xref: /linux/kernel/printk/printk.c (revision 62a31d6e38bd0faef7c956b358d651f7bdc4ae0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_mutex protects console_list updates and console->flags updates.
83  * The flags are synchronized only for consoles that are registered, i.e.
84  * accessible via the console list.
85  */
86 static DEFINE_MUTEX(console_mutex);
87 
88 /*
89  * console_sem protects updates to console->seq and console_suspended,
90  * and also provides serialization for console printing.
91  */
92 static DEFINE_SEMAPHORE(console_sem);
93 HLIST_HEAD(console_list);
94 EXPORT_SYMBOL_GPL(console_list);
95 DEFINE_STATIC_SRCU(console_srcu);
96 
97 /*
98  * System may need to suppress printk message under certain
99  * circumstances, like after kernel panic happens.
100  */
101 int __read_mostly suppress_printk;
102 
103 /*
104  * During panic, heavy printk by other CPUs can delay the
105  * panic and risk deadlock on console resources.
106  */
107 static int __read_mostly suppress_panic_printk;
108 
109 #ifdef CONFIG_LOCKDEP
110 static struct lockdep_map console_lock_dep_map = {
111 	.name = "console_lock"
112 };
113 
114 void lockdep_assert_console_list_lock_held(void)
115 {
116 	lockdep_assert_held(&console_mutex);
117 }
118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
119 #endif
120 
121 #ifdef CONFIG_DEBUG_LOCK_ALLOC
122 bool console_srcu_read_lock_is_held(void)
123 {
124 	return srcu_read_lock_held(&console_srcu);
125 }
126 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
127 #endif
128 
129 enum devkmsg_log_bits {
130 	__DEVKMSG_LOG_BIT_ON = 0,
131 	__DEVKMSG_LOG_BIT_OFF,
132 	__DEVKMSG_LOG_BIT_LOCK,
133 };
134 
135 enum devkmsg_log_masks {
136 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
137 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
138 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
139 };
140 
141 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
142 #define DEVKMSG_LOG_MASK_DEFAULT	0
143 
144 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
145 
146 static int __control_devkmsg(char *str)
147 {
148 	size_t len;
149 
150 	if (!str)
151 		return -EINVAL;
152 
153 	len = str_has_prefix(str, "on");
154 	if (len) {
155 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
156 		return len;
157 	}
158 
159 	len = str_has_prefix(str, "off");
160 	if (len) {
161 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
162 		return len;
163 	}
164 
165 	len = str_has_prefix(str, "ratelimit");
166 	if (len) {
167 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
168 		return len;
169 	}
170 
171 	return -EINVAL;
172 }
173 
174 static int __init control_devkmsg(char *str)
175 {
176 	if (__control_devkmsg(str) < 0) {
177 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
178 		return 1;
179 	}
180 
181 	/*
182 	 * Set sysctl string accordingly:
183 	 */
184 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
185 		strcpy(devkmsg_log_str, "on");
186 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
187 		strcpy(devkmsg_log_str, "off");
188 	/* else "ratelimit" which is set by default. */
189 
190 	/*
191 	 * Sysctl cannot change it anymore. The kernel command line setting of
192 	 * this parameter is to force the setting to be permanent throughout the
193 	 * runtime of the system. This is a precation measure against userspace
194 	 * trying to be a smarta** and attempting to change it up on us.
195 	 */
196 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
197 
198 	return 1;
199 }
200 __setup("printk.devkmsg=", control_devkmsg);
201 
202 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
203 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
204 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
205 			      void *buffer, size_t *lenp, loff_t *ppos)
206 {
207 	char old_str[DEVKMSG_STR_MAX_SIZE];
208 	unsigned int old;
209 	int err;
210 
211 	if (write) {
212 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
213 			return -EINVAL;
214 
215 		old = devkmsg_log;
216 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
217 	}
218 
219 	err = proc_dostring(table, write, buffer, lenp, ppos);
220 	if (err)
221 		return err;
222 
223 	if (write) {
224 		err = __control_devkmsg(devkmsg_log_str);
225 
226 		/*
227 		 * Do not accept an unknown string OR a known string with
228 		 * trailing crap...
229 		 */
230 		if (err < 0 || (err + 1 != *lenp)) {
231 
232 			/* ... and restore old setting. */
233 			devkmsg_log = old;
234 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
235 
236 			return -EINVAL;
237 		}
238 	}
239 
240 	return 0;
241 }
242 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
243 
244 /**
245  * console_list_lock - Lock the console list
246  *
247  * For console list or console->flags updates
248  */
249 void console_list_lock(void)
250 {
251 	/*
252 	 * In unregister_console() and console_force_preferred_locked(),
253 	 * synchronize_srcu() is called with the console_list_lock held.
254 	 * Therefore it is not allowed that the console_list_lock is taken
255 	 * with the srcu_lock held.
256 	 *
257 	 * Detecting if this context is really in the read-side critical
258 	 * section is only possible if the appropriate debug options are
259 	 * enabled.
260 	 */
261 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
262 		     srcu_read_lock_held(&console_srcu));
263 
264 	mutex_lock(&console_mutex);
265 }
266 EXPORT_SYMBOL(console_list_lock);
267 
268 /**
269  * console_list_unlock - Unlock the console list
270  *
271  * Counterpart to console_list_lock()
272  */
273 void console_list_unlock(void)
274 {
275 	mutex_unlock(&console_mutex);
276 }
277 EXPORT_SYMBOL(console_list_unlock);
278 
279 /**
280  * console_srcu_read_lock - Register a new reader for the
281  *	SRCU-protected console list
282  *
283  * Use for_each_console_srcu() to iterate the console list
284  *
285  * Context: Any context.
286  * Return: A cookie to pass to console_srcu_read_unlock().
287  */
288 int console_srcu_read_lock(void)
289 {
290 	return srcu_read_lock_nmisafe(&console_srcu);
291 }
292 EXPORT_SYMBOL(console_srcu_read_lock);
293 
294 /**
295  * console_srcu_read_unlock - Unregister an old reader from
296  *	the SRCU-protected console list
297  * @cookie: cookie returned from console_srcu_read_lock()
298  *
299  * Counterpart to console_srcu_read_lock()
300  */
301 void console_srcu_read_unlock(int cookie)
302 {
303 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
304 }
305 EXPORT_SYMBOL(console_srcu_read_unlock);
306 
307 /*
308  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
309  * macros instead of functions so that _RET_IP_ contains useful information.
310  */
311 #define down_console_sem() do { \
312 	down(&console_sem);\
313 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
314 } while (0)
315 
316 static int __down_trylock_console_sem(unsigned long ip)
317 {
318 	int lock_failed;
319 	unsigned long flags;
320 
321 	/*
322 	 * Here and in __up_console_sem() we need to be in safe mode,
323 	 * because spindump/WARN/etc from under console ->lock will
324 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
325 	 */
326 	printk_safe_enter_irqsave(flags);
327 	lock_failed = down_trylock(&console_sem);
328 	printk_safe_exit_irqrestore(flags);
329 
330 	if (lock_failed)
331 		return 1;
332 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
333 	return 0;
334 }
335 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
336 
337 static void __up_console_sem(unsigned long ip)
338 {
339 	unsigned long flags;
340 
341 	mutex_release(&console_lock_dep_map, ip);
342 
343 	printk_safe_enter_irqsave(flags);
344 	up(&console_sem);
345 	printk_safe_exit_irqrestore(flags);
346 }
347 #define up_console_sem() __up_console_sem(_RET_IP_)
348 
349 static bool panic_in_progress(void)
350 {
351 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
352 }
353 
354 /*
355  * This is used for debugging the mess that is the VT code by
356  * keeping track if we have the console semaphore held. It's
357  * definitely not the perfect debug tool (we don't know if _WE_
358  * hold it and are racing, but it helps tracking those weird code
359  * paths in the console code where we end up in places I want
360  * locked without the console semaphore held).
361  */
362 static int console_locked, console_suspended;
363 
364 /*
365  *	Array of consoles built from command line options (console=)
366  */
367 
368 #define MAX_CMDLINECONSOLES 8
369 
370 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
371 
372 static int preferred_console = -1;
373 int console_set_on_cmdline;
374 EXPORT_SYMBOL(console_set_on_cmdline);
375 
376 /* Flag: console code may call schedule() */
377 static int console_may_schedule;
378 
379 enum con_msg_format_flags {
380 	MSG_FORMAT_DEFAULT	= 0,
381 	MSG_FORMAT_SYSLOG	= (1 << 0),
382 };
383 
384 static int console_msg_format = MSG_FORMAT_DEFAULT;
385 
386 /*
387  * The printk log buffer consists of a sequenced collection of records, each
388  * containing variable length message text. Every record also contains its
389  * own meta-data (@info).
390  *
391  * Every record meta-data carries the timestamp in microseconds, as well as
392  * the standard userspace syslog level and syslog facility. The usual kernel
393  * messages use LOG_KERN; userspace-injected messages always carry a matching
394  * syslog facility, by default LOG_USER. The origin of every message can be
395  * reliably determined that way.
396  *
397  * The human readable log message of a record is available in @text, the
398  * length of the message text in @text_len. The stored message is not
399  * terminated.
400  *
401  * Optionally, a record can carry a dictionary of properties (key/value
402  * pairs), to provide userspace with a machine-readable message context.
403  *
404  * Examples for well-defined, commonly used property names are:
405  *   DEVICE=b12:8               device identifier
406  *                                b12:8         block dev_t
407  *                                c127:3        char dev_t
408  *                                n8            netdev ifindex
409  *                                +sound:card0  subsystem:devname
410  *   SUBSYSTEM=pci              driver-core subsystem name
411  *
412  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
413  * and values are terminated by a '\0' character.
414  *
415  * Example of record values:
416  *   record.text_buf                = "it's a line" (unterminated)
417  *   record.info.seq                = 56
418  *   record.info.ts_nsec            = 36863
419  *   record.info.text_len           = 11
420  *   record.info.facility           = 0 (LOG_KERN)
421  *   record.info.flags              = 0
422  *   record.info.level              = 3 (LOG_ERR)
423  *   record.info.caller_id          = 299 (task 299)
424  *   record.info.dev_info.subsystem = "pci" (terminated)
425  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
426  *
427  * The 'struct printk_info' buffer must never be directly exported to
428  * userspace, it is a kernel-private implementation detail that might
429  * need to be changed in the future, when the requirements change.
430  *
431  * /dev/kmsg exports the structured data in the following line format:
432  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
433  *
434  * Users of the export format should ignore possible additional values
435  * separated by ',', and find the message after the ';' character.
436  *
437  * The optional key/value pairs are attached as continuation lines starting
438  * with a space character and terminated by a newline. All possible
439  * non-prinatable characters are escaped in the "\xff" notation.
440  */
441 
442 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
443 static DEFINE_MUTEX(syslog_lock);
444 
445 #ifdef CONFIG_PRINTK
446 DECLARE_WAIT_QUEUE_HEAD(log_wait);
447 /* All 3 protected by @syslog_lock. */
448 /* the next printk record to read by syslog(READ) or /proc/kmsg */
449 static u64 syslog_seq;
450 static size_t syslog_partial;
451 static bool syslog_time;
452 
453 struct latched_seq {
454 	seqcount_latch_t	latch;
455 	u64			val[2];
456 };
457 
458 /*
459  * The next printk record to read after the last 'clear' command. There are
460  * two copies (updated with seqcount_latch) so that reads can locklessly
461  * access a valid value. Writers are synchronized by @syslog_lock.
462  */
463 static struct latched_seq clear_seq = {
464 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
465 	.val[0]		= 0,
466 	.val[1]		= 0,
467 };
468 
469 #define LOG_LEVEL(v)		((v) & 0x07)
470 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
471 
472 /* record buffer */
473 #define LOG_ALIGN __alignof__(unsigned long)
474 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
475 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
476 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
477 static char *log_buf = __log_buf;
478 static u32 log_buf_len = __LOG_BUF_LEN;
479 
480 /*
481  * Define the average message size. This only affects the number of
482  * descriptors that will be available. Underestimating is better than
483  * overestimating (too many available descriptors is better than not enough).
484  */
485 #define PRB_AVGBITS 5	/* 32 character average length */
486 
487 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
488 #error CONFIG_LOG_BUF_SHIFT value too small.
489 #endif
490 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
491 		 PRB_AVGBITS, &__log_buf[0]);
492 
493 static struct printk_ringbuffer printk_rb_dynamic;
494 
495 static struct printk_ringbuffer *prb = &printk_rb_static;
496 
497 /*
498  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
499  * per_cpu_areas are initialised. This variable is set to true when
500  * it's safe to access per-CPU data.
501  */
502 static bool __printk_percpu_data_ready __ro_after_init;
503 
504 bool printk_percpu_data_ready(void)
505 {
506 	return __printk_percpu_data_ready;
507 }
508 
509 /* Must be called under syslog_lock. */
510 static void latched_seq_write(struct latched_seq *ls, u64 val)
511 {
512 	raw_write_seqcount_latch(&ls->latch);
513 	ls->val[0] = val;
514 	raw_write_seqcount_latch(&ls->latch);
515 	ls->val[1] = val;
516 }
517 
518 /* Can be called from any context. */
519 static u64 latched_seq_read_nolock(struct latched_seq *ls)
520 {
521 	unsigned int seq;
522 	unsigned int idx;
523 	u64 val;
524 
525 	do {
526 		seq = raw_read_seqcount_latch(&ls->latch);
527 		idx = seq & 0x1;
528 		val = ls->val[idx];
529 	} while (read_seqcount_latch_retry(&ls->latch, seq));
530 
531 	return val;
532 }
533 
534 /* Return log buffer address */
535 char *log_buf_addr_get(void)
536 {
537 	return log_buf;
538 }
539 
540 /* Return log buffer size */
541 u32 log_buf_len_get(void)
542 {
543 	return log_buf_len;
544 }
545 
546 /*
547  * Define how much of the log buffer we could take at maximum. The value
548  * must be greater than two. Note that only half of the buffer is available
549  * when the index points to the middle.
550  */
551 #define MAX_LOG_TAKE_PART 4
552 static const char trunc_msg[] = "<truncated>";
553 
554 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
555 {
556 	/*
557 	 * The message should not take the whole buffer. Otherwise, it might
558 	 * get removed too soon.
559 	 */
560 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
561 
562 	if (*text_len > max_text_len)
563 		*text_len = max_text_len;
564 
565 	/* enable the warning message (if there is room) */
566 	*trunc_msg_len = strlen(trunc_msg);
567 	if (*text_len >= *trunc_msg_len)
568 		*text_len -= *trunc_msg_len;
569 	else
570 		*trunc_msg_len = 0;
571 }
572 
573 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
574 
575 static int syslog_action_restricted(int type)
576 {
577 	if (dmesg_restrict)
578 		return 1;
579 	/*
580 	 * Unless restricted, we allow "read all" and "get buffer size"
581 	 * for everybody.
582 	 */
583 	return type != SYSLOG_ACTION_READ_ALL &&
584 	       type != SYSLOG_ACTION_SIZE_BUFFER;
585 }
586 
587 static int check_syslog_permissions(int type, int source)
588 {
589 	/*
590 	 * If this is from /proc/kmsg and we've already opened it, then we've
591 	 * already done the capabilities checks at open time.
592 	 */
593 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
594 		goto ok;
595 
596 	if (syslog_action_restricted(type)) {
597 		if (capable(CAP_SYSLOG))
598 			goto ok;
599 		/*
600 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
601 		 * a warning.
602 		 */
603 		if (capable(CAP_SYS_ADMIN)) {
604 			pr_warn_once("%s (%d): Attempt to access syslog with "
605 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
606 				     "(deprecated).\n",
607 				 current->comm, task_pid_nr(current));
608 			goto ok;
609 		}
610 		return -EPERM;
611 	}
612 ok:
613 	return security_syslog(type);
614 }
615 
616 static void append_char(char **pp, char *e, char c)
617 {
618 	if (*pp < e)
619 		*(*pp)++ = c;
620 }
621 
622 static ssize_t info_print_ext_header(char *buf, size_t size,
623 				     struct printk_info *info)
624 {
625 	u64 ts_usec = info->ts_nsec;
626 	char caller[20];
627 #ifdef CONFIG_PRINTK_CALLER
628 	u32 id = info->caller_id;
629 
630 	snprintf(caller, sizeof(caller), ",caller=%c%u",
631 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
632 #else
633 	caller[0] = '\0';
634 #endif
635 
636 	do_div(ts_usec, 1000);
637 
638 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
639 			 (info->facility << 3) | info->level, info->seq,
640 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
641 }
642 
643 static ssize_t msg_add_ext_text(char *buf, size_t size,
644 				const char *text, size_t text_len,
645 				unsigned char endc)
646 {
647 	char *p = buf, *e = buf + size;
648 	size_t i;
649 
650 	/* escape non-printable characters */
651 	for (i = 0; i < text_len; i++) {
652 		unsigned char c = text[i];
653 
654 		if (c < ' ' || c >= 127 || c == '\\')
655 			p += scnprintf(p, e - p, "\\x%02x", c);
656 		else
657 			append_char(&p, e, c);
658 	}
659 	append_char(&p, e, endc);
660 
661 	return p - buf;
662 }
663 
664 static ssize_t msg_add_dict_text(char *buf, size_t size,
665 				 const char *key, const char *val)
666 {
667 	size_t val_len = strlen(val);
668 	ssize_t len;
669 
670 	if (!val_len)
671 		return 0;
672 
673 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
674 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
675 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
676 
677 	return len;
678 }
679 
680 static ssize_t msg_print_ext_body(char *buf, size_t size,
681 				  char *text, size_t text_len,
682 				  struct dev_printk_info *dev_info)
683 {
684 	ssize_t len;
685 
686 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
687 
688 	if (!dev_info)
689 		goto out;
690 
691 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
692 				 dev_info->subsystem);
693 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
694 				 dev_info->device);
695 out:
696 	return len;
697 }
698 
699 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
700 				    bool is_extended, bool may_supress);
701 
702 /* /dev/kmsg - userspace message inject/listen interface */
703 struct devkmsg_user {
704 	atomic64_t seq;
705 	struct ratelimit_state rs;
706 	struct mutex lock;
707 	struct printk_buffers pbufs;
708 };
709 
710 static __printf(3, 4) __cold
711 int devkmsg_emit(int facility, int level, const char *fmt, ...)
712 {
713 	va_list args;
714 	int r;
715 
716 	va_start(args, fmt);
717 	r = vprintk_emit(facility, level, NULL, fmt, args);
718 	va_end(args);
719 
720 	return r;
721 }
722 
723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
724 {
725 	char *buf, *line;
726 	int level = default_message_loglevel;
727 	int facility = 1;	/* LOG_USER */
728 	struct file *file = iocb->ki_filp;
729 	struct devkmsg_user *user = file->private_data;
730 	size_t len = iov_iter_count(from);
731 	ssize_t ret = len;
732 
733 	if (!user || len > PRINTKRB_RECORD_MAX)
734 		return -EINVAL;
735 
736 	/* Ignore when user logging is disabled. */
737 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
738 		return len;
739 
740 	/* Ratelimit when not explicitly enabled. */
741 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
742 		if (!___ratelimit(&user->rs, current->comm))
743 			return ret;
744 	}
745 
746 	buf = kmalloc(len+1, GFP_KERNEL);
747 	if (buf == NULL)
748 		return -ENOMEM;
749 
750 	buf[len] = '\0';
751 	if (!copy_from_iter_full(buf, len, from)) {
752 		kfree(buf);
753 		return -EFAULT;
754 	}
755 
756 	/*
757 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
758 	 * the decimal value represents 32bit, the lower 3 bit are the log
759 	 * level, the rest are the log facility.
760 	 *
761 	 * If no prefix or no userspace facility is specified, we
762 	 * enforce LOG_USER, to be able to reliably distinguish
763 	 * kernel-generated messages from userspace-injected ones.
764 	 */
765 	line = buf;
766 	if (line[0] == '<') {
767 		char *endp = NULL;
768 		unsigned int u;
769 
770 		u = simple_strtoul(line + 1, &endp, 10);
771 		if (endp && endp[0] == '>') {
772 			level = LOG_LEVEL(u);
773 			if (LOG_FACILITY(u) != 0)
774 				facility = LOG_FACILITY(u);
775 			endp++;
776 			line = endp;
777 		}
778 	}
779 
780 	devkmsg_emit(facility, level, "%s", line);
781 	kfree(buf);
782 	return ret;
783 }
784 
785 static ssize_t devkmsg_read(struct file *file, char __user *buf,
786 			    size_t count, loff_t *ppos)
787 {
788 	struct devkmsg_user *user = file->private_data;
789 	char *outbuf = &user->pbufs.outbuf[0];
790 	struct printk_message pmsg = {
791 		.pbufs = &user->pbufs,
792 	};
793 	ssize_t ret;
794 
795 	if (!user)
796 		return -EBADF;
797 
798 	ret = mutex_lock_interruptible(&user->lock);
799 	if (ret)
800 		return ret;
801 
802 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
803 		if (file->f_flags & O_NONBLOCK) {
804 			ret = -EAGAIN;
805 			goto out;
806 		}
807 
808 		/*
809 		 * Guarantee this task is visible on the waitqueue before
810 		 * checking the wake condition.
811 		 *
812 		 * The full memory barrier within set_current_state() of
813 		 * prepare_to_wait_event() pairs with the full memory barrier
814 		 * within wq_has_sleeper().
815 		 *
816 		 * This pairs with __wake_up_klogd:A.
817 		 */
818 		ret = wait_event_interruptible(log_wait,
819 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
820 							false)); /* LMM(devkmsg_read:A) */
821 		if (ret)
822 			goto out;
823 	}
824 
825 	if (pmsg.dropped) {
826 		/* our last seen message is gone, return error and reset */
827 		atomic64_set(&user->seq, pmsg.seq);
828 		ret = -EPIPE;
829 		goto out;
830 	}
831 
832 	atomic64_set(&user->seq, pmsg.seq + 1);
833 
834 	if (pmsg.outbuf_len > count) {
835 		ret = -EINVAL;
836 		goto out;
837 	}
838 
839 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
840 		ret = -EFAULT;
841 		goto out;
842 	}
843 	ret = pmsg.outbuf_len;
844 out:
845 	mutex_unlock(&user->lock);
846 	return ret;
847 }
848 
849 /*
850  * Be careful when modifying this function!!!
851  *
852  * Only few operations are supported because the device works only with the
853  * entire variable length messages (records). Non-standard values are
854  * returned in the other cases and has been this way for quite some time.
855  * User space applications might depend on this behavior.
856  */
857 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
858 {
859 	struct devkmsg_user *user = file->private_data;
860 	loff_t ret = 0;
861 
862 	if (!user)
863 		return -EBADF;
864 	if (offset)
865 		return -ESPIPE;
866 
867 	switch (whence) {
868 	case SEEK_SET:
869 		/* the first record */
870 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
871 		break;
872 	case SEEK_DATA:
873 		/*
874 		 * The first record after the last SYSLOG_ACTION_CLEAR,
875 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
876 		 * changes no global state, and does not clear anything.
877 		 */
878 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
879 		break;
880 	case SEEK_END:
881 		/* after the last record */
882 		atomic64_set(&user->seq, prb_next_seq(prb));
883 		break;
884 	default:
885 		ret = -EINVAL;
886 	}
887 	return ret;
888 }
889 
890 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
891 {
892 	struct devkmsg_user *user = file->private_data;
893 	struct printk_info info;
894 	__poll_t ret = 0;
895 
896 	if (!user)
897 		return EPOLLERR|EPOLLNVAL;
898 
899 	poll_wait(file, &log_wait, wait);
900 
901 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
902 		/* return error when data has vanished underneath us */
903 		if (info.seq != atomic64_read(&user->seq))
904 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
905 		else
906 			ret = EPOLLIN|EPOLLRDNORM;
907 	}
908 
909 	return ret;
910 }
911 
912 static int devkmsg_open(struct inode *inode, struct file *file)
913 {
914 	struct devkmsg_user *user;
915 	int err;
916 
917 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
918 		return -EPERM;
919 
920 	/* write-only does not need any file context */
921 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
922 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
923 					       SYSLOG_FROM_READER);
924 		if (err)
925 			return err;
926 	}
927 
928 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
929 	if (!user)
930 		return -ENOMEM;
931 
932 	ratelimit_default_init(&user->rs);
933 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
934 
935 	mutex_init(&user->lock);
936 
937 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
938 
939 	file->private_data = user;
940 	return 0;
941 }
942 
943 static int devkmsg_release(struct inode *inode, struct file *file)
944 {
945 	struct devkmsg_user *user = file->private_data;
946 
947 	if (!user)
948 		return 0;
949 
950 	ratelimit_state_exit(&user->rs);
951 
952 	mutex_destroy(&user->lock);
953 	kvfree(user);
954 	return 0;
955 }
956 
957 const struct file_operations kmsg_fops = {
958 	.open = devkmsg_open,
959 	.read = devkmsg_read,
960 	.write_iter = devkmsg_write,
961 	.llseek = devkmsg_llseek,
962 	.poll = devkmsg_poll,
963 	.release = devkmsg_release,
964 };
965 
966 #ifdef CONFIG_CRASH_CORE
967 /*
968  * This appends the listed symbols to /proc/vmcore
969  *
970  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
971  * obtain access to symbols that are otherwise very difficult to locate.  These
972  * symbols are specifically used so that utilities can access and extract the
973  * dmesg log from a vmcore file after a crash.
974  */
975 void log_buf_vmcoreinfo_setup(void)
976 {
977 	struct dev_printk_info *dev_info = NULL;
978 
979 	VMCOREINFO_SYMBOL(prb);
980 	VMCOREINFO_SYMBOL(printk_rb_static);
981 	VMCOREINFO_SYMBOL(clear_seq);
982 
983 	/*
984 	 * Export struct size and field offsets. User space tools can
985 	 * parse it and detect any changes to structure down the line.
986 	 */
987 
988 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
989 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
990 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
991 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
992 
993 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
994 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
995 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
996 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
997 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
998 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
999 
1000 	VMCOREINFO_STRUCT_SIZE(prb_desc);
1001 	VMCOREINFO_OFFSET(prb_desc, state_var);
1002 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1003 
1004 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1005 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1006 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1007 
1008 	VMCOREINFO_STRUCT_SIZE(printk_info);
1009 	VMCOREINFO_OFFSET(printk_info, seq);
1010 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1011 	VMCOREINFO_OFFSET(printk_info, text_len);
1012 	VMCOREINFO_OFFSET(printk_info, caller_id);
1013 	VMCOREINFO_OFFSET(printk_info, dev_info);
1014 
1015 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1016 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1017 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1018 	VMCOREINFO_OFFSET(dev_printk_info, device);
1019 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1020 
1021 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1022 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1023 	VMCOREINFO_OFFSET(prb_data_ring, data);
1024 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1025 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1026 
1027 	VMCOREINFO_SIZE(atomic_long_t);
1028 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1029 
1030 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1031 	VMCOREINFO_OFFSET(latched_seq, val);
1032 }
1033 #endif
1034 
1035 /* requested log_buf_len from kernel cmdline */
1036 static unsigned long __initdata new_log_buf_len;
1037 
1038 /* we practice scaling the ring buffer by powers of 2 */
1039 static void __init log_buf_len_update(u64 size)
1040 {
1041 	if (size > (u64)LOG_BUF_LEN_MAX) {
1042 		size = (u64)LOG_BUF_LEN_MAX;
1043 		pr_err("log_buf over 2G is not supported.\n");
1044 	}
1045 
1046 	if (size)
1047 		size = roundup_pow_of_two(size);
1048 	if (size > log_buf_len)
1049 		new_log_buf_len = (unsigned long)size;
1050 }
1051 
1052 /* save requested log_buf_len since it's too early to process it */
1053 static int __init log_buf_len_setup(char *str)
1054 {
1055 	u64 size;
1056 
1057 	if (!str)
1058 		return -EINVAL;
1059 
1060 	size = memparse(str, &str);
1061 
1062 	log_buf_len_update(size);
1063 
1064 	return 0;
1065 }
1066 early_param("log_buf_len", log_buf_len_setup);
1067 
1068 #ifdef CONFIG_SMP
1069 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1070 
1071 static void __init log_buf_add_cpu(void)
1072 {
1073 	unsigned int cpu_extra;
1074 
1075 	/*
1076 	 * archs should set up cpu_possible_bits properly with
1077 	 * set_cpu_possible() after setup_arch() but just in
1078 	 * case lets ensure this is valid.
1079 	 */
1080 	if (num_possible_cpus() == 1)
1081 		return;
1082 
1083 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1084 
1085 	/* by default this will only continue through for large > 64 CPUs */
1086 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1087 		return;
1088 
1089 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1090 		__LOG_CPU_MAX_BUF_LEN);
1091 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1092 		cpu_extra);
1093 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1094 
1095 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1096 }
1097 #else /* !CONFIG_SMP */
1098 static inline void log_buf_add_cpu(void) {}
1099 #endif /* CONFIG_SMP */
1100 
1101 static void __init set_percpu_data_ready(void)
1102 {
1103 	__printk_percpu_data_ready = true;
1104 }
1105 
1106 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1107 				     struct printk_record *r)
1108 {
1109 	struct prb_reserved_entry e;
1110 	struct printk_record dest_r;
1111 
1112 	prb_rec_init_wr(&dest_r, r->info->text_len);
1113 
1114 	if (!prb_reserve(&e, rb, &dest_r))
1115 		return 0;
1116 
1117 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1118 	dest_r.info->text_len = r->info->text_len;
1119 	dest_r.info->facility = r->info->facility;
1120 	dest_r.info->level = r->info->level;
1121 	dest_r.info->flags = r->info->flags;
1122 	dest_r.info->ts_nsec = r->info->ts_nsec;
1123 	dest_r.info->caller_id = r->info->caller_id;
1124 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1125 
1126 	prb_final_commit(&e);
1127 
1128 	return prb_record_text_space(&e);
1129 }
1130 
1131 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1132 
1133 void __init setup_log_buf(int early)
1134 {
1135 	struct printk_info *new_infos;
1136 	unsigned int new_descs_count;
1137 	struct prb_desc *new_descs;
1138 	struct printk_info info;
1139 	struct printk_record r;
1140 	unsigned int text_size;
1141 	size_t new_descs_size;
1142 	size_t new_infos_size;
1143 	unsigned long flags;
1144 	char *new_log_buf;
1145 	unsigned int free;
1146 	u64 seq;
1147 
1148 	/*
1149 	 * Some archs call setup_log_buf() multiple times - first is very
1150 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1151 	 * are initialised.
1152 	 */
1153 	if (!early)
1154 		set_percpu_data_ready();
1155 
1156 	if (log_buf != __log_buf)
1157 		return;
1158 
1159 	if (!early && !new_log_buf_len)
1160 		log_buf_add_cpu();
1161 
1162 	if (!new_log_buf_len)
1163 		return;
1164 
1165 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1166 	if (new_descs_count == 0) {
1167 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1168 		return;
1169 	}
1170 
1171 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1172 	if (unlikely(!new_log_buf)) {
1173 		pr_err("log_buf_len: %lu text bytes not available\n",
1174 		       new_log_buf_len);
1175 		return;
1176 	}
1177 
1178 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1179 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1180 	if (unlikely(!new_descs)) {
1181 		pr_err("log_buf_len: %zu desc bytes not available\n",
1182 		       new_descs_size);
1183 		goto err_free_log_buf;
1184 	}
1185 
1186 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1187 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1188 	if (unlikely(!new_infos)) {
1189 		pr_err("log_buf_len: %zu info bytes not available\n",
1190 		       new_infos_size);
1191 		goto err_free_descs;
1192 	}
1193 
1194 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1195 
1196 	prb_init(&printk_rb_dynamic,
1197 		 new_log_buf, ilog2(new_log_buf_len),
1198 		 new_descs, ilog2(new_descs_count),
1199 		 new_infos);
1200 
1201 	local_irq_save(flags);
1202 
1203 	log_buf_len = new_log_buf_len;
1204 	log_buf = new_log_buf;
1205 	new_log_buf_len = 0;
1206 
1207 	free = __LOG_BUF_LEN;
1208 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1209 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1210 		if (text_size > free)
1211 			free = 0;
1212 		else
1213 			free -= text_size;
1214 	}
1215 
1216 	prb = &printk_rb_dynamic;
1217 
1218 	local_irq_restore(flags);
1219 
1220 	/*
1221 	 * Copy any remaining messages that might have appeared from
1222 	 * NMI context after copying but before switching to the
1223 	 * dynamic buffer.
1224 	 */
1225 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1226 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1227 		if (text_size > free)
1228 			free = 0;
1229 		else
1230 			free -= text_size;
1231 	}
1232 
1233 	if (seq != prb_next_seq(&printk_rb_static)) {
1234 		pr_err("dropped %llu messages\n",
1235 		       prb_next_seq(&printk_rb_static) - seq);
1236 	}
1237 
1238 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1239 	pr_info("early log buf free: %u(%u%%)\n",
1240 		free, (free * 100) / __LOG_BUF_LEN);
1241 	return;
1242 
1243 err_free_descs:
1244 	memblock_free(new_descs, new_descs_size);
1245 err_free_log_buf:
1246 	memblock_free(new_log_buf, new_log_buf_len);
1247 }
1248 
1249 static bool __read_mostly ignore_loglevel;
1250 
1251 static int __init ignore_loglevel_setup(char *str)
1252 {
1253 	ignore_loglevel = true;
1254 	pr_info("debug: ignoring loglevel setting.\n");
1255 
1256 	return 0;
1257 }
1258 
1259 early_param("ignore_loglevel", ignore_loglevel_setup);
1260 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1261 MODULE_PARM_DESC(ignore_loglevel,
1262 		 "ignore loglevel setting (prints all kernel messages to the console)");
1263 
1264 static bool suppress_message_printing(int level)
1265 {
1266 	return (level >= console_loglevel && !ignore_loglevel);
1267 }
1268 
1269 #ifdef CONFIG_BOOT_PRINTK_DELAY
1270 
1271 static int boot_delay; /* msecs delay after each printk during bootup */
1272 static unsigned long long loops_per_msec;	/* based on boot_delay */
1273 
1274 static int __init boot_delay_setup(char *str)
1275 {
1276 	unsigned long lpj;
1277 
1278 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1279 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1280 
1281 	get_option(&str, &boot_delay);
1282 	if (boot_delay > 10 * 1000)
1283 		boot_delay = 0;
1284 
1285 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1286 		"HZ: %d, loops_per_msec: %llu\n",
1287 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1288 	return 0;
1289 }
1290 early_param("boot_delay", boot_delay_setup);
1291 
1292 static void boot_delay_msec(int level)
1293 {
1294 	unsigned long long k;
1295 	unsigned long timeout;
1296 
1297 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1298 		|| suppress_message_printing(level)) {
1299 		return;
1300 	}
1301 
1302 	k = (unsigned long long)loops_per_msec * boot_delay;
1303 
1304 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1305 	while (k) {
1306 		k--;
1307 		cpu_relax();
1308 		/*
1309 		 * use (volatile) jiffies to prevent
1310 		 * compiler reduction; loop termination via jiffies
1311 		 * is secondary and may or may not happen.
1312 		 */
1313 		if (time_after(jiffies, timeout))
1314 			break;
1315 		touch_nmi_watchdog();
1316 	}
1317 }
1318 #else
1319 static inline void boot_delay_msec(int level)
1320 {
1321 }
1322 #endif
1323 
1324 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1325 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1326 
1327 static size_t print_syslog(unsigned int level, char *buf)
1328 {
1329 	return sprintf(buf, "<%u>", level);
1330 }
1331 
1332 static size_t print_time(u64 ts, char *buf)
1333 {
1334 	unsigned long rem_nsec = do_div(ts, 1000000000);
1335 
1336 	return sprintf(buf, "[%5lu.%06lu]",
1337 		       (unsigned long)ts, rem_nsec / 1000);
1338 }
1339 
1340 #ifdef CONFIG_PRINTK_CALLER
1341 static size_t print_caller(u32 id, char *buf)
1342 {
1343 	char caller[12];
1344 
1345 	snprintf(caller, sizeof(caller), "%c%u",
1346 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1347 	return sprintf(buf, "[%6s]", caller);
1348 }
1349 #else
1350 #define print_caller(id, buf) 0
1351 #endif
1352 
1353 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1354 				bool time, char *buf)
1355 {
1356 	size_t len = 0;
1357 
1358 	if (syslog)
1359 		len = print_syslog((info->facility << 3) | info->level, buf);
1360 
1361 	if (time)
1362 		len += print_time(info->ts_nsec, buf + len);
1363 
1364 	len += print_caller(info->caller_id, buf + len);
1365 
1366 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1367 		buf[len++] = ' ';
1368 		buf[len] = '\0';
1369 	}
1370 
1371 	return len;
1372 }
1373 
1374 /*
1375  * Prepare the record for printing. The text is shifted within the given
1376  * buffer to avoid a need for another one. The following operations are
1377  * done:
1378  *
1379  *   - Add prefix for each line.
1380  *   - Drop truncated lines that no longer fit into the buffer.
1381  *   - Add the trailing newline that has been removed in vprintk_store().
1382  *   - Add a string terminator.
1383  *
1384  * Since the produced string is always terminated, the maximum possible
1385  * return value is @r->text_buf_size - 1;
1386  *
1387  * Return: The length of the updated/prepared text, including the added
1388  * prefixes and the newline. The terminator is not counted. The dropped
1389  * line(s) are not counted.
1390  */
1391 static size_t record_print_text(struct printk_record *r, bool syslog,
1392 				bool time)
1393 {
1394 	size_t text_len = r->info->text_len;
1395 	size_t buf_size = r->text_buf_size;
1396 	char *text = r->text_buf;
1397 	char prefix[PRINTK_PREFIX_MAX];
1398 	bool truncated = false;
1399 	size_t prefix_len;
1400 	size_t line_len;
1401 	size_t len = 0;
1402 	char *next;
1403 
1404 	/*
1405 	 * If the message was truncated because the buffer was not large
1406 	 * enough, treat the available text as if it were the full text.
1407 	 */
1408 	if (text_len > buf_size)
1409 		text_len = buf_size;
1410 
1411 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1412 
1413 	/*
1414 	 * @text_len: bytes of unprocessed text
1415 	 * @line_len: bytes of current line _without_ newline
1416 	 * @text:     pointer to beginning of current line
1417 	 * @len:      number of bytes prepared in r->text_buf
1418 	 */
1419 	for (;;) {
1420 		next = memchr(text, '\n', text_len);
1421 		if (next) {
1422 			line_len = next - text;
1423 		} else {
1424 			/* Drop truncated line(s). */
1425 			if (truncated)
1426 				break;
1427 			line_len = text_len;
1428 		}
1429 
1430 		/*
1431 		 * Truncate the text if there is not enough space to add the
1432 		 * prefix and a trailing newline and a terminator.
1433 		 */
1434 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1435 			/* Drop even the current line if no space. */
1436 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1437 				break;
1438 
1439 			text_len = buf_size - len - prefix_len - 1 - 1;
1440 			truncated = true;
1441 		}
1442 
1443 		memmove(text + prefix_len, text, text_len);
1444 		memcpy(text, prefix, prefix_len);
1445 
1446 		/*
1447 		 * Increment the prepared length to include the text and
1448 		 * prefix that were just moved+copied. Also increment for the
1449 		 * newline at the end of this line. If this is the last line,
1450 		 * there is no newline, but it will be added immediately below.
1451 		 */
1452 		len += prefix_len + line_len + 1;
1453 		if (text_len == line_len) {
1454 			/*
1455 			 * This is the last line. Add the trailing newline
1456 			 * removed in vprintk_store().
1457 			 */
1458 			text[prefix_len + line_len] = '\n';
1459 			break;
1460 		}
1461 
1462 		/*
1463 		 * Advance beyond the added prefix and the related line with
1464 		 * its newline.
1465 		 */
1466 		text += prefix_len + line_len + 1;
1467 
1468 		/*
1469 		 * The remaining text has only decreased by the line with its
1470 		 * newline.
1471 		 *
1472 		 * Note that @text_len can become zero. It happens when @text
1473 		 * ended with a newline (either due to truncation or the
1474 		 * original string ending with "\n\n"). The loop is correctly
1475 		 * repeated and (if not truncated) an empty line with a prefix
1476 		 * will be prepared.
1477 		 */
1478 		text_len -= line_len + 1;
1479 	}
1480 
1481 	/*
1482 	 * If a buffer was provided, it will be terminated. Space for the
1483 	 * string terminator is guaranteed to be available. The terminator is
1484 	 * not counted in the return value.
1485 	 */
1486 	if (buf_size > 0)
1487 		r->text_buf[len] = 0;
1488 
1489 	return len;
1490 }
1491 
1492 static size_t get_record_print_text_size(struct printk_info *info,
1493 					 unsigned int line_count,
1494 					 bool syslog, bool time)
1495 {
1496 	char prefix[PRINTK_PREFIX_MAX];
1497 	size_t prefix_len;
1498 
1499 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1500 
1501 	/*
1502 	 * Each line will be preceded with a prefix. The intermediate
1503 	 * newlines are already within the text, but a final trailing
1504 	 * newline will be added.
1505 	 */
1506 	return ((prefix_len * line_count) + info->text_len + 1);
1507 }
1508 
1509 /*
1510  * Beginning with @start_seq, find the first record where it and all following
1511  * records up to (but not including) @max_seq fit into @size.
1512  *
1513  * @max_seq is simply an upper bound and does not need to exist. If the caller
1514  * does not require an upper bound, -1 can be used for @max_seq.
1515  */
1516 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1517 				  bool syslog, bool time)
1518 {
1519 	struct printk_info info;
1520 	unsigned int line_count;
1521 	size_t len = 0;
1522 	u64 seq;
1523 
1524 	/* Determine the size of the records up to @max_seq. */
1525 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1526 		if (info.seq >= max_seq)
1527 			break;
1528 		len += get_record_print_text_size(&info, line_count, syslog, time);
1529 	}
1530 
1531 	/*
1532 	 * Adjust the upper bound for the next loop to avoid subtracting
1533 	 * lengths that were never added.
1534 	 */
1535 	if (seq < max_seq)
1536 		max_seq = seq;
1537 
1538 	/*
1539 	 * Move first record forward until length fits into the buffer. Ignore
1540 	 * newest messages that were not counted in the above cycle. Messages
1541 	 * might appear and get lost in the meantime. This is a best effort
1542 	 * that prevents an infinite loop that could occur with a retry.
1543 	 */
1544 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1545 		if (len <= size || info.seq >= max_seq)
1546 			break;
1547 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1548 	}
1549 
1550 	return seq;
1551 }
1552 
1553 /* The caller is responsible for making sure @size is greater than 0. */
1554 static int syslog_print(char __user *buf, int size)
1555 {
1556 	struct printk_info info;
1557 	struct printk_record r;
1558 	char *text;
1559 	int len = 0;
1560 	u64 seq;
1561 
1562 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1563 	if (!text)
1564 		return -ENOMEM;
1565 
1566 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1567 
1568 	mutex_lock(&syslog_lock);
1569 
1570 	/*
1571 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1572 	 * change while waiting.
1573 	 */
1574 	do {
1575 		seq = syslog_seq;
1576 
1577 		mutex_unlock(&syslog_lock);
1578 		/*
1579 		 * Guarantee this task is visible on the waitqueue before
1580 		 * checking the wake condition.
1581 		 *
1582 		 * The full memory barrier within set_current_state() of
1583 		 * prepare_to_wait_event() pairs with the full memory barrier
1584 		 * within wq_has_sleeper().
1585 		 *
1586 		 * This pairs with __wake_up_klogd:A.
1587 		 */
1588 		len = wait_event_interruptible(log_wait,
1589 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1590 		mutex_lock(&syslog_lock);
1591 
1592 		if (len)
1593 			goto out;
1594 	} while (syslog_seq != seq);
1595 
1596 	/*
1597 	 * Copy records that fit into the buffer. The above cycle makes sure
1598 	 * that the first record is always available.
1599 	 */
1600 	do {
1601 		size_t n;
1602 		size_t skip;
1603 		int err;
1604 
1605 		if (!prb_read_valid(prb, syslog_seq, &r))
1606 			break;
1607 
1608 		if (r.info->seq != syslog_seq) {
1609 			/* message is gone, move to next valid one */
1610 			syslog_seq = r.info->seq;
1611 			syslog_partial = 0;
1612 		}
1613 
1614 		/*
1615 		 * To keep reading/counting partial line consistent,
1616 		 * use printk_time value as of the beginning of a line.
1617 		 */
1618 		if (!syslog_partial)
1619 			syslog_time = printk_time;
1620 
1621 		skip = syslog_partial;
1622 		n = record_print_text(&r, true, syslog_time);
1623 		if (n - syslog_partial <= size) {
1624 			/* message fits into buffer, move forward */
1625 			syslog_seq = r.info->seq + 1;
1626 			n -= syslog_partial;
1627 			syslog_partial = 0;
1628 		} else if (!len){
1629 			/* partial read(), remember position */
1630 			n = size;
1631 			syslog_partial += n;
1632 		} else
1633 			n = 0;
1634 
1635 		if (!n)
1636 			break;
1637 
1638 		mutex_unlock(&syslog_lock);
1639 		err = copy_to_user(buf, text + skip, n);
1640 		mutex_lock(&syslog_lock);
1641 
1642 		if (err) {
1643 			if (!len)
1644 				len = -EFAULT;
1645 			break;
1646 		}
1647 
1648 		len += n;
1649 		size -= n;
1650 		buf += n;
1651 	} while (size);
1652 out:
1653 	mutex_unlock(&syslog_lock);
1654 	kfree(text);
1655 	return len;
1656 }
1657 
1658 static int syslog_print_all(char __user *buf, int size, bool clear)
1659 {
1660 	struct printk_info info;
1661 	struct printk_record r;
1662 	char *text;
1663 	int len = 0;
1664 	u64 seq;
1665 	bool time;
1666 
1667 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1668 	if (!text)
1669 		return -ENOMEM;
1670 
1671 	time = printk_time;
1672 	/*
1673 	 * Find first record that fits, including all following records,
1674 	 * into the user-provided buffer for this dump.
1675 	 */
1676 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1677 				     size, true, time);
1678 
1679 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1680 
1681 	len = 0;
1682 	prb_for_each_record(seq, prb, seq, &r) {
1683 		int textlen;
1684 
1685 		textlen = record_print_text(&r, true, time);
1686 
1687 		if (len + textlen > size) {
1688 			seq--;
1689 			break;
1690 		}
1691 
1692 		if (copy_to_user(buf + len, text, textlen))
1693 			len = -EFAULT;
1694 		else
1695 			len += textlen;
1696 
1697 		if (len < 0)
1698 			break;
1699 	}
1700 
1701 	if (clear) {
1702 		mutex_lock(&syslog_lock);
1703 		latched_seq_write(&clear_seq, seq);
1704 		mutex_unlock(&syslog_lock);
1705 	}
1706 
1707 	kfree(text);
1708 	return len;
1709 }
1710 
1711 static void syslog_clear(void)
1712 {
1713 	mutex_lock(&syslog_lock);
1714 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1715 	mutex_unlock(&syslog_lock);
1716 }
1717 
1718 int do_syslog(int type, char __user *buf, int len, int source)
1719 {
1720 	struct printk_info info;
1721 	bool clear = false;
1722 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1723 	int error;
1724 
1725 	error = check_syslog_permissions(type, source);
1726 	if (error)
1727 		return error;
1728 
1729 	switch (type) {
1730 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1731 		break;
1732 	case SYSLOG_ACTION_OPEN:	/* Open log */
1733 		break;
1734 	case SYSLOG_ACTION_READ:	/* Read from log */
1735 		if (!buf || len < 0)
1736 			return -EINVAL;
1737 		if (!len)
1738 			return 0;
1739 		if (!access_ok(buf, len))
1740 			return -EFAULT;
1741 		error = syslog_print(buf, len);
1742 		break;
1743 	/* Read/clear last kernel messages */
1744 	case SYSLOG_ACTION_READ_CLEAR:
1745 		clear = true;
1746 		fallthrough;
1747 	/* Read last kernel messages */
1748 	case SYSLOG_ACTION_READ_ALL:
1749 		if (!buf || len < 0)
1750 			return -EINVAL;
1751 		if (!len)
1752 			return 0;
1753 		if (!access_ok(buf, len))
1754 			return -EFAULT;
1755 		error = syslog_print_all(buf, len, clear);
1756 		break;
1757 	/* Clear ring buffer */
1758 	case SYSLOG_ACTION_CLEAR:
1759 		syslog_clear();
1760 		break;
1761 	/* Disable logging to console */
1762 	case SYSLOG_ACTION_CONSOLE_OFF:
1763 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1764 			saved_console_loglevel = console_loglevel;
1765 		console_loglevel = minimum_console_loglevel;
1766 		break;
1767 	/* Enable logging to console */
1768 	case SYSLOG_ACTION_CONSOLE_ON:
1769 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1770 			console_loglevel = saved_console_loglevel;
1771 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1772 		}
1773 		break;
1774 	/* Set level of messages printed to console */
1775 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1776 		if (len < 1 || len > 8)
1777 			return -EINVAL;
1778 		if (len < minimum_console_loglevel)
1779 			len = minimum_console_loglevel;
1780 		console_loglevel = len;
1781 		/* Implicitly re-enable logging to console */
1782 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1783 		break;
1784 	/* Number of chars in the log buffer */
1785 	case SYSLOG_ACTION_SIZE_UNREAD:
1786 		mutex_lock(&syslog_lock);
1787 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1788 			/* No unread messages. */
1789 			mutex_unlock(&syslog_lock);
1790 			return 0;
1791 		}
1792 		if (info.seq != syslog_seq) {
1793 			/* messages are gone, move to first one */
1794 			syslog_seq = info.seq;
1795 			syslog_partial = 0;
1796 		}
1797 		if (source == SYSLOG_FROM_PROC) {
1798 			/*
1799 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1800 			 * for pending data, not the size; return the count of
1801 			 * records, not the length.
1802 			 */
1803 			error = prb_next_seq(prb) - syslog_seq;
1804 		} else {
1805 			bool time = syslog_partial ? syslog_time : printk_time;
1806 			unsigned int line_count;
1807 			u64 seq;
1808 
1809 			prb_for_each_info(syslog_seq, prb, seq, &info,
1810 					  &line_count) {
1811 				error += get_record_print_text_size(&info, line_count,
1812 								    true, time);
1813 				time = printk_time;
1814 			}
1815 			error -= syslog_partial;
1816 		}
1817 		mutex_unlock(&syslog_lock);
1818 		break;
1819 	/* Size of the log buffer */
1820 	case SYSLOG_ACTION_SIZE_BUFFER:
1821 		error = log_buf_len;
1822 		break;
1823 	default:
1824 		error = -EINVAL;
1825 		break;
1826 	}
1827 
1828 	return error;
1829 }
1830 
1831 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1832 {
1833 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1834 }
1835 
1836 /*
1837  * Special console_lock variants that help to reduce the risk of soft-lockups.
1838  * They allow to pass console_lock to another printk() call using a busy wait.
1839  */
1840 
1841 #ifdef CONFIG_LOCKDEP
1842 static struct lockdep_map console_owner_dep_map = {
1843 	.name = "console_owner"
1844 };
1845 #endif
1846 
1847 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1848 static struct task_struct *console_owner;
1849 static bool console_waiter;
1850 
1851 /**
1852  * console_lock_spinning_enable - mark beginning of code where another
1853  *	thread might safely busy wait
1854  *
1855  * This basically converts console_lock into a spinlock. This marks
1856  * the section where the console_lock owner can not sleep, because
1857  * there may be a waiter spinning (like a spinlock). Also it must be
1858  * ready to hand over the lock at the end of the section.
1859  */
1860 static void console_lock_spinning_enable(void)
1861 {
1862 	raw_spin_lock(&console_owner_lock);
1863 	console_owner = current;
1864 	raw_spin_unlock(&console_owner_lock);
1865 
1866 	/* The waiter may spin on us after setting console_owner */
1867 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1868 }
1869 
1870 /**
1871  * console_lock_spinning_disable_and_check - mark end of code where another
1872  *	thread was able to busy wait and check if there is a waiter
1873  * @cookie: cookie returned from console_srcu_read_lock()
1874  *
1875  * This is called at the end of the section where spinning is allowed.
1876  * It has two functions. First, it is a signal that it is no longer
1877  * safe to start busy waiting for the lock. Second, it checks if
1878  * there is a busy waiter and passes the lock rights to her.
1879  *
1880  * Important: Callers lose both the console_lock and the SRCU read lock if
1881  *	there was a busy waiter. They must not touch items synchronized by
1882  *	console_lock or SRCU read lock in this case.
1883  *
1884  * Return: 1 if the lock rights were passed, 0 otherwise.
1885  */
1886 static int console_lock_spinning_disable_and_check(int cookie)
1887 {
1888 	int waiter;
1889 
1890 	raw_spin_lock(&console_owner_lock);
1891 	waiter = READ_ONCE(console_waiter);
1892 	console_owner = NULL;
1893 	raw_spin_unlock(&console_owner_lock);
1894 
1895 	if (!waiter) {
1896 		spin_release(&console_owner_dep_map, _THIS_IP_);
1897 		return 0;
1898 	}
1899 
1900 	/* The waiter is now free to continue */
1901 	WRITE_ONCE(console_waiter, false);
1902 
1903 	spin_release(&console_owner_dep_map, _THIS_IP_);
1904 
1905 	/*
1906 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1907 	 * releasing the console_lock.
1908 	 */
1909 	console_srcu_read_unlock(cookie);
1910 
1911 	/*
1912 	 * Hand off console_lock to waiter. The waiter will perform
1913 	 * the up(). After this, the waiter is the console_lock owner.
1914 	 */
1915 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1916 	return 1;
1917 }
1918 
1919 /**
1920  * console_trylock_spinning - try to get console_lock by busy waiting
1921  *
1922  * This allows to busy wait for the console_lock when the current
1923  * owner is running in specially marked sections. It means that
1924  * the current owner is running and cannot reschedule until it
1925  * is ready to lose the lock.
1926  *
1927  * Return: 1 if we got the lock, 0 othrewise
1928  */
1929 static int console_trylock_spinning(void)
1930 {
1931 	struct task_struct *owner = NULL;
1932 	bool waiter;
1933 	bool spin = false;
1934 	unsigned long flags;
1935 
1936 	if (console_trylock())
1937 		return 1;
1938 
1939 	/*
1940 	 * It's unsafe to spin once a panic has begun. If we are the
1941 	 * panic CPU, we may have already halted the owner of the
1942 	 * console_sem. If we are not the panic CPU, then we should
1943 	 * avoid taking console_sem, so the panic CPU has a better
1944 	 * chance of cleanly acquiring it later.
1945 	 */
1946 	if (panic_in_progress())
1947 		return 0;
1948 
1949 	printk_safe_enter_irqsave(flags);
1950 
1951 	raw_spin_lock(&console_owner_lock);
1952 	owner = READ_ONCE(console_owner);
1953 	waiter = READ_ONCE(console_waiter);
1954 	if (!waiter && owner && owner != current) {
1955 		WRITE_ONCE(console_waiter, true);
1956 		spin = true;
1957 	}
1958 	raw_spin_unlock(&console_owner_lock);
1959 
1960 	/*
1961 	 * If there is an active printk() writing to the
1962 	 * consoles, instead of having it write our data too,
1963 	 * see if we can offload that load from the active
1964 	 * printer, and do some printing ourselves.
1965 	 * Go into a spin only if there isn't already a waiter
1966 	 * spinning, and there is an active printer, and
1967 	 * that active printer isn't us (recursive printk?).
1968 	 */
1969 	if (!spin) {
1970 		printk_safe_exit_irqrestore(flags);
1971 		return 0;
1972 	}
1973 
1974 	/* We spin waiting for the owner to release us */
1975 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1976 	/* Owner will clear console_waiter on hand off */
1977 	while (READ_ONCE(console_waiter))
1978 		cpu_relax();
1979 	spin_release(&console_owner_dep_map, _THIS_IP_);
1980 
1981 	printk_safe_exit_irqrestore(flags);
1982 	/*
1983 	 * The owner passed the console lock to us.
1984 	 * Since we did not spin on console lock, annotate
1985 	 * this as a trylock. Otherwise lockdep will
1986 	 * complain.
1987 	 */
1988 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1989 
1990 	return 1;
1991 }
1992 
1993 /*
1994  * Recursion is tracked separately on each CPU. If NMIs are supported, an
1995  * additional NMI context per CPU is also separately tracked. Until per-CPU
1996  * is available, a separate "early tracking" is performed.
1997  */
1998 static DEFINE_PER_CPU(u8, printk_count);
1999 static u8 printk_count_early;
2000 #ifdef CONFIG_HAVE_NMI
2001 static DEFINE_PER_CPU(u8, printk_count_nmi);
2002 static u8 printk_count_nmi_early;
2003 #endif
2004 
2005 /*
2006  * Recursion is limited to keep the output sane. printk() should not require
2007  * more than 1 level of recursion (allowing, for example, printk() to trigger
2008  * a WARN), but a higher value is used in case some printk-internal errors
2009  * exist, such as the ringbuffer validation checks failing.
2010  */
2011 #define PRINTK_MAX_RECURSION 3
2012 
2013 /*
2014  * Return a pointer to the dedicated counter for the CPU+context of the
2015  * caller.
2016  */
2017 static u8 *__printk_recursion_counter(void)
2018 {
2019 #ifdef CONFIG_HAVE_NMI
2020 	if (in_nmi()) {
2021 		if (printk_percpu_data_ready())
2022 			return this_cpu_ptr(&printk_count_nmi);
2023 		return &printk_count_nmi_early;
2024 	}
2025 #endif
2026 	if (printk_percpu_data_ready())
2027 		return this_cpu_ptr(&printk_count);
2028 	return &printk_count_early;
2029 }
2030 
2031 /*
2032  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2033  * The caller must check the boolean return value to see if the recursion is
2034  * allowed. On failure, interrupts are not disabled.
2035  *
2036  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2037  * that is passed to printk_exit_irqrestore().
2038  */
2039 #define printk_enter_irqsave(recursion_ptr, flags)	\
2040 ({							\
2041 	bool success = true;				\
2042 							\
2043 	typecheck(u8 *, recursion_ptr);			\
2044 	local_irq_save(flags);				\
2045 	(recursion_ptr) = __printk_recursion_counter();	\
2046 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2047 		local_irq_restore(flags);		\
2048 		success = false;			\
2049 	} else {					\
2050 		(*(recursion_ptr))++;			\
2051 	}						\
2052 	success;					\
2053 })
2054 
2055 /* Exit recursion tracking, restoring interrupts. */
2056 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2057 	do {						\
2058 		typecheck(u8 *, recursion_ptr);		\
2059 		(*(recursion_ptr))--;			\
2060 		local_irq_restore(flags);		\
2061 	} while (0)
2062 
2063 int printk_delay_msec __read_mostly;
2064 
2065 static inline void printk_delay(int level)
2066 {
2067 	boot_delay_msec(level);
2068 
2069 	if (unlikely(printk_delay_msec)) {
2070 		int m = printk_delay_msec;
2071 
2072 		while (m--) {
2073 			mdelay(1);
2074 			touch_nmi_watchdog();
2075 		}
2076 	}
2077 }
2078 
2079 static inline u32 printk_caller_id(void)
2080 {
2081 	return in_task() ? task_pid_nr(current) :
2082 		0x80000000 + smp_processor_id();
2083 }
2084 
2085 /**
2086  * printk_parse_prefix - Parse level and control flags.
2087  *
2088  * @text:     The terminated text message.
2089  * @level:    A pointer to the current level value, will be updated.
2090  * @flags:    A pointer to the current printk_info flags, will be updated.
2091  *
2092  * @level may be NULL if the caller is not interested in the parsed value.
2093  * Otherwise the variable pointed to by @level must be set to
2094  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2095  *
2096  * @flags may be NULL if the caller is not interested in the parsed value.
2097  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2098  * value.
2099  *
2100  * Return: The length of the parsed level and control flags.
2101  */
2102 u16 printk_parse_prefix(const char *text, int *level,
2103 			enum printk_info_flags *flags)
2104 {
2105 	u16 prefix_len = 0;
2106 	int kern_level;
2107 
2108 	while (*text) {
2109 		kern_level = printk_get_level(text);
2110 		if (!kern_level)
2111 			break;
2112 
2113 		switch (kern_level) {
2114 		case '0' ... '7':
2115 			if (level && *level == LOGLEVEL_DEFAULT)
2116 				*level = kern_level - '0';
2117 			break;
2118 		case 'c':	/* KERN_CONT */
2119 			if (flags)
2120 				*flags |= LOG_CONT;
2121 		}
2122 
2123 		prefix_len += 2;
2124 		text += 2;
2125 	}
2126 
2127 	return prefix_len;
2128 }
2129 
2130 __printf(5, 0)
2131 static u16 printk_sprint(char *text, u16 size, int facility,
2132 			 enum printk_info_flags *flags, const char *fmt,
2133 			 va_list args)
2134 {
2135 	u16 text_len;
2136 
2137 	text_len = vscnprintf(text, size, fmt, args);
2138 
2139 	/* Mark and strip a trailing newline. */
2140 	if (text_len && text[text_len - 1] == '\n') {
2141 		text_len--;
2142 		*flags |= LOG_NEWLINE;
2143 	}
2144 
2145 	/* Strip log level and control flags. */
2146 	if (facility == 0) {
2147 		u16 prefix_len;
2148 
2149 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2150 		if (prefix_len) {
2151 			text_len -= prefix_len;
2152 			memmove(text, text + prefix_len, text_len);
2153 		}
2154 	}
2155 
2156 	trace_console(text, text_len);
2157 
2158 	return text_len;
2159 }
2160 
2161 __printf(4, 0)
2162 int vprintk_store(int facility, int level,
2163 		  const struct dev_printk_info *dev_info,
2164 		  const char *fmt, va_list args)
2165 {
2166 	struct prb_reserved_entry e;
2167 	enum printk_info_flags flags = 0;
2168 	struct printk_record r;
2169 	unsigned long irqflags;
2170 	u16 trunc_msg_len = 0;
2171 	char prefix_buf[8];
2172 	u8 *recursion_ptr;
2173 	u16 reserve_size;
2174 	va_list args2;
2175 	u32 caller_id;
2176 	u16 text_len;
2177 	int ret = 0;
2178 	u64 ts_nsec;
2179 
2180 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2181 		return 0;
2182 
2183 	/*
2184 	 * Since the duration of printk() can vary depending on the message
2185 	 * and state of the ringbuffer, grab the timestamp now so that it is
2186 	 * close to the call of printk(). This provides a more deterministic
2187 	 * timestamp with respect to the caller.
2188 	 */
2189 	ts_nsec = local_clock();
2190 
2191 	caller_id = printk_caller_id();
2192 
2193 	/*
2194 	 * The sprintf needs to come first since the syslog prefix might be
2195 	 * passed in as a parameter. An extra byte must be reserved so that
2196 	 * later the vscnprintf() into the reserved buffer has room for the
2197 	 * terminating '\0', which is not counted by vsnprintf().
2198 	 */
2199 	va_copy(args2, args);
2200 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2201 	va_end(args2);
2202 
2203 	if (reserve_size > PRINTKRB_RECORD_MAX)
2204 		reserve_size = PRINTKRB_RECORD_MAX;
2205 
2206 	/* Extract log level or control flags. */
2207 	if (facility == 0)
2208 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2209 
2210 	if (level == LOGLEVEL_DEFAULT)
2211 		level = default_message_loglevel;
2212 
2213 	if (dev_info)
2214 		flags |= LOG_NEWLINE;
2215 
2216 	if (flags & LOG_CONT) {
2217 		prb_rec_init_wr(&r, reserve_size);
2218 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2219 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2220 						 facility, &flags, fmt, args);
2221 			r.info->text_len += text_len;
2222 
2223 			if (flags & LOG_NEWLINE) {
2224 				r.info->flags |= LOG_NEWLINE;
2225 				prb_final_commit(&e);
2226 			} else {
2227 				prb_commit(&e);
2228 			}
2229 
2230 			ret = text_len;
2231 			goto out;
2232 		}
2233 	}
2234 
2235 	/*
2236 	 * Explicitly initialize the record before every prb_reserve() call.
2237 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2238 	 * structure when they fail.
2239 	 */
2240 	prb_rec_init_wr(&r, reserve_size);
2241 	if (!prb_reserve(&e, prb, &r)) {
2242 		/* truncate the message if it is too long for empty buffer */
2243 		truncate_msg(&reserve_size, &trunc_msg_len);
2244 
2245 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2246 		if (!prb_reserve(&e, prb, &r))
2247 			goto out;
2248 	}
2249 
2250 	/* fill message */
2251 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2252 	if (trunc_msg_len)
2253 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2254 	r.info->text_len = text_len + trunc_msg_len;
2255 	r.info->facility = facility;
2256 	r.info->level = level & 7;
2257 	r.info->flags = flags & 0x1f;
2258 	r.info->ts_nsec = ts_nsec;
2259 	r.info->caller_id = caller_id;
2260 	if (dev_info)
2261 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2262 
2263 	/* A message without a trailing newline can be continued. */
2264 	if (!(flags & LOG_NEWLINE))
2265 		prb_commit(&e);
2266 	else
2267 		prb_final_commit(&e);
2268 
2269 	ret = text_len + trunc_msg_len;
2270 out:
2271 	printk_exit_irqrestore(recursion_ptr, irqflags);
2272 	return ret;
2273 }
2274 
2275 asmlinkage int vprintk_emit(int facility, int level,
2276 			    const struct dev_printk_info *dev_info,
2277 			    const char *fmt, va_list args)
2278 {
2279 	int printed_len;
2280 	bool in_sched = false;
2281 
2282 	/* Suppress unimportant messages after panic happens */
2283 	if (unlikely(suppress_printk))
2284 		return 0;
2285 
2286 	if (unlikely(suppress_panic_printk) &&
2287 	    atomic_read(&panic_cpu) != raw_smp_processor_id())
2288 		return 0;
2289 
2290 	if (level == LOGLEVEL_SCHED) {
2291 		level = LOGLEVEL_DEFAULT;
2292 		in_sched = true;
2293 	}
2294 
2295 	printk_delay(level);
2296 
2297 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2298 
2299 	/* If called from the scheduler, we can not call up(). */
2300 	if (!in_sched) {
2301 		/*
2302 		 * The caller may be holding system-critical or
2303 		 * timing-sensitive locks. Disable preemption during
2304 		 * printing of all remaining records to all consoles so that
2305 		 * this context can return as soon as possible. Hopefully
2306 		 * another printk() caller will take over the printing.
2307 		 */
2308 		preempt_disable();
2309 		/*
2310 		 * Try to acquire and then immediately release the console
2311 		 * semaphore. The release will print out buffers. With the
2312 		 * spinning variant, this context tries to take over the
2313 		 * printing from another printing context.
2314 		 */
2315 		if (console_trylock_spinning())
2316 			console_unlock();
2317 		preempt_enable();
2318 	}
2319 
2320 	wake_up_klogd();
2321 	return printed_len;
2322 }
2323 EXPORT_SYMBOL(vprintk_emit);
2324 
2325 int vprintk_default(const char *fmt, va_list args)
2326 {
2327 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2328 }
2329 EXPORT_SYMBOL_GPL(vprintk_default);
2330 
2331 asmlinkage __visible int _printk(const char *fmt, ...)
2332 {
2333 	va_list args;
2334 	int r;
2335 
2336 	va_start(args, fmt);
2337 	r = vprintk(fmt, args);
2338 	va_end(args);
2339 
2340 	return r;
2341 }
2342 EXPORT_SYMBOL(_printk);
2343 
2344 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2345 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2346 
2347 #else /* CONFIG_PRINTK */
2348 
2349 #define printk_time		false
2350 
2351 #define prb_read_valid(rb, seq, r)	false
2352 #define prb_first_valid_seq(rb)		0
2353 #define prb_next_seq(rb)		0
2354 
2355 static u64 syslog_seq;
2356 
2357 static size_t record_print_text(const struct printk_record *r,
2358 				bool syslog, bool time)
2359 {
2360 	return 0;
2361 }
2362 static ssize_t info_print_ext_header(char *buf, size_t size,
2363 				     struct printk_info *info)
2364 {
2365 	return 0;
2366 }
2367 static ssize_t msg_print_ext_body(char *buf, size_t size,
2368 				  char *text, size_t text_len,
2369 				  struct dev_printk_info *dev_info) { return 0; }
2370 static void console_lock_spinning_enable(void) { }
2371 static int console_lock_spinning_disable_and_check(int cookie) { return 0; }
2372 static bool suppress_message_printing(int level) { return false; }
2373 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2374 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2375 
2376 #endif /* CONFIG_PRINTK */
2377 
2378 #ifdef CONFIG_EARLY_PRINTK
2379 struct console *early_console;
2380 
2381 asmlinkage __visible void early_printk(const char *fmt, ...)
2382 {
2383 	va_list ap;
2384 	char buf[512];
2385 	int n;
2386 
2387 	if (!early_console)
2388 		return;
2389 
2390 	va_start(ap, fmt);
2391 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2392 	va_end(ap);
2393 
2394 	early_console->write(early_console, buf, n);
2395 }
2396 #endif
2397 
2398 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2399 {
2400 	if (!user_specified)
2401 		return;
2402 
2403 	/*
2404 	 * @c console was defined by the user on the command line.
2405 	 * Do not clear when added twice also by SPCR or the device tree.
2406 	 */
2407 	c->user_specified = true;
2408 	/* At least one console defined by the user on the command line. */
2409 	console_set_on_cmdline = 1;
2410 }
2411 
2412 static int __add_preferred_console(char *name, int idx, char *options,
2413 				   char *brl_options, bool user_specified)
2414 {
2415 	struct console_cmdline *c;
2416 	int i;
2417 
2418 	/*
2419 	 *	See if this tty is not yet registered, and
2420 	 *	if we have a slot free.
2421 	 */
2422 	for (i = 0, c = console_cmdline;
2423 	     i < MAX_CMDLINECONSOLES && c->name[0];
2424 	     i++, c++) {
2425 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2426 			if (!brl_options)
2427 				preferred_console = i;
2428 			set_user_specified(c, user_specified);
2429 			return 0;
2430 		}
2431 	}
2432 	if (i == MAX_CMDLINECONSOLES)
2433 		return -E2BIG;
2434 	if (!brl_options)
2435 		preferred_console = i;
2436 	strscpy(c->name, name, sizeof(c->name));
2437 	c->options = options;
2438 	set_user_specified(c, user_specified);
2439 	braille_set_options(c, brl_options);
2440 
2441 	c->index = idx;
2442 	return 0;
2443 }
2444 
2445 static int __init console_msg_format_setup(char *str)
2446 {
2447 	if (!strcmp(str, "syslog"))
2448 		console_msg_format = MSG_FORMAT_SYSLOG;
2449 	if (!strcmp(str, "default"))
2450 		console_msg_format = MSG_FORMAT_DEFAULT;
2451 	return 1;
2452 }
2453 __setup("console_msg_format=", console_msg_format_setup);
2454 
2455 /*
2456  * Set up a console.  Called via do_early_param() in init/main.c
2457  * for each "console=" parameter in the boot command line.
2458  */
2459 static int __init console_setup(char *str)
2460 {
2461 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2462 	char *s, *options, *brl_options = NULL;
2463 	int idx;
2464 
2465 	/*
2466 	 * console="" or console=null have been suggested as a way to
2467 	 * disable console output. Use ttynull that has been created
2468 	 * for exactly this purpose.
2469 	 */
2470 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2471 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2472 		return 1;
2473 	}
2474 
2475 	if (_braille_console_setup(&str, &brl_options))
2476 		return 1;
2477 
2478 	/*
2479 	 * Decode str into name, index, options.
2480 	 */
2481 	if (str[0] >= '0' && str[0] <= '9') {
2482 		strcpy(buf, "ttyS");
2483 		strncpy(buf + 4, str, sizeof(buf) - 5);
2484 	} else {
2485 		strncpy(buf, str, sizeof(buf) - 1);
2486 	}
2487 	buf[sizeof(buf) - 1] = 0;
2488 	options = strchr(str, ',');
2489 	if (options)
2490 		*(options++) = 0;
2491 #ifdef __sparc__
2492 	if (!strcmp(str, "ttya"))
2493 		strcpy(buf, "ttyS0");
2494 	if (!strcmp(str, "ttyb"))
2495 		strcpy(buf, "ttyS1");
2496 #endif
2497 	for (s = buf; *s; s++)
2498 		if (isdigit(*s) || *s == ',')
2499 			break;
2500 	idx = simple_strtoul(s, NULL, 10);
2501 	*s = 0;
2502 
2503 	__add_preferred_console(buf, idx, options, brl_options, true);
2504 	return 1;
2505 }
2506 __setup("console=", console_setup);
2507 
2508 /**
2509  * add_preferred_console - add a device to the list of preferred consoles.
2510  * @name: device name
2511  * @idx: device index
2512  * @options: options for this console
2513  *
2514  * The last preferred console added will be used for kernel messages
2515  * and stdin/out/err for init.  Normally this is used by console_setup
2516  * above to handle user-supplied console arguments; however it can also
2517  * be used by arch-specific code either to override the user or more
2518  * commonly to provide a default console (ie from PROM variables) when
2519  * the user has not supplied one.
2520  */
2521 int add_preferred_console(char *name, int idx, char *options)
2522 {
2523 	return __add_preferred_console(name, idx, options, NULL, false);
2524 }
2525 
2526 bool console_suspend_enabled = true;
2527 EXPORT_SYMBOL(console_suspend_enabled);
2528 
2529 static int __init console_suspend_disable(char *str)
2530 {
2531 	console_suspend_enabled = false;
2532 	return 1;
2533 }
2534 __setup("no_console_suspend", console_suspend_disable);
2535 module_param_named(console_suspend, console_suspend_enabled,
2536 		bool, S_IRUGO | S_IWUSR);
2537 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2538 	" and hibernate operations");
2539 
2540 static bool printk_console_no_auto_verbose;
2541 
2542 void console_verbose(void)
2543 {
2544 	if (console_loglevel && !printk_console_no_auto_verbose)
2545 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2546 }
2547 EXPORT_SYMBOL_GPL(console_verbose);
2548 
2549 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2550 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2551 
2552 /**
2553  * suspend_console - suspend the console subsystem
2554  *
2555  * This disables printk() while we go into suspend states
2556  */
2557 void suspend_console(void)
2558 {
2559 	if (!console_suspend_enabled)
2560 		return;
2561 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2562 	pr_flush(1000, true);
2563 	console_lock();
2564 	console_suspended = 1;
2565 	up_console_sem();
2566 }
2567 
2568 void resume_console(void)
2569 {
2570 	if (!console_suspend_enabled)
2571 		return;
2572 	down_console_sem();
2573 	console_suspended = 0;
2574 	console_unlock();
2575 	pr_flush(1000, true);
2576 }
2577 
2578 /**
2579  * console_cpu_notify - print deferred console messages after CPU hotplug
2580  * @cpu: unused
2581  *
2582  * If printk() is called from a CPU that is not online yet, the messages
2583  * will be printed on the console only if there are CON_ANYTIME consoles.
2584  * This function is called when a new CPU comes online (or fails to come
2585  * up) or goes offline.
2586  */
2587 static int console_cpu_notify(unsigned int cpu)
2588 {
2589 	if (!cpuhp_tasks_frozen) {
2590 		/* If trylock fails, someone else is doing the printing */
2591 		if (console_trylock())
2592 			console_unlock();
2593 	}
2594 	return 0;
2595 }
2596 
2597 /**
2598  * console_lock - block the console subsystem from printing
2599  *
2600  * Acquires a lock which guarantees that no consoles will
2601  * be in or enter their write() callback.
2602  *
2603  * Can sleep, returns nothing.
2604  */
2605 void console_lock(void)
2606 {
2607 	might_sleep();
2608 
2609 	down_console_sem();
2610 	if (console_suspended)
2611 		return;
2612 	console_locked = 1;
2613 	console_may_schedule = 1;
2614 }
2615 EXPORT_SYMBOL(console_lock);
2616 
2617 /**
2618  * console_trylock - try to block the console subsystem from printing
2619  *
2620  * Try to acquire a lock which guarantees that no consoles will
2621  * be in or enter their write() callback.
2622  *
2623  * returns 1 on success, and 0 on failure to acquire the lock.
2624  */
2625 int console_trylock(void)
2626 {
2627 	if (down_trylock_console_sem())
2628 		return 0;
2629 	if (console_suspended) {
2630 		up_console_sem();
2631 		return 0;
2632 	}
2633 	console_locked = 1;
2634 	console_may_schedule = 0;
2635 	return 1;
2636 }
2637 EXPORT_SYMBOL(console_trylock);
2638 
2639 int is_console_locked(void)
2640 {
2641 	return console_locked;
2642 }
2643 EXPORT_SYMBOL(is_console_locked);
2644 
2645 /*
2646  * Return true when this CPU should unlock console_sem without pushing all
2647  * messages to the console. This reduces the chance that the console is
2648  * locked when the panic CPU tries to use it.
2649  */
2650 static bool abandon_console_lock_in_panic(void)
2651 {
2652 	if (!panic_in_progress())
2653 		return false;
2654 
2655 	/*
2656 	 * We can use raw_smp_processor_id() here because it is impossible for
2657 	 * the task to be migrated to the panic_cpu, or away from it. If
2658 	 * panic_cpu has already been set, and we're not currently executing on
2659 	 * that CPU, then we never will be.
2660 	 */
2661 	return atomic_read(&panic_cpu) != raw_smp_processor_id();
2662 }
2663 
2664 /*
2665  * Check if the given console is currently capable and allowed to print
2666  * records.
2667  *
2668  * Requires the console_srcu_read_lock.
2669  */
2670 static inline bool console_is_usable(struct console *con)
2671 {
2672 	short flags = console_srcu_read_flags(con);
2673 
2674 	if (!(flags & CON_ENABLED))
2675 		return false;
2676 
2677 	if (!con->write)
2678 		return false;
2679 
2680 	/*
2681 	 * Console drivers may assume that per-cpu resources have been
2682 	 * allocated. So unless they're explicitly marked as being able to
2683 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2684 	 */
2685 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2686 		return false;
2687 
2688 	return true;
2689 }
2690 
2691 static void __console_unlock(void)
2692 {
2693 	console_locked = 0;
2694 	up_console_sem();
2695 }
2696 
2697 /*
2698  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2699  * is achieved by shifting the existing message over and inserting the dropped
2700  * message.
2701  *
2702  * @pmsg is the printk message to prepend.
2703  *
2704  * @dropped is the dropped count to report in the dropped message.
2705  *
2706  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2707  * the dropped message, the message text will be sufficiently truncated.
2708  *
2709  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2710  */
2711 #ifdef CONFIG_PRINTK
2712 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2713 {
2714 	struct printk_buffers *pbufs = pmsg->pbufs;
2715 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2716 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2717 	char *scratchbuf = &pbufs->scratchbuf[0];
2718 	char *outbuf = &pbufs->outbuf[0];
2719 	size_t len;
2720 
2721 	len = scnprintf(scratchbuf, scratchbuf_sz,
2722 		       "** %lu printk messages dropped **\n", dropped);
2723 
2724 	/*
2725 	 * Make sure outbuf is sufficiently large before prepending.
2726 	 * Keep at least the prefix when the message must be truncated.
2727 	 * It is a rather theoretical problem when someone tries to
2728 	 * use a minimalist buffer.
2729 	 */
2730 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2731 		return;
2732 
2733 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2734 		/* Truncate the message, but keep it terminated. */
2735 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2736 		outbuf[pmsg->outbuf_len] = 0;
2737 	}
2738 
2739 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2740 	memcpy(outbuf, scratchbuf, len);
2741 	pmsg->outbuf_len += len;
2742 }
2743 #else
2744 #define console_prepend_dropped(pmsg, dropped)
2745 #endif /* CONFIG_PRINTK */
2746 
2747 /*
2748  * Read and format the specified record (or a later record if the specified
2749  * record is not available).
2750  *
2751  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2752  * struct printk_buffers.
2753  *
2754  * @seq is the record to read and format. If it is not available, the next
2755  * valid record is read.
2756  *
2757  * @is_extended specifies if the message should be formatted for extended
2758  * console output.
2759  *
2760  * @may_supress specifies if records may be skipped based on loglevel.
2761  *
2762  * Returns false if no record is available. Otherwise true and all fields
2763  * of @pmsg are valid. (See the documentation of struct printk_message
2764  * for information about the @pmsg fields.)
2765  */
2766 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2767 				    bool is_extended, bool may_suppress)
2768 {
2769 	static int panic_console_dropped;
2770 
2771 	struct printk_buffers *pbufs = pmsg->pbufs;
2772 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2773 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2774 	char *scratchbuf = &pbufs->scratchbuf[0];
2775 	char *outbuf = &pbufs->outbuf[0];
2776 	struct printk_info info;
2777 	struct printk_record r;
2778 	size_t len = 0;
2779 
2780 	/*
2781 	 * Formatting extended messages requires a separate buffer, so use the
2782 	 * scratch buffer to read in the ringbuffer text.
2783 	 *
2784 	 * Formatting normal messages is done in-place, so read the ringbuffer
2785 	 * text directly into the output buffer.
2786 	 */
2787 	if (is_extended)
2788 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2789 	else
2790 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2791 
2792 	if (!prb_read_valid(prb, seq, &r))
2793 		return false;
2794 
2795 	pmsg->seq = r.info->seq;
2796 	pmsg->dropped = r.info->seq - seq;
2797 
2798 	/*
2799 	 * Check for dropped messages in panic here so that printk
2800 	 * suppression can occur as early as possible if necessary.
2801 	 */
2802 	if (pmsg->dropped &&
2803 	    panic_in_progress() &&
2804 	    panic_console_dropped++ > 10) {
2805 		suppress_panic_printk = 1;
2806 		pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n");
2807 	}
2808 
2809 	/* Skip record that has level above the console loglevel. */
2810 	if (may_suppress && suppress_message_printing(r.info->level))
2811 		goto out;
2812 
2813 	if (is_extended) {
2814 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2815 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2816 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2817 	} else {
2818 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2819 	}
2820 out:
2821 	pmsg->outbuf_len = len;
2822 	return true;
2823 }
2824 
2825 /*
2826  * Print one record for the given console. The record printed is whatever
2827  * record is the next available record for the given console.
2828  *
2829  * @handover will be set to true if a printk waiter has taken over the
2830  * console_lock, in which case the caller is no longer holding both the
2831  * console_lock and the SRCU read lock. Otherwise it is set to false.
2832  *
2833  * @cookie is the cookie from the SRCU read lock.
2834  *
2835  * Returns false if the given console has no next record to print, otherwise
2836  * true.
2837  *
2838  * Requires the console_lock and the SRCU read lock.
2839  */
2840 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2841 {
2842 	static struct printk_buffers pbufs;
2843 
2844 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2845 	char *outbuf = &pbufs.outbuf[0];
2846 	struct printk_message pmsg = {
2847 		.pbufs = &pbufs,
2848 	};
2849 	unsigned long flags;
2850 
2851 	*handover = false;
2852 
2853 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2854 		return false;
2855 
2856 	con->dropped += pmsg.dropped;
2857 
2858 	/* Skip messages of formatted length 0. */
2859 	if (pmsg.outbuf_len == 0) {
2860 		con->seq = pmsg.seq + 1;
2861 		goto skip;
2862 	}
2863 
2864 	if (con->dropped && !is_extended) {
2865 		console_prepend_dropped(&pmsg, con->dropped);
2866 		con->dropped = 0;
2867 	}
2868 
2869 	/*
2870 	 * While actively printing out messages, if another printk()
2871 	 * were to occur on another CPU, it may wait for this one to
2872 	 * finish. This task can not be preempted if there is a
2873 	 * waiter waiting to take over.
2874 	 *
2875 	 * Interrupts are disabled because the hand over to a waiter
2876 	 * must not be interrupted until the hand over is completed
2877 	 * (@console_waiter is cleared).
2878 	 */
2879 	printk_safe_enter_irqsave(flags);
2880 	console_lock_spinning_enable();
2881 
2882 	/* Do not trace print latency. */
2883 	stop_critical_timings();
2884 
2885 	/* Write everything out to the hardware. */
2886 	con->write(con, outbuf, pmsg.outbuf_len);
2887 
2888 	start_critical_timings();
2889 
2890 	con->seq = pmsg.seq + 1;
2891 
2892 	*handover = console_lock_spinning_disable_and_check(cookie);
2893 	printk_safe_exit_irqrestore(flags);
2894 skip:
2895 	return true;
2896 }
2897 
2898 /*
2899  * Print out all remaining records to all consoles.
2900  *
2901  * @do_cond_resched is set by the caller. It can be true only in schedulable
2902  * context.
2903  *
2904  * @next_seq is set to the sequence number after the last available record.
2905  * The value is valid only when this function returns true. It means that all
2906  * usable consoles are completely flushed.
2907  *
2908  * @handover will be set to true if a printk waiter has taken over the
2909  * console_lock, in which case the caller is no longer holding the
2910  * console_lock. Otherwise it is set to false.
2911  *
2912  * Returns true when there was at least one usable console and all messages
2913  * were flushed to all usable consoles. A returned false informs the caller
2914  * that everything was not flushed (either there were no usable consoles or
2915  * another context has taken over printing or it is a panic situation and this
2916  * is not the panic CPU). Regardless the reason, the caller should assume it
2917  * is not useful to immediately try again.
2918  *
2919  * Requires the console_lock.
2920  */
2921 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2922 {
2923 	bool any_usable = false;
2924 	struct console *con;
2925 	bool any_progress;
2926 	int cookie;
2927 
2928 	*next_seq = 0;
2929 	*handover = false;
2930 
2931 	do {
2932 		any_progress = false;
2933 
2934 		cookie = console_srcu_read_lock();
2935 		for_each_console_srcu(con) {
2936 			bool progress;
2937 
2938 			if (!console_is_usable(con))
2939 				continue;
2940 			any_usable = true;
2941 
2942 			progress = console_emit_next_record(con, handover, cookie);
2943 
2944 			/*
2945 			 * If a handover has occurred, the SRCU read lock
2946 			 * is already released.
2947 			 */
2948 			if (*handover)
2949 				return false;
2950 
2951 			/* Track the next of the highest seq flushed. */
2952 			if (con->seq > *next_seq)
2953 				*next_seq = con->seq;
2954 
2955 			if (!progress)
2956 				continue;
2957 			any_progress = true;
2958 
2959 			/* Allow panic_cpu to take over the consoles safely. */
2960 			if (abandon_console_lock_in_panic())
2961 				goto abandon;
2962 
2963 			if (do_cond_resched)
2964 				cond_resched();
2965 		}
2966 		console_srcu_read_unlock(cookie);
2967 	} while (any_progress);
2968 
2969 	return any_usable;
2970 
2971 abandon:
2972 	console_srcu_read_unlock(cookie);
2973 	return false;
2974 }
2975 
2976 /**
2977  * console_unlock - unblock the console subsystem from printing
2978  *
2979  * Releases the console_lock which the caller holds to block printing of
2980  * the console subsystem.
2981  *
2982  * While the console_lock was held, console output may have been buffered
2983  * by printk().  If this is the case, console_unlock(); emits
2984  * the output prior to releasing the lock.
2985  *
2986  * console_unlock(); may be called from any context.
2987  */
2988 void console_unlock(void)
2989 {
2990 	bool do_cond_resched;
2991 	bool handover;
2992 	bool flushed;
2993 	u64 next_seq;
2994 
2995 	if (console_suspended) {
2996 		up_console_sem();
2997 		return;
2998 	}
2999 
3000 	/*
3001 	 * Console drivers are called with interrupts disabled, so
3002 	 * @console_may_schedule should be cleared before; however, we may
3003 	 * end up dumping a lot of lines, for example, if called from
3004 	 * console registration path, and should invoke cond_resched()
3005 	 * between lines if allowable.  Not doing so can cause a very long
3006 	 * scheduling stall on a slow console leading to RCU stall and
3007 	 * softlockup warnings which exacerbate the issue with more
3008 	 * messages practically incapacitating the system. Therefore, create
3009 	 * a local to use for the printing loop.
3010 	 */
3011 	do_cond_resched = console_may_schedule;
3012 
3013 	do {
3014 		console_may_schedule = 0;
3015 
3016 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3017 		if (!handover)
3018 			__console_unlock();
3019 
3020 		/*
3021 		 * Abort if there was a failure to flush all messages to all
3022 		 * usable consoles. Either it is not possible to flush (in
3023 		 * which case it would be an infinite loop of retrying) or
3024 		 * another context has taken over printing.
3025 		 */
3026 		if (!flushed)
3027 			break;
3028 
3029 		/*
3030 		 * Some context may have added new records after
3031 		 * console_flush_all() but before unlocking the console.
3032 		 * Re-check if there is a new record to flush. If the trylock
3033 		 * fails, another context is already handling the printing.
3034 		 */
3035 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3036 }
3037 EXPORT_SYMBOL(console_unlock);
3038 
3039 /**
3040  * console_conditional_schedule - yield the CPU if required
3041  *
3042  * If the console code is currently allowed to sleep, and
3043  * if this CPU should yield the CPU to another task, do
3044  * so here.
3045  *
3046  * Must be called within console_lock();.
3047  */
3048 void __sched console_conditional_schedule(void)
3049 {
3050 	if (console_may_schedule)
3051 		cond_resched();
3052 }
3053 EXPORT_SYMBOL(console_conditional_schedule);
3054 
3055 void console_unblank(void)
3056 {
3057 	struct console *c;
3058 	int cookie;
3059 
3060 	/*
3061 	 * Stop console printing because the unblank() callback may
3062 	 * assume the console is not within its write() callback.
3063 	 *
3064 	 * If @oops_in_progress is set, this may be an atomic context.
3065 	 * In that case, attempt a trylock as best-effort.
3066 	 */
3067 	if (oops_in_progress) {
3068 		if (down_trylock_console_sem() != 0)
3069 			return;
3070 	} else
3071 		console_lock();
3072 
3073 	console_locked = 1;
3074 	console_may_schedule = 0;
3075 
3076 	cookie = console_srcu_read_lock();
3077 	for_each_console_srcu(c) {
3078 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3079 			c->unblank();
3080 	}
3081 	console_srcu_read_unlock(cookie);
3082 
3083 	console_unlock();
3084 
3085 	if (!oops_in_progress)
3086 		pr_flush(1000, true);
3087 }
3088 
3089 /**
3090  * console_flush_on_panic - flush console content on panic
3091  * @mode: flush all messages in buffer or just the pending ones
3092  *
3093  * Immediately output all pending messages no matter what.
3094  */
3095 void console_flush_on_panic(enum con_flush_mode mode)
3096 {
3097 	/*
3098 	 * If someone else is holding the console lock, trylock will fail
3099 	 * and may_schedule may be set.  Ignore and proceed to unlock so
3100 	 * that messages are flushed out.  As this can be called from any
3101 	 * context and we don't want to get preempted while flushing,
3102 	 * ensure may_schedule is cleared.
3103 	 */
3104 	console_trylock();
3105 	console_may_schedule = 0;
3106 
3107 	if (mode == CONSOLE_REPLAY_ALL) {
3108 		struct console *c;
3109 		int cookie;
3110 		u64 seq;
3111 
3112 		seq = prb_first_valid_seq(prb);
3113 
3114 		cookie = console_srcu_read_lock();
3115 		for_each_console_srcu(c) {
3116 			/*
3117 			 * If the above console_trylock() failed, this is an
3118 			 * unsynchronized assignment. But in that case, the
3119 			 * kernel is in "hope and pray" mode anyway.
3120 			 */
3121 			c->seq = seq;
3122 		}
3123 		console_srcu_read_unlock(cookie);
3124 	}
3125 	console_unlock();
3126 }
3127 
3128 /*
3129  * Return the console tty driver structure and its associated index
3130  */
3131 struct tty_driver *console_device(int *index)
3132 {
3133 	struct console *c;
3134 	struct tty_driver *driver = NULL;
3135 	int cookie;
3136 
3137 	/*
3138 	 * Take console_lock to serialize device() callback with
3139 	 * other console operations. For example, fg_console is
3140 	 * modified under console_lock when switching vt.
3141 	 */
3142 	console_lock();
3143 
3144 	cookie = console_srcu_read_lock();
3145 	for_each_console_srcu(c) {
3146 		if (!c->device)
3147 			continue;
3148 		driver = c->device(c, index);
3149 		if (driver)
3150 			break;
3151 	}
3152 	console_srcu_read_unlock(cookie);
3153 
3154 	console_unlock();
3155 	return driver;
3156 }
3157 
3158 /*
3159  * Prevent further output on the passed console device so that (for example)
3160  * serial drivers can disable console output before suspending a port, and can
3161  * re-enable output afterwards.
3162  */
3163 void console_stop(struct console *console)
3164 {
3165 	__pr_flush(console, 1000, true);
3166 	console_list_lock();
3167 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3168 	console_list_unlock();
3169 
3170 	/*
3171 	 * Ensure that all SRCU list walks have completed. All contexts must
3172 	 * be able to see that this console is disabled so that (for example)
3173 	 * the caller can suspend the port without risk of another context
3174 	 * using the port.
3175 	 */
3176 	synchronize_srcu(&console_srcu);
3177 }
3178 EXPORT_SYMBOL(console_stop);
3179 
3180 void console_start(struct console *console)
3181 {
3182 	console_list_lock();
3183 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3184 	console_list_unlock();
3185 	__pr_flush(console, 1000, true);
3186 }
3187 EXPORT_SYMBOL(console_start);
3188 
3189 static int __read_mostly keep_bootcon;
3190 
3191 static int __init keep_bootcon_setup(char *str)
3192 {
3193 	keep_bootcon = 1;
3194 	pr_info("debug: skip boot console de-registration.\n");
3195 
3196 	return 0;
3197 }
3198 
3199 early_param("keep_bootcon", keep_bootcon_setup);
3200 
3201 /*
3202  * This is called by register_console() to try to match
3203  * the newly registered console with any of the ones selected
3204  * by either the command line or add_preferred_console() and
3205  * setup/enable it.
3206  *
3207  * Care need to be taken with consoles that are statically
3208  * enabled such as netconsole
3209  */
3210 static int try_enable_preferred_console(struct console *newcon,
3211 					bool user_specified)
3212 {
3213 	struct console_cmdline *c;
3214 	int i, err;
3215 
3216 	for (i = 0, c = console_cmdline;
3217 	     i < MAX_CMDLINECONSOLES && c->name[0];
3218 	     i++, c++) {
3219 		if (c->user_specified != user_specified)
3220 			continue;
3221 		if (!newcon->match ||
3222 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3223 			/* default matching */
3224 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3225 			if (strcmp(c->name, newcon->name) != 0)
3226 				continue;
3227 			if (newcon->index >= 0 &&
3228 			    newcon->index != c->index)
3229 				continue;
3230 			if (newcon->index < 0)
3231 				newcon->index = c->index;
3232 
3233 			if (_braille_register_console(newcon, c))
3234 				return 0;
3235 
3236 			if (newcon->setup &&
3237 			    (err = newcon->setup(newcon, c->options)) != 0)
3238 				return err;
3239 		}
3240 		newcon->flags |= CON_ENABLED;
3241 		if (i == preferred_console)
3242 			newcon->flags |= CON_CONSDEV;
3243 		return 0;
3244 	}
3245 
3246 	/*
3247 	 * Some consoles, such as pstore and netconsole, can be enabled even
3248 	 * without matching. Accept the pre-enabled consoles only when match()
3249 	 * and setup() had a chance to be called.
3250 	 */
3251 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3252 		return 0;
3253 
3254 	return -ENOENT;
3255 }
3256 
3257 /* Try to enable the console unconditionally */
3258 static void try_enable_default_console(struct console *newcon)
3259 {
3260 	if (newcon->index < 0)
3261 		newcon->index = 0;
3262 
3263 	if (newcon->setup && newcon->setup(newcon, NULL) != 0)
3264 		return;
3265 
3266 	newcon->flags |= CON_ENABLED;
3267 
3268 	if (newcon->device)
3269 		newcon->flags |= CON_CONSDEV;
3270 }
3271 
3272 #define con_printk(lvl, con, fmt, ...)			\
3273 	printk(lvl pr_fmt("%sconsole [%s%d] " fmt),	\
3274 	       (con->flags & CON_BOOT) ? "boot" : "",	\
3275 	       con->name, con->index, ##__VA_ARGS__)
3276 
3277 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3278 {
3279 	struct console *con;
3280 	bool handover;
3281 
3282 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3283 		/* Get a consistent copy of @syslog_seq. */
3284 		mutex_lock(&syslog_lock);
3285 		newcon->seq = syslog_seq;
3286 		mutex_unlock(&syslog_lock);
3287 	} else {
3288 		/* Begin with next message added to ringbuffer. */
3289 		newcon->seq = prb_next_seq(prb);
3290 
3291 		/*
3292 		 * If any enabled boot consoles are due to be unregistered
3293 		 * shortly, some may not be caught up and may be the same
3294 		 * device as @newcon. Since it is not known which boot console
3295 		 * is the same device, flush all consoles and, if necessary,
3296 		 * start with the message of the enabled boot console that is
3297 		 * the furthest behind.
3298 		 */
3299 		if (bootcon_registered && !keep_bootcon) {
3300 			/*
3301 			 * Hold the console_lock to stop console printing and
3302 			 * guarantee safe access to console->seq.
3303 			 */
3304 			console_lock();
3305 
3306 			/*
3307 			 * Flush all consoles and set the console to start at
3308 			 * the next unprinted sequence number.
3309 			 */
3310 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3311 				/*
3312 				 * Flushing failed. Just choose the lowest
3313 				 * sequence of the enabled boot consoles.
3314 				 */
3315 
3316 				/*
3317 				 * If there was a handover, this context no
3318 				 * longer holds the console_lock.
3319 				 */
3320 				if (handover)
3321 					console_lock();
3322 
3323 				newcon->seq = prb_next_seq(prb);
3324 				for_each_console(con) {
3325 					if ((con->flags & CON_BOOT) &&
3326 					    (con->flags & CON_ENABLED) &&
3327 					    con->seq < newcon->seq) {
3328 						newcon->seq = con->seq;
3329 					}
3330 				}
3331 			}
3332 
3333 			console_unlock();
3334 		}
3335 	}
3336 }
3337 
3338 #define console_first()				\
3339 	hlist_entry(console_list.first, struct console, node)
3340 
3341 static int unregister_console_locked(struct console *console);
3342 
3343 /*
3344  * The console driver calls this routine during kernel initialization
3345  * to register the console printing procedure with printk() and to
3346  * print any messages that were printed by the kernel before the
3347  * console driver was initialized.
3348  *
3349  * This can happen pretty early during the boot process (because of
3350  * early_printk) - sometimes before setup_arch() completes - be careful
3351  * of what kernel features are used - they may not be initialised yet.
3352  *
3353  * There are two types of consoles - bootconsoles (early_printk) and
3354  * "real" consoles (everything which is not a bootconsole) which are
3355  * handled differently.
3356  *  - Any number of bootconsoles can be registered at any time.
3357  *  - As soon as a "real" console is registered, all bootconsoles
3358  *    will be unregistered automatically.
3359  *  - Once a "real" console is registered, any attempt to register a
3360  *    bootconsoles will be rejected
3361  */
3362 void register_console(struct console *newcon)
3363 {
3364 	struct console *con;
3365 	bool bootcon_registered = false;
3366 	bool realcon_registered = false;
3367 	int err;
3368 
3369 	console_list_lock();
3370 
3371 	for_each_console(con) {
3372 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3373 					 con->name, con->index)) {
3374 			goto unlock;
3375 		}
3376 
3377 		if (con->flags & CON_BOOT)
3378 			bootcon_registered = true;
3379 		else
3380 			realcon_registered = true;
3381 	}
3382 
3383 	/* Do not register boot consoles when there already is a real one. */
3384 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3385 		pr_info("Too late to register bootconsole %s%d\n",
3386 			newcon->name, newcon->index);
3387 		goto unlock;
3388 	}
3389 
3390 	/*
3391 	 * See if we want to enable this console driver by default.
3392 	 *
3393 	 * Nope when a console is preferred by the command line, device
3394 	 * tree, or SPCR.
3395 	 *
3396 	 * The first real console with tty binding (driver) wins. More
3397 	 * consoles might get enabled before the right one is found.
3398 	 *
3399 	 * Note that a console with tty binding will have CON_CONSDEV
3400 	 * flag set and will be first in the list.
3401 	 */
3402 	if (preferred_console < 0) {
3403 		if (hlist_empty(&console_list) || !console_first()->device ||
3404 		    console_first()->flags & CON_BOOT) {
3405 			try_enable_default_console(newcon);
3406 		}
3407 	}
3408 
3409 	/* See if this console matches one we selected on the command line */
3410 	err = try_enable_preferred_console(newcon, true);
3411 
3412 	/* If not, try to match against the platform default(s) */
3413 	if (err == -ENOENT)
3414 		err = try_enable_preferred_console(newcon, false);
3415 
3416 	/* printk() messages are not printed to the Braille console. */
3417 	if (err || newcon->flags & CON_BRL)
3418 		goto unlock;
3419 
3420 	/*
3421 	 * If we have a bootconsole, and are switching to a real console,
3422 	 * don't print everything out again, since when the boot console, and
3423 	 * the real console are the same physical device, it's annoying to
3424 	 * see the beginning boot messages twice
3425 	 */
3426 	if (bootcon_registered &&
3427 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3428 		newcon->flags &= ~CON_PRINTBUFFER;
3429 	}
3430 
3431 	newcon->dropped = 0;
3432 	console_init_seq(newcon, bootcon_registered);
3433 
3434 	/*
3435 	 * Put this console in the list - keep the
3436 	 * preferred driver at the head of the list.
3437 	 */
3438 	if (hlist_empty(&console_list)) {
3439 		/* Ensure CON_CONSDEV is always set for the head. */
3440 		newcon->flags |= CON_CONSDEV;
3441 		hlist_add_head_rcu(&newcon->node, &console_list);
3442 
3443 	} else if (newcon->flags & CON_CONSDEV) {
3444 		/* Only the new head can have CON_CONSDEV set. */
3445 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3446 		hlist_add_head_rcu(&newcon->node, &console_list);
3447 
3448 	} else {
3449 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3450 	}
3451 
3452 	/*
3453 	 * No need to synchronize SRCU here! The caller does not rely
3454 	 * on all contexts being able to see the new console before
3455 	 * register_console() completes.
3456 	 */
3457 
3458 	console_sysfs_notify();
3459 
3460 	/*
3461 	 * By unregistering the bootconsoles after we enable the real console
3462 	 * we get the "console xxx enabled" message on all the consoles -
3463 	 * boot consoles, real consoles, etc - this is to ensure that end
3464 	 * users know there might be something in the kernel's log buffer that
3465 	 * went to the bootconsole (that they do not see on the real console)
3466 	 */
3467 	con_printk(KERN_INFO, newcon, "enabled\n");
3468 	if (bootcon_registered &&
3469 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3470 	    !keep_bootcon) {
3471 		struct hlist_node *tmp;
3472 
3473 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3474 			if (con->flags & CON_BOOT)
3475 				unregister_console_locked(con);
3476 		}
3477 	}
3478 unlock:
3479 	console_list_unlock();
3480 }
3481 EXPORT_SYMBOL(register_console);
3482 
3483 /* Must be called under console_list_lock(). */
3484 static int unregister_console_locked(struct console *console)
3485 {
3486 	int res;
3487 
3488 	lockdep_assert_console_list_lock_held();
3489 
3490 	con_printk(KERN_INFO, console, "disabled\n");
3491 
3492 	res = _braille_unregister_console(console);
3493 	if (res < 0)
3494 		return res;
3495 	if (res > 0)
3496 		return 0;
3497 
3498 	/* Disable it unconditionally */
3499 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3500 
3501 	if (!console_is_registered_locked(console))
3502 		return -ENODEV;
3503 
3504 	hlist_del_init_rcu(&console->node);
3505 
3506 	/*
3507 	 * <HISTORICAL>
3508 	 * If this isn't the last console and it has CON_CONSDEV set, we
3509 	 * need to set it on the next preferred console.
3510 	 * </HISTORICAL>
3511 	 *
3512 	 * The above makes no sense as there is no guarantee that the next
3513 	 * console has any device attached. Oh well....
3514 	 */
3515 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3516 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3517 
3518 	/*
3519 	 * Ensure that all SRCU list walks have completed. All contexts
3520 	 * must not be able to see this console in the list so that any
3521 	 * exit/cleanup routines can be performed safely.
3522 	 */
3523 	synchronize_srcu(&console_srcu);
3524 
3525 	console_sysfs_notify();
3526 
3527 	if (console->exit)
3528 		res = console->exit(console);
3529 
3530 	return res;
3531 }
3532 
3533 int unregister_console(struct console *console)
3534 {
3535 	int res;
3536 
3537 	console_list_lock();
3538 	res = unregister_console_locked(console);
3539 	console_list_unlock();
3540 	return res;
3541 }
3542 EXPORT_SYMBOL(unregister_console);
3543 
3544 /**
3545  * console_force_preferred_locked - force a registered console preferred
3546  * @con: The registered console to force preferred.
3547  *
3548  * Must be called under console_list_lock().
3549  */
3550 void console_force_preferred_locked(struct console *con)
3551 {
3552 	struct console *cur_pref_con;
3553 
3554 	if (!console_is_registered_locked(con))
3555 		return;
3556 
3557 	cur_pref_con = console_first();
3558 
3559 	/* Already preferred? */
3560 	if (cur_pref_con == con)
3561 		return;
3562 
3563 	/*
3564 	 * Delete, but do not re-initialize the entry. This allows the console
3565 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3566 	 * checks), even though it was briefly removed from the console list.
3567 	 */
3568 	hlist_del_rcu(&con->node);
3569 
3570 	/*
3571 	 * Ensure that all SRCU list walks have completed so that the console
3572 	 * can be added to the beginning of the console list and its forward
3573 	 * list pointer can be re-initialized.
3574 	 */
3575 	synchronize_srcu(&console_srcu);
3576 
3577 	con->flags |= CON_CONSDEV;
3578 	WARN_ON(!con->device);
3579 
3580 	/* Only the new head can have CON_CONSDEV set. */
3581 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3582 	hlist_add_head_rcu(&con->node, &console_list);
3583 }
3584 EXPORT_SYMBOL(console_force_preferred_locked);
3585 
3586 /*
3587  * Initialize the console device. This is called *early*, so
3588  * we can't necessarily depend on lots of kernel help here.
3589  * Just do some early initializations, and do the complex setup
3590  * later.
3591  */
3592 void __init console_init(void)
3593 {
3594 	int ret;
3595 	initcall_t call;
3596 	initcall_entry_t *ce;
3597 
3598 	/* Setup the default TTY line discipline. */
3599 	n_tty_init();
3600 
3601 	/*
3602 	 * set up the console device so that later boot sequences can
3603 	 * inform about problems etc..
3604 	 */
3605 	ce = __con_initcall_start;
3606 	trace_initcall_level("console");
3607 	while (ce < __con_initcall_end) {
3608 		call = initcall_from_entry(ce);
3609 		trace_initcall_start(call);
3610 		ret = call();
3611 		trace_initcall_finish(call, ret);
3612 		ce++;
3613 	}
3614 }
3615 
3616 /*
3617  * Some boot consoles access data that is in the init section and which will
3618  * be discarded after the initcalls have been run. To make sure that no code
3619  * will access this data, unregister the boot consoles in a late initcall.
3620  *
3621  * If for some reason, such as deferred probe or the driver being a loadable
3622  * module, the real console hasn't registered yet at this point, there will
3623  * be a brief interval in which no messages are logged to the console, which
3624  * makes it difficult to diagnose problems that occur during this time.
3625  *
3626  * To mitigate this problem somewhat, only unregister consoles whose memory
3627  * intersects with the init section. Note that all other boot consoles will
3628  * get unregistered when the real preferred console is registered.
3629  */
3630 static int __init printk_late_init(void)
3631 {
3632 	struct hlist_node *tmp;
3633 	struct console *con;
3634 	int ret;
3635 
3636 	console_list_lock();
3637 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3638 		if (!(con->flags & CON_BOOT))
3639 			continue;
3640 
3641 		/* Check addresses that might be used for enabled consoles. */
3642 		if (init_section_intersects(con, sizeof(*con)) ||
3643 		    init_section_contains(con->write, 0) ||
3644 		    init_section_contains(con->read, 0) ||
3645 		    init_section_contains(con->device, 0) ||
3646 		    init_section_contains(con->unblank, 0) ||
3647 		    init_section_contains(con->data, 0)) {
3648 			/*
3649 			 * Please, consider moving the reported consoles out
3650 			 * of the init section.
3651 			 */
3652 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3653 				con->name, con->index);
3654 			unregister_console_locked(con);
3655 		}
3656 	}
3657 	console_list_unlock();
3658 
3659 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3660 					console_cpu_notify);
3661 	WARN_ON(ret < 0);
3662 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3663 					console_cpu_notify, NULL);
3664 	WARN_ON(ret < 0);
3665 	printk_sysctl_init();
3666 	return 0;
3667 }
3668 late_initcall(printk_late_init);
3669 
3670 #if defined CONFIG_PRINTK
3671 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3672 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3673 {
3674 	int remaining = timeout_ms;
3675 	struct console *c;
3676 	u64 last_diff = 0;
3677 	u64 printk_seq;
3678 	int cookie;
3679 	u64 diff;
3680 	u64 seq;
3681 
3682 	might_sleep();
3683 
3684 	seq = prb_next_seq(prb);
3685 
3686 	for (;;) {
3687 		diff = 0;
3688 
3689 		/*
3690 		 * Hold the console_lock to guarantee safe access to
3691 		 * console->seq and to prevent changes to @console_suspended
3692 		 * until all consoles have been processed.
3693 		 */
3694 		console_lock();
3695 
3696 		cookie = console_srcu_read_lock();
3697 		for_each_console_srcu(c) {
3698 			if (con && con != c)
3699 				continue;
3700 			if (!console_is_usable(c))
3701 				continue;
3702 			printk_seq = c->seq;
3703 			if (printk_seq < seq)
3704 				diff += seq - printk_seq;
3705 		}
3706 		console_srcu_read_unlock(cookie);
3707 
3708 		/*
3709 		 * If consoles are suspended, it cannot be expected that they
3710 		 * make forward progress, so timeout immediately. @diff is
3711 		 * still used to return a valid flush status.
3712 		 */
3713 		if (console_suspended)
3714 			remaining = 0;
3715 		else if (diff != last_diff && reset_on_progress)
3716 			remaining = timeout_ms;
3717 
3718 		console_unlock();
3719 
3720 		if (diff == 0 || remaining == 0)
3721 			break;
3722 
3723 		if (remaining < 0) {
3724 			/* no timeout limit */
3725 			msleep(100);
3726 		} else if (remaining < 100) {
3727 			msleep(remaining);
3728 			remaining = 0;
3729 		} else {
3730 			msleep(100);
3731 			remaining -= 100;
3732 		}
3733 
3734 		last_diff = diff;
3735 	}
3736 
3737 	return (diff == 0);
3738 }
3739 
3740 /**
3741  * pr_flush() - Wait for printing threads to catch up.
3742  *
3743  * @timeout_ms:        The maximum time (in ms) to wait.
3744  * @reset_on_progress: Reset the timeout if forward progress is seen.
3745  *
3746  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3747  * represents infinite waiting.
3748  *
3749  * If @reset_on_progress is true, the timeout will be reset whenever any
3750  * printer has been seen to make some forward progress.
3751  *
3752  * Context: Process context. May sleep while acquiring console lock.
3753  * Return: true if all enabled printers are caught up.
3754  */
3755 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3756 {
3757 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3758 }
3759 
3760 /*
3761  * Delayed printk version, for scheduler-internal messages:
3762  */
3763 #define PRINTK_PENDING_WAKEUP	0x01
3764 #define PRINTK_PENDING_OUTPUT	0x02
3765 
3766 static DEFINE_PER_CPU(int, printk_pending);
3767 
3768 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3769 {
3770 	int pending = this_cpu_xchg(printk_pending, 0);
3771 
3772 	if (pending & PRINTK_PENDING_OUTPUT) {
3773 		/* If trylock fails, someone else is doing the printing */
3774 		if (console_trylock())
3775 			console_unlock();
3776 	}
3777 
3778 	if (pending & PRINTK_PENDING_WAKEUP)
3779 		wake_up_interruptible(&log_wait);
3780 }
3781 
3782 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3783 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3784 
3785 static void __wake_up_klogd(int val)
3786 {
3787 	if (!printk_percpu_data_ready())
3788 		return;
3789 
3790 	preempt_disable();
3791 	/*
3792 	 * Guarantee any new records can be seen by tasks preparing to wait
3793 	 * before this context checks if the wait queue is empty.
3794 	 *
3795 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3796 	 * memory barrier within set_current_state() of
3797 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3798 	 * the waiter but before it has checked the wait condition.
3799 	 *
3800 	 * This pairs with devkmsg_read:A and syslog_print:A.
3801 	 */
3802 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3803 	    (val & PRINTK_PENDING_OUTPUT)) {
3804 		this_cpu_or(printk_pending, val);
3805 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3806 	}
3807 	preempt_enable();
3808 }
3809 
3810 void wake_up_klogd(void)
3811 {
3812 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3813 }
3814 
3815 void defer_console_output(void)
3816 {
3817 	/*
3818 	 * New messages may have been added directly to the ringbuffer
3819 	 * using vprintk_store(), so wake any waiters as well.
3820 	 */
3821 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3822 }
3823 
3824 void printk_trigger_flush(void)
3825 {
3826 	defer_console_output();
3827 }
3828 
3829 int vprintk_deferred(const char *fmt, va_list args)
3830 {
3831 	int r;
3832 
3833 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3834 	defer_console_output();
3835 
3836 	return r;
3837 }
3838 
3839 int _printk_deferred(const char *fmt, ...)
3840 {
3841 	va_list args;
3842 	int r;
3843 
3844 	va_start(args, fmt);
3845 	r = vprintk_deferred(fmt, args);
3846 	va_end(args);
3847 
3848 	return r;
3849 }
3850 
3851 /*
3852  * printk rate limiting, lifted from the networking subsystem.
3853  *
3854  * This enforces a rate limit: not more than 10 kernel messages
3855  * every 5s to make a denial-of-service attack impossible.
3856  */
3857 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3858 
3859 int __printk_ratelimit(const char *func)
3860 {
3861 	return ___ratelimit(&printk_ratelimit_state, func);
3862 }
3863 EXPORT_SYMBOL(__printk_ratelimit);
3864 
3865 /**
3866  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3867  * @caller_jiffies: pointer to caller's state
3868  * @interval_msecs: minimum interval between prints
3869  *
3870  * printk_timed_ratelimit() returns true if more than @interval_msecs
3871  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3872  * returned true.
3873  */
3874 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3875 			unsigned int interval_msecs)
3876 {
3877 	unsigned long elapsed = jiffies - *caller_jiffies;
3878 
3879 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3880 		return false;
3881 
3882 	*caller_jiffies = jiffies;
3883 	return true;
3884 }
3885 EXPORT_SYMBOL(printk_timed_ratelimit);
3886 
3887 static DEFINE_SPINLOCK(dump_list_lock);
3888 static LIST_HEAD(dump_list);
3889 
3890 /**
3891  * kmsg_dump_register - register a kernel log dumper.
3892  * @dumper: pointer to the kmsg_dumper structure
3893  *
3894  * Adds a kernel log dumper to the system. The dump callback in the
3895  * structure will be called when the kernel oopses or panics and must be
3896  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3897  */
3898 int kmsg_dump_register(struct kmsg_dumper *dumper)
3899 {
3900 	unsigned long flags;
3901 	int err = -EBUSY;
3902 
3903 	/* The dump callback needs to be set */
3904 	if (!dumper->dump)
3905 		return -EINVAL;
3906 
3907 	spin_lock_irqsave(&dump_list_lock, flags);
3908 	/* Don't allow registering multiple times */
3909 	if (!dumper->registered) {
3910 		dumper->registered = 1;
3911 		list_add_tail_rcu(&dumper->list, &dump_list);
3912 		err = 0;
3913 	}
3914 	spin_unlock_irqrestore(&dump_list_lock, flags);
3915 
3916 	return err;
3917 }
3918 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3919 
3920 /**
3921  * kmsg_dump_unregister - unregister a kmsg dumper.
3922  * @dumper: pointer to the kmsg_dumper structure
3923  *
3924  * Removes a dump device from the system. Returns zero on success and
3925  * %-EINVAL otherwise.
3926  */
3927 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3928 {
3929 	unsigned long flags;
3930 	int err = -EINVAL;
3931 
3932 	spin_lock_irqsave(&dump_list_lock, flags);
3933 	if (dumper->registered) {
3934 		dumper->registered = 0;
3935 		list_del_rcu(&dumper->list);
3936 		err = 0;
3937 	}
3938 	spin_unlock_irqrestore(&dump_list_lock, flags);
3939 	synchronize_rcu();
3940 
3941 	return err;
3942 }
3943 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3944 
3945 static bool always_kmsg_dump;
3946 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3947 
3948 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3949 {
3950 	switch (reason) {
3951 	case KMSG_DUMP_PANIC:
3952 		return "Panic";
3953 	case KMSG_DUMP_OOPS:
3954 		return "Oops";
3955 	case KMSG_DUMP_EMERG:
3956 		return "Emergency";
3957 	case KMSG_DUMP_SHUTDOWN:
3958 		return "Shutdown";
3959 	default:
3960 		return "Unknown";
3961 	}
3962 }
3963 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3964 
3965 /**
3966  * kmsg_dump - dump kernel log to kernel message dumpers.
3967  * @reason: the reason (oops, panic etc) for dumping
3968  *
3969  * Call each of the registered dumper's dump() callback, which can
3970  * retrieve the kmsg records with kmsg_dump_get_line() or
3971  * kmsg_dump_get_buffer().
3972  */
3973 void kmsg_dump(enum kmsg_dump_reason reason)
3974 {
3975 	struct kmsg_dumper *dumper;
3976 
3977 	rcu_read_lock();
3978 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3979 		enum kmsg_dump_reason max_reason = dumper->max_reason;
3980 
3981 		/*
3982 		 * If client has not provided a specific max_reason, default
3983 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3984 		 */
3985 		if (max_reason == KMSG_DUMP_UNDEF) {
3986 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3987 							KMSG_DUMP_OOPS;
3988 		}
3989 		if (reason > max_reason)
3990 			continue;
3991 
3992 		/* invoke dumper which will iterate over records */
3993 		dumper->dump(dumper, reason);
3994 	}
3995 	rcu_read_unlock();
3996 }
3997 
3998 /**
3999  * kmsg_dump_get_line - retrieve one kmsg log line
4000  * @iter: kmsg dump iterator
4001  * @syslog: include the "<4>" prefixes
4002  * @line: buffer to copy the line to
4003  * @size: maximum size of the buffer
4004  * @len: length of line placed into buffer
4005  *
4006  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4007  * record, and copy one record into the provided buffer.
4008  *
4009  * Consecutive calls will return the next available record moving
4010  * towards the end of the buffer with the youngest messages.
4011  *
4012  * A return value of FALSE indicates that there are no more records to
4013  * read.
4014  */
4015 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4016 			char *line, size_t size, size_t *len)
4017 {
4018 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4019 	struct printk_info info;
4020 	unsigned int line_count;
4021 	struct printk_record r;
4022 	size_t l = 0;
4023 	bool ret = false;
4024 
4025 	if (iter->cur_seq < min_seq)
4026 		iter->cur_seq = min_seq;
4027 
4028 	prb_rec_init_rd(&r, &info, line, size);
4029 
4030 	/* Read text or count text lines? */
4031 	if (line) {
4032 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4033 			goto out;
4034 		l = record_print_text(&r, syslog, printk_time);
4035 	} else {
4036 		if (!prb_read_valid_info(prb, iter->cur_seq,
4037 					 &info, &line_count)) {
4038 			goto out;
4039 		}
4040 		l = get_record_print_text_size(&info, line_count, syslog,
4041 					       printk_time);
4042 
4043 	}
4044 
4045 	iter->cur_seq = r.info->seq + 1;
4046 	ret = true;
4047 out:
4048 	if (len)
4049 		*len = l;
4050 	return ret;
4051 }
4052 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4053 
4054 /**
4055  * kmsg_dump_get_buffer - copy kmsg log lines
4056  * @iter: kmsg dump iterator
4057  * @syslog: include the "<4>" prefixes
4058  * @buf: buffer to copy the line to
4059  * @size: maximum size of the buffer
4060  * @len_out: length of line placed into buffer
4061  *
4062  * Start at the end of the kmsg buffer and fill the provided buffer
4063  * with as many of the *youngest* kmsg records that fit into it.
4064  * If the buffer is large enough, all available kmsg records will be
4065  * copied with a single call.
4066  *
4067  * Consecutive calls will fill the buffer with the next block of
4068  * available older records, not including the earlier retrieved ones.
4069  *
4070  * A return value of FALSE indicates that there are no more records to
4071  * read.
4072  */
4073 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4074 			  char *buf, size_t size, size_t *len_out)
4075 {
4076 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4077 	struct printk_info info;
4078 	struct printk_record r;
4079 	u64 seq;
4080 	u64 next_seq;
4081 	size_t len = 0;
4082 	bool ret = false;
4083 	bool time = printk_time;
4084 
4085 	if (!buf || !size)
4086 		goto out;
4087 
4088 	if (iter->cur_seq < min_seq)
4089 		iter->cur_seq = min_seq;
4090 
4091 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4092 		if (info.seq != iter->cur_seq) {
4093 			/* messages are gone, move to first available one */
4094 			iter->cur_seq = info.seq;
4095 		}
4096 	}
4097 
4098 	/* last entry */
4099 	if (iter->cur_seq >= iter->next_seq)
4100 		goto out;
4101 
4102 	/*
4103 	 * Find first record that fits, including all following records,
4104 	 * into the user-provided buffer for this dump. Pass in size-1
4105 	 * because this function (by way of record_print_text()) will
4106 	 * not write more than size-1 bytes of text into @buf.
4107 	 */
4108 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4109 				     size - 1, syslog, time);
4110 
4111 	/*
4112 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4113 	 * older records stored right before this one.
4114 	 */
4115 	next_seq = seq;
4116 
4117 	prb_rec_init_rd(&r, &info, buf, size);
4118 
4119 	len = 0;
4120 	prb_for_each_record(seq, prb, seq, &r) {
4121 		if (r.info->seq >= iter->next_seq)
4122 			break;
4123 
4124 		len += record_print_text(&r, syslog, time);
4125 
4126 		/* Adjust record to store to remaining buffer space. */
4127 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4128 	}
4129 
4130 	iter->next_seq = next_seq;
4131 	ret = true;
4132 out:
4133 	if (len_out)
4134 		*len_out = len;
4135 	return ret;
4136 }
4137 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4138 
4139 /**
4140  * kmsg_dump_rewind - reset the iterator
4141  * @iter: kmsg dump iterator
4142  *
4143  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4144  * kmsg_dump_get_buffer() can be called again and used multiple
4145  * times within the same dumper.dump() callback.
4146  */
4147 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4148 {
4149 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4150 	iter->next_seq = prb_next_seq(prb);
4151 }
4152 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4153 
4154 #endif
4155 
4156 #ifdef CONFIG_SMP
4157 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4158 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4159 
4160 /**
4161  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4162  *                            spinning lock is not owned by any CPU.
4163  *
4164  * Context: Any context.
4165  */
4166 void __printk_cpu_sync_wait(void)
4167 {
4168 	do {
4169 		cpu_relax();
4170 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4171 }
4172 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4173 
4174 /**
4175  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4176  *                               spinning lock.
4177  *
4178  * If no processor has the lock, the calling processor takes the lock and
4179  * becomes the owner. If the calling processor is already the owner of the
4180  * lock, this function succeeds immediately.
4181  *
4182  * Context: Any context. Expects interrupts to be disabled.
4183  * Return: 1 on success, otherwise 0.
4184  */
4185 int __printk_cpu_sync_try_get(void)
4186 {
4187 	int cpu;
4188 	int old;
4189 
4190 	cpu = smp_processor_id();
4191 
4192 	/*
4193 	 * Guarantee loads and stores from this CPU when it is the lock owner
4194 	 * are _not_ visible to the previous lock owner. This pairs with
4195 	 * __printk_cpu_sync_put:B.
4196 	 *
4197 	 * Memory barrier involvement:
4198 	 *
4199 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4200 	 * then __printk_cpu_sync_put:A can never read from
4201 	 * __printk_cpu_sync_try_get:B.
4202 	 *
4203 	 * Relies on:
4204 	 *
4205 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4206 	 * of the previous CPU
4207 	 *    matching
4208 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4209 	 * __printk_cpu_sync_try_get:B of this CPU
4210 	 */
4211 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4212 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4213 	if (old == -1) {
4214 		/*
4215 		 * This CPU is now the owner and begins loading/storing
4216 		 * data: LMM(__printk_cpu_sync_try_get:B)
4217 		 */
4218 		return 1;
4219 
4220 	} else if (old == cpu) {
4221 		/* This CPU is already the owner. */
4222 		atomic_inc(&printk_cpu_sync_nested);
4223 		return 1;
4224 	}
4225 
4226 	return 0;
4227 }
4228 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4229 
4230 /**
4231  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4232  *
4233  * The calling processor must be the owner of the lock.
4234  *
4235  * Context: Any context. Expects interrupts to be disabled.
4236  */
4237 void __printk_cpu_sync_put(void)
4238 {
4239 	if (atomic_read(&printk_cpu_sync_nested)) {
4240 		atomic_dec(&printk_cpu_sync_nested);
4241 		return;
4242 	}
4243 
4244 	/*
4245 	 * This CPU is finished loading/storing data:
4246 	 * LMM(__printk_cpu_sync_put:A)
4247 	 */
4248 
4249 	/*
4250 	 * Guarantee loads and stores from this CPU when it was the
4251 	 * lock owner are visible to the next lock owner. This pairs
4252 	 * with __printk_cpu_sync_try_get:A.
4253 	 *
4254 	 * Memory barrier involvement:
4255 	 *
4256 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4257 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4258 	 *
4259 	 * Relies on:
4260 	 *
4261 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4262 	 * of this CPU
4263 	 *    matching
4264 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4265 	 * __printk_cpu_sync_try_get:B of the next CPU
4266 	 */
4267 	atomic_set_release(&printk_cpu_sync_owner,
4268 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4269 }
4270 EXPORT_SYMBOL(__printk_cpu_sync_put);
4271 #endif /* CONFIG_SMP */
4272