1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/vmcore_info.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 75 76 /* 77 * Low level drivers may need that to know if they can schedule in 78 * their unblank() callback or not. So let's export it. 79 */ 80 int oops_in_progress; 81 EXPORT_SYMBOL(oops_in_progress); 82 83 /* 84 * console_mutex protects console_list updates and console->flags updates. 85 * The flags are synchronized only for consoles that are registered, i.e. 86 * accessible via the console list. 87 */ 88 static DEFINE_MUTEX(console_mutex); 89 90 /* 91 * console_sem protects updates to console->seq 92 * and also provides serialization for console printing. 93 */ 94 static DEFINE_SEMAPHORE(console_sem, 1); 95 HLIST_HEAD(console_list); 96 EXPORT_SYMBOL_GPL(console_list); 97 DEFINE_STATIC_SRCU(console_srcu); 98 99 /* 100 * System may need to suppress printk message under certain 101 * circumstances, like after kernel panic happens. 102 */ 103 int __read_mostly suppress_printk; 104 105 #ifdef CONFIG_LOCKDEP 106 static struct lockdep_map console_lock_dep_map = { 107 .name = "console_lock" 108 }; 109 110 void lockdep_assert_console_list_lock_held(void) 111 { 112 lockdep_assert_held(&console_mutex); 113 } 114 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 115 #endif 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 bool console_srcu_read_lock_is_held(void) 119 { 120 return srcu_read_lock_held(&console_srcu); 121 } 122 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 123 #endif 124 125 enum devkmsg_log_bits { 126 __DEVKMSG_LOG_BIT_ON = 0, 127 __DEVKMSG_LOG_BIT_OFF, 128 __DEVKMSG_LOG_BIT_LOCK, 129 }; 130 131 enum devkmsg_log_masks { 132 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 133 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 134 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 135 }; 136 137 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 138 #define DEVKMSG_LOG_MASK_DEFAULT 0 139 140 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 142 static int __control_devkmsg(char *str) 143 { 144 size_t len; 145 146 if (!str) 147 return -EINVAL; 148 149 len = str_has_prefix(str, "on"); 150 if (len) { 151 devkmsg_log = DEVKMSG_LOG_MASK_ON; 152 return len; 153 } 154 155 len = str_has_prefix(str, "off"); 156 if (len) { 157 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 158 return len; 159 } 160 161 len = str_has_prefix(str, "ratelimit"); 162 if (len) { 163 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 164 return len; 165 } 166 167 return -EINVAL; 168 } 169 170 static int __init control_devkmsg(char *str) 171 { 172 if (__control_devkmsg(str) < 0) { 173 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 174 return 1; 175 } 176 177 /* 178 * Set sysctl string accordingly: 179 */ 180 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 181 strscpy(devkmsg_log_str, "on"); 182 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 183 strscpy(devkmsg_log_str, "off"); 184 /* else "ratelimit" which is set by default. */ 185 186 /* 187 * Sysctl cannot change it anymore. The kernel command line setting of 188 * this parameter is to force the setting to be permanent throughout the 189 * runtime of the system. This is a precation measure against userspace 190 * trying to be a smarta** and attempting to change it up on us. 191 */ 192 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 193 194 return 1; 195 } 196 __setup("printk.devkmsg=", control_devkmsg); 197 198 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 199 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 200 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 201 void *buffer, size_t *lenp, loff_t *ppos) 202 { 203 char old_str[DEVKMSG_STR_MAX_SIZE]; 204 unsigned int old; 205 int err; 206 207 if (write) { 208 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 209 return -EINVAL; 210 211 old = devkmsg_log; 212 strscpy(old_str, devkmsg_log_str); 213 } 214 215 err = proc_dostring(table, write, buffer, lenp, ppos); 216 if (err) 217 return err; 218 219 if (write) { 220 err = __control_devkmsg(devkmsg_log_str); 221 222 /* 223 * Do not accept an unknown string OR a known string with 224 * trailing crap... 225 */ 226 if (err < 0 || (err + 1 != *lenp)) { 227 228 /* ... and restore old setting. */ 229 devkmsg_log = old; 230 strscpy(devkmsg_log_str, old_str); 231 232 return -EINVAL; 233 } 234 } 235 236 return 0; 237 } 238 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 239 240 /** 241 * console_list_lock - Lock the console list 242 * 243 * For console list or console->flags updates 244 */ 245 void console_list_lock(void) 246 { 247 /* 248 * In unregister_console() and console_force_preferred_locked(), 249 * synchronize_srcu() is called with the console_list_lock held. 250 * Therefore it is not allowed that the console_list_lock is taken 251 * with the srcu_lock held. 252 * 253 * Detecting if this context is really in the read-side critical 254 * section is only possible if the appropriate debug options are 255 * enabled. 256 */ 257 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 258 srcu_read_lock_held(&console_srcu)); 259 260 mutex_lock(&console_mutex); 261 } 262 EXPORT_SYMBOL(console_list_lock); 263 264 /** 265 * console_list_unlock - Unlock the console list 266 * 267 * Counterpart to console_list_lock() 268 */ 269 void console_list_unlock(void) 270 { 271 mutex_unlock(&console_mutex); 272 } 273 EXPORT_SYMBOL(console_list_unlock); 274 275 /** 276 * console_srcu_read_lock - Register a new reader for the 277 * SRCU-protected console list 278 * 279 * Use for_each_console_srcu() to iterate the console list 280 * 281 * Context: Any context. 282 * Return: A cookie to pass to console_srcu_read_unlock(). 283 */ 284 int console_srcu_read_lock(void) 285 { 286 return srcu_read_lock_nmisafe(&console_srcu); 287 } 288 EXPORT_SYMBOL(console_srcu_read_lock); 289 290 /** 291 * console_srcu_read_unlock - Unregister an old reader from 292 * the SRCU-protected console list 293 * @cookie: cookie returned from console_srcu_read_lock() 294 * 295 * Counterpart to console_srcu_read_lock() 296 */ 297 void console_srcu_read_unlock(int cookie) 298 { 299 srcu_read_unlock_nmisafe(&console_srcu, cookie); 300 } 301 EXPORT_SYMBOL(console_srcu_read_unlock); 302 303 /* 304 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 305 * macros instead of functions so that _RET_IP_ contains useful information. 306 */ 307 #define down_console_sem() do { \ 308 down(&console_sem);\ 309 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 310 } while (0) 311 312 static int __down_trylock_console_sem(unsigned long ip) 313 { 314 int lock_failed; 315 unsigned long flags; 316 317 /* 318 * Here and in __up_console_sem() we need to be in safe mode, 319 * because spindump/WARN/etc from under console ->lock will 320 * deadlock in printk()->down_trylock_console_sem() otherwise. 321 */ 322 printk_safe_enter_irqsave(flags); 323 lock_failed = down_trylock(&console_sem); 324 printk_safe_exit_irqrestore(flags); 325 326 if (lock_failed) 327 return 1; 328 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 329 return 0; 330 } 331 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 332 333 static void __up_console_sem(unsigned long ip) 334 { 335 unsigned long flags; 336 337 mutex_release(&console_lock_dep_map, ip); 338 339 printk_safe_enter_irqsave(flags); 340 up(&console_sem); 341 printk_safe_exit_irqrestore(flags); 342 } 343 #define up_console_sem() __up_console_sem(_RET_IP_) 344 345 static bool panic_in_progress(void) 346 { 347 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 348 } 349 350 /* Return true if a panic is in progress on the current CPU. */ 351 bool this_cpu_in_panic(void) 352 { 353 /* 354 * We can use raw_smp_processor_id() here because it is impossible for 355 * the task to be migrated to the panic_cpu, or away from it. If 356 * panic_cpu has already been set, and we're not currently executing on 357 * that CPU, then we never will be. 358 */ 359 return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id()); 360 } 361 362 /* 363 * Return true if a panic is in progress on a remote CPU. 364 * 365 * On true, the local CPU should immediately release any printing resources 366 * that may be needed by the panic CPU. 367 */ 368 bool other_cpu_in_panic(void) 369 { 370 return (panic_in_progress() && !this_cpu_in_panic()); 371 } 372 373 /* 374 * This is used for debugging the mess that is the VT code by 375 * keeping track if we have the console semaphore held. It's 376 * definitely not the perfect debug tool (we don't know if _WE_ 377 * hold it and are racing, but it helps tracking those weird code 378 * paths in the console code where we end up in places I want 379 * locked without the console semaphore held). 380 */ 381 static int console_locked; 382 383 /* 384 * Array of consoles built from command line options (console=) 385 */ 386 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 387 388 static int preferred_console = -1; 389 int console_set_on_cmdline; 390 EXPORT_SYMBOL(console_set_on_cmdline); 391 392 /* Flag: console code may call schedule() */ 393 static int console_may_schedule; 394 395 enum con_msg_format_flags { 396 MSG_FORMAT_DEFAULT = 0, 397 MSG_FORMAT_SYSLOG = (1 << 0), 398 }; 399 400 static int console_msg_format = MSG_FORMAT_DEFAULT; 401 402 /* 403 * The printk log buffer consists of a sequenced collection of records, each 404 * containing variable length message text. Every record also contains its 405 * own meta-data (@info). 406 * 407 * Every record meta-data carries the timestamp in microseconds, as well as 408 * the standard userspace syslog level and syslog facility. The usual kernel 409 * messages use LOG_KERN; userspace-injected messages always carry a matching 410 * syslog facility, by default LOG_USER. The origin of every message can be 411 * reliably determined that way. 412 * 413 * The human readable log message of a record is available in @text, the 414 * length of the message text in @text_len. The stored message is not 415 * terminated. 416 * 417 * Optionally, a record can carry a dictionary of properties (key/value 418 * pairs), to provide userspace with a machine-readable message context. 419 * 420 * Examples for well-defined, commonly used property names are: 421 * DEVICE=b12:8 device identifier 422 * b12:8 block dev_t 423 * c127:3 char dev_t 424 * n8 netdev ifindex 425 * +sound:card0 subsystem:devname 426 * SUBSYSTEM=pci driver-core subsystem name 427 * 428 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 429 * and values are terminated by a '\0' character. 430 * 431 * Example of record values: 432 * record.text_buf = "it's a line" (unterminated) 433 * record.info.seq = 56 434 * record.info.ts_nsec = 36863 435 * record.info.text_len = 11 436 * record.info.facility = 0 (LOG_KERN) 437 * record.info.flags = 0 438 * record.info.level = 3 (LOG_ERR) 439 * record.info.caller_id = 299 (task 299) 440 * record.info.dev_info.subsystem = "pci" (terminated) 441 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 442 * 443 * The 'struct printk_info' buffer must never be directly exported to 444 * userspace, it is a kernel-private implementation detail that might 445 * need to be changed in the future, when the requirements change. 446 * 447 * /dev/kmsg exports the structured data in the following line format: 448 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 449 * 450 * Users of the export format should ignore possible additional values 451 * separated by ',', and find the message after the ';' character. 452 * 453 * The optional key/value pairs are attached as continuation lines starting 454 * with a space character and terminated by a newline. All possible 455 * non-prinatable characters are escaped in the "\xff" notation. 456 */ 457 458 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 459 static DEFINE_MUTEX(syslog_lock); 460 461 #ifdef CONFIG_PRINTK 462 DECLARE_WAIT_QUEUE_HEAD(log_wait); 463 /* All 3 protected by @syslog_lock. */ 464 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 465 static u64 syslog_seq; 466 static size_t syslog_partial; 467 static bool syslog_time; 468 469 struct latched_seq { 470 seqcount_latch_t latch; 471 u64 val[2]; 472 }; 473 474 /* 475 * The next printk record to read after the last 'clear' command. There are 476 * two copies (updated with seqcount_latch) so that reads can locklessly 477 * access a valid value. Writers are synchronized by @syslog_lock. 478 */ 479 static struct latched_seq clear_seq = { 480 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 481 .val[0] = 0, 482 .val[1] = 0, 483 }; 484 485 #define LOG_LEVEL(v) ((v) & 0x07) 486 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 487 488 /* record buffer */ 489 #define LOG_ALIGN __alignof__(unsigned long) 490 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 491 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 492 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 493 static char *log_buf = __log_buf; 494 static u32 log_buf_len = __LOG_BUF_LEN; 495 496 /* 497 * Define the average message size. This only affects the number of 498 * descriptors that will be available. Underestimating is better than 499 * overestimating (too many available descriptors is better than not enough). 500 */ 501 #define PRB_AVGBITS 5 /* 32 character average length */ 502 503 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 504 #error CONFIG_LOG_BUF_SHIFT value too small. 505 #endif 506 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 507 PRB_AVGBITS, &__log_buf[0]); 508 509 static struct printk_ringbuffer printk_rb_dynamic; 510 511 struct printk_ringbuffer *prb = &printk_rb_static; 512 513 /* 514 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 515 * per_cpu_areas are initialised. This variable is set to true when 516 * it's safe to access per-CPU data. 517 */ 518 static bool __printk_percpu_data_ready __ro_after_init; 519 520 bool printk_percpu_data_ready(void) 521 { 522 return __printk_percpu_data_ready; 523 } 524 525 /* Must be called under syslog_lock. */ 526 static void latched_seq_write(struct latched_seq *ls, u64 val) 527 { 528 raw_write_seqcount_latch(&ls->latch); 529 ls->val[0] = val; 530 raw_write_seqcount_latch(&ls->latch); 531 ls->val[1] = val; 532 } 533 534 /* Can be called from any context. */ 535 static u64 latched_seq_read_nolock(struct latched_seq *ls) 536 { 537 unsigned int seq; 538 unsigned int idx; 539 u64 val; 540 541 do { 542 seq = raw_read_seqcount_latch(&ls->latch); 543 idx = seq & 0x1; 544 val = ls->val[idx]; 545 } while (raw_read_seqcount_latch_retry(&ls->latch, seq)); 546 547 return val; 548 } 549 550 /* Return log buffer address */ 551 char *log_buf_addr_get(void) 552 { 553 return log_buf; 554 } 555 556 /* Return log buffer size */ 557 u32 log_buf_len_get(void) 558 { 559 return log_buf_len; 560 } 561 562 /* 563 * Define how much of the log buffer we could take at maximum. The value 564 * must be greater than two. Note that only half of the buffer is available 565 * when the index points to the middle. 566 */ 567 #define MAX_LOG_TAKE_PART 4 568 static const char trunc_msg[] = "<truncated>"; 569 570 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 571 { 572 /* 573 * The message should not take the whole buffer. Otherwise, it might 574 * get removed too soon. 575 */ 576 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 577 578 if (*text_len > max_text_len) 579 *text_len = max_text_len; 580 581 /* enable the warning message (if there is room) */ 582 *trunc_msg_len = strlen(trunc_msg); 583 if (*text_len >= *trunc_msg_len) 584 *text_len -= *trunc_msg_len; 585 else 586 *trunc_msg_len = 0; 587 } 588 589 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 590 591 static int syslog_action_restricted(int type) 592 { 593 if (dmesg_restrict) 594 return 1; 595 /* 596 * Unless restricted, we allow "read all" and "get buffer size" 597 * for everybody. 598 */ 599 return type != SYSLOG_ACTION_READ_ALL && 600 type != SYSLOG_ACTION_SIZE_BUFFER; 601 } 602 603 static int check_syslog_permissions(int type, int source) 604 { 605 /* 606 * If this is from /proc/kmsg and we've already opened it, then we've 607 * already done the capabilities checks at open time. 608 */ 609 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 610 goto ok; 611 612 if (syslog_action_restricted(type)) { 613 if (capable(CAP_SYSLOG)) 614 goto ok; 615 return -EPERM; 616 } 617 ok: 618 return security_syslog(type); 619 } 620 621 static void append_char(char **pp, char *e, char c) 622 { 623 if (*pp < e) 624 *(*pp)++ = c; 625 } 626 627 static ssize_t info_print_ext_header(char *buf, size_t size, 628 struct printk_info *info) 629 { 630 u64 ts_usec = info->ts_nsec; 631 char caller[20]; 632 #ifdef CONFIG_PRINTK_CALLER 633 u32 id = info->caller_id; 634 635 snprintf(caller, sizeof(caller), ",caller=%c%u", 636 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 637 #else 638 caller[0] = '\0'; 639 #endif 640 641 do_div(ts_usec, 1000); 642 643 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 644 (info->facility << 3) | info->level, info->seq, 645 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 646 } 647 648 static ssize_t msg_add_ext_text(char *buf, size_t size, 649 const char *text, size_t text_len, 650 unsigned char endc) 651 { 652 char *p = buf, *e = buf + size; 653 size_t i; 654 655 /* escape non-printable characters */ 656 for (i = 0; i < text_len; i++) { 657 unsigned char c = text[i]; 658 659 if (c < ' ' || c >= 127 || c == '\\') 660 p += scnprintf(p, e - p, "\\x%02x", c); 661 else 662 append_char(&p, e, c); 663 } 664 append_char(&p, e, endc); 665 666 return p - buf; 667 } 668 669 static ssize_t msg_add_dict_text(char *buf, size_t size, 670 const char *key, const char *val) 671 { 672 size_t val_len = strlen(val); 673 ssize_t len; 674 675 if (!val_len) 676 return 0; 677 678 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 679 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 680 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 681 682 return len; 683 } 684 685 static ssize_t msg_print_ext_body(char *buf, size_t size, 686 char *text, size_t text_len, 687 struct dev_printk_info *dev_info) 688 { 689 ssize_t len; 690 691 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 692 693 if (!dev_info) 694 goto out; 695 696 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 697 dev_info->subsystem); 698 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 699 dev_info->device); 700 out: 701 return len; 702 } 703 704 /* /dev/kmsg - userspace message inject/listen interface */ 705 struct devkmsg_user { 706 atomic64_t seq; 707 struct ratelimit_state rs; 708 struct mutex lock; 709 struct printk_buffers pbufs; 710 }; 711 712 static __printf(3, 4) __cold 713 int devkmsg_emit(int facility, int level, const char *fmt, ...) 714 { 715 va_list args; 716 int r; 717 718 va_start(args, fmt); 719 r = vprintk_emit(facility, level, NULL, fmt, args); 720 va_end(args); 721 722 return r; 723 } 724 725 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 726 { 727 char *buf, *line; 728 int level = default_message_loglevel; 729 int facility = 1; /* LOG_USER */ 730 struct file *file = iocb->ki_filp; 731 struct devkmsg_user *user = file->private_data; 732 size_t len = iov_iter_count(from); 733 ssize_t ret = len; 734 735 if (len > PRINTKRB_RECORD_MAX) 736 return -EINVAL; 737 738 /* Ignore when user logging is disabled. */ 739 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 740 return len; 741 742 /* Ratelimit when not explicitly enabled. */ 743 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 744 if (!___ratelimit(&user->rs, current->comm)) 745 return ret; 746 } 747 748 buf = kmalloc(len+1, GFP_KERNEL); 749 if (buf == NULL) 750 return -ENOMEM; 751 752 buf[len] = '\0'; 753 if (!copy_from_iter_full(buf, len, from)) { 754 kfree(buf); 755 return -EFAULT; 756 } 757 758 /* 759 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 760 * the decimal value represents 32bit, the lower 3 bit are the log 761 * level, the rest are the log facility. 762 * 763 * If no prefix or no userspace facility is specified, we 764 * enforce LOG_USER, to be able to reliably distinguish 765 * kernel-generated messages from userspace-injected ones. 766 */ 767 line = buf; 768 if (line[0] == '<') { 769 char *endp = NULL; 770 unsigned int u; 771 772 u = simple_strtoul(line + 1, &endp, 10); 773 if (endp && endp[0] == '>') { 774 level = LOG_LEVEL(u); 775 if (LOG_FACILITY(u) != 0) 776 facility = LOG_FACILITY(u); 777 endp++; 778 line = endp; 779 } 780 } 781 782 devkmsg_emit(facility, level, "%s", line); 783 kfree(buf); 784 return ret; 785 } 786 787 static ssize_t devkmsg_read(struct file *file, char __user *buf, 788 size_t count, loff_t *ppos) 789 { 790 struct devkmsg_user *user = file->private_data; 791 char *outbuf = &user->pbufs.outbuf[0]; 792 struct printk_message pmsg = { 793 .pbufs = &user->pbufs, 794 }; 795 ssize_t ret; 796 797 ret = mutex_lock_interruptible(&user->lock); 798 if (ret) 799 return ret; 800 801 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 802 if (file->f_flags & O_NONBLOCK) { 803 ret = -EAGAIN; 804 goto out; 805 } 806 807 /* 808 * Guarantee this task is visible on the waitqueue before 809 * checking the wake condition. 810 * 811 * The full memory barrier within set_current_state() of 812 * prepare_to_wait_event() pairs with the full memory barrier 813 * within wq_has_sleeper(). 814 * 815 * This pairs with __wake_up_klogd:A. 816 */ 817 ret = wait_event_interruptible(log_wait, 818 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 819 false)); /* LMM(devkmsg_read:A) */ 820 if (ret) 821 goto out; 822 } 823 824 if (pmsg.dropped) { 825 /* our last seen message is gone, return error and reset */ 826 atomic64_set(&user->seq, pmsg.seq); 827 ret = -EPIPE; 828 goto out; 829 } 830 831 atomic64_set(&user->seq, pmsg.seq + 1); 832 833 if (pmsg.outbuf_len > count) { 834 ret = -EINVAL; 835 goto out; 836 } 837 838 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 839 ret = -EFAULT; 840 goto out; 841 } 842 ret = pmsg.outbuf_len; 843 out: 844 mutex_unlock(&user->lock); 845 return ret; 846 } 847 848 /* 849 * Be careful when modifying this function!!! 850 * 851 * Only few operations are supported because the device works only with the 852 * entire variable length messages (records). Non-standard values are 853 * returned in the other cases and has been this way for quite some time. 854 * User space applications might depend on this behavior. 855 */ 856 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 857 { 858 struct devkmsg_user *user = file->private_data; 859 loff_t ret = 0; 860 861 if (offset) 862 return -ESPIPE; 863 864 switch (whence) { 865 case SEEK_SET: 866 /* the first record */ 867 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 868 break; 869 case SEEK_DATA: 870 /* 871 * The first record after the last SYSLOG_ACTION_CLEAR, 872 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 873 * changes no global state, and does not clear anything. 874 */ 875 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 876 break; 877 case SEEK_END: 878 /* after the last record */ 879 atomic64_set(&user->seq, prb_next_seq(prb)); 880 break; 881 default: 882 ret = -EINVAL; 883 } 884 return ret; 885 } 886 887 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 888 { 889 struct devkmsg_user *user = file->private_data; 890 struct printk_info info; 891 __poll_t ret = 0; 892 893 poll_wait(file, &log_wait, wait); 894 895 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 896 /* return error when data has vanished underneath us */ 897 if (info.seq != atomic64_read(&user->seq)) 898 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 899 else 900 ret = EPOLLIN|EPOLLRDNORM; 901 } 902 903 return ret; 904 } 905 906 static int devkmsg_open(struct inode *inode, struct file *file) 907 { 908 struct devkmsg_user *user; 909 int err; 910 911 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 912 return -EPERM; 913 914 /* write-only does not need any file context */ 915 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 916 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 917 SYSLOG_FROM_READER); 918 if (err) 919 return err; 920 } 921 922 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 923 if (!user) 924 return -ENOMEM; 925 926 ratelimit_default_init(&user->rs); 927 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 928 929 mutex_init(&user->lock); 930 931 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 932 933 file->private_data = user; 934 return 0; 935 } 936 937 static int devkmsg_release(struct inode *inode, struct file *file) 938 { 939 struct devkmsg_user *user = file->private_data; 940 941 ratelimit_state_exit(&user->rs); 942 943 mutex_destroy(&user->lock); 944 kvfree(user); 945 return 0; 946 } 947 948 const struct file_operations kmsg_fops = { 949 .open = devkmsg_open, 950 .read = devkmsg_read, 951 .write_iter = devkmsg_write, 952 .llseek = devkmsg_llseek, 953 .poll = devkmsg_poll, 954 .release = devkmsg_release, 955 }; 956 957 #ifdef CONFIG_VMCORE_INFO 958 /* 959 * This appends the listed symbols to /proc/vmcore 960 * 961 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 962 * obtain access to symbols that are otherwise very difficult to locate. These 963 * symbols are specifically used so that utilities can access and extract the 964 * dmesg log from a vmcore file after a crash. 965 */ 966 void log_buf_vmcoreinfo_setup(void) 967 { 968 struct dev_printk_info *dev_info = NULL; 969 970 VMCOREINFO_SYMBOL(prb); 971 VMCOREINFO_SYMBOL(printk_rb_static); 972 VMCOREINFO_SYMBOL(clear_seq); 973 974 /* 975 * Export struct size and field offsets. User space tools can 976 * parse it and detect any changes to structure down the line. 977 */ 978 979 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 980 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 981 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 982 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 983 984 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 985 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 986 VMCOREINFO_OFFSET(prb_desc_ring, descs); 987 VMCOREINFO_OFFSET(prb_desc_ring, infos); 988 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 989 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 990 991 VMCOREINFO_STRUCT_SIZE(prb_desc); 992 VMCOREINFO_OFFSET(prb_desc, state_var); 993 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 994 995 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 996 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 997 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 998 999 VMCOREINFO_STRUCT_SIZE(printk_info); 1000 VMCOREINFO_OFFSET(printk_info, seq); 1001 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1002 VMCOREINFO_OFFSET(printk_info, text_len); 1003 VMCOREINFO_OFFSET(printk_info, caller_id); 1004 VMCOREINFO_OFFSET(printk_info, dev_info); 1005 1006 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1007 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1008 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1009 VMCOREINFO_OFFSET(dev_printk_info, device); 1010 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1011 1012 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1013 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1014 VMCOREINFO_OFFSET(prb_data_ring, data); 1015 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1016 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1017 1018 VMCOREINFO_SIZE(atomic_long_t); 1019 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1020 1021 VMCOREINFO_STRUCT_SIZE(latched_seq); 1022 VMCOREINFO_OFFSET(latched_seq, val); 1023 } 1024 #endif 1025 1026 /* requested log_buf_len from kernel cmdline */ 1027 static unsigned long __initdata new_log_buf_len; 1028 1029 /* we practice scaling the ring buffer by powers of 2 */ 1030 static void __init log_buf_len_update(u64 size) 1031 { 1032 if (size > (u64)LOG_BUF_LEN_MAX) { 1033 size = (u64)LOG_BUF_LEN_MAX; 1034 pr_err("log_buf over 2G is not supported.\n"); 1035 } 1036 1037 if (size) 1038 size = roundup_pow_of_two(size); 1039 if (size > log_buf_len) 1040 new_log_buf_len = (unsigned long)size; 1041 } 1042 1043 /* save requested log_buf_len since it's too early to process it */ 1044 static int __init log_buf_len_setup(char *str) 1045 { 1046 u64 size; 1047 1048 if (!str) 1049 return -EINVAL; 1050 1051 size = memparse(str, &str); 1052 1053 log_buf_len_update(size); 1054 1055 return 0; 1056 } 1057 early_param("log_buf_len", log_buf_len_setup); 1058 1059 #ifdef CONFIG_SMP 1060 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1061 1062 static void __init log_buf_add_cpu(void) 1063 { 1064 unsigned int cpu_extra; 1065 1066 /* 1067 * archs should set up cpu_possible_bits properly with 1068 * set_cpu_possible() after setup_arch() but just in 1069 * case lets ensure this is valid. 1070 */ 1071 if (num_possible_cpus() == 1) 1072 return; 1073 1074 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1075 1076 /* by default this will only continue through for large > 64 CPUs */ 1077 if (cpu_extra <= __LOG_BUF_LEN / 2) 1078 return; 1079 1080 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1081 __LOG_CPU_MAX_BUF_LEN); 1082 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1083 cpu_extra); 1084 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1085 1086 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1087 } 1088 #else /* !CONFIG_SMP */ 1089 static inline void log_buf_add_cpu(void) {} 1090 #endif /* CONFIG_SMP */ 1091 1092 static void __init set_percpu_data_ready(void) 1093 { 1094 __printk_percpu_data_ready = true; 1095 } 1096 1097 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1098 struct printk_record *r) 1099 { 1100 struct prb_reserved_entry e; 1101 struct printk_record dest_r; 1102 1103 prb_rec_init_wr(&dest_r, r->info->text_len); 1104 1105 if (!prb_reserve(&e, rb, &dest_r)) 1106 return 0; 1107 1108 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1109 dest_r.info->text_len = r->info->text_len; 1110 dest_r.info->facility = r->info->facility; 1111 dest_r.info->level = r->info->level; 1112 dest_r.info->flags = r->info->flags; 1113 dest_r.info->ts_nsec = r->info->ts_nsec; 1114 dest_r.info->caller_id = r->info->caller_id; 1115 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1116 1117 prb_final_commit(&e); 1118 1119 return prb_record_text_space(&e); 1120 } 1121 1122 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1123 1124 void __init setup_log_buf(int early) 1125 { 1126 struct printk_info *new_infos; 1127 unsigned int new_descs_count; 1128 struct prb_desc *new_descs; 1129 struct printk_info info; 1130 struct printk_record r; 1131 unsigned int text_size; 1132 size_t new_descs_size; 1133 size_t new_infos_size; 1134 unsigned long flags; 1135 char *new_log_buf; 1136 unsigned int free; 1137 u64 seq; 1138 1139 /* 1140 * Some archs call setup_log_buf() multiple times - first is very 1141 * early, e.g. from setup_arch(), and second - when percpu_areas 1142 * are initialised. 1143 */ 1144 if (!early) 1145 set_percpu_data_ready(); 1146 1147 if (log_buf != __log_buf) 1148 return; 1149 1150 if (!early && !new_log_buf_len) 1151 log_buf_add_cpu(); 1152 1153 if (!new_log_buf_len) 1154 return; 1155 1156 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1157 if (new_descs_count == 0) { 1158 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1159 return; 1160 } 1161 1162 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1163 if (unlikely(!new_log_buf)) { 1164 pr_err("log_buf_len: %lu text bytes not available\n", 1165 new_log_buf_len); 1166 return; 1167 } 1168 1169 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1170 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1171 if (unlikely(!new_descs)) { 1172 pr_err("log_buf_len: %zu desc bytes not available\n", 1173 new_descs_size); 1174 goto err_free_log_buf; 1175 } 1176 1177 new_infos_size = new_descs_count * sizeof(struct printk_info); 1178 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1179 if (unlikely(!new_infos)) { 1180 pr_err("log_buf_len: %zu info bytes not available\n", 1181 new_infos_size); 1182 goto err_free_descs; 1183 } 1184 1185 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1186 1187 prb_init(&printk_rb_dynamic, 1188 new_log_buf, ilog2(new_log_buf_len), 1189 new_descs, ilog2(new_descs_count), 1190 new_infos); 1191 1192 local_irq_save(flags); 1193 1194 log_buf_len = new_log_buf_len; 1195 log_buf = new_log_buf; 1196 new_log_buf_len = 0; 1197 1198 free = __LOG_BUF_LEN; 1199 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1200 text_size = add_to_rb(&printk_rb_dynamic, &r); 1201 if (text_size > free) 1202 free = 0; 1203 else 1204 free -= text_size; 1205 } 1206 1207 prb = &printk_rb_dynamic; 1208 1209 local_irq_restore(flags); 1210 1211 /* 1212 * Copy any remaining messages that might have appeared from 1213 * NMI context after copying but before switching to the 1214 * dynamic buffer. 1215 */ 1216 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1217 text_size = add_to_rb(&printk_rb_dynamic, &r); 1218 if (text_size > free) 1219 free = 0; 1220 else 1221 free -= text_size; 1222 } 1223 1224 if (seq != prb_next_seq(&printk_rb_static)) { 1225 pr_err("dropped %llu messages\n", 1226 prb_next_seq(&printk_rb_static) - seq); 1227 } 1228 1229 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1230 pr_info("early log buf free: %u(%u%%)\n", 1231 free, (free * 100) / __LOG_BUF_LEN); 1232 return; 1233 1234 err_free_descs: 1235 memblock_free(new_descs, new_descs_size); 1236 err_free_log_buf: 1237 memblock_free(new_log_buf, new_log_buf_len); 1238 } 1239 1240 static bool __read_mostly ignore_loglevel; 1241 1242 static int __init ignore_loglevel_setup(char *str) 1243 { 1244 ignore_loglevel = true; 1245 pr_info("debug: ignoring loglevel setting.\n"); 1246 1247 return 0; 1248 } 1249 1250 early_param("ignore_loglevel", ignore_loglevel_setup); 1251 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1252 MODULE_PARM_DESC(ignore_loglevel, 1253 "ignore loglevel setting (prints all kernel messages to the console)"); 1254 1255 static bool suppress_message_printing(int level) 1256 { 1257 return (level >= console_loglevel && !ignore_loglevel); 1258 } 1259 1260 #ifdef CONFIG_BOOT_PRINTK_DELAY 1261 1262 static int boot_delay; /* msecs delay after each printk during bootup */ 1263 static unsigned long long loops_per_msec; /* based on boot_delay */ 1264 1265 static int __init boot_delay_setup(char *str) 1266 { 1267 unsigned long lpj; 1268 1269 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1270 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1271 1272 get_option(&str, &boot_delay); 1273 if (boot_delay > 10 * 1000) 1274 boot_delay = 0; 1275 1276 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1277 "HZ: %d, loops_per_msec: %llu\n", 1278 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1279 return 0; 1280 } 1281 early_param("boot_delay", boot_delay_setup); 1282 1283 static void boot_delay_msec(int level) 1284 { 1285 unsigned long long k; 1286 unsigned long timeout; 1287 1288 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1289 || suppress_message_printing(level)) { 1290 return; 1291 } 1292 1293 k = (unsigned long long)loops_per_msec * boot_delay; 1294 1295 timeout = jiffies + msecs_to_jiffies(boot_delay); 1296 while (k) { 1297 k--; 1298 cpu_relax(); 1299 /* 1300 * use (volatile) jiffies to prevent 1301 * compiler reduction; loop termination via jiffies 1302 * is secondary and may or may not happen. 1303 */ 1304 if (time_after(jiffies, timeout)) 1305 break; 1306 touch_nmi_watchdog(); 1307 } 1308 } 1309 #else 1310 static inline void boot_delay_msec(int level) 1311 { 1312 } 1313 #endif 1314 1315 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1316 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1317 1318 static size_t print_syslog(unsigned int level, char *buf) 1319 { 1320 return sprintf(buf, "<%u>", level); 1321 } 1322 1323 static size_t print_time(u64 ts, char *buf) 1324 { 1325 unsigned long rem_nsec = do_div(ts, 1000000000); 1326 1327 return sprintf(buf, "[%5lu.%06lu]", 1328 (unsigned long)ts, rem_nsec / 1000); 1329 } 1330 1331 #ifdef CONFIG_PRINTK_CALLER 1332 static size_t print_caller(u32 id, char *buf) 1333 { 1334 char caller[12]; 1335 1336 snprintf(caller, sizeof(caller), "%c%u", 1337 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1338 return sprintf(buf, "[%6s]", caller); 1339 } 1340 #else 1341 #define print_caller(id, buf) 0 1342 #endif 1343 1344 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1345 bool time, char *buf) 1346 { 1347 size_t len = 0; 1348 1349 if (syslog) 1350 len = print_syslog((info->facility << 3) | info->level, buf); 1351 1352 if (time) 1353 len += print_time(info->ts_nsec, buf + len); 1354 1355 len += print_caller(info->caller_id, buf + len); 1356 1357 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1358 buf[len++] = ' '; 1359 buf[len] = '\0'; 1360 } 1361 1362 return len; 1363 } 1364 1365 /* 1366 * Prepare the record for printing. The text is shifted within the given 1367 * buffer to avoid a need for another one. The following operations are 1368 * done: 1369 * 1370 * - Add prefix for each line. 1371 * - Drop truncated lines that no longer fit into the buffer. 1372 * - Add the trailing newline that has been removed in vprintk_store(). 1373 * - Add a string terminator. 1374 * 1375 * Since the produced string is always terminated, the maximum possible 1376 * return value is @r->text_buf_size - 1; 1377 * 1378 * Return: The length of the updated/prepared text, including the added 1379 * prefixes and the newline. The terminator is not counted. The dropped 1380 * line(s) are not counted. 1381 */ 1382 static size_t record_print_text(struct printk_record *r, bool syslog, 1383 bool time) 1384 { 1385 size_t text_len = r->info->text_len; 1386 size_t buf_size = r->text_buf_size; 1387 char *text = r->text_buf; 1388 char prefix[PRINTK_PREFIX_MAX]; 1389 bool truncated = false; 1390 size_t prefix_len; 1391 size_t line_len; 1392 size_t len = 0; 1393 char *next; 1394 1395 /* 1396 * If the message was truncated because the buffer was not large 1397 * enough, treat the available text as if it were the full text. 1398 */ 1399 if (text_len > buf_size) 1400 text_len = buf_size; 1401 1402 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1403 1404 /* 1405 * @text_len: bytes of unprocessed text 1406 * @line_len: bytes of current line _without_ newline 1407 * @text: pointer to beginning of current line 1408 * @len: number of bytes prepared in r->text_buf 1409 */ 1410 for (;;) { 1411 next = memchr(text, '\n', text_len); 1412 if (next) { 1413 line_len = next - text; 1414 } else { 1415 /* Drop truncated line(s). */ 1416 if (truncated) 1417 break; 1418 line_len = text_len; 1419 } 1420 1421 /* 1422 * Truncate the text if there is not enough space to add the 1423 * prefix and a trailing newline and a terminator. 1424 */ 1425 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1426 /* Drop even the current line if no space. */ 1427 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1428 break; 1429 1430 text_len = buf_size - len - prefix_len - 1 - 1; 1431 truncated = true; 1432 } 1433 1434 memmove(text + prefix_len, text, text_len); 1435 memcpy(text, prefix, prefix_len); 1436 1437 /* 1438 * Increment the prepared length to include the text and 1439 * prefix that were just moved+copied. Also increment for the 1440 * newline at the end of this line. If this is the last line, 1441 * there is no newline, but it will be added immediately below. 1442 */ 1443 len += prefix_len + line_len + 1; 1444 if (text_len == line_len) { 1445 /* 1446 * This is the last line. Add the trailing newline 1447 * removed in vprintk_store(). 1448 */ 1449 text[prefix_len + line_len] = '\n'; 1450 break; 1451 } 1452 1453 /* 1454 * Advance beyond the added prefix and the related line with 1455 * its newline. 1456 */ 1457 text += prefix_len + line_len + 1; 1458 1459 /* 1460 * The remaining text has only decreased by the line with its 1461 * newline. 1462 * 1463 * Note that @text_len can become zero. It happens when @text 1464 * ended with a newline (either due to truncation or the 1465 * original string ending with "\n\n"). The loop is correctly 1466 * repeated and (if not truncated) an empty line with a prefix 1467 * will be prepared. 1468 */ 1469 text_len -= line_len + 1; 1470 } 1471 1472 /* 1473 * If a buffer was provided, it will be terminated. Space for the 1474 * string terminator is guaranteed to be available. The terminator is 1475 * not counted in the return value. 1476 */ 1477 if (buf_size > 0) 1478 r->text_buf[len] = 0; 1479 1480 return len; 1481 } 1482 1483 static size_t get_record_print_text_size(struct printk_info *info, 1484 unsigned int line_count, 1485 bool syslog, bool time) 1486 { 1487 char prefix[PRINTK_PREFIX_MAX]; 1488 size_t prefix_len; 1489 1490 prefix_len = info_print_prefix(info, syslog, time, prefix); 1491 1492 /* 1493 * Each line will be preceded with a prefix. The intermediate 1494 * newlines are already within the text, but a final trailing 1495 * newline will be added. 1496 */ 1497 return ((prefix_len * line_count) + info->text_len + 1); 1498 } 1499 1500 /* 1501 * Beginning with @start_seq, find the first record where it and all following 1502 * records up to (but not including) @max_seq fit into @size. 1503 * 1504 * @max_seq is simply an upper bound and does not need to exist. If the caller 1505 * does not require an upper bound, -1 can be used for @max_seq. 1506 */ 1507 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1508 bool syslog, bool time) 1509 { 1510 struct printk_info info; 1511 unsigned int line_count; 1512 size_t len = 0; 1513 u64 seq; 1514 1515 /* Determine the size of the records up to @max_seq. */ 1516 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1517 if (info.seq >= max_seq) 1518 break; 1519 len += get_record_print_text_size(&info, line_count, syslog, time); 1520 } 1521 1522 /* 1523 * Adjust the upper bound for the next loop to avoid subtracting 1524 * lengths that were never added. 1525 */ 1526 if (seq < max_seq) 1527 max_seq = seq; 1528 1529 /* 1530 * Move first record forward until length fits into the buffer. Ignore 1531 * newest messages that were not counted in the above cycle. Messages 1532 * might appear and get lost in the meantime. This is a best effort 1533 * that prevents an infinite loop that could occur with a retry. 1534 */ 1535 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1536 if (len <= size || info.seq >= max_seq) 1537 break; 1538 len -= get_record_print_text_size(&info, line_count, syslog, time); 1539 } 1540 1541 return seq; 1542 } 1543 1544 /* The caller is responsible for making sure @size is greater than 0. */ 1545 static int syslog_print(char __user *buf, int size) 1546 { 1547 struct printk_info info; 1548 struct printk_record r; 1549 char *text; 1550 int len = 0; 1551 u64 seq; 1552 1553 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1554 if (!text) 1555 return -ENOMEM; 1556 1557 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1558 1559 mutex_lock(&syslog_lock); 1560 1561 /* 1562 * Wait for the @syslog_seq record to be available. @syslog_seq may 1563 * change while waiting. 1564 */ 1565 do { 1566 seq = syslog_seq; 1567 1568 mutex_unlock(&syslog_lock); 1569 /* 1570 * Guarantee this task is visible on the waitqueue before 1571 * checking the wake condition. 1572 * 1573 * The full memory barrier within set_current_state() of 1574 * prepare_to_wait_event() pairs with the full memory barrier 1575 * within wq_has_sleeper(). 1576 * 1577 * This pairs with __wake_up_klogd:A. 1578 */ 1579 len = wait_event_interruptible(log_wait, 1580 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1581 mutex_lock(&syslog_lock); 1582 1583 if (len) 1584 goto out; 1585 } while (syslog_seq != seq); 1586 1587 /* 1588 * Copy records that fit into the buffer. The above cycle makes sure 1589 * that the first record is always available. 1590 */ 1591 do { 1592 size_t n; 1593 size_t skip; 1594 int err; 1595 1596 if (!prb_read_valid(prb, syslog_seq, &r)) 1597 break; 1598 1599 if (r.info->seq != syslog_seq) { 1600 /* message is gone, move to next valid one */ 1601 syslog_seq = r.info->seq; 1602 syslog_partial = 0; 1603 } 1604 1605 /* 1606 * To keep reading/counting partial line consistent, 1607 * use printk_time value as of the beginning of a line. 1608 */ 1609 if (!syslog_partial) 1610 syslog_time = printk_time; 1611 1612 skip = syslog_partial; 1613 n = record_print_text(&r, true, syslog_time); 1614 if (n - syslog_partial <= size) { 1615 /* message fits into buffer, move forward */ 1616 syslog_seq = r.info->seq + 1; 1617 n -= syslog_partial; 1618 syslog_partial = 0; 1619 } else if (!len){ 1620 /* partial read(), remember position */ 1621 n = size; 1622 syslog_partial += n; 1623 } else 1624 n = 0; 1625 1626 if (!n) 1627 break; 1628 1629 mutex_unlock(&syslog_lock); 1630 err = copy_to_user(buf, text + skip, n); 1631 mutex_lock(&syslog_lock); 1632 1633 if (err) { 1634 if (!len) 1635 len = -EFAULT; 1636 break; 1637 } 1638 1639 len += n; 1640 size -= n; 1641 buf += n; 1642 } while (size); 1643 out: 1644 mutex_unlock(&syslog_lock); 1645 kfree(text); 1646 return len; 1647 } 1648 1649 static int syslog_print_all(char __user *buf, int size, bool clear) 1650 { 1651 struct printk_info info; 1652 struct printk_record r; 1653 char *text; 1654 int len = 0; 1655 u64 seq; 1656 bool time; 1657 1658 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1659 if (!text) 1660 return -ENOMEM; 1661 1662 time = printk_time; 1663 /* 1664 * Find first record that fits, including all following records, 1665 * into the user-provided buffer for this dump. 1666 */ 1667 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1668 size, true, time); 1669 1670 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1671 1672 prb_for_each_record(seq, prb, seq, &r) { 1673 int textlen; 1674 1675 textlen = record_print_text(&r, true, time); 1676 1677 if (len + textlen > size) { 1678 seq--; 1679 break; 1680 } 1681 1682 if (copy_to_user(buf + len, text, textlen)) 1683 len = -EFAULT; 1684 else 1685 len += textlen; 1686 1687 if (len < 0) 1688 break; 1689 } 1690 1691 if (clear) { 1692 mutex_lock(&syslog_lock); 1693 latched_seq_write(&clear_seq, seq); 1694 mutex_unlock(&syslog_lock); 1695 } 1696 1697 kfree(text); 1698 return len; 1699 } 1700 1701 static void syslog_clear(void) 1702 { 1703 mutex_lock(&syslog_lock); 1704 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1705 mutex_unlock(&syslog_lock); 1706 } 1707 1708 int do_syslog(int type, char __user *buf, int len, int source) 1709 { 1710 struct printk_info info; 1711 bool clear = false; 1712 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1713 int error; 1714 1715 error = check_syslog_permissions(type, source); 1716 if (error) 1717 return error; 1718 1719 switch (type) { 1720 case SYSLOG_ACTION_CLOSE: /* Close log */ 1721 break; 1722 case SYSLOG_ACTION_OPEN: /* Open log */ 1723 break; 1724 case SYSLOG_ACTION_READ: /* Read from log */ 1725 if (!buf || len < 0) 1726 return -EINVAL; 1727 if (!len) 1728 return 0; 1729 if (!access_ok(buf, len)) 1730 return -EFAULT; 1731 error = syslog_print(buf, len); 1732 break; 1733 /* Read/clear last kernel messages */ 1734 case SYSLOG_ACTION_READ_CLEAR: 1735 clear = true; 1736 fallthrough; 1737 /* Read last kernel messages */ 1738 case SYSLOG_ACTION_READ_ALL: 1739 if (!buf || len < 0) 1740 return -EINVAL; 1741 if (!len) 1742 return 0; 1743 if (!access_ok(buf, len)) 1744 return -EFAULT; 1745 error = syslog_print_all(buf, len, clear); 1746 break; 1747 /* Clear ring buffer */ 1748 case SYSLOG_ACTION_CLEAR: 1749 syslog_clear(); 1750 break; 1751 /* Disable logging to console */ 1752 case SYSLOG_ACTION_CONSOLE_OFF: 1753 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1754 saved_console_loglevel = console_loglevel; 1755 console_loglevel = minimum_console_loglevel; 1756 break; 1757 /* Enable logging to console */ 1758 case SYSLOG_ACTION_CONSOLE_ON: 1759 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1760 console_loglevel = saved_console_loglevel; 1761 saved_console_loglevel = LOGLEVEL_DEFAULT; 1762 } 1763 break; 1764 /* Set level of messages printed to console */ 1765 case SYSLOG_ACTION_CONSOLE_LEVEL: 1766 if (len < 1 || len > 8) 1767 return -EINVAL; 1768 if (len < minimum_console_loglevel) 1769 len = minimum_console_loglevel; 1770 console_loglevel = len; 1771 /* Implicitly re-enable logging to console */ 1772 saved_console_loglevel = LOGLEVEL_DEFAULT; 1773 break; 1774 /* Number of chars in the log buffer */ 1775 case SYSLOG_ACTION_SIZE_UNREAD: 1776 mutex_lock(&syslog_lock); 1777 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1778 /* No unread messages. */ 1779 mutex_unlock(&syslog_lock); 1780 return 0; 1781 } 1782 if (info.seq != syslog_seq) { 1783 /* messages are gone, move to first one */ 1784 syslog_seq = info.seq; 1785 syslog_partial = 0; 1786 } 1787 if (source == SYSLOG_FROM_PROC) { 1788 /* 1789 * Short-cut for poll(/"proc/kmsg") which simply checks 1790 * for pending data, not the size; return the count of 1791 * records, not the length. 1792 */ 1793 error = prb_next_seq(prb) - syslog_seq; 1794 } else { 1795 bool time = syslog_partial ? syslog_time : printk_time; 1796 unsigned int line_count; 1797 u64 seq; 1798 1799 prb_for_each_info(syslog_seq, prb, seq, &info, 1800 &line_count) { 1801 error += get_record_print_text_size(&info, line_count, 1802 true, time); 1803 time = printk_time; 1804 } 1805 error -= syslog_partial; 1806 } 1807 mutex_unlock(&syslog_lock); 1808 break; 1809 /* Size of the log buffer */ 1810 case SYSLOG_ACTION_SIZE_BUFFER: 1811 error = log_buf_len; 1812 break; 1813 default: 1814 error = -EINVAL; 1815 break; 1816 } 1817 1818 return error; 1819 } 1820 1821 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1822 { 1823 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1824 } 1825 1826 /* 1827 * Special console_lock variants that help to reduce the risk of soft-lockups. 1828 * They allow to pass console_lock to another printk() call using a busy wait. 1829 */ 1830 1831 #ifdef CONFIG_LOCKDEP 1832 static struct lockdep_map console_owner_dep_map = { 1833 .name = "console_owner" 1834 }; 1835 #endif 1836 1837 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1838 static struct task_struct *console_owner; 1839 static bool console_waiter; 1840 1841 /** 1842 * console_lock_spinning_enable - mark beginning of code where another 1843 * thread might safely busy wait 1844 * 1845 * This basically converts console_lock into a spinlock. This marks 1846 * the section where the console_lock owner can not sleep, because 1847 * there may be a waiter spinning (like a spinlock). Also it must be 1848 * ready to hand over the lock at the end of the section. 1849 */ 1850 static void console_lock_spinning_enable(void) 1851 { 1852 /* 1853 * Do not use spinning in panic(). The panic CPU wants to keep the lock. 1854 * Non-panic CPUs abandon the flush anyway. 1855 * 1856 * Just keep the lockdep annotation. The panic-CPU should avoid 1857 * taking console_owner_lock because it might cause a deadlock. 1858 * This looks like the easiest way how to prevent false lockdep 1859 * reports without handling races a lockless way. 1860 */ 1861 if (panic_in_progress()) 1862 goto lockdep; 1863 1864 raw_spin_lock(&console_owner_lock); 1865 console_owner = current; 1866 raw_spin_unlock(&console_owner_lock); 1867 1868 lockdep: 1869 /* The waiter may spin on us after setting console_owner */ 1870 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1871 } 1872 1873 /** 1874 * console_lock_spinning_disable_and_check - mark end of code where another 1875 * thread was able to busy wait and check if there is a waiter 1876 * @cookie: cookie returned from console_srcu_read_lock() 1877 * 1878 * This is called at the end of the section where spinning is allowed. 1879 * It has two functions. First, it is a signal that it is no longer 1880 * safe to start busy waiting for the lock. Second, it checks if 1881 * there is a busy waiter and passes the lock rights to her. 1882 * 1883 * Important: Callers lose both the console_lock and the SRCU read lock if 1884 * there was a busy waiter. They must not touch items synchronized by 1885 * console_lock or SRCU read lock in this case. 1886 * 1887 * Return: 1 if the lock rights were passed, 0 otherwise. 1888 */ 1889 static int console_lock_spinning_disable_and_check(int cookie) 1890 { 1891 int waiter; 1892 1893 /* 1894 * Ignore spinning waiters during panic() because they might get stopped 1895 * or blocked at any time, 1896 * 1897 * It is safe because nobody is allowed to start spinning during panic 1898 * in the first place. If there has been a waiter then non panic CPUs 1899 * might stay spinning. They would get stopped anyway. The panic context 1900 * will never start spinning and an interrupted spin on panic CPU will 1901 * never continue. 1902 */ 1903 if (panic_in_progress()) { 1904 /* Keep lockdep happy. */ 1905 spin_release(&console_owner_dep_map, _THIS_IP_); 1906 return 0; 1907 } 1908 1909 raw_spin_lock(&console_owner_lock); 1910 waiter = READ_ONCE(console_waiter); 1911 console_owner = NULL; 1912 raw_spin_unlock(&console_owner_lock); 1913 1914 if (!waiter) { 1915 spin_release(&console_owner_dep_map, _THIS_IP_); 1916 return 0; 1917 } 1918 1919 /* The waiter is now free to continue */ 1920 WRITE_ONCE(console_waiter, false); 1921 1922 spin_release(&console_owner_dep_map, _THIS_IP_); 1923 1924 /* 1925 * Preserve lockdep lock ordering. Release the SRCU read lock before 1926 * releasing the console_lock. 1927 */ 1928 console_srcu_read_unlock(cookie); 1929 1930 /* 1931 * Hand off console_lock to waiter. The waiter will perform 1932 * the up(). After this, the waiter is the console_lock owner. 1933 */ 1934 mutex_release(&console_lock_dep_map, _THIS_IP_); 1935 return 1; 1936 } 1937 1938 /** 1939 * console_trylock_spinning - try to get console_lock by busy waiting 1940 * 1941 * This allows to busy wait for the console_lock when the current 1942 * owner is running in specially marked sections. It means that 1943 * the current owner is running and cannot reschedule until it 1944 * is ready to lose the lock. 1945 * 1946 * Return: 1 if we got the lock, 0 othrewise 1947 */ 1948 static int console_trylock_spinning(void) 1949 { 1950 struct task_struct *owner = NULL; 1951 bool waiter; 1952 bool spin = false; 1953 unsigned long flags; 1954 1955 if (console_trylock()) 1956 return 1; 1957 1958 /* 1959 * It's unsafe to spin once a panic has begun. If we are the 1960 * panic CPU, we may have already halted the owner of the 1961 * console_sem. If we are not the panic CPU, then we should 1962 * avoid taking console_sem, so the panic CPU has a better 1963 * chance of cleanly acquiring it later. 1964 */ 1965 if (panic_in_progress()) 1966 return 0; 1967 1968 printk_safe_enter_irqsave(flags); 1969 1970 raw_spin_lock(&console_owner_lock); 1971 owner = READ_ONCE(console_owner); 1972 waiter = READ_ONCE(console_waiter); 1973 if (!waiter && owner && owner != current) { 1974 WRITE_ONCE(console_waiter, true); 1975 spin = true; 1976 } 1977 raw_spin_unlock(&console_owner_lock); 1978 1979 /* 1980 * If there is an active printk() writing to the 1981 * consoles, instead of having it write our data too, 1982 * see if we can offload that load from the active 1983 * printer, and do some printing ourselves. 1984 * Go into a spin only if there isn't already a waiter 1985 * spinning, and there is an active printer, and 1986 * that active printer isn't us (recursive printk?). 1987 */ 1988 if (!spin) { 1989 printk_safe_exit_irqrestore(flags); 1990 return 0; 1991 } 1992 1993 /* We spin waiting for the owner to release us */ 1994 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1995 /* Owner will clear console_waiter on hand off */ 1996 while (READ_ONCE(console_waiter)) 1997 cpu_relax(); 1998 spin_release(&console_owner_dep_map, _THIS_IP_); 1999 2000 printk_safe_exit_irqrestore(flags); 2001 /* 2002 * The owner passed the console lock to us. 2003 * Since we did not spin on console lock, annotate 2004 * this as a trylock. Otherwise lockdep will 2005 * complain. 2006 */ 2007 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 2008 2009 /* 2010 * Update @console_may_schedule for trylock because the previous 2011 * owner may have been schedulable. 2012 */ 2013 console_may_schedule = 0; 2014 2015 return 1; 2016 } 2017 2018 /* 2019 * Recursion is tracked separately on each CPU. If NMIs are supported, an 2020 * additional NMI context per CPU is also separately tracked. Until per-CPU 2021 * is available, a separate "early tracking" is performed. 2022 */ 2023 static DEFINE_PER_CPU(u8, printk_count); 2024 static u8 printk_count_early; 2025 #ifdef CONFIG_HAVE_NMI 2026 static DEFINE_PER_CPU(u8, printk_count_nmi); 2027 static u8 printk_count_nmi_early; 2028 #endif 2029 2030 /* 2031 * Recursion is limited to keep the output sane. printk() should not require 2032 * more than 1 level of recursion (allowing, for example, printk() to trigger 2033 * a WARN), but a higher value is used in case some printk-internal errors 2034 * exist, such as the ringbuffer validation checks failing. 2035 */ 2036 #define PRINTK_MAX_RECURSION 3 2037 2038 /* 2039 * Return a pointer to the dedicated counter for the CPU+context of the 2040 * caller. 2041 */ 2042 static u8 *__printk_recursion_counter(void) 2043 { 2044 #ifdef CONFIG_HAVE_NMI 2045 if (in_nmi()) { 2046 if (printk_percpu_data_ready()) 2047 return this_cpu_ptr(&printk_count_nmi); 2048 return &printk_count_nmi_early; 2049 } 2050 #endif 2051 if (printk_percpu_data_ready()) 2052 return this_cpu_ptr(&printk_count); 2053 return &printk_count_early; 2054 } 2055 2056 /* 2057 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2058 * The caller must check the boolean return value to see if the recursion is 2059 * allowed. On failure, interrupts are not disabled. 2060 * 2061 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2062 * that is passed to printk_exit_irqrestore(). 2063 */ 2064 #define printk_enter_irqsave(recursion_ptr, flags) \ 2065 ({ \ 2066 bool success = true; \ 2067 \ 2068 typecheck(u8 *, recursion_ptr); \ 2069 local_irq_save(flags); \ 2070 (recursion_ptr) = __printk_recursion_counter(); \ 2071 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2072 local_irq_restore(flags); \ 2073 success = false; \ 2074 } else { \ 2075 (*(recursion_ptr))++; \ 2076 } \ 2077 success; \ 2078 }) 2079 2080 /* Exit recursion tracking, restoring interrupts. */ 2081 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2082 do { \ 2083 typecheck(u8 *, recursion_ptr); \ 2084 (*(recursion_ptr))--; \ 2085 local_irq_restore(flags); \ 2086 } while (0) 2087 2088 int printk_delay_msec __read_mostly; 2089 2090 static inline void printk_delay(int level) 2091 { 2092 boot_delay_msec(level); 2093 2094 if (unlikely(printk_delay_msec)) { 2095 int m = printk_delay_msec; 2096 2097 while (m--) { 2098 mdelay(1); 2099 touch_nmi_watchdog(); 2100 } 2101 } 2102 } 2103 2104 static inline u32 printk_caller_id(void) 2105 { 2106 return in_task() ? task_pid_nr(current) : 2107 0x80000000 + smp_processor_id(); 2108 } 2109 2110 /** 2111 * printk_parse_prefix - Parse level and control flags. 2112 * 2113 * @text: The terminated text message. 2114 * @level: A pointer to the current level value, will be updated. 2115 * @flags: A pointer to the current printk_info flags, will be updated. 2116 * 2117 * @level may be NULL if the caller is not interested in the parsed value. 2118 * Otherwise the variable pointed to by @level must be set to 2119 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2120 * 2121 * @flags may be NULL if the caller is not interested in the parsed value. 2122 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2123 * value. 2124 * 2125 * Return: The length of the parsed level and control flags. 2126 */ 2127 u16 printk_parse_prefix(const char *text, int *level, 2128 enum printk_info_flags *flags) 2129 { 2130 u16 prefix_len = 0; 2131 int kern_level; 2132 2133 while (*text) { 2134 kern_level = printk_get_level(text); 2135 if (!kern_level) 2136 break; 2137 2138 switch (kern_level) { 2139 case '0' ... '7': 2140 if (level && *level == LOGLEVEL_DEFAULT) 2141 *level = kern_level - '0'; 2142 break; 2143 case 'c': /* KERN_CONT */ 2144 if (flags) 2145 *flags |= LOG_CONT; 2146 } 2147 2148 prefix_len += 2; 2149 text += 2; 2150 } 2151 2152 return prefix_len; 2153 } 2154 2155 __printf(5, 0) 2156 static u16 printk_sprint(char *text, u16 size, int facility, 2157 enum printk_info_flags *flags, const char *fmt, 2158 va_list args) 2159 { 2160 u16 text_len; 2161 2162 text_len = vscnprintf(text, size, fmt, args); 2163 2164 /* Mark and strip a trailing newline. */ 2165 if (text_len && text[text_len - 1] == '\n') { 2166 text_len--; 2167 *flags |= LOG_NEWLINE; 2168 } 2169 2170 /* Strip log level and control flags. */ 2171 if (facility == 0) { 2172 u16 prefix_len; 2173 2174 prefix_len = printk_parse_prefix(text, NULL, NULL); 2175 if (prefix_len) { 2176 text_len -= prefix_len; 2177 memmove(text, text + prefix_len, text_len); 2178 } 2179 } 2180 2181 trace_console(text, text_len); 2182 2183 return text_len; 2184 } 2185 2186 __printf(4, 0) 2187 int vprintk_store(int facility, int level, 2188 const struct dev_printk_info *dev_info, 2189 const char *fmt, va_list args) 2190 { 2191 struct prb_reserved_entry e; 2192 enum printk_info_flags flags = 0; 2193 struct printk_record r; 2194 unsigned long irqflags; 2195 u16 trunc_msg_len = 0; 2196 char prefix_buf[8]; 2197 u8 *recursion_ptr; 2198 u16 reserve_size; 2199 va_list args2; 2200 u32 caller_id; 2201 u16 text_len; 2202 int ret = 0; 2203 u64 ts_nsec; 2204 2205 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2206 return 0; 2207 2208 /* 2209 * Since the duration of printk() can vary depending on the message 2210 * and state of the ringbuffer, grab the timestamp now so that it is 2211 * close to the call of printk(). This provides a more deterministic 2212 * timestamp with respect to the caller. 2213 */ 2214 ts_nsec = local_clock(); 2215 2216 caller_id = printk_caller_id(); 2217 2218 /* 2219 * The sprintf needs to come first since the syslog prefix might be 2220 * passed in as a parameter. An extra byte must be reserved so that 2221 * later the vscnprintf() into the reserved buffer has room for the 2222 * terminating '\0', which is not counted by vsnprintf(). 2223 */ 2224 va_copy(args2, args); 2225 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2226 va_end(args2); 2227 2228 if (reserve_size > PRINTKRB_RECORD_MAX) 2229 reserve_size = PRINTKRB_RECORD_MAX; 2230 2231 /* Extract log level or control flags. */ 2232 if (facility == 0) 2233 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2234 2235 if (level == LOGLEVEL_DEFAULT) 2236 level = default_message_loglevel; 2237 2238 if (dev_info) 2239 flags |= LOG_NEWLINE; 2240 2241 if (flags & LOG_CONT) { 2242 prb_rec_init_wr(&r, reserve_size); 2243 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2244 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2245 facility, &flags, fmt, args); 2246 r.info->text_len += text_len; 2247 2248 if (flags & LOG_NEWLINE) { 2249 r.info->flags |= LOG_NEWLINE; 2250 prb_final_commit(&e); 2251 } else { 2252 prb_commit(&e); 2253 } 2254 2255 ret = text_len; 2256 goto out; 2257 } 2258 } 2259 2260 /* 2261 * Explicitly initialize the record before every prb_reserve() call. 2262 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2263 * structure when they fail. 2264 */ 2265 prb_rec_init_wr(&r, reserve_size); 2266 if (!prb_reserve(&e, prb, &r)) { 2267 /* truncate the message if it is too long for empty buffer */ 2268 truncate_msg(&reserve_size, &trunc_msg_len); 2269 2270 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2271 if (!prb_reserve(&e, prb, &r)) 2272 goto out; 2273 } 2274 2275 /* fill message */ 2276 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2277 if (trunc_msg_len) 2278 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2279 r.info->text_len = text_len + trunc_msg_len; 2280 r.info->facility = facility; 2281 r.info->level = level & 7; 2282 r.info->flags = flags & 0x1f; 2283 r.info->ts_nsec = ts_nsec; 2284 r.info->caller_id = caller_id; 2285 if (dev_info) 2286 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2287 2288 /* A message without a trailing newline can be continued. */ 2289 if (!(flags & LOG_NEWLINE)) 2290 prb_commit(&e); 2291 else 2292 prb_final_commit(&e); 2293 2294 ret = text_len + trunc_msg_len; 2295 out: 2296 printk_exit_irqrestore(recursion_ptr, irqflags); 2297 return ret; 2298 } 2299 2300 asmlinkage int vprintk_emit(int facility, int level, 2301 const struct dev_printk_info *dev_info, 2302 const char *fmt, va_list args) 2303 { 2304 int printed_len; 2305 bool in_sched = false; 2306 2307 /* Suppress unimportant messages after panic happens */ 2308 if (unlikely(suppress_printk)) 2309 return 0; 2310 2311 /* 2312 * The messages on the panic CPU are the most important. If 2313 * non-panic CPUs are generating any messages, they will be 2314 * silently dropped. 2315 */ 2316 if (other_cpu_in_panic()) 2317 return 0; 2318 2319 if (level == LOGLEVEL_SCHED) { 2320 level = LOGLEVEL_DEFAULT; 2321 in_sched = true; 2322 } 2323 2324 printk_delay(level); 2325 2326 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2327 2328 /* If called from the scheduler, we can not call up(). */ 2329 if (!in_sched) { 2330 /* 2331 * The caller may be holding system-critical or 2332 * timing-sensitive locks. Disable preemption during 2333 * printing of all remaining records to all consoles so that 2334 * this context can return as soon as possible. Hopefully 2335 * another printk() caller will take over the printing. 2336 */ 2337 preempt_disable(); 2338 /* 2339 * Try to acquire and then immediately release the console 2340 * semaphore. The release will print out buffers. With the 2341 * spinning variant, this context tries to take over the 2342 * printing from another printing context. 2343 */ 2344 if (console_trylock_spinning()) 2345 console_unlock(); 2346 preempt_enable(); 2347 } 2348 2349 if (in_sched) 2350 defer_console_output(); 2351 else 2352 wake_up_klogd(); 2353 2354 return printed_len; 2355 } 2356 EXPORT_SYMBOL(vprintk_emit); 2357 2358 int vprintk_default(const char *fmt, va_list args) 2359 { 2360 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2361 } 2362 EXPORT_SYMBOL_GPL(vprintk_default); 2363 2364 asmlinkage __visible int _printk(const char *fmt, ...) 2365 { 2366 va_list args; 2367 int r; 2368 2369 va_start(args, fmt); 2370 r = vprintk(fmt, args); 2371 va_end(args); 2372 2373 return r; 2374 } 2375 EXPORT_SYMBOL(_printk); 2376 2377 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2378 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2379 2380 #else /* CONFIG_PRINTK */ 2381 2382 #define printk_time false 2383 2384 #define prb_read_valid(rb, seq, r) false 2385 #define prb_first_valid_seq(rb) 0 2386 #define prb_next_seq(rb) 0 2387 2388 static u64 syslog_seq; 2389 2390 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2391 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2392 2393 #endif /* CONFIG_PRINTK */ 2394 2395 #ifdef CONFIG_EARLY_PRINTK 2396 struct console *early_console; 2397 2398 asmlinkage __visible void early_printk(const char *fmt, ...) 2399 { 2400 va_list ap; 2401 char buf[512]; 2402 int n; 2403 2404 if (!early_console) 2405 return; 2406 2407 va_start(ap, fmt); 2408 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2409 va_end(ap); 2410 2411 early_console->write(early_console, buf, n); 2412 } 2413 #endif 2414 2415 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2416 { 2417 if (!user_specified) 2418 return; 2419 2420 /* 2421 * @c console was defined by the user on the command line. 2422 * Do not clear when added twice also by SPCR or the device tree. 2423 */ 2424 c->user_specified = true; 2425 /* At least one console defined by the user on the command line. */ 2426 console_set_on_cmdline = 1; 2427 } 2428 2429 static int __add_preferred_console(const char *name, const short idx, char *options, 2430 char *brl_options, bool user_specified) 2431 { 2432 struct console_cmdline *c; 2433 int i; 2434 2435 /* 2436 * We use a signed short index for struct console for device drivers to 2437 * indicate a not yet assigned index or port. However, a negative index 2438 * value is not valid for preferred console. 2439 */ 2440 if (idx < 0) 2441 return -EINVAL; 2442 2443 /* 2444 * See if this tty is not yet registered, and 2445 * if we have a slot free. 2446 */ 2447 for (i = 0, c = console_cmdline; 2448 i < MAX_CMDLINECONSOLES && c->name[0]; 2449 i++, c++) { 2450 if (strcmp(c->name, name) == 0 && c->index == idx) { 2451 if (!brl_options) 2452 preferred_console = i; 2453 set_user_specified(c, user_specified); 2454 return 0; 2455 } 2456 } 2457 if (i == MAX_CMDLINECONSOLES) 2458 return -E2BIG; 2459 if (!brl_options) 2460 preferred_console = i; 2461 strscpy(c->name, name, sizeof(c->name)); 2462 c->options = options; 2463 set_user_specified(c, user_specified); 2464 braille_set_options(c, brl_options); 2465 2466 c->index = idx; 2467 return 0; 2468 } 2469 2470 static int __init console_msg_format_setup(char *str) 2471 { 2472 if (!strcmp(str, "syslog")) 2473 console_msg_format = MSG_FORMAT_SYSLOG; 2474 if (!strcmp(str, "default")) 2475 console_msg_format = MSG_FORMAT_DEFAULT; 2476 return 1; 2477 } 2478 __setup("console_msg_format=", console_msg_format_setup); 2479 2480 /* 2481 * Set up a console. Called via do_early_param() in init/main.c 2482 * for each "console=" parameter in the boot command line. 2483 */ 2484 static int __init console_setup(char *str) 2485 { 2486 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2487 char *s, *options, *brl_options = NULL; 2488 int idx; 2489 2490 /* 2491 * console="" or console=null have been suggested as a way to 2492 * disable console output. Use ttynull that has been created 2493 * for exactly this purpose. 2494 */ 2495 if (str[0] == 0 || strcmp(str, "null") == 0) { 2496 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2497 return 1; 2498 } 2499 2500 if (_braille_console_setup(&str, &brl_options)) 2501 return 1; 2502 2503 /* Save the console for driver subsystem use */ 2504 if (console_opt_save(str, brl_options)) 2505 return 1; 2506 2507 /* Flag register_console() to not call try_enable_default_console() */ 2508 console_set_on_cmdline = 1; 2509 2510 /* Don't attempt to parse a DEVNAME:0.0 style console */ 2511 if (strchr(str, ':')) 2512 return 1; 2513 2514 /* 2515 * Decode str into name, index, options. 2516 */ 2517 if (isdigit(str[0])) 2518 scnprintf(buf, sizeof(buf), "ttyS%s", str); 2519 else 2520 strscpy(buf, str); 2521 2522 options = strchr(str, ','); 2523 if (options) 2524 *(options++) = 0; 2525 2526 #ifdef __sparc__ 2527 if (!strcmp(str, "ttya")) 2528 strscpy(buf, "ttyS0"); 2529 if (!strcmp(str, "ttyb")) 2530 strscpy(buf, "ttyS1"); 2531 #endif 2532 2533 for (s = buf; *s; s++) 2534 if (isdigit(*s) || *s == ',') 2535 break; 2536 idx = simple_strtoul(s, NULL, 10); 2537 *s = 0; 2538 2539 __add_preferred_console(buf, idx, options, brl_options, true); 2540 return 1; 2541 } 2542 __setup("console=", console_setup); 2543 2544 /* Only called from add_preferred_console_match() */ 2545 int console_opt_add_preferred_console(const char *name, const short idx, 2546 char *options, char *brl_options) 2547 { 2548 return __add_preferred_console(name, idx, options, brl_options, true); 2549 } 2550 2551 /** 2552 * add_preferred_console - add a device to the list of preferred consoles. 2553 * @name: device name 2554 * @idx: device index 2555 * @options: options for this console 2556 * 2557 * The last preferred console added will be used for kernel messages 2558 * and stdin/out/err for init. Normally this is used by console_setup 2559 * above to handle user-supplied console arguments; however it can also 2560 * be used by arch-specific code either to override the user or more 2561 * commonly to provide a default console (ie from PROM variables) when 2562 * the user has not supplied one. 2563 */ 2564 int add_preferred_console(const char *name, const short idx, char *options) 2565 { 2566 return __add_preferred_console(name, idx, options, NULL, false); 2567 } 2568 2569 bool console_suspend_enabled = true; 2570 EXPORT_SYMBOL(console_suspend_enabled); 2571 2572 static int __init console_suspend_disable(char *str) 2573 { 2574 console_suspend_enabled = false; 2575 return 1; 2576 } 2577 __setup("no_console_suspend", console_suspend_disable); 2578 module_param_named(console_suspend, console_suspend_enabled, 2579 bool, S_IRUGO | S_IWUSR); 2580 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2581 " and hibernate operations"); 2582 2583 static bool printk_console_no_auto_verbose; 2584 2585 void console_verbose(void) 2586 { 2587 if (console_loglevel && !printk_console_no_auto_verbose) 2588 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2589 } 2590 EXPORT_SYMBOL_GPL(console_verbose); 2591 2592 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2593 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2594 2595 /** 2596 * suspend_console - suspend the console subsystem 2597 * 2598 * This disables printk() while we go into suspend states 2599 */ 2600 void suspend_console(void) 2601 { 2602 struct console *con; 2603 2604 if (!console_suspend_enabled) 2605 return; 2606 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2607 pr_flush(1000, true); 2608 2609 console_list_lock(); 2610 for_each_console(con) 2611 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2612 console_list_unlock(); 2613 2614 /* 2615 * Ensure that all SRCU list walks have completed. All printing 2616 * contexts must be able to see that they are suspended so that it 2617 * is guaranteed that all printing has stopped when this function 2618 * completes. 2619 */ 2620 synchronize_srcu(&console_srcu); 2621 } 2622 2623 void resume_console(void) 2624 { 2625 struct console *con; 2626 2627 if (!console_suspend_enabled) 2628 return; 2629 2630 console_list_lock(); 2631 for_each_console(con) 2632 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2633 console_list_unlock(); 2634 2635 /* 2636 * Ensure that all SRCU list walks have completed. All printing 2637 * contexts must be able to see they are no longer suspended so 2638 * that they are guaranteed to wake up and resume printing. 2639 */ 2640 synchronize_srcu(&console_srcu); 2641 2642 pr_flush(1000, true); 2643 } 2644 2645 /** 2646 * console_cpu_notify - print deferred console messages after CPU hotplug 2647 * @cpu: unused 2648 * 2649 * If printk() is called from a CPU that is not online yet, the messages 2650 * will be printed on the console only if there are CON_ANYTIME consoles. 2651 * This function is called when a new CPU comes online (or fails to come 2652 * up) or goes offline. 2653 */ 2654 static int console_cpu_notify(unsigned int cpu) 2655 { 2656 if (!cpuhp_tasks_frozen) { 2657 /* If trylock fails, someone else is doing the printing */ 2658 if (console_trylock()) 2659 console_unlock(); 2660 } 2661 return 0; 2662 } 2663 2664 /** 2665 * console_lock - block the console subsystem from printing 2666 * 2667 * Acquires a lock which guarantees that no consoles will 2668 * be in or enter their write() callback. 2669 * 2670 * Can sleep, returns nothing. 2671 */ 2672 void console_lock(void) 2673 { 2674 might_sleep(); 2675 2676 /* On panic, the console_lock must be left to the panic cpu. */ 2677 while (other_cpu_in_panic()) 2678 msleep(1000); 2679 2680 down_console_sem(); 2681 console_locked = 1; 2682 console_may_schedule = 1; 2683 } 2684 EXPORT_SYMBOL(console_lock); 2685 2686 /** 2687 * console_trylock - try to block the console subsystem from printing 2688 * 2689 * Try to acquire a lock which guarantees that no consoles will 2690 * be in or enter their write() callback. 2691 * 2692 * returns 1 on success, and 0 on failure to acquire the lock. 2693 */ 2694 int console_trylock(void) 2695 { 2696 /* On panic, the console_lock must be left to the panic cpu. */ 2697 if (other_cpu_in_panic()) 2698 return 0; 2699 if (down_trylock_console_sem()) 2700 return 0; 2701 console_locked = 1; 2702 console_may_schedule = 0; 2703 return 1; 2704 } 2705 EXPORT_SYMBOL(console_trylock); 2706 2707 int is_console_locked(void) 2708 { 2709 return console_locked; 2710 } 2711 EXPORT_SYMBOL(is_console_locked); 2712 2713 /* 2714 * Check if the given console is currently capable and allowed to print 2715 * records. 2716 * 2717 * Requires the console_srcu_read_lock. 2718 */ 2719 static inline bool console_is_usable(struct console *con) 2720 { 2721 short flags = console_srcu_read_flags(con); 2722 2723 if (!(flags & CON_ENABLED)) 2724 return false; 2725 2726 if ((flags & CON_SUSPENDED)) 2727 return false; 2728 2729 if (!con->write) 2730 return false; 2731 2732 /* 2733 * Console drivers may assume that per-cpu resources have been 2734 * allocated. So unless they're explicitly marked as being able to 2735 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2736 */ 2737 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2738 return false; 2739 2740 return true; 2741 } 2742 2743 static void __console_unlock(void) 2744 { 2745 console_locked = 0; 2746 up_console_sem(); 2747 } 2748 2749 #ifdef CONFIG_PRINTK 2750 2751 /* 2752 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2753 * is achieved by shifting the existing message over and inserting the dropped 2754 * message. 2755 * 2756 * @pmsg is the printk message to prepend. 2757 * 2758 * @dropped is the dropped count to report in the dropped message. 2759 * 2760 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2761 * the dropped message, the message text will be sufficiently truncated. 2762 * 2763 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2764 */ 2765 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2766 { 2767 struct printk_buffers *pbufs = pmsg->pbufs; 2768 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2769 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2770 char *scratchbuf = &pbufs->scratchbuf[0]; 2771 char *outbuf = &pbufs->outbuf[0]; 2772 size_t len; 2773 2774 len = scnprintf(scratchbuf, scratchbuf_sz, 2775 "** %lu printk messages dropped **\n", dropped); 2776 2777 /* 2778 * Make sure outbuf is sufficiently large before prepending. 2779 * Keep at least the prefix when the message must be truncated. 2780 * It is a rather theoretical problem when someone tries to 2781 * use a minimalist buffer. 2782 */ 2783 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2784 return; 2785 2786 if (pmsg->outbuf_len + len >= outbuf_sz) { 2787 /* Truncate the message, but keep it terminated. */ 2788 pmsg->outbuf_len = outbuf_sz - (len + 1); 2789 outbuf[pmsg->outbuf_len] = 0; 2790 } 2791 2792 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2793 memcpy(outbuf, scratchbuf, len); 2794 pmsg->outbuf_len += len; 2795 } 2796 2797 /* 2798 * Read and format the specified record (or a later record if the specified 2799 * record is not available). 2800 * 2801 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2802 * struct printk_buffers. 2803 * 2804 * @seq is the record to read and format. If it is not available, the next 2805 * valid record is read. 2806 * 2807 * @is_extended specifies if the message should be formatted for extended 2808 * console output. 2809 * 2810 * @may_supress specifies if records may be skipped based on loglevel. 2811 * 2812 * Returns false if no record is available. Otherwise true and all fields 2813 * of @pmsg are valid. (See the documentation of struct printk_message 2814 * for information about the @pmsg fields.) 2815 */ 2816 bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2817 bool is_extended, bool may_suppress) 2818 { 2819 struct printk_buffers *pbufs = pmsg->pbufs; 2820 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2821 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2822 char *scratchbuf = &pbufs->scratchbuf[0]; 2823 char *outbuf = &pbufs->outbuf[0]; 2824 struct printk_info info; 2825 struct printk_record r; 2826 size_t len = 0; 2827 2828 /* 2829 * Formatting extended messages requires a separate buffer, so use the 2830 * scratch buffer to read in the ringbuffer text. 2831 * 2832 * Formatting normal messages is done in-place, so read the ringbuffer 2833 * text directly into the output buffer. 2834 */ 2835 if (is_extended) 2836 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2837 else 2838 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2839 2840 if (!prb_read_valid(prb, seq, &r)) 2841 return false; 2842 2843 pmsg->seq = r.info->seq; 2844 pmsg->dropped = r.info->seq - seq; 2845 2846 /* Skip record that has level above the console loglevel. */ 2847 if (may_suppress && suppress_message_printing(r.info->level)) 2848 goto out; 2849 2850 if (is_extended) { 2851 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2852 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2853 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2854 } else { 2855 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2856 } 2857 out: 2858 pmsg->outbuf_len = len; 2859 return true; 2860 } 2861 2862 /* 2863 * Used as the printk buffers for non-panic, serialized console printing. 2864 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles. 2865 * Its usage requires the console_lock held. 2866 */ 2867 struct printk_buffers printk_shared_pbufs; 2868 2869 /* 2870 * Print one record for the given console. The record printed is whatever 2871 * record is the next available record for the given console. 2872 * 2873 * @handover will be set to true if a printk waiter has taken over the 2874 * console_lock, in which case the caller is no longer holding both the 2875 * console_lock and the SRCU read lock. Otherwise it is set to false. 2876 * 2877 * @cookie is the cookie from the SRCU read lock. 2878 * 2879 * Returns false if the given console has no next record to print, otherwise 2880 * true. 2881 * 2882 * Requires the console_lock and the SRCU read lock. 2883 */ 2884 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2885 { 2886 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2887 char *outbuf = &printk_shared_pbufs.outbuf[0]; 2888 struct printk_message pmsg = { 2889 .pbufs = &printk_shared_pbufs, 2890 }; 2891 unsigned long flags; 2892 2893 *handover = false; 2894 2895 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2896 return false; 2897 2898 con->dropped += pmsg.dropped; 2899 2900 /* Skip messages of formatted length 0. */ 2901 if (pmsg.outbuf_len == 0) { 2902 con->seq = pmsg.seq + 1; 2903 goto skip; 2904 } 2905 2906 if (con->dropped && !is_extended) { 2907 console_prepend_dropped(&pmsg, con->dropped); 2908 con->dropped = 0; 2909 } 2910 2911 /* 2912 * While actively printing out messages, if another printk() 2913 * were to occur on another CPU, it may wait for this one to 2914 * finish. This task can not be preempted if there is a 2915 * waiter waiting to take over. 2916 * 2917 * Interrupts are disabled because the hand over to a waiter 2918 * must not be interrupted until the hand over is completed 2919 * (@console_waiter is cleared). 2920 */ 2921 printk_safe_enter_irqsave(flags); 2922 console_lock_spinning_enable(); 2923 2924 /* Do not trace print latency. */ 2925 stop_critical_timings(); 2926 2927 /* Write everything out to the hardware. */ 2928 con->write(con, outbuf, pmsg.outbuf_len); 2929 2930 start_critical_timings(); 2931 2932 con->seq = pmsg.seq + 1; 2933 2934 *handover = console_lock_spinning_disable_and_check(cookie); 2935 printk_safe_exit_irqrestore(flags); 2936 skip: 2937 return true; 2938 } 2939 2940 #else 2941 2942 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2943 { 2944 *handover = false; 2945 return false; 2946 } 2947 2948 #endif /* CONFIG_PRINTK */ 2949 2950 /* 2951 * Print out all remaining records to all consoles. 2952 * 2953 * @do_cond_resched is set by the caller. It can be true only in schedulable 2954 * context. 2955 * 2956 * @next_seq is set to the sequence number after the last available record. 2957 * The value is valid only when this function returns true. It means that all 2958 * usable consoles are completely flushed. 2959 * 2960 * @handover will be set to true if a printk waiter has taken over the 2961 * console_lock, in which case the caller is no longer holding the 2962 * console_lock. Otherwise it is set to false. 2963 * 2964 * Returns true when there was at least one usable console and all messages 2965 * were flushed to all usable consoles. A returned false informs the caller 2966 * that everything was not flushed (either there were no usable consoles or 2967 * another context has taken over printing or it is a panic situation and this 2968 * is not the panic CPU). Regardless the reason, the caller should assume it 2969 * is not useful to immediately try again. 2970 * 2971 * Requires the console_lock. 2972 */ 2973 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2974 { 2975 bool any_usable = false; 2976 struct console *con; 2977 bool any_progress; 2978 int cookie; 2979 2980 *next_seq = 0; 2981 *handover = false; 2982 2983 do { 2984 any_progress = false; 2985 2986 cookie = console_srcu_read_lock(); 2987 for_each_console_srcu(con) { 2988 bool progress; 2989 2990 if (!console_is_usable(con)) 2991 continue; 2992 any_usable = true; 2993 2994 progress = console_emit_next_record(con, handover, cookie); 2995 2996 /* 2997 * If a handover has occurred, the SRCU read lock 2998 * is already released. 2999 */ 3000 if (*handover) 3001 return false; 3002 3003 /* Track the next of the highest seq flushed. */ 3004 if (con->seq > *next_seq) 3005 *next_seq = con->seq; 3006 3007 if (!progress) 3008 continue; 3009 any_progress = true; 3010 3011 /* Allow panic_cpu to take over the consoles safely. */ 3012 if (other_cpu_in_panic()) 3013 goto abandon; 3014 3015 if (do_cond_resched) 3016 cond_resched(); 3017 } 3018 console_srcu_read_unlock(cookie); 3019 } while (any_progress); 3020 3021 return any_usable; 3022 3023 abandon: 3024 console_srcu_read_unlock(cookie); 3025 return false; 3026 } 3027 3028 /** 3029 * console_unlock - unblock the console subsystem from printing 3030 * 3031 * Releases the console_lock which the caller holds to block printing of 3032 * the console subsystem. 3033 * 3034 * While the console_lock was held, console output may have been buffered 3035 * by printk(). If this is the case, console_unlock(); emits 3036 * the output prior to releasing the lock. 3037 * 3038 * console_unlock(); may be called from any context. 3039 */ 3040 void console_unlock(void) 3041 { 3042 bool do_cond_resched; 3043 bool handover; 3044 bool flushed; 3045 u64 next_seq; 3046 3047 /* 3048 * Console drivers are called with interrupts disabled, so 3049 * @console_may_schedule should be cleared before; however, we may 3050 * end up dumping a lot of lines, for example, if called from 3051 * console registration path, and should invoke cond_resched() 3052 * between lines if allowable. Not doing so can cause a very long 3053 * scheduling stall on a slow console leading to RCU stall and 3054 * softlockup warnings which exacerbate the issue with more 3055 * messages practically incapacitating the system. Therefore, create 3056 * a local to use for the printing loop. 3057 */ 3058 do_cond_resched = console_may_schedule; 3059 3060 do { 3061 console_may_schedule = 0; 3062 3063 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3064 if (!handover) 3065 __console_unlock(); 3066 3067 /* 3068 * Abort if there was a failure to flush all messages to all 3069 * usable consoles. Either it is not possible to flush (in 3070 * which case it would be an infinite loop of retrying) or 3071 * another context has taken over printing. 3072 */ 3073 if (!flushed) 3074 break; 3075 3076 /* 3077 * Some context may have added new records after 3078 * console_flush_all() but before unlocking the console. 3079 * Re-check if there is a new record to flush. If the trylock 3080 * fails, another context is already handling the printing. 3081 */ 3082 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3083 } 3084 EXPORT_SYMBOL(console_unlock); 3085 3086 /** 3087 * console_conditional_schedule - yield the CPU if required 3088 * 3089 * If the console code is currently allowed to sleep, and 3090 * if this CPU should yield the CPU to another task, do 3091 * so here. 3092 * 3093 * Must be called within console_lock();. 3094 */ 3095 void __sched console_conditional_schedule(void) 3096 { 3097 if (console_may_schedule) 3098 cond_resched(); 3099 } 3100 EXPORT_SYMBOL(console_conditional_schedule); 3101 3102 void console_unblank(void) 3103 { 3104 bool found_unblank = false; 3105 struct console *c; 3106 int cookie; 3107 3108 /* 3109 * First check if there are any consoles implementing the unblank() 3110 * callback. If not, there is no reason to continue and take the 3111 * console lock, which in particular can be dangerous if 3112 * @oops_in_progress is set. 3113 */ 3114 cookie = console_srcu_read_lock(); 3115 for_each_console_srcu(c) { 3116 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) { 3117 found_unblank = true; 3118 break; 3119 } 3120 } 3121 console_srcu_read_unlock(cookie); 3122 if (!found_unblank) 3123 return; 3124 3125 /* 3126 * Stop console printing because the unblank() callback may 3127 * assume the console is not within its write() callback. 3128 * 3129 * If @oops_in_progress is set, this may be an atomic context. 3130 * In that case, attempt a trylock as best-effort. 3131 */ 3132 if (oops_in_progress) { 3133 /* Semaphores are not NMI-safe. */ 3134 if (in_nmi()) 3135 return; 3136 3137 /* 3138 * Attempting to trylock the console lock can deadlock 3139 * if another CPU was stopped while modifying the 3140 * semaphore. "Hope and pray" that this is not the 3141 * current situation. 3142 */ 3143 if (down_trylock_console_sem() != 0) 3144 return; 3145 } else 3146 console_lock(); 3147 3148 console_locked = 1; 3149 console_may_schedule = 0; 3150 3151 cookie = console_srcu_read_lock(); 3152 for_each_console_srcu(c) { 3153 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3154 c->unblank(); 3155 } 3156 console_srcu_read_unlock(cookie); 3157 3158 console_unlock(); 3159 3160 if (!oops_in_progress) 3161 pr_flush(1000, true); 3162 } 3163 3164 /* 3165 * Rewind all consoles to the oldest available record. 3166 * 3167 * IMPORTANT: The function is safe only when called under 3168 * console_lock(). It is not enforced because 3169 * it is used as a best effort in panic(). 3170 */ 3171 static void __console_rewind_all(void) 3172 { 3173 struct console *c; 3174 short flags; 3175 int cookie; 3176 u64 seq; 3177 3178 seq = prb_first_valid_seq(prb); 3179 3180 cookie = console_srcu_read_lock(); 3181 for_each_console_srcu(c) { 3182 flags = console_srcu_read_flags(c); 3183 3184 if (flags & CON_NBCON) { 3185 nbcon_seq_force(c, seq); 3186 } else { 3187 /* 3188 * This assignment is safe only when called under 3189 * console_lock(). On panic, legacy consoles are 3190 * only best effort. 3191 */ 3192 c->seq = seq; 3193 } 3194 } 3195 console_srcu_read_unlock(cookie); 3196 } 3197 3198 /** 3199 * console_flush_on_panic - flush console content on panic 3200 * @mode: flush all messages in buffer or just the pending ones 3201 * 3202 * Immediately output all pending messages no matter what. 3203 */ 3204 void console_flush_on_panic(enum con_flush_mode mode) 3205 { 3206 bool handover; 3207 u64 next_seq; 3208 3209 /* 3210 * Ignore the console lock and flush out the messages. Attempting a 3211 * trylock would not be useful because: 3212 * 3213 * - if it is contended, it must be ignored anyway 3214 * - console_lock() and console_trylock() block and fail 3215 * respectively in panic for non-panic CPUs 3216 * - semaphores are not NMI-safe 3217 */ 3218 3219 /* 3220 * If another context is holding the console lock, 3221 * @console_may_schedule might be set. Clear it so that 3222 * this context does not call cond_resched() while flushing. 3223 */ 3224 console_may_schedule = 0; 3225 3226 if (mode == CONSOLE_REPLAY_ALL) 3227 __console_rewind_all(); 3228 3229 console_flush_all(false, &next_seq, &handover); 3230 } 3231 3232 /* 3233 * Return the console tty driver structure and its associated index 3234 */ 3235 struct tty_driver *console_device(int *index) 3236 { 3237 struct console *c; 3238 struct tty_driver *driver = NULL; 3239 int cookie; 3240 3241 /* 3242 * Take console_lock to serialize device() callback with 3243 * other console operations. For example, fg_console is 3244 * modified under console_lock when switching vt. 3245 */ 3246 console_lock(); 3247 3248 cookie = console_srcu_read_lock(); 3249 for_each_console_srcu(c) { 3250 if (!c->device) 3251 continue; 3252 driver = c->device(c, index); 3253 if (driver) 3254 break; 3255 } 3256 console_srcu_read_unlock(cookie); 3257 3258 console_unlock(); 3259 return driver; 3260 } 3261 3262 /* 3263 * Prevent further output on the passed console device so that (for example) 3264 * serial drivers can disable console output before suspending a port, and can 3265 * re-enable output afterwards. 3266 */ 3267 void console_stop(struct console *console) 3268 { 3269 __pr_flush(console, 1000, true); 3270 console_list_lock(); 3271 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3272 console_list_unlock(); 3273 3274 /* 3275 * Ensure that all SRCU list walks have completed. All contexts must 3276 * be able to see that this console is disabled so that (for example) 3277 * the caller can suspend the port without risk of another context 3278 * using the port. 3279 */ 3280 synchronize_srcu(&console_srcu); 3281 } 3282 EXPORT_SYMBOL(console_stop); 3283 3284 void console_start(struct console *console) 3285 { 3286 console_list_lock(); 3287 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3288 console_list_unlock(); 3289 __pr_flush(console, 1000, true); 3290 } 3291 EXPORT_SYMBOL(console_start); 3292 3293 static int __read_mostly keep_bootcon; 3294 3295 static int __init keep_bootcon_setup(char *str) 3296 { 3297 keep_bootcon = 1; 3298 pr_info("debug: skip boot console de-registration.\n"); 3299 3300 return 0; 3301 } 3302 3303 early_param("keep_bootcon", keep_bootcon_setup); 3304 3305 static int console_call_setup(struct console *newcon, char *options) 3306 { 3307 int err; 3308 3309 if (!newcon->setup) 3310 return 0; 3311 3312 /* Synchronize with possible boot console. */ 3313 console_lock(); 3314 err = newcon->setup(newcon, options); 3315 console_unlock(); 3316 3317 return err; 3318 } 3319 3320 /* 3321 * This is called by register_console() to try to match 3322 * the newly registered console with any of the ones selected 3323 * by either the command line or add_preferred_console() and 3324 * setup/enable it. 3325 * 3326 * Care need to be taken with consoles that are statically 3327 * enabled such as netconsole 3328 */ 3329 static int try_enable_preferred_console(struct console *newcon, 3330 bool user_specified) 3331 { 3332 struct console_cmdline *c; 3333 int i, err; 3334 3335 for (i = 0, c = console_cmdline; 3336 i < MAX_CMDLINECONSOLES && c->name[0]; 3337 i++, c++) { 3338 if (c->user_specified != user_specified) 3339 continue; 3340 if (!newcon->match || 3341 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3342 /* default matching */ 3343 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3344 if (strcmp(c->name, newcon->name) != 0) 3345 continue; 3346 if (newcon->index >= 0 && 3347 newcon->index != c->index) 3348 continue; 3349 if (newcon->index < 0) 3350 newcon->index = c->index; 3351 3352 if (_braille_register_console(newcon, c)) 3353 return 0; 3354 3355 err = console_call_setup(newcon, c->options); 3356 if (err) 3357 return err; 3358 } 3359 newcon->flags |= CON_ENABLED; 3360 if (i == preferred_console) 3361 newcon->flags |= CON_CONSDEV; 3362 return 0; 3363 } 3364 3365 /* 3366 * Some consoles, such as pstore and netconsole, can be enabled even 3367 * without matching. Accept the pre-enabled consoles only when match() 3368 * and setup() had a chance to be called. 3369 */ 3370 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3371 return 0; 3372 3373 return -ENOENT; 3374 } 3375 3376 /* Try to enable the console unconditionally */ 3377 static void try_enable_default_console(struct console *newcon) 3378 { 3379 if (newcon->index < 0) 3380 newcon->index = 0; 3381 3382 if (console_call_setup(newcon, NULL) != 0) 3383 return; 3384 3385 newcon->flags |= CON_ENABLED; 3386 3387 if (newcon->device) 3388 newcon->flags |= CON_CONSDEV; 3389 } 3390 3391 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3392 { 3393 struct console *con; 3394 bool handover; 3395 3396 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3397 /* Get a consistent copy of @syslog_seq. */ 3398 mutex_lock(&syslog_lock); 3399 newcon->seq = syslog_seq; 3400 mutex_unlock(&syslog_lock); 3401 } else { 3402 /* Begin with next message added to ringbuffer. */ 3403 newcon->seq = prb_next_seq(prb); 3404 3405 /* 3406 * If any enabled boot consoles are due to be unregistered 3407 * shortly, some may not be caught up and may be the same 3408 * device as @newcon. Since it is not known which boot console 3409 * is the same device, flush all consoles and, if necessary, 3410 * start with the message of the enabled boot console that is 3411 * the furthest behind. 3412 */ 3413 if (bootcon_registered && !keep_bootcon) { 3414 /* 3415 * Hold the console_lock to stop console printing and 3416 * guarantee safe access to console->seq. 3417 */ 3418 console_lock(); 3419 3420 /* 3421 * Flush all consoles and set the console to start at 3422 * the next unprinted sequence number. 3423 */ 3424 if (!console_flush_all(true, &newcon->seq, &handover)) { 3425 /* 3426 * Flushing failed. Just choose the lowest 3427 * sequence of the enabled boot consoles. 3428 */ 3429 3430 /* 3431 * If there was a handover, this context no 3432 * longer holds the console_lock. 3433 */ 3434 if (handover) 3435 console_lock(); 3436 3437 newcon->seq = prb_next_seq(prb); 3438 for_each_console(con) { 3439 if ((con->flags & CON_BOOT) && 3440 (con->flags & CON_ENABLED) && 3441 con->seq < newcon->seq) { 3442 newcon->seq = con->seq; 3443 } 3444 } 3445 } 3446 3447 console_unlock(); 3448 } 3449 } 3450 } 3451 3452 #define console_first() \ 3453 hlist_entry(console_list.first, struct console, node) 3454 3455 static int unregister_console_locked(struct console *console); 3456 3457 /* 3458 * The console driver calls this routine during kernel initialization 3459 * to register the console printing procedure with printk() and to 3460 * print any messages that were printed by the kernel before the 3461 * console driver was initialized. 3462 * 3463 * This can happen pretty early during the boot process (because of 3464 * early_printk) - sometimes before setup_arch() completes - be careful 3465 * of what kernel features are used - they may not be initialised yet. 3466 * 3467 * There are two types of consoles - bootconsoles (early_printk) and 3468 * "real" consoles (everything which is not a bootconsole) which are 3469 * handled differently. 3470 * - Any number of bootconsoles can be registered at any time. 3471 * - As soon as a "real" console is registered, all bootconsoles 3472 * will be unregistered automatically. 3473 * - Once a "real" console is registered, any attempt to register a 3474 * bootconsoles will be rejected 3475 */ 3476 void register_console(struct console *newcon) 3477 { 3478 struct console *con; 3479 bool bootcon_registered = false; 3480 bool realcon_registered = false; 3481 int err; 3482 3483 console_list_lock(); 3484 3485 for_each_console(con) { 3486 if (WARN(con == newcon, "console '%s%d' already registered\n", 3487 con->name, con->index)) { 3488 goto unlock; 3489 } 3490 3491 if (con->flags & CON_BOOT) 3492 bootcon_registered = true; 3493 else 3494 realcon_registered = true; 3495 } 3496 3497 /* Do not register boot consoles when there already is a real one. */ 3498 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3499 pr_info("Too late to register bootconsole %s%d\n", 3500 newcon->name, newcon->index); 3501 goto unlock; 3502 } 3503 3504 if (newcon->flags & CON_NBCON) { 3505 /* 3506 * Ensure the nbcon console buffers can be allocated 3507 * before modifying any global data. 3508 */ 3509 if (!nbcon_alloc(newcon)) 3510 goto unlock; 3511 } 3512 3513 /* 3514 * See if we want to enable this console driver by default. 3515 * 3516 * Nope when a console is preferred by the command line, device 3517 * tree, or SPCR. 3518 * 3519 * The first real console with tty binding (driver) wins. More 3520 * consoles might get enabled before the right one is found. 3521 * 3522 * Note that a console with tty binding will have CON_CONSDEV 3523 * flag set and will be first in the list. 3524 */ 3525 if (preferred_console < 0 && !console_set_on_cmdline) { 3526 if (hlist_empty(&console_list) || !console_first()->device || 3527 console_first()->flags & CON_BOOT) { 3528 try_enable_default_console(newcon); 3529 } 3530 } 3531 3532 /* See if this console matches one we selected on the command line */ 3533 err = try_enable_preferred_console(newcon, true); 3534 3535 /* If not, try to match against the platform default(s) */ 3536 if (err == -ENOENT) 3537 err = try_enable_preferred_console(newcon, false); 3538 3539 /* printk() messages are not printed to the Braille console. */ 3540 if (err || newcon->flags & CON_BRL) { 3541 if (newcon->flags & CON_NBCON) 3542 nbcon_free(newcon); 3543 goto unlock; 3544 } 3545 3546 /* 3547 * If we have a bootconsole, and are switching to a real console, 3548 * don't print everything out again, since when the boot console, and 3549 * the real console are the same physical device, it's annoying to 3550 * see the beginning boot messages twice 3551 */ 3552 if (bootcon_registered && 3553 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3554 newcon->flags &= ~CON_PRINTBUFFER; 3555 } 3556 3557 newcon->dropped = 0; 3558 console_init_seq(newcon, bootcon_registered); 3559 3560 if (newcon->flags & CON_NBCON) 3561 nbcon_init(newcon); 3562 3563 /* 3564 * Put this console in the list - keep the 3565 * preferred driver at the head of the list. 3566 */ 3567 if (hlist_empty(&console_list)) { 3568 /* Ensure CON_CONSDEV is always set for the head. */ 3569 newcon->flags |= CON_CONSDEV; 3570 hlist_add_head_rcu(&newcon->node, &console_list); 3571 3572 } else if (newcon->flags & CON_CONSDEV) { 3573 /* Only the new head can have CON_CONSDEV set. */ 3574 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3575 hlist_add_head_rcu(&newcon->node, &console_list); 3576 3577 } else { 3578 hlist_add_behind_rcu(&newcon->node, console_list.first); 3579 } 3580 3581 /* 3582 * No need to synchronize SRCU here! The caller does not rely 3583 * on all contexts being able to see the new console before 3584 * register_console() completes. 3585 */ 3586 3587 console_sysfs_notify(); 3588 3589 /* 3590 * By unregistering the bootconsoles after we enable the real console 3591 * we get the "console xxx enabled" message on all the consoles - 3592 * boot consoles, real consoles, etc - this is to ensure that end 3593 * users know there might be something in the kernel's log buffer that 3594 * went to the bootconsole (that they do not see on the real console) 3595 */ 3596 con_printk(KERN_INFO, newcon, "enabled\n"); 3597 if (bootcon_registered && 3598 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3599 !keep_bootcon) { 3600 struct hlist_node *tmp; 3601 3602 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3603 if (con->flags & CON_BOOT) 3604 unregister_console_locked(con); 3605 } 3606 } 3607 unlock: 3608 console_list_unlock(); 3609 } 3610 EXPORT_SYMBOL(register_console); 3611 3612 /* Must be called under console_list_lock(). */ 3613 static int unregister_console_locked(struct console *console) 3614 { 3615 int res; 3616 3617 lockdep_assert_console_list_lock_held(); 3618 3619 con_printk(KERN_INFO, console, "disabled\n"); 3620 3621 res = _braille_unregister_console(console); 3622 if (res < 0) 3623 return res; 3624 if (res > 0) 3625 return 0; 3626 3627 /* Disable it unconditionally */ 3628 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3629 3630 if (!console_is_registered_locked(console)) 3631 return -ENODEV; 3632 3633 hlist_del_init_rcu(&console->node); 3634 3635 /* 3636 * <HISTORICAL> 3637 * If this isn't the last console and it has CON_CONSDEV set, we 3638 * need to set it on the next preferred console. 3639 * </HISTORICAL> 3640 * 3641 * The above makes no sense as there is no guarantee that the next 3642 * console has any device attached. Oh well.... 3643 */ 3644 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3645 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3646 3647 /* 3648 * Ensure that all SRCU list walks have completed. All contexts 3649 * must not be able to see this console in the list so that any 3650 * exit/cleanup routines can be performed safely. 3651 */ 3652 synchronize_srcu(&console_srcu); 3653 3654 if (console->flags & CON_NBCON) 3655 nbcon_free(console); 3656 3657 console_sysfs_notify(); 3658 3659 if (console->exit) 3660 res = console->exit(console); 3661 3662 return res; 3663 } 3664 3665 int unregister_console(struct console *console) 3666 { 3667 int res; 3668 3669 console_list_lock(); 3670 res = unregister_console_locked(console); 3671 console_list_unlock(); 3672 return res; 3673 } 3674 EXPORT_SYMBOL(unregister_console); 3675 3676 /** 3677 * console_force_preferred_locked - force a registered console preferred 3678 * @con: The registered console to force preferred. 3679 * 3680 * Must be called under console_list_lock(). 3681 */ 3682 void console_force_preferred_locked(struct console *con) 3683 { 3684 struct console *cur_pref_con; 3685 3686 if (!console_is_registered_locked(con)) 3687 return; 3688 3689 cur_pref_con = console_first(); 3690 3691 /* Already preferred? */ 3692 if (cur_pref_con == con) 3693 return; 3694 3695 /* 3696 * Delete, but do not re-initialize the entry. This allows the console 3697 * to continue to appear registered (via any hlist_unhashed_lockless() 3698 * checks), even though it was briefly removed from the console list. 3699 */ 3700 hlist_del_rcu(&con->node); 3701 3702 /* 3703 * Ensure that all SRCU list walks have completed so that the console 3704 * can be added to the beginning of the console list and its forward 3705 * list pointer can be re-initialized. 3706 */ 3707 synchronize_srcu(&console_srcu); 3708 3709 con->flags |= CON_CONSDEV; 3710 WARN_ON(!con->device); 3711 3712 /* Only the new head can have CON_CONSDEV set. */ 3713 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3714 hlist_add_head_rcu(&con->node, &console_list); 3715 } 3716 EXPORT_SYMBOL(console_force_preferred_locked); 3717 3718 /* 3719 * Initialize the console device. This is called *early*, so 3720 * we can't necessarily depend on lots of kernel help here. 3721 * Just do some early initializations, and do the complex setup 3722 * later. 3723 */ 3724 void __init console_init(void) 3725 { 3726 int ret; 3727 initcall_t call; 3728 initcall_entry_t *ce; 3729 3730 /* Setup the default TTY line discipline. */ 3731 n_tty_init(); 3732 3733 /* 3734 * set up the console device so that later boot sequences can 3735 * inform about problems etc.. 3736 */ 3737 ce = __con_initcall_start; 3738 trace_initcall_level("console"); 3739 while (ce < __con_initcall_end) { 3740 call = initcall_from_entry(ce); 3741 trace_initcall_start(call); 3742 ret = call(); 3743 trace_initcall_finish(call, ret); 3744 ce++; 3745 } 3746 } 3747 3748 /* 3749 * Some boot consoles access data that is in the init section and which will 3750 * be discarded after the initcalls have been run. To make sure that no code 3751 * will access this data, unregister the boot consoles in a late initcall. 3752 * 3753 * If for some reason, such as deferred probe or the driver being a loadable 3754 * module, the real console hasn't registered yet at this point, there will 3755 * be a brief interval in which no messages are logged to the console, which 3756 * makes it difficult to diagnose problems that occur during this time. 3757 * 3758 * To mitigate this problem somewhat, only unregister consoles whose memory 3759 * intersects with the init section. Note that all other boot consoles will 3760 * get unregistered when the real preferred console is registered. 3761 */ 3762 static int __init printk_late_init(void) 3763 { 3764 struct hlist_node *tmp; 3765 struct console *con; 3766 int ret; 3767 3768 console_list_lock(); 3769 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3770 if (!(con->flags & CON_BOOT)) 3771 continue; 3772 3773 /* Check addresses that might be used for enabled consoles. */ 3774 if (init_section_intersects(con, sizeof(*con)) || 3775 init_section_contains(con->write, 0) || 3776 init_section_contains(con->read, 0) || 3777 init_section_contains(con->device, 0) || 3778 init_section_contains(con->unblank, 0) || 3779 init_section_contains(con->data, 0)) { 3780 /* 3781 * Please, consider moving the reported consoles out 3782 * of the init section. 3783 */ 3784 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3785 con->name, con->index); 3786 unregister_console_locked(con); 3787 } 3788 } 3789 console_list_unlock(); 3790 3791 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3792 console_cpu_notify); 3793 WARN_ON(ret < 0); 3794 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3795 console_cpu_notify, NULL); 3796 WARN_ON(ret < 0); 3797 printk_sysctl_init(); 3798 return 0; 3799 } 3800 late_initcall(printk_late_init); 3801 3802 #if defined CONFIG_PRINTK 3803 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3804 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3805 { 3806 unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms); 3807 unsigned long remaining_jiffies = timeout_jiffies; 3808 struct console *c; 3809 u64 last_diff = 0; 3810 u64 printk_seq; 3811 short flags; 3812 int cookie; 3813 u64 diff; 3814 u64 seq; 3815 3816 might_sleep(); 3817 3818 seq = prb_next_reserve_seq(prb); 3819 3820 /* Flush the consoles so that records up to @seq are printed. */ 3821 console_lock(); 3822 console_unlock(); 3823 3824 for (;;) { 3825 unsigned long begin_jiffies; 3826 unsigned long slept_jiffies; 3827 3828 diff = 0; 3829 3830 /* 3831 * Hold the console_lock to guarantee safe access to 3832 * console->seq. Releasing console_lock flushes more 3833 * records in case @seq is still not printed on all 3834 * usable consoles. 3835 */ 3836 console_lock(); 3837 3838 cookie = console_srcu_read_lock(); 3839 for_each_console_srcu(c) { 3840 if (con && con != c) 3841 continue; 3842 3843 flags = console_srcu_read_flags(c); 3844 3845 /* 3846 * If consoles are not usable, it cannot be expected 3847 * that they make forward progress, so only increment 3848 * @diff for usable consoles. 3849 */ 3850 if (!console_is_usable(c)) 3851 continue; 3852 3853 if (flags & CON_NBCON) { 3854 printk_seq = nbcon_seq_read(c); 3855 } else { 3856 printk_seq = c->seq; 3857 } 3858 3859 if (printk_seq < seq) 3860 diff += seq - printk_seq; 3861 } 3862 console_srcu_read_unlock(cookie); 3863 3864 if (diff != last_diff && reset_on_progress) 3865 remaining_jiffies = timeout_jiffies; 3866 3867 console_unlock(); 3868 3869 /* Note: @diff is 0 if there are no usable consoles. */ 3870 if (diff == 0 || remaining_jiffies == 0) 3871 break; 3872 3873 /* msleep(1) might sleep much longer. Check time by jiffies. */ 3874 begin_jiffies = jiffies; 3875 msleep(1); 3876 slept_jiffies = jiffies - begin_jiffies; 3877 3878 remaining_jiffies -= min(slept_jiffies, remaining_jiffies); 3879 3880 last_diff = diff; 3881 } 3882 3883 return (diff == 0); 3884 } 3885 3886 /** 3887 * pr_flush() - Wait for printing threads to catch up. 3888 * 3889 * @timeout_ms: The maximum time (in ms) to wait. 3890 * @reset_on_progress: Reset the timeout if forward progress is seen. 3891 * 3892 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3893 * represents infinite waiting. 3894 * 3895 * If @reset_on_progress is true, the timeout will be reset whenever any 3896 * printer has been seen to make some forward progress. 3897 * 3898 * Context: Process context. May sleep while acquiring console lock. 3899 * Return: true if all usable printers are caught up. 3900 */ 3901 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3902 { 3903 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3904 } 3905 3906 /* 3907 * Delayed printk version, for scheduler-internal messages: 3908 */ 3909 #define PRINTK_PENDING_WAKEUP 0x01 3910 #define PRINTK_PENDING_OUTPUT 0x02 3911 3912 static DEFINE_PER_CPU(int, printk_pending); 3913 3914 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3915 { 3916 int pending = this_cpu_xchg(printk_pending, 0); 3917 3918 if (pending & PRINTK_PENDING_OUTPUT) { 3919 /* If trylock fails, someone else is doing the printing */ 3920 if (console_trylock()) 3921 console_unlock(); 3922 } 3923 3924 if (pending & PRINTK_PENDING_WAKEUP) 3925 wake_up_interruptible(&log_wait); 3926 } 3927 3928 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3929 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3930 3931 static void __wake_up_klogd(int val) 3932 { 3933 if (!printk_percpu_data_ready()) 3934 return; 3935 3936 preempt_disable(); 3937 /* 3938 * Guarantee any new records can be seen by tasks preparing to wait 3939 * before this context checks if the wait queue is empty. 3940 * 3941 * The full memory barrier within wq_has_sleeper() pairs with the full 3942 * memory barrier within set_current_state() of 3943 * prepare_to_wait_event(), which is called after ___wait_event() adds 3944 * the waiter but before it has checked the wait condition. 3945 * 3946 * This pairs with devkmsg_read:A and syslog_print:A. 3947 */ 3948 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3949 (val & PRINTK_PENDING_OUTPUT)) { 3950 this_cpu_or(printk_pending, val); 3951 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3952 } 3953 preempt_enable(); 3954 } 3955 3956 /** 3957 * wake_up_klogd - Wake kernel logging daemon 3958 * 3959 * Use this function when new records have been added to the ringbuffer 3960 * and the console printing of those records has already occurred or is 3961 * known to be handled by some other context. This function will only 3962 * wake the logging daemon. 3963 * 3964 * Context: Any context. 3965 */ 3966 void wake_up_klogd(void) 3967 { 3968 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3969 } 3970 3971 /** 3972 * defer_console_output - Wake kernel logging daemon and trigger 3973 * console printing in a deferred context 3974 * 3975 * Use this function when new records have been added to the ringbuffer, 3976 * this context is responsible for console printing those records, but 3977 * the current context is not allowed to perform the console printing. 3978 * Trigger an irq_work context to perform the console printing. This 3979 * function also wakes the logging daemon. 3980 * 3981 * Context: Any context. 3982 */ 3983 void defer_console_output(void) 3984 { 3985 /* 3986 * New messages may have been added directly to the ringbuffer 3987 * using vprintk_store(), so wake any waiters as well. 3988 */ 3989 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3990 } 3991 3992 void printk_trigger_flush(void) 3993 { 3994 defer_console_output(); 3995 } 3996 3997 int vprintk_deferred(const char *fmt, va_list args) 3998 { 3999 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 4000 } 4001 4002 int _printk_deferred(const char *fmt, ...) 4003 { 4004 va_list args; 4005 int r; 4006 4007 va_start(args, fmt); 4008 r = vprintk_deferred(fmt, args); 4009 va_end(args); 4010 4011 return r; 4012 } 4013 4014 /* 4015 * printk rate limiting, lifted from the networking subsystem. 4016 * 4017 * This enforces a rate limit: not more than 10 kernel messages 4018 * every 5s to make a denial-of-service attack impossible. 4019 */ 4020 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 4021 4022 int __printk_ratelimit(const char *func) 4023 { 4024 return ___ratelimit(&printk_ratelimit_state, func); 4025 } 4026 EXPORT_SYMBOL(__printk_ratelimit); 4027 4028 /** 4029 * printk_timed_ratelimit - caller-controlled printk ratelimiting 4030 * @caller_jiffies: pointer to caller's state 4031 * @interval_msecs: minimum interval between prints 4032 * 4033 * printk_timed_ratelimit() returns true if more than @interval_msecs 4034 * milliseconds have elapsed since the last time printk_timed_ratelimit() 4035 * returned true. 4036 */ 4037 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 4038 unsigned int interval_msecs) 4039 { 4040 unsigned long elapsed = jiffies - *caller_jiffies; 4041 4042 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 4043 return false; 4044 4045 *caller_jiffies = jiffies; 4046 return true; 4047 } 4048 EXPORT_SYMBOL(printk_timed_ratelimit); 4049 4050 static DEFINE_SPINLOCK(dump_list_lock); 4051 static LIST_HEAD(dump_list); 4052 4053 /** 4054 * kmsg_dump_register - register a kernel log dumper. 4055 * @dumper: pointer to the kmsg_dumper structure 4056 * 4057 * Adds a kernel log dumper to the system. The dump callback in the 4058 * structure will be called when the kernel oopses or panics and must be 4059 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 4060 */ 4061 int kmsg_dump_register(struct kmsg_dumper *dumper) 4062 { 4063 unsigned long flags; 4064 int err = -EBUSY; 4065 4066 /* The dump callback needs to be set */ 4067 if (!dumper->dump) 4068 return -EINVAL; 4069 4070 spin_lock_irqsave(&dump_list_lock, flags); 4071 /* Don't allow registering multiple times */ 4072 if (!dumper->registered) { 4073 dumper->registered = 1; 4074 list_add_tail_rcu(&dumper->list, &dump_list); 4075 err = 0; 4076 } 4077 spin_unlock_irqrestore(&dump_list_lock, flags); 4078 4079 return err; 4080 } 4081 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4082 4083 /** 4084 * kmsg_dump_unregister - unregister a kmsg dumper. 4085 * @dumper: pointer to the kmsg_dumper structure 4086 * 4087 * Removes a dump device from the system. Returns zero on success and 4088 * %-EINVAL otherwise. 4089 */ 4090 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4091 { 4092 unsigned long flags; 4093 int err = -EINVAL; 4094 4095 spin_lock_irqsave(&dump_list_lock, flags); 4096 if (dumper->registered) { 4097 dumper->registered = 0; 4098 list_del_rcu(&dumper->list); 4099 err = 0; 4100 } 4101 spin_unlock_irqrestore(&dump_list_lock, flags); 4102 synchronize_rcu(); 4103 4104 return err; 4105 } 4106 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4107 4108 static bool always_kmsg_dump; 4109 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4110 4111 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4112 { 4113 switch (reason) { 4114 case KMSG_DUMP_PANIC: 4115 return "Panic"; 4116 case KMSG_DUMP_OOPS: 4117 return "Oops"; 4118 case KMSG_DUMP_EMERG: 4119 return "Emergency"; 4120 case KMSG_DUMP_SHUTDOWN: 4121 return "Shutdown"; 4122 default: 4123 return "Unknown"; 4124 } 4125 } 4126 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4127 4128 /** 4129 * kmsg_dump - dump kernel log to kernel message dumpers. 4130 * @reason: the reason (oops, panic etc) for dumping 4131 * 4132 * Call each of the registered dumper's dump() callback, which can 4133 * retrieve the kmsg records with kmsg_dump_get_line() or 4134 * kmsg_dump_get_buffer(). 4135 */ 4136 void kmsg_dump(enum kmsg_dump_reason reason) 4137 { 4138 struct kmsg_dumper *dumper; 4139 4140 rcu_read_lock(); 4141 list_for_each_entry_rcu(dumper, &dump_list, list) { 4142 enum kmsg_dump_reason max_reason = dumper->max_reason; 4143 4144 /* 4145 * If client has not provided a specific max_reason, default 4146 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4147 */ 4148 if (max_reason == KMSG_DUMP_UNDEF) { 4149 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4150 KMSG_DUMP_OOPS; 4151 } 4152 if (reason > max_reason) 4153 continue; 4154 4155 /* invoke dumper which will iterate over records */ 4156 dumper->dump(dumper, reason); 4157 } 4158 rcu_read_unlock(); 4159 } 4160 4161 /** 4162 * kmsg_dump_get_line - retrieve one kmsg log line 4163 * @iter: kmsg dump iterator 4164 * @syslog: include the "<4>" prefixes 4165 * @line: buffer to copy the line to 4166 * @size: maximum size of the buffer 4167 * @len: length of line placed into buffer 4168 * 4169 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4170 * record, and copy one record into the provided buffer. 4171 * 4172 * Consecutive calls will return the next available record moving 4173 * towards the end of the buffer with the youngest messages. 4174 * 4175 * A return value of FALSE indicates that there are no more records to 4176 * read. 4177 */ 4178 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4179 char *line, size_t size, size_t *len) 4180 { 4181 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4182 struct printk_info info; 4183 unsigned int line_count; 4184 struct printk_record r; 4185 size_t l = 0; 4186 bool ret = false; 4187 4188 if (iter->cur_seq < min_seq) 4189 iter->cur_seq = min_seq; 4190 4191 prb_rec_init_rd(&r, &info, line, size); 4192 4193 /* Read text or count text lines? */ 4194 if (line) { 4195 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4196 goto out; 4197 l = record_print_text(&r, syslog, printk_time); 4198 } else { 4199 if (!prb_read_valid_info(prb, iter->cur_seq, 4200 &info, &line_count)) { 4201 goto out; 4202 } 4203 l = get_record_print_text_size(&info, line_count, syslog, 4204 printk_time); 4205 4206 } 4207 4208 iter->cur_seq = r.info->seq + 1; 4209 ret = true; 4210 out: 4211 if (len) 4212 *len = l; 4213 return ret; 4214 } 4215 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4216 4217 /** 4218 * kmsg_dump_get_buffer - copy kmsg log lines 4219 * @iter: kmsg dump iterator 4220 * @syslog: include the "<4>" prefixes 4221 * @buf: buffer to copy the line to 4222 * @size: maximum size of the buffer 4223 * @len_out: length of line placed into buffer 4224 * 4225 * Start at the end of the kmsg buffer and fill the provided buffer 4226 * with as many of the *youngest* kmsg records that fit into it. 4227 * If the buffer is large enough, all available kmsg records will be 4228 * copied with a single call. 4229 * 4230 * Consecutive calls will fill the buffer with the next block of 4231 * available older records, not including the earlier retrieved ones. 4232 * 4233 * A return value of FALSE indicates that there are no more records to 4234 * read. 4235 */ 4236 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4237 char *buf, size_t size, size_t *len_out) 4238 { 4239 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4240 struct printk_info info; 4241 struct printk_record r; 4242 u64 seq; 4243 u64 next_seq; 4244 size_t len = 0; 4245 bool ret = false; 4246 bool time = printk_time; 4247 4248 if (!buf || !size) 4249 goto out; 4250 4251 if (iter->cur_seq < min_seq) 4252 iter->cur_seq = min_seq; 4253 4254 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4255 if (info.seq != iter->cur_seq) { 4256 /* messages are gone, move to first available one */ 4257 iter->cur_seq = info.seq; 4258 } 4259 } 4260 4261 /* last entry */ 4262 if (iter->cur_seq >= iter->next_seq) 4263 goto out; 4264 4265 /* 4266 * Find first record that fits, including all following records, 4267 * into the user-provided buffer for this dump. Pass in size-1 4268 * because this function (by way of record_print_text()) will 4269 * not write more than size-1 bytes of text into @buf. 4270 */ 4271 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4272 size - 1, syslog, time); 4273 4274 /* 4275 * Next kmsg_dump_get_buffer() invocation will dump block of 4276 * older records stored right before this one. 4277 */ 4278 next_seq = seq; 4279 4280 prb_rec_init_rd(&r, &info, buf, size); 4281 4282 prb_for_each_record(seq, prb, seq, &r) { 4283 if (r.info->seq >= iter->next_seq) 4284 break; 4285 4286 len += record_print_text(&r, syslog, time); 4287 4288 /* Adjust record to store to remaining buffer space. */ 4289 prb_rec_init_rd(&r, &info, buf + len, size - len); 4290 } 4291 4292 iter->next_seq = next_seq; 4293 ret = true; 4294 out: 4295 if (len_out) 4296 *len_out = len; 4297 return ret; 4298 } 4299 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4300 4301 /** 4302 * kmsg_dump_rewind - reset the iterator 4303 * @iter: kmsg dump iterator 4304 * 4305 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4306 * kmsg_dump_get_buffer() can be called again and used multiple 4307 * times within the same dumper.dump() callback. 4308 */ 4309 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4310 { 4311 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4312 iter->next_seq = prb_next_seq(prb); 4313 } 4314 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4315 4316 /** 4317 * console_replay_all - replay kernel log on consoles 4318 * 4319 * Try to obtain lock on console subsystem and replay all 4320 * available records in printk buffer on the consoles. 4321 * Does nothing if lock is not obtained. 4322 * 4323 * Context: Any context. 4324 */ 4325 void console_replay_all(void) 4326 { 4327 if (console_trylock()) { 4328 __console_rewind_all(); 4329 /* Consoles are flushed as part of console_unlock(). */ 4330 console_unlock(); 4331 } 4332 } 4333 #endif 4334 4335 #ifdef CONFIG_SMP 4336 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4337 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4338 4339 /** 4340 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4341 * spinning lock is not owned by any CPU. 4342 * 4343 * Context: Any context. 4344 */ 4345 void __printk_cpu_sync_wait(void) 4346 { 4347 do { 4348 cpu_relax(); 4349 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4350 } 4351 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4352 4353 /** 4354 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4355 * spinning lock. 4356 * 4357 * If no processor has the lock, the calling processor takes the lock and 4358 * becomes the owner. If the calling processor is already the owner of the 4359 * lock, this function succeeds immediately. 4360 * 4361 * Context: Any context. Expects interrupts to be disabled. 4362 * Return: 1 on success, otherwise 0. 4363 */ 4364 int __printk_cpu_sync_try_get(void) 4365 { 4366 int cpu; 4367 int old; 4368 4369 cpu = smp_processor_id(); 4370 4371 /* 4372 * Guarantee loads and stores from this CPU when it is the lock owner 4373 * are _not_ visible to the previous lock owner. This pairs with 4374 * __printk_cpu_sync_put:B. 4375 * 4376 * Memory barrier involvement: 4377 * 4378 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4379 * then __printk_cpu_sync_put:A can never read from 4380 * __printk_cpu_sync_try_get:B. 4381 * 4382 * Relies on: 4383 * 4384 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4385 * of the previous CPU 4386 * matching 4387 * ACQUIRE from __printk_cpu_sync_try_get:A to 4388 * __printk_cpu_sync_try_get:B of this CPU 4389 */ 4390 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4391 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4392 if (old == -1) { 4393 /* 4394 * This CPU is now the owner and begins loading/storing 4395 * data: LMM(__printk_cpu_sync_try_get:B) 4396 */ 4397 return 1; 4398 4399 } else if (old == cpu) { 4400 /* This CPU is already the owner. */ 4401 atomic_inc(&printk_cpu_sync_nested); 4402 return 1; 4403 } 4404 4405 return 0; 4406 } 4407 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4408 4409 /** 4410 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4411 * 4412 * The calling processor must be the owner of the lock. 4413 * 4414 * Context: Any context. Expects interrupts to be disabled. 4415 */ 4416 void __printk_cpu_sync_put(void) 4417 { 4418 if (atomic_read(&printk_cpu_sync_nested)) { 4419 atomic_dec(&printk_cpu_sync_nested); 4420 return; 4421 } 4422 4423 /* 4424 * This CPU is finished loading/storing data: 4425 * LMM(__printk_cpu_sync_put:A) 4426 */ 4427 4428 /* 4429 * Guarantee loads and stores from this CPU when it was the 4430 * lock owner are visible to the next lock owner. This pairs 4431 * with __printk_cpu_sync_try_get:A. 4432 * 4433 * Memory barrier involvement: 4434 * 4435 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4436 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4437 * 4438 * Relies on: 4439 * 4440 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4441 * of this CPU 4442 * matching 4443 * ACQUIRE from __printk_cpu_sync_try_get:A to 4444 * __printk_cpu_sync_try_get:B of the next CPU 4445 */ 4446 atomic_set_release(&printk_cpu_sync_owner, 4447 -1); /* LMM(__printk_cpu_sync_put:B) */ 4448 } 4449 EXPORT_SYMBOL(__printk_cpu_sync_put); 4450 #endif /* CONFIG_SMP */ 4451