1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/tty.h> 24 #include <linux/tty_driver.h> 25 #include <linux/console.h> 26 #include <linux/init.h> 27 #include <linux/jiffies.h> 28 #include <linux/nmi.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/delay.h> 32 #include <linux/smp.h> 33 #include <linux/security.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/crash_core.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 69 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 70 EXPORT_SYMBOL(ignore_console_lock_warning); 71 72 /* 73 * Low level drivers may need that to know if they can schedule in 74 * their unblank() callback or not. So let's export it. 75 */ 76 int oops_in_progress; 77 EXPORT_SYMBOL(oops_in_progress); 78 79 /* 80 * console_sem protects the console_drivers list, and also 81 * provides serialisation for access to the entire console 82 * driver system. 83 */ 84 static DEFINE_SEMAPHORE(console_sem); 85 struct console *console_drivers; 86 EXPORT_SYMBOL_GPL(console_drivers); 87 88 #ifdef CONFIG_LOCKDEP 89 static struct lockdep_map console_lock_dep_map = { 90 .name = "console_lock" 91 }; 92 #endif 93 94 enum devkmsg_log_bits { 95 __DEVKMSG_LOG_BIT_ON = 0, 96 __DEVKMSG_LOG_BIT_OFF, 97 __DEVKMSG_LOG_BIT_LOCK, 98 }; 99 100 enum devkmsg_log_masks { 101 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 102 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 103 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 104 }; 105 106 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 107 #define DEVKMSG_LOG_MASK_DEFAULT 0 108 109 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 110 111 static int __control_devkmsg(char *str) 112 { 113 if (!str) 114 return -EINVAL; 115 116 if (!strncmp(str, "on", 2)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_ON; 118 return 2; 119 } else if (!strncmp(str, "off", 3)) { 120 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 121 return 3; 122 } else if (!strncmp(str, "ratelimit", 9)) { 123 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 124 return 9; 125 } 126 return -EINVAL; 127 } 128 129 static int __init control_devkmsg(char *str) 130 { 131 if (__control_devkmsg(str) < 0) 132 return 1; 133 134 /* 135 * Set sysctl string accordingly: 136 */ 137 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 138 strcpy(devkmsg_log_str, "on"); 139 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 140 strcpy(devkmsg_log_str, "off"); 141 /* else "ratelimit" which is set by default. */ 142 143 /* 144 * Sysctl cannot change it anymore. The kernel command line setting of 145 * this parameter is to force the setting to be permanent throughout the 146 * runtime of the system. This is a precation measure against userspace 147 * trying to be a smarta** and attempting to change it up on us. 148 */ 149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 150 151 return 0; 152 } 153 __setup("printk.devkmsg=", control_devkmsg); 154 155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 156 157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 158 void __user *buffer, size_t *lenp, loff_t *ppos) 159 { 160 char old_str[DEVKMSG_STR_MAX_SIZE]; 161 unsigned int old; 162 int err; 163 164 if (write) { 165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 166 return -EINVAL; 167 168 old = devkmsg_log; 169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 170 } 171 172 err = proc_dostring(table, write, buffer, lenp, ppos); 173 if (err) 174 return err; 175 176 if (write) { 177 err = __control_devkmsg(devkmsg_log_str); 178 179 /* 180 * Do not accept an unknown string OR a known string with 181 * trailing crap... 182 */ 183 if (err < 0 || (err + 1 != *lenp)) { 184 185 /* ... and restore old setting. */ 186 devkmsg_log = old; 187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 188 189 return -EINVAL; 190 } 191 } 192 193 return 0; 194 } 195 196 /* Number of registered extended console drivers. */ 197 static int nr_ext_console_drivers; 198 199 /* 200 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 201 * macros instead of functions so that _RET_IP_ contains useful information. 202 */ 203 #define down_console_sem() do { \ 204 down(&console_sem);\ 205 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 206 } while (0) 207 208 static int __down_trylock_console_sem(unsigned long ip) 209 { 210 int lock_failed; 211 unsigned long flags; 212 213 /* 214 * Here and in __up_console_sem() we need to be in safe mode, 215 * because spindump/WARN/etc from under console ->lock will 216 * deadlock in printk()->down_trylock_console_sem() otherwise. 217 */ 218 printk_safe_enter_irqsave(flags); 219 lock_failed = down_trylock(&console_sem); 220 printk_safe_exit_irqrestore(flags); 221 222 if (lock_failed) 223 return 1; 224 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 225 return 0; 226 } 227 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 228 229 static void __up_console_sem(unsigned long ip) 230 { 231 unsigned long flags; 232 233 mutex_release(&console_lock_dep_map, 1, ip); 234 235 printk_safe_enter_irqsave(flags); 236 up(&console_sem); 237 printk_safe_exit_irqrestore(flags); 238 } 239 #define up_console_sem() __up_console_sem(_RET_IP_) 240 241 /* 242 * This is used for debugging the mess that is the VT code by 243 * keeping track if we have the console semaphore held. It's 244 * definitely not the perfect debug tool (we don't know if _WE_ 245 * hold it and are racing, but it helps tracking those weird code 246 * paths in the console code where we end up in places I want 247 * locked without the console sempahore held). 248 */ 249 static int console_locked, console_suspended; 250 251 /* 252 * If exclusive_console is non-NULL then only this console is to be printed to. 253 */ 254 static struct console *exclusive_console; 255 256 /* 257 * Array of consoles built from command line options (console=) 258 */ 259 260 #define MAX_CMDLINECONSOLES 8 261 262 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 263 264 static int preferred_console = -1; 265 int console_set_on_cmdline; 266 EXPORT_SYMBOL(console_set_on_cmdline); 267 268 /* Flag: console code may call schedule() */ 269 static int console_may_schedule; 270 271 enum con_msg_format_flags { 272 MSG_FORMAT_DEFAULT = 0, 273 MSG_FORMAT_SYSLOG = (1 << 0), 274 }; 275 276 static int console_msg_format = MSG_FORMAT_DEFAULT; 277 278 /* 279 * The printk log buffer consists of a chain of concatenated variable 280 * length records. Every record starts with a record header, containing 281 * the overall length of the record. 282 * 283 * The heads to the first and last entry in the buffer, as well as the 284 * sequence numbers of these entries are maintained when messages are 285 * stored. 286 * 287 * If the heads indicate available messages, the length in the header 288 * tells the start next message. A length == 0 for the next message 289 * indicates a wrap-around to the beginning of the buffer. 290 * 291 * Every record carries the monotonic timestamp in microseconds, as well as 292 * the standard userspace syslog level and syslog facility. The usual 293 * kernel messages use LOG_KERN; userspace-injected messages always carry 294 * a matching syslog facility, by default LOG_USER. The origin of every 295 * message can be reliably determined that way. 296 * 297 * The human readable log message directly follows the message header. The 298 * length of the message text is stored in the header, the stored message 299 * is not terminated. 300 * 301 * Optionally, a message can carry a dictionary of properties (key/value pairs), 302 * to provide userspace with a machine-readable message context. 303 * 304 * Examples for well-defined, commonly used property names are: 305 * DEVICE=b12:8 device identifier 306 * b12:8 block dev_t 307 * c127:3 char dev_t 308 * n8 netdev ifindex 309 * +sound:card0 subsystem:devname 310 * SUBSYSTEM=pci driver-core subsystem name 311 * 312 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 313 * follows directly after a '=' character. Every property is terminated by 314 * a '\0' character. The last property is not terminated. 315 * 316 * Example of a message structure: 317 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 318 * 0008 34 00 record is 52 bytes long 319 * 000a 0b 00 text is 11 bytes long 320 * 000c 1f 00 dictionary is 23 bytes long 321 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 322 * 0010 69 74 27 73 20 61 20 6c "it's a l" 323 * 69 6e 65 "ine" 324 * 001b 44 45 56 49 43 "DEVIC" 325 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 326 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 327 * 67 "g" 328 * 0032 00 00 00 padding to next message header 329 * 330 * The 'struct printk_log' buffer header must never be directly exported to 331 * userspace, it is a kernel-private implementation detail that might 332 * need to be changed in the future, when the requirements change. 333 * 334 * /dev/kmsg exports the structured data in the following line format: 335 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 336 * 337 * Users of the export format should ignore possible additional values 338 * separated by ',', and find the message after the ';' character. 339 * 340 * The optional key/value pairs are attached as continuation lines starting 341 * with a space character and terminated by a newline. All possible 342 * non-prinatable characters are escaped in the "\xff" notation. 343 */ 344 345 enum log_flags { 346 LOG_NEWLINE = 2, /* text ended with a newline */ 347 LOG_CONT = 8, /* text is a fragment of a continuation line */ 348 }; 349 350 struct printk_log { 351 u64 ts_nsec; /* timestamp in nanoseconds */ 352 u16 len; /* length of entire record */ 353 u16 text_len; /* length of text buffer */ 354 u16 dict_len; /* length of dictionary buffer */ 355 u8 facility; /* syslog facility */ 356 u8 flags:5; /* internal record flags */ 357 u8 level:3; /* syslog level */ 358 #ifdef CONFIG_PRINTK_CALLER 359 u32 caller_id; /* thread id or processor id */ 360 #endif 361 } 362 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 363 __packed __aligned(4) 364 #endif 365 ; 366 367 /* 368 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 369 * within the scheduler's rq lock. It must be released before calling 370 * console_unlock() or anything else that might wake up a process. 371 */ 372 DEFINE_RAW_SPINLOCK(logbuf_lock); 373 374 /* 375 * Helper macros to lock/unlock logbuf_lock and switch between 376 * printk-safe/unsafe modes. 377 */ 378 #define logbuf_lock_irq() \ 379 do { \ 380 printk_safe_enter_irq(); \ 381 raw_spin_lock(&logbuf_lock); \ 382 } while (0) 383 384 #define logbuf_unlock_irq() \ 385 do { \ 386 raw_spin_unlock(&logbuf_lock); \ 387 printk_safe_exit_irq(); \ 388 } while (0) 389 390 #define logbuf_lock_irqsave(flags) \ 391 do { \ 392 printk_safe_enter_irqsave(flags); \ 393 raw_spin_lock(&logbuf_lock); \ 394 } while (0) 395 396 #define logbuf_unlock_irqrestore(flags) \ 397 do { \ 398 raw_spin_unlock(&logbuf_lock); \ 399 printk_safe_exit_irqrestore(flags); \ 400 } while (0) 401 402 #ifdef CONFIG_PRINTK 403 DECLARE_WAIT_QUEUE_HEAD(log_wait); 404 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 405 static u64 syslog_seq; 406 static u32 syslog_idx; 407 static size_t syslog_partial; 408 static bool syslog_time; 409 410 /* index and sequence number of the first record stored in the buffer */ 411 static u64 log_first_seq; 412 static u32 log_first_idx; 413 414 /* index and sequence number of the next record to store in the buffer */ 415 static u64 log_next_seq; 416 static u32 log_next_idx; 417 418 /* the next printk record to write to the console */ 419 static u64 console_seq; 420 static u32 console_idx; 421 static u64 exclusive_console_stop_seq; 422 423 /* the next printk record to read after the last 'clear' command */ 424 static u64 clear_seq; 425 static u32 clear_idx; 426 427 #ifdef CONFIG_PRINTK_CALLER 428 #define PREFIX_MAX 48 429 #else 430 #define PREFIX_MAX 32 431 #endif 432 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 433 434 #define LOG_LEVEL(v) ((v) & 0x07) 435 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 436 437 /* record buffer */ 438 #define LOG_ALIGN __alignof__(struct printk_log) 439 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 440 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 441 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 442 static char *log_buf = __log_buf; 443 static u32 log_buf_len = __LOG_BUF_LEN; 444 445 /* Return log buffer address */ 446 char *log_buf_addr_get(void) 447 { 448 return log_buf; 449 } 450 451 /* Return log buffer size */ 452 u32 log_buf_len_get(void) 453 { 454 return log_buf_len; 455 } 456 457 /* human readable text of the record */ 458 static char *log_text(const struct printk_log *msg) 459 { 460 return (char *)msg + sizeof(struct printk_log); 461 } 462 463 /* optional key/value pair dictionary attached to the record */ 464 static char *log_dict(const struct printk_log *msg) 465 { 466 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 467 } 468 469 /* get record by index; idx must point to valid msg */ 470 static struct printk_log *log_from_idx(u32 idx) 471 { 472 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 473 474 /* 475 * A length == 0 record is the end of buffer marker. Wrap around and 476 * read the message at the start of the buffer. 477 */ 478 if (!msg->len) 479 return (struct printk_log *)log_buf; 480 return msg; 481 } 482 483 /* get next record; idx must point to valid msg */ 484 static u32 log_next(u32 idx) 485 { 486 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 487 488 /* length == 0 indicates the end of the buffer; wrap */ 489 /* 490 * A length == 0 record is the end of buffer marker. Wrap around and 491 * read the message at the start of the buffer as *this* one, and 492 * return the one after that. 493 */ 494 if (!msg->len) { 495 msg = (struct printk_log *)log_buf; 496 return msg->len; 497 } 498 return idx + msg->len; 499 } 500 501 /* 502 * Check whether there is enough free space for the given message. 503 * 504 * The same values of first_idx and next_idx mean that the buffer 505 * is either empty or full. 506 * 507 * If the buffer is empty, we must respect the position of the indexes. 508 * They cannot be reset to the beginning of the buffer. 509 */ 510 static int logbuf_has_space(u32 msg_size, bool empty) 511 { 512 u32 free; 513 514 if (log_next_idx > log_first_idx || empty) 515 free = max(log_buf_len - log_next_idx, log_first_idx); 516 else 517 free = log_first_idx - log_next_idx; 518 519 /* 520 * We need space also for an empty header that signalizes wrapping 521 * of the buffer. 522 */ 523 return free >= msg_size + sizeof(struct printk_log); 524 } 525 526 static int log_make_free_space(u32 msg_size) 527 { 528 while (log_first_seq < log_next_seq && 529 !logbuf_has_space(msg_size, false)) { 530 /* drop old messages until we have enough contiguous space */ 531 log_first_idx = log_next(log_first_idx); 532 log_first_seq++; 533 } 534 535 if (clear_seq < log_first_seq) { 536 clear_seq = log_first_seq; 537 clear_idx = log_first_idx; 538 } 539 540 /* sequence numbers are equal, so the log buffer is empty */ 541 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 542 return 0; 543 544 return -ENOMEM; 545 } 546 547 /* compute the message size including the padding bytes */ 548 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 549 { 550 u32 size; 551 552 size = sizeof(struct printk_log) + text_len + dict_len; 553 *pad_len = (-size) & (LOG_ALIGN - 1); 554 size += *pad_len; 555 556 return size; 557 } 558 559 /* 560 * Define how much of the log buffer we could take at maximum. The value 561 * must be greater than two. Note that only half of the buffer is available 562 * when the index points to the middle. 563 */ 564 #define MAX_LOG_TAKE_PART 4 565 static const char trunc_msg[] = "<truncated>"; 566 567 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 568 u16 *dict_len, u32 *pad_len) 569 { 570 /* 571 * The message should not take the whole buffer. Otherwise, it might 572 * get removed too soon. 573 */ 574 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 575 if (*text_len > max_text_len) 576 *text_len = max_text_len; 577 /* enable the warning message */ 578 *trunc_msg_len = strlen(trunc_msg); 579 /* disable the "dict" completely */ 580 *dict_len = 0; 581 /* compute the size again, count also the warning message */ 582 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 583 } 584 585 /* insert record into the buffer, discard old ones, update heads */ 586 static int log_store(u32 caller_id, int facility, int level, 587 enum log_flags flags, u64 ts_nsec, 588 const char *dict, u16 dict_len, 589 const char *text, u16 text_len) 590 { 591 struct printk_log *msg; 592 u32 size, pad_len; 593 u16 trunc_msg_len = 0; 594 595 /* number of '\0' padding bytes to next message */ 596 size = msg_used_size(text_len, dict_len, &pad_len); 597 598 if (log_make_free_space(size)) { 599 /* truncate the message if it is too long for empty buffer */ 600 size = truncate_msg(&text_len, &trunc_msg_len, 601 &dict_len, &pad_len); 602 /* survive when the log buffer is too small for trunc_msg */ 603 if (log_make_free_space(size)) 604 return 0; 605 } 606 607 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 608 /* 609 * This message + an additional empty header does not fit 610 * at the end of the buffer. Add an empty header with len == 0 611 * to signify a wrap around. 612 */ 613 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 614 log_next_idx = 0; 615 } 616 617 /* fill message */ 618 msg = (struct printk_log *)(log_buf + log_next_idx); 619 memcpy(log_text(msg), text, text_len); 620 msg->text_len = text_len; 621 if (trunc_msg_len) { 622 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 623 msg->text_len += trunc_msg_len; 624 } 625 memcpy(log_dict(msg), dict, dict_len); 626 msg->dict_len = dict_len; 627 msg->facility = facility; 628 msg->level = level & 7; 629 msg->flags = flags & 0x1f; 630 if (ts_nsec > 0) 631 msg->ts_nsec = ts_nsec; 632 else 633 msg->ts_nsec = local_clock(); 634 #ifdef CONFIG_PRINTK_CALLER 635 msg->caller_id = caller_id; 636 #endif 637 memset(log_dict(msg) + dict_len, 0, pad_len); 638 msg->len = size; 639 640 /* insert message */ 641 log_next_idx += msg->len; 642 log_next_seq++; 643 644 return msg->text_len; 645 } 646 647 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 648 649 static int syslog_action_restricted(int type) 650 { 651 if (dmesg_restrict) 652 return 1; 653 /* 654 * Unless restricted, we allow "read all" and "get buffer size" 655 * for everybody. 656 */ 657 return type != SYSLOG_ACTION_READ_ALL && 658 type != SYSLOG_ACTION_SIZE_BUFFER; 659 } 660 661 static int check_syslog_permissions(int type, int source) 662 { 663 /* 664 * If this is from /proc/kmsg and we've already opened it, then we've 665 * already done the capabilities checks at open time. 666 */ 667 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 668 goto ok; 669 670 if (syslog_action_restricted(type)) { 671 if (capable(CAP_SYSLOG)) 672 goto ok; 673 /* 674 * For historical reasons, accept CAP_SYS_ADMIN too, with 675 * a warning. 676 */ 677 if (capable(CAP_SYS_ADMIN)) { 678 pr_warn_once("%s (%d): Attempt to access syslog with " 679 "CAP_SYS_ADMIN but no CAP_SYSLOG " 680 "(deprecated).\n", 681 current->comm, task_pid_nr(current)); 682 goto ok; 683 } 684 return -EPERM; 685 } 686 ok: 687 return security_syslog(type); 688 } 689 690 static void append_char(char **pp, char *e, char c) 691 { 692 if (*pp < e) 693 *(*pp)++ = c; 694 } 695 696 static ssize_t msg_print_ext_header(char *buf, size_t size, 697 struct printk_log *msg, u64 seq) 698 { 699 u64 ts_usec = msg->ts_nsec; 700 char caller[20]; 701 #ifdef CONFIG_PRINTK_CALLER 702 u32 id = msg->caller_id; 703 704 snprintf(caller, sizeof(caller), ",caller=%c%u", 705 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 706 #else 707 caller[0] = '\0'; 708 #endif 709 710 do_div(ts_usec, 1000); 711 712 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 713 (msg->facility << 3) | msg->level, seq, ts_usec, 714 msg->flags & LOG_CONT ? 'c' : '-', caller); 715 } 716 717 static ssize_t msg_print_ext_body(char *buf, size_t size, 718 char *dict, size_t dict_len, 719 char *text, size_t text_len) 720 { 721 char *p = buf, *e = buf + size; 722 size_t i; 723 724 /* escape non-printable characters */ 725 for (i = 0; i < text_len; i++) { 726 unsigned char c = text[i]; 727 728 if (c < ' ' || c >= 127 || c == '\\') 729 p += scnprintf(p, e - p, "\\x%02x", c); 730 else 731 append_char(&p, e, c); 732 } 733 append_char(&p, e, '\n'); 734 735 if (dict_len) { 736 bool line = true; 737 738 for (i = 0; i < dict_len; i++) { 739 unsigned char c = dict[i]; 740 741 if (line) { 742 append_char(&p, e, ' '); 743 line = false; 744 } 745 746 if (c == '\0') { 747 append_char(&p, e, '\n'); 748 line = true; 749 continue; 750 } 751 752 if (c < ' ' || c >= 127 || c == '\\') { 753 p += scnprintf(p, e - p, "\\x%02x", c); 754 continue; 755 } 756 757 append_char(&p, e, c); 758 } 759 append_char(&p, e, '\n'); 760 } 761 762 return p - buf; 763 } 764 765 /* /dev/kmsg - userspace message inject/listen interface */ 766 struct devkmsg_user { 767 u64 seq; 768 u32 idx; 769 struct ratelimit_state rs; 770 struct mutex lock; 771 char buf[CONSOLE_EXT_LOG_MAX]; 772 }; 773 774 static __printf(3, 4) __cold 775 int devkmsg_emit(int facility, int level, const char *fmt, ...) 776 { 777 va_list args; 778 int r; 779 780 va_start(args, fmt); 781 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 782 va_end(args); 783 784 return r; 785 } 786 787 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 788 { 789 char *buf, *line; 790 int level = default_message_loglevel; 791 int facility = 1; /* LOG_USER */ 792 struct file *file = iocb->ki_filp; 793 struct devkmsg_user *user = file->private_data; 794 size_t len = iov_iter_count(from); 795 ssize_t ret = len; 796 797 if (!user || len > LOG_LINE_MAX) 798 return -EINVAL; 799 800 /* Ignore when user logging is disabled. */ 801 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 802 return len; 803 804 /* Ratelimit when not explicitly enabled. */ 805 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 806 if (!___ratelimit(&user->rs, current->comm)) 807 return ret; 808 } 809 810 buf = kmalloc(len+1, GFP_KERNEL); 811 if (buf == NULL) 812 return -ENOMEM; 813 814 buf[len] = '\0'; 815 if (!copy_from_iter_full(buf, len, from)) { 816 kfree(buf); 817 return -EFAULT; 818 } 819 820 /* 821 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 822 * the decimal value represents 32bit, the lower 3 bit are the log 823 * level, the rest are the log facility. 824 * 825 * If no prefix or no userspace facility is specified, we 826 * enforce LOG_USER, to be able to reliably distinguish 827 * kernel-generated messages from userspace-injected ones. 828 */ 829 line = buf; 830 if (line[0] == '<') { 831 char *endp = NULL; 832 unsigned int u; 833 834 u = simple_strtoul(line + 1, &endp, 10); 835 if (endp && endp[0] == '>') { 836 level = LOG_LEVEL(u); 837 if (LOG_FACILITY(u) != 0) 838 facility = LOG_FACILITY(u); 839 endp++; 840 len -= endp - line; 841 line = endp; 842 } 843 } 844 845 devkmsg_emit(facility, level, "%s", line); 846 kfree(buf); 847 return ret; 848 } 849 850 static ssize_t devkmsg_read(struct file *file, char __user *buf, 851 size_t count, loff_t *ppos) 852 { 853 struct devkmsg_user *user = file->private_data; 854 struct printk_log *msg; 855 size_t len; 856 ssize_t ret; 857 858 if (!user) 859 return -EBADF; 860 861 ret = mutex_lock_interruptible(&user->lock); 862 if (ret) 863 return ret; 864 865 logbuf_lock_irq(); 866 while (user->seq == log_next_seq) { 867 if (file->f_flags & O_NONBLOCK) { 868 ret = -EAGAIN; 869 logbuf_unlock_irq(); 870 goto out; 871 } 872 873 logbuf_unlock_irq(); 874 ret = wait_event_interruptible(log_wait, 875 user->seq != log_next_seq); 876 if (ret) 877 goto out; 878 logbuf_lock_irq(); 879 } 880 881 if (user->seq < log_first_seq) { 882 /* our last seen message is gone, return error and reset */ 883 user->idx = log_first_idx; 884 user->seq = log_first_seq; 885 ret = -EPIPE; 886 logbuf_unlock_irq(); 887 goto out; 888 } 889 890 msg = log_from_idx(user->idx); 891 len = msg_print_ext_header(user->buf, sizeof(user->buf), 892 msg, user->seq); 893 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 894 log_dict(msg), msg->dict_len, 895 log_text(msg), msg->text_len); 896 897 user->idx = log_next(user->idx); 898 user->seq++; 899 logbuf_unlock_irq(); 900 901 if (len > count) { 902 ret = -EINVAL; 903 goto out; 904 } 905 906 if (copy_to_user(buf, user->buf, len)) { 907 ret = -EFAULT; 908 goto out; 909 } 910 ret = len; 911 out: 912 mutex_unlock(&user->lock); 913 return ret; 914 } 915 916 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 917 { 918 struct devkmsg_user *user = file->private_data; 919 loff_t ret = 0; 920 921 if (!user) 922 return -EBADF; 923 if (offset) 924 return -ESPIPE; 925 926 logbuf_lock_irq(); 927 switch (whence) { 928 case SEEK_SET: 929 /* the first record */ 930 user->idx = log_first_idx; 931 user->seq = log_first_seq; 932 break; 933 case SEEK_DATA: 934 /* 935 * The first record after the last SYSLOG_ACTION_CLEAR, 936 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 937 * changes no global state, and does not clear anything. 938 */ 939 user->idx = clear_idx; 940 user->seq = clear_seq; 941 break; 942 case SEEK_END: 943 /* after the last record */ 944 user->idx = log_next_idx; 945 user->seq = log_next_seq; 946 break; 947 default: 948 ret = -EINVAL; 949 } 950 logbuf_unlock_irq(); 951 return ret; 952 } 953 954 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 955 { 956 struct devkmsg_user *user = file->private_data; 957 __poll_t ret = 0; 958 959 if (!user) 960 return EPOLLERR|EPOLLNVAL; 961 962 poll_wait(file, &log_wait, wait); 963 964 logbuf_lock_irq(); 965 if (user->seq < log_next_seq) { 966 /* return error when data has vanished underneath us */ 967 if (user->seq < log_first_seq) 968 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 969 else 970 ret = EPOLLIN|EPOLLRDNORM; 971 } 972 logbuf_unlock_irq(); 973 974 return ret; 975 } 976 977 static int devkmsg_open(struct inode *inode, struct file *file) 978 { 979 struct devkmsg_user *user; 980 int err; 981 982 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 983 return -EPERM; 984 985 /* write-only does not need any file context */ 986 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 987 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 988 SYSLOG_FROM_READER); 989 if (err) 990 return err; 991 } 992 993 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 994 if (!user) 995 return -ENOMEM; 996 997 ratelimit_default_init(&user->rs); 998 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 999 1000 mutex_init(&user->lock); 1001 1002 logbuf_lock_irq(); 1003 user->idx = log_first_idx; 1004 user->seq = log_first_seq; 1005 logbuf_unlock_irq(); 1006 1007 file->private_data = user; 1008 return 0; 1009 } 1010 1011 static int devkmsg_release(struct inode *inode, struct file *file) 1012 { 1013 struct devkmsg_user *user = file->private_data; 1014 1015 if (!user) 1016 return 0; 1017 1018 ratelimit_state_exit(&user->rs); 1019 1020 mutex_destroy(&user->lock); 1021 kfree(user); 1022 return 0; 1023 } 1024 1025 const struct file_operations kmsg_fops = { 1026 .open = devkmsg_open, 1027 .read = devkmsg_read, 1028 .write_iter = devkmsg_write, 1029 .llseek = devkmsg_llseek, 1030 .poll = devkmsg_poll, 1031 .release = devkmsg_release, 1032 }; 1033 1034 #ifdef CONFIG_CRASH_CORE 1035 /* 1036 * This appends the listed symbols to /proc/vmcore 1037 * 1038 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1039 * obtain access to symbols that are otherwise very difficult to locate. These 1040 * symbols are specifically used so that utilities can access and extract the 1041 * dmesg log from a vmcore file after a crash. 1042 */ 1043 void log_buf_vmcoreinfo_setup(void) 1044 { 1045 VMCOREINFO_SYMBOL(log_buf); 1046 VMCOREINFO_SYMBOL(log_buf_len); 1047 VMCOREINFO_SYMBOL(log_first_idx); 1048 VMCOREINFO_SYMBOL(clear_idx); 1049 VMCOREINFO_SYMBOL(log_next_idx); 1050 /* 1051 * Export struct printk_log size and field offsets. User space tools can 1052 * parse it and detect any changes to structure down the line. 1053 */ 1054 VMCOREINFO_STRUCT_SIZE(printk_log); 1055 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1056 VMCOREINFO_OFFSET(printk_log, len); 1057 VMCOREINFO_OFFSET(printk_log, text_len); 1058 VMCOREINFO_OFFSET(printk_log, dict_len); 1059 #ifdef CONFIG_PRINTK_CALLER 1060 VMCOREINFO_OFFSET(printk_log, caller_id); 1061 #endif 1062 } 1063 #endif 1064 1065 /* requested log_buf_len from kernel cmdline */ 1066 static unsigned long __initdata new_log_buf_len; 1067 1068 /* we practice scaling the ring buffer by powers of 2 */ 1069 static void __init log_buf_len_update(u64 size) 1070 { 1071 if (size > (u64)LOG_BUF_LEN_MAX) { 1072 size = (u64)LOG_BUF_LEN_MAX; 1073 pr_err("log_buf over 2G is not supported.\n"); 1074 } 1075 1076 if (size) 1077 size = roundup_pow_of_two(size); 1078 if (size > log_buf_len) 1079 new_log_buf_len = (unsigned long)size; 1080 } 1081 1082 /* save requested log_buf_len since it's too early to process it */ 1083 static int __init log_buf_len_setup(char *str) 1084 { 1085 u64 size; 1086 1087 if (!str) 1088 return -EINVAL; 1089 1090 size = memparse(str, &str); 1091 1092 log_buf_len_update(size); 1093 1094 return 0; 1095 } 1096 early_param("log_buf_len", log_buf_len_setup); 1097 1098 #ifdef CONFIG_SMP 1099 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1100 1101 static void __init log_buf_add_cpu(void) 1102 { 1103 unsigned int cpu_extra; 1104 1105 /* 1106 * archs should set up cpu_possible_bits properly with 1107 * set_cpu_possible() after setup_arch() but just in 1108 * case lets ensure this is valid. 1109 */ 1110 if (num_possible_cpus() == 1) 1111 return; 1112 1113 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1114 1115 /* by default this will only continue through for large > 64 CPUs */ 1116 if (cpu_extra <= __LOG_BUF_LEN / 2) 1117 return; 1118 1119 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1120 __LOG_CPU_MAX_BUF_LEN); 1121 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1122 cpu_extra); 1123 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1124 1125 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1126 } 1127 #else /* !CONFIG_SMP */ 1128 static inline void log_buf_add_cpu(void) {} 1129 #endif /* CONFIG_SMP */ 1130 1131 void __init setup_log_buf(int early) 1132 { 1133 unsigned long flags; 1134 char *new_log_buf; 1135 unsigned int free; 1136 1137 if (log_buf != __log_buf) 1138 return; 1139 1140 if (!early && !new_log_buf_len) 1141 log_buf_add_cpu(); 1142 1143 if (!new_log_buf_len) 1144 return; 1145 1146 if (early) { 1147 new_log_buf = 1148 memblock_alloc(new_log_buf_len, LOG_ALIGN); 1149 } else { 1150 new_log_buf = memblock_alloc_nopanic(new_log_buf_len, 1151 LOG_ALIGN); 1152 } 1153 1154 if (unlikely(!new_log_buf)) { 1155 pr_err("log_buf_len: %lu bytes not available\n", 1156 new_log_buf_len); 1157 return; 1158 } 1159 1160 logbuf_lock_irqsave(flags); 1161 log_buf_len = new_log_buf_len; 1162 log_buf = new_log_buf; 1163 new_log_buf_len = 0; 1164 free = __LOG_BUF_LEN - log_next_idx; 1165 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1166 logbuf_unlock_irqrestore(flags); 1167 1168 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1169 pr_info("early log buf free: %u(%u%%)\n", 1170 free, (free * 100) / __LOG_BUF_LEN); 1171 } 1172 1173 static bool __read_mostly ignore_loglevel; 1174 1175 static int __init ignore_loglevel_setup(char *str) 1176 { 1177 ignore_loglevel = true; 1178 pr_info("debug: ignoring loglevel setting.\n"); 1179 1180 return 0; 1181 } 1182 1183 early_param("ignore_loglevel", ignore_loglevel_setup); 1184 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1185 MODULE_PARM_DESC(ignore_loglevel, 1186 "ignore loglevel setting (prints all kernel messages to the console)"); 1187 1188 static bool suppress_message_printing(int level) 1189 { 1190 return (level >= console_loglevel && !ignore_loglevel); 1191 } 1192 1193 #ifdef CONFIG_BOOT_PRINTK_DELAY 1194 1195 static int boot_delay; /* msecs delay after each printk during bootup */ 1196 static unsigned long long loops_per_msec; /* based on boot_delay */ 1197 1198 static int __init boot_delay_setup(char *str) 1199 { 1200 unsigned long lpj; 1201 1202 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1203 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1204 1205 get_option(&str, &boot_delay); 1206 if (boot_delay > 10 * 1000) 1207 boot_delay = 0; 1208 1209 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1210 "HZ: %d, loops_per_msec: %llu\n", 1211 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1212 return 0; 1213 } 1214 early_param("boot_delay", boot_delay_setup); 1215 1216 static void boot_delay_msec(int level) 1217 { 1218 unsigned long long k; 1219 unsigned long timeout; 1220 1221 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1222 || suppress_message_printing(level)) { 1223 return; 1224 } 1225 1226 k = (unsigned long long)loops_per_msec * boot_delay; 1227 1228 timeout = jiffies + msecs_to_jiffies(boot_delay); 1229 while (k) { 1230 k--; 1231 cpu_relax(); 1232 /* 1233 * use (volatile) jiffies to prevent 1234 * compiler reduction; loop termination via jiffies 1235 * is secondary and may or may not happen. 1236 */ 1237 if (time_after(jiffies, timeout)) 1238 break; 1239 touch_nmi_watchdog(); 1240 } 1241 } 1242 #else 1243 static inline void boot_delay_msec(int level) 1244 { 1245 } 1246 #endif 1247 1248 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1249 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1250 1251 static size_t print_syslog(unsigned int level, char *buf) 1252 { 1253 return sprintf(buf, "<%u>", level); 1254 } 1255 1256 static size_t print_time(u64 ts, char *buf) 1257 { 1258 unsigned long rem_nsec = do_div(ts, 1000000000); 1259 1260 return sprintf(buf, "[%5lu.%06lu]", 1261 (unsigned long)ts, rem_nsec / 1000); 1262 } 1263 1264 #ifdef CONFIG_PRINTK_CALLER 1265 static size_t print_caller(u32 id, char *buf) 1266 { 1267 char caller[12]; 1268 1269 snprintf(caller, sizeof(caller), "%c%u", 1270 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1271 return sprintf(buf, "[%6s]", caller); 1272 } 1273 #else 1274 #define print_caller(id, buf) 0 1275 #endif 1276 1277 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1278 bool time, char *buf) 1279 { 1280 size_t len = 0; 1281 1282 if (syslog) 1283 len = print_syslog((msg->facility << 3) | msg->level, buf); 1284 1285 if (time) 1286 len += print_time(msg->ts_nsec, buf + len); 1287 1288 len += print_caller(msg->caller_id, buf + len); 1289 1290 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1291 buf[len++] = ' '; 1292 buf[len] = '\0'; 1293 } 1294 1295 return len; 1296 } 1297 1298 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1299 bool time, char *buf, size_t size) 1300 { 1301 const char *text = log_text(msg); 1302 size_t text_size = msg->text_len; 1303 size_t len = 0; 1304 char prefix[PREFIX_MAX]; 1305 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1306 1307 do { 1308 const char *next = memchr(text, '\n', text_size); 1309 size_t text_len; 1310 1311 if (next) { 1312 text_len = next - text; 1313 next++; 1314 text_size -= next - text; 1315 } else { 1316 text_len = text_size; 1317 } 1318 1319 if (buf) { 1320 if (prefix_len + text_len + 1 >= size - len) 1321 break; 1322 1323 memcpy(buf + len, prefix, prefix_len); 1324 len += prefix_len; 1325 memcpy(buf + len, text, text_len); 1326 len += text_len; 1327 buf[len++] = '\n'; 1328 } else { 1329 /* SYSLOG_ACTION_* buffer size only calculation */ 1330 len += prefix_len + text_len + 1; 1331 } 1332 1333 text = next; 1334 } while (text); 1335 1336 return len; 1337 } 1338 1339 static int syslog_print(char __user *buf, int size) 1340 { 1341 char *text; 1342 struct printk_log *msg; 1343 int len = 0; 1344 1345 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1346 if (!text) 1347 return -ENOMEM; 1348 1349 while (size > 0) { 1350 size_t n; 1351 size_t skip; 1352 1353 logbuf_lock_irq(); 1354 if (syslog_seq < log_first_seq) { 1355 /* messages are gone, move to first one */ 1356 syslog_seq = log_first_seq; 1357 syslog_idx = log_first_idx; 1358 syslog_partial = 0; 1359 } 1360 if (syslog_seq == log_next_seq) { 1361 logbuf_unlock_irq(); 1362 break; 1363 } 1364 1365 /* 1366 * To keep reading/counting partial line consistent, 1367 * use printk_time value as of the beginning of a line. 1368 */ 1369 if (!syslog_partial) 1370 syslog_time = printk_time; 1371 1372 skip = syslog_partial; 1373 msg = log_from_idx(syslog_idx); 1374 n = msg_print_text(msg, true, syslog_time, text, 1375 LOG_LINE_MAX + PREFIX_MAX); 1376 if (n - syslog_partial <= size) { 1377 /* message fits into buffer, move forward */ 1378 syslog_idx = log_next(syslog_idx); 1379 syslog_seq++; 1380 n -= syslog_partial; 1381 syslog_partial = 0; 1382 } else if (!len){ 1383 /* partial read(), remember position */ 1384 n = size; 1385 syslog_partial += n; 1386 } else 1387 n = 0; 1388 logbuf_unlock_irq(); 1389 1390 if (!n) 1391 break; 1392 1393 if (copy_to_user(buf, text + skip, n)) { 1394 if (!len) 1395 len = -EFAULT; 1396 break; 1397 } 1398 1399 len += n; 1400 size -= n; 1401 buf += n; 1402 } 1403 1404 kfree(text); 1405 return len; 1406 } 1407 1408 static int syslog_print_all(char __user *buf, int size, bool clear) 1409 { 1410 char *text; 1411 int len = 0; 1412 u64 next_seq; 1413 u64 seq; 1414 u32 idx; 1415 bool time; 1416 1417 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1418 if (!text) 1419 return -ENOMEM; 1420 1421 time = printk_time; 1422 logbuf_lock_irq(); 1423 /* 1424 * Find first record that fits, including all following records, 1425 * into the user-provided buffer for this dump. 1426 */ 1427 seq = clear_seq; 1428 idx = clear_idx; 1429 while (seq < log_next_seq) { 1430 struct printk_log *msg = log_from_idx(idx); 1431 1432 len += msg_print_text(msg, true, time, NULL, 0); 1433 idx = log_next(idx); 1434 seq++; 1435 } 1436 1437 /* move first record forward until length fits into the buffer */ 1438 seq = clear_seq; 1439 idx = clear_idx; 1440 while (len > size && seq < log_next_seq) { 1441 struct printk_log *msg = log_from_idx(idx); 1442 1443 len -= msg_print_text(msg, true, time, NULL, 0); 1444 idx = log_next(idx); 1445 seq++; 1446 } 1447 1448 /* last message fitting into this dump */ 1449 next_seq = log_next_seq; 1450 1451 len = 0; 1452 while (len >= 0 && seq < next_seq) { 1453 struct printk_log *msg = log_from_idx(idx); 1454 int textlen = msg_print_text(msg, true, time, text, 1455 LOG_LINE_MAX + PREFIX_MAX); 1456 1457 idx = log_next(idx); 1458 seq++; 1459 1460 logbuf_unlock_irq(); 1461 if (copy_to_user(buf + len, text, textlen)) 1462 len = -EFAULT; 1463 else 1464 len += textlen; 1465 logbuf_lock_irq(); 1466 1467 if (seq < log_first_seq) { 1468 /* messages are gone, move to next one */ 1469 seq = log_first_seq; 1470 idx = log_first_idx; 1471 } 1472 } 1473 1474 if (clear) { 1475 clear_seq = log_next_seq; 1476 clear_idx = log_next_idx; 1477 } 1478 logbuf_unlock_irq(); 1479 1480 kfree(text); 1481 return len; 1482 } 1483 1484 static void syslog_clear(void) 1485 { 1486 logbuf_lock_irq(); 1487 clear_seq = log_next_seq; 1488 clear_idx = log_next_idx; 1489 logbuf_unlock_irq(); 1490 } 1491 1492 int do_syslog(int type, char __user *buf, int len, int source) 1493 { 1494 bool clear = false; 1495 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1496 int error; 1497 1498 error = check_syslog_permissions(type, source); 1499 if (error) 1500 return error; 1501 1502 switch (type) { 1503 case SYSLOG_ACTION_CLOSE: /* Close log */ 1504 break; 1505 case SYSLOG_ACTION_OPEN: /* Open log */ 1506 break; 1507 case SYSLOG_ACTION_READ: /* Read from log */ 1508 if (!buf || len < 0) 1509 return -EINVAL; 1510 if (!len) 1511 return 0; 1512 if (!access_ok(buf, len)) 1513 return -EFAULT; 1514 error = wait_event_interruptible(log_wait, 1515 syslog_seq != log_next_seq); 1516 if (error) 1517 return error; 1518 error = syslog_print(buf, len); 1519 break; 1520 /* Read/clear last kernel messages */ 1521 case SYSLOG_ACTION_READ_CLEAR: 1522 clear = true; 1523 /* FALL THRU */ 1524 /* Read last kernel messages */ 1525 case SYSLOG_ACTION_READ_ALL: 1526 if (!buf || len < 0) 1527 return -EINVAL; 1528 if (!len) 1529 return 0; 1530 if (!access_ok(buf, len)) 1531 return -EFAULT; 1532 error = syslog_print_all(buf, len, clear); 1533 break; 1534 /* Clear ring buffer */ 1535 case SYSLOG_ACTION_CLEAR: 1536 syslog_clear(); 1537 break; 1538 /* Disable logging to console */ 1539 case SYSLOG_ACTION_CONSOLE_OFF: 1540 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1541 saved_console_loglevel = console_loglevel; 1542 console_loglevel = minimum_console_loglevel; 1543 break; 1544 /* Enable logging to console */ 1545 case SYSLOG_ACTION_CONSOLE_ON: 1546 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1547 console_loglevel = saved_console_loglevel; 1548 saved_console_loglevel = LOGLEVEL_DEFAULT; 1549 } 1550 break; 1551 /* Set level of messages printed to console */ 1552 case SYSLOG_ACTION_CONSOLE_LEVEL: 1553 if (len < 1 || len > 8) 1554 return -EINVAL; 1555 if (len < minimum_console_loglevel) 1556 len = minimum_console_loglevel; 1557 console_loglevel = len; 1558 /* Implicitly re-enable logging to console */ 1559 saved_console_loglevel = LOGLEVEL_DEFAULT; 1560 break; 1561 /* Number of chars in the log buffer */ 1562 case SYSLOG_ACTION_SIZE_UNREAD: 1563 logbuf_lock_irq(); 1564 if (syslog_seq < log_first_seq) { 1565 /* messages are gone, move to first one */ 1566 syslog_seq = log_first_seq; 1567 syslog_idx = log_first_idx; 1568 syslog_partial = 0; 1569 } 1570 if (source == SYSLOG_FROM_PROC) { 1571 /* 1572 * Short-cut for poll(/"proc/kmsg") which simply checks 1573 * for pending data, not the size; return the count of 1574 * records, not the length. 1575 */ 1576 error = log_next_seq - syslog_seq; 1577 } else { 1578 u64 seq = syslog_seq; 1579 u32 idx = syslog_idx; 1580 bool time = syslog_partial ? syslog_time : printk_time; 1581 1582 while (seq < log_next_seq) { 1583 struct printk_log *msg = log_from_idx(idx); 1584 1585 error += msg_print_text(msg, true, time, NULL, 1586 0); 1587 time = printk_time; 1588 idx = log_next(idx); 1589 seq++; 1590 } 1591 error -= syslog_partial; 1592 } 1593 logbuf_unlock_irq(); 1594 break; 1595 /* Size of the log buffer */ 1596 case SYSLOG_ACTION_SIZE_BUFFER: 1597 error = log_buf_len; 1598 break; 1599 default: 1600 error = -EINVAL; 1601 break; 1602 } 1603 1604 return error; 1605 } 1606 1607 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1608 { 1609 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1610 } 1611 1612 /* 1613 * Special console_lock variants that help to reduce the risk of soft-lockups. 1614 * They allow to pass console_lock to another printk() call using a busy wait. 1615 */ 1616 1617 #ifdef CONFIG_LOCKDEP 1618 static struct lockdep_map console_owner_dep_map = { 1619 .name = "console_owner" 1620 }; 1621 #endif 1622 1623 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1624 static struct task_struct *console_owner; 1625 static bool console_waiter; 1626 1627 /** 1628 * console_lock_spinning_enable - mark beginning of code where another 1629 * thread might safely busy wait 1630 * 1631 * This basically converts console_lock into a spinlock. This marks 1632 * the section where the console_lock owner can not sleep, because 1633 * there may be a waiter spinning (like a spinlock). Also it must be 1634 * ready to hand over the lock at the end of the section. 1635 */ 1636 static void console_lock_spinning_enable(void) 1637 { 1638 raw_spin_lock(&console_owner_lock); 1639 console_owner = current; 1640 raw_spin_unlock(&console_owner_lock); 1641 1642 /* The waiter may spin on us after setting console_owner */ 1643 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1644 } 1645 1646 /** 1647 * console_lock_spinning_disable_and_check - mark end of code where another 1648 * thread was able to busy wait and check if there is a waiter 1649 * 1650 * This is called at the end of the section where spinning is allowed. 1651 * It has two functions. First, it is a signal that it is no longer 1652 * safe to start busy waiting for the lock. Second, it checks if 1653 * there is a busy waiter and passes the lock rights to her. 1654 * 1655 * Important: Callers lose the lock if there was a busy waiter. 1656 * They must not touch items synchronized by console_lock 1657 * in this case. 1658 * 1659 * Return: 1 if the lock rights were passed, 0 otherwise. 1660 */ 1661 static int console_lock_spinning_disable_and_check(void) 1662 { 1663 int waiter; 1664 1665 raw_spin_lock(&console_owner_lock); 1666 waiter = READ_ONCE(console_waiter); 1667 console_owner = NULL; 1668 raw_spin_unlock(&console_owner_lock); 1669 1670 if (!waiter) { 1671 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1672 return 0; 1673 } 1674 1675 /* The waiter is now free to continue */ 1676 WRITE_ONCE(console_waiter, false); 1677 1678 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1679 1680 /* 1681 * Hand off console_lock to waiter. The waiter will perform 1682 * the up(). After this, the waiter is the console_lock owner. 1683 */ 1684 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1685 return 1; 1686 } 1687 1688 /** 1689 * console_trylock_spinning - try to get console_lock by busy waiting 1690 * 1691 * This allows to busy wait for the console_lock when the current 1692 * owner is running in specially marked sections. It means that 1693 * the current owner is running and cannot reschedule until it 1694 * is ready to lose the lock. 1695 * 1696 * Return: 1 if we got the lock, 0 othrewise 1697 */ 1698 static int console_trylock_spinning(void) 1699 { 1700 struct task_struct *owner = NULL; 1701 bool waiter; 1702 bool spin = false; 1703 unsigned long flags; 1704 1705 if (console_trylock()) 1706 return 1; 1707 1708 printk_safe_enter_irqsave(flags); 1709 1710 raw_spin_lock(&console_owner_lock); 1711 owner = READ_ONCE(console_owner); 1712 waiter = READ_ONCE(console_waiter); 1713 if (!waiter && owner && owner != current) { 1714 WRITE_ONCE(console_waiter, true); 1715 spin = true; 1716 } 1717 raw_spin_unlock(&console_owner_lock); 1718 1719 /* 1720 * If there is an active printk() writing to the 1721 * consoles, instead of having it write our data too, 1722 * see if we can offload that load from the active 1723 * printer, and do some printing ourselves. 1724 * Go into a spin only if there isn't already a waiter 1725 * spinning, and there is an active printer, and 1726 * that active printer isn't us (recursive printk?). 1727 */ 1728 if (!spin) { 1729 printk_safe_exit_irqrestore(flags); 1730 return 0; 1731 } 1732 1733 /* We spin waiting for the owner to release us */ 1734 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1735 /* Owner will clear console_waiter on hand off */ 1736 while (READ_ONCE(console_waiter)) 1737 cpu_relax(); 1738 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1739 1740 printk_safe_exit_irqrestore(flags); 1741 /* 1742 * The owner passed the console lock to us. 1743 * Since we did not spin on console lock, annotate 1744 * this as a trylock. Otherwise lockdep will 1745 * complain. 1746 */ 1747 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1748 1749 return 1; 1750 } 1751 1752 /* 1753 * Call the console drivers, asking them to write out 1754 * log_buf[start] to log_buf[end - 1]. 1755 * The console_lock must be held. 1756 */ 1757 static void call_console_drivers(const char *ext_text, size_t ext_len, 1758 const char *text, size_t len) 1759 { 1760 struct console *con; 1761 1762 trace_console_rcuidle(text, len); 1763 1764 if (!console_drivers) 1765 return; 1766 1767 for_each_console(con) { 1768 if (exclusive_console && con != exclusive_console) 1769 continue; 1770 if (!(con->flags & CON_ENABLED)) 1771 continue; 1772 if (!con->write) 1773 continue; 1774 if (!cpu_online(smp_processor_id()) && 1775 !(con->flags & CON_ANYTIME)) 1776 continue; 1777 if (con->flags & CON_EXTENDED) 1778 con->write(con, ext_text, ext_len); 1779 else 1780 con->write(con, text, len); 1781 } 1782 } 1783 1784 int printk_delay_msec __read_mostly; 1785 1786 static inline void printk_delay(void) 1787 { 1788 if (unlikely(printk_delay_msec)) { 1789 int m = printk_delay_msec; 1790 1791 while (m--) { 1792 mdelay(1); 1793 touch_nmi_watchdog(); 1794 } 1795 } 1796 } 1797 1798 static inline u32 printk_caller_id(void) 1799 { 1800 return in_task() ? task_pid_nr(current) : 1801 0x80000000 + raw_smp_processor_id(); 1802 } 1803 1804 /* 1805 * Continuation lines are buffered, and not committed to the record buffer 1806 * until the line is complete, or a race forces it. The line fragments 1807 * though, are printed immediately to the consoles to ensure everything has 1808 * reached the console in case of a kernel crash. 1809 */ 1810 static struct cont { 1811 char buf[LOG_LINE_MAX]; 1812 size_t len; /* length == 0 means unused buffer */ 1813 u32 caller_id; /* printk_caller_id() of first print */ 1814 u64 ts_nsec; /* time of first print */ 1815 u8 level; /* log level of first message */ 1816 u8 facility; /* log facility of first message */ 1817 enum log_flags flags; /* prefix, newline flags */ 1818 } cont; 1819 1820 static void cont_flush(void) 1821 { 1822 if (cont.len == 0) 1823 return; 1824 1825 log_store(cont.caller_id, cont.facility, cont.level, cont.flags, 1826 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1827 cont.len = 0; 1828 } 1829 1830 static bool cont_add(u32 caller_id, int facility, int level, 1831 enum log_flags flags, const char *text, size_t len) 1832 { 1833 /* If the line gets too long, split it up in separate records. */ 1834 if (cont.len + len > sizeof(cont.buf)) { 1835 cont_flush(); 1836 return false; 1837 } 1838 1839 if (!cont.len) { 1840 cont.facility = facility; 1841 cont.level = level; 1842 cont.caller_id = caller_id; 1843 cont.ts_nsec = local_clock(); 1844 cont.flags = flags; 1845 } 1846 1847 memcpy(cont.buf + cont.len, text, len); 1848 cont.len += len; 1849 1850 // The original flags come from the first line, 1851 // but later continuations can add a newline. 1852 if (flags & LOG_NEWLINE) { 1853 cont.flags |= LOG_NEWLINE; 1854 cont_flush(); 1855 } 1856 1857 return true; 1858 } 1859 1860 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1861 { 1862 const u32 caller_id = printk_caller_id(); 1863 1864 /* 1865 * If an earlier line was buffered, and we're a continuation 1866 * write from the same context, try to add it to the buffer. 1867 */ 1868 if (cont.len) { 1869 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) { 1870 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1871 return text_len; 1872 } 1873 /* Otherwise, make sure it's flushed */ 1874 cont_flush(); 1875 } 1876 1877 /* Skip empty continuation lines that couldn't be added - they just flush */ 1878 if (!text_len && (lflags & LOG_CONT)) 1879 return 0; 1880 1881 /* If it doesn't end in a newline, try to buffer the current line */ 1882 if (!(lflags & LOG_NEWLINE)) { 1883 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1884 return text_len; 1885 } 1886 1887 /* Store it in the record log */ 1888 return log_store(caller_id, facility, level, lflags, 0, 1889 dict, dictlen, text, text_len); 1890 } 1891 1892 /* Must be called under logbuf_lock. */ 1893 int vprintk_store(int facility, int level, 1894 const char *dict, size_t dictlen, 1895 const char *fmt, va_list args) 1896 { 1897 static char textbuf[LOG_LINE_MAX]; 1898 char *text = textbuf; 1899 size_t text_len; 1900 enum log_flags lflags = 0; 1901 1902 /* 1903 * The printf needs to come first; we need the syslog 1904 * prefix which might be passed-in as a parameter. 1905 */ 1906 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1907 1908 /* mark and strip a trailing newline */ 1909 if (text_len && text[text_len-1] == '\n') { 1910 text_len--; 1911 lflags |= LOG_NEWLINE; 1912 } 1913 1914 /* strip kernel syslog prefix and extract log level or control flags */ 1915 if (facility == 0) { 1916 int kern_level; 1917 1918 while ((kern_level = printk_get_level(text)) != 0) { 1919 switch (kern_level) { 1920 case '0' ... '7': 1921 if (level == LOGLEVEL_DEFAULT) 1922 level = kern_level - '0'; 1923 break; 1924 case 'c': /* KERN_CONT */ 1925 lflags |= LOG_CONT; 1926 } 1927 1928 text_len -= 2; 1929 text += 2; 1930 } 1931 } 1932 1933 if (level == LOGLEVEL_DEFAULT) 1934 level = default_message_loglevel; 1935 1936 if (dict) 1937 lflags |= LOG_NEWLINE; 1938 1939 return log_output(facility, level, lflags, 1940 dict, dictlen, text, text_len); 1941 } 1942 1943 asmlinkage int vprintk_emit(int facility, int level, 1944 const char *dict, size_t dictlen, 1945 const char *fmt, va_list args) 1946 { 1947 int printed_len; 1948 bool in_sched = false, pending_output; 1949 unsigned long flags; 1950 u64 curr_log_seq; 1951 1952 if (level == LOGLEVEL_SCHED) { 1953 level = LOGLEVEL_DEFAULT; 1954 in_sched = true; 1955 } 1956 1957 boot_delay_msec(level); 1958 printk_delay(); 1959 1960 /* This stops the holder of console_sem just where we want him */ 1961 logbuf_lock_irqsave(flags); 1962 curr_log_seq = log_next_seq; 1963 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1964 pending_output = (curr_log_seq != log_next_seq); 1965 logbuf_unlock_irqrestore(flags); 1966 1967 /* If called from the scheduler, we can not call up(). */ 1968 if (!in_sched && pending_output) { 1969 /* 1970 * Disable preemption to avoid being preempted while holding 1971 * console_sem which would prevent anyone from printing to 1972 * console 1973 */ 1974 preempt_disable(); 1975 /* 1976 * Try to acquire and then immediately release the console 1977 * semaphore. The release will print out buffers and wake up 1978 * /dev/kmsg and syslog() users. 1979 */ 1980 if (console_trylock_spinning()) 1981 console_unlock(); 1982 preempt_enable(); 1983 } 1984 1985 if (pending_output) 1986 wake_up_klogd(); 1987 return printed_len; 1988 } 1989 EXPORT_SYMBOL(vprintk_emit); 1990 1991 asmlinkage int vprintk(const char *fmt, va_list args) 1992 { 1993 return vprintk_func(fmt, args); 1994 } 1995 EXPORT_SYMBOL(vprintk); 1996 1997 int vprintk_default(const char *fmt, va_list args) 1998 { 1999 int r; 2000 2001 #ifdef CONFIG_KGDB_KDB 2002 /* Allow to pass printk() to kdb but avoid a recursion. */ 2003 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 2004 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 2005 return r; 2006 } 2007 #endif 2008 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 2009 2010 return r; 2011 } 2012 EXPORT_SYMBOL_GPL(vprintk_default); 2013 2014 /** 2015 * printk - print a kernel message 2016 * @fmt: format string 2017 * 2018 * This is printk(). It can be called from any context. We want it to work. 2019 * 2020 * We try to grab the console_lock. If we succeed, it's easy - we log the 2021 * output and call the console drivers. If we fail to get the semaphore, we 2022 * place the output into the log buffer and return. The current holder of 2023 * the console_sem will notice the new output in console_unlock(); and will 2024 * send it to the consoles before releasing the lock. 2025 * 2026 * One effect of this deferred printing is that code which calls printk() and 2027 * then changes console_loglevel may break. This is because console_loglevel 2028 * is inspected when the actual printing occurs. 2029 * 2030 * See also: 2031 * printf(3) 2032 * 2033 * See the vsnprintf() documentation for format string extensions over C99. 2034 */ 2035 asmlinkage __visible int printk(const char *fmt, ...) 2036 { 2037 va_list args; 2038 int r; 2039 2040 va_start(args, fmt); 2041 r = vprintk_func(fmt, args); 2042 va_end(args); 2043 2044 return r; 2045 } 2046 EXPORT_SYMBOL(printk); 2047 2048 #else /* CONFIG_PRINTK */ 2049 2050 #define LOG_LINE_MAX 0 2051 #define PREFIX_MAX 0 2052 #define printk_time false 2053 2054 static u64 syslog_seq; 2055 static u32 syslog_idx; 2056 static u64 console_seq; 2057 static u32 console_idx; 2058 static u64 exclusive_console_stop_seq; 2059 static u64 log_first_seq; 2060 static u32 log_first_idx; 2061 static u64 log_next_seq; 2062 static char *log_text(const struct printk_log *msg) { return NULL; } 2063 static char *log_dict(const struct printk_log *msg) { return NULL; } 2064 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2065 static u32 log_next(u32 idx) { return 0; } 2066 static ssize_t msg_print_ext_header(char *buf, size_t size, 2067 struct printk_log *msg, 2068 u64 seq) { return 0; } 2069 static ssize_t msg_print_ext_body(char *buf, size_t size, 2070 char *dict, size_t dict_len, 2071 char *text, size_t text_len) { return 0; } 2072 static void console_lock_spinning_enable(void) { } 2073 static int console_lock_spinning_disable_and_check(void) { return 0; } 2074 static void call_console_drivers(const char *ext_text, size_t ext_len, 2075 const char *text, size_t len) {} 2076 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2077 bool time, char *buf, size_t size) { return 0; } 2078 static bool suppress_message_printing(int level) { return false; } 2079 2080 #endif /* CONFIG_PRINTK */ 2081 2082 #ifdef CONFIG_EARLY_PRINTK 2083 struct console *early_console; 2084 2085 asmlinkage __visible void early_printk(const char *fmt, ...) 2086 { 2087 va_list ap; 2088 char buf[512]; 2089 int n; 2090 2091 if (!early_console) 2092 return; 2093 2094 va_start(ap, fmt); 2095 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2096 va_end(ap); 2097 2098 early_console->write(early_console, buf, n); 2099 } 2100 #endif 2101 2102 static int __add_preferred_console(char *name, int idx, char *options, 2103 char *brl_options) 2104 { 2105 struct console_cmdline *c; 2106 int i; 2107 2108 /* 2109 * See if this tty is not yet registered, and 2110 * if we have a slot free. 2111 */ 2112 for (i = 0, c = console_cmdline; 2113 i < MAX_CMDLINECONSOLES && c->name[0]; 2114 i++, c++) { 2115 if (strcmp(c->name, name) == 0 && c->index == idx) { 2116 if (!brl_options) 2117 preferred_console = i; 2118 return 0; 2119 } 2120 } 2121 if (i == MAX_CMDLINECONSOLES) 2122 return -E2BIG; 2123 if (!brl_options) 2124 preferred_console = i; 2125 strlcpy(c->name, name, sizeof(c->name)); 2126 c->options = options; 2127 braille_set_options(c, brl_options); 2128 2129 c->index = idx; 2130 return 0; 2131 } 2132 2133 static int __init console_msg_format_setup(char *str) 2134 { 2135 if (!strcmp(str, "syslog")) 2136 console_msg_format = MSG_FORMAT_SYSLOG; 2137 if (!strcmp(str, "default")) 2138 console_msg_format = MSG_FORMAT_DEFAULT; 2139 return 1; 2140 } 2141 __setup("console_msg_format=", console_msg_format_setup); 2142 2143 /* 2144 * Set up a console. Called via do_early_param() in init/main.c 2145 * for each "console=" parameter in the boot command line. 2146 */ 2147 static int __init console_setup(char *str) 2148 { 2149 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2150 char *s, *options, *brl_options = NULL; 2151 int idx; 2152 2153 if (_braille_console_setup(&str, &brl_options)) 2154 return 1; 2155 2156 /* 2157 * Decode str into name, index, options. 2158 */ 2159 if (str[0] >= '0' && str[0] <= '9') { 2160 strcpy(buf, "ttyS"); 2161 strncpy(buf + 4, str, sizeof(buf) - 5); 2162 } else { 2163 strncpy(buf, str, sizeof(buf) - 1); 2164 } 2165 buf[sizeof(buf) - 1] = 0; 2166 options = strchr(str, ','); 2167 if (options) 2168 *(options++) = 0; 2169 #ifdef __sparc__ 2170 if (!strcmp(str, "ttya")) 2171 strcpy(buf, "ttyS0"); 2172 if (!strcmp(str, "ttyb")) 2173 strcpy(buf, "ttyS1"); 2174 #endif 2175 for (s = buf; *s; s++) 2176 if (isdigit(*s) || *s == ',') 2177 break; 2178 idx = simple_strtoul(s, NULL, 10); 2179 *s = 0; 2180 2181 __add_preferred_console(buf, idx, options, brl_options); 2182 console_set_on_cmdline = 1; 2183 return 1; 2184 } 2185 __setup("console=", console_setup); 2186 2187 /** 2188 * add_preferred_console - add a device to the list of preferred consoles. 2189 * @name: device name 2190 * @idx: device index 2191 * @options: options for this console 2192 * 2193 * The last preferred console added will be used for kernel messages 2194 * and stdin/out/err for init. Normally this is used by console_setup 2195 * above to handle user-supplied console arguments; however it can also 2196 * be used by arch-specific code either to override the user or more 2197 * commonly to provide a default console (ie from PROM variables) when 2198 * the user has not supplied one. 2199 */ 2200 int add_preferred_console(char *name, int idx, char *options) 2201 { 2202 return __add_preferred_console(name, idx, options, NULL); 2203 } 2204 2205 bool console_suspend_enabled = true; 2206 EXPORT_SYMBOL(console_suspend_enabled); 2207 2208 static int __init console_suspend_disable(char *str) 2209 { 2210 console_suspend_enabled = false; 2211 return 1; 2212 } 2213 __setup("no_console_suspend", console_suspend_disable); 2214 module_param_named(console_suspend, console_suspend_enabled, 2215 bool, S_IRUGO | S_IWUSR); 2216 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2217 " and hibernate operations"); 2218 2219 /** 2220 * suspend_console - suspend the console subsystem 2221 * 2222 * This disables printk() while we go into suspend states 2223 */ 2224 void suspend_console(void) 2225 { 2226 if (!console_suspend_enabled) 2227 return; 2228 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2229 console_lock(); 2230 console_suspended = 1; 2231 up_console_sem(); 2232 } 2233 2234 void resume_console(void) 2235 { 2236 if (!console_suspend_enabled) 2237 return; 2238 down_console_sem(); 2239 console_suspended = 0; 2240 console_unlock(); 2241 } 2242 2243 /** 2244 * console_cpu_notify - print deferred console messages after CPU hotplug 2245 * @cpu: unused 2246 * 2247 * If printk() is called from a CPU that is not online yet, the messages 2248 * will be printed on the console only if there are CON_ANYTIME consoles. 2249 * This function is called when a new CPU comes online (or fails to come 2250 * up) or goes offline. 2251 */ 2252 static int console_cpu_notify(unsigned int cpu) 2253 { 2254 if (!cpuhp_tasks_frozen) { 2255 /* If trylock fails, someone else is doing the printing */ 2256 if (console_trylock()) 2257 console_unlock(); 2258 } 2259 return 0; 2260 } 2261 2262 /** 2263 * console_lock - lock the console system for exclusive use. 2264 * 2265 * Acquires a lock which guarantees that the caller has 2266 * exclusive access to the console system and the console_drivers list. 2267 * 2268 * Can sleep, returns nothing. 2269 */ 2270 void console_lock(void) 2271 { 2272 might_sleep(); 2273 2274 down_console_sem(); 2275 if (console_suspended) 2276 return; 2277 console_locked = 1; 2278 console_may_schedule = 1; 2279 } 2280 EXPORT_SYMBOL(console_lock); 2281 2282 /** 2283 * console_trylock - try to lock the console system for exclusive use. 2284 * 2285 * Try to acquire a lock which guarantees that the caller has exclusive 2286 * access to the console system and the console_drivers list. 2287 * 2288 * returns 1 on success, and 0 on failure to acquire the lock. 2289 */ 2290 int console_trylock(void) 2291 { 2292 if (down_trylock_console_sem()) 2293 return 0; 2294 if (console_suspended) { 2295 up_console_sem(); 2296 return 0; 2297 } 2298 console_locked = 1; 2299 console_may_schedule = 0; 2300 return 1; 2301 } 2302 EXPORT_SYMBOL(console_trylock); 2303 2304 int is_console_locked(void) 2305 { 2306 return console_locked; 2307 } 2308 EXPORT_SYMBOL(is_console_locked); 2309 2310 /* 2311 * Check if we have any console that is capable of printing while cpu is 2312 * booting or shutting down. Requires console_sem. 2313 */ 2314 static int have_callable_console(void) 2315 { 2316 struct console *con; 2317 2318 for_each_console(con) 2319 if ((con->flags & CON_ENABLED) && 2320 (con->flags & CON_ANYTIME)) 2321 return 1; 2322 2323 return 0; 2324 } 2325 2326 /* 2327 * Can we actually use the console at this time on this cpu? 2328 * 2329 * Console drivers may assume that per-cpu resources have been allocated. So 2330 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2331 * call them until this CPU is officially up. 2332 */ 2333 static inline int can_use_console(void) 2334 { 2335 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2336 } 2337 2338 /** 2339 * console_unlock - unlock the console system 2340 * 2341 * Releases the console_lock which the caller holds on the console system 2342 * and the console driver list. 2343 * 2344 * While the console_lock was held, console output may have been buffered 2345 * by printk(). If this is the case, console_unlock(); emits 2346 * the output prior to releasing the lock. 2347 * 2348 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2349 * 2350 * console_unlock(); may be called from any context. 2351 */ 2352 void console_unlock(void) 2353 { 2354 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2355 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2356 unsigned long flags; 2357 bool do_cond_resched, retry; 2358 2359 if (console_suspended) { 2360 up_console_sem(); 2361 return; 2362 } 2363 2364 /* 2365 * Console drivers are called with interrupts disabled, so 2366 * @console_may_schedule should be cleared before; however, we may 2367 * end up dumping a lot of lines, for example, if called from 2368 * console registration path, and should invoke cond_resched() 2369 * between lines if allowable. Not doing so can cause a very long 2370 * scheduling stall on a slow console leading to RCU stall and 2371 * softlockup warnings which exacerbate the issue with more 2372 * messages practically incapacitating the system. 2373 * 2374 * console_trylock() is not able to detect the preemptive 2375 * context reliably. Therefore the value must be stored before 2376 * and cleared after the the "again" goto label. 2377 */ 2378 do_cond_resched = console_may_schedule; 2379 again: 2380 console_may_schedule = 0; 2381 2382 /* 2383 * We released the console_sem lock, so we need to recheck if 2384 * cpu is online and (if not) is there at least one CON_ANYTIME 2385 * console. 2386 */ 2387 if (!can_use_console()) { 2388 console_locked = 0; 2389 up_console_sem(); 2390 return; 2391 } 2392 2393 for (;;) { 2394 struct printk_log *msg; 2395 size_t ext_len = 0; 2396 size_t len; 2397 2398 printk_safe_enter_irqsave(flags); 2399 raw_spin_lock(&logbuf_lock); 2400 if (console_seq < log_first_seq) { 2401 len = sprintf(text, 2402 "** %llu printk messages dropped **\n", 2403 log_first_seq - console_seq); 2404 2405 /* messages are gone, move to first one */ 2406 console_seq = log_first_seq; 2407 console_idx = log_first_idx; 2408 } else { 2409 len = 0; 2410 } 2411 skip: 2412 if (console_seq == log_next_seq) 2413 break; 2414 2415 msg = log_from_idx(console_idx); 2416 if (suppress_message_printing(msg->level)) { 2417 /* 2418 * Skip record we have buffered and already printed 2419 * directly to the console when we received it, and 2420 * record that has level above the console loglevel. 2421 */ 2422 console_idx = log_next(console_idx); 2423 console_seq++; 2424 goto skip; 2425 } 2426 2427 /* Output to all consoles once old messages replayed. */ 2428 if (unlikely(exclusive_console && 2429 console_seq >= exclusive_console_stop_seq)) { 2430 exclusive_console = NULL; 2431 } 2432 2433 len += msg_print_text(msg, 2434 console_msg_format & MSG_FORMAT_SYSLOG, 2435 printk_time, text + len, sizeof(text) - len); 2436 if (nr_ext_console_drivers) { 2437 ext_len = msg_print_ext_header(ext_text, 2438 sizeof(ext_text), 2439 msg, console_seq); 2440 ext_len += msg_print_ext_body(ext_text + ext_len, 2441 sizeof(ext_text) - ext_len, 2442 log_dict(msg), msg->dict_len, 2443 log_text(msg), msg->text_len); 2444 } 2445 console_idx = log_next(console_idx); 2446 console_seq++; 2447 raw_spin_unlock(&logbuf_lock); 2448 2449 /* 2450 * While actively printing out messages, if another printk() 2451 * were to occur on another CPU, it may wait for this one to 2452 * finish. This task can not be preempted if there is a 2453 * waiter waiting to take over. 2454 */ 2455 console_lock_spinning_enable(); 2456 2457 stop_critical_timings(); /* don't trace print latency */ 2458 call_console_drivers(ext_text, ext_len, text, len); 2459 start_critical_timings(); 2460 2461 if (console_lock_spinning_disable_and_check()) { 2462 printk_safe_exit_irqrestore(flags); 2463 return; 2464 } 2465 2466 printk_safe_exit_irqrestore(flags); 2467 2468 if (do_cond_resched) 2469 cond_resched(); 2470 } 2471 2472 console_locked = 0; 2473 2474 raw_spin_unlock(&logbuf_lock); 2475 2476 up_console_sem(); 2477 2478 /* 2479 * Someone could have filled up the buffer again, so re-check if there's 2480 * something to flush. In case we cannot trylock the console_sem again, 2481 * there's a new owner and the console_unlock() from them will do the 2482 * flush, no worries. 2483 */ 2484 raw_spin_lock(&logbuf_lock); 2485 retry = console_seq != log_next_seq; 2486 raw_spin_unlock(&logbuf_lock); 2487 printk_safe_exit_irqrestore(flags); 2488 2489 if (retry && console_trylock()) 2490 goto again; 2491 } 2492 EXPORT_SYMBOL(console_unlock); 2493 2494 /** 2495 * console_conditional_schedule - yield the CPU if required 2496 * 2497 * If the console code is currently allowed to sleep, and 2498 * if this CPU should yield the CPU to another task, do 2499 * so here. 2500 * 2501 * Must be called within console_lock();. 2502 */ 2503 void __sched console_conditional_schedule(void) 2504 { 2505 if (console_may_schedule) 2506 cond_resched(); 2507 } 2508 EXPORT_SYMBOL(console_conditional_schedule); 2509 2510 void console_unblank(void) 2511 { 2512 struct console *c; 2513 2514 /* 2515 * console_unblank can no longer be called in interrupt context unless 2516 * oops_in_progress is set to 1.. 2517 */ 2518 if (oops_in_progress) { 2519 if (down_trylock_console_sem() != 0) 2520 return; 2521 } else 2522 console_lock(); 2523 2524 console_locked = 1; 2525 console_may_schedule = 0; 2526 for_each_console(c) 2527 if ((c->flags & CON_ENABLED) && c->unblank) 2528 c->unblank(); 2529 console_unlock(); 2530 } 2531 2532 /** 2533 * console_flush_on_panic - flush console content on panic 2534 * 2535 * Immediately output all pending messages no matter what. 2536 */ 2537 void console_flush_on_panic(void) 2538 { 2539 /* 2540 * If someone else is holding the console lock, trylock will fail 2541 * and may_schedule may be set. Ignore and proceed to unlock so 2542 * that messages are flushed out. As this can be called from any 2543 * context and we don't want to get preempted while flushing, 2544 * ensure may_schedule is cleared. 2545 */ 2546 console_trylock(); 2547 console_may_schedule = 0; 2548 console_unlock(); 2549 } 2550 2551 /* 2552 * Return the console tty driver structure and its associated index 2553 */ 2554 struct tty_driver *console_device(int *index) 2555 { 2556 struct console *c; 2557 struct tty_driver *driver = NULL; 2558 2559 console_lock(); 2560 for_each_console(c) { 2561 if (!c->device) 2562 continue; 2563 driver = c->device(c, index); 2564 if (driver) 2565 break; 2566 } 2567 console_unlock(); 2568 return driver; 2569 } 2570 2571 /* 2572 * Prevent further output on the passed console device so that (for example) 2573 * serial drivers can disable console output before suspending a port, and can 2574 * re-enable output afterwards. 2575 */ 2576 void console_stop(struct console *console) 2577 { 2578 console_lock(); 2579 console->flags &= ~CON_ENABLED; 2580 console_unlock(); 2581 } 2582 EXPORT_SYMBOL(console_stop); 2583 2584 void console_start(struct console *console) 2585 { 2586 console_lock(); 2587 console->flags |= CON_ENABLED; 2588 console_unlock(); 2589 } 2590 EXPORT_SYMBOL(console_start); 2591 2592 static int __read_mostly keep_bootcon; 2593 2594 static int __init keep_bootcon_setup(char *str) 2595 { 2596 keep_bootcon = 1; 2597 pr_info("debug: skip boot console de-registration.\n"); 2598 2599 return 0; 2600 } 2601 2602 early_param("keep_bootcon", keep_bootcon_setup); 2603 2604 /* 2605 * The console driver calls this routine during kernel initialization 2606 * to register the console printing procedure with printk() and to 2607 * print any messages that were printed by the kernel before the 2608 * console driver was initialized. 2609 * 2610 * This can happen pretty early during the boot process (because of 2611 * early_printk) - sometimes before setup_arch() completes - be careful 2612 * of what kernel features are used - they may not be initialised yet. 2613 * 2614 * There are two types of consoles - bootconsoles (early_printk) and 2615 * "real" consoles (everything which is not a bootconsole) which are 2616 * handled differently. 2617 * - Any number of bootconsoles can be registered at any time. 2618 * - As soon as a "real" console is registered, all bootconsoles 2619 * will be unregistered automatically. 2620 * - Once a "real" console is registered, any attempt to register a 2621 * bootconsoles will be rejected 2622 */ 2623 void register_console(struct console *newcon) 2624 { 2625 int i; 2626 unsigned long flags; 2627 struct console *bcon = NULL; 2628 struct console_cmdline *c; 2629 static bool has_preferred; 2630 2631 if (console_drivers) 2632 for_each_console(bcon) 2633 if (WARN(bcon == newcon, 2634 "console '%s%d' already registered\n", 2635 bcon->name, bcon->index)) 2636 return; 2637 2638 /* 2639 * before we register a new CON_BOOT console, make sure we don't 2640 * already have a valid console 2641 */ 2642 if (console_drivers && newcon->flags & CON_BOOT) { 2643 /* find the last or real console */ 2644 for_each_console(bcon) { 2645 if (!(bcon->flags & CON_BOOT)) { 2646 pr_info("Too late to register bootconsole %s%d\n", 2647 newcon->name, newcon->index); 2648 return; 2649 } 2650 } 2651 } 2652 2653 if (console_drivers && console_drivers->flags & CON_BOOT) 2654 bcon = console_drivers; 2655 2656 if (!has_preferred || bcon || !console_drivers) 2657 has_preferred = preferred_console >= 0; 2658 2659 /* 2660 * See if we want to use this console driver. If we 2661 * didn't select a console we take the first one 2662 * that registers here. 2663 */ 2664 if (!has_preferred) { 2665 if (newcon->index < 0) 2666 newcon->index = 0; 2667 if (newcon->setup == NULL || 2668 newcon->setup(newcon, NULL) == 0) { 2669 newcon->flags |= CON_ENABLED; 2670 if (newcon->device) { 2671 newcon->flags |= CON_CONSDEV; 2672 has_preferred = true; 2673 } 2674 } 2675 } 2676 2677 /* 2678 * See if this console matches one we selected on 2679 * the command line. 2680 */ 2681 for (i = 0, c = console_cmdline; 2682 i < MAX_CMDLINECONSOLES && c->name[0]; 2683 i++, c++) { 2684 if (!newcon->match || 2685 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2686 /* default matching */ 2687 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2688 if (strcmp(c->name, newcon->name) != 0) 2689 continue; 2690 if (newcon->index >= 0 && 2691 newcon->index != c->index) 2692 continue; 2693 if (newcon->index < 0) 2694 newcon->index = c->index; 2695 2696 if (_braille_register_console(newcon, c)) 2697 return; 2698 2699 if (newcon->setup && 2700 newcon->setup(newcon, c->options) != 0) 2701 break; 2702 } 2703 2704 newcon->flags |= CON_ENABLED; 2705 if (i == preferred_console) { 2706 newcon->flags |= CON_CONSDEV; 2707 has_preferred = true; 2708 } 2709 break; 2710 } 2711 2712 if (!(newcon->flags & CON_ENABLED)) 2713 return; 2714 2715 /* 2716 * If we have a bootconsole, and are switching to a real console, 2717 * don't print everything out again, since when the boot console, and 2718 * the real console are the same physical device, it's annoying to 2719 * see the beginning boot messages twice 2720 */ 2721 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2722 newcon->flags &= ~CON_PRINTBUFFER; 2723 2724 /* 2725 * Put this console in the list - keep the 2726 * preferred driver at the head of the list. 2727 */ 2728 console_lock(); 2729 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2730 newcon->next = console_drivers; 2731 console_drivers = newcon; 2732 if (newcon->next) 2733 newcon->next->flags &= ~CON_CONSDEV; 2734 } else { 2735 newcon->next = console_drivers->next; 2736 console_drivers->next = newcon; 2737 } 2738 2739 if (newcon->flags & CON_EXTENDED) 2740 nr_ext_console_drivers++; 2741 2742 if (newcon->flags & CON_PRINTBUFFER) { 2743 /* 2744 * console_unlock(); will print out the buffered messages 2745 * for us. 2746 */ 2747 logbuf_lock_irqsave(flags); 2748 console_seq = syslog_seq; 2749 console_idx = syslog_idx; 2750 /* 2751 * We're about to replay the log buffer. Only do this to the 2752 * just-registered console to avoid excessive message spam to 2753 * the already-registered consoles. 2754 * 2755 * Set exclusive_console with disabled interrupts to reduce 2756 * race window with eventual console_flush_on_panic() that 2757 * ignores console_lock. 2758 */ 2759 exclusive_console = newcon; 2760 exclusive_console_stop_seq = console_seq; 2761 logbuf_unlock_irqrestore(flags); 2762 } 2763 console_unlock(); 2764 console_sysfs_notify(); 2765 2766 /* 2767 * By unregistering the bootconsoles after we enable the real console 2768 * we get the "console xxx enabled" message on all the consoles - 2769 * boot consoles, real consoles, etc - this is to ensure that end 2770 * users know there might be something in the kernel's log buffer that 2771 * went to the bootconsole (that they do not see on the real console) 2772 */ 2773 pr_info("%sconsole [%s%d] enabled\n", 2774 (newcon->flags & CON_BOOT) ? "boot" : "" , 2775 newcon->name, newcon->index); 2776 if (bcon && 2777 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2778 !keep_bootcon) { 2779 /* We need to iterate through all boot consoles, to make 2780 * sure we print everything out, before we unregister them. 2781 */ 2782 for_each_console(bcon) 2783 if (bcon->flags & CON_BOOT) 2784 unregister_console(bcon); 2785 } 2786 } 2787 EXPORT_SYMBOL(register_console); 2788 2789 int unregister_console(struct console *console) 2790 { 2791 struct console *a, *b; 2792 int res; 2793 2794 pr_info("%sconsole [%s%d] disabled\n", 2795 (console->flags & CON_BOOT) ? "boot" : "" , 2796 console->name, console->index); 2797 2798 res = _braille_unregister_console(console); 2799 if (res) 2800 return res; 2801 2802 res = 1; 2803 console_lock(); 2804 if (console_drivers == console) { 2805 console_drivers=console->next; 2806 res = 0; 2807 } else if (console_drivers) { 2808 for (a=console_drivers->next, b=console_drivers ; 2809 a; b=a, a=b->next) { 2810 if (a == console) { 2811 b->next = a->next; 2812 res = 0; 2813 break; 2814 } 2815 } 2816 } 2817 2818 if (!res && (console->flags & CON_EXTENDED)) 2819 nr_ext_console_drivers--; 2820 2821 /* 2822 * If this isn't the last console and it has CON_CONSDEV set, we 2823 * need to set it on the next preferred console. 2824 */ 2825 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2826 console_drivers->flags |= CON_CONSDEV; 2827 2828 console->flags &= ~CON_ENABLED; 2829 console_unlock(); 2830 console_sysfs_notify(); 2831 return res; 2832 } 2833 EXPORT_SYMBOL(unregister_console); 2834 2835 /* 2836 * Initialize the console device. This is called *early*, so 2837 * we can't necessarily depend on lots of kernel help here. 2838 * Just do some early initializations, and do the complex setup 2839 * later. 2840 */ 2841 void __init console_init(void) 2842 { 2843 int ret; 2844 initcall_t call; 2845 initcall_entry_t *ce; 2846 2847 /* Setup the default TTY line discipline. */ 2848 n_tty_init(); 2849 2850 /* 2851 * set up the console device so that later boot sequences can 2852 * inform about problems etc.. 2853 */ 2854 ce = __con_initcall_start; 2855 trace_initcall_level("console"); 2856 while (ce < __con_initcall_end) { 2857 call = initcall_from_entry(ce); 2858 trace_initcall_start(call); 2859 ret = call(); 2860 trace_initcall_finish(call, ret); 2861 ce++; 2862 } 2863 } 2864 2865 /* 2866 * Some boot consoles access data that is in the init section and which will 2867 * be discarded after the initcalls have been run. To make sure that no code 2868 * will access this data, unregister the boot consoles in a late initcall. 2869 * 2870 * If for some reason, such as deferred probe or the driver being a loadable 2871 * module, the real console hasn't registered yet at this point, there will 2872 * be a brief interval in which no messages are logged to the console, which 2873 * makes it difficult to diagnose problems that occur during this time. 2874 * 2875 * To mitigate this problem somewhat, only unregister consoles whose memory 2876 * intersects with the init section. Note that all other boot consoles will 2877 * get unregistred when the real preferred console is registered. 2878 */ 2879 static int __init printk_late_init(void) 2880 { 2881 struct console *con; 2882 int ret; 2883 2884 for_each_console(con) { 2885 if (!(con->flags & CON_BOOT)) 2886 continue; 2887 2888 /* Check addresses that might be used for enabled consoles. */ 2889 if (init_section_intersects(con, sizeof(*con)) || 2890 init_section_contains(con->write, 0) || 2891 init_section_contains(con->read, 0) || 2892 init_section_contains(con->device, 0) || 2893 init_section_contains(con->unblank, 0) || 2894 init_section_contains(con->data, 0)) { 2895 /* 2896 * Please, consider moving the reported consoles out 2897 * of the init section. 2898 */ 2899 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2900 con->name, con->index); 2901 unregister_console(con); 2902 } 2903 } 2904 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2905 console_cpu_notify); 2906 WARN_ON(ret < 0); 2907 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2908 console_cpu_notify, NULL); 2909 WARN_ON(ret < 0); 2910 return 0; 2911 } 2912 late_initcall(printk_late_init); 2913 2914 #if defined CONFIG_PRINTK 2915 /* 2916 * Delayed printk version, for scheduler-internal messages: 2917 */ 2918 #define PRINTK_PENDING_WAKEUP 0x01 2919 #define PRINTK_PENDING_OUTPUT 0x02 2920 2921 static DEFINE_PER_CPU(int, printk_pending); 2922 2923 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2924 { 2925 int pending = __this_cpu_xchg(printk_pending, 0); 2926 2927 if (pending & PRINTK_PENDING_OUTPUT) { 2928 /* If trylock fails, someone else is doing the printing */ 2929 if (console_trylock()) 2930 console_unlock(); 2931 } 2932 2933 if (pending & PRINTK_PENDING_WAKEUP) 2934 wake_up_interruptible(&log_wait); 2935 } 2936 2937 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2938 .func = wake_up_klogd_work_func, 2939 .flags = IRQ_WORK_LAZY, 2940 }; 2941 2942 void wake_up_klogd(void) 2943 { 2944 preempt_disable(); 2945 if (waitqueue_active(&log_wait)) { 2946 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2947 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2948 } 2949 preempt_enable(); 2950 } 2951 2952 void defer_console_output(void) 2953 { 2954 preempt_disable(); 2955 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2956 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2957 preempt_enable(); 2958 } 2959 2960 int vprintk_deferred(const char *fmt, va_list args) 2961 { 2962 int r; 2963 2964 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2965 defer_console_output(); 2966 2967 return r; 2968 } 2969 2970 int printk_deferred(const char *fmt, ...) 2971 { 2972 va_list args; 2973 int r; 2974 2975 va_start(args, fmt); 2976 r = vprintk_deferred(fmt, args); 2977 va_end(args); 2978 2979 return r; 2980 } 2981 2982 /* 2983 * printk rate limiting, lifted from the networking subsystem. 2984 * 2985 * This enforces a rate limit: not more than 10 kernel messages 2986 * every 5s to make a denial-of-service attack impossible. 2987 */ 2988 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2989 2990 int __printk_ratelimit(const char *func) 2991 { 2992 return ___ratelimit(&printk_ratelimit_state, func); 2993 } 2994 EXPORT_SYMBOL(__printk_ratelimit); 2995 2996 /** 2997 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2998 * @caller_jiffies: pointer to caller's state 2999 * @interval_msecs: minimum interval between prints 3000 * 3001 * printk_timed_ratelimit() returns true if more than @interval_msecs 3002 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3003 * returned true. 3004 */ 3005 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3006 unsigned int interval_msecs) 3007 { 3008 unsigned long elapsed = jiffies - *caller_jiffies; 3009 3010 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3011 return false; 3012 3013 *caller_jiffies = jiffies; 3014 return true; 3015 } 3016 EXPORT_SYMBOL(printk_timed_ratelimit); 3017 3018 static DEFINE_SPINLOCK(dump_list_lock); 3019 static LIST_HEAD(dump_list); 3020 3021 /** 3022 * kmsg_dump_register - register a kernel log dumper. 3023 * @dumper: pointer to the kmsg_dumper structure 3024 * 3025 * Adds a kernel log dumper to the system. The dump callback in the 3026 * structure will be called when the kernel oopses or panics and must be 3027 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3028 */ 3029 int kmsg_dump_register(struct kmsg_dumper *dumper) 3030 { 3031 unsigned long flags; 3032 int err = -EBUSY; 3033 3034 /* The dump callback needs to be set */ 3035 if (!dumper->dump) 3036 return -EINVAL; 3037 3038 spin_lock_irqsave(&dump_list_lock, flags); 3039 /* Don't allow registering multiple times */ 3040 if (!dumper->registered) { 3041 dumper->registered = 1; 3042 list_add_tail_rcu(&dumper->list, &dump_list); 3043 err = 0; 3044 } 3045 spin_unlock_irqrestore(&dump_list_lock, flags); 3046 3047 return err; 3048 } 3049 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3050 3051 /** 3052 * kmsg_dump_unregister - unregister a kmsg dumper. 3053 * @dumper: pointer to the kmsg_dumper structure 3054 * 3055 * Removes a dump device from the system. Returns zero on success and 3056 * %-EINVAL otherwise. 3057 */ 3058 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3059 { 3060 unsigned long flags; 3061 int err = -EINVAL; 3062 3063 spin_lock_irqsave(&dump_list_lock, flags); 3064 if (dumper->registered) { 3065 dumper->registered = 0; 3066 list_del_rcu(&dumper->list); 3067 err = 0; 3068 } 3069 spin_unlock_irqrestore(&dump_list_lock, flags); 3070 synchronize_rcu(); 3071 3072 return err; 3073 } 3074 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3075 3076 static bool always_kmsg_dump; 3077 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3078 3079 /** 3080 * kmsg_dump - dump kernel log to kernel message dumpers. 3081 * @reason: the reason (oops, panic etc) for dumping 3082 * 3083 * Call each of the registered dumper's dump() callback, which can 3084 * retrieve the kmsg records with kmsg_dump_get_line() or 3085 * kmsg_dump_get_buffer(). 3086 */ 3087 void kmsg_dump(enum kmsg_dump_reason reason) 3088 { 3089 struct kmsg_dumper *dumper; 3090 unsigned long flags; 3091 3092 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3093 return; 3094 3095 rcu_read_lock(); 3096 list_for_each_entry_rcu(dumper, &dump_list, list) { 3097 if (dumper->max_reason && reason > dumper->max_reason) 3098 continue; 3099 3100 /* initialize iterator with data about the stored records */ 3101 dumper->active = true; 3102 3103 logbuf_lock_irqsave(flags); 3104 dumper->cur_seq = clear_seq; 3105 dumper->cur_idx = clear_idx; 3106 dumper->next_seq = log_next_seq; 3107 dumper->next_idx = log_next_idx; 3108 logbuf_unlock_irqrestore(flags); 3109 3110 /* invoke dumper which will iterate over records */ 3111 dumper->dump(dumper, reason); 3112 3113 /* reset iterator */ 3114 dumper->active = false; 3115 } 3116 rcu_read_unlock(); 3117 } 3118 3119 /** 3120 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3121 * @dumper: registered kmsg dumper 3122 * @syslog: include the "<4>" prefixes 3123 * @line: buffer to copy the line to 3124 * @size: maximum size of the buffer 3125 * @len: length of line placed into buffer 3126 * 3127 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3128 * record, and copy one record into the provided buffer. 3129 * 3130 * Consecutive calls will return the next available record moving 3131 * towards the end of the buffer with the youngest messages. 3132 * 3133 * A return value of FALSE indicates that there are no more records to 3134 * read. 3135 * 3136 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3137 */ 3138 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3139 char *line, size_t size, size_t *len) 3140 { 3141 struct printk_log *msg; 3142 size_t l = 0; 3143 bool ret = false; 3144 3145 if (!dumper->active) 3146 goto out; 3147 3148 if (dumper->cur_seq < log_first_seq) { 3149 /* messages are gone, move to first available one */ 3150 dumper->cur_seq = log_first_seq; 3151 dumper->cur_idx = log_first_idx; 3152 } 3153 3154 /* last entry */ 3155 if (dumper->cur_seq >= log_next_seq) 3156 goto out; 3157 3158 msg = log_from_idx(dumper->cur_idx); 3159 l = msg_print_text(msg, syslog, printk_time, line, size); 3160 3161 dumper->cur_idx = log_next(dumper->cur_idx); 3162 dumper->cur_seq++; 3163 ret = true; 3164 out: 3165 if (len) 3166 *len = l; 3167 return ret; 3168 } 3169 3170 /** 3171 * kmsg_dump_get_line - retrieve one kmsg log line 3172 * @dumper: registered kmsg dumper 3173 * @syslog: include the "<4>" prefixes 3174 * @line: buffer to copy the line to 3175 * @size: maximum size of the buffer 3176 * @len: length of line placed into buffer 3177 * 3178 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3179 * record, and copy one record into the provided buffer. 3180 * 3181 * Consecutive calls will return the next available record moving 3182 * towards the end of the buffer with the youngest messages. 3183 * 3184 * A return value of FALSE indicates that there are no more records to 3185 * read. 3186 */ 3187 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3188 char *line, size_t size, size_t *len) 3189 { 3190 unsigned long flags; 3191 bool ret; 3192 3193 logbuf_lock_irqsave(flags); 3194 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3195 logbuf_unlock_irqrestore(flags); 3196 3197 return ret; 3198 } 3199 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3200 3201 /** 3202 * kmsg_dump_get_buffer - copy kmsg log lines 3203 * @dumper: registered kmsg dumper 3204 * @syslog: include the "<4>" prefixes 3205 * @buf: buffer to copy the line to 3206 * @size: maximum size of the buffer 3207 * @len: length of line placed into buffer 3208 * 3209 * Start at the end of the kmsg buffer and fill the provided buffer 3210 * with as many of the the *youngest* kmsg records that fit into it. 3211 * If the buffer is large enough, all available kmsg records will be 3212 * copied with a single call. 3213 * 3214 * Consecutive calls will fill the buffer with the next block of 3215 * available older records, not including the earlier retrieved ones. 3216 * 3217 * A return value of FALSE indicates that there are no more records to 3218 * read. 3219 */ 3220 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3221 char *buf, size_t size, size_t *len) 3222 { 3223 unsigned long flags; 3224 u64 seq; 3225 u32 idx; 3226 u64 next_seq; 3227 u32 next_idx; 3228 size_t l = 0; 3229 bool ret = false; 3230 bool time = printk_time; 3231 3232 if (!dumper->active) 3233 goto out; 3234 3235 logbuf_lock_irqsave(flags); 3236 if (dumper->cur_seq < log_first_seq) { 3237 /* messages are gone, move to first available one */ 3238 dumper->cur_seq = log_first_seq; 3239 dumper->cur_idx = log_first_idx; 3240 } 3241 3242 /* last entry */ 3243 if (dumper->cur_seq >= dumper->next_seq) { 3244 logbuf_unlock_irqrestore(flags); 3245 goto out; 3246 } 3247 3248 /* calculate length of entire buffer */ 3249 seq = dumper->cur_seq; 3250 idx = dumper->cur_idx; 3251 while (seq < dumper->next_seq) { 3252 struct printk_log *msg = log_from_idx(idx); 3253 3254 l += msg_print_text(msg, true, time, NULL, 0); 3255 idx = log_next(idx); 3256 seq++; 3257 } 3258 3259 /* move first record forward until length fits into the buffer */ 3260 seq = dumper->cur_seq; 3261 idx = dumper->cur_idx; 3262 while (l > size && seq < dumper->next_seq) { 3263 struct printk_log *msg = log_from_idx(idx); 3264 3265 l -= msg_print_text(msg, true, time, NULL, 0); 3266 idx = log_next(idx); 3267 seq++; 3268 } 3269 3270 /* last message in next interation */ 3271 next_seq = seq; 3272 next_idx = idx; 3273 3274 l = 0; 3275 while (seq < dumper->next_seq) { 3276 struct printk_log *msg = log_from_idx(idx); 3277 3278 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3279 idx = log_next(idx); 3280 seq++; 3281 } 3282 3283 dumper->next_seq = next_seq; 3284 dumper->next_idx = next_idx; 3285 ret = true; 3286 logbuf_unlock_irqrestore(flags); 3287 out: 3288 if (len) 3289 *len = l; 3290 return ret; 3291 } 3292 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3293 3294 /** 3295 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3296 * @dumper: registered kmsg dumper 3297 * 3298 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3299 * kmsg_dump_get_buffer() can be called again and used multiple 3300 * times within the same dumper.dump() callback. 3301 * 3302 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3303 */ 3304 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3305 { 3306 dumper->cur_seq = clear_seq; 3307 dumper->cur_idx = clear_idx; 3308 dumper->next_seq = log_next_seq; 3309 dumper->next_idx = log_next_idx; 3310 } 3311 3312 /** 3313 * kmsg_dump_rewind - reset the interator 3314 * @dumper: registered kmsg dumper 3315 * 3316 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3317 * kmsg_dump_get_buffer() can be called again and used multiple 3318 * times within the same dumper.dump() callback. 3319 */ 3320 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3321 { 3322 unsigned long flags; 3323 3324 logbuf_lock_irqsave(flags); 3325 kmsg_dump_rewind_nolock(dumper); 3326 logbuf_unlock_irqrestore(flags); 3327 } 3328 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3329 3330 #endif 3331