1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 #ifdef CONFIG_LOCKDEP 97 static struct lockdep_map console_lock_dep_map = { 98 .name = "console_lock" 99 }; 100 #endif 101 102 enum devkmsg_log_bits { 103 __DEVKMSG_LOG_BIT_ON = 0, 104 __DEVKMSG_LOG_BIT_OFF, 105 __DEVKMSG_LOG_BIT_LOCK, 106 }; 107 108 enum devkmsg_log_masks { 109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 112 }; 113 114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 115 #define DEVKMSG_LOG_MASK_DEFAULT 0 116 117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 119 static int __control_devkmsg(char *str) 120 { 121 size_t len; 122 123 if (!str) 124 return -EINVAL; 125 126 len = str_has_prefix(str, "on"); 127 if (len) { 128 devkmsg_log = DEVKMSG_LOG_MASK_ON; 129 return len; 130 } 131 132 len = str_has_prefix(str, "off"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 135 return len; 136 } 137 138 len = str_has_prefix(str, "ratelimit"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 return len; 142 } 143 144 return -EINVAL; 145 } 146 147 static int __init control_devkmsg(char *str) 148 { 149 if (__control_devkmsg(str) < 0) 150 return 1; 151 152 /* 153 * Set sysctl string accordingly: 154 */ 155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 156 strcpy(devkmsg_log_str, "on"); 157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 158 strcpy(devkmsg_log_str, "off"); 159 /* else "ratelimit" which is set by default. */ 160 161 /* 162 * Sysctl cannot change it anymore. The kernel command line setting of 163 * this parameter is to force the setting to be permanent throughout the 164 * runtime of the system. This is a precation measure against userspace 165 * trying to be a smarta** and attempting to change it up on us. 166 */ 167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 168 169 return 0; 170 } 171 __setup("printk.devkmsg=", control_devkmsg); 172 173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 174 175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 176 void *buffer, size_t *lenp, loff_t *ppos) 177 { 178 char old_str[DEVKMSG_STR_MAX_SIZE]; 179 unsigned int old; 180 int err; 181 182 if (write) { 183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 184 return -EINVAL; 185 186 old = devkmsg_log; 187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 188 } 189 190 err = proc_dostring(table, write, buffer, lenp, ppos); 191 if (err) 192 return err; 193 194 if (write) { 195 err = __control_devkmsg(devkmsg_log_str); 196 197 /* 198 * Do not accept an unknown string OR a known string with 199 * trailing crap... 200 */ 201 if (err < 0 || (err + 1 != *lenp)) { 202 203 /* ... and restore old setting. */ 204 devkmsg_log = old; 205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 206 207 return -EINVAL; 208 } 209 } 210 211 return 0; 212 } 213 214 /* Number of registered extended console drivers. */ 215 static int nr_ext_console_drivers; 216 217 /* 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 219 * macros instead of functions so that _RET_IP_ contains useful information. 220 */ 221 #define down_console_sem() do { \ 222 down(&console_sem);\ 223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 224 } while (0) 225 226 static int __down_trylock_console_sem(unsigned long ip) 227 { 228 int lock_failed; 229 unsigned long flags; 230 231 /* 232 * Here and in __up_console_sem() we need to be in safe mode, 233 * because spindump/WARN/etc from under console ->lock will 234 * deadlock in printk()->down_trylock_console_sem() otherwise. 235 */ 236 printk_safe_enter_irqsave(flags); 237 lock_failed = down_trylock(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 240 if (lock_failed) 241 return 1; 242 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 243 return 0; 244 } 245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 246 247 static void __up_console_sem(unsigned long ip) 248 { 249 unsigned long flags; 250 251 mutex_release(&console_lock_dep_map, ip); 252 253 printk_safe_enter_irqsave(flags); 254 up(&console_sem); 255 printk_safe_exit_irqrestore(flags); 256 } 257 #define up_console_sem() __up_console_sem(_RET_IP_) 258 259 /* 260 * This is used for debugging the mess that is the VT code by 261 * keeping track if we have the console semaphore held. It's 262 * definitely not the perfect debug tool (we don't know if _WE_ 263 * hold it and are racing, but it helps tracking those weird code 264 * paths in the console code where we end up in places I want 265 * locked without the console semaphore held). 266 */ 267 static int console_locked, console_suspended; 268 269 /* 270 * If exclusive_console is non-NULL then only this console is to be printed to. 271 */ 272 static struct console *exclusive_console; 273 274 /* 275 * Array of consoles built from command line options (console=) 276 */ 277 278 #define MAX_CMDLINECONSOLES 8 279 280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 281 282 static int preferred_console = -1; 283 static bool has_preferred_console; 284 int console_set_on_cmdline; 285 EXPORT_SYMBOL(console_set_on_cmdline); 286 287 /* Flag: console code may call schedule() */ 288 static int console_may_schedule; 289 290 enum con_msg_format_flags { 291 MSG_FORMAT_DEFAULT = 0, 292 MSG_FORMAT_SYSLOG = (1 << 0), 293 }; 294 295 static int console_msg_format = MSG_FORMAT_DEFAULT; 296 297 /* 298 * The printk log buffer consists of a sequenced collection of records, each 299 * containing variable length message text. Every record also contains its 300 * own meta-data (@info). 301 * 302 * Every record meta-data carries the timestamp in microseconds, as well as 303 * the standard userspace syslog level and syslog facility. The usual kernel 304 * messages use LOG_KERN; userspace-injected messages always carry a matching 305 * syslog facility, by default LOG_USER. The origin of every message can be 306 * reliably determined that way. 307 * 308 * The human readable log message of a record is available in @text, the 309 * length of the message text in @text_len. The stored message is not 310 * terminated. 311 * 312 * Optionally, a record can carry a dictionary of properties (key/value 313 * pairs), to provide userspace with a machine-readable message context. 314 * 315 * Examples for well-defined, commonly used property names are: 316 * DEVICE=b12:8 device identifier 317 * b12:8 block dev_t 318 * c127:3 char dev_t 319 * n8 netdev ifindex 320 * +sound:card0 subsystem:devname 321 * SUBSYSTEM=pci driver-core subsystem name 322 * 323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 324 * and values are terminated by a '\0' character. 325 * 326 * Example of record values: 327 * record.text_buf = "it's a line" (unterminated) 328 * record.info.seq = 56 329 * record.info.ts_nsec = 36863 330 * record.info.text_len = 11 331 * record.info.facility = 0 (LOG_KERN) 332 * record.info.flags = 0 333 * record.info.level = 3 (LOG_ERR) 334 * record.info.caller_id = 299 (task 299) 335 * record.info.dev_info.subsystem = "pci" (terminated) 336 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 337 * 338 * The 'struct printk_info' buffer must never be directly exported to 339 * userspace, it is a kernel-private implementation detail that might 340 * need to be changed in the future, when the requirements change. 341 * 342 * /dev/kmsg exports the structured data in the following line format: 343 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 344 * 345 * Users of the export format should ignore possible additional values 346 * separated by ',', and find the message after the ';' character. 347 * 348 * The optional key/value pairs are attached as continuation lines starting 349 * with a space character and terminated by a newline. All possible 350 * non-prinatable characters are escaped in the "\xff" notation. 351 */ 352 353 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 354 static DEFINE_MUTEX(syslog_lock); 355 356 #ifdef CONFIG_PRINTK 357 DECLARE_WAIT_QUEUE_HEAD(log_wait); 358 /* All 3 protected by @syslog_lock. */ 359 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 360 static u64 syslog_seq; 361 static size_t syslog_partial; 362 static bool syslog_time; 363 364 /* All 3 protected by @console_sem. */ 365 /* the next printk record to write to the console */ 366 static u64 console_seq; 367 static u64 exclusive_console_stop_seq; 368 static unsigned long console_dropped; 369 370 struct latched_seq { 371 seqcount_latch_t latch; 372 u64 val[2]; 373 }; 374 375 /* 376 * The next printk record to read after the last 'clear' command. There are 377 * two copies (updated with seqcount_latch) so that reads can locklessly 378 * access a valid value. Writers are synchronized by @syslog_lock. 379 */ 380 static struct latched_seq clear_seq = { 381 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 382 .val[0] = 0, 383 .val[1] = 0, 384 }; 385 386 #ifdef CONFIG_PRINTK_CALLER 387 #define PREFIX_MAX 48 388 #else 389 #define PREFIX_MAX 32 390 #endif 391 392 /* the maximum size of a formatted record (i.e. with prefix added per line) */ 393 #define CONSOLE_LOG_MAX 1024 394 395 /* the maximum size allowed to be reserved for a record */ 396 #define LOG_LINE_MAX (CONSOLE_LOG_MAX - PREFIX_MAX) 397 398 #define LOG_LEVEL(v) ((v) & 0x07) 399 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 400 401 /* record buffer */ 402 #define LOG_ALIGN __alignof__(unsigned long) 403 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 404 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 405 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 406 static char *log_buf = __log_buf; 407 static u32 log_buf_len = __LOG_BUF_LEN; 408 409 /* 410 * Define the average message size. This only affects the number of 411 * descriptors that will be available. Underestimating is better than 412 * overestimating (too many available descriptors is better than not enough). 413 */ 414 #define PRB_AVGBITS 5 /* 32 character average length */ 415 416 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 417 #error CONFIG_LOG_BUF_SHIFT value too small. 418 #endif 419 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 420 PRB_AVGBITS, &__log_buf[0]); 421 422 static struct printk_ringbuffer printk_rb_dynamic; 423 424 static struct printk_ringbuffer *prb = &printk_rb_static; 425 426 /* 427 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 428 * per_cpu_areas are initialised. This variable is set to true when 429 * it's safe to access per-CPU data. 430 */ 431 static bool __printk_percpu_data_ready __read_mostly; 432 433 bool printk_percpu_data_ready(void) 434 { 435 return __printk_percpu_data_ready; 436 } 437 438 /* Must be called under syslog_lock. */ 439 static void latched_seq_write(struct latched_seq *ls, u64 val) 440 { 441 raw_write_seqcount_latch(&ls->latch); 442 ls->val[0] = val; 443 raw_write_seqcount_latch(&ls->latch); 444 ls->val[1] = val; 445 } 446 447 /* Can be called from any context. */ 448 static u64 latched_seq_read_nolock(struct latched_seq *ls) 449 { 450 unsigned int seq; 451 unsigned int idx; 452 u64 val; 453 454 do { 455 seq = raw_read_seqcount_latch(&ls->latch); 456 idx = seq & 0x1; 457 val = ls->val[idx]; 458 } while (read_seqcount_latch_retry(&ls->latch, seq)); 459 460 return val; 461 } 462 463 /* Return log buffer address */ 464 char *log_buf_addr_get(void) 465 { 466 return log_buf; 467 } 468 469 /* Return log buffer size */ 470 u32 log_buf_len_get(void) 471 { 472 return log_buf_len; 473 } 474 475 /* 476 * Define how much of the log buffer we could take at maximum. The value 477 * must be greater than two. Note that only half of the buffer is available 478 * when the index points to the middle. 479 */ 480 #define MAX_LOG_TAKE_PART 4 481 static const char trunc_msg[] = "<truncated>"; 482 483 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 484 { 485 /* 486 * The message should not take the whole buffer. Otherwise, it might 487 * get removed too soon. 488 */ 489 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 490 491 if (*text_len > max_text_len) 492 *text_len = max_text_len; 493 494 /* enable the warning message (if there is room) */ 495 *trunc_msg_len = strlen(trunc_msg); 496 if (*text_len >= *trunc_msg_len) 497 *text_len -= *trunc_msg_len; 498 else 499 *trunc_msg_len = 0; 500 } 501 502 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 503 504 static int syslog_action_restricted(int type) 505 { 506 if (dmesg_restrict) 507 return 1; 508 /* 509 * Unless restricted, we allow "read all" and "get buffer size" 510 * for everybody. 511 */ 512 return type != SYSLOG_ACTION_READ_ALL && 513 type != SYSLOG_ACTION_SIZE_BUFFER; 514 } 515 516 static int check_syslog_permissions(int type, int source) 517 { 518 /* 519 * If this is from /proc/kmsg and we've already opened it, then we've 520 * already done the capabilities checks at open time. 521 */ 522 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 523 goto ok; 524 525 if (syslog_action_restricted(type)) { 526 if (capable(CAP_SYSLOG)) 527 goto ok; 528 /* 529 * For historical reasons, accept CAP_SYS_ADMIN too, with 530 * a warning. 531 */ 532 if (capable(CAP_SYS_ADMIN)) { 533 pr_warn_once("%s (%d): Attempt to access syslog with " 534 "CAP_SYS_ADMIN but no CAP_SYSLOG " 535 "(deprecated).\n", 536 current->comm, task_pid_nr(current)); 537 goto ok; 538 } 539 return -EPERM; 540 } 541 ok: 542 return security_syslog(type); 543 } 544 545 static void append_char(char **pp, char *e, char c) 546 { 547 if (*pp < e) 548 *(*pp)++ = c; 549 } 550 551 static ssize_t info_print_ext_header(char *buf, size_t size, 552 struct printk_info *info) 553 { 554 u64 ts_usec = info->ts_nsec; 555 char caller[20]; 556 #ifdef CONFIG_PRINTK_CALLER 557 u32 id = info->caller_id; 558 559 snprintf(caller, sizeof(caller), ",caller=%c%u", 560 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 561 #else 562 caller[0] = '\0'; 563 #endif 564 565 do_div(ts_usec, 1000); 566 567 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 568 (info->facility << 3) | info->level, info->seq, 569 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 570 } 571 572 static ssize_t msg_add_ext_text(char *buf, size_t size, 573 const char *text, size_t text_len, 574 unsigned char endc) 575 { 576 char *p = buf, *e = buf + size; 577 size_t i; 578 579 /* escape non-printable characters */ 580 for (i = 0; i < text_len; i++) { 581 unsigned char c = text[i]; 582 583 if (c < ' ' || c >= 127 || c == '\\') 584 p += scnprintf(p, e - p, "\\x%02x", c); 585 else 586 append_char(&p, e, c); 587 } 588 append_char(&p, e, endc); 589 590 return p - buf; 591 } 592 593 static ssize_t msg_add_dict_text(char *buf, size_t size, 594 const char *key, const char *val) 595 { 596 size_t val_len = strlen(val); 597 ssize_t len; 598 599 if (!val_len) 600 return 0; 601 602 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 603 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 604 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 605 606 return len; 607 } 608 609 static ssize_t msg_print_ext_body(char *buf, size_t size, 610 char *text, size_t text_len, 611 struct dev_printk_info *dev_info) 612 { 613 ssize_t len; 614 615 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 616 617 if (!dev_info) 618 goto out; 619 620 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 621 dev_info->subsystem); 622 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 623 dev_info->device); 624 out: 625 return len; 626 } 627 628 /* /dev/kmsg - userspace message inject/listen interface */ 629 struct devkmsg_user { 630 atomic64_t seq; 631 struct ratelimit_state rs; 632 struct mutex lock; 633 char buf[CONSOLE_EXT_LOG_MAX]; 634 635 struct printk_info info; 636 char text_buf[CONSOLE_EXT_LOG_MAX]; 637 struct printk_record record; 638 }; 639 640 static __printf(3, 4) __cold 641 int devkmsg_emit(int facility, int level, const char *fmt, ...) 642 { 643 va_list args; 644 int r; 645 646 va_start(args, fmt); 647 r = vprintk_emit(facility, level, NULL, fmt, args); 648 va_end(args); 649 650 return r; 651 } 652 653 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 654 { 655 char *buf, *line; 656 int level = default_message_loglevel; 657 int facility = 1; /* LOG_USER */ 658 struct file *file = iocb->ki_filp; 659 struct devkmsg_user *user = file->private_data; 660 size_t len = iov_iter_count(from); 661 ssize_t ret = len; 662 663 if (!user || len > LOG_LINE_MAX) 664 return -EINVAL; 665 666 /* Ignore when user logging is disabled. */ 667 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 668 return len; 669 670 /* Ratelimit when not explicitly enabled. */ 671 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 672 if (!___ratelimit(&user->rs, current->comm)) 673 return ret; 674 } 675 676 buf = kmalloc(len+1, GFP_KERNEL); 677 if (buf == NULL) 678 return -ENOMEM; 679 680 buf[len] = '\0'; 681 if (!copy_from_iter_full(buf, len, from)) { 682 kfree(buf); 683 return -EFAULT; 684 } 685 686 /* 687 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 688 * the decimal value represents 32bit, the lower 3 bit are the log 689 * level, the rest are the log facility. 690 * 691 * If no prefix or no userspace facility is specified, we 692 * enforce LOG_USER, to be able to reliably distinguish 693 * kernel-generated messages from userspace-injected ones. 694 */ 695 line = buf; 696 if (line[0] == '<') { 697 char *endp = NULL; 698 unsigned int u; 699 700 u = simple_strtoul(line + 1, &endp, 10); 701 if (endp && endp[0] == '>') { 702 level = LOG_LEVEL(u); 703 if (LOG_FACILITY(u) != 0) 704 facility = LOG_FACILITY(u); 705 endp++; 706 line = endp; 707 } 708 } 709 710 devkmsg_emit(facility, level, "%s", line); 711 kfree(buf); 712 return ret; 713 } 714 715 static ssize_t devkmsg_read(struct file *file, char __user *buf, 716 size_t count, loff_t *ppos) 717 { 718 struct devkmsg_user *user = file->private_data; 719 struct printk_record *r = &user->record; 720 size_t len; 721 ssize_t ret; 722 723 if (!user) 724 return -EBADF; 725 726 ret = mutex_lock_interruptible(&user->lock); 727 if (ret) 728 return ret; 729 730 if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) { 731 if (file->f_flags & O_NONBLOCK) { 732 ret = -EAGAIN; 733 goto out; 734 } 735 736 ret = wait_event_interruptible(log_wait, 737 prb_read_valid(prb, atomic64_read(&user->seq), r)); 738 if (ret) 739 goto out; 740 } 741 742 if (r->info->seq != atomic64_read(&user->seq)) { 743 /* our last seen message is gone, return error and reset */ 744 atomic64_set(&user->seq, r->info->seq); 745 ret = -EPIPE; 746 goto out; 747 } 748 749 len = info_print_ext_header(user->buf, sizeof(user->buf), r->info); 750 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 751 &r->text_buf[0], r->info->text_len, 752 &r->info->dev_info); 753 754 atomic64_set(&user->seq, r->info->seq + 1); 755 756 if (len > count) { 757 ret = -EINVAL; 758 goto out; 759 } 760 761 if (copy_to_user(buf, user->buf, len)) { 762 ret = -EFAULT; 763 goto out; 764 } 765 ret = len; 766 out: 767 mutex_unlock(&user->lock); 768 return ret; 769 } 770 771 /* 772 * Be careful when modifying this function!!! 773 * 774 * Only few operations are supported because the device works only with the 775 * entire variable length messages (records). Non-standard values are 776 * returned in the other cases and has been this way for quite some time. 777 * User space applications might depend on this behavior. 778 */ 779 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 780 { 781 struct devkmsg_user *user = file->private_data; 782 loff_t ret = 0; 783 784 if (!user) 785 return -EBADF; 786 if (offset) 787 return -ESPIPE; 788 789 switch (whence) { 790 case SEEK_SET: 791 /* the first record */ 792 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 793 break; 794 case SEEK_DATA: 795 /* 796 * The first record after the last SYSLOG_ACTION_CLEAR, 797 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 798 * changes no global state, and does not clear anything. 799 */ 800 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 801 break; 802 case SEEK_END: 803 /* after the last record */ 804 atomic64_set(&user->seq, prb_next_seq(prb)); 805 break; 806 default: 807 ret = -EINVAL; 808 } 809 return ret; 810 } 811 812 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 813 { 814 struct devkmsg_user *user = file->private_data; 815 struct printk_info info; 816 __poll_t ret = 0; 817 818 if (!user) 819 return EPOLLERR|EPOLLNVAL; 820 821 poll_wait(file, &log_wait, wait); 822 823 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 824 /* return error when data has vanished underneath us */ 825 if (info.seq != atomic64_read(&user->seq)) 826 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 827 else 828 ret = EPOLLIN|EPOLLRDNORM; 829 } 830 831 return ret; 832 } 833 834 static int devkmsg_open(struct inode *inode, struct file *file) 835 { 836 struct devkmsg_user *user; 837 int err; 838 839 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 840 return -EPERM; 841 842 /* write-only does not need any file context */ 843 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 844 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 845 SYSLOG_FROM_READER); 846 if (err) 847 return err; 848 } 849 850 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 851 if (!user) 852 return -ENOMEM; 853 854 ratelimit_default_init(&user->rs); 855 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 856 857 mutex_init(&user->lock); 858 859 prb_rec_init_rd(&user->record, &user->info, 860 &user->text_buf[0], sizeof(user->text_buf)); 861 862 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 863 864 file->private_data = user; 865 return 0; 866 } 867 868 static int devkmsg_release(struct inode *inode, struct file *file) 869 { 870 struct devkmsg_user *user = file->private_data; 871 872 if (!user) 873 return 0; 874 875 ratelimit_state_exit(&user->rs); 876 877 mutex_destroy(&user->lock); 878 kvfree(user); 879 return 0; 880 } 881 882 const struct file_operations kmsg_fops = { 883 .open = devkmsg_open, 884 .read = devkmsg_read, 885 .write_iter = devkmsg_write, 886 .llseek = devkmsg_llseek, 887 .poll = devkmsg_poll, 888 .release = devkmsg_release, 889 }; 890 891 #ifdef CONFIG_CRASH_CORE 892 /* 893 * This appends the listed symbols to /proc/vmcore 894 * 895 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 896 * obtain access to symbols that are otherwise very difficult to locate. These 897 * symbols are specifically used so that utilities can access and extract the 898 * dmesg log from a vmcore file after a crash. 899 */ 900 void log_buf_vmcoreinfo_setup(void) 901 { 902 struct dev_printk_info *dev_info = NULL; 903 904 VMCOREINFO_SYMBOL(prb); 905 VMCOREINFO_SYMBOL(printk_rb_static); 906 VMCOREINFO_SYMBOL(clear_seq); 907 908 /* 909 * Export struct size and field offsets. User space tools can 910 * parse it and detect any changes to structure down the line. 911 */ 912 913 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 914 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 915 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 916 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 917 918 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 919 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 920 VMCOREINFO_OFFSET(prb_desc_ring, descs); 921 VMCOREINFO_OFFSET(prb_desc_ring, infos); 922 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 923 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 924 925 VMCOREINFO_STRUCT_SIZE(prb_desc); 926 VMCOREINFO_OFFSET(prb_desc, state_var); 927 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 928 929 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 930 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 931 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 932 933 VMCOREINFO_STRUCT_SIZE(printk_info); 934 VMCOREINFO_OFFSET(printk_info, seq); 935 VMCOREINFO_OFFSET(printk_info, ts_nsec); 936 VMCOREINFO_OFFSET(printk_info, text_len); 937 VMCOREINFO_OFFSET(printk_info, caller_id); 938 VMCOREINFO_OFFSET(printk_info, dev_info); 939 940 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 941 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 942 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 943 VMCOREINFO_OFFSET(dev_printk_info, device); 944 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 945 946 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 947 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 948 VMCOREINFO_OFFSET(prb_data_ring, data); 949 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 950 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 951 952 VMCOREINFO_SIZE(atomic_long_t); 953 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 954 955 VMCOREINFO_STRUCT_SIZE(latched_seq); 956 VMCOREINFO_OFFSET(latched_seq, val); 957 } 958 #endif 959 960 /* requested log_buf_len from kernel cmdline */ 961 static unsigned long __initdata new_log_buf_len; 962 963 /* we practice scaling the ring buffer by powers of 2 */ 964 static void __init log_buf_len_update(u64 size) 965 { 966 if (size > (u64)LOG_BUF_LEN_MAX) { 967 size = (u64)LOG_BUF_LEN_MAX; 968 pr_err("log_buf over 2G is not supported.\n"); 969 } 970 971 if (size) 972 size = roundup_pow_of_two(size); 973 if (size > log_buf_len) 974 new_log_buf_len = (unsigned long)size; 975 } 976 977 /* save requested log_buf_len since it's too early to process it */ 978 static int __init log_buf_len_setup(char *str) 979 { 980 u64 size; 981 982 if (!str) 983 return -EINVAL; 984 985 size = memparse(str, &str); 986 987 log_buf_len_update(size); 988 989 return 0; 990 } 991 early_param("log_buf_len", log_buf_len_setup); 992 993 #ifdef CONFIG_SMP 994 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 995 996 static void __init log_buf_add_cpu(void) 997 { 998 unsigned int cpu_extra; 999 1000 /* 1001 * archs should set up cpu_possible_bits properly with 1002 * set_cpu_possible() after setup_arch() but just in 1003 * case lets ensure this is valid. 1004 */ 1005 if (num_possible_cpus() == 1) 1006 return; 1007 1008 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1009 1010 /* by default this will only continue through for large > 64 CPUs */ 1011 if (cpu_extra <= __LOG_BUF_LEN / 2) 1012 return; 1013 1014 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1015 __LOG_CPU_MAX_BUF_LEN); 1016 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1017 cpu_extra); 1018 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1019 1020 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1021 } 1022 #else /* !CONFIG_SMP */ 1023 static inline void log_buf_add_cpu(void) {} 1024 #endif /* CONFIG_SMP */ 1025 1026 static void __init set_percpu_data_ready(void) 1027 { 1028 __printk_percpu_data_ready = true; 1029 } 1030 1031 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1032 struct printk_record *r) 1033 { 1034 struct prb_reserved_entry e; 1035 struct printk_record dest_r; 1036 1037 prb_rec_init_wr(&dest_r, r->info->text_len); 1038 1039 if (!prb_reserve(&e, rb, &dest_r)) 1040 return 0; 1041 1042 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1043 dest_r.info->text_len = r->info->text_len; 1044 dest_r.info->facility = r->info->facility; 1045 dest_r.info->level = r->info->level; 1046 dest_r.info->flags = r->info->flags; 1047 dest_r.info->ts_nsec = r->info->ts_nsec; 1048 dest_r.info->caller_id = r->info->caller_id; 1049 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1050 1051 prb_final_commit(&e); 1052 1053 return prb_record_text_space(&e); 1054 } 1055 1056 static char setup_text_buf[LOG_LINE_MAX] __initdata; 1057 1058 void __init setup_log_buf(int early) 1059 { 1060 struct printk_info *new_infos; 1061 unsigned int new_descs_count; 1062 struct prb_desc *new_descs; 1063 struct printk_info info; 1064 struct printk_record r; 1065 unsigned int text_size; 1066 size_t new_descs_size; 1067 size_t new_infos_size; 1068 unsigned long flags; 1069 char *new_log_buf; 1070 unsigned int free; 1071 u64 seq; 1072 1073 /* 1074 * Some archs call setup_log_buf() multiple times - first is very 1075 * early, e.g. from setup_arch(), and second - when percpu_areas 1076 * are initialised. 1077 */ 1078 if (!early) 1079 set_percpu_data_ready(); 1080 1081 if (log_buf != __log_buf) 1082 return; 1083 1084 if (!early && !new_log_buf_len) 1085 log_buf_add_cpu(); 1086 1087 if (!new_log_buf_len) 1088 return; 1089 1090 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1091 if (new_descs_count == 0) { 1092 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1093 return; 1094 } 1095 1096 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1097 if (unlikely(!new_log_buf)) { 1098 pr_err("log_buf_len: %lu text bytes not available\n", 1099 new_log_buf_len); 1100 return; 1101 } 1102 1103 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1104 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1105 if (unlikely(!new_descs)) { 1106 pr_err("log_buf_len: %zu desc bytes not available\n", 1107 new_descs_size); 1108 goto err_free_log_buf; 1109 } 1110 1111 new_infos_size = new_descs_count * sizeof(struct printk_info); 1112 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1113 if (unlikely(!new_infos)) { 1114 pr_err("log_buf_len: %zu info bytes not available\n", 1115 new_infos_size); 1116 goto err_free_descs; 1117 } 1118 1119 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1120 1121 prb_init(&printk_rb_dynamic, 1122 new_log_buf, ilog2(new_log_buf_len), 1123 new_descs, ilog2(new_descs_count), 1124 new_infos); 1125 1126 local_irq_save(flags); 1127 1128 log_buf_len = new_log_buf_len; 1129 log_buf = new_log_buf; 1130 new_log_buf_len = 0; 1131 1132 free = __LOG_BUF_LEN; 1133 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1134 text_size = add_to_rb(&printk_rb_dynamic, &r); 1135 if (text_size > free) 1136 free = 0; 1137 else 1138 free -= text_size; 1139 } 1140 1141 prb = &printk_rb_dynamic; 1142 1143 local_irq_restore(flags); 1144 1145 /* 1146 * Copy any remaining messages that might have appeared from 1147 * NMI context after copying but before switching to the 1148 * dynamic buffer. 1149 */ 1150 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1151 text_size = add_to_rb(&printk_rb_dynamic, &r); 1152 if (text_size > free) 1153 free = 0; 1154 else 1155 free -= text_size; 1156 } 1157 1158 if (seq != prb_next_seq(&printk_rb_static)) { 1159 pr_err("dropped %llu messages\n", 1160 prb_next_seq(&printk_rb_static) - seq); 1161 } 1162 1163 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1164 pr_info("early log buf free: %u(%u%%)\n", 1165 free, (free * 100) / __LOG_BUF_LEN); 1166 return; 1167 1168 err_free_descs: 1169 memblock_free(new_descs, new_descs_size); 1170 err_free_log_buf: 1171 memblock_free(new_log_buf, new_log_buf_len); 1172 } 1173 1174 static bool __read_mostly ignore_loglevel; 1175 1176 static int __init ignore_loglevel_setup(char *str) 1177 { 1178 ignore_loglevel = true; 1179 pr_info("debug: ignoring loglevel setting.\n"); 1180 1181 return 0; 1182 } 1183 1184 early_param("ignore_loglevel", ignore_loglevel_setup); 1185 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1186 MODULE_PARM_DESC(ignore_loglevel, 1187 "ignore loglevel setting (prints all kernel messages to the console)"); 1188 1189 static bool suppress_message_printing(int level) 1190 { 1191 return (level >= console_loglevel && !ignore_loglevel); 1192 } 1193 1194 #ifdef CONFIG_BOOT_PRINTK_DELAY 1195 1196 static int boot_delay; /* msecs delay after each printk during bootup */ 1197 static unsigned long long loops_per_msec; /* based on boot_delay */ 1198 1199 static int __init boot_delay_setup(char *str) 1200 { 1201 unsigned long lpj; 1202 1203 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1204 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1205 1206 get_option(&str, &boot_delay); 1207 if (boot_delay > 10 * 1000) 1208 boot_delay = 0; 1209 1210 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1211 "HZ: %d, loops_per_msec: %llu\n", 1212 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1213 return 0; 1214 } 1215 early_param("boot_delay", boot_delay_setup); 1216 1217 static void boot_delay_msec(int level) 1218 { 1219 unsigned long long k; 1220 unsigned long timeout; 1221 1222 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1223 || suppress_message_printing(level)) { 1224 return; 1225 } 1226 1227 k = (unsigned long long)loops_per_msec * boot_delay; 1228 1229 timeout = jiffies + msecs_to_jiffies(boot_delay); 1230 while (k) { 1231 k--; 1232 cpu_relax(); 1233 /* 1234 * use (volatile) jiffies to prevent 1235 * compiler reduction; loop termination via jiffies 1236 * is secondary and may or may not happen. 1237 */ 1238 if (time_after(jiffies, timeout)) 1239 break; 1240 touch_nmi_watchdog(); 1241 } 1242 } 1243 #else 1244 static inline void boot_delay_msec(int level) 1245 { 1246 } 1247 #endif 1248 1249 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1250 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1251 1252 static size_t print_syslog(unsigned int level, char *buf) 1253 { 1254 return sprintf(buf, "<%u>", level); 1255 } 1256 1257 static size_t print_time(u64 ts, char *buf) 1258 { 1259 unsigned long rem_nsec = do_div(ts, 1000000000); 1260 1261 return sprintf(buf, "[%5lu.%06lu]", 1262 (unsigned long)ts, rem_nsec / 1000); 1263 } 1264 1265 #ifdef CONFIG_PRINTK_CALLER 1266 static size_t print_caller(u32 id, char *buf) 1267 { 1268 char caller[12]; 1269 1270 snprintf(caller, sizeof(caller), "%c%u", 1271 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1272 return sprintf(buf, "[%6s]", caller); 1273 } 1274 #else 1275 #define print_caller(id, buf) 0 1276 #endif 1277 1278 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1279 bool time, char *buf) 1280 { 1281 size_t len = 0; 1282 1283 if (syslog) 1284 len = print_syslog((info->facility << 3) | info->level, buf); 1285 1286 if (time) 1287 len += print_time(info->ts_nsec, buf + len); 1288 1289 len += print_caller(info->caller_id, buf + len); 1290 1291 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1292 buf[len++] = ' '; 1293 buf[len] = '\0'; 1294 } 1295 1296 return len; 1297 } 1298 1299 /* 1300 * Prepare the record for printing. The text is shifted within the given 1301 * buffer to avoid a need for another one. The following operations are 1302 * done: 1303 * 1304 * - Add prefix for each line. 1305 * - Drop truncated lines that no longer fit into the buffer. 1306 * - Add the trailing newline that has been removed in vprintk_store(). 1307 * - Add a string terminator. 1308 * 1309 * Since the produced string is always terminated, the maximum possible 1310 * return value is @r->text_buf_size - 1; 1311 * 1312 * Return: The length of the updated/prepared text, including the added 1313 * prefixes and the newline. The terminator is not counted. The dropped 1314 * line(s) are not counted. 1315 */ 1316 static size_t record_print_text(struct printk_record *r, bool syslog, 1317 bool time) 1318 { 1319 size_t text_len = r->info->text_len; 1320 size_t buf_size = r->text_buf_size; 1321 char *text = r->text_buf; 1322 char prefix[PREFIX_MAX]; 1323 bool truncated = false; 1324 size_t prefix_len; 1325 size_t line_len; 1326 size_t len = 0; 1327 char *next; 1328 1329 /* 1330 * If the message was truncated because the buffer was not large 1331 * enough, treat the available text as if it were the full text. 1332 */ 1333 if (text_len > buf_size) 1334 text_len = buf_size; 1335 1336 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1337 1338 /* 1339 * @text_len: bytes of unprocessed text 1340 * @line_len: bytes of current line _without_ newline 1341 * @text: pointer to beginning of current line 1342 * @len: number of bytes prepared in r->text_buf 1343 */ 1344 for (;;) { 1345 next = memchr(text, '\n', text_len); 1346 if (next) { 1347 line_len = next - text; 1348 } else { 1349 /* Drop truncated line(s). */ 1350 if (truncated) 1351 break; 1352 line_len = text_len; 1353 } 1354 1355 /* 1356 * Truncate the text if there is not enough space to add the 1357 * prefix and a trailing newline and a terminator. 1358 */ 1359 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1360 /* Drop even the current line if no space. */ 1361 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1362 break; 1363 1364 text_len = buf_size - len - prefix_len - 1 - 1; 1365 truncated = true; 1366 } 1367 1368 memmove(text + prefix_len, text, text_len); 1369 memcpy(text, prefix, prefix_len); 1370 1371 /* 1372 * Increment the prepared length to include the text and 1373 * prefix that were just moved+copied. Also increment for the 1374 * newline at the end of this line. If this is the last line, 1375 * there is no newline, but it will be added immediately below. 1376 */ 1377 len += prefix_len + line_len + 1; 1378 if (text_len == line_len) { 1379 /* 1380 * This is the last line. Add the trailing newline 1381 * removed in vprintk_store(). 1382 */ 1383 text[prefix_len + line_len] = '\n'; 1384 break; 1385 } 1386 1387 /* 1388 * Advance beyond the added prefix and the related line with 1389 * its newline. 1390 */ 1391 text += prefix_len + line_len + 1; 1392 1393 /* 1394 * The remaining text has only decreased by the line with its 1395 * newline. 1396 * 1397 * Note that @text_len can become zero. It happens when @text 1398 * ended with a newline (either due to truncation or the 1399 * original string ending with "\n\n"). The loop is correctly 1400 * repeated and (if not truncated) an empty line with a prefix 1401 * will be prepared. 1402 */ 1403 text_len -= line_len + 1; 1404 } 1405 1406 /* 1407 * If a buffer was provided, it will be terminated. Space for the 1408 * string terminator is guaranteed to be available. The terminator is 1409 * not counted in the return value. 1410 */ 1411 if (buf_size > 0) 1412 r->text_buf[len] = 0; 1413 1414 return len; 1415 } 1416 1417 static size_t get_record_print_text_size(struct printk_info *info, 1418 unsigned int line_count, 1419 bool syslog, bool time) 1420 { 1421 char prefix[PREFIX_MAX]; 1422 size_t prefix_len; 1423 1424 prefix_len = info_print_prefix(info, syslog, time, prefix); 1425 1426 /* 1427 * Each line will be preceded with a prefix. The intermediate 1428 * newlines are already within the text, but a final trailing 1429 * newline will be added. 1430 */ 1431 return ((prefix_len * line_count) + info->text_len + 1); 1432 } 1433 1434 /* 1435 * Beginning with @start_seq, find the first record where it and all following 1436 * records up to (but not including) @max_seq fit into @size. 1437 * 1438 * @max_seq is simply an upper bound and does not need to exist. If the caller 1439 * does not require an upper bound, -1 can be used for @max_seq. 1440 */ 1441 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1442 bool syslog, bool time) 1443 { 1444 struct printk_info info; 1445 unsigned int line_count; 1446 size_t len = 0; 1447 u64 seq; 1448 1449 /* Determine the size of the records up to @max_seq. */ 1450 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1451 if (info.seq >= max_seq) 1452 break; 1453 len += get_record_print_text_size(&info, line_count, syslog, time); 1454 } 1455 1456 /* 1457 * Adjust the upper bound for the next loop to avoid subtracting 1458 * lengths that were never added. 1459 */ 1460 if (seq < max_seq) 1461 max_seq = seq; 1462 1463 /* 1464 * Move first record forward until length fits into the buffer. Ignore 1465 * newest messages that were not counted in the above cycle. Messages 1466 * might appear and get lost in the meantime. This is a best effort 1467 * that prevents an infinite loop that could occur with a retry. 1468 */ 1469 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1470 if (len <= size || info.seq >= max_seq) 1471 break; 1472 len -= get_record_print_text_size(&info, line_count, syslog, time); 1473 } 1474 1475 return seq; 1476 } 1477 1478 /* The caller is responsible for making sure @size is greater than 0. */ 1479 static int syslog_print(char __user *buf, int size) 1480 { 1481 struct printk_info info; 1482 struct printk_record r; 1483 char *text; 1484 int len = 0; 1485 u64 seq; 1486 1487 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1488 if (!text) 1489 return -ENOMEM; 1490 1491 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1492 1493 mutex_lock(&syslog_lock); 1494 1495 /* 1496 * Wait for the @syslog_seq record to be available. @syslog_seq may 1497 * change while waiting. 1498 */ 1499 do { 1500 seq = syslog_seq; 1501 1502 mutex_unlock(&syslog_lock); 1503 len = wait_event_interruptible(log_wait, prb_read_valid(prb, seq, NULL)); 1504 mutex_lock(&syslog_lock); 1505 1506 if (len) 1507 goto out; 1508 } while (syslog_seq != seq); 1509 1510 /* 1511 * Copy records that fit into the buffer. The above cycle makes sure 1512 * that the first record is always available. 1513 */ 1514 do { 1515 size_t n; 1516 size_t skip; 1517 int err; 1518 1519 if (!prb_read_valid(prb, syslog_seq, &r)) 1520 break; 1521 1522 if (r.info->seq != syslog_seq) { 1523 /* message is gone, move to next valid one */ 1524 syslog_seq = r.info->seq; 1525 syslog_partial = 0; 1526 } 1527 1528 /* 1529 * To keep reading/counting partial line consistent, 1530 * use printk_time value as of the beginning of a line. 1531 */ 1532 if (!syslog_partial) 1533 syslog_time = printk_time; 1534 1535 skip = syslog_partial; 1536 n = record_print_text(&r, true, syslog_time); 1537 if (n - syslog_partial <= size) { 1538 /* message fits into buffer, move forward */ 1539 syslog_seq = r.info->seq + 1; 1540 n -= syslog_partial; 1541 syslog_partial = 0; 1542 } else if (!len){ 1543 /* partial read(), remember position */ 1544 n = size; 1545 syslog_partial += n; 1546 } else 1547 n = 0; 1548 1549 if (!n) 1550 break; 1551 1552 mutex_unlock(&syslog_lock); 1553 err = copy_to_user(buf, text + skip, n); 1554 mutex_lock(&syslog_lock); 1555 1556 if (err) { 1557 if (!len) 1558 len = -EFAULT; 1559 break; 1560 } 1561 1562 len += n; 1563 size -= n; 1564 buf += n; 1565 } while (size); 1566 out: 1567 mutex_unlock(&syslog_lock); 1568 kfree(text); 1569 return len; 1570 } 1571 1572 static int syslog_print_all(char __user *buf, int size, bool clear) 1573 { 1574 struct printk_info info; 1575 struct printk_record r; 1576 char *text; 1577 int len = 0; 1578 u64 seq; 1579 bool time; 1580 1581 text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL); 1582 if (!text) 1583 return -ENOMEM; 1584 1585 time = printk_time; 1586 /* 1587 * Find first record that fits, including all following records, 1588 * into the user-provided buffer for this dump. 1589 */ 1590 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1591 size, true, time); 1592 1593 prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX); 1594 1595 len = 0; 1596 prb_for_each_record(seq, prb, seq, &r) { 1597 int textlen; 1598 1599 textlen = record_print_text(&r, true, time); 1600 1601 if (len + textlen > size) { 1602 seq--; 1603 break; 1604 } 1605 1606 if (copy_to_user(buf + len, text, textlen)) 1607 len = -EFAULT; 1608 else 1609 len += textlen; 1610 1611 if (len < 0) 1612 break; 1613 } 1614 1615 if (clear) { 1616 mutex_lock(&syslog_lock); 1617 latched_seq_write(&clear_seq, seq); 1618 mutex_unlock(&syslog_lock); 1619 } 1620 1621 kfree(text); 1622 return len; 1623 } 1624 1625 static void syslog_clear(void) 1626 { 1627 mutex_lock(&syslog_lock); 1628 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1629 mutex_unlock(&syslog_lock); 1630 } 1631 1632 int do_syslog(int type, char __user *buf, int len, int source) 1633 { 1634 struct printk_info info; 1635 bool clear = false; 1636 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1637 int error; 1638 1639 error = check_syslog_permissions(type, source); 1640 if (error) 1641 return error; 1642 1643 switch (type) { 1644 case SYSLOG_ACTION_CLOSE: /* Close log */ 1645 break; 1646 case SYSLOG_ACTION_OPEN: /* Open log */ 1647 break; 1648 case SYSLOG_ACTION_READ: /* Read from log */ 1649 if (!buf || len < 0) 1650 return -EINVAL; 1651 if (!len) 1652 return 0; 1653 if (!access_ok(buf, len)) 1654 return -EFAULT; 1655 error = syslog_print(buf, len); 1656 break; 1657 /* Read/clear last kernel messages */ 1658 case SYSLOG_ACTION_READ_CLEAR: 1659 clear = true; 1660 fallthrough; 1661 /* Read last kernel messages */ 1662 case SYSLOG_ACTION_READ_ALL: 1663 if (!buf || len < 0) 1664 return -EINVAL; 1665 if (!len) 1666 return 0; 1667 if (!access_ok(buf, len)) 1668 return -EFAULT; 1669 error = syslog_print_all(buf, len, clear); 1670 break; 1671 /* Clear ring buffer */ 1672 case SYSLOG_ACTION_CLEAR: 1673 syslog_clear(); 1674 break; 1675 /* Disable logging to console */ 1676 case SYSLOG_ACTION_CONSOLE_OFF: 1677 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1678 saved_console_loglevel = console_loglevel; 1679 console_loglevel = minimum_console_loglevel; 1680 break; 1681 /* Enable logging to console */ 1682 case SYSLOG_ACTION_CONSOLE_ON: 1683 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1684 console_loglevel = saved_console_loglevel; 1685 saved_console_loglevel = LOGLEVEL_DEFAULT; 1686 } 1687 break; 1688 /* Set level of messages printed to console */ 1689 case SYSLOG_ACTION_CONSOLE_LEVEL: 1690 if (len < 1 || len > 8) 1691 return -EINVAL; 1692 if (len < minimum_console_loglevel) 1693 len = minimum_console_loglevel; 1694 console_loglevel = len; 1695 /* Implicitly re-enable logging to console */ 1696 saved_console_loglevel = LOGLEVEL_DEFAULT; 1697 break; 1698 /* Number of chars in the log buffer */ 1699 case SYSLOG_ACTION_SIZE_UNREAD: 1700 mutex_lock(&syslog_lock); 1701 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1702 /* No unread messages. */ 1703 mutex_unlock(&syslog_lock); 1704 return 0; 1705 } 1706 if (info.seq != syslog_seq) { 1707 /* messages are gone, move to first one */ 1708 syslog_seq = info.seq; 1709 syslog_partial = 0; 1710 } 1711 if (source == SYSLOG_FROM_PROC) { 1712 /* 1713 * Short-cut for poll(/"proc/kmsg") which simply checks 1714 * for pending data, not the size; return the count of 1715 * records, not the length. 1716 */ 1717 error = prb_next_seq(prb) - syslog_seq; 1718 } else { 1719 bool time = syslog_partial ? syslog_time : printk_time; 1720 unsigned int line_count; 1721 u64 seq; 1722 1723 prb_for_each_info(syslog_seq, prb, seq, &info, 1724 &line_count) { 1725 error += get_record_print_text_size(&info, line_count, 1726 true, time); 1727 time = printk_time; 1728 } 1729 error -= syslog_partial; 1730 } 1731 mutex_unlock(&syslog_lock); 1732 break; 1733 /* Size of the log buffer */ 1734 case SYSLOG_ACTION_SIZE_BUFFER: 1735 error = log_buf_len; 1736 break; 1737 default: 1738 error = -EINVAL; 1739 break; 1740 } 1741 1742 return error; 1743 } 1744 1745 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1746 { 1747 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1748 } 1749 1750 /* 1751 * Special console_lock variants that help to reduce the risk of soft-lockups. 1752 * They allow to pass console_lock to another printk() call using a busy wait. 1753 */ 1754 1755 #ifdef CONFIG_LOCKDEP 1756 static struct lockdep_map console_owner_dep_map = { 1757 .name = "console_owner" 1758 }; 1759 #endif 1760 1761 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1762 static struct task_struct *console_owner; 1763 static bool console_waiter; 1764 1765 /** 1766 * console_lock_spinning_enable - mark beginning of code where another 1767 * thread might safely busy wait 1768 * 1769 * This basically converts console_lock into a spinlock. This marks 1770 * the section where the console_lock owner can not sleep, because 1771 * there may be a waiter spinning (like a spinlock). Also it must be 1772 * ready to hand over the lock at the end of the section. 1773 */ 1774 static void console_lock_spinning_enable(void) 1775 { 1776 raw_spin_lock(&console_owner_lock); 1777 console_owner = current; 1778 raw_spin_unlock(&console_owner_lock); 1779 1780 /* The waiter may spin on us after setting console_owner */ 1781 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1782 } 1783 1784 /** 1785 * console_lock_spinning_disable_and_check - mark end of code where another 1786 * thread was able to busy wait and check if there is a waiter 1787 * 1788 * This is called at the end of the section where spinning is allowed. 1789 * It has two functions. First, it is a signal that it is no longer 1790 * safe to start busy waiting for the lock. Second, it checks if 1791 * there is a busy waiter and passes the lock rights to her. 1792 * 1793 * Important: Callers lose the lock if there was a busy waiter. 1794 * They must not touch items synchronized by console_lock 1795 * in this case. 1796 * 1797 * Return: 1 if the lock rights were passed, 0 otherwise. 1798 */ 1799 static int console_lock_spinning_disable_and_check(void) 1800 { 1801 int waiter; 1802 1803 raw_spin_lock(&console_owner_lock); 1804 waiter = READ_ONCE(console_waiter); 1805 console_owner = NULL; 1806 raw_spin_unlock(&console_owner_lock); 1807 1808 if (!waiter) { 1809 spin_release(&console_owner_dep_map, _THIS_IP_); 1810 return 0; 1811 } 1812 1813 /* The waiter is now free to continue */ 1814 WRITE_ONCE(console_waiter, false); 1815 1816 spin_release(&console_owner_dep_map, _THIS_IP_); 1817 1818 /* 1819 * Hand off console_lock to waiter. The waiter will perform 1820 * the up(). After this, the waiter is the console_lock owner. 1821 */ 1822 mutex_release(&console_lock_dep_map, _THIS_IP_); 1823 return 1; 1824 } 1825 1826 /** 1827 * console_trylock_spinning - try to get console_lock by busy waiting 1828 * 1829 * This allows to busy wait for the console_lock when the current 1830 * owner is running in specially marked sections. It means that 1831 * the current owner is running and cannot reschedule until it 1832 * is ready to lose the lock. 1833 * 1834 * Return: 1 if we got the lock, 0 othrewise 1835 */ 1836 static int console_trylock_spinning(void) 1837 { 1838 struct task_struct *owner = NULL; 1839 bool waiter; 1840 bool spin = false; 1841 unsigned long flags; 1842 1843 if (console_trylock()) 1844 return 1; 1845 1846 printk_safe_enter_irqsave(flags); 1847 1848 raw_spin_lock(&console_owner_lock); 1849 owner = READ_ONCE(console_owner); 1850 waiter = READ_ONCE(console_waiter); 1851 if (!waiter && owner && owner != current) { 1852 WRITE_ONCE(console_waiter, true); 1853 spin = true; 1854 } 1855 raw_spin_unlock(&console_owner_lock); 1856 1857 /* 1858 * If there is an active printk() writing to the 1859 * consoles, instead of having it write our data too, 1860 * see if we can offload that load from the active 1861 * printer, and do some printing ourselves. 1862 * Go into a spin only if there isn't already a waiter 1863 * spinning, and there is an active printer, and 1864 * that active printer isn't us (recursive printk?). 1865 */ 1866 if (!spin) { 1867 printk_safe_exit_irqrestore(flags); 1868 return 0; 1869 } 1870 1871 /* We spin waiting for the owner to release us */ 1872 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1873 /* Owner will clear console_waiter on hand off */ 1874 while (READ_ONCE(console_waiter)) 1875 cpu_relax(); 1876 spin_release(&console_owner_dep_map, _THIS_IP_); 1877 1878 printk_safe_exit_irqrestore(flags); 1879 /* 1880 * The owner passed the console lock to us. 1881 * Since we did not spin on console lock, annotate 1882 * this as a trylock. Otherwise lockdep will 1883 * complain. 1884 */ 1885 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1886 1887 return 1; 1888 } 1889 1890 /* 1891 * Call the console drivers, asking them to write out 1892 * log_buf[start] to log_buf[end - 1]. 1893 * The console_lock must be held. 1894 */ 1895 static void call_console_drivers(const char *ext_text, size_t ext_len, 1896 const char *text, size_t len) 1897 { 1898 static char dropped_text[64]; 1899 size_t dropped_len = 0; 1900 struct console *con; 1901 1902 trace_console_rcuidle(text, len); 1903 1904 if (!console_drivers) 1905 return; 1906 1907 if (console_dropped) { 1908 dropped_len = snprintf(dropped_text, sizeof(dropped_text), 1909 "** %lu printk messages dropped **\n", 1910 console_dropped); 1911 console_dropped = 0; 1912 } 1913 1914 for_each_console(con) { 1915 if (exclusive_console && con != exclusive_console) 1916 continue; 1917 if (!(con->flags & CON_ENABLED)) 1918 continue; 1919 if (!con->write) 1920 continue; 1921 if (!cpu_online(smp_processor_id()) && 1922 !(con->flags & CON_ANYTIME)) 1923 continue; 1924 if (con->flags & CON_EXTENDED) 1925 con->write(con, ext_text, ext_len); 1926 else { 1927 if (dropped_len) 1928 con->write(con, dropped_text, dropped_len); 1929 con->write(con, text, len); 1930 } 1931 } 1932 } 1933 1934 /* 1935 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1936 * additional NMI context per CPU is also separately tracked. Until per-CPU 1937 * is available, a separate "early tracking" is performed. 1938 */ 1939 static DEFINE_PER_CPU(u8, printk_count); 1940 static u8 printk_count_early; 1941 #ifdef CONFIG_HAVE_NMI 1942 static DEFINE_PER_CPU(u8, printk_count_nmi); 1943 static u8 printk_count_nmi_early; 1944 #endif 1945 1946 /* 1947 * Recursion is limited to keep the output sane. printk() should not require 1948 * more than 1 level of recursion (allowing, for example, printk() to trigger 1949 * a WARN), but a higher value is used in case some printk-internal errors 1950 * exist, such as the ringbuffer validation checks failing. 1951 */ 1952 #define PRINTK_MAX_RECURSION 3 1953 1954 /* 1955 * Return a pointer to the dedicated counter for the CPU+context of the 1956 * caller. 1957 */ 1958 static u8 *__printk_recursion_counter(void) 1959 { 1960 #ifdef CONFIG_HAVE_NMI 1961 if (in_nmi()) { 1962 if (printk_percpu_data_ready()) 1963 return this_cpu_ptr(&printk_count_nmi); 1964 return &printk_count_nmi_early; 1965 } 1966 #endif 1967 if (printk_percpu_data_ready()) 1968 return this_cpu_ptr(&printk_count); 1969 return &printk_count_early; 1970 } 1971 1972 /* 1973 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 1974 * The caller must check the boolean return value to see if the recursion is 1975 * allowed. On failure, interrupts are not disabled. 1976 * 1977 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 1978 * that is passed to printk_exit_irqrestore(). 1979 */ 1980 #define printk_enter_irqsave(recursion_ptr, flags) \ 1981 ({ \ 1982 bool success = true; \ 1983 \ 1984 typecheck(u8 *, recursion_ptr); \ 1985 local_irq_save(flags); \ 1986 (recursion_ptr) = __printk_recursion_counter(); \ 1987 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 1988 local_irq_restore(flags); \ 1989 success = false; \ 1990 } else { \ 1991 (*(recursion_ptr))++; \ 1992 } \ 1993 success; \ 1994 }) 1995 1996 /* Exit recursion tracking, restoring interrupts. */ 1997 #define printk_exit_irqrestore(recursion_ptr, flags) \ 1998 do { \ 1999 typecheck(u8 *, recursion_ptr); \ 2000 (*(recursion_ptr))--; \ 2001 local_irq_restore(flags); \ 2002 } while (0) 2003 2004 int printk_delay_msec __read_mostly; 2005 2006 static inline void printk_delay(void) 2007 { 2008 if (unlikely(printk_delay_msec)) { 2009 int m = printk_delay_msec; 2010 2011 while (m--) { 2012 mdelay(1); 2013 touch_nmi_watchdog(); 2014 } 2015 } 2016 } 2017 2018 static inline u32 printk_caller_id(void) 2019 { 2020 return in_task() ? task_pid_nr(current) : 2021 0x80000000 + raw_smp_processor_id(); 2022 } 2023 2024 /** 2025 * printk_parse_prefix - Parse level and control flags. 2026 * 2027 * @text: The terminated text message. 2028 * @level: A pointer to the current level value, will be updated. 2029 * @flags: A pointer to the current printk_info flags, will be updated. 2030 * 2031 * @level may be NULL if the caller is not interested in the parsed value. 2032 * Otherwise the variable pointed to by @level must be set to 2033 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2034 * 2035 * @flags may be NULL if the caller is not interested in the parsed value. 2036 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2037 * value. 2038 * 2039 * Return: The length of the parsed level and control flags. 2040 */ 2041 u16 printk_parse_prefix(const char *text, int *level, 2042 enum printk_info_flags *flags) 2043 { 2044 u16 prefix_len = 0; 2045 int kern_level; 2046 2047 while (*text) { 2048 kern_level = printk_get_level(text); 2049 if (!kern_level) 2050 break; 2051 2052 switch (kern_level) { 2053 case '0' ... '7': 2054 if (level && *level == LOGLEVEL_DEFAULT) 2055 *level = kern_level - '0'; 2056 break; 2057 case 'c': /* KERN_CONT */ 2058 if (flags) 2059 *flags |= LOG_CONT; 2060 } 2061 2062 prefix_len += 2; 2063 text += 2; 2064 } 2065 2066 return prefix_len; 2067 } 2068 2069 __printf(5, 0) 2070 static u16 printk_sprint(char *text, u16 size, int facility, 2071 enum printk_info_flags *flags, const char *fmt, 2072 va_list args) 2073 { 2074 u16 text_len; 2075 2076 text_len = vscnprintf(text, size, fmt, args); 2077 2078 /* Mark and strip a trailing newline. */ 2079 if (text_len && text[text_len - 1] == '\n') { 2080 text_len--; 2081 *flags |= LOG_NEWLINE; 2082 } 2083 2084 /* Strip log level and control flags. */ 2085 if (facility == 0) { 2086 u16 prefix_len; 2087 2088 prefix_len = printk_parse_prefix(text, NULL, NULL); 2089 if (prefix_len) { 2090 text_len -= prefix_len; 2091 memmove(text, text + prefix_len, text_len); 2092 } 2093 } 2094 2095 return text_len; 2096 } 2097 2098 __printf(4, 0) 2099 int vprintk_store(int facility, int level, 2100 const struct dev_printk_info *dev_info, 2101 const char *fmt, va_list args) 2102 { 2103 const u32 caller_id = printk_caller_id(); 2104 struct prb_reserved_entry e; 2105 enum printk_info_flags flags = 0; 2106 struct printk_record r; 2107 unsigned long irqflags; 2108 u16 trunc_msg_len = 0; 2109 char prefix_buf[8]; 2110 u8 *recursion_ptr; 2111 u16 reserve_size; 2112 va_list args2; 2113 u16 text_len; 2114 int ret = 0; 2115 u64 ts_nsec; 2116 2117 /* 2118 * Since the duration of printk() can vary depending on the message 2119 * and state of the ringbuffer, grab the timestamp now so that it is 2120 * close to the call of printk(). This provides a more deterministic 2121 * timestamp with respect to the caller. 2122 */ 2123 ts_nsec = local_clock(); 2124 2125 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2126 return 0; 2127 2128 /* 2129 * The sprintf needs to come first since the syslog prefix might be 2130 * passed in as a parameter. An extra byte must be reserved so that 2131 * later the vscnprintf() into the reserved buffer has room for the 2132 * terminating '\0', which is not counted by vsnprintf(). 2133 */ 2134 va_copy(args2, args); 2135 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2136 va_end(args2); 2137 2138 if (reserve_size > LOG_LINE_MAX) 2139 reserve_size = LOG_LINE_MAX; 2140 2141 /* Extract log level or control flags. */ 2142 if (facility == 0) 2143 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2144 2145 if (level == LOGLEVEL_DEFAULT) 2146 level = default_message_loglevel; 2147 2148 if (dev_info) 2149 flags |= LOG_NEWLINE; 2150 2151 if (flags & LOG_CONT) { 2152 prb_rec_init_wr(&r, reserve_size); 2153 if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) { 2154 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2155 facility, &flags, fmt, args); 2156 r.info->text_len += text_len; 2157 2158 if (flags & LOG_NEWLINE) { 2159 r.info->flags |= LOG_NEWLINE; 2160 prb_final_commit(&e); 2161 } else { 2162 prb_commit(&e); 2163 } 2164 2165 ret = text_len; 2166 goto out; 2167 } 2168 } 2169 2170 /* 2171 * Explicitly initialize the record before every prb_reserve() call. 2172 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2173 * structure when they fail. 2174 */ 2175 prb_rec_init_wr(&r, reserve_size); 2176 if (!prb_reserve(&e, prb, &r)) { 2177 /* truncate the message if it is too long for empty buffer */ 2178 truncate_msg(&reserve_size, &trunc_msg_len); 2179 2180 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2181 if (!prb_reserve(&e, prb, &r)) 2182 goto out; 2183 } 2184 2185 /* fill message */ 2186 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2187 if (trunc_msg_len) 2188 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2189 r.info->text_len = text_len + trunc_msg_len; 2190 r.info->facility = facility; 2191 r.info->level = level & 7; 2192 r.info->flags = flags & 0x1f; 2193 r.info->ts_nsec = ts_nsec; 2194 r.info->caller_id = caller_id; 2195 if (dev_info) 2196 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2197 2198 /* A message without a trailing newline can be continued. */ 2199 if (!(flags & LOG_NEWLINE)) 2200 prb_commit(&e); 2201 else 2202 prb_final_commit(&e); 2203 2204 ret = text_len + trunc_msg_len; 2205 out: 2206 printk_exit_irqrestore(recursion_ptr, irqflags); 2207 return ret; 2208 } 2209 2210 asmlinkage int vprintk_emit(int facility, int level, 2211 const struct dev_printk_info *dev_info, 2212 const char *fmt, va_list args) 2213 { 2214 int printed_len; 2215 bool in_sched = false; 2216 2217 /* Suppress unimportant messages after panic happens */ 2218 if (unlikely(suppress_printk)) 2219 return 0; 2220 2221 if (level == LOGLEVEL_SCHED) { 2222 level = LOGLEVEL_DEFAULT; 2223 in_sched = true; 2224 } 2225 2226 boot_delay_msec(level); 2227 printk_delay(); 2228 2229 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2230 2231 /* If called from the scheduler, we can not call up(). */ 2232 if (!in_sched) { 2233 /* 2234 * Disable preemption to avoid being preempted while holding 2235 * console_sem which would prevent anyone from printing to 2236 * console 2237 */ 2238 preempt_disable(); 2239 /* 2240 * Try to acquire and then immediately release the console 2241 * semaphore. The release will print out buffers and wake up 2242 * /dev/kmsg and syslog() users. 2243 */ 2244 if (console_trylock_spinning()) 2245 console_unlock(); 2246 preempt_enable(); 2247 } 2248 2249 wake_up_klogd(); 2250 return printed_len; 2251 } 2252 EXPORT_SYMBOL(vprintk_emit); 2253 2254 int vprintk_default(const char *fmt, va_list args) 2255 { 2256 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2257 } 2258 EXPORT_SYMBOL_GPL(vprintk_default); 2259 2260 asmlinkage __visible int _printk(const char *fmt, ...) 2261 { 2262 va_list args; 2263 int r; 2264 2265 va_start(args, fmt); 2266 r = vprintk(fmt, args); 2267 va_end(args); 2268 2269 return r; 2270 } 2271 EXPORT_SYMBOL(_printk); 2272 2273 #else /* CONFIG_PRINTK */ 2274 2275 #define CONSOLE_LOG_MAX 0 2276 #define printk_time false 2277 2278 #define prb_read_valid(rb, seq, r) false 2279 #define prb_first_valid_seq(rb) 0 2280 2281 static u64 syslog_seq; 2282 static u64 console_seq; 2283 static u64 exclusive_console_stop_seq; 2284 static unsigned long console_dropped; 2285 2286 static size_t record_print_text(const struct printk_record *r, 2287 bool syslog, bool time) 2288 { 2289 return 0; 2290 } 2291 static ssize_t info_print_ext_header(char *buf, size_t size, 2292 struct printk_info *info) 2293 { 2294 return 0; 2295 } 2296 static ssize_t msg_print_ext_body(char *buf, size_t size, 2297 char *text, size_t text_len, 2298 struct dev_printk_info *dev_info) { return 0; } 2299 static void console_lock_spinning_enable(void) { } 2300 static int console_lock_spinning_disable_and_check(void) { return 0; } 2301 static void call_console_drivers(const char *ext_text, size_t ext_len, 2302 const char *text, size_t len) {} 2303 static bool suppress_message_printing(int level) { return false; } 2304 2305 #endif /* CONFIG_PRINTK */ 2306 2307 #ifdef CONFIG_EARLY_PRINTK 2308 struct console *early_console; 2309 2310 asmlinkage __visible void early_printk(const char *fmt, ...) 2311 { 2312 va_list ap; 2313 char buf[512]; 2314 int n; 2315 2316 if (!early_console) 2317 return; 2318 2319 va_start(ap, fmt); 2320 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2321 va_end(ap); 2322 2323 early_console->write(early_console, buf, n); 2324 } 2325 #endif 2326 2327 static int __add_preferred_console(char *name, int idx, char *options, 2328 char *brl_options, bool user_specified) 2329 { 2330 struct console_cmdline *c; 2331 int i; 2332 2333 /* 2334 * See if this tty is not yet registered, and 2335 * if we have a slot free. 2336 */ 2337 for (i = 0, c = console_cmdline; 2338 i < MAX_CMDLINECONSOLES && c->name[0]; 2339 i++, c++) { 2340 if (strcmp(c->name, name) == 0 && c->index == idx) { 2341 if (!brl_options) 2342 preferred_console = i; 2343 if (user_specified) 2344 c->user_specified = true; 2345 return 0; 2346 } 2347 } 2348 if (i == MAX_CMDLINECONSOLES) 2349 return -E2BIG; 2350 if (!brl_options) 2351 preferred_console = i; 2352 strlcpy(c->name, name, sizeof(c->name)); 2353 c->options = options; 2354 c->user_specified = user_specified; 2355 braille_set_options(c, brl_options); 2356 2357 c->index = idx; 2358 return 0; 2359 } 2360 2361 static int __init console_msg_format_setup(char *str) 2362 { 2363 if (!strcmp(str, "syslog")) 2364 console_msg_format = MSG_FORMAT_SYSLOG; 2365 if (!strcmp(str, "default")) 2366 console_msg_format = MSG_FORMAT_DEFAULT; 2367 return 1; 2368 } 2369 __setup("console_msg_format=", console_msg_format_setup); 2370 2371 /* 2372 * Set up a console. Called via do_early_param() in init/main.c 2373 * for each "console=" parameter in the boot command line. 2374 */ 2375 static int __init console_setup(char *str) 2376 { 2377 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2378 char *s, *options, *brl_options = NULL; 2379 int idx; 2380 2381 /* 2382 * console="" or console=null have been suggested as a way to 2383 * disable console output. Use ttynull that has been created 2384 * for exactly this purpose. 2385 */ 2386 if (str[0] == 0 || strcmp(str, "null") == 0) { 2387 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2388 return 1; 2389 } 2390 2391 if (_braille_console_setup(&str, &brl_options)) 2392 return 1; 2393 2394 /* 2395 * Decode str into name, index, options. 2396 */ 2397 if (str[0] >= '0' && str[0] <= '9') { 2398 strcpy(buf, "ttyS"); 2399 strncpy(buf + 4, str, sizeof(buf) - 5); 2400 } else { 2401 strncpy(buf, str, sizeof(buf) - 1); 2402 } 2403 buf[sizeof(buf) - 1] = 0; 2404 options = strchr(str, ','); 2405 if (options) 2406 *(options++) = 0; 2407 #ifdef __sparc__ 2408 if (!strcmp(str, "ttya")) 2409 strcpy(buf, "ttyS0"); 2410 if (!strcmp(str, "ttyb")) 2411 strcpy(buf, "ttyS1"); 2412 #endif 2413 for (s = buf; *s; s++) 2414 if (isdigit(*s) || *s == ',') 2415 break; 2416 idx = simple_strtoul(s, NULL, 10); 2417 *s = 0; 2418 2419 __add_preferred_console(buf, idx, options, brl_options, true); 2420 console_set_on_cmdline = 1; 2421 return 1; 2422 } 2423 __setup("console=", console_setup); 2424 2425 /** 2426 * add_preferred_console - add a device to the list of preferred consoles. 2427 * @name: device name 2428 * @idx: device index 2429 * @options: options for this console 2430 * 2431 * The last preferred console added will be used for kernel messages 2432 * and stdin/out/err for init. Normally this is used by console_setup 2433 * above to handle user-supplied console arguments; however it can also 2434 * be used by arch-specific code either to override the user or more 2435 * commonly to provide a default console (ie from PROM variables) when 2436 * the user has not supplied one. 2437 */ 2438 int add_preferred_console(char *name, int idx, char *options) 2439 { 2440 return __add_preferred_console(name, idx, options, NULL, false); 2441 } 2442 2443 bool console_suspend_enabled = true; 2444 EXPORT_SYMBOL(console_suspend_enabled); 2445 2446 static int __init console_suspend_disable(char *str) 2447 { 2448 console_suspend_enabled = false; 2449 return 1; 2450 } 2451 __setup("no_console_suspend", console_suspend_disable); 2452 module_param_named(console_suspend, console_suspend_enabled, 2453 bool, S_IRUGO | S_IWUSR); 2454 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2455 " and hibernate operations"); 2456 2457 static bool printk_console_no_auto_verbose; 2458 2459 void console_verbose(void) 2460 { 2461 if (console_loglevel && !printk_console_no_auto_verbose) 2462 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2463 } 2464 EXPORT_SYMBOL_GPL(console_verbose); 2465 2466 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2467 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2468 2469 /** 2470 * suspend_console - suspend the console subsystem 2471 * 2472 * This disables printk() while we go into suspend states 2473 */ 2474 void suspend_console(void) 2475 { 2476 if (!console_suspend_enabled) 2477 return; 2478 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2479 console_lock(); 2480 console_suspended = 1; 2481 up_console_sem(); 2482 } 2483 2484 void resume_console(void) 2485 { 2486 if (!console_suspend_enabled) 2487 return; 2488 down_console_sem(); 2489 console_suspended = 0; 2490 console_unlock(); 2491 } 2492 2493 /** 2494 * console_cpu_notify - print deferred console messages after CPU hotplug 2495 * @cpu: unused 2496 * 2497 * If printk() is called from a CPU that is not online yet, the messages 2498 * will be printed on the console only if there are CON_ANYTIME consoles. 2499 * This function is called when a new CPU comes online (or fails to come 2500 * up) or goes offline. 2501 */ 2502 static int console_cpu_notify(unsigned int cpu) 2503 { 2504 if (!cpuhp_tasks_frozen) { 2505 /* If trylock fails, someone else is doing the printing */ 2506 if (console_trylock()) 2507 console_unlock(); 2508 } 2509 return 0; 2510 } 2511 2512 /** 2513 * console_lock - lock the console system for exclusive use. 2514 * 2515 * Acquires a lock which guarantees that the caller has 2516 * exclusive access to the console system and the console_drivers list. 2517 * 2518 * Can sleep, returns nothing. 2519 */ 2520 void console_lock(void) 2521 { 2522 might_sleep(); 2523 2524 down_console_sem(); 2525 if (console_suspended) 2526 return; 2527 console_locked = 1; 2528 console_may_schedule = 1; 2529 } 2530 EXPORT_SYMBOL(console_lock); 2531 2532 /** 2533 * console_trylock - try to lock the console system for exclusive use. 2534 * 2535 * Try to acquire a lock which guarantees that the caller has exclusive 2536 * access to the console system and the console_drivers list. 2537 * 2538 * returns 1 on success, and 0 on failure to acquire the lock. 2539 */ 2540 int console_trylock(void) 2541 { 2542 if (down_trylock_console_sem()) 2543 return 0; 2544 if (console_suspended) { 2545 up_console_sem(); 2546 return 0; 2547 } 2548 console_locked = 1; 2549 console_may_schedule = 0; 2550 return 1; 2551 } 2552 EXPORT_SYMBOL(console_trylock); 2553 2554 int is_console_locked(void) 2555 { 2556 return console_locked; 2557 } 2558 EXPORT_SYMBOL(is_console_locked); 2559 2560 /* 2561 * Check if we have any console that is capable of printing while cpu is 2562 * booting or shutting down. Requires console_sem. 2563 */ 2564 static int have_callable_console(void) 2565 { 2566 struct console *con; 2567 2568 for_each_console(con) 2569 if ((con->flags & CON_ENABLED) && 2570 (con->flags & CON_ANYTIME)) 2571 return 1; 2572 2573 return 0; 2574 } 2575 2576 /* 2577 * Can we actually use the console at this time on this cpu? 2578 * 2579 * Console drivers may assume that per-cpu resources have been allocated. So 2580 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2581 * call them until this CPU is officially up. 2582 */ 2583 static inline int can_use_console(void) 2584 { 2585 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2586 } 2587 2588 /** 2589 * console_unlock - unlock the console system 2590 * 2591 * Releases the console_lock which the caller holds on the console system 2592 * and the console driver list. 2593 * 2594 * While the console_lock was held, console output may have been buffered 2595 * by printk(). If this is the case, console_unlock(); emits 2596 * the output prior to releasing the lock. 2597 * 2598 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2599 * 2600 * console_unlock(); may be called from any context. 2601 */ 2602 void console_unlock(void) 2603 { 2604 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2605 static char text[CONSOLE_LOG_MAX]; 2606 unsigned long flags; 2607 bool do_cond_resched, retry; 2608 struct printk_info info; 2609 struct printk_record r; 2610 u64 __maybe_unused next_seq; 2611 2612 if (console_suspended) { 2613 up_console_sem(); 2614 return; 2615 } 2616 2617 prb_rec_init_rd(&r, &info, text, sizeof(text)); 2618 2619 /* 2620 * Console drivers are called with interrupts disabled, so 2621 * @console_may_schedule should be cleared before; however, we may 2622 * end up dumping a lot of lines, for example, if called from 2623 * console registration path, and should invoke cond_resched() 2624 * between lines if allowable. Not doing so can cause a very long 2625 * scheduling stall on a slow console leading to RCU stall and 2626 * softlockup warnings which exacerbate the issue with more 2627 * messages practically incapacitating the system. 2628 * 2629 * console_trylock() is not able to detect the preemptive 2630 * context reliably. Therefore the value must be stored before 2631 * and cleared after the "again" goto label. 2632 */ 2633 do_cond_resched = console_may_schedule; 2634 again: 2635 console_may_schedule = 0; 2636 2637 /* 2638 * We released the console_sem lock, so we need to recheck if 2639 * cpu is online and (if not) is there at least one CON_ANYTIME 2640 * console. 2641 */ 2642 if (!can_use_console()) { 2643 console_locked = 0; 2644 up_console_sem(); 2645 return; 2646 } 2647 2648 for (;;) { 2649 size_t ext_len = 0; 2650 int handover; 2651 size_t len; 2652 2653 skip: 2654 if (!prb_read_valid(prb, console_seq, &r)) 2655 break; 2656 2657 if (console_seq != r.info->seq) { 2658 console_dropped += r.info->seq - console_seq; 2659 console_seq = r.info->seq; 2660 } 2661 2662 if (suppress_message_printing(r.info->level)) { 2663 /* 2664 * Skip record we have buffered and already printed 2665 * directly to the console when we received it, and 2666 * record that has level above the console loglevel. 2667 */ 2668 console_seq++; 2669 goto skip; 2670 } 2671 2672 /* Output to all consoles once old messages replayed. */ 2673 if (unlikely(exclusive_console && 2674 console_seq >= exclusive_console_stop_seq)) { 2675 exclusive_console = NULL; 2676 } 2677 2678 /* 2679 * Handle extended console text first because later 2680 * record_print_text() will modify the record buffer in-place. 2681 */ 2682 if (nr_ext_console_drivers) { 2683 ext_len = info_print_ext_header(ext_text, 2684 sizeof(ext_text), 2685 r.info); 2686 ext_len += msg_print_ext_body(ext_text + ext_len, 2687 sizeof(ext_text) - ext_len, 2688 &r.text_buf[0], 2689 r.info->text_len, 2690 &r.info->dev_info); 2691 } 2692 len = record_print_text(&r, 2693 console_msg_format & MSG_FORMAT_SYSLOG, 2694 printk_time); 2695 console_seq++; 2696 2697 /* 2698 * While actively printing out messages, if another printk() 2699 * were to occur on another CPU, it may wait for this one to 2700 * finish. This task can not be preempted if there is a 2701 * waiter waiting to take over. 2702 * 2703 * Interrupts are disabled because the hand over to a waiter 2704 * must not be interrupted until the hand over is completed 2705 * (@console_waiter is cleared). 2706 */ 2707 printk_safe_enter_irqsave(flags); 2708 console_lock_spinning_enable(); 2709 2710 stop_critical_timings(); /* don't trace print latency */ 2711 call_console_drivers(ext_text, ext_len, text, len); 2712 start_critical_timings(); 2713 2714 handover = console_lock_spinning_disable_and_check(); 2715 printk_safe_exit_irqrestore(flags); 2716 if (handover) 2717 return; 2718 2719 if (do_cond_resched) 2720 cond_resched(); 2721 } 2722 2723 /* Get consistent value of the next-to-be-used sequence number. */ 2724 next_seq = console_seq; 2725 2726 console_locked = 0; 2727 up_console_sem(); 2728 2729 /* 2730 * Someone could have filled up the buffer again, so re-check if there's 2731 * something to flush. In case we cannot trylock the console_sem again, 2732 * there's a new owner and the console_unlock() from them will do the 2733 * flush, no worries. 2734 */ 2735 retry = prb_read_valid(prb, next_seq, NULL); 2736 if (retry && console_trylock()) 2737 goto again; 2738 } 2739 EXPORT_SYMBOL(console_unlock); 2740 2741 /** 2742 * console_conditional_schedule - yield the CPU if required 2743 * 2744 * If the console code is currently allowed to sleep, and 2745 * if this CPU should yield the CPU to another task, do 2746 * so here. 2747 * 2748 * Must be called within console_lock();. 2749 */ 2750 void __sched console_conditional_schedule(void) 2751 { 2752 if (console_may_schedule) 2753 cond_resched(); 2754 } 2755 EXPORT_SYMBOL(console_conditional_schedule); 2756 2757 void console_unblank(void) 2758 { 2759 struct console *c; 2760 2761 /* 2762 * console_unblank can no longer be called in interrupt context unless 2763 * oops_in_progress is set to 1.. 2764 */ 2765 if (oops_in_progress) { 2766 if (down_trylock_console_sem() != 0) 2767 return; 2768 } else 2769 console_lock(); 2770 2771 console_locked = 1; 2772 console_may_schedule = 0; 2773 for_each_console(c) 2774 if ((c->flags & CON_ENABLED) && c->unblank) 2775 c->unblank(); 2776 console_unlock(); 2777 } 2778 2779 /** 2780 * console_flush_on_panic - flush console content on panic 2781 * @mode: flush all messages in buffer or just the pending ones 2782 * 2783 * Immediately output all pending messages no matter what. 2784 */ 2785 void console_flush_on_panic(enum con_flush_mode mode) 2786 { 2787 /* 2788 * If someone else is holding the console lock, trylock will fail 2789 * and may_schedule may be set. Ignore and proceed to unlock so 2790 * that messages are flushed out. As this can be called from any 2791 * context and we don't want to get preempted while flushing, 2792 * ensure may_schedule is cleared. 2793 */ 2794 console_trylock(); 2795 console_may_schedule = 0; 2796 2797 if (mode == CONSOLE_REPLAY_ALL) 2798 console_seq = prb_first_valid_seq(prb); 2799 console_unlock(); 2800 } 2801 2802 /* 2803 * Return the console tty driver structure and its associated index 2804 */ 2805 struct tty_driver *console_device(int *index) 2806 { 2807 struct console *c; 2808 struct tty_driver *driver = NULL; 2809 2810 console_lock(); 2811 for_each_console(c) { 2812 if (!c->device) 2813 continue; 2814 driver = c->device(c, index); 2815 if (driver) 2816 break; 2817 } 2818 console_unlock(); 2819 return driver; 2820 } 2821 2822 /* 2823 * Prevent further output on the passed console device so that (for example) 2824 * serial drivers can disable console output before suspending a port, and can 2825 * re-enable output afterwards. 2826 */ 2827 void console_stop(struct console *console) 2828 { 2829 console_lock(); 2830 console->flags &= ~CON_ENABLED; 2831 console_unlock(); 2832 } 2833 EXPORT_SYMBOL(console_stop); 2834 2835 void console_start(struct console *console) 2836 { 2837 console_lock(); 2838 console->flags |= CON_ENABLED; 2839 console_unlock(); 2840 } 2841 EXPORT_SYMBOL(console_start); 2842 2843 static int __read_mostly keep_bootcon; 2844 2845 static int __init keep_bootcon_setup(char *str) 2846 { 2847 keep_bootcon = 1; 2848 pr_info("debug: skip boot console de-registration.\n"); 2849 2850 return 0; 2851 } 2852 2853 early_param("keep_bootcon", keep_bootcon_setup); 2854 2855 /* 2856 * This is called by register_console() to try to match 2857 * the newly registered console with any of the ones selected 2858 * by either the command line or add_preferred_console() and 2859 * setup/enable it. 2860 * 2861 * Care need to be taken with consoles that are statically 2862 * enabled such as netconsole 2863 */ 2864 static int try_enable_new_console(struct console *newcon, bool user_specified) 2865 { 2866 struct console_cmdline *c; 2867 int i, err; 2868 2869 for (i = 0, c = console_cmdline; 2870 i < MAX_CMDLINECONSOLES && c->name[0]; 2871 i++, c++) { 2872 if (c->user_specified != user_specified) 2873 continue; 2874 if (!newcon->match || 2875 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2876 /* default matching */ 2877 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2878 if (strcmp(c->name, newcon->name) != 0) 2879 continue; 2880 if (newcon->index >= 0 && 2881 newcon->index != c->index) 2882 continue; 2883 if (newcon->index < 0) 2884 newcon->index = c->index; 2885 2886 if (_braille_register_console(newcon, c)) 2887 return 0; 2888 2889 if (newcon->setup && 2890 (err = newcon->setup(newcon, c->options)) != 0) 2891 return err; 2892 } 2893 newcon->flags |= CON_ENABLED; 2894 if (i == preferred_console) { 2895 newcon->flags |= CON_CONSDEV; 2896 has_preferred_console = true; 2897 } 2898 return 0; 2899 } 2900 2901 /* 2902 * Some consoles, such as pstore and netconsole, can be enabled even 2903 * without matching. Accept the pre-enabled consoles only when match() 2904 * and setup() had a chance to be called. 2905 */ 2906 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 2907 return 0; 2908 2909 return -ENOENT; 2910 } 2911 2912 /* 2913 * The console driver calls this routine during kernel initialization 2914 * to register the console printing procedure with printk() and to 2915 * print any messages that were printed by the kernel before the 2916 * console driver was initialized. 2917 * 2918 * This can happen pretty early during the boot process (because of 2919 * early_printk) - sometimes before setup_arch() completes - be careful 2920 * of what kernel features are used - they may not be initialised yet. 2921 * 2922 * There are two types of consoles - bootconsoles (early_printk) and 2923 * "real" consoles (everything which is not a bootconsole) which are 2924 * handled differently. 2925 * - Any number of bootconsoles can be registered at any time. 2926 * - As soon as a "real" console is registered, all bootconsoles 2927 * will be unregistered automatically. 2928 * - Once a "real" console is registered, any attempt to register a 2929 * bootconsoles will be rejected 2930 */ 2931 void register_console(struct console *newcon) 2932 { 2933 struct console *bcon = NULL; 2934 int err; 2935 2936 for_each_console(bcon) { 2937 if (WARN(bcon == newcon, "console '%s%d' already registered\n", 2938 bcon->name, bcon->index)) 2939 return; 2940 } 2941 2942 /* 2943 * before we register a new CON_BOOT console, make sure we don't 2944 * already have a valid console 2945 */ 2946 if (newcon->flags & CON_BOOT) { 2947 for_each_console(bcon) { 2948 if (!(bcon->flags & CON_BOOT)) { 2949 pr_info("Too late to register bootconsole %s%d\n", 2950 newcon->name, newcon->index); 2951 return; 2952 } 2953 } 2954 } 2955 2956 if (console_drivers && console_drivers->flags & CON_BOOT) 2957 bcon = console_drivers; 2958 2959 if (!has_preferred_console || bcon || !console_drivers) 2960 has_preferred_console = preferred_console >= 0; 2961 2962 /* 2963 * See if we want to use this console driver. If we 2964 * didn't select a console we take the first one 2965 * that registers here. 2966 */ 2967 if (!has_preferred_console) { 2968 if (newcon->index < 0) 2969 newcon->index = 0; 2970 if (newcon->setup == NULL || 2971 newcon->setup(newcon, NULL) == 0) { 2972 newcon->flags |= CON_ENABLED; 2973 if (newcon->device) { 2974 newcon->flags |= CON_CONSDEV; 2975 has_preferred_console = true; 2976 } 2977 } 2978 } 2979 2980 /* See if this console matches one we selected on the command line */ 2981 err = try_enable_new_console(newcon, true); 2982 2983 /* If not, try to match against the platform default(s) */ 2984 if (err == -ENOENT) 2985 err = try_enable_new_console(newcon, false); 2986 2987 /* printk() messages are not printed to the Braille console. */ 2988 if (err || newcon->flags & CON_BRL) 2989 return; 2990 2991 /* 2992 * If we have a bootconsole, and are switching to a real console, 2993 * don't print everything out again, since when the boot console, and 2994 * the real console are the same physical device, it's annoying to 2995 * see the beginning boot messages twice 2996 */ 2997 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2998 newcon->flags &= ~CON_PRINTBUFFER; 2999 3000 /* 3001 * Put this console in the list - keep the 3002 * preferred driver at the head of the list. 3003 */ 3004 console_lock(); 3005 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 3006 newcon->next = console_drivers; 3007 console_drivers = newcon; 3008 if (newcon->next) 3009 newcon->next->flags &= ~CON_CONSDEV; 3010 /* Ensure this flag is always set for the head of the list */ 3011 newcon->flags |= CON_CONSDEV; 3012 } else { 3013 newcon->next = console_drivers->next; 3014 console_drivers->next = newcon; 3015 } 3016 3017 if (newcon->flags & CON_EXTENDED) 3018 nr_ext_console_drivers++; 3019 3020 if (newcon->flags & CON_PRINTBUFFER) { 3021 /* 3022 * console_unlock(); will print out the buffered messages 3023 * for us. 3024 * 3025 * We're about to replay the log buffer. Only do this to the 3026 * just-registered console to avoid excessive message spam to 3027 * the already-registered consoles. 3028 * 3029 * Set exclusive_console with disabled interrupts to reduce 3030 * race window with eventual console_flush_on_panic() that 3031 * ignores console_lock. 3032 */ 3033 exclusive_console = newcon; 3034 exclusive_console_stop_seq = console_seq; 3035 3036 /* Get a consistent copy of @syslog_seq. */ 3037 mutex_lock(&syslog_lock); 3038 console_seq = syslog_seq; 3039 mutex_unlock(&syslog_lock); 3040 } 3041 console_unlock(); 3042 console_sysfs_notify(); 3043 3044 /* 3045 * By unregistering the bootconsoles after we enable the real console 3046 * we get the "console xxx enabled" message on all the consoles - 3047 * boot consoles, real consoles, etc - this is to ensure that end 3048 * users know there might be something in the kernel's log buffer that 3049 * went to the bootconsole (that they do not see on the real console) 3050 */ 3051 pr_info("%sconsole [%s%d] enabled\n", 3052 (newcon->flags & CON_BOOT) ? "boot" : "" , 3053 newcon->name, newcon->index); 3054 if (bcon && 3055 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3056 !keep_bootcon) { 3057 /* We need to iterate through all boot consoles, to make 3058 * sure we print everything out, before we unregister them. 3059 */ 3060 for_each_console(bcon) 3061 if (bcon->flags & CON_BOOT) 3062 unregister_console(bcon); 3063 } 3064 } 3065 EXPORT_SYMBOL(register_console); 3066 3067 int unregister_console(struct console *console) 3068 { 3069 struct console *con; 3070 int res; 3071 3072 pr_info("%sconsole [%s%d] disabled\n", 3073 (console->flags & CON_BOOT) ? "boot" : "" , 3074 console->name, console->index); 3075 3076 res = _braille_unregister_console(console); 3077 if (res < 0) 3078 return res; 3079 if (res > 0) 3080 return 0; 3081 3082 res = -ENODEV; 3083 console_lock(); 3084 if (console_drivers == console) { 3085 console_drivers=console->next; 3086 res = 0; 3087 } else { 3088 for_each_console(con) { 3089 if (con->next == console) { 3090 con->next = console->next; 3091 res = 0; 3092 break; 3093 } 3094 } 3095 } 3096 3097 if (res) 3098 goto out_disable_unlock; 3099 3100 if (console->flags & CON_EXTENDED) 3101 nr_ext_console_drivers--; 3102 3103 /* 3104 * If this isn't the last console and it has CON_CONSDEV set, we 3105 * need to set it on the next preferred console. 3106 */ 3107 if (console_drivers != NULL && console->flags & CON_CONSDEV) 3108 console_drivers->flags |= CON_CONSDEV; 3109 3110 console->flags &= ~CON_ENABLED; 3111 console_unlock(); 3112 console_sysfs_notify(); 3113 3114 if (console->exit) 3115 res = console->exit(console); 3116 3117 return res; 3118 3119 out_disable_unlock: 3120 console->flags &= ~CON_ENABLED; 3121 console_unlock(); 3122 3123 return res; 3124 } 3125 EXPORT_SYMBOL(unregister_console); 3126 3127 /* 3128 * Initialize the console device. This is called *early*, so 3129 * we can't necessarily depend on lots of kernel help here. 3130 * Just do some early initializations, and do the complex setup 3131 * later. 3132 */ 3133 void __init console_init(void) 3134 { 3135 int ret; 3136 initcall_t call; 3137 initcall_entry_t *ce; 3138 3139 /* Setup the default TTY line discipline. */ 3140 n_tty_init(); 3141 3142 /* 3143 * set up the console device so that later boot sequences can 3144 * inform about problems etc.. 3145 */ 3146 ce = __con_initcall_start; 3147 trace_initcall_level("console"); 3148 while (ce < __con_initcall_end) { 3149 call = initcall_from_entry(ce); 3150 trace_initcall_start(call); 3151 ret = call(); 3152 trace_initcall_finish(call, ret); 3153 ce++; 3154 } 3155 } 3156 3157 /* 3158 * Some boot consoles access data that is in the init section and which will 3159 * be discarded after the initcalls have been run. To make sure that no code 3160 * will access this data, unregister the boot consoles in a late initcall. 3161 * 3162 * If for some reason, such as deferred probe or the driver being a loadable 3163 * module, the real console hasn't registered yet at this point, there will 3164 * be a brief interval in which no messages are logged to the console, which 3165 * makes it difficult to diagnose problems that occur during this time. 3166 * 3167 * To mitigate this problem somewhat, only unregister consoles whose memory 3168 * intersects with the init section. Note that all other boot consoles will 3169 * get unregistered when the real preferred console is registered. 3170 */ 3171 static int __init printk_late_init(void) 3172 { 3173 struct console *con; 3174 int ret; 3175 3176 for_each_console(con) { 3177 if (!(con->flags & CON_BOOT)) 3178 continue; 3179 3180 /* Check addresses that might be used for enabled consoles. */ 3181 if (init_section_intersects(con, sizeof(*con)) || 3182 init_section_contains(con->write, 0) || 3183 init_section_contains(con->read, 0) || 3184 init_section_contains(con->device, 0) || 3185 init_section_contains(con->unblank, 0) || 3186 init_section_contains(con->data, 0)) { 3187 /* 3188 * Please, consider moving the reported consoles out 3189 * of the init section. 3190 */ 3191 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3192 con->name, con->index); 3193 unregister_console(con); 3194 } 3195 } 3196 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3197 console_cpu_notify); 3198 WARN_ON(ret < 0); 3199 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3200 console_cpu_notify, NULL); 3201 WARN_ON(ret < 0); 3202 return 0; 3203 } 3204 late_initcall(printk_late_init); 3205 3206 #if defined CONFIG_PRINTK 3207 /* 3208 * Delayed printk version, for scheduler-internal messages: 3209 */ 3210 #define PRINTK_PENDING_WAKEUP 0x01 3211 #define PRINTK_PENDING_OUTPUT 0x02 3212 3213 static DEFINE_PER_CPU(int, printk_pending); 3214 3215 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3216 { 3217 int pending = __this_cpu_xchg(printk_pending, 0); 3218 3219 if (pending & PRINTK_PENDING_OUTPUT) { 3220 /* If trylock fails, someone else is doing the printing */ 3221 if (console_trylock()) 3222 console_unlock(); 3223 } 3224 3225 if (pending & PRINTK_PENDING_WAKEUP) 3226 wake_up_interruptible(&log_wait); 3227 } 3228 3229 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3230 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3231 3232 void wake_up_klogd(void) 3233 { 3234 if (!printk_percpu_data_ready()) 3235 return; 3236 3237 preempt_disable(); 3238 if (waitqueue_active(&log_wait)) { 3239 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3240 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3241 } 3242 preempt_enable(); 3243 } 3244 3245 void defer_console_output(void) 3246 { 3247 if (!printk_percpu_data_ready()) 3248 return; 3249 3250 preempt_disable(); 3251 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3252 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3253 preempt_enable(); 3254 } 3255 3256 void printk_trigger_flush(void) 3257 { 3258 defer_console_output(); 3259 } 3260 3261 int vprintk_deferred(const char *fmt, va_list args) 3262 { 3263 int r; 3264 3265 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3266 defer_console_output(); 3267 3268 return r; 3269 } 3270 3271 int _printk_deferred(const char *fmt, ...) 3272 { 3273 va_list args; 3274 int r; 3275 3276 va_start(args, fmt); 3277 r = vprintk_deferred(fmt, args); 3278 va_end(args); 3279 3280 return r; 3281 } 3282 3283 /* 3284 * printk rate limiting, lifted from the networking subsystem. 3285 * 3286 * This enforces a rate limit: not more than 10 kernel messages 3287 * every 5s to make a denial-of-service attack impossible. 3288 */ 3289 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3290 3291 int __printk_ratelimit(const char *func) 3292 { 3293 return ___ratelimit(&printk_ratelimit_state, func); 3294 } 3295 EXPORT_SYMBOL(__printk_ratelimit); 3296 3297 /** 3298 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3299 * @caller_jiffies: pointer to caller's state 3300 * @interval_msecs: minimum interval between prints 3301 * 3302 * printk_timed_ratelimit() returns true if more than @interval_msecs 3303 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3304 * returned true. 3305 */ 3306 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3307 unsigned int interval_msecs) 3308 { 3309 unsigned long elapsed = jiffies - *caller_jiffies; 3310 3311 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3312 return false; 3313 3314 *caller_jiffies = jiffies; 3315 return true; 3316 } 3317 EXPORT_SYMBOL(printk_timed_ratelimit); 3318 3319 static DEFINE_SPINLOCK(dump_list_lock); 3320 static LIST_HEAD(dump_list); 3321 3322 /** 3323 * kmsg_dump_register - register a kernel log dumper. 3324 * @dumper: pointer to the kmsg_dumper structure 3325 * 3326 * Adds a kernel log dumper to the system. The dump callback in the 3327 * structure will be called when the kernel oopses or panics and must be 3328 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3329 */ 3330 int kmsg_dump_register(struct kmsg_dumper *dumper) 3331 { 3332 unsigned long flags; 3333 int err = -EBUSY; 3334 3335 /* The dump callback needs to be set */ 3336 if (!dumper->dump) 3337 return -EINVAL; 3338 3339 spin_lock_irqsave(&dump_list_lock, flags); 3340 /* Don't allow registering multiple times */ 3341 if (!dumper->registered) { 3342 dumper->registered = 1; 3343 list_add_tail_rcu(&dumper->list, &dump_list); 3344 err = 0; 3345 } 3346 spin_unlock_irqrestore(&dump_list_lock, flags); 3347 3348 return err; 3349 } 3350 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3351 3352 /** 3353 * kmsg_dump_unregister - unregister a kmsg dumper. 3354 * @dumper: pointer to the kmsg_dumper structure 3355 * 3356 * Removes a dump device from the system. Returns zero on success and 3357 * %-EINVAL otherwise. 3358 */ 3359 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3360 { 3361 unsigned long flags; 3362 int err = -EINVAL; 3363 3364 spin_lock_irqsave(&dump_list_lock, flags); 3365 if (dumper->registered) { 3366 dumper->registered = 0; 3367 list_del_rcu(&dumper->list); 3368 err = 0; 3369 } 3370 spin_unlock_irqrestore(&dump_list_lock, flags); 3371 synchronize_rcu(); 3372 3373 return err; 3374 } 3375 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3376 3377 static bool always_kmsg_dump; 3378 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3379 3380 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3381 { 3382 switch (reason) { 3383 case KMSG_DUMP_PANIC: 3384 return "Panic"; 3385 case KMSG_DUMP_OOPS: 3386 return "Oops"; 3387 case KMSG_DUMP_EMERG: 3388 return "Emergency"; 3389 case KMSG_DUMP_SHUTDOWN: 3390 return "Shutdown"; 3391 default: 3392 return "Unknown"; 3393 } 3394 } 3395 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3396 3397 /** 3398 * kmsg_dump - dump kernel log to kernel message dumpers. 3399 * @reason: the reason (oops, panic etc) for dumping 3400 * 3401 * Call each of the registered dumper's dump() callback, which can 3402 * retrieve the kmsg records with kmsg_dump_get_line() or 3403 * kmsg_dump_get_buffer(). 3404 */ 3405 void kmsg_dump(enum kmsg_dump_reason reason) 3406 { 3407 struct kmsg_dumper *dumper; 3408 3409 rcu_read_lock(); 3410 list_for_each_entry_rcu(dumper, &dump_list, list) { 3411 enum kmsg_dump_reason max_reason = dumper->max_reason; 3412 3413 /* 3414 * If client has not provided a specific max_reason, default 3415 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3416 */ 3417 if (max_reason == KMSG_DUMP_UNDEF) { 3418 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3419 KMSG_DUMP_OOPS; 3420 } 3421 if (reason > max_reason) 3422 continue; 3423 3424 /* invoke dumper which will iterate over records */ 3425 dumper->dump(dumper, reason); 3426 } 3427 rcu_read_unlock(); 3428 } 3429 3430 /** 3431 * kmsg_dump_get_line - retrieve one kmsg log line 3432 * @iter: kmsg dump iterator 3433 * @syslog: include the "<4>" prefixes 3434 * @line: buffer to copy the line to 3435 * @size: maximum size of the buffer 3436 * @len: length of line placed into buffer 3437 * 3438 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3439 * record, and copy one record into the provided buffer. 3440 * 3441 * Consecutive calls will return the next available record moving 3442 * towards the end of the buffer with the youngest messages. 3443 * 3444 * A return value of FALSE indicates that there are no more records to 3445 * read. 3446 */ 3447 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 3448 char *line, size_t size, size_t *len) 3449 { 3450 u64 min_seq = latched_seq_read_nolock(&clear_seq); 3451 struct printk_info info; 3452 unsigned int line_count; 3453 struct printk_record r; 3454 size_t l = 0; 3455 bool ret = false; 3456 3457 if (iter->cur_seq < min_seq) 3458 iter->cur_seq = min_seq; 3459 3460 prb_rec_init_rd(&r, &info, line, size); 3461 3462 /* Read text or count text lines? */ 3463 if (line) { 3464 if (!prb_read_valid(prb, iter->cur_seq, &r)) 3465 goto out; 3466 l = record_print_text(&r, syslog, printk_time); 3467 } else { 3468 if (!prb_read_valid_info(prb, iter->cur_seq, 3469 &info, &line_count)) { 3470 goto out; 3471 } 3472 l = get_record_print_text_size(&info, line_count, syslog, 3473 printk_time); 3474 3475 } 3476 3477 iter->cur_seq = r.info->seq + 1; 3478 ret = true; 3479 out: 3480 if (len) 3481 *len = l; 3482 return ret; 3483 } 3484 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3485 3486 /** 3487 * kmsg_dump_get_buffer - copy kmsg log lines 3488 * @iter: kmsg dump iterator 3489 * @syslog: include the "<4>" prefixes 3490 * @buf: buffer to copy the line to 3491 * @size: maximum size of the buffer 3492 * @len_out: length of line placed into buffer 3493 * 3494 * Start at the end of the kmsg buffer and fill the provided buffer 3495 * with as many of the *youngest* kmsg records that fit into it. 3496 * If the buffer is large enough, all available kmsg records will be 3497 * copied with a single call. 3498 * 3499 * Consecutive calls will fill the buffer with the next block of 3500 * available older records, not including the earlier retrieved ones. 3501 * 3502 * A return value of FALSE indicates that there are no more records to 3503 * read. 3504 */ 3505 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 3506 char *buf, size_t size, size_t *len_out) 3507 { 3508 u64 min_seq = latched_seq_read_nolock(&clear_seq); 3509 struct printk_info info; 3510 struct printk_record r; 3511 u64 seq; 3512 u64 next_seq; 3513 size_t len = 0; 3514 bool ret = false; 3515 bool time = printk_time; 3516 3517 if (!buf || !size) 3518 goto out; 3519 3520 if (iter->cur_seq < min_seq) 3521 iter->cur_seq = min_seq; 3522 3523 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 3524 if (info.seq != iter->cur_seq) { 3525 /* messages are gone, move to first available one */ 3526 iter->cur_seq = info.seq; 3527 } 3528 } 3529 3530 /* last entry */ 3531 if (iter->cur_seq >= iter->next_seq) 3532 goto out; 3533 3534 /* 3535 * Find first record that fits, including all following records, 3536 * into the user-provided buffer for this dump. Pass in size-1 3537 * because this function (by way of record_print_text()) will 3538 * not write more than size-1 bytes of text into @buf. 3539 */ 3540 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 3541 size - 1, syslog, time); 3542 3543 /* 3544 * Next kmsg_dump_get_buffer() invocation will dump block of 3545 * older records stored right before this one. 3546 */ 3547 next_seq = seq; 3548 3549 prb_rec_init_rd(&r, &info, buf, size); 3550 3551 len = 0; 3552 prb_for_each_record(seq, prb, seq, &r) { 3553 if (r.info->seq >= iter->next_seq) 3554 break; 3555 3556 len += record_print_text(&r, syslog, time); 3557 3558 /* Adjust record to store to remaining buffer space. */ 3559 prb_rec_init_rd(&r, &info, buf + len, size - len); 3560 } 3561 3562 iter->next_seq = next_seq; 3563 ret = true; 3564 out: 3565 if (len_out) 3566 *len_out = len; 3567 return ret; 3568 } 3569 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3570 3571 /** 3572 * kmsg_dump_rewind - reset the iterator 3573 * @iter: kmsg dump iterator 3574 * 3575 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3576 * kmsg_dump_get_buffer() can be called again and used multiple 3577 * times within the same dumper.dump() callback. 3578 */ 3579 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 3580 { 3581 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 3582 iter->next_seq = prb_next_seq(prb); 3583 } 3584 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3585 3586 #endif 3587 3588 #ifdef CONFIG_SMP 3589 static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1); 3590 static atomic_t printk_cpulock_nested = ATOMIC_INIT(0); 3591 3592 /** 3593 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant 3594 * spinning lock is not owned by any CPU. 3595 * 3596 * Context: Any context. 3597 */ 3598 void __printk_wait_on_cpu_lock(void) 3599 { 3600 do { 3601 cpu_relax(); 3602 } while (atomic_read(&printk_cpulock_owner) != -1); 3603 } 3604 EXPORT_SYMBOL(__printk_wait_on_cpu_lock); 3605 3606 /** 3607 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant 3608 * spinning lock. 3609 * 3610 * If no processor has the lock, the calling processor takes the lock and 3611 * becomes the owner. If the calling processor is already the owner of the 3612 * lock, this function succeeds immediately. 3613 * 3614 * Context: Any context. Expects interrupts to be disabled. 3615 * Return: 1 on success, otherwise 0. 3616 */ 3617 int __printk_cpu_trylock(void) 3618 { 3619 int cpu; 3620 int old; 3621 3622 cpu = smp_processor_id(); 3623 3624 /* 3625 * Guarantee loads and stores from this CPU when it is the lock owner 3626 * are _not_ visible to the previous lock owner. This pairs with 3627 * __printk_cpu_unlock:B. 3628 * 3629 * Memory barrier involvement: 3630 * 3631 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then 3632 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B. 3633 * 3634 * Relies on: 3635 * 3636 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B 3637 * of the previous CPU 3638 * matching 3639 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B 3640 * of this CPU 3641 */ 3642 old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1, 3643 cpu); /* LMM(__printk_cpu_trylock:A) */ 3644 if (old == -1) { 3645 /* 3646 * This CPU is now the owner and begins loading/storing 3647 * data: LMM(__printk_cpu_trylock:B) 3648 */ 3649 return 1; 3650 3651 } else if (old == cpu) { 3652 /* This CPU is already the owner. */ 3653 atomic_inc(&printk_cpulock_nested); 3654 return 1; 3655 } 3656 3657 return 0; 3658 } 3659 EXPORT_SYMBOL(__printk_cpu_trylock); 3660 3661 /** 3662 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock. 3663 * 3664 * The calling processor must be the owner of the lock. 3665 * 3666 * Context: Any context. Expects interrupts to be disabled. 3667 */ 3668 void __printk_cpu_unlock(void) 3669 { 3670 if (atomic_read(&printk_cpulock_nested)) { 3671 atomic_dec(&printk_cpulock_nested); 3672 return; 3673 } 3674 3675 /* 3676 * This CPU is finished loading/storing data: 3677 * LMM(__printk_cpu_unlock:A) 3678 */ 3679 3680 /* 3681 * Guarantee loads and stores from this CPU when it was the 3682 * lock owner are visible to the next lock owner. This pairs 3683 * with __printk_cpu_trylock:A. 3684 * 3685 * Memory barrier involvement: 3686 * 3687 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, 3688 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A. 3689 * 3690 * Relies on: 3691 * 3692 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B 3693 * of this CPU 3694 * matching 3695 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B 3696 * of the next CPU 3697 */ 3698 atomic_set_release(&printk_cpulock_owner, 3699 -1); /* LMM(__printk_cpu_unlock:B) */ 3700 } 3701 EXPORT_SYMBOL(__printk_cpu_unlock); 3702 #endif /* CONFIG_SMP */ 3703