c->name[0]; 1865 i++, c++) { 1866 if (strcmp(c->name, name) == 0 && c->index == idx) { 1867 if (!brl_options) 1868 selected_console = i; 1869 return 0; 1870 } 1871 } 1872 if (i == MAX_CMDLINECONSOLES) 1873 return -E2BIG; 1874 if (!brl_options) 1875 selected_console = i; 1876 strlcpy(c->name, name, sizeof(c->name)); 1877 c->options = options; 1878 braille_set_options(c, brl_options); 1879 1880 c->index = idx; 1881 return 0; 1882 } 1883 /* 1884 * Set up a list of consoles. Called from init/main.c 1885 */ 1886 static int __init console_setup(char *str) 1887 { 1888 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */ 1889 char *s, *options, *brl_options = NULL; 1890 int idx; 1891 1892 if (_braille_console_setup(&str, &brl_options)) 1893 return 1; 1894 1895 /* 1896 * Decode str into name, index, options. 1897 */ 1898 if (str[0] >= '0' && str[0] <= '9') { 1899 strcpy(buf, "ttyS"); 1900 strncpy(buf + 4, str, sizeof(buf) - 5); 1901 } else { 1902 strncpy(buf, str, sizeof(buf) - 1); 1903 } 1904 buf[sizeof(buf) - 1] = 0; 1905 if ((options = strchr(str, ',')) != NULL) 1906 *(options++) = 0; 1907 #ifdef __sparc__ 1908 if (!strcmp(str, "ttya")) 1909 strcpy(buf, "ttyS0"); 1910 if (!strcmp(str, "ttyb")) 1911 strcpy(buf, "ttyS1"); 1912 #endif 1913 for (s = buf; *s; s++) 1914 if ((*s >= '0' && *s <= '9') || *s == ',') 1915 break; 1916 idx = simple_strtoul(s, NULL, 10); 1917 *s = 0; 1918 1919 __add_preferred_console(buf, idx, options, brl_options); 1920 console_set_on_cmdline = 1; 1921 return 1; 1922 } 1923 __setup("console=", console_setup); 1924 1925 /** 1926 * add_preferred_console - add a device to the list of preferred consoles. 1927 * @name: device name 1928 * @idx: device index 1929 * @options: options for this console 1930 * 1931 * The last preferred console added will be used for kernel messages 1932 * and stdin/out/err for init. Normally this is used by console_setup 1933 * above to handle user-supplied console arguments; however it can also 1934 * be used by arch-specific code either to override the user or more 1935 * commonly to provide a default console (ie from PROM variables) when 1936 * the user has not supplied one. 1937 */ 1938 int add_preferred_console(char *name, int idx, char *options) 1939 { 1940 return __add_preferred_console(name, idx, options, NULL); 1941 } 1942 1943 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options) 1944 { 1945 struct console_cmdline *c; 1946 int i; 1947 1948 for (i = 0, c = console_cmdline; 1949 i < MAX_CMDLINECONSOLES && c->name[0]; 1950 i++, c++) 1951 if (strcmp(c->name, name) == 0 && c->index == idx) { 1952 strlcpy(c->name, name_new, sizeof(c->name)); 1953 c->name[sizeof(c->name) - 1] = 0; 1954 c->options = options; 1955 c->index = idx_new; 1956 return i; 1957 } 1958 /* not found */ 1959 return -1; 1960 } 1961 1962 bool console_suspend_enabled = 1; 1963 EXPORT_SYMBOL(console_suspend_enabled); 1964 1965 static int __init console_suspend_disable(char *str) 1966 { 1967 console_suspend_enabled = 0; 1968 return 1; 1969 } 1970 __setup("no_console_suspend", console_suspend_disable); 1971 module_param_named(console_suspend, console_suspend_enabled, 1972 bool, S_IRUGO | S_IWUSR); 1973 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 1974 " and hibernate operations"); 1975 1976 /** 1977 * suspend_console - suspend the console subsystem 1978 * 1979 * This disables printk() while we go into suspend states 1980 */ 1981 void suspend_console(void) 1982 { 1983 if (!console_suspend_enabled) 1984 return; 1985 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 1986 console_lock(); 1987 console_suspended = 1; 1988 up_console_sem(); 1989 } 1990 1991 void resume_console(void) 1992 { 1993 if (!console_suspend_enabled) 1994 return; 1995 down_console_sem(); 1996 console_suspended = 0; 1997 console_unlock(); 1998 } 1999 2000 /** 2001 * console_cpu_notify - print deferred console messages after CPU hotplug 2002 * @self: notifier struct 2003 * @action: CPU hotplug event 2004 * @hcpu: unused 2005 * 2006 * If printk() is called from a CPU that is not online yet, the messages 2007 * will be spooled but will not show up on the console. This function is 2008 * called when a new CPU comes online (or fails to come up), and ensures 2009 * that any such output gets printed. 2010 */ 2011 static int console_cpu_notify(struct notifier_block *self, 2012 unsigned long action, void *hcpu) 2013 { 2014 switch (action) { 2015 case CPU_ONLINE: 2016 case CPU_DEAD: 2017 case CPU_DOWN_FAILED: 2018 case CPU_UP_CANCELED: 2019 console_lock(); 2020 console_unlock(); 2021 } 2022 return NOTIFY_OK; 2023 } 2024 2025 /** 2026 * console_lock - lock the console system for exclusive use. 2027 * 2028 * Acquires a lock which guarantees that the caller has 2029 * exclusive access to the console system and the console_drivers list. 2030 * 2031 * Can sleep, returns nothing. 2032 */ 2033 void console_lock(void) 2034 { 2035 might_sleep(); 2036 2037 down_console_sem(); 2038 if (console_suspended) 2039 return; 2040 console_locked = 1; 2041 console_may_schedule = 1; 2042 } 2043 EXPORT_SYMBOL(console_lock); 2044 2045 /** 2046 * console_trylock - try to lock the console system for exclusive use. 2047 * 2048 * Tried to acquire a lock which guarantees that the caller has 2049 * exclusive access to the console system and the console_drivers list. 2050 * 2051 * returns 1 on success, and 0 on failure to acquire the lock. 2052 */ 2053 int console_trylock(void) 2054 { 2055 if (down_trylock_console_sem()) 2056 return 0; 2057 if (console_suspended) { 2058 up_console_sem(); 2059 return 0; 2060 } 2061 console_locked = 1; 2062 console_may_schedule = 0; 2063 return 1; 2064 } 2065 EXPORT_SYMBOL(console_trylock); 2066 2067 int is_console_locked(void) 2068 { 2069 return console_locked; 2070 } 2071 2072 static void console_cont_flush(char *text, size_t size) 2073 { 2074 unsigned long flags; 2075 size_t len; 2076 2077 raw_spin_lock_irqsave(&logbuf_lock, flags); 2078 2079 if (!cont.len) 2080 goto out; 2081 2082 /* 2083 * We still queue earlier records, likely because the console was 2084 * busy. The earlier ones need to be printed before this one, we 2085 * did not flush any fragment so far, so just let it queue up. 2086 */ 2087 if (console_seq < log_next_seq && !cont.cons) 2088 goto out; 2089 2090 len = cont_print_text(text, size); 2091 raw_spin_unlock(&logbuf_lock); 2092 stop_critical_timings(); 2093 call_console_drivers(cont.level, text, len); 2094 start_critical_timings(); 2095 local_irq_restore(flags); 2096 return; 2097 out: 2098 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2099 } 2100 2101 /** 2102 * console_unlock - unlock the console system 2103 * 2104 * Releases the console_lock which the caller holds on the console system 2105 * and the console driver list. 2106 * 2107 * While the console_lock was held, console output may have been buffered 2108 * by printk(). If this is the case, console_unlock(); emits 2109 * the output prior to releasing the lock. 2110 * 2111 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2112 * 2113 * console_unlock(); may be called from any context. 2114 */ 2115 void console_unlock(void) 2116 { 2117 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2118 static u64 seen_seq; 2119 unsigned long flags; 2120 bool wake_klogd = false; 2121 bool retry; 2122 2123 if (console_suspended) { 2124 up_console_sem(); 2125 return; 2126 } 2127 2128 console_may_schedule = 0; 2129 2130 /* flush buffered message fragment immediately to console */ 2131 console_cont_flush(text, sizeof(text)); 2132 again: 2133 for (;;) { 2134 struct printk_log *msg; 2135 size_t len; 2136 int level; 2137 2138 raw_spin_lock_irqsave(&logbuf_lock, flags); 2139 if (seen_seq != log_next_seq) { 2140 wake_klogd = true; 2141 seen_seq = log_next_seq; 2142 } 2143 2144 if (console_seq < log_first_seq) { 2145 len = sprintf(text, "** %u printk messages dropped ** ", 2146 (unsigned)(log_first_seq - console_seq)); 2147 2148 /* messages are gone, move to first one */ 2149 console_seq = log_first_seq; 2150 console_idx = log_first_idx; 2151 console_prev = 0; 2152 } else { 2153 len = 0; 2154 } 2155 skip: 2156 if (console_seq == log_next_seq) 2157 break; 2158 2159 msg = log_from_idx(console_idx); 2160 if (msg->flags & LOG_NOCONS) { 2161 /* 2162 * Skip record we have buffered and already printed 2163 * directly to the console when we received it. 2164 */ 2165 console_idx = log_next(console_idx); 2166 console_seq++; 2167 /* 2168 * We will get here again when we register a new 2169 * CON_PRINTBUFFER console. Clear the flag so we 2170 * will properly dump everything later. 2171 */ 2172 msg->flags &= ~LOG_NOCONS; 2173 console_prev = msg->flags; 2174 goto skip; 2175 } 2176 2177 level = msg->level; 2178 len += msg_print_text(msg, console_prev, false, 2179 text + len, sizeof(text) - len); 2180 console_idx = log_next(console_idx); 2181 console_seq++; 2182 console_prev = msg->flags; 2183 raw_spin_unlock(&logbuf_lock); 2184 2185 stop_critical_timings(); /* don't trace print latency */ 2186 call_console_drivers(level, text, len); 2187 start_critical_timings(); 2188 local_irq_restore(flags); 2189 } 2190 console_locked = 0; 2191 2192 /* Release the exclusive_console once it is used */ 2193 if (unlikely(exclusive_console)) 2194 exclusive_console = NULL; 2195 2196 raw_spin_unlock(&logbuf_lock); 2197 2198 up_console_sem(); 2199 2200 /* 2201 * Someone could have filled up the buffer again, so re-check if there's 2202 * something to flush. In case we cannot trylock the console_sem again, 2203 * there's a new owner and the console_unlock() from them will do the 2204 * flush, no worries. 2205 */ 2206 raw_spin_lock(&logbuf_lock); 2207 retry = console_seq != log_next_seq; 2208 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2209 2210 if (retry && console_trylock()) 2211 goto again; 2212 2213 if (wake_klogd) 2214 wake_up_klogd(); 2215 } 2216 EXPORT_SYMBOL(console_unlock); 2217 2218 /** 2219 * console_conditional_schedule - yield the CPU if required 2220 * 2221 * If the console code is currently allowed to sleep, and 2222 * if this CPU should yield the CPU to another task, do 2223 * so here. 2224 * 2225 * Must be called within console_lock();. 2226 */ 2227 void __sched console_conditional_schedule(void) 2228 { 2229 if (console_may_schedule) 2230 cond_resched(); 2231 } 2232 EXPORT_SYMBOL(console_conditional_schedule); 2233 2234 void console_unblank(void) 2235 { 2236 struct console *c; 2237 2238 /* 2239 * console_unblank can no longer be called in interrupt context unless 2240 * oops_in_progress is set to 1.. 2241 */ 2242 if (oops_in_progress) { 2243 if (down_trylock_console_sem() != 0) 2244 return; 2245 } else 2246 console_lock(); 2247 2248 console_locked = 1; 2249 console_may_schedule = 0; 2250 for_each_console(c) 2251 if ((c->flags & CON_ENABLED) && c->unblank) 2252 c->unblank(); 2253 console_unlock(); 2254 } 2255 2256 /* 2257 * Return the console tty driver structure and its associated index 2258 */ 2259 struct tty_driver *console_device(int *index) 2260 { 2261 struct console *c; 2262 struct tty_driver *driver = NULL; 2263 2264 console_lock(); 2265 for_each_console(c) { 2266 if (!c->device) 2267 continue; 2268 driver = c->device(c, index); 2269 if (driver) 2270 break; 2271 } 2272 console_unlock(); 2273 return driver; 2274 } 2275 2276 /* 2277 * Prevent further output on the passed console device so that (for example) 2278 * serial drivers can disable console output before suspending a port, and can 2279 * re-enable output afterwards. 2280 */ 2281 void console_stop(struct console *console) 2282 { 2283 console_lock(); 2284 console->flags &= ~CON_ENABLED; 2285 console_unlock(); 2286 } 2287 EXPORT_SYMBOL(console_stop); 2288 2289 void console_start(struct console *console) 2290 { 2291 console_lock(); 2292 console->flags |= CON_ENABLED; 2293 console_unlock(); 2294 } 2295 EXPORT_SYMBOL(console_start); 2296 2297 static int __read_mostly keep_bootcon; 2298 2299 static int __init keep_bootcon_setup(char *str) 2300 { 2301 keep_bootcon = 1; 2302 pr_info("debug: skip boot console de-registration.\n"); 2303 2304 return 0; 2305 } 2306 2307 early_param("keep_bootcon", keep_bootcon_setup); 2308 2309 /* 2310 * The console driver calls this routine during kernel initialization 2311 * to register the console printing procedure with printk() and to 2312 * print any messages that were printed by the kernel before the 2313 * console driver was initialized. 2314 * 2315 * This can happen pretty early during the boot process (because of 2316 * early_printk) - sometimes before setup_arch() completes - be careful 2317 * of what kernel features are used - they may not be initialised yet. 2318 * 2319 * There are two types of consoles - bootconsoles (early_printk) and 2320 * "real" consoles (everything which is not a bootconsole) which are 2321 * handled differently. 2322 * - Any number of bootconsoles can be registered at any time. 2323 * - As soon as a "real" console is registered, all bootconsoles 2324 * will be unregistered automatically. 2325 * - Once a "real" console is registered, any attempt to register a 2326 * bootconsoles will be rejected 2327 */ 2328 void register_console(struct console *newcon) 2329 { 2330 int i; 2331 unsigned long flags; 2332 struct console *bcon = NULL; 2333 struct console_cmdline *c; 2334 2335 if (console_drivers) 2336 for_each_console(bcon) 2337 if (WARN(bcon == newcon, 2338 "console '%s%d' already registered\n", 2339 bcon->name, bcon->index)) 2340 return; 2341 2342 /* 2343 * before we register a new CON_BOOT console, make sure we don't 2344 * already have a valid console 2345 */ 2346 if (console_drivers && newcon->flags & CON_BOOT) { 2347 /* find the last or real console */ 2348 for_each_console(bcon) { 2349 if (!(bcon->flags & CON_BOOT)) { 2350 pr_info("Too late to register bootconsole %s%d\n", 2351 newcon->name, newcon->index); 2352 return; 2353 } 2354 } 2355 } 2356 2357 if (console_drivers && console_drivers->flags & CON_BOOT) 2358 bcon = console_drivers; 2359 2360 if (preferred_console < 0 || bcon || !console_drivers) 2361 preferred_console = selected_console; 2362 2363 if (newcon->early_setup) 2364 newcon->early_setup(); 2365 2366 /* 2367 * See if we want to use this console driver. If we 2368 * didn't select a console we take the first one 2369 * that registers here. 2370 */ 2371 if (preferred_console < 0) { 2372 if (newcon->index < 0) 2373 newcon->index = 0; 2374 if (newcon->setup == NULL || 2375 newcon->setup(newcon, NULL) == 0) { 2376 newcon->flags |= CON_ENABLED; 2377 if (newcon->device) { 2378 newcon->flags |= CON_CONSDEV; 2379 preferred_console = 0; 2380 } 2381 } 2382 } 2383 2384 /* 2385 * See if this console matches one we selected on 2386 * the command line. 2387 */ 2388 for (i = 0, c = console_cmdline; 2389 i < MAX_CMDLINECONSOLES && c->name[0]; 2390 i++, c++) { 2391 if (strcmp(c->name, newcon->name) != 0) 2392 continue; 2393 if (newcon->index >= 0 && 2394 newcon->index != c->index) 2395 continue; 2396 if (newcon->index < 0) 2397 newcon->index = c->index; 2398 2399 if (_braille_register_console(newcon, c)) 2400 return; 2401 2402 if (newcon->setup && 2403 newcon->setup(newcon, console_cmdline[i].options) != 0) 2404 break; 2405 newcon->flags |= CON_ENABLED; 2406 newcon->index = c->index; 2407 if (i == selected_console) { 2408 newcon->flags |= CON_CONSDEV; 2409 preferred_console = selected_console; 2410 } 2411 break; 2412 } 2413 2414 if (!(newcon->flags & CON_ENABLED)) 2415 return; 2416 2417 /* 2418 * If we have a bootconsole, and are switching to a real console, 2419 * don't print everything out again, since when the boot console, and 2420 * the real console are the same physical device, it's annoying to 2421 * see the beginning boot messages twice 2422 */ 2423 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2424 newcon->flags &= ~CON_PRINTBUFFER; 2425 2426 /* 2427 * Put this console in the list - keep the 2428 * preferred driver at the head of the list. 2429 */ 2430 console_lock(); 2431 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2432 newcon->next = console_drivers; 2433 console_drivers = newcon; 2434 if (newcon->next) 2435 newcon->next->flags &= ~CON_CONSDEV; 2436 } else { 2437 newcon->next = console_drivers->next; 2438 console_drivers->next = newcon; 2439 } 2440 if (newcon->flags & CON_PRINTBUFFER) { 2441 /* 2442 * console_unlock(); will print out the buffered messages 2443 * for us. 2444 */ 2445 raw_spin_lock_irqsave(&logbuf_lock, flags); 2446 console_seq = syslog_seq; 2447 console_idx = syslog_idx; 2448 console_prev = syslog_prev; 2449 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2450 /* 2451 * We're about to replay the log buffer. Only do this to the 2452 * just-registered console to avoid excessive message spam to 2453 * the already-registered consoles. 2454 */ 2455 exclusive_console = newcon; 2456 } 2457 console_unlock(); 2458 console_sysfs_notify(); 2459 2460 /* 2461 * By unregistering the bootconsoles after we enable the real console 2462 * we get the "console xxx enabled" message on all the consoles - 2463 * boot consoles, real consoles, etc - this is to ensure that end 2464 * users know there might be something in the kernel's log buffer that 2465 * went to the bootconsole (that they do not see on the real console) 2466 */ 2467 pr_info("%sconsole [%s%d] enabled\n", 2468 (newcon->flags & CON_BOOT) ? "boot" : "" , 2469 newcon->name, newcon->index); 2470 if (bcon && 2471 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2472 !keep_bootcon) { 2473 /* We need to iterate through all boot consoles, to make 2474 * sure we print everything out, before we unregister them. 2475 */ 2476 for_each_console(bcon) 2477 if (bcon->flags & CON_BOOT) 2478 unregister_console(bcon); 2479 } 2480 } 2481 EXPORT_SYMBOL(register_console); 2482 2483 int unregister_console(struct console *console) 2484 { 2485 struct console *a, *b; 2486 int res; 2487 2488 pr_info("%sconsole [%s%d] disabled\n", 2489 (console->flags & CON_BOOT) ? "boot" : "" , 2490 console->name, console->index); 2491 2492 res = _braille_unregister_console(console); 2493 if (res) 2494 return res; 2495 2496 res = 1; 2497 console_lock(); 2498 if (console_drivers == console) { 2499 console_drivers=console->next; 2500 res = 0; 2501 } else if (console_drivers) { 2502 for (a=console_drivers->next, b=console_drivers ; 2503 a; b=a, a=b->next) { 2504 if (a == console) { 2505 b->next = a->next; 2506 res = 0; 2507 break; 2508 } 2509 } 2510 } 2511 2512 /* 2513 * If this isn't the last console and it has CON_CONSDEV set, we 2514 * need to set it on the next preferred console. 2515 */ 2516 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2517 console_drivers->flags |= CON_CONSDEV; 2518 2519 console->flags &= ~CON_ENABLED; 2520 console_unlock(); 2521 console_sysfs_notify(); 2522 return res; 2523 } 2524 EXPORT_SYMBOL(unregister_console); 2525 2526 static int __init printk_late_init(void) 2527 { 2528 struct console *con; 2529 2530 for_each_console(con) { 2531 if (!keep_bootcon && con->flags & CON_BOOT) { 2532 unregister_console(con); 2533 } 2534 } 2535 hotcpu_notifier(console_cpu_notify, 0); 2536 return 0; 2537 } 2538 late_initcall(printk_late_init); 2539 2540 #if defined CONFIG_PRINTK 2541 /* 2542 * Delayed printk version, for scheduler-internal messages: 2543 */ 2544 #define PRINTK_PENDING_WAKEUP 0x01 2545 #define PRINTK_PENDING_OUTPUT 0x02 2546 2547 static DEFINE_PER_CPU(int, printk_pending); 2548 2549 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2550 { 2551 int pending = __this_cpu_xchg(printk_pending, 0); 2552 2553 if (pending & PRINTK_PENDING_OUTPUT) { 2554 /* If trylock fails, someone else is doing the printing */ 2555 if (console_trylock()) 2556 console_unlock(); 2557 } 2558 2559 if (pending & PRINTK_PENDING_WAKEUP) 2560 wake_up_interruptible(&log_wait); 2561 } 2562 2563 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2564 .func = wake_up_klogd_work_func, 2565 .flags = IRQ_WORK_LAZY, 2566 }; 2567 2568 void wake_up_klogd(void) 2569 { 2570 preempt_disable(); 2571 if (waitqueue_active(&log_wait)) { 2572 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2573 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2574 } 2575 preempt_enable(); 2576 } 2577 2578 int printk_deferred(const char *fmt, ...) 2579 { 2580 va_list args; 2581 int r; 2582 2583 preempt_disable(); 2584 va_start(args, fmt); 2585 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args); 2586 va_end(args); 2587 2588 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2589 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2590 preempt_enable(); 2591 2592 return r; 2593 } 2594 2595 /* 2596 * printk rate limiting, lifted from the networking subsystem. 2597 * 2598 * This enforces a rate limit: not more than 10 kernel messages 2599 * every 5s to make a denial-of-service attack impossible. 2600 */ 2601 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2602 2603 int __printk_ratelimit(const char *func) 2604 { 2605 return ___ratelimit(&printk_ratelimit_state, func); 2606 } 2607 EXPORT_SYMBOL(__printk_ratelimit); 2608 2609 /** 2610 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2611 * @caller_jiffies: pointer to caller's state 2612 * @interval_msecs: minimum interval between prints 2613 * 2614 * printk_timed_ratelimit() returns true if more than @interval_msecs 2615 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2616 * returned true. 2617 */ 2618 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2619 unsigned int interval_msecs) 2620 { 2621 if (*caller_jiffies == 0 2622 || !time_in_range(jiffies, *caller_jiffies, 2623 *caller_jiffies 2624 + msecs_to_jiffies(interval_msecs))) { 2625 *caller_jiffies = jiffies; 2626 return true; 2627 } 2628 return false; 2629 } 2630 EXPORT_SYMBOL(printk_timed_ratelimit); 2631 2632 static DEFINE_SPINLOCK(dump_list_lock); 2633 static LIST_HEAD(dump_list); 2634 2635 /** 2636 * kmsg_dump_register - register a kernel log dumper. 2637 * @dumper: pointer to the kmsg_dumper structure 2638 * 2639 * Adds a kernel log dumper to the system. The dump callback in the 2640 * structure will be called when the kernel oopses or panics and must be 2641 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2642 */ 2643 int kmsg_dump_register(struct kmsg_dumper *dumper) 2644 { 2645 unsigned long flags; 2646 int err = -EBUSY; 2647 2648 /* The dump callback needs to be set */ 2649 if (!dumper->dump) 2650 return -EINVAL; 2651 2652 spin_lock_irqsave(&dump_list_lock, flags); 2653 /* Don't allow registering multiple times */ 2654 if (!dumper->registered) { 2655 dumper->registered = 1; 2656 list_add_tail_rcu(&dumper->list, &dump_list); 2657 err = 0; 2658 } 2659 spin_unlock_irqrestore(&dump_list_lock, flags); 2660 2661 return err; 2662 } 2663 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2664 2665 /** 2666 * kmsg_dump_unregister - unregister a kmsg dumper. 2667 * @dumper: pointer to the kmsg_dumper structure 2668 * 2669 * Removes a dump device from the system. Returns zero on success and 2670 * %-EINVAL otherwise. 2671 */ 2672 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2673 { 2674 unsigned long flags; 2675 int err = -EINVAL; 2676 2677 spin_lock_irqsave(&dump_list_lock, flags); 2678 if (dumper->registered) { 2679 dumper->registered = 0; 2680 list_del_rcu(&dumper->list); 2681 err = 0; 2682 } 2683 spin_unlock_irqrestore(&dump_list_lock, flags); 2684 synchronize_rcu(); 2685 2686 return err; 2687 } 2688 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2689 2690 static bool always_kmsg_dump; 2691 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2692 2693 /** 2694 * kmsg_dump - dump kernel log to kernel message dumpers. 2695 * @reason: the reason (oops, panic etc) for dumping 2696 * 2697 * Call each of the registered dumper's dump() callback, which can 2698 * retrieve the kmsg records with kmsg_dump_get_line() or 2699 * kmsg_dump_get_buffer(). 2700 */ 2701 void kmsg_dump(enum kmsg_dump_reason reason) 2702 { 2703 struct kmsg_dumper *dumper; 2704 unsigned long flags; 2705 2706 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2707 return; 2708 2709 rcu_read_lock(); 2710 list_for_each_entry_rcu(dumper, &dump_list, list) { 2711 if (dumper->max_reason && reason > dumper->max_reason) 2712 continue; 2713 2714 /* initialize iterator with data about the stored records */ 2715 dumper->active = true; 2716 2717 raw_spin_lock_irqsave(&logbuf_lock, flags); 2718 dumper->cur_seq = clear_seq; 2719 dumper->cur_idx = clear_idx; 2720 dumper->next_seq = log_next_seq; 2721 dumper->next_idx = log_next_idx; 2722 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2723 2724 /* invoke dumper which will iterate over records */ 2725 dumper->dump(dumper, reason); 2726 2727 /* reset iterator */ 2728 dumper->active = false; 2729 } 2730 rcu_read_unlock(); 2731 } 2732 2733 /** 2734 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2735 * @dumper: registered kmsg dumper 2736 * @syslog: include the "<4>" prefixes 2737 * @line: buffer to copy the line to 2738 * @size: maximum size of the buffer 2739 * @len: length of line placed into buffer 2740 * 2741 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2742 * record, and copy one record into the provided buffer. 2743 * 2744 * Consecutive calls will return the next available record moving 2745 * towards the end of the buffer with the youngest messages. 2746 * 2747 * A return value of FALSE indicates that there are no more records to 2748 * read. 2749 * 2750 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2751 */ 2752 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2753 char *line, size_t size, size_t *len) 2754 { 2755 struct printk_log *msg; 2756 size_t l = 0; 2757 bool ret = false; 2758 2759 if (!dumper->active) 2760 goto out; 2761 2762 if (dumper->cur_seq < log_first_seq) { 2763 /* messages are gone, move to first available one */ 2764 dumper->cur_seq = log_first_seq; 2765 dumper->cur_idx = log_first_idx; 2766 } 2767 2768 /* last entry */ 2769 if (dumper->cur_seq >= log_next_seq) 2770 goto out; 2771 2772 msg = log_from_idx(dumper->cur_idx); 2773 l = msg_print_text(msg, 0, syslog, line, size); 2774 2775 dumper->cur_idx = log_next(dumper->cur_idx); 2776 dumper->cur_seq++; 2777 ret = true; 2778 out: 2779 if (len) 2780 *len = l; 2781 return ret; 2782 } 2783 2784 /** 2785 * kmsg_dump_get_line - retrieve one kmsg log line 2786 * @dumper: registered kmsg dumper 2787 * @syslog: include the "<4>" prefixes 2788 * @line: buffer to copy the line to 2789 * @size: maximum size of the buffer 2790 * @len: length of line placed into buffer 2791 * 2792 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2793 * record, and copy one record into the provided buffer. 2794 * 2795 * Consecutive calls will return the next available record moving 2796 * towards the end of the buffer with the youngest messages. 2797 * 2798 * A return value of FALSE indicates that there are no more records to 2799 * read. 2800 */ 2801 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2802 char *line, size_t size, size_t *len) 2803 { 2804 unsigned long flags; 2805 bool ret; 2806 2807 raw_spin_lock_irqsave(&logbuf_lock, flags); 2808 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2809 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2810 2811 return ret; 2812 } 2813 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2814 2815 /** 2816 * kmsg_dump_get_buffer - copy kmsg log lines 2817 * @dumper: registered kmsg dumper 2818 * @syslog: include the "<4>" prefixes 2819 * @buf: buffer to copy the line to 2820 * @size: maximum size of the buffer 2821 * @len: length of line placed into buffer 2822 * 2823 * Start at the end of the kmsg buffer and fill the provided buffer 2824 * with as many of the the *youngest* kmsg records that fit into it. 2825 * If the buffer is large enough, all available kmsg records will be 2826 * copied with a single call. 2827 * 2828 * Consecutive calls will fill the buffer with the next block of 2829 * available older records, not including the earlier retrieved ones. 2830 * 2831 * A return value of FALSE indicates that there are no more records to 2832 * read. 2833 */ 2834 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2835 char *buf, size_t size, size_t *len) 2836 { 2837 unsigned long flags; 2838 u64 seq; 2839 u32 idx; 2840 u64 next_seq; 2841 u32 next_idx; 2842 enum log_flags prev; 2843 size_t l = 0; 2844 bool ret = false; 2845 2846 if (!dumper->active) 2847 goto out; 2848 2849 raw_spin_lock_irqsave(&logbuf_lock, flags); 2850 if (dumper->cur_seq < log_first_seq) { 2851 /* messages are gone, move to first available one */ 2852 dumper->cur_seq = log_first_seq; 2853 dumper->cur_idx = log_first_idx; 2854 } 2855 2856 /* last entry */ 2857 if (dumper->cur_seq >= dumper->next_seq) { 2858 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2859 goto out; 2860 } 2861 2862 /* calculate length of entire buffer */ 2863 seq = dumper->cur_seq; 2864 idx = dumper->cur_idx; 2865 prev = 0; 2866 while (seq < dumper->next_seq) { 2867 struct printk_log *msg = log_from_idx(idx); 2868 2869 l += msg_print_text(msg, prev, true, NULL, 0); 2870 idx = log_next(idx); 2871 seq++; 2872 prev = msg->flags; 2873 } 2874 2875 /* move first record forward until length fits into the buffer */ 2876 seq = dumper->cur_seq; 2877 idx = dumper->cur_idx; 2878 prev = 0; 2879 while (l > size && seq < dumper->next_seq) { 2880 struct printk_log *msg = log_from_idx(idx); 2881 2882 l -= msg_print_text(msg, prev, true, NULL, 0); 2883 idx = log_next(idx); 2884 seq++; 2885 prev = msg->flags; 2886 } 2887 2888 /* last message in next interation */ 2889 next_seq = seq; 2890 next_idx = idx; 2891 2892 l = 0; 2893 while (seq < dumper->next_seq) { 2894 struct printk_log *msg = log_from_idx(idx); 2895 2896 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2897 idx = log_next(idx); 2898 seq++; 2899 prev = msg->flags; 2900 } 2901 2902 dumper->next_seq = next_seq; 2903 dumper->next_idx = next_idx; 2904 ret = true; 2905 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2906 out: 2907 if (len) 2908 *len = l; 2909 return ret; 2910 } 2911 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2912 2913 /** 2914 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2915 * @dumper: registered kmsg dumper 2916 * 2917 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2918 * kmsg_dump_get_buffer() can be called again and used multiple 2919 * times within the same dumper.dump() callback. 2920 * 2921 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2922 */ 2923 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2924 { 2925 dumper->cur_seq = clear_seq; 2926 dumper->cur_idx = clear_idx; 2927 dumper->next_seq = log_next_seq; 2928 dumper->next_idx = log_next_idx; 2929 } 2930 2931 /** 2932 * kmsg_dump_rewind - reset the interator 2933 * @dumper: registered kmsg dumper 2934 * 2935 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2936 * kmsg_dump_get_buffer() can be called again and used multiple 2937 * times within the same dumper.dump() callback. 2938 */ 2939 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2940 { 2941 unsigned long flags; 2942 2943 raw_spin_lock_irqsave(&logbuf_lock, flags); 2944 kmsg_dump_rewind_nolock(dumper); 2945 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2946 } 2947 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 2948 2949 static char dump_stack_arch_desc_str[128]; 2950 2951 /** 2952 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 2953 * @fmt: printf-style format string 2954 * @...: arguments for the format string 2955 * 2956 * The configured string will be printed right after utsname during task 2957 * dumps. Usually used to add arch-specific system identifiers. If an 2958 * arch wants to make use of such an ID string, it should initialize this 2959 * as soon as possible during boot. 2960 */ 2961 void __init dump_stack_set_arch_desc(const char *fmt, ...) 2962 { 2963 va_list args; 2964 2965 va_start(args, fmt); 2966 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 2967 fmt, args); 2968 va_end(args); 2969 } 2970 2971 /** 2972 * dump_stack_print_info - print generic debug info for dump_stack() 2973 * @log_lvl: log level 2974 * 2975 * Arch-specific dump_stack() implementations can use this function to 2976 * print out the same debug information as the generic dump_stack(). 2977 */ 2978 void dump_stack_print_info(const char *log_lvl) 2979 { 2980 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 2981 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 2982 print_tainted(), init_utsname()->release, 2983 (int)strcspn(init_utsname()->version, " "), 2984 init_utsname()->version); 2985 2986 if (dump_stack_arch_desc_str[0] != '\0') 2987 printk("%sHardware name: %s\n", 2988 log_lvl, dump_stack_arch_desc_str); 2989 2990 print_worker_info(log_lvl, current); 2991 } 2992 2993 /** 2994 * show_regs_print_info - print generic debug info for show_regs() 2995 * @log_lvl: log level 2996 * 2997 * show_regs() implementations can use this function to print out generic 2998 * debug information. 2999 */ 3000 void show_regs_print_info(const char *log_lvl) 3001 { 3002 dump_stack_print_info(log_lvl); 3003 3004 printk("%stask: %p ti: %p task.ti: %p\n", 3005 log_lvl, current, current_thread_info(), 3006 task_thread_info(current)); 3007 } 3008 3009 #endif 3010