xref: /linux/kernel/printk/printk.c (revision 988b0c541ed8b1c633c4d4df7169010635942e18)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 
49 #include <asm/uaccess.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/printk.h>
53 
54 #include "console_cmdline.h"
55 #include "braille.h"
56 
57 int console_printk[4] = {
58 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
59 	DEFAULT_MESSAGE_LOGLEVEL,	/* default_message_loglevel */
60 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
61 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
62 };
63 
64 /* Deferred messaged from sched code are marked by this special level */
65 #define SCHED_MESSAGE_LOGLEVEL -2
66 
67 /*
68  * Low level drivers may need that to know if they can schedule in
69  * their unblank() callback or not. So let's export it.
70  */
71 int oops_in_progress;
72 EXPORT_SYMBOL(oops_in_progress);
73 
74 /*
75  * console_sem protects the console_drivers list, and also
76  * provides serialisation for access to the entire console
77  * driver system.
78  */
79 static DEFINE_SEMAPHORE(console_sem);
80 struct console *console_drivers;
81 EXPORT_SYMBOL_GPL(console_drivers);
82 
83 #ifdef CONFIG_LOCKDEP
84 static struct lockdep_map console_lock_dep_map = {
85 	.name = "console_lock"
86 };
87 #endif
88 
89 /*
90  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
91  * macros instead of functions so that _RET_IP_ contains useful information.
92  */
93 #define down_console_sem() do { \
94 	down(&console_sem);\
95 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
96 } while (0)
97 
98 static int __down_trylock_console_sem(unsigned long ip)
99 {
100 	if (down_trylock(&console_sem))
101 		return 1;
102 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
103 	return 0;
104 }
105 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
106 
107 #define up_console_sem() do { \
108 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
109 	up(&console_sem);\
110 } while (0)
111 
112 /*
113  * This is used for debugging the mess that is the VT code by
114  * keeping track if we have the console semaphore held. It's
115  * definitely not the perfect debug tool (we don't know if _WE_
116  * hold it are racing, but it helps tracking those weird code
117  * path in the console code where we end up in places I want
118  * locked without the console sempahore held
119  */
120 static int console_locked, console_suspended;
121 
122 /*
123  * If exclusive_console is non-NULL then only this console is to be printed to.
124  */
125 static struct console *exclusive_console;
126 
127 /*
128  *	Array of consoles built from command line options (console=)
129  */
130 
131 #define MAX_CMDLINECONSOLES 8
132 
133 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
134 
135 static int selected_console = -1;
136 static int preferred_console = -1;
137 int console_set_on_cmdline;
138 EXPORT_SYMBOL(console_set_on_cmdline);
139 
140 /* Flag: console code may call schedule() */
141 static int console_may_schedule;
142 
143 /*
144  * The printk log buffer consists of a chain of concatenated variable
145  * length records. Every record starts with a record header, containing
146  * the overall length of the record.
147  *
148  * The heads to the first and last entry in the buffer, as well as the
149  * sequence numbers of these both entries are maintained when messages
150  * are stored..
151  *
152  * If the heads indicate available messages, the length in the header
153  * tells the start next message. A length == 0 for the next message
154  * indicates a wrap-around to the beginning of the buffer.
155  *
156  * Every record carries the monotonic timestamp in microseconds, as well as
157  * the standard userspace syslog level and syslog facility. The usual
158  * kernel messages use LOG_KERN; userspace-injected messages always carry
159  * a matching syslog facility, by default LOG_USER. The origin of every
160  * message can be reliably determined that way.
161  *
162  * The human readable log message directly follows the message header. The
163  * length of the message text is stored in the header, the stored message
164  * is not terminated.
165  *
166  * Optionally, a message can carry a dictionary of properties (key/value pairs),
167  * to provide userspace with a machine-readable message context.
168  *
169  * Examples for well-defined, commonly used property names are:
170  *   DEVICE=b12:8               device identifier
171  *                                b12:8         block dev_t
172  *                                c127:3        char dev_t
173  *                                n8            netdev ifindex
174  *                                +sound:card0  subsystem:devname
175  *   SUBSYSTEM=pci              driver-core subsystem name
176  *
177  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
178  * follows directly after a '=' character. Every property is terminated by
179  * a '\0' character. The last property is not terminated.
180  *
181  * Example of a message structure:
182  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
183  *   0008  34 00                        record is 52 bytes long
184  *   000a        0b 00                  text is 11 bytes long
185  *   000c              1f 00            dictionary is 23 bytes long
186  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
187  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
188  *         69 6e 65                     "ine"
189  *   001b           44 45 56 49 43      "DEVIC"
190  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
191  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
192  *         67                           "g"
193  *   0032     00 00 00                  padding to next message header
194  *
195  * The 'struct printk_log' buffer header must never be directly exported to
196  * userspace, it is a kernel-private implementation detail that might
197  * need to be changed in the future, when the requirements change.
198  *
199  * /dev/kmsg exports the structured data in the following line format:
200  *   "level,sequnum,timestamp;<message text>\n"
201  *
202  * The optional key/value pairs are attached as continuation lines starting
203  * with a space character and terminated by a newline. All possible
204  * non-prinatable characters are escaped in the "\xff" notation.
205  *
206  * Users of the export format should ignore possible additional values
207  * separated by ',', and find the message after the ';' character.
208  */
209 
210 enum log_flags {
211 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
212 	LOG_NEWLINE	= 2,	/* text ended with a newline */
213 	LOG_PREFIX	= 4,	/* text started with a prefix */
214 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
215 };
216 
217 struct printk_log {
218 	u64 ts_nsec;		/* timestamp in nanoseconds */
219 	u16 len;		/* length of entire record */
220 	u16 text_len;		/* length of text buffer */
221 	u16 dict_len;		/* length of dictionary buffer */
222 	u8 facility;		/* syslog facility */
223 	u8 flags:5;		/* internal record flags */
224 	u8 level:3;		/* syslog level */
225 };
226 
227 /*
228  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
229  * within the scheduler's rq lock. It must be released before calling
230  * console_unlock() or anything else that might wake up a process.
231  */
232 static DEFINE_RAW_SPINLOCK(logbuf_lock);
233 
234 #ifdef CONFIG_PRINTK
235 DECLARE_WAIT_QUEUE_HEAD(log_wait);
236 /* the next printk record to read by syslog(READ) or /proc/kmsg */
237 static u64 syslog_seq;
238 static u32 syslog_idx;
239 static enum log_flags syslog_prev;
240 static size_t syslog_partial;
241 
242 /* index and sequence number of the first record stored in the buffer */
243 static u64 log_first_seq;
244 static u32 log_first_idx;
245 
246 /* index and sequence number of the next record to store in the buffer */
247 static u64 log_next_seq;
248 static u32 log_next_idx;
249 
250 /* the next printk record to write to the console */
251 static u64 console_seq;
252 static u32 console_idx;
253 static enum log_flags console_prev;
254 
255 /* the next printk record to read after the last 'clear' command */
256 static u64 clear_seq;
257 static u32 clear_idx;
258 
259 #define PREFIX_MAX		32
260 #define LOG_LINE_MAX		1024 - PREFIX_MAX
261 
262 /* record buffer */
263 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
264 #define LOG_ALIGN 4
265 #else
266 #define LOG_ALIGN __alignof__(struct printk_log)
267 #endif
268 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
269 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
270 static char *log_buf = __log_buf;
271 static u32 log_buf_len = __LOG_BUF_LEN;
272 
273 /* human readable text of the record */
274 static char *log_text(const struct printk_log *msg)
275 {
276 	return (char *)msg + sizeof(struct printk_log);
277 }
278 
279 /* optional key/value pair dictionary attached to the record */
280 static char *log_dict(const struct printk_log *msg)
281 {
282 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
283 }
284 
285 /* get record by index; idx must point to valid msg */
286 static struct printk_log *log_from_idx(u32 idx)
287 {
288 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
289 
290 	/*
291 	 * A length == 0 record is the end of buffer marker. Wrap around and
292 	 * read the message at the start of the buffer.
293 	 */
294 	if (!msg->len)
295 		return (struct printk_log *)log_buf;
296 	return msg;
297 }
298 
299 /* get next record; idx must point to valid msg */
300 static u32 log_next(u32 idx)
301 {
302 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
303 
304 	/* length == 0 indicates the end of the buffer; wrap */
305 	/*
306 	 * A length == 0 record is the end of buffer marker. Wrap around and
307 	 * read the message at the start of the buffer as *this* one, and
308 	 * return the one after that.
309 	 */
310 	if (!msg->len) {
311 		msg = (struct printk_log *)log_buf;
312 		return msg->len;
313 	}
314 	return idx + msg->len;
315 }
316 
317 /*
318  * Check whether there is enough free space for the given message.
319  *
320  * The same values of first_idx and next_idx mean that the buffer
321  * is either empty or full.
322  *
323  * If the buffer is empty, we must respect the position of the indexes.
324  * They cannot be reset to the beginning of the buffer.
325  */
326 static int logbuf_has_space(u32 msg_size, bool empty)
327 {
328 	u32 free;
329 
330 	if (log_next_idx > log_first_idx || empty)
331 		free = max(log_buf_len - log_next_idx, log_first_idx);
332 	else
333 		free = log_first_idx - log_next_idx;
334 
335 	/*
336 	 * We need space also for an empty header that signalizes wrapping
337 	 * of the buffer.
338 	 */
339 	return free >= msg_size + sizeof(struct printk_log);
340 }
341 
342 static int log_make_free_space(u32 msg_size)
343 {
344 	while (log_first_seq < log_next_seq) {
345 		if (logbuf_has_space(msg_size, false))
346 			return 0;
347 		/* drop old messages until we have enough continuous space */
348 		log_first_idx = log_next(log_first_idx);
349 		log_first_seq++;
350 	}
351 
352 	/* sequence numbers are equal, so the log buffer is empty */
353 	if (logbuf_has_space(msg_size, true))
354 		return 0;
355 
356 	return -ENOMEM;
357 }
358 
359 /* compute the message size including the padding bytes */
360 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
361 {
362 	u32 size;
363 
364 	size = sizeof(struct printk_log) + text_len + dict_len;
365 	*pad_len = (-size) & (LOG_ALIGN - 1);
366 	size += *pad_len;
367 
368 	return size;
369 }
370 
371 /*
372  * Define how much of the log buffer we could take at maximum. The value
373  * must be greater than two. Note that only half of the buffer is available
374  * when the index points to the middle.
375  */
376 #define MAX_LOG_TAKE_PART 4
377 static const char trunc_msg[] = "<truncated>";
378 
379 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
380 			u16 *dict_len, u32 *pad_len)
381 {
382 	/*
383 	 * The message should not take the whole buffer. Otherwise, it might
384 	 * get removed too soon.
385 	 */
386 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
387 	if (*text_len > max_text_len)
388 		*text_len = max_text_len;
389 	/* enable the warning message */
390 	*trunc_msg_len = strlen(trunc_msg);
391 	/* disable the "dict" completely */
392 	*dict_len = 0;
393 	/* compute the size again, count also the warning message */
394 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
395 }
396 
397 /* insert record into the buffer, discard old ones, update heads */
398 static int log_store(int facility, int level,
399 		     enum log_flags flags, u64 ts_nsec,
400 		     const char *dict, u16 dict_len,
401 		     const char *text, u16 text_len)
402 {
403 	struct printk_log *msg;
404 	u32 size, pad_len;
405 	u16 trunc_msg_len = 0;
406 
407 	/* number of '\0' padding bytes to next message */
408 	size = msg_used_size(text_len, dict_len, &pad_len);
409 
410 	if (log_make_free_space(size)) {
411 		/* truncate the message if it is too long for empty buffer */
412 		size = truncate_msg(&text_len, &trunc_msg_len,
413 				    &dict_len, &pad_len);
414 		/* survive when the log buffer is too small for trunc_msg */
415 		if (log_make_free_space(size))
416 			return 0;
417 	}
418 
419 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
420 		/*
421 		 * This message + an additional empty header does not fit
422 		 * at the end of the buffer. Add an empty header with len == 0
423 		 * to signify a wrap around.
424 		 */
425 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
426 		log_next_idx = 0;
427 	}
428 
429 	/* fill message */
430 	msg = (struct printk_log *)(log_buf + log_next_idx);
431 	memcpy(log_text(msg), text, text_len);
432 	msg->text_len = text_len;
433 	if (trunc_msg_len) {
434 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
435 		msg->text_len += trunc_msg_len;
436 	}
437 	memcpy(log_dict(msg), dict, dict_len);
438 	msg->dict_len = dict_len;
439 	msg->facility = facility;
440 	msg->level = level & 7;
441 	msg->flags = flags & 0x1f;
442 	if (ts_nsec > 0)
443 		msg->ts_nsec = ts_nsec;
444 	else
445 		msg->ts_nsec = local_clock();
446 	memset(log_dict(msg) + dict_len, 0, pad_len);
447 	msg->len = size;
448 
449 	/* insert message */
450 	log_next_idx += msg->len;
451 	log_next_seq++;
452 
453 	return msg->text_len;
454 }
455 
456 #ifdef CONFIG_SECURITY_DMESG_RESTRICT
457 int dmesg_restrict = 1;
458 #else
459 int dmesg_restrict;
460 #endif
461 
462 static int syslog_action_restricted(int type)
463 {
464 	if (dmesg_restrict)
465 		return 1;
466 	/*
467 	 * Unless restricted, we allow "read all" and "get buffer size"
468 	 * for everybody.
469 	 */
470 	return type != SYSLOG_ACTION_READ_ALL &&
471 	       type != SYSLOG_ACTION_SIZE_BUFFER;
472 }
473 
474 static int check_syslog_permissions(int type, bool from_file)
475 {
476 	/*
477 	 * If this is from /proc/kmsg and we've already opened it, then we've
478 	 * already done the capabilities checks at open time.
479 	 */
480 	if (from_file && type != SYSLOG_ACTION_OPEN)
481 		return 0;
482 
483 	if (syslog_action_restricted(type)) {
484 		if (capable(CAP_SYSLOG))
485 			return 0;
486 		/*
487 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
488 		 * a warning.
489 		 */
490 		if (capable(CAP_SYS_ADMIN)) {
491 			pr_warn_once("%s (%d): Attempt to access syslog with "
492 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
493 				     "(deprecated).\n",
494 				 current->comm, task_pid_nr(current));
495 			return 0;
496 		}
497 		return -EPERM;
498 	}
499 	return security_syslog(type);
500 }
501 
502 
503 /* /dev/kmsg - userspace message inject/listen interface */
504 struct devkmsg_user {
505 	u64 seq;
506 	u32 idx;
507 	enum log_flags prev;
508 	struct mutex lock;
509 	char buf[8192];
510 };
511 
512 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv,
513 			      unsigned long count, loff_t pos)
514 {
515 	char *buf, *line;
516 	int i;
517 	int level = default_message_loglevel;
518 	int facility = 1;	/* LOG_USER */
519 	size_t len = iov_length(iv, count);
520 	ssize_t ret = len;
521 
522 	if (len > LOG_LINE_MAX)
523 		return -EINVAL;
524 	buf = kmalloc(len+1, GFP_KERNEL);
525 	if (buf == NULL)
526 		return -ENOMEM;
527 
528 	line = buf;
529 	for (i = 0; i < count; i++) {
530 		if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) {
531 			ret = -EFAULT;
532 			goto out;
533 		}
534 		line += iv[i].iov_len;
535 	}
536 
537 	/*
538 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
539 	 * the decimal value represents 32bit, the lower 3 bit are the log
540 	 * level, the rest are the log facility.
541 	 *
542 	 * If no prefix or no userspace facility is specified, we
543 	 * enforce LOG_USER, to be able to reliably distinguish
544 	 * kernel-generated messages from userspace-injected ones.
545 	 */
546 	line = buf;
547 	if (line[0] == '<') {
548 		char *endp = NULL;
549 
550 		i = simple_strtoul(line+1, &endp, 10);
551 		if (endp && endp[0] == '>') {
552 			level = i & 7;
553 			if (i >> 3)
554 				facility = i >> 3;
555 			endp++;
556 			len -= endp - line;
557 			line = endp;
558 		}
559 	}
560 	line[len] = '\0';
561 
562 	printk_emit(facility, level, NULL, 0, "%s", line);
563 out:
564 	kfree(buf);
565 	return ret;
566 }
567 
568 static ssize_t devkmsg_read(struct file *file, char __user *buf,
569 			    size_t count, loff_t *ppos)
570 {
571 	struct devkmsg_user *user = file->private_data;
572 	struct printk_log *msg;
573 	u64 ts_usec;
574 	size_t i;
575 	char cont = '-';
576 	size_t len;
577 	ssize_t ret;
578 
579 	if (!user)
580 		return -EBADF;
581 
582 	ret = mutex_lock_interruptible(&user->lock);
583 	if (ret)
584 		return ret;
585 	raw_spin_lock_irq(&logbuf_lock);
586 	while (user->seq == log_next_seq) {
587 		if (file->f_flags & O_NONBLOCK) {
588 			ret = -EAGAIN;
589 			raw_spin_unlock_irq(&logbuf_lock);
590 			goto out;
591 		}
592 
593 		raw_spin_unlock_irq(&logbuf_lock);
594 		ret = wait_event_interruptible(log_wait,
595 					       user->seq != log_next_seq);
596 		if (ret)
597 			goto out;
598 		raw_spin_lock_irq(&logbuf_lock);
599 	}
600 
601 	if (user->seq < log_first_seq) {
602 		/* our last seen message is gone, return error and reset */
603 		user->idx = log_first_idx;
604 		user->seq = log_first_seq;
605 		ret = -EPIPE;
606 		raw_spin_unlock_irq(&logbuf_lock);
607 		goto out;
608 	}
609 
610 	msg = log_from_idx(user->idx);
611 	ts_usec = msg->ts_nsec;
612 	do_div(ts_usec, 1000);
613 
614 	/*
615 	 * If we couldn't merge continuation line fragments during the print,
616 	 * export the stored flags to allow an optional external merge of the
617 	 * records. Merging the records isn't always neccessarily correct, like
618 	 * when we hit a race during printing. In most cases though, it produces
619 	 * better readable output. 'c' in the record flags mark the first
620 	 * fragment of a line, '+' the following.
621 	 */
622 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
623 		cont = 'c';
624 	else if ((msg->flags & LOG_CONT) ||
625 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
626 		cont = '+';
627 
628 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
629 		      (msg->facility << 3) | msg->level,
630 		      user->seq, ts_usec, cont);
631 	user->prev = msg->flags;
632 
633 	/* escape non-printable characters */
634 	for (i = 0; i < msg->text_len; i++) {
635 		unsigned char c = log_text(msg)[i];
636 
637 		if (c < ' ' || c >= 127 || c == '\\')
638 			len += sprintf(user->buf + len, "\\x%02x", c);
639 		else
640 			user->buf[len++] = c;
641 	}
642 	user->buf[len++] = '\n';
643 
644 	if (msg->dict_len) {
645 		bool line = true;
646 
647 		for (i = 0; i < msg->dict_len; i++) {
648 			unsigned char c = log_dict(msg)[i];
649 
650 			if (line) {
651 				user->buf[len++] = ' ';
652 				line = false;
653 			}
654 
655 			if (c == '\0') {
656 				user->buf[len++] = '\n';
657 				line = true;
658 				continue;
659 			}
660 
661 			if (c < ' ' || c >= 127 || c == '\\') {
662 				len += sprintf(user->buf + len, "\\x%02x", c);
663 				continue;
664 			}
665 
666 			user->buf[len++] = c;
667 		}
668 		user->buf[len++] = '\n';
669 	}
670 
671 	user->idx = log_next(user->idx);
672 	user->seq++;
673 	raw_spin_unlock_irq(&logbuf_lock);
674 
675 	if (len > count) {
676 		ret = -EINVAL;
677 		goto out;
678 	}
679 
680 	if (copy_to_user(buf, user->buf, len)) {
681 		ret = -EFAULT;
682 		goto out;
683 	}
684 	ret = len;
685 out:
686 	mutex_unlock(&user->lock);
687 	return ret;
688 }
689 
690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
691 {
692 	struct devkmsg_user *user = file->private_data;
693 	loff_t ret = 0;
694 
695 	if (!user)
696 		return -EBADF;
697 	if (offset)
698 		return -ESPIPE;
699 
700 	raw_spin_lock_irq(&logbuf_lock);
701 	switch (whence) {
702 	case SEEK_SET:
703 		/* the first record */
704 		user->idx = log_first_idx;
705 		user->seq = log_first_seq;
706 		break;
707 	case SEEK_DATA:
708 		/*
709 		 * The first record after the last SYSLOG_ACTION_CLEAR,
710 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
711 		 * changes no global state, and does not clear anything.
712 		 */
713 		user->idx = clear_idx;
714 		user->seq = clear_seq;
715 		break;
716 	case SEEK_END:
717 		/* after the last record */
718 		user->idx = log_next_idx;
719 		user->seq = log_next_seq;
720 		break;
721 	default:
722 		ret = -EINVAL;
723 	}
724 	raw_spin_unlock_irq(&logbuf_lock);
725 	return ret;
726 }
727 
728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
729 {
730 	struct devkmsg_user *user = file->private_data;
731 	int ret = 0;
732 
733 	if (!user)
734 		return POLLERR|POLLNVAL;
735 
736 	poll_wait(file, &log_wait, wait);
737 
738 	raw_spin_lock_irq(&logbuf_lock);
739 	if (user->seq < log_next_seq) {
740 		/* return error when data has vanished underneath us */
741 		if (user->seq < log_first_seq)
742 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
743 		else
744 			ret = POLLIN|POLLRDNORM;
745 	}
746 	raw_spin_unlock_irq(&logbuf_lock);
747 
748 	return ret;
749 }
750 
751 static int devkmsg_open(struct inode *inode, struct file *file)
752 {
753 	struct devkmsg_user *user;
754 	int err;
755 
756 	/* write-only does not need any file context */
757 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
758 		return 0;
759 
760 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
761 				       SYSLOG_FROM_READER);
762 	if (err)
763 		return err;
764 
765 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
766 	if (!user)
767 		return -ENOMEM;
768 
769 	mutex_init(&user->lock);
770 
771 	raw_spin_lock_irq(&logbuf_lock);
772 	user->idx = log_first_idx;
773 	user->seq = log_first_seq;
774 	raw_spin_unlock_irq(&logbuf_lock);
775 
776 	file->private_data = user;
777 	return 0;
778 }
779 
780 static int devkmsg_release(struct inode *inode, struct file *file)
781 {
782 	struct devkmsg_user *user = file->private_data;
783 
784 	if (!user)
785 		return 0;
786 
787 	mutex_destroy(&user->lock);
788 	kfree(user);
789 	return 0;
790 }
791 
792 const struct file_operations kmsg_fops = {
793 	.open = devkmsg_open,
794 	.read = devkmsg_read,
795 	.aio_write = devkmsg_writev,
796 	.llseek = devkmsg_llseek,
797 	.poll = devkmsg_poll,
798 	.release = devkmsg_release,
799 };
800 
801 #ifdef CONFIG_KEXEC
802 /*
803  * This appends the listed symbols to /proc/vmcore
804  *
805  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
806  * obtain access to symbols that are otherwise very difficult to locate.  These
807  * symbols are specifically used so that utilities can access and extract the
808  * dmesg log from a vmcore file after a crash.
809  */
810 void log_buf_kexec_setup(void)
811 {
812 	VMCOREINFO_SYMBOL(log_buf);
813 	VMCOREINFO_SYMBOL(log_buf_len);
814 	VMCOREINFO_SYMBOL(log_first_idx);
815 	VMCOREINFO_SYMBOL(log_next_idx);
816 	/*
817 	 * Export struct printk_log size and field offsets. User space tools can
818 	 * parse it and detect any changes to structure down the line.
819 	 */
820 	VMCOREINFO_STRUCT_SIZE(printk_log);
821 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
822 	VMCOREINFO_OFFSET(printk_log, len);
823 	VMCOREINFO_OFFSET(printk_log, text_len);
824 	VMCOREINFO_OFFSET(printk_log, dict_len);
825 }
826 #endif
827 
828 /* requested log_buf_len from kernel cmdline */
829 static unsigned long __initdata new_log_buf_len;
830 
831 /* save requested log_buf_len since it's too early to process it */
832 static int __init log_buf_len_setup(char *str)
833 {
834 	unsigned size = memparse(str, &str);
835 
836 	if (size)
837 		size = roundup_pow_of_two(size);
838 	if (size > log_buf_len)
839 		new_log_buf_len = size;
840 
841 	return 0;
842 }
843 early_param("log_buf_len", log_buf_len_setup);
844 
845 void __init setup_log_buf(int early)
846 {
847 	unsigned long flags;
848 	char *new_log_buf;
849 	int free;
850 
851 	if (!new_log_buf_len)
852 		return;
853 
854 	if (early) {
855 		new_log_buf =
856 			memblock_virt_alloc(new_log_buf_len, PAGE_SIZE);
857 	} else {
858 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 0);
859 	}
860 
861 	if (unlikely(!new_log_buf)) {
862 		pr_err("log_buf_len: %ld bytes not available\n",
863 			new_log_buf_len);
864 		return;
865 	}
866 
867 	raw_spin_lock_irqsave(&logbuf_lock, flags);
868 	log_buf_len = new_log_buf_len;
869 	log_buf = new_log_buf;
870 	new_log_buf_len = 0;
871 	free = __LOG_BUF_LEN - log_next_idx;
872 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
873 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
874 
875 	pr_info("log_buf_len: %d\n", log_buf_len);
876 	pr_info("early log buf free: %d(%d%%)\n",
877 		free, (free * 100) / __LOG_BUF_LEN);
878 }
879 
880 static bool __read_mostly ignore_loglevel;
881 
882 static int __init ignore_loglevel_setup(char *str)
883 {
884 	ignore_loglevel = 1;
885 	pr_info("debug: ignoring loglevel setting.\n");
886 
887 	return 0;
888 }
889 
890 early_param("ignore_loglevel", ignore_loglevel_setup);
891 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
892 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to"
893 	"print all kernel messages to the console.");
894 
895 #ifdef CONFIG_BOOT_PRINTK_DELAY
896 
897 static int boot_delay; /* msecs delay after each printk during bootup */
898 static unsigned long long loops_per_msec;	/* based on boot_delay */
899 
900 static int __init boot_delay_setup(char *str)
901 {
902 	unsigned long lpj;
903 
904 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
905 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
906 
907 	get_option(&str, &boot_delay);
908 	if (boot_delay > 10 * 1000)
909 		boot_delay = 0;
910 
911 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
912 		"HZ: %d, loops_per_msec: %llu\n",
913 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
914 	return 0;
915 }
916 early_param("boot_delay", boot_delay_setup);
917 
918 static void boot_delay_msec(int level)
919 {
920 	unsigned long long k;
921 	unsigned long timeout;
922 
923 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
924 		|| (level >= console_loglevel && !ignore_loglevel)) {
925 		return;
926 	}
927 
928 	k = (unsigned long long)loops_per_msec * boot_delay;
929 
930 	timeout = jiffies + msecs_to_jiffies(boot_delay);
931 	while (k) {
932 		k--;
933 		cpu_relax();
934 		/*
935 		 * use (volatile) jiffies to prevent
936 		 * compiler reduction; loop termination via jiffies
937 		 * is secondary and may or may not happen.
938 		 */
939 		if (time_after(jiffies, timeout))
940 			break;
941 		touch_nmi_watchdog();
942 	}
943 }
944 #else
945 static inline void boot_delay_msec(int level)
946 {
947 }
948 #endif
949 
950 #if defined(CONFIG_PRINTK_TIME)
951 static bool printk_time = 1;
952 #else
953 static bool printk_time;
954 #endif
955 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
956 
957 static size_t print_time(u64 ts, char *buf)
958 {
959 	unsigned long rem_nsec;
960 
961 	if (!printk_time)
962 		return 0;
963 
964 	rem_nsec = do_div(ts, 1000000000);
965 
966 	if (!buf)
967 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
968 
969 	return sprintf(buf, "[%5lu.%06lu] ",
970 		       (unsigned long)ts, rem_nsec / 1000);
971 }
972 
973 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
974 {
975 	size_t len = 0;
976 	unsigned int prefix = (msg->facility << 3) | msg->level;
977 
978 	if (syslog) {
979 		if (buf) {
980 			len += sprintf(buf, "<%u>", prefix);
981 		} else {
982 			len += 3;
983 			if (prefix > 999)
984 				len += 3;
985 			else if (prefix > 99)
986 				len += 2;
987 			else if (prefix > 9)
988 				len++;
989 		}
990 	}
991 
992 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
993 	return len;
994 }
995 
996 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
997 			     bool syslog, char *buf, size_t size)
998 {
999 	const char *text = log_text(msg);
1000 	size_t text_size = msg->text_len;
1001 	bool prefix = true;
1002 	bool newline = true;
1003 	size_t len = 0;
1004 
1005 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1006 		prefix = false;
1007 
1008 	if (msg->flags & LOG_CONT) {
1009 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1010 			prefix = false;
1011 
1012 		if (!(msg->flags & LOG_NEWLINE))
1013 			newline = false;
1014 	}
1015 
1016 	do {
1017 		const char *next = memchr(text, '\n', text_size);
1018 		size_t text_len;
1019 
1020 		if (next) {
1021 			text_len = next - text;
1022 			next++;
1023 			text_size -= next - text;
1024 		} else {
1025 			text_len = text_size;
1026 		}
1027 
1028 		if (buf) {
1029 			if (print_prefix(msg, syslog, NULL) +
1030 			    text_len + 1 >= size - len)
1031 				break;
1032 
1033 			if (prefix)
1034 				len += print_prefix(msg, syslog, buf + len);
1035 			memcpy(buf + len, text, text_len);
1036 			len += text_len;
1037 			if (next || newline)
1038 				buf[len++] = '\n';
1039 		} else {
1040 			/* SYSLOG_ACTION_* buffer size only calculation */
1041 			if (prefix)
1042 				len += print_prefix(msg, syslog, NULL);
1043 			len += text_len;
1044 			if (next || newline)
1045 				len++;
1046 		}
1047 
1048 		prefix = true;
1049 		text = next;
1050 	} while (text);
1051 
1052 	return len;
1053 }
1054 
1055 static int syslog_print(char __user *buf, int size)
1056 {
1057 	char *text;
1058 	struct printk_log *msg;
1059 	int len = 0;
1060 
1061 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1062 	if (!text)
1063 		return -ENOMEM;
1064 
1065 	while (size > 0) {
1066 		size_t n;
1067 		size_t skip;
1068 
1069 		raw_spin_lock_irq(&logbuf_lock);
1070 		if (syslog_seq < log_first_seq) {
1071 			/* messages are gone, move to first one */
1072 			syslog_seq = log_first_seq;
1073 			syslog_idx = log_first_idx;
1074 			syslog_prev = 0;
1075 			syslog_partial = 0;
1076 		}
1077 		if (syslog_seq == log_next_seq) {
1078 			raw_spin_unlock_irq(&logbuf_lock);
1079 			break;
1080 		}
1081 
1082 		skip = syslog_partial;
1083 		msg = log_from_idx(syslog_idx);
1084 		n = msg_print_text(msg, syslog_prev, true, text,
1085 				   LOG_LINE_MAX + PREFIX_MAX);
1086 		if (n - syslog_partial <= size) {
1087 			/* message fits into buffer, move forward */
1088 			syslog_idx = log_next(syslog_idx);
1089 			syslog_seq++;
1090 			syslog_prev = msg->flags;
1091 			n -= syslog_partial;
1092 			syslog_partial = 0;
1093 		} else if (!len){
1094 			/* partial read(), remember position */
1095 			n = size;
1096 			syslog_partial += n;
1097 		} else
1098 			n = 0;
1099 		raw_spin_unlock_irq(&logbuf_lock);
1100 
1101 		if (!n)
1102 			break;
1103 
1104 		if (copy_to_user(buf, text + skip, n)) {
1105 			if (!len)
1106 				len = -EFAULT;
1107 			break;
1108 		}
1109 
1110 		len += n;
1111 		size -= n;
1112 		buf += n;
1113 	}
1114 
1115 	kfree(text);
1116 	return len;
1117 }
1118 
1119 static int syslog_print_all(char __user *buf, int size, bool clear)
1120 {
1121 	char *text;
1122 	int len = 0;
1123 
1124 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1125 	if (!text)
1126 		return -ENOMEM;
1127 
1128 	raw_spin_lock_irq(&logbuf_lock);
1129 	if (buf) {
1130 		u64 next_seq;
1131 		u64 seq;
1132 		u32 idx;
1133 		enum log_flags prev;
1134 
1135 		if (clear_seq < log_first_seq) {
1136 			/* messages are gone, move to first available one */
1137 			clear_seq = log_first_seq;
1138 			clear_idx = log_first_idx;
1139 		}
1140 
1141 		/*
1142 		 * Find first record that fits, including all following records,
1143 		 * into the user-provided buffer for this dump.
1144 		 */
1145 		seq = clear_seq;
1146 		idx = clear_idx;
1147 		prev = 0;
1148 		while (seq < log_next_seq) {
1149 			struct printk_log *msg = log_from_idx(idx);
1150 
1151 			len += msg_print_text(msg, prev, true, NULL, 0);
1152 			prev = msg->flags;
1153 			idx = log_next(idx);
1154 			seq++;
1155 		}
1156 
1157 		/* move first record forward until length fits into the buffer */
1158 		seq = clear_seq;
1159 		idx = clear_idx;
1160 		prev = 0;
1161 		while (len > size && seq < log_next_seq) {
1162 			struct printk_log *msg = log_from_idx(idx);
1163 
1164 			len -= msg_print_text(msg, prev, true, NULL, 0);
1165 			prev = msg->flags;
1166 			idx = log_next(idx);
1167 			seq++;
1168 		}
1169 
1170 		/* last message fitting into this dump */
1171 		next_seq = log_next_seq;
1172 
1173 		len = 0;
1174 		while (len >= 0 && seq < next_seq) {
1175 			struct printk_log *msg = log_from_idx(idx);
1176 			int textlen;
1177 
1178 			textlen = msg_print_text(msg, prev, true, text,
1179 						 LOG_LINE_MAX + PREFIX_MAX);
1180 			if (textlen < 0) {
1181 				len = textlen;
1182 				break;
1183 			}
1184 			idx = log_next(idx);
1185 			seq++;
1186 			prev = msg->flags;
1187 
1188 			raw_spin_unlock_irq(&logbuf_lock);
1189 			if (copy_to_user(buf + len, text, textlen))
1190 				len = -EFAULT;
1191 			else
1192 				len += textlen;
1193 			raw_spin_lock_irq(&logbuf_lock);
1194 
1195 			if (seq < log_first_seq) {
1196 				/* messages are gone, move to next one */
1197 				seq = log_first_seq;
1198 				idx = log_first_idx;
1199 				prev = 0;
1200 			}
1201 		}
1202 	}
1203 
1204 	if (clear) {
1205 		clear_seq = log_next_seq;
1206 		clear_idx = log_next_idx;
1207 	}
1208 	raw_spin_unlock_irq(&logbuf_lock);
1209 
1210 	kfree(text);
1211 	return len;
1212 }
1213 
1214 int do_syslog(int type, char __user *buf, int len, bool from_file)
1215 {
1216 	bool clear = false;
1217 	static int saved_console_loglevel = -1;
1218 	int error;
1219 
1220 	error = check_syslog_permissions(type, from_file);
1221 	if (error)
1222 		goto out;
1223 
1224 	error = security_syslog(type);
1225 	if (error)
1226 		return error;
1227 
1228 	switch (type) {
1229 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1230 		break;
1231 	case SYSLOG_ACTION_OPEN:	/* Open log */
1232 		break;
1233 	case SYSLOG_ACTION_READ:	/* Read from log */
1234 		error = -EINVAL;
1235 		if (!buf || len < 0)
1236 			goto out;
1237 		error = 0;
1238 		if (!len)
1239 			goto out;
1240 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1241 			error = -EFAULT;
1242 			goto out;
1243 		}
1244 		error = wait_event_interruptible(log_wait,
1245 						 syslog_seq != log_next_seq);
1246 		if (error)
1247 			goto out;
1248 		error = syslog_print(buf, len);
1249 		break;
1250 	/* Read/clear last kernel messages */
1251 	case SYSLOG_ACTION_READ_CLEAR:
1252 		clear = true;
1253 		/* FALL THRU */
1254 	/* Read last kernel messages */
1255 	case SYSLOG_ACTION_READ_ALL:
1256 		error = -EINVAL;
1257 		if (!buf || len < 0)
1258 			goto out;
1259 		error = 0;
1260 		if (!len)
1261 			goto out;
1262 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1263 			error = -EFAULT;
1264 			goto out;
1265 		}
1266 		error = syslog_print_all(buf, len, clear);
1267 		break;
1268 	/* Clear ring buffer */
1269 	case SYSLOG_ACTION_CLEAR:
1270 		syslog_print_all(NULL, 0, true);
1271 		break;
1272 	/* Disable logging to console */
1273 	case SYSLOG_ACTION_CONSOLE_OFF:
1274 		if (saved_console_loglevel == -1)
1275 			saved_console_loglevel = console_loglevel;
1276 		console_loglevel = minimum_console_loglevel;
1277 		break;
1278 	/* Enable logging to console */
1279 	case SYSLOG_ACTION_CONSOLE_ON:
1280 		if (saved_console_loglevel != -1) {
1281 			console_loglevel = saved_console_loglevel;
1282 			saved_console_loglevel = -1;
1283 		}
1284 		break;
1285 	/* Set level of messages printed to console */
1286 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1287 		error = -EINVAL;
1288 		if (len < 1 || len > 8)
1289 			goto out;
1290 		if (len < minimum_console_loglevel)
1291 			len = minimum_console_loglevel;
1292 		console_loglevel = len;
1293 		/* Implicitly re-enable logging to console */
1294 		saved_console_loglevel = -1;
1295 		error = 0;
1296 		break;
1297 	/* Number of chars in the log buffer */
1298 	case SYSLOG_ACTION_SIZE_UNREAD:
1299 		raw_spin_lock_irq(&logbuf_lock);
1300 		if (syslog_seq < log_first_seq) {
1301 			/* messages are gone, move to first one */
1302 			syslog_seq = log_first_seq;
1303 			syslog_idx = log_first_idx;
1304 			syslog_prev = 0;
1305 			syslog_partial = 0;
1306 		}
1307 		if (from_file) {
1308 			/*
1309 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1310 			 * for pending data, not the size; return the count of
1311 			 * records, not the length.
1312 			 */
1313 			error = log_next_idx - syslog_idx;
1314 		} else {
1315 			u64 seq = syslog_seq;
1316 			u32 idx = syslog_idx;
1317 			enum log_flags prev = syslog_prev;
1318 
1319 			error = 0;
1320 			while (seq < log_next_seq) {
1321 				struct printk_log *msg = log_from_idx(idx);
1322 
1323 				error += msg_print_text(msg, prev, true, NULL, 0);
1324 				idx = log_next(idx);
1325 				seq++;
1326 				prev = msg->flags;
1327 			}
1328 			error -= syslog_partial;
1329 		}
1330 		raw_spin_unlock_irq(&logbuf_lock);
1331 		break;
1332 	/* Size of the log buffer */
1333 	case SYSLOG_ACTION_SIZE_BUFFER:
1334 		error = log_buf_len;
1335 		break;
1336 	default:
1337 		error = -EINVAL;
1338 		break;
1339 	}
1340 out:
1341 	return error;
1342 }
1343 
1344 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1345 {
1346 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1347 }
1348 
1349 /*
1350  * Call the console drivers, asking them to write out
1351  * log_buf[start] to log_buf[end - 1].
1352  * The console_lock must be held.
1353  */
1354 static void call_console_drivers(int level, const char *text, size_t len)
1355 {
1356 	struct console *con;
1357 
1358 	trace_console(text, len);
1359 
1360 	if (level >= console_loglevel && !ignore_loglevel)
1361 		return;
1362 	if (!console_drivers)
1363 		return;
1364 
1365 	for_each_console(con) {
1366 		if (exclusive_console && con != exclusive_console)
1367 			continue;
1368 		if (!(con->flags & CON_ENABLED))
1369 			continue;
1370 		if (!con->write)
1371 			continue;
1372 		if (!cpu_online(smp_processor_id()) &&
1373 		    !(con->flags & CON_ANYTIME))
1374 			continue;
1375 		con->write(con, text, len);
1376 	}
1377 }
1378 
1379 /*
1380  * Zap console related locks when oopsing. Only zap at most once
1381  * every 10 seconds, to leave time for slow consoles to print a
1382  * full oops.
1383  */
1384 static void zap_locks(void)
1385 {
1386 	static unsigned long oops_timestamp;
1387 
1388 	if (time_after_eq(jiffies, oops_timestamp) &&
1389 			!time_after(jiffies, oops_timestamp + 30 * HZ))
1390 		return;
1391 
1392 	oops_timestamp = jiffies;
1393 
1394 	debug_locks_off();
1395 	/* If a crash is occurring, make sure we can't deadlock */
1396 	raw_spin_lock_init(&logbuf_lock);
1397 	/* And make sure that we print immediately */
1398 	sema_init(&console_sem, 1);
1399 }
1400 
1401 /*
1402  * Check if we have any console that is capable of printing while cpu is
1403  * booting or shutting down. Requires console_sem.
1404  */
1405 static int have_callable_console(void)
1406 {
1407 	struct console *con;
1408 
1409 	for_each_console(con)
1410 		if (con->flags & CON_ANYTIME)
1411 			return 1;
1412 
1413 	return 0;
1414 }
1415 
1416 /*
1417  * Can we actually use the console at this time on this cpu?
1418  *
1419  * Console drivers may assume that per-cpu resources have
1420  * been allocated. So unless they're explicitly marked as
1421  * being able to cope (CON_ANYTIME) don't call them until
1422  * this CPU is officially up.
1423  */
1424 static inline int can_use_console(unsigned int cpu)
1425 {
1426 	return cpu_online(cpu) || have_callable_console();
1427 }
1428 
1429 /*
1430  * Try to get console ownership to actually show the kernel
1431  * messages from a 'printk'. Return true (and with the
1432  * console_lock held, and 'console_locked' set) if it
1433  * is successful, false otherwise.
1434  */
1435 static int console_trylock_for_printk(unsigned int cpu)
1436 {
1437 	if (!console_trylock())
1438 		return 0;
1439 	/*
1440 	 * If we can't use the console, we need to release the console
1441 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1442 	 * console semaphore in order to do this test safely.
1443 	 */
1444 	if (!can_use_console(cpu)) {
1445 		console_locked = 0;
1446 		up_console_sem();
1447 		return 0;
1448 	}
1449 	return 1;
1450 }
1451 
1452 int printk_delay_msec __read_mostly;
1453 
1454 static inline void printk_delay(void)
1455 {
1456 	if (unlikely(printk_delay_msec)) {
1457 		int m = printk_delay_msec;
1458 
1459 		while (m--) {
1460 			mdelay(1);
1461 			touch_nmi_watchdog();
1462 		}
1463 	}
1464 }
1465 
1466 /*
1467  * Continuation lines are buffered, and not committed to the record buffer
1468  * until the line is complete, or a race forces it. The line fragments
1469  * though, are printed immediately to the consoles to ensure everything has
1470  * reached the console in case of a kernel crash.
1471  */
1472 static struct cont {
1473 	char buf[LOG_LINE_MAX];
1474 	size_t len;			/* length == 0 means unused buffer */
1475 	size_t cons;			/* bytes written to console */
1476 	struct task_struct *owner;	/* task of first print*/
1477 	u64 ts_nsec;			/* time of first print */
1478 	u8 level;			/* log level of first message */
1479 	u8 facility;			/* log level of first message */
1480 	enum log_flags flags;		/* prefix, newline flags */
1481 	bool flushed:1;			/* buffer sealed and committed */
1482 } cont;
1483 
1484 static void cont_flush(enum log_flags flags)
1485 {
1486 	if (cont.flushed)
1487 		return;
1488 	if (cont.len == 0)
1489 		return;
1490 
1491 	if (cont.cons) {
1492 		/*
1493 		 * If a fragment of this line was directly flushed to the
1494 		 * console; wait for the console to pick up the rest of the
1495 		 * line. LOG_NOCONS suppresses a duplicated output.
1496 		 */
1497 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1498 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1499 		cont.flags = flags;
1500 		cont.flushed = true;
1501 	} else {
1502 		/*
1503 		 * If no fragment of this line ever reached the console,
1504 		 * just submit it to the store and free the buffer.
1505 		 */
1506 		log_store(cont.facility, cont.level, flags, 0,
1507 			  NULL, 0, cont.buf, cont.len);
1508 		cont.len = 0;
1509 	}
1510 }
1511 
1512 static bool cont_add(int facility, int level, const char *text, size_t len)
1513 {
1514 	if (cont.len && cont.flushed)
1515 		return false;
1516 
1517 	if (cont.len + len > sizeof(cont.buf)) {
1518 		/* the line gets too long, split it up in separate records */
1519 		cont_flush(LOG_CONT);
1520 		return false;
1521 	}
1522 
1523 	if (!cont.len) {
1524 		cont.facility = facility;
1525 		cont.level = level;
1526 		cont.owner = current;
1527 		cont.ts_nsec = local_clock();
1528 		cont.flags = 0;
1529 		cont.cons = 0;
1530 		cont.flushed = false;
1531 	}
1532 
1533 	memcpy(cont.buf + cont.len, text, len);
1534 	cont.len += len;
1535 
1536 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1537 		cont_flush(LOG_CONT);
1538 
1539 	return true;
1540 }
1541 
1542 static size_t cont_print_text(char *text, size_t size)
1543 {
1544 	size_t textlen = 0;
1545 	size_t len;
1546 
1547 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1548 		textlen += print_time(cont.ts_nsec, text);
1549 		size -= textlen;
1550 	}
1551 
1552 	len = cont.len - cont.cons;
1553 	if (len > 0) {
1554 		if (len+1 > size)
1555 			len = size-1;
1556 		memcpy(text + textlen, cont.buf + cont.cons, len);
1557 		textlen += len;
1558 		cont.cons = cont.len;
1559 	}
1560 
1561 	if (cont.flushed) {
1562 		if (cont.flags & LOG_NEWLINE)
1563 			text[textlen++] = '\n';
1564 		/* got everything, release buffer */
1565 		cont.len = 0;
1566 	}
1567 	return textlen;
1568 }
1569 
1570 asmlinkage int vprintk_emit(int facility, int level,
1571 			    const char *dict, size_t dictlen,
1572 			    const char *fmt, va_list args)
1573 {
1574 	static int recursion_bug;
1575 	static char textbuf[LOG_LINE_MAX];
1576 	char *text = textbuf;
1577 	size_t text_len = 0;
1578 	enum log_flags lflags = 0;
1579 	unsigned long flags;
1580 	int this_cpu;
1581 	int printed_len = 0;
1582 	bool in_sched = false;
1583 	/* cpu currently holding logbuf_lock in this function */
1584 	static volatile unsigned int logbuf_cpu = UINT_MAX;
1585 
1586 	if (level == SCHED_MESSAGE_LOGLEVEL) {
1587 		level = -1;
1588 		in_sched = true;
1589 	}
1590 
1591 	boot_delay_msec(level);
1592 	printk_delay();
1593 
1594 	/* This stops the holder of console_sem just where we want him */
1595 	local_irq_save(flags);
1596 	this_cpu = smp_processor_id();
1597 
1598 	/*
1599 	 * Ouch, printk recursed into itself!
1600 	 */
1601 	if (unlikely(logbuf_cpu == this_cpu)) {
1602 		/*
1603 		 * If a crash is occurring during printk() on this CPU,
1604 		 * then try to get the crash message out but make sure
1605 		 * we can't deadlock. Otherwise just return to avoid the
1606 		 * recursion and return - but flag the recursion so that
1607 		 * it can be printed at the next appropriate moment:
1608 		 */
1609 		if (!oops_in_progress && !lockdep_recursing(current)) {
1610 			recursion_bug = 1;
1611 			goto out_restore_irqs;
1612 		}
1613 		zap_locks();
1614 	}
1615 
1616 	lockdep_off();
1617 	raw_spin_lock(&logbuf_lock);
1618 	logbuf_cpu = this_cpu;
1619 
1620 	if (recursion_bug) {
1621 		static const char recursion_msg[] =
1622 			"BUG: recent printk recursion!";
1623 
1624 		recursion_bug = 0;
1625 		text_len = strlen(recursion_msg);
1626 		/* emit KERN_CRIT message */
1627 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1628 					 NULL, 0, recursion_msg, text_len);
1629 	}
1630 
1631 	/*
1632 	 * The printf needs to come first; we need the syslog
1633 	 * prefix which might be passed-in as a parameter.
1634 	 */
1635 	if (in_sched)
1636 		text_len = scnprintf(text, sizeof(textbuf),
1637 				     KERN_WARNING "[sched_delayed] ");
1638 
1639 	text_len += vscnprintf(text + text_len,
1640 			       sizeof(textbuf) - text_len, fmt, args);
1641 
1642 	/* mark and strip a trailing newline */
1643 	if (text_len && text[text_len-1] == '\n') {
1644 		text_len--;
1645 		lflags |= LOG_NEWLINE;
1646 	}
1647 
1648 	/* strip kernel syslog prefix and extract log level or control flags */
1649 	if (facility == 0) {
1650 		int kern_level = printk_get_level(text);
1651 
1652 		if (kern_level) {
1653 			const char *end_of_header = printk_skip_level(text);
1654 			switch (kern_level) {
1655 			case '0' ... '7':
1656 				if (level == -1)
1657 					level = kern_level - '0';
1658 			case 'd':	/* KERN_DEFAULT */
1659 				lflags |= LOG_PREFIX;
1660 			}
1661 			/*
1662 			 * No need to check length here because vscnprintf
1663 			 * put '\0' at the end of the string. Only valid and
1664 			 * newly printed level is detected.
1665 			 */
1666 			text_len -= end_of_header - text;
1667 			text = (char *)end_of_header;
1668 		}
1669 	}
1670 
1671 	if (level == -1)
1672 		level = default_message_loglevel;
1673 
1674 	if (dict)
1675 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1676 
1677 	if (!(lflags & LOG_NEWLINE)) {
1678 		/*
1679 		 * Flush the conflicting buffer. An earlier newline was missing,
1680 		 * or another task also prints continuation lines.
1681 		 */
1682 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1683 			cont_flush(LOG_NEWLINE);
1684 
1685 		/* buffer line if possible, otherwise store it right away */
1686 		if (cont_add(facility, level, text, text_len))
1687 			printed_len += text_len;
1688 		else
1689 			printed_len += log_store(facility, level,
1690 						 lflags | LOG_CONT, 0,
1691 						 dict, dictlen, text, text_len);
1692 	} else {
1693 		bool stored = false;
1694 
1695 		/*
1696 		 * If an earlier newline was missing and it was the same task,
1697 		 * either merge it with the current buffer and flush, or if
1698 		 * there was a race with interrupts (prefix == true) then just
1699 		 * flush it out and store this line separately.
1700 		 * If the preceding printk was from a different task and missed
1701 		 * a newline, flush and append the newline.
1702 		 */
1703 		if (cont.len) {
1704 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1705 				stored = cont_add(facility, level, text,
1706 						  text_len);
1707 			cont_flush(LOG_NEWLINE);
1708 		}
1709 
1710 		if (stored)
1711 			printed_len += text_len;
1712 		else
1713 			printed_len += log_store(facility, level, lflags, 0,
1714 						 dict, dictlen, text, text_len);
1715 	}
1716 
1717 	logbuf_cpu = UINT_MAX;
1718 	raw_spin_unlock(&logbuf_lock);
1719 
1720 	/* If called from the scheduler, we can not call up(). */
1721 	if (!in_sched) {
1722 		/*
1723 		 * Try to acquire and then immediately release the console
1724 		 * semaphore.  The release will print out buffers and wake up
1725 		 * /dev/kmsg and syslog() users.
1726 		 */
1727 		if (console_trylock_for_printk(this_cpu))
1728 			console_unlock();
1729 	}
1730 
1731 	lockdep_on();
1732 out_restore_irqs:
1733 	local_irq_restore(flags);
1734 	return printed_len;
1735 }
1736 EXPORT_SYMBOL(vprintk_emit);
1737 
1738 asmlinkage int vprintk(const char *fmt, va_list args)
1739 {
1740 	return vprintk_emit(0, -1, NULL, 0, fmt, args);
1741 }
1742 EXPORT_SYMBOL(vprintk);
1743 
1744 asmlinkage int printk_emit(int facility, int level,
1745 			   const char *dict, size_t dictlen,
1746 			   const char *fmt, ...)
1747 {
1748 	va_list args;
1749 	int r;
1750 
1751 	va_start(args, fmt);
1752 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1753 	va_end(args);
1754 
1755 	return r;
1756 }
1757 EXPORT_SYMBOL(printk_emit);
1758 
1759 /**
1760  * printk - print a kernel message
1761  * @fmt: format string
1762  *
1763  * This is printk(). It can be called from any context. We want it to work.
1764  *
1765  * We try to grab the console_lock. If we succeed, it's easy - we log the
1766  * output and call the console drivers.  If we fail to get the semaphore, we
1767  * place the output into the log buffer and return. The current holder of
1768  * the console_sem will notice the new output in console_unlock(); and will
1769  * send it to the consoles before releasing the lock.
1770  *
1771  * One effect of this deferred printing is that code which calls printk() and
1772  * then changes console_loglevel may break. This is because console_loglevel
1773  * is inspected when the actual printing occurs.
1774  *
1775  * See also:
1776  * printf(3)
1777  *
1778  * See the vsnprintf() documentation for format string extensions over C99.
1779  */
1780 asmlinkage __visible int printk(const char *fmt, ...)
1781 {
1782 	va_list args;
1783 	int r;
1784 
1785 #ifdef CONFIG_KGDB_KDB
1786 	if (unlikely(kdb_trap_printk)) {
1787 		va_start(args, fmt);
1788 		r = vkdb_printf(fmt, args);
1789 		va_end(args);
1790 		return r;
1791 	}
1792 #endif
1793 	va_start(args, fmt);
1794 	r = vprintk_emit(0, -1, NULL, 0, fmt, args);
1795 	va_end(args);
1796 
1797 	return r;
1798 }
1799 EXPORT_SYMBOL(printk);
1800 
1801 #else /* CONFIG_PRINTK */
1802 
1803 #define LOG_LINE_MAX		0
1804 #define PREFIX_MAX		0
1805 #define LOG_LINE_MAX 0
1806 static u64 syslog_seq;
1807 static u32 syslog_idx;
1808 static u64 console_seq;
1809 static u32 console_idx;
1810 static enum log_flags syslog_prev;
1811 static u64 log_first_seq;
1812 static u32 log_first_idx;
1813 static u64 log_next_seq;
1814 static enum log_flags console_prev;
1815 static struct cont {
1816 	size_t len;
1817 	size_t cons;
1818 	u8 level;
1819 	bool flushed:1;
1820 } cont;
1821 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1822 static u32 log_next(u32 idx) { return 0; }
1823 static void call_console_drivers(int level, const char *text, size_t len) {}
1824 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1825 			     bool syslog, char *buf, size_t size) { return 0; }
1826 static size_t cont_print_text(char *text, size_t size) { return 0; }
1827 
1828 #endif /* CONFIG_PRINTK */
1829 
1830 #ifdef CONFIG_EARLY_PRINTK
1831 struct console *early_console;
1832 
1833 void early_vprintk(const char *fmt, va_list ap)
1834 {
1835 	if (early_console) {
1836 		char buf[512];
1837 		int n = vscnprintf(buf, sizeof(buf), fmt, ap);
1838 
1839 		early_console->write(early_console, buf, n);
1840 	}
1841 }
1842 
1843 asmlinkage __visible void early_printk(const char *fmt, ...)
1844 {
1845 	va_list ap;
1846 
1847 	va_start(ap, fmt);
1848 	early_vprintk(fmt, ap);
1849 	va_end(ap);
1850 }
1851 #endif
1852 
1853 static int __add_preferred_console(char *name, int idx, char *options,
1854 				   char *brl_options)
1855 {
1856 	struct console_cmdline *c;
1857 	int i;
1858 
1859 	/*
1860 	 *	See if this tty is not yet registered, and
1861 	 *	if we have a slot free.
1862 	 */
1863 	for (i = 0, c = console_cmdline;
1864 	     i < MAX_CMDLINECONSOLES && c->name[0];
1865 	     i++, c++) {
1866 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1867 			if (!brl_options)
1868 				selected_console = i;
1869 			return 0;
1870 		}
1871 	}
1872 	if (i == MAX_CMDLINECONSOLES)
1873 		return -E2BIG;
1874 	if (!brl_options)
1875 		selected_console = i;
1876 	strlcpy(c->name, name, sizeof(c->name));
1877 	c->options = options;
1878 	braille_set_options(c, brl_options);
1879 
1880 	c->index = idx;
1881 	return 0;
1882 }
1883 /*
1884  * Set up a list of consoles.  Called from init/main.c
1885  */
1886 static int __init console_setup(char *str)
1887 {
1888 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for index */
1889 	char *s, *options, *brl_options = NULL;
1890 	int idx;
1891 
1892 	if (_braille_console_setup(&str, &brl_options))
1893 		return 1;
1894 
1895 	/*
1896 	 * Decode str into name, index, options.
1897 	 */
1898 	if (str[0] >= '0' && str[0] <= '9') {
1899 		strcpy(buf, "ttyS");
1900 		strncpy(buf + 4, str, sizeof(buf) - 5);
1901 	} else {
1902 		strncpy(buf, str, sizeof(buf) - 1);
1903 	}
1904 	buf[sizeof(buf) - 1] = 0;
1905 	if ((options = strchr(str, ',')) != NULL)
1906 		*(options++) = 0;
1907 #ifdef __sparc__
1908 	if (!strcmp(str, "ttya"))
1909 		strcpy(buf, "ttyS0");
1910 	if (!strcmp(str, "ttyb"))
1911 		strcpy(buf, "ttyS1");
1912 #endif
1913 	for (s = buf; *s; s++)
1914 		if ((*s >= '0' && *s <= '9') || *s == ',')
1915 			break;
1916 	idx = simple_strtoul(s, NULL, 10);
1917 	*s = 0;
1918 
1919 	__add_preferred_console(buf, idx, options, brl_options);
1920 	console_set_on_cmdline = 1;
1921 	return 1;
1922 }
1923 __setup("console=", console_setup);
1924 
1925 /**
1926  * add_preferred_console - add a device to the list of preferred consoles.
1927  * @name: device name
1928  * @idx: device index
1929  * @options: options for this console
1930  *
1931  * The last preferred console added will be used for kernel messages
1932  * and stdin/out/err for init.  Normally this is used by console_setup
1933  * above to handle user-supplied console arguments; however it can also
1934  * be used by arch-specific code either to override the user or more
1935  * commonly to provide a default console (ie from PROM variables) when
1936  * the user has not supplied one.
1937  */
1938 int add_preferred_console(char *name, int idx, char *options)
1939 {
1940 	return __add_preferred_console(name, idx, options, NULL);
1941 }
1942 
1943 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
1944 {
1945 	struct console_cmdline *c;
1946 	int i;
1947 
1948 	for (i = 0, c = console_cmdline;
1949 	     i < MAX_CMDLINECONSOLES && c->name[0];
1950 	     i++, c++)
1951 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1952 			strlcpy(c->name, name_new, sizeof(c->name));
1953 			c->name[sizeof(c->name) - 1] = 0;
1954 			c->options = options;
1955 			c->index = idx_new;
1956 			return i;
1957 		}
1958 	/* not found */
1959 	return -1;
1960 }
1961 
1962 bool console_suspend_enabled = 1;
1963 EXPORT_SYMBOL(console_suspend_enabled);
1964 
1965 static int __init console_suspend_disable(char *str)
1966 {
1967 	console_suspend_enabled = 0;
1968 	return 1;
1969 }
1970 __setup("no_console_suspend", console_suspend_disable);
1971 module_param_named(console_suspend, console_suspend_enabled,
1972 		bool, S_IRUGO | S_IWUSR);
1973 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
1974 	" and hibernate operations");
1975 
1976 /**
1977  * suspend_console - suspend the console subsystem
1978  *
1979  * This disables printk() while we go into suspend states
1980  */
1981 void suspend_console(void)
1982 {
1983 	if (!console_suspend_enabled)
1984 		return;
1985 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
1986 	console_lock();
1987 	console_suspended = 1;
1988 	up_console_sem();
1989 }
1990 
1991 void resume_console(void)
1992 {
1993 	if (!console_suspend_enabled)
1994 		return;
1995 	down_console_sem();
1996 	console_suspended = 0;
1997 	console_unlock();
1998 }
1999 
2000 /**
2001  * console_cpu_notify - print deferred console messages after CPU hotplug
2002  * @self: notifier struct
2003  * @action: CPU hotplug event
2004  * @hcpu: unused
2005  *
2006  * If printk() is called from a CPU that is not online yet, the messages
2007  * will be spooled but will not show up on the console.  This function is
2008  * called when a new CPU comes online (or fails to come up), and ensures
2009  * that any such output gets printed.
2010  */
2011 static int console_cpu_notify(struct notifier_block *self,
2012 	unsigned long action, void *hcpu)
2013 {
2014 	switch (action) {
2015 	case CPU_ONLINE:
2016 	case CPU_DEAD:
2017 	case CPU_DOWN_FAILED:
2018 	case CPU_UP_CANCELED:
2019 		console_lock();
2020 		console_unlock();
2021 	}
2022 	return NOTIFY_OK;
2023 }
2024 
2025 /**
2026  * console_lock - lock the console system for exclusive use.
2027  *
2028  * Acquires a lock which guarantees that the caller has
2029  * exclusive access to the console system and the console_drivers list.
2030  *
2031  * Can sleep, returns nothing.
2032  */
2033 void console_lock(void)
2034 {
2035 	might_sleep();
2036 
2037 	down_console_sem();
2038 	if (console_suspended)
2039 		return;
2040 	console_locked = 1;
2041 	console_may_schedule = 1;
2042 }
2043 EXPORT_SYMBOL(console_lock);
2044 
2045 /**
2046  * console_trylock - try to lock the console system for exclusive use.
2047  *
2048  * Tried to acquire a lock which guarantees that the caller has
2049  * exclusive access to the console system and the console_drivers list.
2050  *
2051  * returns 1 on success, and 0 on failure to acquire the lock.
2052  */
2053 int console_trylock(void)
2054 {
2055 	if (down_trylock_console_sem())
2056 		return 0;
2057 	if (console_suspended) {
2058 		up_console_sem();
2059 		return 0;
2060 	}
2061 	console_locked = 1;
2062 	console_may_schedule = 0;
2063 	return 1;
2064 }
2065 EXPORT_SYMBOL(console_trylock);
2066 
2067 int is_console_locked(void)
2068 {
2069 	return console_locked;
2070 }
2071 
2072 static void console_cont_flush(char *text, size_t size)
2073 {
2074 	unsigned long flags;
2075 	size_t len;
2076 
2077 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2078 
2079 	if (!cont.len)
2080 		goto out;
2081 
2082 	/*
2083 	 * We still queue earlier records, likely because the console was
2084 	 * busy. The earlier ones need to be printed before this one, we
2085 	 * did not flush any fragment so far, so just let it queue up.
2086 	 */
2087 	if (console_seq < log_next_seq && !cont.cons)
2088 		goto out;
2089 
2090 	len = cont_print_text(text, size);
2091 	raw_spin_unlock(&logbuf_lock);
2092 	stop_critical_timings();
2093 	call_console_drivers(cont.level, text, len);
2094 	start_critical_timings();
2095 	local_irq_restore(flags);
2096 	return;
2097 out:
2098 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2099 }
2100 
2101 /**
2102  * console_unlock - unlock the console system
2103  *
2104  * Releases the console_lock which the caller holds on the console system
2105  * and the console driver list.
2106  *
2107  * While the console_lock was held, console output may have been buffered
2108  * by printk().  If this is the case, console_unlock(); emits
2109  * the output prior to releasing the lock.
2110  *
2111  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2112  *
2113  * console_unlock(); may be called from any context.
2114  */
2115 void console_unlock(void)
2116 {
2117 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2118 	static u64 seen_seq;
2119 	unsigned long flags;
2120 	bool wake_klogd = false;
2121 	bool retry;
2122 
2123 	if (console_suspended) {
2124 		up_console_sem();
2125 		return;
2126 	}
2127 
2128 	console_may_schedule = 0;
2129 
2130 	/* flush buffered message fragment immediately to console */
2131 	console_cont_flush(text, sizeof(text));
2132 again:
2133 	for (;;) {
2134 		struct printk_log *msg;
2135 		size_t len;
2136 		int level;
2137 
2138 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2139 		if (seen_seq != log_next_seq) {
2140 			wake_klogd = true;
2141 			seen_seq = log_next_seq;
2142 		}
2143 
2144 		if (console_seq < log_first_seq) {
2145 			len = sprintf(text, "** %u printk messages dropped ** ",
2146 				      (unsigned)(log_first_seq - console_seq));
2147 
2148 			/* messages are gone, move to first one */
2149 			console_seq = log_first_seq;
2150 			console_idx = log_first_idx;
2151 			console_prev = 0;
2152 		} else {
2153 			len = 0;
2154 		}
2155 skip:
2156 		if (console_seq == log_next_seq)
2157 			break;
2158 
2159 		msg = log_from_idx(console_idx);
2160 		if (msg->flags & LOG_NOCONS) {
2161 			/*
2162 			 * Skip record we have buffered and already printed
2163 			 * directly to the console when we received it.
2164 			 */
2165 			console_idx = log_next(console_idx);
2166 			console_seq++;
2167 			/*
2168 			 * We will get here again when we register a new
2169 			 * CON_PRINTBUFFER console. Clear the flag so we
2170 			 * will properly dump everything later.
2171 			 */
2172 			msg->flags &= ~LOG_NOCONS;
2173 			console_prev = msg->flags;
2174 			goto skip;
2175 		}
2176 
2177 		level = msg->level;
2178 		len += msg_print_text(msg, console_prev, false,
2179 				      text + len, sizeof(text) - len);
2180 		console_idx = log_next(console_idx);
2181 		console_seq++;
2182 		console_prev = msg->flags;
2183 		raw_spin_unlock(&logbuf_lock);
2184 
2185 		stop_critical_timings();	/* don't trace print latency */
2186 		call_console_drivers(level, text, len);
2187 		start_critical_timings();
2188 		local_irq_restore(flags);
2189 	}
2190 	console_locked = 0;
2191 
2192 	/* Release the exclusive_console once it is used */
2193 	if (unlikely(exclusive_console))
2194 		exclusive_console = NULL;
2195 
2196 	raw_spin_unlock(&logbuf_lock);
2197 
2198 	up_console_sem();
2199 
2200 	/*
2201 	 * Someone could have filled up the buffer again, so re-check if there's
2202 	 * something to flush. In case we cannot trylock the console_sem again,
2203 	 * there's a new owner and the console_unlock() from them will do the
2204 	 * flush, no worries.
2205 	 */
2206 	raw_spin_lock(&logbuf_lock);
2207 	retry = console_seq != log_next_seq;
2208 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2209 
2210 	if (retry && console_trylock())
2211 		goto again;
2212 
2213 	if (wake_klogd)
2214 		wake_up_klogd();
2215 }
2216 EXPORT_SYMBOL(console_unlock);
2217 
2218 /**
2219  * console_conditional_schedule - yield the CPU if required
2220  *
2221  * If the console code is currently allowed to sleep, and
2222  * if this CPU should yield the CPU to another task, do
2223  * so here.
2224  *
2225  * Must be called within console_lock();.
2226  */
2227 void __sched console_conditional_schedule(void)
2228 {
2229 	if (console_may_schedule)
2230 		cond_resched();
2231 }
2232 EXPORT_SYMBOL(console_conditional_schedule);
2233 
2234 void console_unblank(void)
2235 {
2236 	struct console *c;
2237 
2238 	/*
2239 	 * console_unblank can no longer be called in interrupt context unless
2240 	 * oops_in_progress is set to 1..
2241 	 */
2242 	if (oops_in_progress) {
2243 		if (down_trylock_console_sem() != 0)
2244 			return;
2245 	} else
2246 		console_lock();
2247 
2248 	console_locked = 1;
2249 	console_may_schedule = 0;
2250 	for_each_console(c)
2251 		if ((c->flags & CON_ENABLED) && c->unblank)
2252 			c->unblank();
2253 	console_unlock();
2254 }
2255 
2256 /*
2257  * Return the console tty driver structure and its associated index
2258  */
2259 struct tty_driver *console_device(int *index)
2260 {
2261 	struct console *c;
2262 	struct tty_driver *driver = NULL;
2263 
2264 	console_lock();
2265 	for_each_console(c) {
2266 		if (!c->device)
2267 			continue;
2268 		driver = c->device(c, index);
2269 		if (driver)
2270 			break;
2271 	}
2272 	console_unlock();
2273 	return driver;
2274 }
2275 
2276 /*
2277  * Prevent further output on the passed console device so that (for example)
2278  * serial drivers can disable console output before suspending a port, and can
2279  * re-enable output afterwards.
2280  */
2281 void console_stop(struct console *console)
2282 {
2283 	console_lock();
2284 	console->flags &= ~CON_ENABLED;
2285 	console_unlock();
2286 }
2287 EXPORT_SYMBOL(console_stop);
2288 
2289 void console_start(struct console *console)
2290 {
2291 	console_lock();
2292 	console->flags |= CON_ENABLED;
2293 	console_unlock();
2294 }
2295 EXPORT_SYMBOL(console_start);
2296 
2297 static int __read_mostly keep_bootcon;
2298 
2299 static int __init keep_bootcon_setup(char *str)
2300 {
2301 	keep_bootcon = 1;
2302 	pr_info("debug: skip boot console de-registration.\n");
2303 
2304 	return 0;
2305 }
2306 
2307 early_param("keep_bootcon", keep_bootcon_setup);
2308 
2309 /*
2310  * The console driver calls this routine during kernel initialization
2311  * to register the console printing procedure with printk() and to
2312  * print any messages that were printed by the kernel before the
2313  * console driver was initialized.
2314  *
2315  * This can happen pretty early during the boot process (because of
2316  * early_printk) - sometimes before setup_arch() completes - be careful
2317  * of what kernel features are used - they may not be initialised yet.
2318  *
2319  * There are two types of consoles - bootconsoles (early_printk) and
2320  * "real" consoles (everything which is not a bootconsole) which are
2321  * handled differently.
2322  *  - Any number of bootconsoles can be registered at any time.
2323  *  - As soon as a "real" console is registered, all bootconsoles
2324  *    will be unregistered automatically.
2325  *  - Once a "real" console is registered, any attempt to register a
2326  *    bootconsoles will be rejected
2327  */
2328 void register_console(struct console *newcon)
2329 {
2330 	int i;
2331 	unsigned long flags;
2332 	struct console *bcon = NULL;
2333 	struct console_cmdline *c;
2334 
2335 	if (console_drivers)
2336 		for_each_console(bcon)
2337 			if (WARN(bcon == newcon,
2338 					"console '%s%d' already registered\n",
2339 					bcon->name, bcon->index))
2340 				return;
2341 
2342 	/*
2343 	 * before we register a new CON_BOOT console, make sure we don't
2344 	 * already have a valid console
2345 	 */
2346 	if (console_drivers && newcon->flags & CON_BOOT) {
2347 		/* find the last or real console */
2348 		for_each_console(bcon) {
2349 			if (!(bcon->flags & CON_BOOT)) {
2350 				pr_info("Too late to register bootconsole %s%d\n",
2351 					newcon->name, newcon->index);
2352 				return;
2353 			}
2354 		}
2355 	}
2356 
2357 	if (console_drivers && console_drivers->flags & CON_BOOT)
2358 		bcon = console_drivers;
2359 
2360 	if (preferred_console < 0 || bcon || !console_drivers)
2361 		preferred_console = selected_console;
2362 
2363 	if (newcon->early_setup)
2364 		newcon->early_setup();
2365 
2366 	/*
2367 	 *	See if we want to use this console driver. If we
2368 	 *	didn't select a console we take the first one
2369 	 *	that registers here.
2370 	 */
2371 	if (preferred_console < 0) {
2372 		if (newcon->index < 0)
2373 			newcon->index = 0;
2374 		if (newcon->setup == NULL ||
2375 		    newcon->setup(newcon, NULL) == 0) {
2376 			newcon->flags |= CON_ENABLED;
2377 			if (newcon->device) {
2378 				newcon->flags |= CON_CONSDEV;
2379 				preferred_console = 0;
2380 			}
2381 		}
2382 	}
2383 
2384 	/*
2385 	 *	See if this console matches one we selected on
2386 	 *	the command line.
2387 	 */
2388 	for (i = 0, c = console_cmdline;
2389 	     i < MAX_CMDLINECONSOLES && c->name[0];
2390 	     i++, c++) {
2391 		if (strcmp(c->name, newcon->name) != 0)
2392 			continue;
2393 		if (newcon->index >= 0 &&
2394 		    newcon->index != c->index)
2395 			continue;
2396 		if (newcon->index < 0)
2397 			newcon->index = c->index;
2398 
2399 		if (_braille_register_console(newcon, c))
2400 			return;
2401 
2402 		if (newcon->setup &&
2403 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2404 			break;
2405 		newcon->flags |= CON_ENABLED;
2406 		newcon->index = c->index;
2407 		if (i == selected_console) {
2408 			newcon->flags |= CON_CONSDEV;
2409 			preferred_console = selected_console;
2410 		}
2411 		break;
2412 	}
2413 
2414 	if (!(newcon->flags & CON_ENABLED))
2415 		return;
2416 
2417 	/*
2418 	 * If we have a bootconsole, and are switching to a real console,
2419 	 * don't print everything out again, since when the boot console, and
2420 	 * the real console are the same physical device, it's annoying to
2421 	 * see the beginning boot messages twice
2422 	 */
2423 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2424 		newcon->flags &= ~CON_PRINTBUFFER;
2425 
2426 	/*
2427 	 *	Put this console in the list - keep the
2428 	 *	preferred driver at the head of the list.
2429 	 */
2430 	console_lock();
2431 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2432 		newcon->next = console_drivers;
2433 		console_drivers = newcon;
2434 		if (newcon->next)
2435 			newcon->next->flags &= ~CON_CONSDEV;
2436 	} else {
2437 		newcon->next = console_drivers->next;
2438 		console_drivers->next = newcon;
2439 	}
2440 	if (newcon->flags & CON_PRINTBUFFER) {
2441 		/*
2442 		 * console_unlock(); will print out the buffered messages
2443 		 * for us.
2444 		 */
2445 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2446 		console_seq = syslog_seq;
2447 		console_idx = syslog_idx;
2448 		console_prev = syslog_prev;
2449 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2450 		/*
2451 		 * We're about to replay the log buffer.  Only do this to the
2452 		 * just-registered console to avoid excessive message spam to
2453 		 * the already-registered consoles.
2454 		 */
2455 		exclusive_console = newcon;
2456 	}
2457 	console_unlock();
2458 	console_sysfs_notify();
2459 
2460 	/*
2461 	 * By unregistering the bootconsoles after we enable the real console
2462 	 * we get the "console xxx enabled" message on all the consoles -
2463 	 * boot consoles, real consoles, etc - this is to ensure that end
2464 	 * users know there might be something in the kernel's log buffer that
2465 	 * went to the bootconsole (that they do not see on the real console)
2466 	 */
2467 	pr_info("%sconsole [%s%d] enabled\n",
2468 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2469 		newcon->name, newcon->index);
2470 	if (bcon &&
2471 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2472 	    !keep_bootcon) {
2473 		/* We need to iterate through all boot consoles, to make
2474 		 * sure we print everything out, before we unregister them.
2475 		 */
2476 		for_each_console(bcon)
2477 			if (bcon->flags & CON_BOOT)
2478 				unregister_console(bcon);
2479 	}
2480 }
2481 EXPORT_SYMBOL(register_console);
2482 
2483 int unregister_console(struct console *console)
2484 {
2485         struct console *a, *b;
2486 	int res;
2487 
2488 	pr_info("%sconsole [%s%d] disabled\n",
2489 		(console->flags & CON_BOOT) ? "boot" : "" ,
2490 		console->name, console->index);
2491 
2492 	res = _braille_unregister_console(console);
2493 	if (res)
2494 		return res;
2495 
2496 	res = 1;
2497 	console_lock();
2498 	if (console_drivers == console) {
2499 		console_drivers=console->next;
2500 		res = 0;
2501 	} else if (console_drivers) {
2502 		for (a=console_drivers->next, b=console_drivers ;
2503 		     a; b=a, a=b->next) {
2504 			if (a == console) {
2505 				b->next = a->next;
2506 				res = 0;
2507 				break;
2508 			}
2509 		}
2510 	}
2511 
2512 	/*
2513 	 * If this isn't the last console and it has CON_CONSDEV set, we
2514 	 * need to set it on the next preferred console.
2515 	 */
2516 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2517 		console_drivers->flags |= CON_CONSDEV;
2518 
2519 	console->flags &= ~CON_ENABLED;
2520 	console_unlock();
2521 	console_sysfs_notify();
2522 	return res;
2523 }
2524 EXPORT_SYMBOL(unregister_console);
2525 
2526 static int __init printk_late_init(void)
2527 {
2528 	struct console *con;
2529 
2530 	for_each_console(con) {
2531 		if (!keep_bootcon && con->flags & CON_BOOT) {
2532 			unregister_console(con);
2533 		}
2534 	}
2535 	hotcpu_notifier(console_cpu_notify, 0);
2536 	return 0;
2537 }
2538 late_initcall(printk_late_init);
2539 
2540 #if defined CONFIG_PRINTK
2541 /*
2542  * Delayed printk version, for scheduler-internal messages:
2543  */
2544 #define PRINTK_PENDING_WAKEUP	0x01
2545 #define PRINTK_PENDING_OUTPUT	0x02
2546 
2547 static DEFINE_PER_CPU(int, printk_pending);
2548 
2549 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2550 {
2551 	int pending = __this_cpu_xchg(printk_pending, 0);
2552 
2553 	if (pending & PRINTK_PENDING_OUTPUT) {
2554 		/* If trylock fails, someone else is doing the printing */
2555 		if (console_trylock())
2556 			console_unlock();
2557 	}
2558 
2559 	if (pending & PRINTK_PENDING_WAKEUP)
2560 		wake_up_interruptible(&log_wait);
2561 }
2562 
2563 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2564 	.func = wake_up_klogd_work_func,
2565 	.flags = IRQ_WORK_LAZY,
2566 };
2567 
2568 void wake_up_klogd(void)
2569 {
2570 	preempt_disable();
2571 	if (waitqueue_active(&log_wait)) {
2572 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2573 		irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2574 	}
2575 	preempt_enable();
2576 }
2577 
2578 int printk_deferred(const char *fmt, ...)
2579 {
2580 	va_list args;
2581 	int r;
2582 
2583 	preempt_disable();
2584 	va_start(args, fmt);
2585 	r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args);
2586 	va_end(args);
2587 
2588 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2589 	irq_work_queue(&__get_cpu_var(wake_up_klogd_work));
2590 	preempt_enable();
2591 
2592 	return r;
2593 }
2594 
2595 /*
2596  * printk rate limiting, lifted from the networking subsystem.
2597  *
2598  * This enforces a rate limit: not more than 10 kernel messages
2599  * every 5s to make a denial-of-service attack impossible.
2600  */
2601 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2602 
2603 int __printk_ratelimit(const char *func)
2604 {
2605 	return ___ratelimit(&printk_ratelimit_state, func);
2606 }
2607 EXPORT_SYMBOL(__printk_ratelimit);
2608 
2609 /**
2610  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2611  * @caller_jiffies: pointer to caller's state
2612  * @interval_msecs: minimum interval between prints
2613  *
2614  * printk_timed_ratelimit() returns true if more than @interval_msecs
2615  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2616  * returned true.
2617  */
2618 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2619 			unsigned int interval_msecs)
2620 {
2621 	if (*caller_jiffies == 0
2622 			|| !time_in_range(jiffies, *caller_jiffies,
2623 					*caller_jiffies
2624 					+ msecs_to_jiffies(interval_msecs))) {
2625 		*caller_jiffies = jiffies;
2626 		return true;
2627 	}
2628 	return false;
2629 }
2630 EXPORT_SYMBOL(printk_timed_ratelimit);
2631 
2632 static DEFINE_SPINLOCK(dump_list_lock);
2633 static LIST_HEAD(dump_list);
2634 
2635 /**
2636  * kmsg_dump_register - register a kernel log dumper.
2637  * @dumper: pointer to the kmsg_dumper structure
2638  *
2639  * Adds a kernel log dumper to the system. The dump callback in the
2640  * structure will be called when the kernel oopses or panics and must be
2641  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2642  */
2643 int kmsg_dump_register(struct kmsg_dumper *dumper)
2644 {
2645 	unsigned long flags;
2646 	int err = -EBUSY;
2647 
2648 	/* The dump callback needs to be set */
2649 	if (!dumper->dump)
2650 		return -EINVAL;
2651 
2652 	spin_lock_irqsave(&dump_list_lock, flags);
2653 	/* Don't allow registering multiple times */
2654 	if (!dumper->registered) {
2655 		dumper->registered = 1;
2656 		list_add_tail_rcu(&dumper->list, &dump_list);
2657 		err = 0;
2658 	}
2659 	spin_unlock_irqrestore(&dump_list_lock, flags);
2660 
2661 	return err;
2662 }
2663 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2664 
2665 /**
2666  * kmsg_dump_unregister - unregister a kmsg dumper.
2667  * @dumper: pointer to the kmsg_dumper structure
2668  *
2669  * Removes a dump device from the system. Returns zero on success and
2670  * %-EINVAL otherwise.
2671  */
2672 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2673 {
2674 	unsigned long flags;
2675 	int err = -EINVAL;
2676 
2677 	spin_lock_irqsave(&dump_list_lock, flags);
2678 	if (dumper->registered) {
2679 		dumper->registered = 0;
2680 		list_del_rcu(&dumper->list);
2681 		err = 0;
2682 	}
2683 	spin_unlock_irqrestore(&dump_list_lock, flags);
2684 	synchronize_rcu();
2685 
2686 	return err;
2687 }
2688 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2689 
2690 static bool always_kmsg_dump;
2691 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2692 
2693 /**
2694  * kmsg_dump - dump kernel log to kernel message dumpers.
2695  * @reason: the reason (oops, panic etc) for dumping
2696  *
2697  * Call each of the registered dumper's dump() callback, which can
2698  * retrieve the kmsg records with kmsg_dump_get_line() or
2699  * kmsg_dump_get_buffer().
2700  */
2701 void kmsg_dump(enum kmsg_dump_reason reason)
2702 {
2703 	struct kmsg_dumper *dumper;
2704 	unsigned long flags;
2705 
2706 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2707 		return;
2708 
2709 	rcu_read_lock();
2710 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2711 		if (dumper->max_reason && reason > dumper->max_reason)
2712 			continue;
2713 
2714 		/* initialize iterator with data about the stored records */
2715 		dumper->active = true;
2716 
2717 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2718 		dumper->cur_seq = clear_seq;
2719 		dumper->cur_idx = clear_idx;
2720 		dumper->next_seq = log_next_seq;
2721 		dumper->next_idx = log_next_idx;
2722 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2723 
2724 		/* invoke dumper which will iterate over records */
2725 		dumper->dump(dumper, reason);
2726 
2727 		/* reset iterator */
2728 		dumper->active = false;
2729 	}
2730 	rcu_read_unlock();
2731 }
2732 
2733 /**
2734  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2735  * @dumper: registered kmsg dumper
2736  * @syslog: include the "<4>" prefixes
2737  * @line: buffer to copy the line to
2738  * @size: maximum size of the buffer
2739  * @len: length of line placed into buffer
2740  *
2741  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2742  * record, and copy one record into the provided buffer.
2743  *
2744  * Consecutive calls will return the next available record moving
2745  * towards the end of the buffer with the youngest messages.
2746  *
2747  * A return value of FALSE indicates that there are no more records to
2748  * read.
2749  *
2750  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2751  */
2752 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2753 			       char *line, size_t size, size_t *len)
2754 {
2755 	struct printk_log *msg;
2756 	size_t l = 0;
2757 	bool ret = false;
2758 
2759 	if (!dumper->active)
2760 		goto out;
2761 
2762 	if (dumper->cur_seq < log_first_seq) {
2763 		/* messages are gone, move to first available one */
2764 		dumper->cur_seq = log_first_seq;
2765 		dumper->cur_idx = log_first_idx;
2766 	}
2767 
2768 	/* last entry */
2769 	if (dumper->cur_seq >= log_next_seq)
2770 		goto out;
2771 
2772 	msg = log_from_idx(dumper->cur_idx);
2773 	l = msg_print_text(msg, 0, syslog, line, size);
2774 
2775 	dumper->cur_idx = log_next(dumper->cur_idx);
2776 	dumper->cur_seq++;
2777 	ret = true;
2778 out:
2779 	if (len)
2780 		*len = l;
2781 	return ret;
2782 }
2783 
2784 /**
2785  * kmsg_dump_get_line - retrieve one kmsg log line
2786  * @dumper: registered kmsg dumper
2787  * @syslog: include the "<4>" prefixes
2788  * @line: buffer to copy the line to
2789  * @size: maximum size of the buffer
2790  * @len: length of line placed into buffer
2791  *
2792  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2793  * record, and copy one record into the provided buffer.
2794  *
2795  * Consecutive calls will return the next available record moving
2796  * towards the end of the buffer with the youngest messages.
2797  *
2798  * A return value of FALSE indicates that there are no more records to
2799  * read.
2800  */
2801 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2802 			char *line, size_t size, size_t *len)
2803 {
2804 	unsigned long flags;
2805 	bool ret;
2806 
2807 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2808 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2809 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2810 
2811 	return ret;
2812 }
2813 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2814 
2815 /**
2816  * kmsg_dump_get_buffer - copy kmsg log lines
2817  * @dumper: registered kmsg dumper
2818  * @syslog: include the "<4>" prefixes
2819  * @buf: buffer to copy the line to
2820  * @size: maximum size of the buffer
2821  * @len: length of line placed into buffer
2822  *
2823  * Start at the end of the kmsg buffer and fill the provided buffer
2824  * with as many of the the *youngest* kmsg records that fit into it.
2825  * If the buffer is large enough, all available kmsg records will be
2826  * copied with a single call.
2827  *
2828  * Consecutive calls will fill the buffer with the next block of
2829  * available older records, not including the earlier retrieved ones.
2830  *
2831  * A return value of FALSE indicates that there are no more records to
2832  * read.
2833  */
2834 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2835 			  char *buf, size_t size, size_t *len)
2836 {
2837 	unsigned long flags;
2838 	u64 seq;
2839 	u32 idx;
2840 	u64 next_seq;
2841 	u32 next_idx;
2842 	enum log_flags prev;
2843 	size_t l = 0;
2844 	bool ret = false;
2845 
2846 	if (!dumper->active)
2847 		goto out;
2848 
2849 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2850 	if (dumper->cur_seq < log_first_seq) {
2851 		/* messages are gone, move to first available one */
2852 		dumper->cur_seq = log_first_seq;
2853 		dumper->cur_idx = log_first_idx;
2854 	}
2855 
2856 	/* last entry */
2857 	if (dumper->cur_seq >= dumper->next_seq) {
2858 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2859 		goto out;
2860 	}
2861 
2862 	/* calculate length of entire buffer */
2863 	seq = dumper->cur_seq;
2864 	idx = dumper->cur_idx;
2865 	prev = 0;
2866 	while (seq < dumper->next_seq) {
2867 		struct printk_log *msg = log_from_idx(idx);
2868 
2869 		l += msg_print_text(msg, prev, true, NULL, 0);
2870 		idx = log_next(idx);
2871 		seq++;
2872 		prev = msg->flags;
2873 	}
2874 
2875 	/* move first record forward until length fits into the buffer */
2876 	seq = dumper->cur_seq;
2877 	idx = dumper->cur_idx;
2878 	prev = 0;
2879 	while (l > size && seq < dumper->next_seq) {
2880 		struct printk_log *msg = log_from_idx(idx);
2881 
2882 		l -= msg_print_text(msg, prev, true, NULL, 0);
2883 		idx = log_next(idx);
2884 		seq++;
2885 		prev = msg->flags;
2886 	}
2887 
2888 	/* last message in next interation */
2889 	next_seq = seq;
2890 	next_idx = idx;
2891 
2892 	l = 0;
2893 	while (seq < dumper->next_seq) {
2894 		struct printk_log *msg = log_from_idx(idx);
2895 
2896 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2897 		idx = log_next(idx);
2898 		seq++;
2899 		prev = msg->flags;
2900 	}
2901 
2902 	dumper->next_seq = next_seq;
2903 	dumper->next_idx = next_idx;
2904 	ret = true;
2905 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2906 out:
2907 	if (len)
2908 		*len = l;
2909 	return ret;
2910 }
2911 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2912 
2913 /**
2914  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2915  * @dumper: registered kmsg dumper
2916  *
2917  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2918  * kmsg_dump_get_buffer() can be called again and used multiple
2919  * times within the same dumper.dump() callback.
2920  *
2921  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2922  */
2923 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
2924 {
2925 	dumper->cur_seq = clear_seq;
2926 	dumper->cur_idx = clear_idx;
2927 	dumper->next_seq = log_next_seq;
2928 	dumper->next_idx = log_next_idx;
2929 }
2930 
2931 /**
2932  * kmsg_dump_rewind - reset the interator
2933  * @dumper: registered kmsg dumper
2934  *
2935  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2936  * kmsg_dump_get_buffer() can be called again and used multiple
2937  * times within the same dumper.dump() callback.
2938  */
2939 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
2940 {
2941 	unsigned long flags;
2942 
2943 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2944 	kmsg_dump_rewind_nolock(dumper);
2945 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2946 }
2947 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
2948 
2949 static char dump_stack_arch_desc_str[128];
2950 
2951 /**
2952  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
2953  * @fmt: printf-style format string
2954  * @...: arguments for the format string
2955  *
2956  * The configured string will be printed right after utsname during task
2957  * dumps.  Usually used to add arch-specific system identifiers.  If an
2958  * arch wants to make use of such an ID string, it should initialize this
2959  * as soon as possible during boot.
2960  */
2961 void __init dump_stack_set_arch_desc(const char *fmt, ...)
2962 {
2963 	va_list args;
2964 
2965 	va_start(args, fmt);
2966 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
2967 		  fmt, args);
2968 	va_end(args);
2969 }
2970 
2971 /**
2972  * dump_stack_print_info - print generic debug info for dump_stack()
2973  * @log_lvl: log level
2974  *
2975  * Arch-specific dump_stack() implementations can use this function to
2976  * print out the same debug information as the generic dump_stack().
2977  */
2978 void dump_stack_print_info(const char *log_lvl)
2979 {
2980 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
2981 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
2982 	       print_tainted(), init_utsname()->release,
2983 	       (int)strcspn(init_utsname()->version, " "),
2984 	       init_utsname()->version);
2985 
2986 	if (dump_stack_arch_desc_str[0] != '\0')
2987 		printk("%sHardware name: %s\n",
2988 		       log_lvl, dump_stack_arch_desc_str);
2989 
2990 	print_worker_info(log_lvl, current);
2991 }
2992 
2993 /**
2994  * show_regs_print_info - print generic debug info for show_regs()
2995  * @log_lvl: log level
2996  *
2997  * show_regs() implementations can use this function to print out generic
2998  * debug information.
2999  */
3000 void show_regs_print_info(const char *log_lvl)
3001 {
3002 	dump_stack_print_info(log_lvl);
3003 
3004 	printk("%stask: %p ti: %p task.ti: %p\n",
3005 	       log_lvl, current, current_thread_info(),
3006 	       task_thread_info(current));
3007 }
3008 
3009 #endif
3010