xref: /linux/kernel/printk/printk.c (revision 96a6de1a541c86e9e67b9c310c14db4099bd1cbc)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/tty.h>
24 #include <linux/tty_driver.h>
25 #include <linux/console.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/nmi.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/delay.h>
32 #include <linux/smp.h>
33 #include <linux/security.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/crash_core.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 
69 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
70 EXPORT_SYMBOL(ignore_console_lock_warning);
71 
72 /*
73  * Low level drivers may need that to know if they can schedule in
74  * their unblank() callback or not. So let's export it.
75  */
76 int oops_in_progress;
77 EXPORT_SYMBOL(oops_in_progress);
78 
79 /*
80  * console_sem protects the console_drivers list, and also
81  * provides serialisation for access to the entire console
82  * driver system.
83  */
84 static DEFINE_SEMAPHORE(console_sem);
85 struct console *console_drivers;
86 EXPORT_SYMBOL_GPL(console_drivers);
87 
88 #ifdef CONFIG_LOCKDEP
89 static struct lockdep_map console_lock_dep_map = {
90 	.name = "console_lock"
91 };
92 #endif
93 
94 enum devkmsg_log_bits {
95 	__DEVKMSG_LOG_BIT_ON = 0,
96 	__DEVKMSG_LOG_BIT_OFF,
97 	__DEVKMSG_LOG_BIT_LOCK,
98 };
99 
100 enum devkmsg_log_masks {
101 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
102 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
103 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
104 };
105 
106 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
107 #define DEVKMSG_LOG_MASK_DEFAULT	0
108 
109 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
110 
111 static int __control_devkmsg(char *str)
112 {
113 	if (!str)
114 		return -EINVAL;
115 
116 	if (!strncmp(str, "on", 2)) {
117 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
118 		return 2;
119 	} else if (!strncmp(str, "off", 3)) {
120 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
121 		return 3;
122 	} else if (!strncmp(str, "ratelimit", 9)) {
123 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
124 		return 9;
125 	}
126 	return -EINVAL;
127 }
128 
129 static int __init control_devkmsg(char *str)
130 {
131 	if (__control_devkmsg(str) < 0)
132 		return 1;
133 
134 	/*
135 	 * Set sysctl string accordingly:
136 	 */
137 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
138 		strcpy(devkmsg_log_str, "on");
139 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
140 		strcpy(devkmsg_log_str, "off");
141 	/* else "ratelimit" which is set by default. */
142 
143 	/*
144 	 * Sysctl cannot change it anymore. The kernel command line setting of
145 	 * this parameter is to force the setting to be permanent throughout the
146 	 * runtime of the system. This is a precation measure against userspace
147 	 * trying to be a smarta** and attempting to change it up on us.
148 	 */
149 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
150 
151 	return 0;
152 }
153 __setup("printk.devkmsg=", control_devkmsg);
154 
155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
156 
157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
158 			      void __user *buffer, size_t *lenp, loff_t *ppos)
159 {
160 	char old_str[DEVKMSG_STR_MAX_SIZE];
161 	unsigned int old;
162 	int err;
163 
164 	if (write) {
165 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
166 			return -EINVAL;
167 
168 		old = devkmsg_log;
169 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
170 	}
171 
172 	err = proc_dostring(table, write, buffer, lenp, ppos);
173 	if (err)
174 		return err;
175 
176 	if (write) {
177 		err = __control_devkmsg(devkmsg_log_str);
178 
179 		/*
180 		 * Do not accept an unknown string OR a known string with
181 		 * trailing crap...
182 		 */
183 		if (err < 0 || (err + 1 != *lenp)) {
184 
185 			/* ... and restore old setting. */
186 			devkmsg_log = old;
187 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
188 
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /* Number of registered extended console drivers. */
197 static int nr_ext_console_drivers;
198 
199 /*
200  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
201  * macros instead of functions so that _RET_IP_ contains useful information.
202  */
203 #define down_console_sem() do { \
204 	down(&console_sem);\
205 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
206 } while (0)
207 
208 static int __down_trylock_console_sem(unsigned long ip)
209 {
210 	int lock_failed;
211 	unsigned long flags;
212 
213 	/*
214 	 * Here and in __up_console_sem() we need to be in safe mode,
215 	 * because spindump/WARN/etc from under console ->lock will
216 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
217 	 */
218 	printk_safe_enter_irqsave(flags);
219 	lock_failed = down_trylock(&console_sem);
220 	printk_safe_exit_irqrestore(flags);
221 
222 	if (lock_failed)
223 		return 1;
224 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
225 	return 0;
226 }
227 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
228 
229 static void __up_console_sem(unsigned long ip)
230 {
231 	unsigned long flags;
232 
233 	mutex_release(&console_lock_dep_map, 1, ip);
234 
235 	printk_safe_enter_irqsave(flags);
236 	up(&console_sem);
237 	printk_safe_exit_irqrestore(flags);
238 }
239 #define up_console_sem() __up_console_sem(_RET_IP_)
240 
241 /*
242  * This is used for debugging the mess that is the VT code by
243  * keeping track if we have the console semaphore held. It's
244  * definitely not the perfect debug tool (we don't know if _WE_
245  * hold it and are racing, but it helps tracking those weird code
246  * paths in the console code where we end up in places I want
247  * locked without the console sempahore held).
248  */
249 static int console_locked, console_suspended;
250 
251 /*
252  * If exclusive_console is non-NULL then only this console is to be printed to.
253  */
254 static struct console *exclusive_console;
255 
256 /*
257  *	Array of consoles built from command line options (console=)
258  */
259 
260 #define MAX_CMDLINECONSOLES 8
261 
262 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
263 
264 static int preferred_console = -1;
265 int console_set_on_cmdline;
266 EXPORT_SYMBOL(console_set_on_cmdline);
267 
268 /* Flag: console code may call schedule() */
269 static int console_may_schedule;
270 
271 enum con_msg_format_flags {
272 	MSG_FORMAT_DEFAULT	= 0,
273 	MSG_FORMAT_SYSLOG	= (1 << 0),
274 };
275 
276 static int console_msg_format = MSG_FORMAT_DEFAULT;
277 
278 /*
279  * The printk log buffer consists of a chain of concatenated variable
280  * length records. Every record starts with a record header, containing
281  * the overall length of the record.
282  *
283  * The heads to the first and last entry in the buffer, as well as the
284  * sequence numbers of these entries are maintained when messages are
285  * stored.
286  *
287  * If the heads indicate available messages, the length in the header
288  * tells the start next message. A length == 0 for the next message
289  * indicates a wrap-around to the beginning of the buffer.
290  *
291  * Every record carries the monotonic timestamp in microseconds, as well as
292  * the standard userspace syslog level and syslog facility. The usual
293  * kernel messages use LOG_KERN; userspace-injected messages always carry
294  * a matching syslog facility, by default LOG_USER. The origin of every
295  * message can be reliably determined that way.
296  *
297  * The human readable log message directly follows the message header. The
298  * length of the message text is stored in the header, the stored message
299  * is not terminated.
300  *
301  * Optionally, a message can carry a dictionary of properties (key/value pairs),
302  * to provide userspace with a machine-readable message context.
303  *
304  * Examples for well-defined, commonly used property names are:
305  *   DEVICE=b12:8               device identifier
306  *                                b12:8         block dev_t
307  *                                c127:3        char dev_t
308  *                                n8            netdev ifindex
309  *                                +sound:card0  subsystem:devname
310  *   SUBSYSTEM=pci              driver-core subsystem name
311  *
312  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
313  * follows directly after a '=' character. Every property is terminated by
314  * a '\0' character. The last property is not terminated.
315  *
316  * Example of a message structure:
317  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
318  *   0008  34 00                        record is 52 bytes long
319  *   000a        0b 00                  text is 11 bytes long
320  *   000c              1f 00            dictionary is 23 bytes long
321  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
322  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
323  *         69 6e 65                     "ine"
324  *   001b           44 45 56 49 43      "DEVIC"
325  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
326  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
327  *         67                           "g"
328  *   0032     00 00 00                  padding to next message header
329  *
330  * The 'struct printk_log' buffer header must never be directly exported to
331  * userspace, it is a kernel-private implementation detail that might
332  * need to be changed in the future, when the requirements change.
333  *
334  * /dev/kmsg exports the structured data in the following line format:
335  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
336  *
337  * Users of the export format should ignore possible additional values
338  * separated by ',', and find the message after the ';' character.
339  *
340  * The optional key/value pairs are attached as continuation lines starting
341  * with a space character and terminated by a newline. All possible
342  * non-prinatable characters are escaped in the "\xff" notation.
343  */
344 
345 enum log_flags {
346 	LOG_NEWLINE	= 2,	/* text ended with a newline */
347 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
348 };
349 
350 struct printk_log {
351 	u64 ts_nsec;		/* timestamp in nanoseconds */
352 	u16 len;		/* length of entire record */
353 	u16 text_len;		/* length of text buffer */
354 	u16 dict_len;		/* length of dictionary buffer */
355 	u8 facility;		/* syslog facility */
356 	u8 flags:5;		/* internal record flags */
357 	u8 level:3;		/* syslog level */
358 #ifdef CONFIG_PRINTK_CALLER
359 	u32 caller_id;            /* thread id or processor id */
360 #endif
361 }
362 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
363 __packed __aligned(4)
364 #endif
365 ;
366 
367 /*
368  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
369  * within the scheduler's rq lock. It must be released before calling
370  * console_unlock() or anything else that might wake up a process.
371  */
372 DEFINE_RAW_SPINLOCK(logbuf_lock);
373 
374 /*
375  * Helper macros to lock/unlock logbuf_lock and switch between
376  * printk-safe/unsafe modes.
377  */
378 #define logbuf_lock_irq()				\
379 	do {						\
380 		printk_safe_enter_irq();		\
381 		raw_spin_lock(&logbuf_lock);		\
382 	} while (0)
383 
384 #define logbuf_unlock_irq()				\
385 	do {						\
386 		raw_spin_unlock(&logbuf_lock);		\
387 		printk_safe_exit_irq();			\
388 	} while (0)
389 
390 #define logbuf_lock_irqsave(flags)			\
391 	do {						\
392 		printk_safe_enter_irqsave(flags);	\
393 		raw_spin_lock(&logbuf_lock);		\
394 	} while (0)
395 
396 #define logbuf_unlock_irqrestore(flags)		\
397 	do {						\
398 		raw_spin_unlock(&logbuf_lock);		\
399 		printk_safe_exit_irqrestore(flags);	\
400 	} while (0)
401 
402 #ifdef CONFIG_PRINTK
403 DECLARE_WAIT_QUEUE_HEAD(log_wait);
404 /* the next printk record to read by syslog(READ) or /proc/kmsg */
405 static u64 syslog_seq;
406 static u32 syslog_idx;
407 static size_t syslog_partial;
408 static bool syslog_time;
409 
410 /* index and sequence number of the first record stored in the buffer */
411 static u64 log_first_seq;
412 static u32 log_first_idx;
413 
414 /* index and sequence number of the next record to store in the buffer */
415 static u64 log_next_seq;
416 static u32 log_next_idx;
417 
418 /* the next printk record to write to the console */
419 static u64 console_seq;
420 static u32 console_idx;
421 static u64 exclusive_console_stop_seq;
422 
423 /* the next printk record to read after the last 'clear' command */
424 static u64 clear_seq;
425 static u32 clear_idx;
426 
427 #ifdef CONFIG_PRINTK_CALLER
428 #define PREFIX_MAX		48
429 #else
430 #define PREFIX_MAX		32
431 #endif
432 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
433 
434 #define LOG_LEVEL(v)		((v) & 0x07)
435 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
436 
437 /* record buffer */
438 #define LOG_ALIGN __alignof__(struct printk_log)
439 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
440 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
441 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
442 static char *log_buf = __log_buf;
443 static u32 log_buf_len = __LOG_BUF_LEN;
444 
445 /* Return log buffer address */
446 char *log_buf_addr_get(void)
447 {
448 	return log_buf;
449 }
450 
451 /* Return log buffer size */
452 u32 log_buf_len_get(void)
453 {
454 	return log_buf_len;
455 }
456 
457 /* human readable text of the record */
458 static char *log_text(const struct printk_log *msg)
459 {
460 	return (char *)msg + sizeof(struct printk_log);
461 }
462 
463 /* optional key/value pair dictionary attached to the record */
464 static char *log_dict(const struct printk_log *msg)
465 {
466 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
467 }
468 
469 /* get record by index; idx must point to valid msg */
470 static struct printk_log *log_from_idx(u32 idx)
471 {
472 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
473 
474 	/*
475 	 * A length == 0 record is the end of buffer marker. Wrap around and
476 	 * read the message at the start of the buffer.
477 	 */
478 	if (!msg->len)
479 		return (struct printk_log *)log_buf;
480 	return msg;
481 }
482 
483 /* get next record; idx must point to valid msg */
484 static u32 log_next(u32 idx)
485 {
486 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
487 
488 	/* length == 0 indicates the end of the buffer; wrap */
489 	/*
490 	 * A length == 0 record is the end of buffer marker. Wrap around and
491 	 * read the message at the start of the buffer as *this* one, and
492 	 * return the one after that.
493 	 */
494 	if (!msg->len) {
495 		msg = (struct printk_log *)log_buf;
496 		return msg->len;
497 	}
498 	return idx + msg->len;
499 }
500 
501 /*
502  * Check whether there is enough free space for the given message.
503  *
504  * The same values of first_idx and next_idx mean that the buffer
505  * is either empty or full.
506  *
507  * If the buffer is empty, we must respect the position of the indexes.
508  * They cannot be reset to the beginning of the buffer.
509  */
510 static int logbuf_has_space(u32 msg_size, bool empty)
511 {
512 	u32 free;
513 
514 	if (log_next_idx > log_first_idx || empty)
515 		free = max(log_buf_len - log_next_idx, log_first_idx);
516 	else
517 		free = log_first_idx - log_next_idx;
518 
519 	/*
520 	 * We need space also for an empty header that signalizes wrapping
521 	 * of the buffer.
522 	 */
523 	return free >= msg_size + sizeof(struct printk_log);
524 }
525 
526 static int log_make_free_space(u32 msg_size)
527 {
528 	while (log_first_seq < log_next_seq &&
529 	       !logbuf_has_space(msg_size, false)) {
530 		/* drop old messages until we have enough contiguous space */
531 		log_first_idx = log_next(log_first_idx);
532 		log_first_seq++;
533 	}
534 
535 	if (clear_seq < log_first_seq) {
536 		clear_seq = log_first_seq;
537 		clear_idx = log_first_idx;
538 	}
539 
540 	/* sequence numbers are equal, so the log buffer is empty */
541 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
542 		return 0;
543 
544 	return -ENOMEM;
545 }
546 
547 /* compute the message size including the padding bytes */
548 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
549 {
550 	u32 size;
551 
552 	size = sizeof(struct printk_log) + text_len + dict_len;
553 	*pad_len = (-size) & (LOG_ALIGN - 1);
554 	size += *pad_len;
555 
556 	return size;
557 }
558 
559 /*
560  * Define how much of the log buffer we could take at maximum. The value
561  * must be greater than two. Note that only half of the buffer is available
562  * when the index points to the middle.
563  */
564 #define MAX_LOG_TAKE_PART 4
565 static const char trunc_msg[] = "<truncated>";
566 
567 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
568 			u16 *dict_len, u32 *pad_len)
569 {
570 	/*
571 	 * The message should not take the whole buffer. Otherwise, it might
572 	 * get removed too soon.
573 	 */
574 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
575 	if (*text_len > max_text_len)
576 		*text_len = max_text_len;
577 	/* enable the warning message */
578 	*trunc_msg_len = strlen(trunc_msg);
579 	/* disable the "dict" completely */
580 	*dict_len = 0;
581 	/* compute the size again, count also the warning message */
582 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
583 }
584 
585 /* insert record into the buffer, discard old ones, update heads */
586 static int log_store(u32 caller_id, int facility, int level,
587 		     enum log_flags flags, u64 ts_nsec,
588 		     const char *dict, u16 dict_len,
589 		     const char *text, u16 text_len)
590 {
591 	struct printk_log *msg;
592 	u32 size, pad_len;
593 	u16 trunc_msg_len = 0;
594 
595 	/* number of '\0' padding bytes to next message */
596 	size = msg_used_size(text_len, dict_len, &pad_len);
597 
598 	if (log_make_free_space(size)) {
599 		/* truncate the message if it is too long for empty buffer */
600 		size = truncate_msg(&text_len, &trunc_msg_len,
601 				    &dict_len, &pad_len);
602 		/* survive when the log buffer is too small for trunc_msg */
603 		if (log_make_free_space(size))
604 			return 0;
605 	}
606 
607 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
608 		/*
609 		 * This message + an additional empty header does not fit
610 		 * at the end of the buffer. Add an empty header with len == 0
611 		 * to signify a wrap around.
612 		 */
613 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
614 		log_next_idx = 0;
615 	}
616 
617 	/* fill message */
618 	msg = (struct printk_log *)(log_buf + log_next_idx);
619 	memcpy(log_text(msg), text, text_len);
620 	msg->text_len = text_len;
621 	if (trunc_msg_len) {
622 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
623 		msg->text_len += trunc_msg_len;
624 	}
625 	memcpy(log_dict(msg), dict, dict_len);
626 	msg->dict_len = dict_len;
627 	msg->facility = facility;
628 	msg->level = level & 7;
629 	msg->flags = flags & 0x1f;
630 	if (ts_nsec > 0)
631 		msg->ts_nsec = ts_nsec;
632 	else
633 		msg->ts_nsec = local_clock();
634 #ifdef CONFIG_PRINTK_CALLER
635 	msg->caller_id = caller_id;
636 #endif
637 	memset(log_dict(msg) + dict_len, 0, pad_len);
638 	msg->len = size;
639 
640 	/* insert message */
641 	log_next_idx += msg->len;
642 	log_next_seq++;
643 
644 	return msg->text_len;
645 }
646 
647 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
648 
649 static int syslog_action_restricted(int type)
650 {
651 	if (dmesg_restrict)
652 		return 1;
653 	/*
654 	 * Unless restricted, we allow "read all" and "get buffer size"
655 	 * for everybody.
656 	 */
657 	return type != SYSLOG_ACTION_READ_ALL &&
658 	       type != SYSLOG_ACTION_SIZE_BUFFER;
659 }
660 
661 static int check_syslog_permissions(int type, int source)
662 {
663 	/*
664 	 * If this is from /proc/kmsg and we've already opened it, then we've
665 	 * already done the capabilities checks at open time.
666 	 */
667 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
668 		goto ok;
669 
670 	if (syslog_action_restricted(type)) {
671 		if (capable(CAP_SYSLOG))
672 			goto ok;
673 		/*
674 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
675 		 * a warning.
676 		 */
677 		if (capable(CAP_SYS_ADMIN)) {
678 			pr_warn_once("%s (%d): Attempt to access syslog with "
679 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
680 				     "(deprecated).\n",
681 				 current->comm, task_pid_nr(current));
682 			goto ok;
683 		}
684 		return -EPERM;
685 	}
686 ok:
687 	return security_syslog(type);
688 }
689 
690 static void append_char(char **pp, char *e, char c)
691 {
692 	if (*pp < e)
693 		*(*pp)++ = c;
694 }
695 
696 static ssize_t msg_print_ext_header(char *buf, size_t size,
697 				    struct printk_log *msg, u64 seq)
698 {
699 	u64 ts_usec = msg->ts_nsec;
700 	char caller[20];
701 #ifdef CONFIG_PRINTK_CALLER
702 	u32 id = msg->caller_id;
703 
704 	snprintf(caller, sizeof(caller), ",caller=%c%u",
705 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
706 #else
707 	caller[0] = '\0';
708 #endif
709 
710 	do_div(ts_usec, 1000);
711 
712 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
713 			 (msg->facility << 3) | msg->level, seq, ts_usec,
714 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
715 }
716 
717 static ssize_t msg_print_ext_body(char *buf, size_t size,
718 				  char *dict, size_t dict_len,
719 				  char *text, size_t text_len)
720 {
721 	char *p = buf, *e = buf + size;
722 	size_t i;
723 
724 	/* escape non-printable characters */
725 	for (i = 0; i < text_len; i++) {
726 		unsigned char c = text[i];
727 
728 		if (c < ' ' || c >= 127 || c == '\\')
729 			p += scnprintf(p, e - p, "\\x%02x", c);
730 		else
731 			append_char(&p, e, c);
732 	}
733 	append_char(&p, e, '\n');
734 
735 	if (dict_len) {
736 		bool line = true;
737 
738 		for (i = 0; i < dict_len; i++) {
739 			unsigned char c = dict[i];
740 
741 			if (line) {
742 				append_char(&p, e, ' ');
743 				line = false;
744 			}
745 
746 			if (c == '\0') {
747 				append_char(&p, e, '\n');
748 				line = true;
749 				continue;
750 			}
751 
752 			if (c < ' ' || c >= 127 || c == '\\') {
753 				p += scnprintf(p, e - p, "\\x%02x", c);
754 				continue;
755 			}
756 
757 			append_char(&p, e, c);
758 		}
759 		append_char(&p, e, '\n');
760 	}
761 
762 	return p - buf;
763 }
764 
765 /* /dev/kmsg - userspace message inject/listen interface */
766 struct devkmsg_user {
767 	u64 seq;
768 	u32 idx;
769 	struct ratelimit_state rs;
770 	struct mutex lock;
771 	char buf[CONSOLE_EXT_LOG_MAX];
772 };
773 
774 static __printf(3, 4) __cold
775 int devkmsg_emit(int facility, int level, const char *fmt, ...)
776 {
777 	va_list args;
778 	int r;
779 
780 	va_start(args, fmt);
781 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
782 	va_end(args);
783 
784 	return r;
785 }
786 
787 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
788 {
789 	char *buf, *line;
790 	int level = default_message_loglevel;
791 	int facility = 1;	/* LOG_USER */
792 	struct file *file = iocb->ki_filp;
793 	struct devkmsg_user *user = file->private_data;
794 	size_t len = iov_iter_count(from);
795 	ssize_t ret = len;
796 
797 	if (!user || len > LOG_LINE_MAX)
798 		return -EINVAL;
799 
800 	/* Ignore when user logging is disabled. */
801 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
802 		return len;
803 
804 	/* Ratelimit when not explicitly enabled. */
805 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
806 		if (!___ratelimit(&user->rs, current->comm))
807 			return ret;
808 	}
809 
810 	buf = kmalloc(len+1, GFP_KERNEL);
811 	if (buf == NULL)
812 		return -ENOMEM;
813 
814 	buf[len] = '\0';
815 	if (!copy_from_iter_full(buf, len, from)) {
816 		kfree(buf);
817 		return -EFAULT;
818 	}
819 
820 	/*
821 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
822 	 * the decimal value represents 32bit, the lower 3 bit are the log
823 	 * level, the rest are the log facility.
824 	 *
825 	 * If no prefix or no userspace facility is specified, we
826 	 * enforce LOG_USER, to be able to reliably distinguish
827 	 * kernel-generated messages from userspace-injected ones.
828 	 */
829 	line = buf;
830 	if (line[0] == '<') {
831 		char *endp = NULL;
832 		unsigned int u;
833 
834 		u = simple_strtoul(line + 1, &endp, 10);
835 		if (endp && endp[0] == '>') {
836 			level = LOG_LEVEL(u);
837 			if (LOG_FACILITY(u) != 0)
838 				facility = LOG_FACILITY(u);
839 			endp++;
840 			len -= endp - line;
841 			line = endp;
842 		}
843 	}
844 
845 	devkmsg_emit(facility, level, "%s", line);
846 	kfree(buf);
847 	return ret;
848 }
849 
850 static ssize_t devkmsg_read(struct file *file, char __user *buf,
851 			    size_t count, loff_t *ppos)
852 {
853 	struct devkmsg_user *user = file->private_data;
854 	struct printk_log *msg;
855 	size_t len;
856 	ssize_t ret;
857 
858 	if (!user)
859 		return -EBADF;
860 
861 	ret = mutex_lock_interruptible(&user->lock);
862 	if (ret)
863 		return ret;
864 
865 	logbuf_lock_irq();
866 	while (user->seq == log_next_seq) {
867 		if (file->f_flags & O_NONBLOCK) {
868 			ret = -EAGAIN;
869 			logbuf_unlock_irq();
870 			goto out;
871 		}
872 
873 		logbuf_unlock_irq();
874 		ret = wait_event_interruptible(log_wait,
875 					       user->seq != log_next_seq);
876 		if (ret)
877 			goto out;
878 		logbuf_lock_irq();
879 	}
880 
881 	if (user->seq < log_first_seq) {
882 		/* our last seen message is gone, return error and reset */
883 		user->idx = log_first_idx;
884 		user->seq = log_first_seq;
885 		ret = -EPIPE;
886 		logbuf_unlock_irq();
887 		goto out;
888 	}
889 
890 	msg = log_from_idx(user->idx);
891 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
892 				   msg, user->seq);
893 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
894 				  log_dict(msg), msg->dict_len,
895 				  log_text(msg), msg->text_len);
896 
897 	user->idx = log_next(user->idx);
898 	user->seq++;
899 	logbuf_unlock_irq();
900 
901 	if (len > count) {
902 		ret = -EINVAL;
903 		goto out;
904 	}
905 
906 	if (copy_to_user(buf, user->buf, len)) {
907 		ret = -EFAULT;
908 		goto out;
909 	}
910 	ret = len;
911 out:
912 	mutex_unlock(&user->lock);
913 	return ret;
914 }
915 
916 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
917 {
918 	struct devkmsg_user *user = file->private_data;
919 	loff_t ret = 0;
920 
921 	if (!user)
922 		return -EBADF;
923 	if (offset)
924 		return -ESPIPE;
925 
926 	logbuf_lock_irq();
927 	switch (whence) {
928 	case SEEK_SET:
929 		/* the first record */
930 		user->idx = log_first_idx;
931 		user->seq = log_first_seq;
932 		break;
933 	case SEEK_DATA:
934 		/*
935 		 * The first record after the last SYSLOG_ACTION_CLEAR,
936 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
937 		 * changes no global state, and does not clear anything.
938 		 */
939 		user->idx = clear_idx;
940 		user->seq = clear_seq;
941 		break;
942 	case SEEK_END:
943 		/* after the last record */
944 		user->idx = log_next_idx;
945 		user->seq = log_next_seq;
946 		break;
947 	default:
948 		ret = -EINVAL;
949 	}
950 	logbuf_unlock_irq();
951 	return ret;
952 }
953 
954 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
955 {
956 	struct devkmsg_user *user = file->private_data;
957 	__poll_t ret = 0;
958 
959 	if (!user)
960 		return EPOLLERR|EPOLLNVAL;
961 
962 	poll_wait(file, &log_wait, wait);
963 
964 	logbuf_lock_irq();
965 	if (user->seq < log_next_seq) {
966 		/* return error when data has vanished underneath us */
967 		if (user->seq < log_first_seq)
968 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
969 		else
970 			ret = EPOLLIN|EPOLLRDNORM;
971 	}
972 	logbuf_unlock_irq();
973 
974 	return ret;
975 }
976 
977 static int devkmsg_open(struct inode *inode, struct file *file)
978 {
979 	struct devkmsg_user *user;
980 	int err;
981 
982 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
983 		return -EPERM;
984 
985 	/* write-only does not need any file context */
986 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
987 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
988 					       SYSLOG_FROM_READER);
989 		if (err)
990 			return err;
991 	}
992 
993 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
994 	if (!user)
995 		return -ENOMEM;
996 
997 	ratelimit_default_init(&user->rs);
998 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
999 
1000 	mutex_init(&user->lock);
1001 
1002 	logbuf_lock_irq();
1003 	user->idx = log_first_idx;
1004 	user->seq = log_first_seq;
1005 	logbuf_unlock_irq();
1006 
1007 	file->private_data = user;
1008 	return 0;
1009 }
1010 
1011 static int devkmsg_release(struct inode *inode, struct file *file)
1012 {
1013 	struct devkmsg_user *user = file->private_data;
1014 
1015 	if (!user)
1016 		return 0;
1017 
1018 	ratelimit_state_exit(&user->rs);
1019 
1020 	mutex_destroy(&user->lock);
1021 	kfree(user);
1022 	return 0;
1023 }
1024 
1025 const struct file_operations kmsg_fops = {
1026 	.open = devkmsg_open,
1027 	.read = devkmsg_read,
1028 	.write_iter = devkmsg_write,
1029 	.llseek = devkmsg_llseek,
1030 	.poll = devkmsg_poll,
1031 	.release = devkmsg_release,
1032 };
1033 
1034 #ifdef CONFIG_CRASH_CORE
1035 /*
1036  * This appends the listed symbols to /proc/vmcore
1037  *
1038  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1039  * obtain access to symbols that are otherwise very difficult to locate.  These
1040  * symbols are specifically used so that utilities can access and extract the
1041  * dmesg log from a vmcore file after a crash.
1042  */
1043 void log_buf_vmcoreinfo_setup(void)
1044 {
1045 	VMCOREINFO_SYMBOL(log_buf);
1046 	VMCOREINFO_SYMBOL(log_buf_len);
1047 	VMCOREINFO_SYMBOL(log_first_idx);
1048 	VMCOREINFO_SYMBOL(clear_idx);
1049 	VMCOREINFO_SYMBOL(log_next_idx);
1050 	/*
1051 	 * Export struct printk_log size and field offsets. User space tools can
1052 	 * parse it and detect any changes to structure down the line.
1053 	 */
1054 	VMCOREINFO_STRUCT_SIZE(printk_log);
1055 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1056 	VMCOREINFO_OFFSET(printk_log, len);
1057 	VMCOREINFO_OFFSET(printk_log, text_len);
1058 	VMCOREINFO_OFFSET(printk_log, dict_len);
1059 #ifdef CONFIG_PRINTK_CALLER
1060 	VMCOREINFO_OFFSET(printk_log, caller_id);
1061 #endif
1062 }
1063 #endif
1064 
1065 /* requested log_buf_len from kernel cmdline */
1066 static unsigned long __initdata new_log_buf_len;
1067 
1068 /* we practice scaling the ring buffer by powers of 2 */
1069 static void __init log_buf_len_update(u64 size)
1070 {
1071 	if (size > (u64)LOG_BUF_LEN_MAX) {
1072 		size = (u64)LOG_BUF_LEN_MAX;
1073 		pr_err("log_buf over 2G is not supported.\n");
1074 	}
1075 
1076 	if (size)
1077 		size = roundup_pow_of_two(size);
1078 	if (size > log_buf_len)
1079 		new_log_buf_len = (unsigned long)size;
1080 }
1081 
1082 /* save requested log_buf_len since it's too early to process it */
1083 static int __init log_buf_len_setup(char *str)
1084 {
1085 	u64 size;
1086 
1087 	if (!str)
1088 		return -EINVAL;
1089 
1090 	size = memparse(str, &str);
1091 
1092 	log_buf_len_update(size);
1093 
1094 	return 0;
1095 }
1096 early_param("log_buf_len", log_buf_len_setup);
1097 
1098 #ifdef CONFIG_SMP
1099 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1100 
1101 static void __init log_buf_add_cpu(void)
1102 {
1103 	unsigned int cpu_extra;
1104 
1105 	/*
1106 	 * archs should set up cpu_possible_bits properly with
1107 	 * set_cpu_possible() after setup_arch() but just in
1108 	 * case lets ensure this is valid.
1109 	 */
1110 	if (num_possible_cpus() == 1)
1111 		return;
1112 
1113 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1114 
1115 	/* by default this will only continue through for large > 64 CPUs */
1116 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1117 		return;
1118 
1119 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1120 		__LOG_CPU_MAX_BUF_LEN);
1121 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1122 		cpu_extra);
1123 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1124 
1125 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1126 }
1127 #else /* !CONFIG_SMP */
1128 static inline void log_buf_add_cpu(void) {}
1129 #endif /* CONFIG_SMP */
1130 
1131 void __init setup_log_buf(int early)
1132 {
1133 	unsigned long flags;
1134 	char *new_log_buf;
1135 	unsigned int free;
1136 
1137 	if (log_buf != __log_buf)
1138 		return;
1139 
1140 	if (!early && !new_log_buf_len)
1141 		log_buf_add_cpu();
1142 
1143 	if (!new_log_buf_len)
1144 		return;
1145 
1146 	if (early) {
1147 		new_log_buf =
1148 			memblock_alloc(new_log_buf_len, LOG_ALIGN);
1149 	} else {
1150 		new_log_buf = memblock_alloc_nopanic(new_log_buf_len,
1151 							  LOG_ALIGN);
1152 	}
1153 
1154 	if (unlikely(!new_log_buf)) {
1155 		pr_err("log_buf_len: %lu bytes not available\n",
1156 			new_log_buf_len);
1157 		return;
1158 	}
1159 
1160 	logbuf_lock_irqsave(flags);
1161 	log_buf_len = new_log_buf_len;
1162 	log_buf = new_log_buf;
1163 	new_log_buf_len = 0;
1164 	free = __LOG_BUF_LEN - log_next_idx;
1165 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1166 	logbuf_unlock_irqrestore(flags);
1167 
1168 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1169 	pr_info("early log buf free: %u(%u%%)\n",
1170 		free, (free * 100) / __LOG_BUF_LEN);
1171 }
1172 
1173 static bool __read_mostly ignore_loglevel;
1174 
1175 static int __init ignore_loglevel_setup(char *str)
1176 {
1177 	ignore_loglevel = true;
1178 	pr_info("debug: ignoring loglevel setting.\n");
1179 
1180 	return 0;
1181 }
1182 
1183 early_param("ignore_loglevel", ignore_loglevel_setup);
1184 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1185 MODULE_PARM_DESC(ignore_loglevel,
1186 		 "ignore loglevel setting (prints all kernel messages to the console)");
1187 
1188 static bool suppress_message_printing(int level)
1189 {
1190 	return (level >= console_loglevel && !ignore_loglevel);
1191 }
1192 
1193 #ifdef CONFIG_BOOT_PRINTK_DELAY
1194 
1195 static int boot_delay; /* msecs delay after each printk during bootup */
1196 static unsigned long long loops_per_msec;	/* based on boot_delay */
1197 
1198 static int __init boot_delay_setup(char *str)
1199 {
1200 	unsigned long lpj;
1201 
1202 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1203 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1204 
1205 	get_option(&str, &boot_delay);
1206 	if (boot_delay > 10 * 1000)
1207 		boot_delay = 0;
1208 
1209 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1210 		"HZ: %d, loops_per_msec: %llu\n",
1211 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1212 	return 0;
1213 }
1214 early_param("boot_delay", boot_delay_setup);
1215 
1216 static void boot_delay_msec(int level)
1217 {
1218 	unsigned long long k;
1219 	unsigned long timeout;
1220 
1221 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1222 		|| suppress_message_printing(level)) {
1223 		return;
1224 	}
1225 
1226 	k = (unsigned long long)loops_per_msec * boot_delay;
1227 
1228 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1229 	while (k) {
1230 		k--;
1231 		cpu_relax();
1232 		/*
1233 		 * use (volatile) jiffies to prevent
1234 		 * compiler reduction; loop termination via jiffies
1235 		 * is secondary and may or may not happen.
1236 		 */
1237 		if (time_after(jiffies, timeout))
1238 			break;
1239 		touch_nmi_watchdog();
1240 	}
1241 }
1242 #else
1243 static inline void boot_delay_msec(int level)
1244 {
1245 }
1246 #endif
1247 
1248 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1249 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1250 
1251 static size_t print_syslog(unsigned int level, char *buf)
1252 {
1253 	return sprintf(buf, "<%u>", level);
1254 }
1255 
1256 static size_t print_time(u64 ts, char *buf)
1257 {
1258 	unsigned long rem_nsec = do_div(ts, 1000000000);
1259 
1260 	return sprintf(buf, "[%5lu.%06lu]",
1261 		       (unsigned long)ts, rem_nsec / 1000);
1262 }
1263 
1264 #ifdef CONFIG_PRINTK_CALLER
1265 static size_t print_caller(u32 id, char *buf)
1266 {
1267 	char caller[12];
1268 
1269 	snprintf(caller, sizeof(caller), "%c%u",
1270 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1271 	return sprintf(buf, "[%6s]", caller);
1272 }
1273 #else
1274 #define print_caller(id, buf) 0
1275 #endif
1276 
1277 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1278 			   bool time, char *buf)
1279 {
1280 	size_t len = 0;
1281 
1282 	if (syslog)
1283 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1284 
1285 	if (time)
1286 		len += print_time(msg->ts_nsec, buf + len);
1287 
1288 	len += print_caller(msg->caller_id, buf + len);
1289 
1290 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1291 		buf[len++] = ' ';
1292 		buf[len] = '\0';
1293 	}
1294 
1295 	return len;
1296 }
1297 
1298 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1299 			     bool time, char *buf, size_t size)
1300 {
1301 	const char *text = log_text(msg);
1302 	size_t text_size = msg->text_len;
1303 	size_t len = 0;
1304 	char prefix[PREFIX_MAX];
1305 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1306 
1307 	do {
1308 		const char *next = memchr(text, '\n', text_size);
1309 		size_t text_len;
1310 
1311 		if (next) {
1312 			text_len = next - text;
1313 			next++;
1314 			text_size -= next - text;
1315 		} else {
1316 			text_len = text_size;
1317 		}
1318 
1319 		if (buf) {
1320 			if (prefix_len + text_len + 1 >= size - len)
1321 				break;
1322 
1323 			memcpy(buf + len, prefix, prefix_len);
1324 			len += prefix_len;
1325 			memcpy(buf + len, text, text_len);
1326 			len += text_len;
1327 			buf[len++] = '\n';
1328 		} else {
1329 			/* SYSLOG_ACTION_* buffer size only calculation */
1330 			len += prefix_len + text_len + 1;
1331 		}
1332 
1333 		text = next;
1334 	} while (text);
1335 
1336 	return len;
1337 }
1338 
1339 static int syslog_print(char __user *buf, int size)
1340 {
1341 	char *text;
1342 	struct printk_log *msg;
1343 	int len = 0;
1344 
1345 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1346 	if (!text)
1347 		return -ENOMEM;
1348 
1349 	while (size > 0) {
1350 		size_t n;
1351 		size_t skip;
1352 
1353 		logbuf_lock_irq();
1354 		if (syslog_seq < log_first_seq) {
1355 			/* messages are gone, move to first one */
1356 			syslog_seq = log_first_seq;
1357 			syslog_idx = log_first_idx;
1358 			syslog_partial = 0;
1359 		}
1360 		if (syslog_seq == log_next_seq) {
1361 			logbuf_unlock_irq();
1362 			break;
1363 		}
1364 
1365 		/*
1366 		 * To keep reading/counting partial line consistent,
1367 		 * use printk_time value as of the beginning of a line.
1368 		 */
1369 		if (!syslog_partial)
1370 			syslog_time = printk_time;
1371 
1372 		skip = syslog_partial;
1373 		msg = log_from_idx(syslog_idx);
1374 		n = msg_print_text(msg, true, syslog_time, text,
1375 				   LOG_LINE_MAX + PREFIX_MAX);
1376 		if (n - syslog_partial <= size) {
1377 			/* message fits into buffer, move forward */
1378 			syslog_idx = log_next(syslog_idx);
1379 			syslog_seq++;
1380 			n -= syslog_partial;
1381 			syslog_partial = 0;
1382 		} else if (!len){
1383 			/* partial read(), remember position */
1384 			n = size;
1385 			syslog_partial += n;
1386 		} else
1387 			n = 0;
1388 		logbuf_unlock_irq();
1389 
1390 		if (!n)
1391 			break;
1392 
1393 		if (copy_to_user(buf, text + skip, n)) {
1394 			if (!len)
1395 				len = -EFAULT;
1396 			break;
1397 		}
1398 
1399 		len += n;
1400 		size -= n;
1401 		buf += n;
1402 	}
1403 
1404 	kfree(text);
1405 	return len;
1406 }
1407 
1408 static int syslog_print_all(char __user *buf, int size, bool clear)
1409 {
1410 	char *text;
1411 	int len = 0;
1412 	u64 next_seq;
1413 	u64 seq;
1414 	u32 idx;
1415 	bool time;
1416 
1417 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1418 	if (!text)
1419 		return -ENOMEM;
1420 
1421 	time = printk_time;
1422 	logbuf_lock_irq();
1423 	/*
1424 	 * Find first record that fits, including all following records,
1425 	 * into the user-provided buffer for this dump.
1426 	 */
1427 	seq = clear_seq;
1428 	idx = clear_idx;
1429 	while (seq < log_next_seq) {
1430 		struct printk_log *msg = log_from_idx(idx);
1431 
1432 		len += msg_print_text(msg, true, time, NULL, 0);
1433 		idx = log_next(idx);
1434 		seq++;
1435 	}
1436 
1437 	/* move first record forward until length fits into the buffer */
1438 	seq = clear_seq;
1439 	idx = clear_idx;
1440 	while (len > size && seq < log_next_seq) {
1441 		struct printk_log *msg = log_from_idx(idx);
1442 
1443 		len -= msg_print_text(msg, true, time, NULL, 0);
1444 		idx = log_next(idx);
1445 		seq++;
1446 	}
1447 
1448 	/* last message fitting into this dump */
1449 	next_seq = log_next_seq;
1450 
1451 	len = 0;
1452 	while (len >= 0 && seq < next_seq) {
1453 		struct printk_log *msg = log_from_idx(idx);
1454 		int textlen = msg_print_text(msg, true, time, text,
1455 					     LOG_LINE_MAX + PREFIX_MAX);
1456 
1457 		idx = log_next(idx);
1458 		seq++;
1459 
1460 		logbuf_unlock_irq();
1461 		if (copy_to_user(buf + len, text, textlen))
1462 			len = -EFAULT;
1463 		else
1464 			len += textlen;
1465 		logbuf_lock_irq();
1466 
1467 		if (seq < log_first_seq) {
1468 			/* messages are gone, move to next one */
1469 			seq = log_first_seq;
1470 			idx = log_first_idx;
1471 		}
1472 	}
1473 
1474 	if (clear) {
1475 		clear_seq = log_next_seq;
1476 		clear_idx = log_next_idx;
1477 	}
1478 	logbuf_unlock_irq();
1479 
1480 	kfree(text);
1481 	return len;
1482 }
1483 
1484 static void syslog_clear(void)
1485 {
1486 	logbuf_lock_irq();
1487 	clear_seq = log_next_seq;
1488 	clear_idx = log_next_idx;
1489 	logbuf_unlock_irq();
1490 }
1491 
1492 int do_syslog(int type, char __user *buf, int len, int source)
1493 {
1494 	bool clear = false;
1495 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1496 	int error;
1497 
1498 	error = check_syslog_permissions(type, source);
1499 	if (error)
1500 		return error;
1501 
1502 	switch (type) {
1503 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1504 		break;
1505 	case SYSLOG_ACTION_OPEN:	/* Open log */
1506 		break;
1507 	case SYSLOG_ACTION_READ:	/* Read from log */
1508 		if (!buf || len < 0)
1509 			return -EINVAL;
1510 		if (!len)
1511 			return 0;
1512 		if (!access_ok(buf, len))
1513 			return -EFAULT;
1514 		error = wait_event_interruptible(log_wait,
1515 						 syslog_seq != log_next_seq);
1516 		if (error)
1517 			return error;
1518 		error = syslog_print(buf, len);
1519 		break;
1520 	/* Read/clear last kernel messages */
1521 	case SYSLOG_ACTION_READ_CLEAR:
1522 		clear = true;
1523 		/* FALL THRU */
1524 	/* Read last kernel messages */
1525 	case SYSLOG_ACTION_READ_ALL:
1526 		if (!buf || len < 0)
1527 			return -EINVAL;
1528 		if (!len)
1529 			return 0;
1530 		if (!access_ok(buf, len))
1531 			return -EFAULT;
1532 		error = syslog_print_all(buf, len, clear);
1533 		break;
1534 	/* Clear ring buffer */
1535 	case SYSLOG_ACTION_CLEAR:
1536 		syslog_clear();
1537 		break;
1538 	/* Disable logging to console */
1539 	case SYSLOG_ACTION_CONSOLE_OFF:
1540 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1541 			saved_console_loglevel = console_loglevel;
1542 		console_loglevel = minimum_console_loglevel;
1543 		break;
1544 	/* Enable logging to console */
1545 	case SYSLOG_ACTION_CONSOLE_ON:
1546 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1547 			console_loglevel = saved_console_loglevel;
1548 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1549 		}
1550 		break;
1551 	/* Set level of messages printed to console */
1552 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1553 		if (len < 1 || len > 8)
1554 			return -EINVAL;
1555 		if (len < minimum_console_loglevel)
1556 			len = minimum_console_loglevel;
1557 		console_loglevel = len;
1558 		/* Implicitly re-enable logging to console */
1559 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1560 		break;
1561 	/* Number of chars in the log buffer */
1562 	case SYSLOG_ACTION_SIZE_UNREAD:
1563 		logbuf_lock_irq();
1564 		if (syslog_seq < log_first_seq) {
1565 			/* messages are gone, move to first one */
1566 			syslog_seq = log_first_seq;
1567 			syslog_idx = log_first_idx;
1568 			syslog_partial = 0;
1569 		}
1570 		if (source == SYSLOG_FROM_PROC) {
1571 			/*
1572 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1573 			 * for pending data, not the size; return the count of
1574 			 * records, not the length.
1575 			 */
1576 			error = log_next_seq - syslog_seq;
1577 		} else {
1578 			u64 seq = syslog_seq;
1579 			u32 idx = syslog_idx;
1580 			bool time = syslog_partial ? syslog_time : printk_time;
1581 
1582 			while (seq < log_next_seq) {
1583 				struct printk_log *msg = log_from_idx(idx);
1584 
1585 				error += msg_print_text(msg, true, time, NULL,
1586 							0);
1587 				time = printk_time;
1588 				idx = log_next(idx);
1589 				seq++;
1590 			}
1591 			error -= syslog_partial;
1592 		}
1593 		logbuf_unlock_irq();
1594 		break;
1595 	/* Size of the log buffer */
1596 	case SYSLOG_ACTION_SIZE_BUFFER:
1597 		error = log_buf_len;
1598 		break;
1599 	default:
1600 		error = -EINVAL;
1601 		break;
1602 	}
1603 
1604 	return error;
1605 }
1606 
1607 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1608 {
1609 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1610 }
1611 
1612 /*
1613  * Special console_lock variants that help to reduce the risk of soft-lockups.
1614  * They allow to pass console_lock to another printk() call using a busy wait.
1615  */
1616 
1617 #ifdef CONFIG_LOCKDEP
1618 static struct lockdep_map console_owner_dep_map = {
1619 	.name = "console_owner"
1620 };
1621 #endif
1622 
1623 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1624 static struct task_struct *console_owner;
1625 static bool console_waiter;
1626 
1627 /**
1628  * console_lock_spinning_enable - mark beginning of code where another
1629  *	thread might safely busy wait
1630  *
1631  * This basically converts console_lock into a spinlock. This marks
1632  * the section where the console_lock owner can not sleep, because
1633  * there may be a waiter spinning (like a spinlock). Also it must be
1634  * ready to hand over the lock at the end of the section.
1635  */
1636 static void console_lock_spinning_enable(void)
1637 {
1638 	raw_spin_lock(&console_owner_lock);
1639 	console_owner = current;
1640 	raw_spin_unlock(&console_owner_lock);
1641 
1642 	/* The waiter may spin on us after setting console_owner */
1643 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1644 }
1645 
1646 /**
1647  * console_lock_spinning_disable_and_check - mark end of code where another
1648  *	thread was able to busy wait and check if there is a waiter
1649  *
1650  * This is called at the end of the section where spinning is allowed.
1651  * It has two functions. First, it is a signal that it is no longer
1652  * safe to start busy waiting for the lock. Second, it checks if
1653  * there is a busy waiter and passes the lock rights to her.
1654  *
1655  * Important: Callers lose the lock if there was a busy waiter.
1656  *	They must not touch items synchronized by console_lock
1657  *	in this case.
1658  *
1659  * Return: 1 if the lock rights were passed, 0 otherwise.
1660  */
1661 static int console_lock_spinning_disable_and_check(void)
1662 {
1663 	int waiter;
1664 
1665 	raw_spin_lock(&console_owner_lock);
1666 	waiter = READ_ONCE(console_waiter);
1667 	console_owner = NULL;
1668 	raw_spin_unlock(&console_owner_lock);
1669 
1670 	if (!waiter) {
1671 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1672 		return 0;
1673 	}
1674 
1675 	/* The waiter is now free to continue */
1676 	WRITE_ONCE(console_waiter, false);
1677 
1678 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1679 
1680 	/*
1681 	 * Hand off console_lock to waiter. The waiter will perform
1682 	 * the up(). After this, the waiter is the console_lock owner.
1683 	 */
1684 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1685 	return 1;
1686 }
1687 
1688 /**
1689  * console_trylock_spinning - try to get console_lock by busy waiting
1690  *
1691  * This allows to busy wait for the console_lock when the current
1692  * owner is running in specially marked sections. It means that
1693  * the current owner is running and cannot reschedule until it
1694  * is ready to lose the lock.
1695  *
1696  * Return: 1 if we got the lock, 0 othrewise
1697  */
1698 static int console_trylock_spinning(void)
1699 {
1700 	struct task_struct *owner = NULL;
1701 	bool waiter;
1702 	bool spin = false;
1703 	unsigned long flags;
1704 
1705 	if (console_trylock())
1706 		return 1;
1707 
1708 	printk_safe_enter_irqsave(flags);
1709 
1710 	raw_spin_lock(&console_owner_lock);
1711 	owner = READ_ONCE(console_owner);
1712 	waiter = READ_ONCE(console_waiter);
1713 	if (!waiter && owner && owner != current) {
1714 		WRITE_ONCE(console_waiter, true);
1715 		spin = true;
1716 	}
1717 	raw_spin_unlock(&console_owner_lock);
1718 
1719 	/*
1720 	 * If there is an active printk() writing to the
1721 	 * consoles, instead of having it write our data too,
1722 	 * see if we can offload that load from the active
1723 	 * printer, and do some printing ourselves.
1724 	 * Go into a spin only if there isn't already a waiter
1725 	 * spinning, and there is an active printer, and
1726 	 * that active printer isn't us (recursive printk?).
1727 	 */
1728 	if (!spin) {
1729 		printk_safe_exit_irqrestore(flags);
1730 		return 0;
1731 	}
1732 
1733 	/* We spin waiting for the owner to release us */
1734 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1735 	/* Owner will clear console_waiter on hand off */
1736 	while (READ_ONCE(console_waiter))
1737 		cpu_relax();
1738 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1739 
1740 	printk_safe_exit_irqrestore(flags);
1741 	/*
1742 	 * The owner passed the console lock to us.
1743 	 * Since we did not spin on console lock, annotate
1744 	 * this as a trylock. Otherwise lockdep will
1745 	 * complain.
1746 	 */
1747 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1748 
1749 	return 1;
1750 }
1751 
1752 /*
1753  * Call the console drivers, asking them to write out
1754  * log_buf[start] to log_buf[end - 1].
1755  * The console_lock must be held.
1756  */
1757 static void call_console_drivers(const char *ext_text, size_t ext_len,
1758 				 const char *text, size_t len)
1759 {
1760 	struct console *con;
1761 
1762 	trace_console_rcuidle(text, len);
1763 
1764 	if (!console_drivers)
1765 		return;
1766 
1767 	for_each_console(con) {
1768 		if (exclusive_console && con != exclusive_console)
1769 			continue;
1770 		if (!(con->flags & CON_ENABLED))
1771 			continue;
1772 		if (!con->write)
1773 			continue;
1774 		if (!cpu_online(smp_processor_id()) &&
1775 		    !(con->flags & CON_ANYTIME))
1776 			continue;
1777 		if (con->flags & CON_EXTENDED)
1778 			con->write(con, ext_text, ext_len);
1779 		else
1780 			con->write(con, text, len);
1781 	}
1782 }
1783 
1784 int printk_delay_msec __read_mostly;
1785 
1786 static inline void printk_delay(void)
1787 {
1788 	if (unlikely(printk_delay_msec)) {
1789 		int m = printk_delay_msec;
1790 
1791 		while (m--) {
1792 			mdelay(1);
1793 			touch_nmi_watchdog();
1794 		}
1795 	}
1796 }
1797 
1798 static inline u32 printk_caller_id(void)
1799 {
1800 	return in_task() ? task_pid_nr(current) :
1801 		0x80000000 + raw_smp_processor_id();
1802 }
1803 
1804 /*
1805  * Continuation lines are buffered, and not committed to the record buffer
1806  * until the line is complete, or a race forces it. The line fragments
1807  * though, are printed immediately to the consoles to ensure everything has
1808  * reached the console in case of a kernel crash.
1809  */
1810 static struct cont {
1811 	char buf[LOG_LINE_MAX];
1812 	size_t len;			/* length == 0 means unused buffer */
1813 	u32 caller_id;			/* printk_caller_id() of first print */
1814 	u64 ts_nsec;			/* time of first print */
1815 	u8 level;			/* log level of first message */
1816 	u8 facility;			/* log facility of first message */
1817 	enum log_flags flags;		/* prefix, newline flags */
1818 } cont;
1819 
1820 static void cont_flush(void)
1821 {
1822 	if (cont.len == 0)
1823 		return;
1824 
1825 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1826 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1827 	cont.len = 0;
1828 }
1829 
1830 static bool cont_add(u32 caller_id, int facility, int level,
1831 		     enum log_flags flags, const char *text, size_t len)
1832 {
1833 	/* If the line gets too long, split it up in separate records. */
1834 	if (cont.len + len > sizeof(cont.buf)) {
1835 		cont_flush();
1836 		return false;
1837 	}
1838 
1839 	if (!cont.len) {
1840 		cont.facility = facility;
1841 		cont.level = level;
1842 		cont.caller_id = caller_id;
1843 		cont.ts_nsec = local_clock();
1844 		cont.flags = flags;
1845 	}
1846 
1847 	memcpy(cont.buf + cont.len, text, len);
1848 	cont.len += len;
1849 
1850 	// The original flags come from the first line,
1851 	// but later continuations can add a newline.
1852 	if (flags & LOG_NEWLINE) {
1853 		cont.flags |= LOG_NEWLINE;
1854 		cont_flush();
1855 	}
1856 
1857 	return true;
1858 }
1859 
1860 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1861 {
1862 	const u32 caller_id = printk_caller_id();
1863 
1864 	/*
1865 	 * If an earlier line was buffered, and we're a continuation
1866 	 * write from the same context, try to add it to the buffer.
1867 	 */
1868 	if (cont.len) {
1869 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1870 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1871 				return text_len;
1872 		}
1873 		/* Otherwise, make sure it's flushed */
1874 		cont_flush();
1875 	}
1876 
1877 	/* Skip empty continuation lines that couldn't be added - they just flush */
1878 	if (!text_len && (lflags & LOG_CONT))
1879 		return 0;
1880 
1881 	/* If it doesn't end in a newline, try to buffer the current line */
1882 	if (!(lflags & LOG_NEWLINE)) {
1883 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1884 			return text_len;
1885 	}
1886 
1887 	/* Store it in the record log */
1888 	return log_store(caller_id, facility, level, lflags, 0,
1889 			 dict, dictlen, text, text_len);
1890 }
1891 
1892 /* Must be called under logbuf_lock. */
1893 int vprintk_store(int facility, int level,
1894 		  const char *dict, size_t dictlen,
1895 		  const char *fmt, va_list args)
1896 {
1897 	static char textbuf[LOG_LINE_MAX];
1898 	char *text = textbuf;
1899 	size_t text_len;
1900 	enum log_flags lflags = 0;
1901 
1902 	/*
1903 	 * The printf needs to come first; we need the syslog
1904 	 * prefix which might be passed-in as a parameter.
1905 	 */
1906 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1907 
1908 	/* mark and strip a trailing newline */
1909 	if (text_len && text[text_len-1] == '\n') {
1910 		text_len--;
1911 		lflags |= LOG_NEWLINE;
1912 	}
1913 
1914 	/* strip kernel syslog prefix and extract log level or control flags */
1915 	if (facility == 0) {
1916 		int kern_level;
1917 
1918 		while ((kern_level = printk_get_level(text)) != 0) {
1919 			switch (kern_level) {
1920 			case '0' ... '7':
1921 				if (level == LOGLEVEL_DEFAULT)
1922 					level = kern_level - '0';
1923 				break;
1924 			case 'c':	/* KERN_CONT */
1925 				lflags |= LOG_CONT;
1926 			}
1927 
1928 			text_len -= 2;
1929 			text += 2;
1930 		}
1931 	}
1932 
1933 	if (level == LOGLEVEL_DEFAULT)
1934 		level = default_message_loglevel;
1935 
1936 	if (dict)
1937 		lflags |= LOG_NEWLINE;
1938 
1939 	return log_output(facility, level, lflags,
1940 			  dict, dictlen, text, text_len);
1941 }
1942 
1943 asmlinkage int vprintk_emit(int facility, int level,
1944 			    const char *dict, size_t dictlen,
1945 			    const char *fmt, va_list args)
1946 {
1947 	int printed_len;
1948 	bool in_sched = false, pending_output;
1949 	unsigned long flags;
1950 	u64 curr_log_seq;
1951 
1952 	if (level == LOGLEVEL_SCHED) {
1953 		level = LOGLEVEL_DEFAULT;
1954 		in_sched = true;
1955 	}
1956 
1957 	boot_delay_msec(level);
1958 	printk_delay();
1959 
1960 	/* This stops the holder of console_sem just where we want him */
1961 	logbuf_lock_irqsave(flags);
1962 	curr_log_seq = log_next_seq;
1963 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1964 	pending_output = (curr_log_seq != log_next_seq);
1965 	logbuf_unlock_irqrestore(flags);
1966 
1967 	/* If called from the scheduler, we can not call up(). */
1968 	if (!in_sched && pending_output) {
1969 		/*
1970 		 * Disable preemption to avoid being preempted while holding
1971 		 * console_sem which would prevent anyone from printing to
1972 		 * console
1973 		 */
1974 		preempt_disable();
1975 		/*
1976 		 * Try to acquire and then immediately release the console
1977 		 * semaphore.  The release will print out buffers and wake up
1978 		 * /dev/kmsg and syslog() users.
1979 		 */
1980 		if (console_trylock_spinning())
1981 			console_unlock();
1982 		preempt_enable();
1983 	}
1984 
1985 	if (pending_output)
1986 		wake_up_klogd();
1987 	return printed_len;
1988 }
1989 EXPORT_SYMBOL(vprintk_emit);
1990 
1991 asmlinkage int vprintk(const char *fmt, va_list args)
1992 {
1993 	return vprintk_func(fmt, args);
1994 }
1995 EXPORT_SYMBOL(vprintk);
1996 
1997 int vprintk_default(const char *fmt, va_list args)
1998 {
1999 	int r;
2000 
2001 #ifdef CONFIG_KGDB_KDB
2002 	/* Allow to pass printk() to kdb but avoid a recursion. */
2003 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2004 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2005 		return r;
2006 	}
2007 #endif
2008 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2009 
2010 	return r;
2011 }
2012 EXPORT_SYMBOL_GPL(vprintk_default);
2013 
2014 /**
2015  * printk - print a kernel message
2016  * @fmt: format string
2017  *
2018  * This is printk(). It can be called from any context. We want it to work.
2019  *
2020  * We try to grab the console_lock. If we succeed, it's easy - we log the
2021  * output and call the console drivers.  If we fail to get the semaphore, we
2022  * place the output into the log buffer and return. The current holder of
2023  * the console_sem will notice the new output in console_unlock(); and will
2024  * send it to the consoles before releasing the lock.
2025  *
2026  * One effect of this deferred printing is that code which calls printk() and
2027  * then changes console_loglevel may break. This is because console_loglevel
2028  * is inspected when the actual printing occurs.
2029  *
2030  * See also:
2031  * printf(3)
2032  *
2033  * See the vsnprintf() documentation for format string extensions over C99.
2034  */
2035 asmlinkage __visible int printk(const char *fmt, ...)
2036 {
2037 	va_list args;
2038 	int r;
2039 
2040 	va_start(args, fmt);
2041 	r = vprintk_func(fmt, args);
2042 	va_end(args);
2043 
2044 	return r;
2045 }
2046 EXPORT_SYMBOL(printk);
2047 
2048 #else /* CONFIG_PRINTK */
2049 
2050 #define LOG_LINE_MAX		0
2051 #define PREFIX_MAX		0
2052 #define printk_time		false
2053 
2054 static u64 syslog_seq;
2055 static u32 syslog_idx;
2056 static u64 console_seq;
2057 static u32 console_idx;
2058 static u64 exclusive_console_stop_seq;
2059 static u64 log_first_seq;
2060 static u32 log_first_idx;
2061 static u64 log_next_seq;
2062 static char *log_text(const struct printk_log *msg) { return NULL; }
2063 static char *log_dict(const struct printk_log *msg) { return NULL; }
2064 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2065 static u32 log_next(u32 idx) { return 0; }
2066 static ssize_t msg_print_ext_header(char *buf, size_t size,
2067 				    struct printk_log *msg,
2068 				    u64 seq) { return 0; }
2069 static ssize_t msg_print_ext_body(char *buf, size_t size,
2070 				  char *dict, size_t dict_len,
2071 				  char *text, size_t text_len) { return 0; }
2072 static void console_lock_spinning_enable(void) { }
2073 static int console_lock_spinning_disable_and_check(void) { return 0; }
2074 static void call_console_drivers(const char *ext_text, size_t ext_len,
2075 				 const char *text, size_t len) {}
2076 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2077 			     bool time, char *buf, size_t size) { return 0; }
2078 static bool suppress_message_printing(int level) { return false; }
2079 
2080 #endif /* CONFIG_PRINTK */
2081 
2082 #ifdef CONFIG_EARLY_PRINTK
2083 struct console *early_console;
2084 
2085 asmlinkage __visible void early_printk(const char *fmt, ...)
2086 {
2087 	va_list ap;
2088 	char buf[512];
2089 	int n;
2090 
2091 	if (!early_console)
2092 		return;
2093 
2094 	va_start(ap, fmt);
2095 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2096 	va_end(ap);
2097 
2098 	early_console->write(early_console, buf, n);
2099 }
2100 #endif
2101 
2102 static int __add_preferred_console(char *name, int idx, char *options,
2103 				   char *brl_options)
2104 {
2105 	struct console_cmdline *c;
2106 	int i;
2107 
2108 	/*
2109 	 *	See if this tty is not yet registered, and
2110 	 *	if we have a slot free.
2111 	 */
2112 	for (i = 0, c = console_cmdline;
2113 	     i < MAX_CMDLINECONSOLES && c->name[0];
2114 	     i++, c++) {
2115 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2116 			if (!brl_options)
2117 				preferred_console = i;
2118 			return 0;
2119 		}
2120 	}
2121 	if (i == MAX_CMDLINECONSOLES)
2122 		return -E2BIG;
2123 	if (!brl_options)
2124 		preferred_console = i;
2125 	strlcpy(c->name, name, sizeof(c->name));
2126 	c->options = options;
2127 	braille_set_options(c, brl_options);
2128 
2129 	c->index = idx;
2130 	return 0;
2131 }
2132 
2133 static int __init console_msg_format_setup(char *str)
2134 {
2135 	if (!strcmp(str, "syslog"))
2136 		console_msg_format = MSG_FORMAT_SYSLOG;
2137 	if (!strcmp(str, "default"))
2138 		console_msg_format = MSG_FORMAT_DEFAULT;
2139 	return 1;
2140 }
2141 __setup("console_msg_format=", console_msg_format_setup);
2142 
2143 /*
2144  * Set up a console.  Called via do_early_param() in init/main.c
2145  * for each "console=" parameter in the boot command line.
2146  */
2147 static int __init console_setup(char *str)
2148 {
2149 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2150 	char *s, *options, *brl_options = NULL;
2151 	int idx;
2152 
2153 	if (_braille_console_setup(&str, &brl_options))
2154 		return 1;
2155 
2156 	/*
2157 	 * Decode str into name, index, options.
2158 	 */
2159 	if (str[0] >= '0' && str[0] <= '9') {
2160 		strcpy(buf, "ttyS");
2161 		strncpy(buf + 4, str, sizeof(buf) - 5);
2162 	} else {
2163 		strncpy(buf, str, sizeof(buf) - 1);
2164 	}
2165 	buf[sizeof(buf) - 1] = 0;
2166 	options = strchr(str, ',');
2167 	if (options)
2168 		*(options++) = 0;
2169 #ifdef __sparc__
2170 	if (!strcmp(str, "ttya"))
2171 		strcpy(buf, "ttyS0");
2172 	if (!strcmp(str, "ttyb"))
2173 		strcpy(buf, "ttyS1");
2174 #endif
2175 	for (s = buf; *s; s++)
2176 		if (isdigit(*s) || *s == ',')
2177 			break;
2178 	idx = simple_strtoul(s, NULL, 10);
2179 	*s = 0;
2180 
2181 	__add_preferred_console(buf, idx, options, brl_options);
2182 	console_set_on_cmdline = 1;
2183 	return 1;
2184 }
2185 __setup("console=", console_setup);
2186 
2187 /**
2188  * add_preferred_console - add a device to the list of preferred consoles.
2189  * @name: device name
2190  * @idx: device index
2191  * @options: options for this console
2192  *
2193  * The last preferred console added will be used for kernel messages
2194  * and stdin/out/err for init.  Normally this is used by console_setup
2195  * above to handle user-supplied console arguments; however it can also
2196  * be used by arch-specific code either to override the user or more
2197  * commonly to provide a default console (ie from PROM variables) when
2198  * the user has not supplied one.
2199  */
2200 int add_preferred_console(char *name, int idx, char *options)
2201 {
2202 	return __add_preferred_console(name, idx, options, NULL);
2203 }
2204 
2205 bool console_suspend_enabled = true;
2206 EXPORT_SYMBOL(console_suspend_enabled);
2207 
2208 static int __init console_suspend_disable(char *str)
2209 {
2210 	console_suspend_enabled = false;
2211 	return 1;
2212 }
2213 __setup("no_console_suspend", console_suspend_disable);
2214 module_param_named(console_suspend, console_suspend_enabled,
2215 		bool, S_IRUGO | S_IWUSR);
2216 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2217 	" and hibernate operations");
2218 
2219 /**
2220  * suspend_console - suspend the console subsystem
2221  *
2222  * This disables printk() while we go into suspend states
2223  */
2224 void suspend_console(void)
2225 {
2226 	if (!console_suspend_enabled)
2227 		return;
2228 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2229 	console_lock();
2230 	console_suspended = 1;
2231 	up_console_sem();
2232 }
2233 
2234 void resume_console(void)
2235 {
2236 	if (!console_suspend_enabled)
2237 		return;
2238 	down_console_sem();
2239 	console_suspended = 0;
2240 	console_unlock();
2241 }
2242 
2243 /**
2244  * console_cpu_notify - print deferred console messages after CPU hotplug
2245  * @cpu: unused
2246  *
2247  * If printk() is called from a CPU that is not online yet, the messages
2248  * will be printed on the console only if there are CON_ANYTIME consoles.
2249  * This function is called when a new CPU comes online (or fails to come
2250  * up) or goes offline.
2251  */
2252 static int console_cpu_notify(unsigned int cpu)
2253 {
2254 	if (!cpuhp_tasks_frozen) {
2255 		/* If trylock fails, someone else is doing the printing */
2256 		if (console_trylock())
2257 			console_unlock();
2258 	}
2259 	return 0;
2260 }
2261 
2262 /**
2263  * console_lock - lock the console system for exclusive use.
2264  *
2265  * Acquires a lock which guarantees that the caller has
2266  * exclusive access to the console system and the console_drivers list.
2267  *
2268  * Can sleep, returns nothing.
2269  */
2270 void console_lock(void)
2271 {
2272 	might_sleep();
2273 
2274 	down_console_sem();
2275 	if (console_suspended)
2276 		return;
2277 	console_locked = 1;
2278 	console_may_schedule = 1;
2279 }
2280 EXPORT_SYMBOL(console_lock);
2281 
2282 /**
2283  * console_trylock - try to lock the console system for exclusive use.
2284  *
2285  * Try to acquire a lock which guarantees that the caller has exclusive
2286  * access to the console system and the console_drivers list.
2287  *
2288  * returns 1 on success, and 0 on failure to acquire the lock.
2289  */
2290 int console_trylock(void)
2291 {
2292 	if (down_trylock_console_sem())
2293 		return 0;
2294 	if (console_suspended) {
2295 		up_console_sem();
2296 		return 0;
2297 	}
2298 	console_locked = 1;
2299 	console_may_schedule = 0;
2300 	return 1;
2301 }
2302 EXPORT_SYMBOL(console_trylock);
2303 
2304 int is_console_locked(void)
2305 {
2306 	return console_locked;
2307 }
2308 EXPORT_SYMBOL(is_console_locked);
2309 
2310 /*
2311  * Check if we have any console that is capable of printing while cpu is
2312  * booting or shutting down. Requires console_sem.
2313  */
2314 static int have_callable_console(void)
2315 {
2316 	struct console *con;
2317 
2318 	for_each_console(con)
2319 		if ((con->flags & CON_ENABLED) &&
2320 				(con->flags & CON_ANYTIME))
2321 			return 1;
2322 
2323 	return 0;
2324 }
2325 
2326 /*
2327  * Can we actually use the console at this time on this cpu?
2328  *
2329  * Console drivers may assume that per-cpu resources have been allocated. So
2330  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2331  * call them until this CPU is officially up.
2332  */
2333 static inline int can_use_console(void)
2334 {
2335 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2336 }
2337 
2338 /**
2339  * console_unlock - unlock the console system
2340  *
2341  * Releases the console_lock which the caller holds on the console system
2342  * and the console driver list.
2343  *
2344  * While the console_lock was held, console output may have been buffered
2345  * by printk().  If this is the case, console_unlock(); emits
2346  * the output prior to releasing the lock.
2347  *
2348  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2349  *
2350  * console_unlock(); may be called from any context.
2351  */
2352 void console_unlock(void)
2353 {
2354 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2355 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2356 	unsigned long flags;
2357 	bool do_cond_resched, retry;
2358 
2359 	if (console_suspended) {
2360 		up_console_sem();
2361 		return;
2362 	}
2363 
2364 	/*
2365 	 * Console drivers are called with interrupts disabled, so
2366 	 * @console_may_schedule should be cleared before; however, we may
2367 	 * end up dumping a lot of lines, for example, if called from
2368 	 * console registration path, and should invoke cond_resched()
2369 	 * between lines if allowable.  Not doing so can cause a very long
2370 	 * scheduling stall on a slow console leading to RCU stall and
2371 	 * softlockup warnings which exacerbate the issue with more
2372 	 * messages practically incapacitating the system.
2373 	 *
2374 	 * console_trylock() is not able to detect the preemptive
2375 	 * context reliably. Therefore the value must be stored before
2376 	 * and cleared after the the "again" goto label.
2377 	 */
2378 	do_cond_resched = console_may_schedule;
2379 again:
2380 	console_may_schedule = 0;
2381 
2382 	/*
2383 	 * We released the console_sem lock, so we need to recheck if
2384 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2385 	 * console.
2386 	 */
2387 	if (!can_use_console()) {
2388 		console_locked = 0;
2389 		up_console_sem();
2390 		return;
2391 	}
2392 
2393 	for (;;) {
2394 		struct printk_log *msg;
2395 		size_t ext_len = 0;
2396 		size_t len;
2397 
2398 		printk_safe_enter_irqsave(flags);
2399 		raw_spin_lock(&logbuf_lock);
2400 		if (console_seq < log_first_seq) {
2401 			len = sprintf(text,
2402 				      "** %llu printk messages dropped **\n",
2403 				      log_first_seq - console_seq);
2404 
2405 			/* messages are gone, move to first one */
2406 			console_seq = log_first_seq;
2407 			console_idx = log_first_idx;
2408 		} else {
2409 			len = 0;
2410 		}
2411 skip:
2412 		if (console_seq == log_next_seq)
2413 			break;
2414 
2415 		msg = log_from_idx(console_idx);
2416 		if (suppress_message_printing(msg->level)) {
2417 			/*
2418 			 * Skip record we have buffered and already printed
2419 			 * directly to the console when we received it, and
2420 			 * record that has level above the console loglevel.
2421 			 */
2422 			console_idx = log_next(console_idx);
2423 			console_seq++;
2424 			goto skip;
2425 		}
2426 
2427 		/* Output to all consoles once old messages replayed. */
2428 		if (unlikely(exclusive_console &&
2429 			     console_seq >= exclusive_console_stop_seq)) {
2430 			exclusive_console = NULL;
2431 		}
2432 
2433 		len += msg_print_text(msg,
2434 				console_msg_format & MSG_FORMAT_SYSLOG,
2435 				printk_time, text + len, sizeof(text) - len);
2436 		if (nr_ext_console_drivers) {
2437 			ext_len = msg_print_ext_header(ext_text,
2438 						sizeof(ext_text),
2439 						msg, console_seq);
2440 			ext_len += msg_print_ext_body(ext_text + ext_len,
2441 						sizeof(ext_text) - ext_len,
2442 						log_dict(msg), msg->dict_len,
2443 						log_text(msg), msg->text_len);
2444 		}
2445 		console_idx = log_next(console_idx);
2446 		console_seq++;
2447 		raw_spin_unlock(&logbuf_lock);
2448 
2449 		/*
2450 		 * While actively printing out messages, if another printk()
2451 		 * were to occur on another CPU, it may wait for this one to
2452 		 * finish. This task can not be preempted if there is a
2453 		 * waiter waiting to take over.
2454 		 */
2455 		console_lock_spinning_enable();
2456 
2457 		stop_critical_timings();	/* don't trace print latency */
2458 		call_console_drivers(ext_text, ext_len, text, len);
2459 		start_critical_timings();
2460 
2461 		if (console_lock_spinning_disable_and_check()) {
2462 			printk_safe_exit_irqrestore(flags);
2463 			return;
2464 		}
2465 
2466 		printk_safe_exit_irqrestore(flags);
2467 
2468 		if (do_cond_resched)
2469 			cond_resched();
2470 	}
2471 
2472 	console_locked = 0;
2473 
2474 	raw_spin_unlock(&logbuf_lock);
2475 
2476 	up_console_sem();
2477 
2478 	/*
2479 	 * Someone could have filled up the buffer again, so re-check if there's
2480 	 * something to flush. In case we cannot trylock the console_sem again,
2481 	 * there's a new owner and the console_unlock() from them will do the
2482 	 * flush, no worries.
2483 	 */
2484 	raw_spin_lock(&logbuf_lock);
2485 	retry = console_seq != log_next_seq;
2486 	raw_spin_unlock(&logbuf_lock);
2487 	printk_safe_exit_irqrestore(flags);
2488 
2489 	if (retry && console_trylock())
2490 		goto again;
2491 }
2492 EXPORT_SYMBOL(console_unlock);
2493 
2494 /**
2495  * console_conditional_schedule - yield the CPU if required
2496  *
2497  * If the console code is currently allowed to sleep, and
2498  * if this CPU should yield the CPU to another task, do
2499  * so here.
2500  *
2501  * Must be called within console_lock();.
2502  */
2503 void __sched console_conditional_schedule(void)
2504 {
2505 	if (console_may_schedule)
2506 		cond_resched();
2507 }
2508 EXPORT_SYMBOL(console_conditional_schedule);
2509 
2510 void console_unblank(void)
2511 {
2512 	struct console *c;
2513 
2514 	/*
2515 	 * console_unblank can no longer be called in interrupt context unless
2516 	 * oops_in_progress is set to 1..
2517 	 */
2518 	if (oops_in_progress) {
2519 		if (down_trylock_console_sem() != 0)
2520 			return;
2521 	} else
2522 		console_lock();
2523 
2524 	console_locked = 1;
2525 	console_may_schedule = 0;
2526 	for_each_console(c)
2527 		if ((c->flags & CON_ENABLED) && c->unblank)
2528 			c->unblank();
2529 	console_unlock();
2530 }
2531 
2532 /**
2533  * console_flush_on_panic - flush console content on panic
2534  *
2535  * Immediately output all pending messages no matter what.
2536  */
2537 void console_flush_on_panic(void)
2538 {
2539 	/*
2540 	 * If someone else is holding the console lock, trylock will fail
2541 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2542 	 * that messages are flushed out.  As this can be called from any
2543 	 * context and we don't want to get preempted while flushing,
2544 	 * ensure may_schedule is cleared.
2545 	 */
2546 	console_trylock();
2547 	console_may_schedule = 0;
2548 	console_unlock();
2549 }
2550 
2551 /*
2552  * Return the console tty driver structure and its associated index
2553  */
2554 struct tty_driver *console_device(int *index)
2555 {
2556 	struct console *c;
2557 	struct tty_driver *driver = NULL;
2558 
2559 	console_lock();
2560 	for_each_console(c) {
2561 		if (!c->device)
2562 			continue;
2563 		driver = c->device(c, index);
2564 		if (driver)
2565 			break;
2566 	}
2567 	console_unlock();
2568 	return driver;
2569 }
2570 
2571 /*
2572  * Prevent further output on the passed console device so that (for example)
2573  * serial drivers can disable console output before suspending a port, and can
2574  * re-enable output afterwards.
2575  */
2576 void console_stop(struct console *console)
2577 {
2578 	console_lock();
2579 	console->flags &= ~CON_ENABLED;
2580 	console_unlock();
2581 }
2582 EXPORT_SYMBOL(console_stop);
2583 
2584 void console_start(struct console *console)
2585 {
2586 	console_lock();
2587 	console->flags |= CON_ENABLED;
2588 	console_unlock();
2589 }
2590 EXPORT_SYMBOL(console_start);
2591 
2592 static int __read_mostly keep_bootcon;
2593 
2594 static int __init keep_bootcon_setup(char *str)
2595 {
2596 	keep_bootcon = 1;
2597 	pr_info("debug: skip boot console de-registration.\n");
2598 
2599 	return 0;
2600 }
2601 
2602 early_param("keep_bootcon", keep_bootcon_setup);
2603 
2604 /*
2605  * The console driver calls this routine during kernel initialization
2606  * to register the console printing procedure with printk() and to
2607  * print any messages that were printed by the kernel before the
2608  * console driver was initialized.
2609  *
2610  * This can happen pretty early during the boot process (because of
2611  * early_printk) - sometimes before setup_arch() completes - be careful
2612  * of what kernel features are used - they may not be initialised yet.
2613  *
2614  * There are two types of consoles - bootconsoles (early_printk) and
2615  * "real" consoles (everything which is not a bootconsole) which are
2616  * handled differently.
2617  *  - Any number of bootconsoles can be registered at any time.
2618  *  - As soon as a "real" console is registered, all bootconsoles
2619  *    will be unregistered automatically.
2620  *  - Once a "real" console is registered, any attempt to register a
2621  *    bootconsoles will be rejected
2622  */
2623 void register_console(struct console *newcon)
2624 {
2625 	int i;
2626 	unsigned long flags;
2627 	struct console *bcon = NULL;
2628 	struct console_cmdline *c;
2629 	static bool has_preferred;
2630 
2631 	if (console_drivers)
2632 		for_each_console(bcon)
2633 			if (WARN(bcon == newcon,
2634 					"console '%s%d' already registered\n",
2635 					bcon->name, bcon->index))
2636 				return;
2637 
2638 	/*
2639 	 * before we register a new CON_BOOT console, make sure we don't
2640 	 * already have a valid console
2641 	 */
2642 	if (console_drivers && newcon->flags & CON_BOOT) {
2643 		/* find the last or real console */
2644 		for_each_console(bcon) {
2645 			if (!(bcon->flags & CON_BOOT)) {
2646 				pr_info("Too late to register bootconsole %s%d\n",
2647 					newcon->name, newcon->index);
2648 				return;
2649 			}
2650 		}
2651 	}
2652 
2653 	if (console_drivers && console_drivers->flags & CON_BOOT)
2654 		bcon = console_drivers;
2655 
2656 	if (!has_preferred || bcon || !console_drivers)
2657 		has_preferred = preferred_console >= 0;
2658 
2659 	/*
2660 	 *	See if we want to use this console driver. If we
2661 	 *	didn't select a console we take the first one
2662 	 *	that registers here.
2663 	 */
2664 	if (!has_preferred) {
2665 		if (newcon->index < 0)
2666 			newcon->index = 0;
2667 		if (newcon->setup == NULL ||
2668 		    newcon->setup(newcon, NULL) == 0) {
2669 			newcon->flags |= CON_ENABLED;
2670 			if (newcon->device) {
2671 				newcon->flags |= CON_CONSDEV;
2672 				has_preferred = true;
2673 			}
2674 		}
2675 	}
2676 
2677 	/*
2678 	 *	See if this console matches one we selected on
2679 	 *	the command line.
2680 	 */
2681 	for (i = 0, c = console_cmdline;
2682 	     i < MAX_CMDLINECONSOLES && c->name[0];
2683 	     i++, c++) {
2684 		if (!newcon->match ||
2685 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2686 			/* default matching */
2687 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2688 			if (strcmp(c->name, newcon->name) != 0)
2689 				continue;
2690 			if (newcon->index >= 0 &&
2691 			    newcon->index != c->index)
2692 				continue;
2693 			if (newcon->index < 0)
2694 				newcon->index = c->index;
2695 
2696 			if (_braille_register_console(newcon, c))
2697 				return;
2698 
2699 			if (newcon->setup &&
2700 			    newcon->setup(newcon, c->options) != 0)
2701 				break;
2702 		}
2703 
2704 		newcon->flags |= CON_ENABLED;
2705 		if (i == preferred_console) {
2706 			newcon->flags |= CON_CONSDEV;
2707 			has_preferred = true;
2708 		}
2709 		break;
2710 	}
2711 
2712 	if (!(newcon->flags & CON_ENABLED))
2713 		return;
2714 
2715 	/*
2716 	 * If we have a bootconsole, and are switching to a real console,
2717 	 * don't print everything out again, since when the boot console, and
2718 	 * the real console are the same physical device, it's annoying to
2719 	 * see the beginning boot messages twice
2720 	 */
2721 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2722 		newcon->flags &= ~CON_PRINTBUFFER;
2723 
2724 	/*
2725 	 *	Put this console in the list - keep the
2726 	 *	preferred driver at the head of the list.
2727 	 */
2728 	console_lock();
2729 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2730 		newcon->next = console_drivers;
2731 		console_drivers = newcon;
2732 		if (newcon->next)
2733 			newcon->next->flags &= ~CON_CONSDEV;
2734 	} else {
2735 		newcon->next = console_drivers->next;
2736 		console_drivers->next = newcon;
2737 	}
2738 
2739 	if (newcon->flags & CON_EXTENDED)
2740 		nr_ext_console_drivers++;
2741 
2742 	if (newcon->flags & CON_PRINTBUFFER) {
2743 		/*
2744 		 * console_unlock(); will print out the buffered messages
2745 		 * for us.
2746 		 */
2747 		logbuf_lock_irqsave(flags);
2748 		console_seq = syslog_seq;
2749 		console_idx = syslog_idx;
2750 		/*
2751 		 * We're about to replay the log buffer.  Only do this to the
2752 		 * just-registered console to avoid excessive message spam to
2753 		 * the already-registered consoles.
2754 		 *
2755 		 * Set exclusive_console with disabled interrupts to reduce
2756 		 * race window with eventual console_flush_on_panic() that
2757 		 * ignores console_lock.
2758 		 */
2759 		exclusive_console = newcon;
2760 		exclusive_console_stop_seq = console_seq;
2761 		logbuf_unlock_irqrestore(flags);
2762 	}
2763 	console_unlock();
2764 	console_sysfs_notify();
2765 
2766 	/*
2767 	 * By unregistering the bootconsoles after we enable the real console
2768 	 * we get the "console xxx enabled" message on all the consoles -
2769 	 * boot consoles, real consoles, etc - this is to ensure that end
2770 	 * users know there might be something in the kernel's log buffer that
2771 	 * went to the bootconsole (that they do not see on the real console)
2772 	 */
2773 	pr_info("%sconsole [%s%d] enabled\n",
2774 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2775 		newcon->name, newcon->index);
2776 	if (bcon &&
2777 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2778 	    !keep_bootcon) {
2779 		/* We need to iterate through all boot consoles, to make
2780 		 * sure we print everything out, before we unregister them.
2781 		 */
2782 		for_each_console(bcon)
2783 			if (bcon->flags & CON_BOOT)
2784 				unregister_console(bcon);
2785 	}
2786 }
2787 EXPORT_SYMBOL(register_console);
2788 
2789 int unregister_console(struct console *console)
2790 {
2791         struct console *a, *b;
2792 	int res;
2793 
2794 	pr_info("%sconsole [%s%d] disabled\n",
2795 		(console->flags & CON_BOOT) ? "boot" : "" ,
2796 		console->name, console->index);
2797 
2798 	res = _braille_unregister_console(console);
2799 	if (res)
2800 		return res;
2801 
2802 	res = 1;
2803 	console_lock();
2804 	if (console_drivers == console) {
2805 		console_drivers=console->next;
2806 		res = 0;
2807 	} else if (console_drivers) {
2808 		for (a=console_drivers->next, b=console_drivers ;
2809 		     a; b=a, a=b->next) {
2810 			if (a == console) {
2811 				b->next = a->next;
2812 				res = 0;
2813 				break;
2814 			}
2815 		}
2816 	}
2817 
2818 	if (!res && (console->flags & CON_EXTENDED))
2819 		nr_ext_console_drivers--;
2820 
2821 	/*
2822 	 * If this isn't the last console and it has CON_CONSDEV set, we
2823 	 * need to set it on the next preferred console.
2824 	 */
2825 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2826 		console_drivers->flags |= CON_CONSDEV;
2827 
2828 	console->flags &= ~CON_ENABLED;
2829 	console_unlock();
2830 	console_sysfs_notify();
2831 	return res;
2832 }
2833 EXPORT_SYMBOL(unregister_console);
2834 
2835 /*
2836  * Initialize the console device. This is called *early*, so
2837  * we can't necessarily depend on lots of kernel help here.
2838  * Just do some early initializations, and do the complex setup
2839  * later.
2840  */
2841 void __init console_init(void)
2842 {
2843 	int ret;
2844 	initcall_t call;
2845 	initcall_entry_t *ce;
2846 
2847 	/* Setup the default TTY line discipline. */
2848 	n_tty_init();
2849 
2850 	/*
2851 	 * set up the console device so that later boot sequences can
2852 	 * inform about problems etc..
2853 	 */
2854 	ce = __con_initcall_start;
2855 	trace_initcall_level("console");
2856 	while (ce < __con_initcall_end) {
2857 		call = initcall_from_entry(ce);
2858 		trace_initcall_start(call);
2859 		ret = call();
2860 		trace_initcall_finish(call, ret);
2861 		ce++;
2862 	}
2863 }
2864 
2865 /*
2866  * Some boot consoles access data that is in the init section and which will
2867  * be discarded after the initcalls have been run. To make sure that no code
2868  * will access this data, unregister the boot consoles in a late initcall.
2869  *
2870  * If for some reason, such as deferred probe or the driver being a loadable
2871  * module, the real console hasn't registered yet at this point, there will
2872  * be a brief interval in which no messages are logged to the console, which
2873  * makes it difficult to diagnose problems that occur during this time.
2874  *
2875  * To mitigate this problem somewhat, only unregister consoles whose memory
2876  * intersects with the init section. Note that all other boot consoles will
2877  * get unregistred when the real preferred console is registered.
2878  */
2879 static int __init printk_late_init(void)
2880 {
2881 	struct console *con;
2882 	int ret;
2883 
2884 	for_each_console(con) {
2885 		if (!(con->flags & CON_BOOT))
2886 			continue;
2887 
2888 		/* Check addresses that might be used for enabled consoles. */
2889 		if (init_section_intersects(con, sizeof(*con)) ||
2890 		    init_section_contains(con->write, 0) ||
2891 		    init_section_contains(con->read, 0) ||
2892 		    init_section_contains(con->device, 0) ||
2893 		    init_section_contains(con->unblank, 0) ||
2894 		    init_section_contains(con->data, 0)) {
2895 			/*
2896 			 * Please, consider moving the reported consoles out
2897 			 * of the init section.
2898 			 */
2899 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2900 				con->name, con->index);
2901 			unregister_console(con);
2902 		}
2903 	}
2904 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2905 					console_cpu_notify);
2906 	WARN_ON(ret < 0);
2907 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2908 					console_cpu_notify, NULL);
2909 	WARN_ON(ret < 0);
2910 	return 0;
2911 }
2912 late_initcall(printk_late_init);
2913 
2914 #if defined CONFIG_PRINTK
2915 /*
2916  * Delayed printk version, for scheduler-internal messages:
2917  */
2918 #define PRINTK_PENDING_WAKEUP	0x01
2919 #define PRINTK_PENDING_OUTPUT	0x02
2920 
2921 static DEFINE_PER_CPU(int, printk_pending);
2922 
2923 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2924 {
2925 	int pending = __this_cpu_xchg(printk_pending, 0);
2926 
2927 	if (pending & PRINTK_PENDING_OUTPUT) {
2928 		/* If trylock fails, someone else is doing the printing */
2929 		if (console_trylock())
2930 			console_unlock();
2931 	}
2932 
2933 	if (pending & PRINTK_PENDING_WAKEUP)
2934 		wake_up_interruptible(&log_wait);
2935 }
2936 
2937 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2938 	.func = wake_up_klogd_work_func,
2939 	.flags = IRQ_WORK_LAZY,
2940 };
2941 
2942 void wake_up_klogd(void)
2943 {
2944 	preempt_disable();
2945 	if (waitqueue_active(&log_wait)) {
2946 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2947 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2948 	}
2949 	preempt_enable();
2950 }
2951 
2952 void defer_console_output(void)
2953 {
2954 	preempt_disable();
2955 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2956 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2957 	preempt_enable();
2958 }
2959 
2960 int vprintk_deferred(const char *fmt, va_list args)
2961 {
2962 	int r;
2963 
2964 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2965 	defer_console_output();
2966 
2967 	return r;
2968 }
2969 
2970 int printk_deferred(const char *fmt, ...)
2971 {
2972 	va_list args;
2973 	int r;
2974 
2975 	va_start(args, fmt);
2976 	r = vprintk_deferred(fmt, args);
2977 	va_end(args);
2978 
2979 	return r;
2980 }
2981 
2982 /*
2983  * printk rate limiting, lifted from the networking subsystem.
2984  *
2985  * This enforces a rate limit: not more than 10 kernel messages
2986  * every 5s to make a denial-of-service attack impossible.
2987  */
2988 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2989 
2990 int __printk_ratelimit(const char *func)
2991 {
2992 	return ___ratelimit(&printk_ratelimit_state, func);
2993 }
2994 EXPORT_SYMBOL(__printk_ratelimit);
2995 
2996 /**
2997  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2998  * @caller_jiffies: pointer to caller's state
2999  * @interval_msecs: minimum interval between prints
3000  *
3001  * printk_timed_ratelimit() returns true if more than @interval_msecs
3002  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3003  * returned true.
3004  */
3005 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3006 			unsigned int interval_msecs)
3007 {
3008 	unsigned long elapsed = jiffies - *caller_jiffies;
3009 
3010 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3011 		return false;
3012 
3013 	*caller_jiffies = jiffies;
3014 	return true;
3015 }
3016 EXPORT_SYMBOL(printk_timed_ratelimit);
3017 
3018 static DEFINE_SPINLOCK(dump_list_lock);
3019 static LIST_HEAD(dump_list);
3020 
3021 /**
3022  * kmsg_dump_register - register a kernel log dumper.
3023  * @dumper: pointer to the kmsg_dumper structure
3024  *
3025  * Adds a kernel log dumper to the system. The dump callback in the
3026  * structure will be called when the kernel oopses or panics and must be
3027  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3028  */
3029 int kmsg_dump_register(struct kmsg_dumper *dumper)
3030 {
3031 	unsigned long flags;
3032 	int err = -EBUSY;
3033 
3034 	/* The dump callback needs to be set */
3035 	if (!dumper->dump)
3036 		return -EINVAL;
3037 
3038 	spin_lock_irqsave(&dump_list_lock, flags);
3039 	/* Don't allow registering multiple times */
3040 	if (!dumper->registered) {
3041 		dumper->registered = 1;
3042 		list_add_tail_rcu(&dumper->list, &dump_list);
3043 		err = 0;
3044 	}
3045 	spin_unlock_irqrestore(&dump_list_lock, flags);
3046 
3047 	return err;
3048 }
3049 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3050 
3051 /**
3052  * kmsg_dump_unregister - unregister a kmsg dumper.
3053  * @dumper: pointer to the kmsg_dumper structure
3054  *
3055  * Removes a dump device from the system. Returns zero on success and
3056  * %-EINVAL otherwise.
3057  */
3058 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3059 {
3060 	unsigned long flags;
3061 	int err = -EINVAL;
3062 
3063 	spin_lock_irqsave(&dump_list_lock, flags);
3064 	if (dumper->registered) {
3065 		dumper->registered = 0;
3066 		list_del_rcu(&dumper->list);
3067 		err = 0;
3068 	}
3069 	spin_unlock_irqrestore(&dump_list_lock, flags);
3070 	synchronize_rcu();
3071 
3072 	return err;
3073 }
3074 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3075 
3076 static bool always_kmsg_dump;
3077 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3078 
3079 /**
3080  * kmsg_dump - dump kernel log to kernel message dumpers.
3081  * @reason: the reason (oops, panic etc) for dumping
3082  *
3083  * Call each of the registered dumper's dump() callback, which can
3084  * retrieve the kmsg records with kmsg_dump_get_line() or
3085  * kmsg_dump_get_buffer().
3086  */
3087 void kmsg_dump(enum kmsg_dump_reason reason)
3088 {
3089 	struct kmsg_dumper *dumper;
3090 	unsigned long flags;
3091 
3092 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3093 		return;
3094 
3095 	rcu_read_lock();
3096 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3097 		if (dumper->max_reason && reason > dumper->max_reason)
3098 			continue;
3099 
3100 		/* initialize iterator with data about the stored records */
3101 		dumper->active = true;
3102 
3103 		logbuf_lock_irqsave(flags);
3104 		dumper->cur_seq = clear_seq;
3105 		dumper->cur_idx = clear_idx;
3106 		dumper->next_seq = log_next_seq;
3107 		dumper->next_idx = log_next_idx;
3108 		logbuf_unlock_irqrestore(flags);
3109 
3110 		/* invoke dumper which will iterate over records */
3111 		dumper->dump(dumper, reason);
3112 
3113 		/* reset iterator */
3114 		dumper->active = false;
3115 	}
3116 	rcu_read_unlock();
3117 }
3118 
3119 /**
3120  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3121  * @dumper: registered kmsg dumper
3122  * @syslog: include the "<4>" prefixes
3123  * @line: buffer to copy the line to
3124  * @size: maximum size of the buffer
3125  * @len: length of line placed into buffer
3126  *
3127  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3128  * record, and copy one record into the provided buffer.
3129  *
3130  * Consecutive calls will return the next available record moving
3131  * towards the end of the buffer with the youngest messages.
3132  *
3133  * A return value of FALSE indicates that there are no more records to
3134  * read.
3135  *
3136  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3137  */
3138 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3139 			       char *line, size_t size, size_t *len)
3140 {
3141 	struct printk_log *msg;
3142 	size_t l = 0;
3143 	bool ret = false;
3144 
3145 	if (!dumper->active)
3146 		goto out;
3147 
3148 	if (dumper->cur_seq < log_first_seq) {
3149 		/* messages are gone, move to first available one */
3150 		dumper->cur_seq = log_first_seq;
3151 		dumper->cur_idx = log_first_idx;
3152 	}
3153 
3154 	/* last entry */
3155 	if (dumper->cur_seq >= log_next_seq)
3156 		goto out;
3157 
3158 	msg = log_from_idx(dumper->cur_idx);
3159 	l = msg_print_text(msg, syslog, printk_time, line, size);
3160 
3161 	dumper->cur_idx = log_next(dumper->cur_idx);
3162 	dumper->cur_seq++;
3163 	ret = true;
3164 out:
3165 	if (len)
3166 		*len = l;
3167 	return ret;
3168 }
3169 
3170 /**
3171  * kmsg_dump_get_line - retrieve one kmsg log line
3172  * @dumper: registered kmsg dumper
3173  * @syslog: include the "<4>" prefixes
3174  * @line: buffer to copy the line to
3175  * @size: maximum size of the buffer
3176  * @len: length of line placed into buffer
3177  *
3178  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3179  * record, and copy one record into the provided buffer.
3180  *
3181  * Consecutive calls will return the next available record moving
3182  * towards the end of the buffer with the youngest messages.
3183  *
3184  * A return value of FALSE indicates that there are no more records to
3185  * read.
3186  */
3187 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3188 			char *line, size_t size, size_t *len)
3189 {
3190 	unsigned long flags;
3191 	bool ret;
3192 
3193 	logbuf_lock_irqsave(flags);
3194 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3195 	logbuf_unlock_irqrestore(flags);
3196 
3197 	return ret;
3198 }
3199 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3200 
3201 /**
3202  * kmsg_dump_get_buffer - copy kmsg log lines
3203  * @dumper: registered kmsg dumper
3204  * @syslog: include the "<4>" prefixes
3205  * @buf: buffer to copy the line to
3206  * @size: maximum size of the buffer
3207  * @len: length of line placed into buffer
3208  *
3209  * Start at the end of the kmsg buffer and fill the provided buffer
3210  * with as many of the the *youngest* kmsg records that fit into it.
3211  * If the buffer is large enough, all available kmsg records will be
3212  * copied with a single call.
3213  *
3214  * Consecutive calls will fill the buffer with the next block of
3215  * available older records, not including the earlier retrieved ones.
3216  *
3217  * A return value of FALSE indicates that there are no more records to
3218  * read.
3219  */
3220 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3221 			  char *buf, size_t size, size_t *len)
3222 {
3223 	unsigned long flags;
3224 	u64 seq;
3225 	u32 idx;
3226 	u64 next_seq;
3227 	u32 next_idx;
3228 	size_t l = 0;
3229 	bool ret = false;
3230 	bool time = printk_time;
3231 
3232 	if (!dumper->active)
3233 		goto out;
3234 
3235 	logbuf_lock_irqsave(flags);
3236 	if (dumper->cur_seq < log_first_seq) {
3237 		/* messages are gone, move to first available one */
3238 		dumper->cur_seq = log_first_seq;
3239 		dumper->cur_idx = log_first_idx;
3240 	}
3241 
3242 	/* last entry */
3243 	if (dumper->cur_seq >= dumper->next_seq) {
3244 		logbuf_unlock_irqrestore(flags);
3245 		goto out;
3246 	}
3247 
3248 	/* calculate length of entire buffer */
3249 	seq = dumper->cur_seq;
3250 	idx = dumper->cur_idx;
3251 	while (seq < dumper->next_seq) {
3252 		struct printk_log *msg = log_from_idx(idx);
3253 
3254 		l += msg_print_text(msg, true, time, NULL, 0);
3255 		idx = log_next(idx);
3256 		seq++;
3257 	}
3258 
3259 	/* move first record forward until length fits into the buffer */
3260 	seq = dumper->cur_seq;
3261 	idx = dumper->cur_idx;
3262 	while (l > size && seq < dumper->next_seq) {
3263 		struct printk_log *msg = log_from_idx(idx);
3264 
3265 		l -= msg_print_text(msg, true, time, NULL, 0);
3266 		idx = log_next(idx);
3267 		seq++;
3268 	}
3269 
3270 	/* last message in next interation */
3271 	next_seq = seq;
3272 	next_idx = idx;
3273 
3274 	l = 0;
3275 	while (seq < dumper->next_seq) {
3276 		struct printk_log *msg = log_from_idx(idx);
3277 
3278 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3279 		idx = log_next(idx);
3280 		seq++;
3281 	}
3282 
3283 	dumper->next_seq = next_seq;
3284 	dumper->next_idx = next_idx;
3285 	ret = true;
3286 	logbuf_unlock_irqrestore(flags);
3287 out:
3288 	if (len)
3289 		*len = l;
3290 	return ret;
3291 }
3292 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3293 
3294 /**
3295  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3296  * @dumper: registered kmsg dumper
3297  *
3298  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3299  * kmsg_dump_get_buffer() can be called again and used multiple
3300  * times within the same dumper.dump() callback.
3301  *
3302  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3303  */
3304 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3305 {
3306 	dumper->cur_seq = clear_seq;
3307 	dumper->cur_idx = clear_idx;
3308 	dumper->next_seq = log_next_seq;
3309 	dumper->next_idx = log_next_idx;
3310 }
3311 
3312 /**
3313  * kmsg_dump_rewind - reset the interator
3314  * @dumper: registered kmsg dumper
3315  *
3316  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3317  * kmsg_dump_get_buffer() can be called again and used multiple
3318  * times within the same dumper.dump() callback.
3319  */
3320 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3321 {
3322 	unsigned long flags;
3323 
3324 	logbuf_lock_irqsave(flags);
3325 	kmsg_dump_rewind_nolock(dumper);
3326 	logbuf_unlock_irqrestore(flags);
3327 }
3328 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3329 
3330 #endif
3331