1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_mutex protects console_list updates and console->flags updates. 83 * The flags are synchronized only for consoles that are registered, i.e. 84 * accessible via the console list. 85 */ 86 static DEFINE_MUTEX(console_mutex); 87 88 /* 89 * console_sem protects updates to console->seq and console_suspended, 90 * and also provides serialization for console printing. 91 */ 92 static DEFINE_SEMAPHORE(console_sem); 93 HLIST_HEAD(console_list); 94 EXPORT_SYMBOL_GPL(console_list); 95 DEFINE_STATIC_SRCU(console_srcu); 96 97 /* 98 * System may need to suppress printk message under certain 99 * circumstances, like after kernel panic happens. 100 */ 101 int __read_mostly suppress_printk; 102 103 /* 104 * During panic, heavy printk by other CPUs can delay the 105 * panic and risk deadlock on console resources. 106 */ 107 static int __read_mostly suppress_panic_printk; 108 109 #ifdef CONFIG_LOCKDEP 110 static struct lockdep_map console_lock_dep_map = { 111 .name = "console_lock" 112 }; 113 114 void lockdep_assert_console_list_lock_held(void) 115 { 116 lockdep_assert_held(&console_mutex); 117 } 118 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 119 #endif 120 121 #ifdef CONFIG_DEBUG_LOCK_ALLOC 122 bool console_srcu_read_lock_is_held(void) 123 { 124 return srcu_read_lock_held(&console_srcu); 125 } 126 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 127 #endif 128 129 enum devkmsg_log_bits { 130 __DEVKMSG_LOG_BIT_ON = 0, 131 __DEVKMSG_LOG_BIT_OFF, 132 __DEVKMSG_LOG_BIT_LOCK, 133 }; 134 135 enum devkmsg_log_masks { 136 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 137 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 138 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 139 }; 140 141 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 142 #define DEVKMSG_LOG_MASK_DEFAULT 0 143 144 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 145 146 static int __control_devkmsg(char *str) 147 { 148 size_t len; 149 150 if (!str) 151 return -EINVAL; 152 153 len = str_has_prefix(str, "on"); 154 if (len) { 155 devkmsg_log = DEVKMSG_LOG_MASK_ON; 156 return len; 157 } 158 159 len = str_has_prefix(str, "off"); 160 if (len) { 161 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 162 return len; 163 } 164 165 len = str_has_prefix(str, "ratelimit"); 166 if (len) { 167 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 168 return len; 169 } 170 171 return -EINVAL; 172 } 173 174 static int __init control_devkmsg(char *str) 175 { 176 if (__control_devkmsg(str) < 0) { 177 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 178 return 1; 179 } 180 181 /* 182 * Set sysctl string accordingly: 183 */ 184 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 185 strcpy(devkmsg_log_str, "on"); 186 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 187 strcpy(devkmsg_log_str, "off"); 188 /* else "ratelimit" which is set by default. */ 189 190 /* 191 * Sysctl cannot change it anymore. The kernel command line setting of 192 * this parameter is to force the setting to be permanent throughout the 193 * runtime of the system. This is a precation measure against userspace 194 * trying to be a smarta** and attempting to change it up on us. 195 */ 196 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 197 198 return 1; 199 } 200 __setup("printk.devkmsg=", control_devkmsg); 201 202 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 203 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 204 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 205 void *buffer, size_t *lenp, loff_t *ppos) 206 { 207 char old_str[DEVKMSG_STR_MAX_SIZE]; 208 unsigned int old; 209 int err; 210 211 if (write) { 212 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 213 return -EINVAL; 214 215 old = devkmsg_log; 216 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 217 } 218 219 err = proc_dostring(table, write, buffer, lenp, ppos); 220 if (err) 221 return err; 222 223 if (write) { 224 err = __control_devkmsg(devkmsg_log_str); 225 226 /* 227 * Do not accept an unknown string OR a known string with 228 * trailing crap... 229 */ 230 if (err < 0 || (err + 1 != *lenp)) { 231 232 /* ... and restore old setting. */ 233 devkmsg_log = old; 234 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 235 236 return -EINVAL; 237 } 238 } 239 240 return 0; 241 } 242 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 243 244 /** 245 * console_list_lock - Lock the console list 246 * 247 * For console list or console->flags updates 248 */ 249 void console_list_lock(void) 250 { 251 /* 252 * In unregister_console() and console_force_preferred_locked(), 253 * synchronize_srcu() is called with the console_list_lock held. 254 * Therefore it is not allowed that the console_list_lock is taken 255 * with the srcu_lock held. 256 * 257 * Detecting if this context is really in the read-side critical 258 * section is only possible if the appropriate debug options are 259 * enabled. 260 */ 261 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 262 srcu_read_lock_held(&console_srcu)); 263 264 mutex_lock(&console_mutex); 265 } 266 EXPORT_SYMBOL(console_list_lock); 267 268 /** 269 * console_list_unlock - Unlock the console list 270 * 271 * Counterpart to console_list_lock() 272 */ 273 void console_list_unlock(void) 274 { 275 mutex_unlock(&console_mutex); 276 } 277 EXPORT_SYMBOL(console_list_unlock); 278 279 /** 280 * console_srcu_read_lock - Register a new reader for the 281 * SRCU-protected console list 282 * 283 * Use for_each_console_srcu() to iterate the console list 284 * 285 * Context: Any context. 286 * Return: A cookie to pass to console_srcu_read_unlock(). 287 */ 288 int console_srcu_read_lock(void) 289 { 290 return srcu_read_lock_nmisafe(&console_srcu); 291 } 292 EXPORT_SYMBOL(console_srcu_read_lock); 293 294 /** 295 * console_srcu_read_unlock - Unregister an old reader from 296 * the SRCU-protected console list 297 * @cookie: cookie returned from console_srcu_read_lock() 298 * 299 * Counterpart to console_srcu_read_lock() 300 */ 301 void console_srcu_read_unlock(int cookie) 302 { 303 srcu_read_unlock_nmisafe(&console_srcu, cookie); 304 } 305 EXPORT_SYMBOL(console_srcu_read_unlock); 306 307 /* 308 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 309 * macros instead of functions so that _RET_IP_ contains useful information. 310 */ 311 #define down_console_sem() do { \ 312 down(&console_sem);\ 313 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 314 } while (0) 315 316 static int __down_trylock_console_sem(unsigned long ip) 317 { 318 int lock_failed; 319 unsigned long flags; 320 321 /* 322 * Here and in __up_console_sem() we need to be in safe mode, 323 * because spindump/WARN/etc from under console ->lock will 324 * deadlock in printk()->down_trylock_console_sem() otherwise. 325 */ 326 printk_safe_enter_irqsave(flags); 327 lock_failed = down_trylock(&console_sem); 328 printk_safe_exit_irqrestore(flags); 329 330 if (lock_failed) 331 return 1; 332 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 333 return 0; 334 } 335 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 336 337 static void __up_console_sem(unsigned long ip) 338 { 339 unsigned long flags; 340 341 mutex_release(&console_lock_dep_map, ip); 342 343 printk_safe_enter_irqsave(flags); 344 up(&console_sem); 345 printk_safe_exit_irqrestore(flags); 346 } 347 #define up_console_sem() __up_console_sem(_RET_IP_) 348 349 static bool panic_in_progress(void) 350 { 351 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 352 } 353 354 /* 355 * This is used for debugging the mess that is the VT code by 356 * keeping track if we have the console semaphore held. It's 357 * definitely not the perfect debug tool (we don't know if _WE_ 358 * hold it and are racing, but it helps tracking those weird code 359 * paths in the console code where we end up in places I want 360 * locked without the console semaphore held). 361 */ 362 static int console_locked, console_suspended; 363 364 /* 365 * Array of consoles built from command line options (console=) 366 */ 367 368 #define MAX_CMDLINECONSOLES 8 369 370 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 371 372 static int preferred_console = -1; 373 int console_set_on_cmdline; 374 EXPORT_SYMBOL(console_set_on_cmdline); 375 376 /* Flag: console code may call schedule() */ 377 static int console_may_schedule; 378 379 enum con_msg_format_flags { 380 MSG_FORMAT_DEFAULT = 0, 381 MSG_FORMAT_SYSLOG = (1 << 0), 382 }; 383 384 static int console_msg_format = MSG_FORMAT_DEFAULT; 385 386 /* 387 * The printk log buffer consists of a sequenced collection of records, each 388 * containing variable length message text. Every record also contains its 389 * own meta-data (@info). 390 * 391 * Every record meta-data carries the timestamp in microseconds, as well as 392 * the standard userspace syslog level and syslog facility. The usual kernel 393 * messages use LOG_KERN; userspace-injected messages always carry a matching 394 * syslog facility, by default LOG_USER. The origin of every message can be 395 * reliably determined that way. 396 * 397 * The human readable log message of a record is available in @text, the 398 * length of the message text in @text_len. The stored message is not 399 * terminated. 400 * 401 * Optionally, a record can carry a dictionary of properties (key/value 402 * pairs), to provide userspace with a machine-readable message context. 403 * 404 * Examples for well-defined, commonly used property names are: 405 * DEVICE=b12:8 device identifier 406 * b12:8 block dev_t 407 * c127:3 char dev_t 408 * n8 netdev ifindex 409 * +sound:card0 subsystem:devname 410 * SUBSYSTEM=pci driver-core subsystem name 411 * 412 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 413 * and values are terminated by a '\0' character. 414 * 415 * Example of record values: 416 * record.text_buf = "it's a line" (unterminated) 417 * record.info.seq = 56 418 * record.info.ts_nsec = 36863 419 * record.info.text_len = 11 420 * record.info.facility = 0 (LOG_KERN) 421 * record.info.flags = 0 422 * record.info.level = 3 (LOG_ERR) 423 * record.info.caller_id = 299 (task 299) 424 * record.info.dev_info.subsystem = "pci" (terminated) 425 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 426 * 427 * The 'struct printk_info' buffer must never be directly exported to 428 * userspace, it is a kernel-private implementation detail that might 429 * need to be changed in the future, when the requirements change. 430 * 431 * /dev/kmsg exports the structured data in the following line format: 432 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 433 * 434 * Users of the export format should ignore possible additional values 435 * separated by ',', and find the message after the ';' character. 436 * 437 * The optional key/value pairs are attached as continuation lines starting 438 * with a space character and terminated by a newline. All possible 439 * non-prinatable characters are escaped in the "\xff" notation. 440 */ 441 442 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 443 static DEFINE_MUTEX(syslog_lock); 444 445 #ifdef CONFIG_PRINTK 446 DECLARE_WAIT_QUEUE_HEAD(log_wait); 447 /* All 3 protected by @syslog_lock. */ 448 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 449 static u64 syslog_seq; 450 static size_t syslog_partial; 451 static bool syslog_time; 452 453 struct latched_seq { 454 seqcount_latch_t latch; 455 u64 val[2]; 456 }; 457 458 /* 459 * The next printk record to read after the last 'clear' command. There are 460 * two copies (updated with seqcount_latch) so that reads can locklessly 461 * access a valid value. Writers are synchronized by @syslog_lock. 462 */ 463 static struct latched_seq clear_seq = { 464 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 465 .val[0] = 0, 466 .val[1] = 0, 467 }; 468 469 #define LOG_LEVEL(v) ((v) & 0x07) 470 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 471 472 /* record buffer */ 473 #define LOG_ALIGN __alignof__(unsigned long) 474 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 475 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 476 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 477 static char *log_buf = __log_buf; 478 static u32 log_buf_len = __LOG_BUF_LEN; 479 480 /* 481 * Define the average message size. This only affects the number of 482 * descriptors that will be available. Underestimating is better than 483 * overestimating (too many available descriptors is better than not enough). 484 */ 485 #define PRB_AVGBITS 5 /* 32 character average length */ 486 487 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 488 #error CONFIG_LOG_BUF_SHIFT value too small. 489 #endif 490 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 491 PRB_AVGBITS, &__log_buf[0]); 492 493 static struct printk_ringbuffer printk_rb_dynamic; 494 495 static struct printk_ringbuffer *prb = &printk_rb_static; 496 497 /* 498 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 499 * per_cpu_areas are initialised. This variable is set to true when 500 * it's safe to access per-CPU data. 501 */ 502 static bool __printk_percpu_data_ready __ro_after_init; 503 504 bool printk_percpu_data_ready(void) 505 { 506 return __printk_percpu_data_ready; 507 } 508 509 /* Must be called under syslog_lock. */ 510 static void latched_seq_write(struct latched_seq *ls, u64 val) 511 { 512 raw_write_seqcount_latch(&ls->latch); 513 ls->val[0] = val; 514 raw_write_seqcount_latch(&ls->latch); 515 ls->val[1] = val; 516 } 517 518 /* Can be called from any context. */ 519 static u64 latched_seq_read_nolock(struct latched_seq *ls) 520 { 521 unsigned int seq; 522 unsigned int idx; 523 u64 val; 524 525 do { 526 seq = raw_read_seqcount_latch(&ls->latch); 527 idx = seq & 0x1; 528 val = ls->val[idx]; 529 } while (read_seqcount_latch_retry(&ls->latch, seq)); 530 531 return val; 532 } 533 534 /* Return log buffer address */ 535 char *log_buf_addr_get(void) 536 { 537 return log_buf; 538 } 539 540 /* Return log buffer size */ 541 u32 log_buf_len_get(void) 542 { 543 return log_buf_len; 544 } 545 546 /* 547 * Define how much of the log buffer we could take at maximum. The value 548 * must be greater than two. Note that only half of the buffer is available 549 * when the index points to the middle. 550 */ 551 #define MAX_LOG_TAKE_PART 4 552 static const char trunc_msg[] = "<truncated>"; 553 554 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 555 { 556 /* 557 * The message should not take the whole buffer. Otherwise, it might 558 * get removed too soon. 559 */ 560 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 561 562 if (*text_len > max_text_len) 563 *text_len = max_text_len; 564 565 /* enable the warning message (if there is room) */ 566 *trunc_msg_len = strlen(trunc_msg); 567 if (*text_len >= *trunc_msg_len) 568 *text_len -= *trunc_msg_len; 569 else 570 *trunc_msg_len = 0; 571 } 572 573 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 574 575 static int syslog_action_restricted(int type) 576 { 577 if (dmesg_restrict) 578 return 1; 579 /* 580 * Unless restricted, we allow "read all" and "get buffer size" 581 * for everybody. 582 */ 583 return type != SYSLOG_ACTION_READ_ALL && 584 type != SYSLOG_ACTION_SIZE_BUFFER; 585 } 586 587 static int check_syslog_permissions(int type, int source) 588 { 589 /* 590 * If this is from /proc/kmsg and we've already opened it, then we've 591 * already done the capabilities checks at open time. 592 */ 593 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 594 goto ok; 595 596 if (syslog_action_restricted(type)) { 597 if (capable(CAP_SYSLOG)) 598 goto ok; 599 /* 600 * For historical reasons, accept CAP_SYS_ADMIN too, with 601 * a warning. 602 */ 603 if (capable(CAP_SYS_ADMIN)) { 604 pr_warn_once("%s (%d): Attempt to access syslog with " 605 "CAP_SYS_ADMIN but no CAP_SYSLOG " 606 "(deprecated).\n", 607 current->comm, task_pid_nr(current)); 608 goto ok; 609 } 610 return -EPERM; 611 } 612 ok: 613 return security_syslog(type); 614 } 615 616 static void append_char(char **pp, char *e, char c) 617 { 618 if (*pp < e) 619 *(*pp)++ = c; 620 } 621 622 static ssize_t info_print_ext_header(char *buf, size_t size, 623 struct printk_info *info) 624 { 625 u64 ts_usec = info->ts_nsec; 626 char caller[20]; 627 #ifdef CONFIG_PRINTK_CALLER 628 u32 id = info->caller_id; 629 630 snprintf(caller, sizeof(caller), ",caller=%c%u", 631 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 632 #else 633 caller[0] = '\0'; 634 #endif 635 636 do_div(ts_usec, 1000); 637 638 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 639 (info->facility << 3) | info->level, info->seq, 640 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 641 } 642 643 static ssize_t msg_add_ext_text(char *buf, size_t size, 644 const char *text, size_t text_len, 645 unsigned char endc) 646 { 647 char *p = buf, *e = buf + size; 648 size_t i; 649 650 /* escape non-printable characters */ 651 for (i = 0; i < text_len; i++) { 652 unsigned char c = text[i]; 653 654 if (c < ' ' || c >= 127 || c == '\\') 655 p += scnprintf(p, e - p, "\\x%02x", c); 656 else 657 append_char(&p, e, c); 658 } 659 append_char(&p, e, endc); 660 661 return p - buf; 662 } 663 664 static ssize_t msg_add_dict_text(char *buf, size_t size, 665 const char *key, const char *val) 666 { 667 size_t val_len = strlen(val); 668 ssize_t len; 669 670 if (!val_len) 671 return 0; 672 673 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 674 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 675 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 676 677 return len; 678 } 679 680 static ssize_t msg_print_ext_body(char *buf, size_t size, 681 char *text, size_t text_len, 682 struct dev_printk_info *dev_info) 683 { 684 ssize_t len; 685 686 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 687 688 if (!dev_info) 689 goto out; 690 691 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 692 dev_info->subsystem); 693 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 694 dev_info->device); 695 out: 696 return len; 697 } 698 699 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 700 bool is_extended, bool may_supress); 701 702 /* /dev/kmsg - userspace message inject/listen interface */ 703 struct devkmsg_user { 704 atomic64_t seq; 705 struct ratelimit_state rs; 706 struct mutex lock; 707 struct printk_buffers pbufs; 708 }; 709 710 static __printf(3, 4) __cold 711 int devkmsg_emit(int facility, int level, const char *fmt, ...) 712 { 713 va_list args; 714 int r; 715 716 va_start(args, fmt); 717 r = vprintk_emit(facility, level, NULL, fmt, args); 718 va_end(args); 719 720 return r; 721 } 722 723 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 724 { 725 char *buf, *line; 726 int level = default_message_loglevel; 727 int facility = 1; /* LOG_USER */ 728 struct file *file = iocb->ki_filp; 729 struct devkmsg_user *user = file->private_data; 730 size_t len = iov_iter_count(from); 731 ssize_t ret = len; 732 733 if (!user || len > PRINTKRB_RECORD_MAX) 734 return -EINVAL; 735 736 /* Ignore when user logging is disabled. */ 737 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 738 return len; 739 740 /* Ratelimit when not explicitly enabled. */ 741 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 742 if (!___ratelimit(&user->rs, current->comm)) 743 return ret; 744 } 745 746 buf = kmalloc(len+1, GFP_KERNEL); 747 if (buf == NULL) 748 return -ENOMEM; 749 750 buf[len] = '\0'; 751 if (!copy_from_iter_full(buf, len, from)) { 752 kfree(buf); 753 return -EFAULT; 754 } 755 756 /* 757 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 758 * the decimal value represents 32bit, the lower 3 bit are the log 759 * level, the rest are the log facility. 760 * 761 * If no prefix or no userspace facility is specified, we 762 * enforce LOG_USER, to be able to reliably distinguish 763 * kernel-generated messages from userspace-injected ones. 764 */ 765 line = buf; 766 if (line[0] == '<') { 767 char *endp = NULL; 768 unsigned int u; 769 770 u = simple_strtoul(line + 1, &endp, 10); 771 if (endp && endp[0] == '>') { 772 level = LOG_LEVEL(u); 773 if (LOG_FACILITY(u) != 0) 774 facility = LOG_FACILITY(u); 775 endp++; 776 line = endp; 777 } 778 } 779 780 devkmsg_emit(facility, level, "%s", line); 781 kfree(buf); 782 return ret; 783 } 784 785 static ssize_t devkmsg_read(struct file *file, char __user *buf, 786 size_t count, loff_t *ppos) 787 { 788 struct devkmsg_user *user = file->private_data; 789 char *outbuf = &user->pbufs.outbuf[0]; 790 struct printk_message pmsg = { 791 .pbufs = &user->pbufs, 792 }; 793 ssize_t ret; 794 795 if (!user) 796 return -EBADF; 797 798 ret = mutex_lock_interruptible(&user->lock); 799 if (ret) 800 return ret; 801 802 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 803 if (file->f_flags & O_NONBLOCK) { 804 ret = -EAGAIN; 805 goto out; 806 } 807 808 /* 809 * Guarantee this task is visible on the waitqueue before 810 * checking the wake condition. 811 * 812 * The full memory barrier within set_current_state() of 813 * prepare_to_wait_event() pairs with the full memory barrier 814 * within wq_has_sleeper(). 815 * 816 * This pairs with __wake_up_klogd:A. 817 */ 818 ret = wait_event_interruptible(log_wait, 819 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 820 false)); /* LMM(devkmsg_read:A) */ 821 if (ret) 822 goto out; 823 } 824 825 if (pmsg.dropped) { 826 /* our last seen message is gone, return error and reset */ 827 atomic64_set(&user->seq, pmsg.seq); 828 ret = -EPIPE; 829 goto out; 830 } 831 832 atomic64_set(&user->seq, pmsg.seq + 1); 833 834 if (pmsg.outbuf_len > count) { 835 ret = -EINVAL; 836 goto out; 837 } 838 839 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 840 ret = -EFAULT; 841 goto out; 842 } 843 ret = pmsg.outbuf_len; 844 out: 845 mutex_unlock(&user->lock); 846 return ret; 847 } 848 849 /* 850 * Be careful when modifying this function!!! 851 * 852 * Only few operations are supported because the device works only with the 853 * entire variable length messages (records). Non-standard values are 854 * returned in the other cases and has been this way for quite some time. 855 * User space applications might depend on this behavior. 856 */ 857 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 858 { 859 struct devkmsg_user *user = file->private_data; 860 loff_t ret = 0; 861 862 if (!user) 863 return -EBADF; 864 if (offset) 865 return -ESPIPE; 866 867 switch (whence) { 868 case SEEK_SET: 869 /* the first record */ 870 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 871 break; 872 case SEEK_DATA: 873 /* 874 * The first record after the last SYSLOG_ACTION_CLEAR, 875 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 876 * changes no global state, and does not clear anything. 877 */ 878 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 879 break; 880 case SEEK_END: 881 /* after the last record */ 882 atomic64_set(&user->seq, prb_next_seq(prb)); 883 break; 884 default: 885 ret = -EINVAL; 886 } 887 return ret; 888 } 889 890 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 891 { 892 struct devkmsg_user *user = file->private_data; 893 struct printk_info info; 894 __poll_t ret = 0; 895 896 if (!user) 897 return EPOLLERR|EPOLLNVAL; 898 899 poll_wait(file, &log_wait, wait); 900 901 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 902 /* return error when data has vanished underneath us */ 903 if (info.seq != atomic64_read(&user->seq)) 904 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 905 else 906 ret = EPOLLIN|EPOLLRDNORM; 907 } 908 909 return ret; 910 } 911 912 static int devkmsg_open(struct inode *inode, struct file *file) 913 { 914 struct devkmsg_user *user; 915 int err; 916 917 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 918 return -EPERM; 919 920 /* write-only does not need any file context */ 921 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 922 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 923 SYSLOG_FROM_READER); 924 if (err) 925 return err; 926 } 927 928 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 929 if (!user) 930 return -ENOMEM; 931 932 ratelimit_default_init(&user->rs); 933 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 934 935 mutex_init(&user->lock); 936 937 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 938 939 file->private_data = user; 940 return 0; 941 } 942 943 static int devkmsg_release(struct inode *inode, struct file *file) 944 { 945 struct devkmsg_user *user = file->private_data; 946 947 if (!user) 948 return 0; 949 950 ratelimit_state_exit(&user->rs); 951 952 mutex_destroy(&user->lock); 953 kvfree(user); 954 return 0; 955 } 956 957 const struct file_operations kmsg_fops = { 958 .open = devkmsg_open, 959 .read = devkmsg_read, 960 .write_iter = devkmsg_write, 961 .llseek = devkmsg_llseek, 962 .poll = devkmsg_poll, 963 .release = devkmsg_release, 964 }; 965 966 #ifdef CONFIG_CRASH_CORE 967 /* 968 * This appends the listed symbols to /proc/vmcore 969 * 970 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 971 * obtain access to symbols that are otherwise very difficult to locate. These 972 * symbols are specifically used so that utilities can access and extract the 973 * dmesg log from a vmcore file after a crash. 974 */ 975 void log_buf_vmcoreinfo_setup(void) 976 { 977 struct dev_printk_info *dev_info = NULL; 978 979 VMCOREINFO_SYMBOL(prb); 980 VMCOREINFO_SYMBOL(printk_rb_static); 981 VMCOREINFO_SYMBOL(clear_seq); 982 983 /* 984 * Export struct size and field offsets. User space tools can 985 * parse it and detect any changes to structure down the line. 986 */ 987 988 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 989 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 990 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 991 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 992 993 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 994 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 995 VMCOREINFO_OFFSET(prb_desc_ring, descs); 996 VMCOREINFO_OFFSET(prb_desc_ring, infos); 997 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 998 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 999 1000 VMCOREINFO_STRUCT_SIZE(prb_desc); 1001 VMCOREINFO_OFFSET(prb_desc, state_var); 1002 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 1003 1004 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 1005 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 1006 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1007 1008 VMCOREINFO_STRUCT_SIZE(printk_info); 1009 VMCOREINFO_OFFSET(printk_info, seq); 1010 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1011 VMCOREINFO_OFFSET(printk_info, text_len); 1012 VMCOREINFO_OFFSET(printk_info, caller_id); 1013 VMCOREINFO_OFFSET(printk_info, dev_info); 1014 1015 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1016 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1017 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1018 VMCOREINFO_OFFSET(dev_printk_info, device); 1019 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1020 1021 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1022 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1023 VMCOREINFO_OFFSET(prb_data_ring, data); 1024 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1025 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1026 1027 VMCOREINFO_SIZE(atomic_long_t); 1028 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1029 1030 VMCOREINFO_STRUCT_SIZE(latched_seq); 1031 VMCOREINFO_OFFSET(latched_seq, val); 1032 } 1033 #endif 1034 1035 /* requested log_buf_len from kernel cmdline */ 1036 static unsigned long __initdata new_log_buf_len; 1037 1038 /* we practice scaling the ring buffer by powers of 2 */ 1039 static void __init log_buf_len_update(u64 size) 1040 { 1041 if (size > (u64)LOG_BUF_LEN_MAX) { 1042 size = (u64)LOG_BUF_LEN_MAX; 1043 pr_err("log_buf over 2G is not supported.\n"); 1044 } 1045 1046 if (size) 1047 size = roundup_pow_of_two(size); 1048 if (size > log_buf_len) 1049 new_log_buf_len = (unsigned long)size; 1050 } 1051 1052 /* save requested log_buf_len since it's too early to process it */ 1053 static int __init log_buf_len_setup(char *str) 1054 { 1055 u64 size; 1056 1057 if (!str) 1058 return -EINVAL; 1059 1060 size = memparse(str, &str); 1061 1062 log_buf_len_update(size); 1063 1064 return 0; 1065 } 1066 early_param("log_buf_len", log_buf_len_setup); 1067 1068 #ifdef CONFIG_SMP 1069 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1070 1071 static void __init log_buf_add_cpu(void) 1072 { 1073 unsigned int cpu_extra; 1074 1075 /* 1076 * archs should set up cpu_possible_bits properly with 1077 * set_cpu_possible() after setup_arch() but just in 1078 * case lets ensure this is valid. 1079 */ 1080 if (num_possible_cpus() == 1) 1081 return; 1082 1083 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1084 1085 /* by default this will only continue through for large > 64 CPUs */ 1086 if (cpu_extra <= __LOG_BUF_LEN / 2) 1087 return; 1088 1089 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1090 __LOG_CPU_MAX_BUF_LEN); 1091 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1092 cpu_extra); 1093 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1094 1095 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1096 } 1097 #else /* !CONFIG_SMP */ 1098 static inline void log_buf_add_cpu(void) {} 1099 #endif /* CONFIG_SMP */ 1100 1101 static void __init set_percpu_data_ready(void) 1102 { 1103 __printk_percpu_data_ready = true; 1104 } 1105 1106 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1107 struct printk_record *r) 1108 { 1109 struct prb_reserved_entry e; 1110 struct printk_record dest_r; 1111 1112 prb_rec_init_wr(&dest_r, r->info->text_len); 1113 1114 if (!prb_reserve(&e, rb, &dest_r)) 1115 return 0; 1116 1117 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1118 dest_r.info->text_len = r->info->text_len; 1119 dest_r.info->facility = r->info->facility; 1120 dest_r.info->level = r->info->level; 1121 dest_r.info->flags = r->info->flags; 1122 dest_r.info->ts_nsec = r->info->ts_nsec; 1123 dest_r.info->caller_id = r->info->caller_id; 1124 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1125 1126 prb_final_commit(&e); 1127 1128 return prb_record_text_space(&e); 1129 } 1130 1131 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1132 1133 void __init setup_log_buf(int early) 1134 { 1135 struct printk_info *new_infos; 1136 unsigned int new_descs_count; 1137 struct prb_desc *new_descs; 1138 struct printk_info info; 1139 struct printk_record r; 1140 unsigned int text_size; 1141 size_t new_descs_size; 1142 size_t new_infos_size; 1143 unsigned long flags; 1144 char *new_log_buf; 1145 unsigned int free; 1146 u64 seq; 1147 1148 /* 1149 * Some archs call setup_log_buf() multiple times - first is very 1150 * early, e.g. from setup_arch(), and second - when percpu_areas 1151 * are initialised. 1152 */ 1153 if (!early) 1154 set_percpu_data_ready(); 1155 1156 if (log_buf != __log_buf) 1157 return; 1158 1159 if (!early && !new_log_buf_len) 1160 log_buf_add_cpu(); 1161 1162 if (!new_log_buf_len) 1163 return; 1164 1165 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1166 if (new_descs_count == 0) { 1167 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1168 return; 1169 } 1170 1171 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1172 if (unlikely(!new_log_buf)) { 1173 pr_err("log_buf_len: %lu text bytes not available\n", 1174 new_log_buf_len); 1175 return; 1176 } 1177 1178 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1179 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1180 if (unlikely(!new_descs)) { 1181 pr_err("log_buf_len: %zu desc bytes not available\n", 1182 new_descs_size); 1183 goto err_free_log_buf; 1184 } 1185 1186 new_infos_size = new_descs_count * sizeof(struct printk_info); 1187 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1188 if (unlikely(!new_infos)) { 1189 pr_err("log_buf_len: %zu info bytes not available\n", 1190 new_infos_size); 1191 goto err_free_descs; 1192 } 1193 1194 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1195 1196 prb_init(&printk_rb_dynamic, 1197 new_log_buf, ilog2(new_log_buf_len), 1198 new_descs, ilog2(new_descs_count), 1199 new_infos); 1200 1201 local_irq_save(flags); 1202 1203 log_buf_len = new_log_buf_len; 1204 log_buf = new_log_buf; 1205 new_log_buf_len = 0; 1206 1207 free = __LOG_BUF_LEN; 1208 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1209 text_size = add_to_rb(&printk_rb_dynamic, &r); 1210 if (text_size > free) 1211 free = 0; 1212 else 1213 free -= text_size; 1214 } 1215 1216 prb = &printk_rb_dynamic; 1217 1218 local_irq_restore(flags); 1219 1220 /* 1221 * Copy any remaining messages that might have appeared from 1222 * NMI context after copying but before switching to the 1223 * dynamic buffer. 1224 */ 1225 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1226 text_size = add_to_rb(&printk_rb_dynamic, &r); 1227 if (text_size > free) 1228 free = 0; 1229 else 1230 free -= text_size; 1231 } 1232 1233 if (seq != prb_next_seq(&printk_rb_static)) { 1234 pr_err("dropped %llu messages\n", 1235 prb_next_seq(&printk_rb_static) - seq); 1236 } 1237 1238 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1239 pr_info("early log buf free: %u(%u%%)\n", 1240 free, (free * 100) / __LOG_BUF_LEN); 1241 return; 1242 1243 err_free_descs: 1244 memblock_free(new_descs, new_descs_size); 1245 err_free_log_buf: 1246 memblock_free(new_log_buf, new_log_buf_len); 1247 } 1248 1249 static bool __read_mostly ignore_loglevel; 1250 1251 static int __init ignore_loglevel_setup(char *str) 1252 { 1253 ignore_loglevel = true; 1254 pr_info("debug: ignoring loglevel setting.\n"); 1255 1256 return 0; 1257 } 1258 1259 early_param("ignore_loglevel", ignore_loglevel_setup); 1260 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1261 MODULE_PARM_DESC(ignore_loglevel, 1262 "ignore loglevel setting (prints all kernel messages to the console)"); 1263 1264 static bool suppress_message_printing(int level) 1265 { 1266 return (level >= console_loglevel && !ignore_loglevel); 1267 } 1268 1269 #ifdef CONFIG_BOOT_PRINTK_DELAY 1270 1271 static int boot_delay; /* msecs delay after each printk during bootup */ 1272 static unsigned long long loops_per_msec; /* based on boot_delay */ 1273 1274 static int __init boot_delay_setup(char *str) 1275 { 1276 unsigned long lpj; 1277 1278 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1279 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1280 1281 get_option(&str, &boot_delay); 1282 if (boot_delay > 10 * 1000) 1283 boot_delay = 0; 1284 1285 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1286 "HZ: %d, loops_per_msec: %llu\n", 1287 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1288 return 0; 1289 } 1290 early_param("boot_delay", boot_delay_setup); 1291 1292 static void boot_delay_msec(int level) 1293 { 1294 unsigned long long k; 1295 unsigned long timeout; 1296 1297 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1298 || suppress_message_printing(level)) { 1299 return; 1300 } 1301 1302 k = (unsigned long long)loops_per_msec * boot_delay; 1303 1304 timeout = jiffies + msecs_to_jiffies(boot_delay); 1305 while (k) { 1306 k--; 1307 cpu_relax(); 1308 /* 1309 * use (volatile) jiffies to prevent 1310 * compiler reduction; loop termination via jiffies 1311 * is secondary and may or may not happen. 1312 */ 1313 if (time_after(jiffies, timeout)) 1314 break; 1315 touch_nmi_watchdog(); 1316 } 1317 } 1318 #else 1319 static inline void boot_delay_msec(int level) 1320 { 1321 } 1322 #endif 1323 1324 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1325 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1326 1327 static size_t print_syslog(unsigned int level, char *buf) 1328 { 1329 return sprintf(buf, "<%u>", level); 1330 } 1331 1332 static size_t print_time(u64 ts, char *buf) 1333 { 1334 unsigned long rem_nsec = do_div(ts, 1000000000); 1335 1336 return sprintf(buf, "[%5lu.%06lu]", 1337 (unsigned long)ts, rem_nsec / 1000); 1338 } 1339 1340 #ifdef CONFIG_PRINTK_CALLER 1341 static size_t print_caller(u32 id, char *buf) 1342 { 1343 char caller[12]; 1344 1345 snprintf(caller, sizeof(caller), "%c%u", 1346 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1347 return sprintf(buf, "[%6s]", caller); 1348 } 1349 #else 1350 #define print_caller(id, buf) 0 1351 #endif 1352 1353 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1354 bool time, char *buf) 1355 { 1356 size_t len = 0; 1357 1358 if (syslog) 1359 len = print_syslog((info->facility << 3) | info->level, buf); 1360 1361 if (time) 1362 len += print_time(info->ts_nsec, buf + len); 1363 1364 len += print_caller(info->caller_id, buf + len); 1365 1366 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1367 buf[len++] = ' '; 1368 buf[len] = '\0'; 1369 } 1370 1371 return len; 1372 } 1373 1374 /* 1375 * Prepare the record for printing. The text is shifted within the given 1376 * buffer to avoid a need for another one. The following operations are 1377 * done: 1378 * 1379 * - Add prefix for each line. 1380 * - Drop truncated lines that no longer fit into the buffer. 1381 * - Add the trailing newline that has been removed in vprintk_store(). 1382 * - Add a string terminator. 1383 * 1384 * Since the produced string is always terminated, the maximum possible 1385 * return value is @r->text_buf_size - 1; 1386 * 1387 * Return: The length of the updated/prepared text, including the added 1388 * prefixes and the newline. The terminator is not counted. The dropped 1389 * line(s) are not counted. 1390 */ 1391 static size_t record_print_text(struct printk_record *r, bool syslog, 1392 bool time) 1393 { 1394 size_t text_len = r->info->text_len; 1395 size_t buf_size = r->text_buf_size; 1396 char *text = r->text_buf; 1397 char prefix[PRINTK_PREFIX_MAX]; 1398 bool truncated = false; 1399 size_t prefix_len; 1400 size_t line_len; 1401 size_t len = 0; 1402 char *next; 1403 1404 /* 1405 * If the message was truncated because the buffer was not large 1406 * enough, treat the available text as if it were the full text. 1407 */ 1408 if (text_len > buf_size) 1409 text_len = buf_size; 1410 1411 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1412 1413 /* 1414 * @text_len: bytes of unprocessed text 1415 * @line_len: bytes of current line _without_ newline 1416 * @text: pointer to beginning of current line 1417 * @len: number of bytes prepared in r->text_buf 1418 */ 1419 for (;;) { 1420 next = memchr(text, '\n', text_len); 1421 if (next) { 1422 line_len = next - text; 1423 } else { 1424 /* Drop truncated line(s). */ 1425 if (truncated) 1426 break; 1427 line_len = text_len; 1428 } 1429 1430 /* 1431 * Truncate the text if there is not enough space to add the 1432 * prefix and a trailing newline and a terminator. 1433 */ 1434 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1435 /* Drop even the current line if no space. */ 1436 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1437 break; 1438 1439 text_len = buf_size - len - prefix_len - 1 - 1; 1440 truncated = true; 1441 } 1442 1443 memmove(text + prefix_len, text, text_len); 1444 memcpy(text, prefix, prefix_len); 1445 1446 /* 1447 * Increment the prepared length to include the text and 1448 * prefix that were just moved+copied. Also increment for the 1449 * newline at the end of this line. If this is the last line, 1450 * there is no newline, but it will be added immediately below. 1451 */ 1452 len += prefix_len + line_len + 1; 1453 if (text_len == line_len) { 1454 /* 1455 * This is the last line. Add the trailing newline 1456 * removed in vprintk_store(). 1457 */ 1458 text[prefix_len + line_len] = '\n'; 1459 break; 1460 } 1461 1462 /* 1463 * Advance beyond the added prefix and the related line with 1464 * its newline. 1465 */ 1466 text += prefix_len + line_len + 1; 1467 1468 /* 1469 * The remaining text has only decreased by the line with its 1470 * newline. 1471 * 1472 * Note that @text_len can become zero. It happens when @text 1473 * ended with a newline (either due to truncation or the 1474 * original string ending with "\n\n"). The loop is correctly 1475 * repeated and (if not truncated) an empty line with a prefix 1476 * will be prepared. 1477 */ 1478 text_len -= line_len + 1; 1479 } 1480 1481 /* 1482 * If a buffer was provided, it will be terminated. Space for the 1483 * string terminator is guaranteed to be available. The terminator is 1484 * not counted in the return value. 1485 */ 1486 if (buf_size > 0) 1487 r->text_buf[len] = 0; 1488 1489 return len; 1490 } 1491 1492 static size_t get_record_print_text_size(struct printk_info *info, 1493 unsigned int line_count, 1494 bool syslog, bool time) 1495 { 1496 char prefix[PRINTK_PREFIX_MAX]; 1497 size_t prefix_len; 1498 1499 prefix_len = info_print_prefix(info, syslog, time, prefix); 1500 1501 /* 1502 * Each line will be preceded with a prefix. The intermediate 1503 * newlines are already within the text, but a final trailing 1504 * newline will be added. 1505 */ 1506 return ((prefix_len * line_count) + info->text_len + 1); 1507 } 1508 1509 /* 1510 * Beginning with @start_seq, find the first record where it and all following 1511 * records up to (but not including) @max_seq fit into @size. 1512 * 1513 * @max_seq is simply an upper bound and does not need to exist. If the caller 1514 * does not require an upper bound, -1 can be used for @max_seq. 1515 */ 1516 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1517 bool syslog, bool time) 1518 { 1519 struct printk_info info; 1520 unsigned int line_count; 1521 size_t len = 0; 1522 u64 seq; 1523 1524 /* Determine the size of the records up to @max_seq. */ 1525 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1526 if (info.seq >= max_seq) 1527 break; 1528 len += get_record_print_text_size(&info, line_count, syslog, time); 1529 } 1530 1531 /* 1532 * Adjust the upper bound for the next loop to avoid subtracting 1533 * lengths that were never added. 1534 */ 1535 if (seq < max_seq) 1536 max_seq = seq; 1537 1538 /* 1539 * Move first record forward until length fits into the buffer. Ignore 1540 * newest messages that were not counted in the above cycle. Messages 1541 * might appear and get lost in the meantime. This is a best effort 1542 * that prevents an infinite loop that could occur with a retry. 1543 */ 1544 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1545 if (len <= size || info.seq >= max_seq) 1546 break; 1547 len -= get_record_print_text_size(&info, line_count, syslog, time); 1548 } 1549 1550 return seq; 1551 } 1552 1553 /* The caller is responsible for making sure @size is greater than 0. */ 1554 static int syslog_print(char __user *buf, int size) 1555 { 1556 struct printk_info info; 1557 struct printk_record r; 1558 char *text; 1559 int len = 0; 1560 u64 seq; 1561 1562 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1563 if (!text) 1564 return -ENOMEM; 1565 1566 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1567 1568 mutex_lock(&syslog_lock); 1569 1570 /* 1571 * Wait for the @syslog_seq record to be available. @syslog_seq may 1572 * change while waiting. 1573 */ 1574 do { 1575 seq = syslog_seq; 1576 1577 mutex_unlock(&syslog_lock); 1578 /* 1579 * Guarantee this task is visible on the waitqueue before 1580 * checking the wake condition. 1581 * 1582 * The full memory barrier within set_current_state() of 1583 * prepare_to_wait_event() pairs with the full memory barrier 1584 * within wq_has_sleeper(). 1585 * 1586 * This pairs with __wake_up_klogd:A. 1587 */ 1588 len = wait_event_interruptible(log_wait, 1589 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1590 mutex_lock(&syslog_lock); 1591 1592 if (len) 1593 goto out; 1594 } while (syslog_seq != seq); 1595 1596 /* 1597 * Copy records that fit into the buffer. The above cycle makes sure 1598 * that the first record is always available. 1599 */ 1600 do { 1601 size_t n; 1602 size_t skip; 1603 int err; 1604 1605 if (!prb_read_valid(prb, syslog_seq, &r)) 1606 break; 1607 1608 if (r.info->seq != syslog_seq) { 1609 /* message is gone, move to next valid one */ 1610 syslog_seq = r.info->seq; 1611 syslog_partial = 0; 1612 } 1613 1614 /* 1615 * To keep reading/counting partial line consistent, 1616 * use printk_time value as of the beginning of a line. 1617 */ 1618 if (!syslog_partial) 1619 syslog_time = printk_time; 1620 1621 skip = syslog_partial; 1622 n = record_print_text(&r, true, syslog_time); 1623 if (n - syslog_partial <= size) { 1624 /* message fits into buffer, move forward */ 1625 syslog_seq = r.info->seq + 1; 1626 n -= syslog_partial; 1627 syslog_partial = 0; 1628 } else if (!len){ 1629 /* partial read(), remember position */ 1630 n = size; 1631 syslog_partial += n; 1632 } else 1633 n = 0; 1634 1635 if (!n) 1636 break; 1637 1638 mutex_unlock(&syslog_lock); 1639 err = copy_to_user(buf, text + skip, n); 1640 mutex_lock(&syslog_lock); 1641 1642 if (err) { 1643 if (!len) 1644 len = -EFAULT; 1645 break; 1646 } 1647 1648 len += n; 1649 size -= n; 1650 buf += n; 1651 } while (size); 1652 out: 1653 mutex_unlock(&syslog_lock); 1654 kfree(text); 1655 return len; 1656 } 1657 1658 static int syslog_print_all(char __user *buf, int size, bool clear) 1659 { 1660 struct printk_info info; 1661 struct printk_record r; 1662 char *text; 1663 int len = 0; 1664 u64 seq; 1665 bool time; 1666 1667 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1668 if (!text) 1669 return -ENOMEM; 1670 1671 time = printk_time; 1672 /* 1673 * Find first record that fits, including all following records, 1674 * into the user-provided buffer for this dump. 1675 */ 1676 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1677 size, true, time); 1678 1679 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1680 1681 len = 0; 1682 prb_for_each_record(seq, prb, seq, &r) { 1683 int textlen; 1684 1685 textlen = record_print_text(&r, true, time); 1686 1687 if (len + textlen > size) { 1688 seq--; 1689 break; 1690 } 1691 1692 if (copy_to_user(buf + len, text, textlen)) 1693 len = -EFAULT; 1694 else 1695 len += textlen; 1696 1697 if (len < 0) 1698 break; 1699 } 1700 1701 if (clear) { 1702 mutex_lock(&syslog_lock); 1703 latched_seq_write(&clear_seq, seq); 1704 mutex_unlock(&syslog_lock); 1705 } 1706 1707 kfree(text); 1708 return len; 1709 } 1710 1711 static void syslog_clear(void) 1712 { 1713 mutex_lock(&syslog_lock); 1714 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1715 mutex_unlock(&syslog_lock); 1716 } 1717 1718 int do_syslog(int type, char __user *buf, int len, int source) 1719 { 1720 struct printk_info info; 1721 bool clear = false; 1722 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1723 int error; 1724 1725 error = check_syslog_permissions(type, source); 1726 if (error) 1727 return error; 1728 1729 switch (type) { 1730 case SYSLOG_ACTION_CLOSE: /* Close log */ 1731 break; 1732 case SYSLOG_ACTION_OPEN: /* Open log */ 1733 break; 1734 case SYSLOG_ACTION_READ: /* Read from log */ 1735 if (!buf || len < 0) 1736 return -EINVAL; 1737 if (!len) 1738 return 0; 1739 if (!access_ok(buf, len)) 1740 return -EFAULT; 1741 error = syslog_print(buf, len); 1742 break; 1743 /* Read/clear last kernel messages */ 1744 case SYSLOG_ACTION_READ_CLEAR: 1745 clear = true; 1746 fallthrough; 1747 /* Read last kernel messages */ 1748 case SYSLOG_ACTION_READ_ALL: 1749 if (!buf || len < 0) 1750 return -EINVAL; 1751 if (!len) 1752 return 0; 1753 if (!access_ok(buf, len)) 1754 return -EFAULT; 1755 error = syslog_print_all(buf, len, clear); 1756 break; 1757 /* Clear ring buffer */ 1758 case SYSLOG_ACTION_CLEAR: 1759 syslog_clear(); 1760 break; 1761 /* Disable logging to console */ 1762 case SYSLOG_ACTION_CONSOLE_OFF: 1763 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1764 saved_console_loglevel = console_loglevel; 1765 console_loglevel = minimum_console_loglevel; 1766 break; 1767 /* Enable logging to console */ 1768 case SYSLOG_ACTION_CONSOLE_ON: 1769 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1770 console_loglevel = saved_console_loglevel; 1771 saved_console_loglevel = LOGLEVEL_DEFAULT; 1772 } 1773 break; 1774 /* Set level of messages printed to console */ 1775 case SYSLOG_ACTION_CONSOLE_LEVEL: 1776 if (len < 1 || len > 8) 1777 return -EINVAL; 1778 if (len < minimum_console_loglevel) 1779 len = minimum_console_loglevel; 1780 console_loglevel = len; 1781 /* Implicitly re-enable logging to console */ 1782 saved_console_loglevel = LOGLEVEL_DEFAULT; 1783 break; 1784 /* Number of chars in the log buffer */ 1785 case SYSLOG_ACTION_SIZE_UNREAD: 1786 mutex_lock(&syslog_lock); 1787 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1788 /* No unread messages. */ 1789 mutex_unlock(&syslog_lock); 1790 return 0; 1791 } 1792 if (info.seq != syslog_seq) { 1793 /* messages are gone, move to first one */ 1794 syslog_seq = info.seq; 1795 syslog_partial = 0; 1796 } 1797 if (source == SYSLOG_FROM_PROC) { 1798 /* 1799 * Short-cut for poll(/"proc/kmsg") which simply checks 1800 * for pending data, not the size; return the count of 1801 * records, not the length. 1802 */ 1803 error = prb_next_seq(prb) - syslog_seq; 1804 } else { 1805 bool time = syslog_partial ? syslog_time : printk_time; 1806 unsigned int line_count; 1807 u64 seq; 1808 1809 prb_for_each_info(syslog_seq, prb, seq, &info, 1810 &line_count) { 1811 error += get_record_print_text_size(&info, line_count, 1812 true, time); 1813 time = printk_time; 1814 } 1815 error -= syslog_partial; 1816 } 1817 mutex_unlock(&syslog_lock); 1818 break; 1819 /* Size of the log buffer */ 1820 case SYSLOG_ACTION_SIZE_BUFFER: 1821 error = log_buf_len; 1822 break; 1823 default: 1824 error = -EINVAL; 1825 break; 1826 } 1827 1828 return error; 1829 } 1830 1831 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1832 { 1833 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1834 } 1835 1836 /* 1837 * Special console_lock variants that help to reduce the risk of soft-lockups. 1838 * They allow to pass console_lock to another printk() call using a busy wait. 1839 */ 1840 1841 #ifdef CONFIG_LOCKDEP 1842 static struct lockdep_map console_owner_dep_map = { 1843 .name = "console_owner" 1844 }; 1845 #endif 1846 1847 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1848 static struct task_struct *console_owner; 1849 static bool console_waiter; 1850 1851 /** 1852 * console_lock_spinning_enable - mark beginning of code where another 1853 * thread might safely busy wait 1854 * 1855 * This basically converts console_lock into a spinlock. This marks 1856 * the section where the console_lock owner can not sleep, because 1857 * there may be a waiter spinning (like a spinlock). Also it must be 1858 * ready to hand over the lock at the end of the section. 1859 */ 1860 static void console_lock_spinning_enable(void) 1861 { 1862 raw_spin_lock(&console_owner_lock); 1863 console_owner = current; 1864 raw_spin_unlock(&console_owner_lock); 1865 1866 /* The waiter may spin on us after setting console_owner */ 1867 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1868 } 1869 1870 /** 1871 * console_lock_spinning_disable_and_check - mark end of code where another 1872 * thread was able to busy wait and check if there is a waiter 1873 * @cookie: cookie returned from console_srcu_read_lock() 1874 * 1875 * This is called at the end of the section where spinning is allowed. 1876 * It has two functions. First, it is a signal that it is no longer 1877 * safe to start busy waiting for the lock. Second, it checks if 1878 * there is a busy waiter and passes the lock rights to her. 1879 * 1880 * Important: Callers lose both the console_lock and the SRCU read lock if 1881 * there was a busy waiter. They must not touch items synchronized by 1882 * console_lock or SRCU read lock in this case. 1883 * 1884 * Return: 1 if the lock rights were passed, 0 otherwise. 1885 */ 1886 static int console_lock_spinning_disable_and_check(int cookie) 1887 { 1888 int waiter; 1889 1890 raw_spin_lock(&console_owner_lock); 1891 waiter = READ_ONCE(console_waiter); 1892 console_owner = NULL; 1893 raw_spin_unlock(&console_owner_lock); 1894 1895 if (!waiter) { 1896 spin_release(&console_owner_dep_map, _THIS_IP_); 1897 return 0; 1898 } 1899 1900 /* The waiter is now free to continue */ 1901 WRITE_ONCE(console_waiter, false); 1902 1903 spin_release(&console_owner_dep_map, _THIS_IP_); 1904 1905 /* 1906 * Preserve lockdep lock ordering. Release the SRCU read lock before 1907 * releasing the console_lock. 1908 */ 1909 console_srcu_read_unlock(cookie); 1910 1911 /* 1912 * Hand off console_lock to waiter. The waiter will perform 1913 * the up(). After this, the waiter is the console_lock owner. 1914 */ 1915 mutex_release(&console_lock_dep_map, _THIS_IP_); 1916 return 1; 1917 } 1918 1919 /** 1920 * console_trylock_spinning - try to get console_lock by busy waiting 1921 * 1922 * This allows to busy wait for the console_lock when the current 1923 * owner is running in specially marked sections. It means that 1924 * the current owner is running and cannot reschedule until it 1925 * is ready to lose the lock. 1926 * 1927 * Return: 1 if we got the lock, 0 othrewise 1928 */ 1929 static int console_trylock_spinning(void) 1930 { 1931 struct task_struct *owner = NULL; 1932 bool waiter; 1933 bool spin = false; 1934 unsigned long flags; 1935 1936 if (console_trylock()) 1937 return 1; 1938 1939 /* 1940 * It's unsafe to spin once a panic has begun. If we are the 1941 * panic CPU, we may have already halted the owner of the 1942 * console_sem. If we are not the panic CPU, then we should 1943 * avoid taking console_sem, so the panic CPU has a better 1944 * chance of cleanly acquiring it later. 1945 */ 1946 if (panic_in_progress()) 1947 return 0; 1948 1949 printk_safe_enter_irqsave(flags); 1950 1951 raw_spin_lock(&console_owner_lock); 1952 owner = READ_ONCE(console_owner); 1953 waiter = READ_ONCE(console_waiter); 1954 if (!waiter && owner && owner != current) { 1955 WRITE_ONCE(console_waiter, true); 1956 spin = true; 1957 } 1958 raw_spin_unlock(&console_owner_lock); 1959 1960 /* 1961 * If there is an active printk() writing to the 1962 * consoles, instead of having it write our data too, 1963 * see if we can offload that load from the active 1964 * printer, and do some printing ourselves. 1965 * Go into a spin only if there isn't already a waiter 1966 * spinning, and there is an active printer, and 1967 * that active printer isn't us (recursive printk?). 1968 */ 1969 if (!spin) { 1970 printk_safe_exit_irqrestore(flags); 1971 return 0; 1972 } 1973 1974 /* We spin waiting for the owner to release us */ 1975 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1976 /* Owner will clear console_waiter on hand off */ 1977 while (READ_ONCE(console_waiter)) 1978 cpu_relax(); 1979 spin_release(&console_owner_dep_map, _THIS_IP_); 1980 1981 printk_safe_exit_irqrestore(flags); 1982 /* 1983 * The owner passed the console lock to us. 1984 * Since we did not spin on console lock, annotate 1985 * this as a trylock. Otherwise lockdep will 1986 * complain. 1987 */ 1988 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1989 1990 return 1; 1991 } 1992 1993 /* 1994 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1995 * additional NMI context per CPU is also separately tracked. Until per-CPU 1996 * is available, a separate "early tracking" is performed. 1997 */ 1998 static DEFINE_PER_CPU(u8, printk_count); 1999 static u8 printk_count_early; 2000 #ifdef CONFIG_HAVE_NMI 2001 static DEFINE_PER_CPU(u8, printk_count_nmi); 2002 static u8 printk_count_nmi_early; 2003 #endif 2004 2005 /* 2006 * Recursion is limited to keep the output sane. printk() should not require 2007 * more than 1 level of recursion (allowing, for example, printk() to trigger 2008 * a WARN), but a higher value is used in case some printk-internal errors 2009 * exist, such as the ringbuffer validation checks failing. 2010 */ 2011 #define PRINTK_MAX_RECURSION 3 2012 2013 /* 2014 * Return a pointer to the dedicated counter for the CPU+context of the 2015 * caller. 2016 */ 2017 static u8 *__printk_recursion_counter(void) 2018 { 2019 #ifdef CONFIG_HAVE_NMI 2020 if (in_nmi()) { 2021 if (printk_percpu_data_ready()) 2022 return this_cpu_ptr(&printk_count_nmi); 2023 return &printk_count_nmi_early; 2024 } 2025 #endif 2026 if (printk_percpu_data_ready()) 2027 return this_cpu_ptr(&printk_count); 2028 return &printk_count_early; 2029 } 2030 2031 /* 2032 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2033 * The caller must check the boolean return value to see if the recursion is 2034 * allowed. On failure, interrupts are not disabled. 2035 * 2036 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2037 * that is passed to printk_exit_irqrestore(). 2038 */ 2039 #define printk_enter_irqsave(recursion_ptr, flags) \ 2040 ({ \ 2041 bool success = true; \ 2042 \ 2043 typecheck(u8 *, recursion_ptr); \ 2044 local_irq_save(flags); \ 2045 (recursion_ptr) = __printk_recursion_counter(); \ 2046 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2047 local_irq_restore(flags); \ 2048 success = false; \ 2049 } else { \ 2050 (*(recursion_ptr))++; \ 2051 } \ 2052 success; \ 2053 }) 2054 2055 /* Exit recursion tracking, restoring interrupts. */ 2056 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2057 do { \ 2058 typecheck(u8 *, recursion_ptr); \ 2059 (*(recursion_ptr))--; \ 2060 local_irq_restore(flags); \ 2061 } while (0) 2062 2063 int printk_delay_msec __read_mostly; 2064 2065 static inline void printk_delay(int level) 2066 { 2067 boot_delay_msec(level); 2068 2069 if (unlikely(printk_delay_msec)) { 2070 int m = printk_delay_msec; 2071 2072 while (m--) { 2073 mdelay(1); 2074 touch_nmi_watchdog(); 2075 } 2076 } 2077 } 2078 2079 static inline u32 printk_caller_id(void) 2080 { 2081 return in_task() ? task_pid_nr(current) : 2082 0x80000000 + smp_processor_id(); 2083 } 2084 2085 /** 2086 * printk_parse_prefix - Parse level and control flags. 2087 * 2088 * @text: The terminated text message. 2089 * @level: A pointer to the current level value, will be updated. 2090 * @flags: A pointer to the current printk_info flags, will be updated. 2091 * 2092 * @level may be NULL if the caller is not interested in the parsed value. 2093 * Otherwise the variable pointed to by @level must be set to 2094 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2095 * 2096 * @flags may be NULL if the caller is not interested in the parsed value. 2097 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2098 * value. 2099 * 2100 * Return: The length of the parsed level and control flags. 2101 */ 2102 u16 printk_parse_prefix(const char *text, int *level, 2103 enum printk_info_flags *flags) 2104 { 2105 u16 prefix_len = 0; 2106 int kern_level; 2107 2108 while (*text) { 2109 kern_level = printk_get_level(text); 2110 if (!kern_level) 2111 break; 2112 2113 switch (kern_level) { 2114 case '0' ... '7': 2115 if (level && *level == LOGLEVEL_DEFAULT) 2116 *level = kern_level - '0'; 2117 break; 2118 case 'c': /* KERN_CONT */ 2119 if (flags) 2120 *flags |= LOG_CONT; 2121 } 2122 2123 prefix_len += 2; 2124 text += 2; 2125 } 2126 2127 return prefix_len; 2128 } 2129 2130 __printf(5, 0) 2131 static u16 printk_sprint(char *text, u16 size, int facility, 2132 enum printk_info_flags *flags, const char *fmt, 2133 va_list args) 2134 { 2135 u16 text_len; 2136 2137 text_len = vscnprintf(text, size, fmt, args); 2138 2139 /* Mark and strip a trailing newline. */ 2140 if (text_len && text[text_len - 1] == '\n') { 2141 text_len--; 2142 *flags |= LOG_NEWLINE; 2143 } 2144 2145 /* Strip log level and control flags. */ 2146 if (facility == 0) { 2147 u16 prefix_len; 2148 2149 prefix_len = printk_parse_prefix(text, NULL, NULL); 2150 if (prefix_len) { 2151 text_len -= prefix_len; 2152 memmove(text, text + prefix_len, text_len); 2153 } 2154 } 2155 2156 trace_console(text, text_len); 2157 2158 return text_len; 2159 } 2160 2161 __printf(4, 0) 2162 int vprintk_store(int facility, int level, 2163 const struct dev_printk_info *dev_info, 2164 const char *fmt, va_list args) 2165 { 2166 struct prb_reserved_entry e; 2167 enum printk_info_flags flags = 0; 2168 struct printk_record r; 2169 unsigned long irqflags; 2170 u16 trunc_msg_len = 0; 2171 char prefix_buf[8]; 2172 u8 *recursion_ptr; 2173 u16 reserve_size; 2174 va_list args2; 2175 u32 caller_id; 2176 u16 text_len; 2177 int ret = 0; 2178 u64 ts_nsec; 2179 2180 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2181 return 0; 2182 2183 /* 2184 * Since the duration of printk() can vary depending on the message 2185 * and state of the ringbuffer, grab the timestamp now so that it is 2186 * close to the call of printk(). This provides a more deterministic 2187 * timestamp with respect to the caller. 2188 */ 2189 ts_nsec = local_clock(); 2190 2191 caller_id = printk_caller_id(); 2192 2193 /* 2194 * The sprintf needs to come first since the syslog prefix might be 2195 * passed in as a parameter. An extra byte must be reserved so that 2196 * later the vscnprintf() into the reserved buffer has room for the 2197 * terminating '\0', which is not counted by vsnprintf(). 2198 */ 2199 va_copy(args2, args); 2200 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2201 va_end(args2); 2202 2203 if (reserve_size > PRINTKRB_RECORD_MAX) 2204 reserve_size = PRINTKRB_RECORD_MAX; 2205 2206 /* Extract log level or control flags. */ 2207 if (facility == 0) 2208 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2209 2210 if (level == LOGLEVEL_DEFAULT) 2211 level = default_message_loglevel; 2212 2213 if (dev_info) 2214 flags |= LOG_NEWLINE; 2215 2216 if (flags & LOG_CONT) { 2217 prb_rec_init_wr(&r, reserve_size); 2218 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2219 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2220 facility, &flags, fmt, args); 2221 r.info->text_len += text_len; 2222 2223 if (flags & LOG_NEWLINE) { 2224 r.info->flags |= LOG_NEWLINE; 2225 prb_final_commit(&e); 2226 } else { 2227 prb_commit(&e); 2228 } 2229 2230 ret = text_len; 2231 goto out; 2232 } 2233 } 2234 2235 /* 2236 * Explicitly initialize the record before every prb_reserve() call. 2237 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2238 * structure when they fail. 2239 */ 2240 prb_rec_init_wr(&r, reserve_size); 2241 if (!prb_reserve(&e, prb, &r)) { 2242 /* truncate the message if it is too long for empty buffer */ 2243 truncate_msg(&reserve_size, &trunc_msg_len); 2244 2245 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2246 if (!prb_reserve(&e, prb, &r)) 2247 goto out; 2248 } 2249 2250 /* fill message */ 2251 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2252 if (trunc_msg_len) 2253 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2254 r.info->text_len = text_len + trunc_msg_len; 2255 r.info->facility = facility; 2256 r.info->level = level & 7; 2257 r.info->flags = flags & 0x1f; 2258 r.info->ts_nsec = ts_nsec; 2259 r.info->caller_id = caller_id; 2260 if (dev_info) 2261 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2262 2263 /* A message without a trailing newline can be continued. */ 2264 if (!(flags & LOG_NEWLINE)) 2265 prb_commit(&e); 2266 else 2267 prb_final_commit(&e); 2268 2269 ret = text_len + trunc_msg_len; 2270 out: 2271 printk_exit_irqrestore(recursion_ptr, irqflags); 2272 return ret; 2273 } 2274 2275 asmlinkage int vprintk_emit(int facility, int level, 2276 const struct dev_printk_info *dev_info, 2277 const char *fmt, va_list args) 2278 { 2279 int printed_len; 2280 bool in_sched = false; 2281 2282 /* Suppress unimportant messages after panic happens */ 2283 if (unlikely(suppress_printk)) 2284 return 0; 2285 2286 if (unlikely(suppress_panic_printk) && 2287 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2288 return 0; 2289 2290 if (level == LOGLEVEL_SCHED) { 2291 level = LOGLEVEL_DEFAULT; 2292 in_sched = true; 2293 } 2294 2295 printk_delay(level); 2296 2297 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2298 2299 /* If called from the scheduler, we can not call up(). */ 2300 if (!in_sched) { 2301 /* 2302 * The caller may be holding system-critical or 2303 * timing-sensitive locks. Disable preemption during 2304 * printing of all remaining records to all consoles so that 2305 * this context can return as soon as possible. Hopefully 2306 * another printk() caller will take over the printing. 2307 */ 2308 preempt_disable(); 2309 /* 2310 * Try to acquire and then immediately release the console 2311 * semaphore. The release will print out buffers. With the 2312 * spinning variant, this context tries to take over the 2313 * printing from another printing context. 2314 */ 2315 if (console_trylock_spinning()) 2316 console_unlock(); 2317 preempt_enable(); 2318 } 2319 2320 wake_up_klogd(); 2321 return printed_len; 2322 } 2323 EXPORT_SYMBOL(vprintk_emit); 2324 2325 int vprintk_default(const char *fmt, va_list args) 2326 { 2327 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2328 } 2329 EXPORT_SYMBOL_GPL(vprintk_default); 2330 2331 asmlinkage __visible int _printk(const char *fmt, ...) 2332 { 2333 va_list args; 2334 int r; 2335 2336 va_start(args, fmt); 2337 r = vprintk(fmt, args); 2338 va_end(args); 2339 2340 return r; 2341 } 2342 EXPORT_SYMBOL(_printk); 2343 2344 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2345 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2346 2347 #else /* CONFIG_PRINTK */ 2348 2349 #define printk_time false 2350 2351 #define prb_read_valid(rb, seq, r) false 2352 #define prb_first_valid_seq(rb) 0 2353 #define prb_next_seq(rb) 0 2354 2355 static u64 syslog_seq; 2356 2357 static size_t record_print_text(const struct printk_record *r, 2358 bool syslog, bool time) 2359 { 2360 return 0; 2361 } 2362 static ssize_t info_print_ext_header(char *buf, size_t size, 2363 struct printk_info *info) 2364 { 2365 return 0; 2366 } 2367 static ssize_t msg_print_ext_body(char *buf, size_t size, 2368 char *text, size_t text_len, 2369 struct dev_printk_info *dev_info) { return 0; } 2370 static void console_lock_spinning_enable(void) { } 2371 static int console_lock_spinning_disable_and_check(int cookie) { return 0; } 2372 static bool suppress_message_printing(int level) { return false; } 2373 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2374 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2375 2376 #endif /* CONFIG_PRINTK */ 2377 2378 #ifdef CONFIG_EARLY_PRINTK 2379 struct console *early_console; 2380 2381 asmlinkage __visible void early_printk(const char *fmt, ...) 2382 { 2383 va_list ap; 2384 char buf[512]; 2385 int n; 2386 2387 if (!early_console) 2388 return; 2389 2390 va_start(ap, fmt); 2391 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2392 va_end(ap); 2393 2394 early_console->write(early_console, buf, n); 2395 } 2396 #endif 2397 2398 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2399 { 2400 if (!user_specified) 2401 return; 2402 2403 /* 2404 * @c console was defined by the user on the command line. 2405 * Do not clear when added twice also by SPCR or the device tree. 2406 */ 2407 c->user_specified = true; 2408 /* At least one console defined by the user on the command line. */ 2409 console_set_on_cmdline = 1; 2410 } 2411 2412 static int __add_preferred_console(char *name, int idx, char *options, 2413 char *brl_options, bool user_specified) 2414 { 2415 struct console_cmdline *c; 2416 int i; 2417 2418 /* 2419 * See if this tty is not yet registered, and 2420 * if we have a slot free. 2421 */ 2422 for (i = 0, c = console_cmdline; 2423 i < MAX_CMDLINECONSOLES && c->name[0]; 2424 i++, c++) { 2425 if (strcmp(c->name, name) == 0 && c->index == idx) { 2426 if (!brl_options) 2427 preferred_console = i; 2428 set_user_specified(c, user_specified); 2429 return 0; 2430 } 2431 } 2432 if (i == MAX_CMDLINECONSOLES) 2433 return -E2BIG; 2434 if (!brl_options) 2435 preferred_console = i; 2436 strscpy(c->name, name, sizeof(c->name)); 2437 c->options = options; 2438 set_user_specified(c, user_specified); 2439 braille_set_options(c, brl_options); 2440 2441 c->index = idx; 2442 return 0; 2443 } 2444 2445 static int __init console_msg_format_setup(char *str) 2446 { 2447 if (!strcmp(str, "syslog")) 2448 console_msg_format = MSG_FORMAT_SYSLOG; 2449 if (!strcmp(str, "default")) 2450 console_msg_format = MSG_FORMAT_DEFAULT; 2451 return 1; 2452 } 2453 __setup("console_msg_format=", console_msg_format_setup); 2454 2455 /* 2456 * Set up a console. Called via do_early_param() in init/main.c 2457 * for each "console=" parameter in the boot command line. 2458 */ 2459 static int __init console_setup(char *str) 2460 { 2461 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2462 char *s, *options, *brl_options = NULL; 2463 int idx; 2464 2465 /* 2466 * console="" or console=null have been suggested as a way to 2467 * disable console output. Use ttynull that has been created 2468 * for exactly this purpose. 2469 */ 2470 if (str[0] == 0 || strcmp(str, "null") == 0) { 2471 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2472 return 1; 2473 } 2474 2475 if (_braille_console_setup(&str, &brl_options)) 2476 return 1; 2477 2478 /* 2479 * Decode str into name, index, options. 2480 */ 2481 if (str[0] >= '0' && str[0] <= '9') { 2482 strcpy(buf, "ttyS"); 2483 strncpy(buf + 4, str, sizeof(buf) - 5); 2484 } else { 2485 strncpy(buf, str, sizeof(buf) - 1); 2486 } 2487 buf[sizeof(buf) - 1] = 0; 2488 options = strchr(str, ','); 2489 if (options) 2490 *(options++) = 0; 2491 #ifdef __sparc__ 2492 if (!strcmp(str, "ttya")) 2493 strcpy(buf, "ttyS0"); 2494 if (!strcmp(str, "ttyb")) 2495 strcpy(buf, "ttyS1"); 2496 #endif 2497 for (s = buf; *s; s++) 2498 if (isdigit(*s) || *s == ',') 2499 break; 2500 idx = simple_strtoul(s, NULL, 10); 2501 *s = 0; 2502 2503 __add_preferred_console(buf, idx, options, brl_options, true); 2504 return 1; 2505 } 2506 __setup("console=", console_setup); 2507 2508 /** 2509 * add_preferred_console - add a device to the list of preferred consoles. 2510 * @name: device name 2511 * @idx: device index 2512 * @options: options for this console 2513 * 2514 * The last preferred console added will be used for kernel messages 2515 * and stdin/out/err for init. Normally this is used by console_setup 2516 * above to handle user-supplied console arguments; however it can also 2517 * be used by arch-specific code either to override the user or more 2518 * commonly to provide a default console (ie from PROM variables) when 2519 * the user has not supplied one. 2520 */ 2521 int add_preferred_console(char *name, int idx, char *options) 2522 { 2523 return __add_preferred_console(name, idx, options, NULL, false); 2524 } 2525 2526 bool console_suspend_enabled = true; 2527 EXPORT_SYMBOL(console_suspend_enabled); 2528 2529 static int __init console_suspend_disable(char *str) 2530 { 2531 console_suspend_enabled = false; 2532 return 1; 2533 } 2534 __setup("no_console_suspend", console_suspend_disable); 2535 module_param_named(console_suspend, console_suspend_enabled, 2536 bool, S_IRUGO | S_IWUSR); 2537 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2538 " and hibernate operations"); 2539 2540 static bool printk_console_no_auto_verbose; 2541 2542 void console_verbose(void) 2543 { 2544 if (console_loglevel && !printk_console_no_auto_verbose) 2545 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2546 } 2547 EXPORT_SYMBOL_GPL(console_verbose); 2548 2549 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2550 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2551 2552 /** 2553 * suspend_console - suspend the console subsystem 2554 * 2555 * This disables printk() while we go into suspend states 2556 */ 2557 void suspend_console(void) 2558 { 2559 if (!console_suspend_enabled) 2560 return; 2561 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2562 pr_flush(1000, true); 2563 console_lock(); 2564 console_suspended = 1; 2565 up_console_sem(); 2566 } 2567 2568 void resume_console(void) 2569 { 2570 if (!console_suspend_enabled) 2571 return; 2572 down_console_sem(); 2573 console_suspended = 0; 2574 console_unlock(); 2575 pr_flush(1000, true); 2576 } 2577 2578 /** 2579 * console_cpu_notify - print deferred console messages after CPU hotplug 2580 * @cpu: unused 2581 * 2582 * If printk() is called from a CPU that is not online yet, the messages 2583 * will be printed on the console only if there are CON_ANYTIME consoles. 2584 * This function is called when a new CPU comes online (or fails to come 2585 * up) or goes offline. 2586 */ 2587 static int console_cpu_notify(unsigned int cpu) 2588 { 2589 if (!cpuhp_tasks_frozen) { 2590 /* If trylock fails, someone else is doing the printing */ 2591 if (console_trylock()) 2592 console_unlock(); 2593 } 2594 return 0; 2595 } 2596 2597 /** 2598 * console_lock - block the console subsystem from printing 2599 * 2600 * Acquires a lock which guarantees that no consoles will 2601 * be in or enter their write() callback. 2602 * 2603 * Can sleep, returns nothing. 2604 */ 2605 void console_lock(void) 2606 { 2607 might_sleep(); 2608 2609 down_console_sem(); 2610 if (console_suspended) 2611 return; 2612 console_locked = 1; 2613 console_may_schedule = 1; 2614 } 2615 EXPORT_SYMBOL(console_lock); 2616 2617 /** 2618 * console_trylock - try to block the console subsystem from printing 2619 * 2620 * Try to acquire a lock which guarantees that no consoles will 2621 * be in or enter their write() callback. 2622 * 2623 * returns 1 on success, and 0 on failure to acquire the lock. 2624 */ 2625 int console_trylock(void) 2626 { 2627 if (down_trylock_console_sem()) 2628 return 0; 2629 if (console_suspended) { 2630 up_console_sem(); 2631 return 0; 2632 } 2633 console_locked = 1; 2634 console_may_schedule = 0; 2635 return 1; 2636 } 2637 EXPORT_SYMBOL(console_trylock); 2638 2639 int is_console_locked(void) 2640 { 2641 return console_locked; 2642 } 2643 EXPORT_SYMBOL(is_console_locked); 2644 2645 /* 2646 * Return true when this CPU should unlock console_sem without pushing all 2647 * messages to the console. This reduces the chance that the console is 2648 * locked when the panic CPU tries to use it. 2649 */ 2650 static bool abandon_console_lock_in_panic(void) 2651 { 2652 if (!panic_in_progress()) 2653 return false; 2654 2655 /* 2656 * We can use raw_smp_processor_id() here because it is impossible for 2657 * the task to be migrated to the panic_cpu, or away from it. If 2658 * panic_cpu has already been set, and we're not currently executing on 2659 * that CPU, then we never will be. 2660 */ 2661 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2662 } 2663 2664 /* 2665 * Check if the given console is currently capable and allowed to print 2666 * records. 2667 * 2668 * Requires the console_srcu_read_lock. 2669 */ 2670 static inline bool console_is_usable(struct console *con) 2671 { 2672 short flags = console_srcu_read_flags(con); 2673 2674 if (!(flags & CON_ENABLED)) 2675 return false; 2676 2677 if (!con->write) 2678 return false; 2679 2680 /* 2681 * Console drivers may assume that per-cpu resources have been 2682 * allocated. So unless they're explicitly marked as being able to 2683 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2684 */ 2685 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2686 return false; 2687 2688 return true; 2689 } 2690 2691 static void __console_unlock(void) 2692 { 2693 console_locked = 0; 2694 up_console_sem(); 2695 } 2696 2697 /* 2698 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2699 * is achieved by shifting the existing message over and inserting the dropped 2700 * message. 2701 * 2702 * @pmsg is the printk message to prepend. 2703 * 2704 * @dropped is the dropped count to report in the dropped message. 2705 * 2706 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2707 * the dropped message, the message text will be sufficiently truncated. 2708 * 2709 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2710 */ 2711 #ifdef CONFIG_PRINTK 2712 static void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2713 { 2714 struct printk_buffers *pbufs = pmsg->pbufs; 2715 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2716 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2717 char *scratchbuf = &pbufs->scratchbuf[0]; 2718 char *outbuf = &pbufs->outbuf[0]; 2719 size_t len; 2720 2721 len = scnprintf(scratchbuf, scratchbuf_sz, 2722 "** %lu printk messages dropped **\n", dropped); 2723 2724 /* 2725 * Make sure outbuf is sufficiently large before prepending. 2726 * Keep at least the prefix when the message must be truncated. 2727 * It is a rather theoretical problem when someone tries to 2728 * use a minimalist buffer. 2729 */ 2730 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2731 return; 2732 2733 if (pmsg->outbuf_len + len >= outbuf_sz) { 2734 /* Truncate the message, but keep it terminated. */ 2735 pmsg->outbuf_len = outbuf_sz - (len + 1); 2736 outbuf[pmsg->outbuf_len] = 0; 2737 } 2738 2739 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2740 memcpy(outbuf, scratchbuf, len); 2741 pmsg->outbuf_len += len; 2742 } 2743 #else 2744 #define console_prepend_dropped(pmsg, dropped) 2745 #endif /* CONFIG_PRINTK */ 2746 2747 /* 2748 * Read and format the specified record (or a later record if the specified 2749 * record is not available). 2750 * 2751 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2752 * struct printk_buffers. 2753 * 2754 * @seq is the record to read and format. If it is not available, the next 2755 * valid record is read. 2756 * 2757 * @is_extended specifies if the message should be formatted for extended 2758 * console output. 2759 * 2760 * @may_supress specifies if records may be skipped based on loglevel. 2761 * 2762 * Returns false if no record is available. Otherwise true and all fields 2763 * of @pmsg are valid. (See the documentation of struct printk_message 2764 * for information about the @pmsg fields.) 2765 */ 2766 static bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2767 bool is_extended, bool may_suppress) 2768 { 2769 static int panic_console_dropped; 2770 2771 struct printk_buffers *pbufs = pmsg->pbufs; 2772 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2773 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2774 char *scratchbuf = &pbufs->scratchbuf[0]; 2775 char *outbuf = &pbufs->outbuf[0]; 2776 struct printk_info info; 2777 struct printk_record r; 2778 size_t len = 0; 2779 2780 /* 2781 * Formatting extended messages requires a separate buffer, so use the 2782 * scratch buffer to read in the ringbuffer text. 2783 * 2784 * Formatting normal messages is done in-place, so read the ringbuffer 2785 * text directly into the output buffer. 2786 */ 2787 if (is_extended) 2788 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2789 else 2790 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2791 2792 if (!prb_read_valid(prb, seq, &r)) 2793 return false; 2794 2795 pmsg->seq = r.info->seq; 2796 pmsg->dropped = r.info->seq - seq; 2797 2798 /* 2799 * Check for dropped messages in panic here so that printk 2800 * suppression can occur as early as possible if necessary. 2801 */ 2802 if (pmsg->dropped && 2803 panic_in_progress() && 2804 panic_console_dropped++ > 10) { 2805 suppress_panic_printk = 1; 2806 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2807 } 2808 2809 /* Skip record that has level above the console loglevel. */ 2810 if (may_suppress && suppress_message_printing(r.info->level)) 2811 goto out; 2812 2813 if (is_extended) { 2814 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2815 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2816 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2817 } else { 2818 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2819 } 2820 out: 2821 pmsg->outbuf_len = len; 2822 return true; 2823 } 2824 2825 /* 2826 * Print one record for the given console. The record printed is whatever 2827 * record is the next available record for the given console. 2828 * 2829 * @handover will be set to true if a printk waiter has taken over the 2830 * console_lock, in which case the caller is no longer holding both the 2831 * console_lock and the SRCU read lock. Otherwise it is set to false. 2832 * 2833 * @cookie is the cookie from the SRCU read lock. 2834 * 2835 * Returns false if the given console has no next record to print, otherwise 2836 * true. 2837 * 2838 * Requires the console_lock and the SRCU read lock. 2839 */ 2840 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2841 { 2842 static struct printk_buffers pbufs; 2843 2844 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2845 char *outbuf = &pbufs.outbuf[0]; 2846 struct printk_message pmsg = { 2847 .pbufs = &pbufs, 2848 }; 2849 unsigned long flags; 2850 2851 *handover = false; 2852 2853 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2854 return false; 2855 2856 con->dropped += pmsg.dropped; 2857 2858 /* Skip messages of formatted length 0. */ 2859 if (pmsg.outbuf_len == 0) { 2860 con->seq = pmsg.seq + 1; 2861 goto skip; 2862 } 2863 2864 if (con->dropped && !is_extended) { 2865 console_prepend_dropped(&pmsg, con->dropped); 2866 con->dropped = 0; 2867 } 2868 2869 /* 2870 * While actively printing out messages, if another printk() 2871 * were to occur on another CPU, it may wait for this one to 2872 * finish. This task can not be preempted if there is a 2873 * waiter waiting to take over. 2874 * 2875 * Interrupts are disabled because the hand over to a waiter 2876 * must not be interrupted until the hand over is completed 2877 * (@console_waiter is cleared). 2878 */ 2879 printk_safe_enter_irqsave(flags); 2880 console_lock_spinning_enable(); 2881 2882 /* Do not trace print latency. */ 2883 stop_critical_timings(); 2884 2885 /* Write everything out to the hardware. */ 2886 con->write(con, outbuf, pmsg.outbuf_len); 2887 2888 start_critical_timings(); 2889 2890 con->seq = pmsg.seq + 1; 2891 2892 *handover = console_lock_spinning_disable_and_check(cookie); 2893 printk_safe_exit_irqrestore(flags); 2894 skip: 2895 return true; 2896 } 2897 2898 /* 2899 * Print out all remaining records to all consoles. 2900 * 2901 * @do_cond_resched is set by the caller. It can be true only in schedulable 2902 * context. 2903 * 2904 * @next_seq is set to the sequence number after the last available record. 2905 * The value is valid only when this function returns true. It means that all 2906 * usable consoles are completely flushed. 2907 * 2908 * @handover will be set to true if a printk waiter has taken over the 2909 * console_lock, in which case the caller is no longer holding the 2910 * console_lock. Otherwise it is set to false. 2911 * 2912 * Returns true when there was at least one usable console and all messages 2913 * were flushed to all usable consoles. A returned false informs the caller 2914 * that everything was not flushed (either there were no usable consoles or 2915 * another context has taken over printing or it is a panic situation and this 2916 * is not the panic CPU). Regardless the reason, the caller should assume it 2917 * is not useful to immediately try again. 2918 * 2919 * Requires the console_lock. 2920 */ 2921 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2922 { 2923 bool any_usable = false; 2924 struct console *con; 2925 bool any_progress; 2926 int cookie; 2927 2928 *next_seq = 0; 2929 *handover = false; 2930 2931 do { 2932 any_progress = false; 2933 2934 cookie = console_srcu_read_lock(); 2935 for_each_console_srcu(con) { 2936 bool progress; 2937 2938 if (!console_is_usable(con)) 2939 continue; 2940 any_usable = true; 2941 2942 progress = console_emit_next_record(con, handover, cookie); 2943 2944 /* 2945 * If a handover has occurred, the SRCU read lock 2946 * is already released. 2947 */ 2948 if (*handover) 2949 return false; 2950 2951 /* Track the next of the highest seq flushed. */ 2952 if (con->seq > *next_seq) 2953 *next_seq = con->seq; 2954 2955 if (!progress) 2956 continue; 2957 any_progress = true; 2958 2959 /* Allow panic_cpu to take over the consoles safely. */ 2960 if (abandon_console_lock_in_panic()) 2961 goto abandon; 2962 2963 if (do_cond_resched) 2964 cond_resched(); 2965 } 2966 console_srcu_read_unlock(cookie); 2967 } while (any_progress); 2968 2969 return any_usable; 2970 2971 abandon: 2972 console_srcu_read_unlock(cookie); 2973 return false; 2974 } 2975 2976 /** 2977 * console_unlock - unblock the console subsystem from printing 2978 * 2979 * Releases the console_lock which the caller holds to block printing of 2980 * the console subsystem. 2981 * 2982 * While the console_lock was held, console output may have been buffered 2983 * by printk(). If this is the case, console_unlock(); emits 2984 * the output prior to releasing the lock. 2985 * 2986 * console_unlock(); may be called from any context. 2987 */ 2988 void console_unlock(void) 2989 { 2990 bool do_cond_resched; 2991 bool handover; 2992 bool flushed; 2993 u64 next_seq; 2994 2995 if (console_suspended) { 2996 up_console_sem(); 2997 return; 2998 } 2999 3000 /* 3001 * Console drivers are called with interrupts disabled, so 3002 * @console_may_schedule should be cleared before; however, we may 3003 * end up dumping a lot of lines, for example, if called from 3004 * console registration path, and should invoke cond_resched() 3005 * between lines if allowable. Not doing so can cause a very long 3006 * scheduling stall on a slow console leading to RCU stall and 3007 * softlockup warnings which exacerbate the issue with more 3008 * messages practically incapacitating the system. Therefore, create 3009 * a local to use for the printing loop. 3010 */ 3011 do_cond_resched = console_may_schedule; 3012 3013 do { 3014 console_may_schedule = 0; 3015 3016 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3017 if (!handover) 3018 __console_unlock(); 3019 3020 /* 3021 * Abort if there was a failure to flush all messages to all 3022 * usable consoles. Either it is not possible to flush (in 3023 * which case it would be an infinite loop of retrying) or 3024 * another context has taken over printing. 3025 */ 3026 if (!flushed) 3027 break; 3028 3029 /* 3030 * Some context may have added new records after 3031 * console_flush_all() but before unlocking the console. 3032 * Re-check if there is a new record to flush. If the trylock 3033 * fails, another context is already handling the printing. 3034 */ 3035 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3036 } 3037 EXPORT_SYMBOL(console_unlock); 3038 3039 /** 3040 * console_conditional_schedule - yield the CPU if required 3041 * 3042 * If the console code is currently allowed to sleep, and 3043 * if this CPU should yield the CPU to another task, do 3044 * so here. 3045 * 3046 * Must be called within console_lock();. 3047 */ 3048 void __sched console_conditional_schedule(void) 3049 { 3050 if (console_may_schedule) 3051 cond_resched(); 3052 } 3053 EXPORT_SYMBOL(console_conditional_schedule); 3054 3055 void console_unblank(void) 3056 { 3057 struct console *c; 3058 int cookie; 3059 3060 /* 3061 * Stop console printing because the unblank() callback may 3062 * assume the console is not within its write() callback. 3063 * 3064 * If @oops_in_progress is set, this may be an atomic context. 3065 * In that case, attempt a trylock as best-effort. 3066 */ 3067 if (oops_in_progress) { 3068 if (down_trylock_console_sem() != 0) 3069 return; 3070 } else 3071 console_lock(); 3072 3073 console_locked = 1; 3074 console_may_schedule = 0; 3075 3076 cookie = console_srcu_read_lock(); 3077 for_each_console_srcu(c) { 3078 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3079 c->unblank(); 3080 } 3081 console_srcu_read_unlock(cookie); 3082 3083 console_unlock(); 3084 3085 if (!oops_in_progress) 3086 pr_flush(1000, true); 3087 } 3088 3089 /** 3090 * console_flush_on_panic - flush console content on panic 3091 * @mode: flush all messages in buffer or just the pending ones 3092 * 3093 * Immediately output all pending messages no matter what. 3094 */ 3095 void console_flush_on_panic(enum con_flush_mode mode) 3096 { 3097 /* 3098 * If someone else is holding the console lock, trylock will fail 3099 * and may_schedule may be set. Ignore and proceed to unlock so 3100 * that messages are flushed out. As this can be called from any 3101 * context and we don't want to get preempted while flushing, 3102 * ensure may_schedule is cleared. 3103 */ 3104 console_trylock(); 3105 console_may_schedule = 0; 3106 3107 if (mode == CONSOLE_REPLAY_ALL) { 3108 struct console *c; 3109 int cookie; 3110 u64 seq; 3111 3112 seq = prb_first_valid_seq(prb); 3113 3114 cookie = console_srcu_read_lock(); 3115 for_each_console_srcu(c) { 3116 /* 3117 * If the above console_trylock() failed, this is an 3118 * unsynchronized assignment. But in that case, the 3119 * kernel is in "hope and pray" mode anyway. 3120 */ 3121 c->seq = seq; 3122 } 3123 console_srcu_read_unlock(cookie); 3124 } 3125 console_unlock(); 3126 } 3127 3128 /* 3129 * Return the console tty driver structure and its associated index 3130 */ 3131 struct tty_driver *console_device(int *index) 3132 { 3133 struct console *c; 3134 struct tty_driver *driver = NULL; 3135 int cookie; 3136 3137 /* 3138 * Take console_lock to serialize device() callback with 3139 * other console operations. For example, fg_console is 3140 * modified under console_lock when switching vt. 3141 */ 3142 console_lock(); 3143 3144 cookie = console_srcu_read_lock(); 3145 for_each_console_srcu(c) { 3146 if (!c->device) 3147 continue; 3148 driver = c->device(c, index); 3149 if (driver) 3150 break; 3151 } 3152 console_srcu_read_unlock(cookie); 3153 3154 console_unlock(); 3155 return driver; 3156 } 3157 3158 /* 3159 * Prevent further output on the passed console device so that (for example) 3160 * serial drivers can disable console output before suspending a port, and can 3161 * re-enable output afterwards. 3162 */ 3163 void console_stop(struct console *console) 3164 { 3165 __pr_flush(console, 1000, true); 3166 console_list_lock(); 3167 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3168 console_list_unlock(); 3169 3170 /* 3171 * Ensure that all SRCU list walks have completed. All contexts must 3172 * be able to see that this console is disabled so that (for example) 3173 * the caller can suspend the port without risk of another context 3174 * using the port. 3175 */ 3176 synchronize_srcu(&console_srcu); 3177 } 3178 EXPORT_SYMBOL(console_stop); 3179 3180 void console_start(struct console *console) 3181 { 3182 console_list_lock(); 3183 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3184 console_list_unlock(); 3185 __pr_flush(console, 1000, true); 3186 } 3187 EXPORT_SYMBOL(console_start); 3188 3189 static int __read_mostly keep_bootcon; 3190 3191 static int __init keep_bootcon_setup(char *str) 3192 { 3193 keep_bootcon = 1; 3194 pr_info("debug: skip boot console de-registration.\n"); 3195 3196 return 0; 3197 } 3198 3199 early_param("keep_bootcon", keep_bootcon_setup); 3200 3201 /* 3202 * This is called by register_console() to try to match 3203 * the newly registered console with any of the ones selected 3204 * by either the command line or add_preferred_console() and 3205 * setup/enable it. 3206 * 3207 * Care need to be taken with consoles that are statically 3208 * enabled such as netconsole 3209 */ 3210 static int try_enable_preferred_console(struct console *newcon, 3211 bool user_specified) 3212 { 3213 struct console_cmdline *c; 3214 int i, err; 3215 3216 for (i = 0, c = console_cmdline; 3217 i < MAX_CMDLINECONSOLES && c->name[0]; 3218 i++, c++) { 3219 if (c->user_specified != user_specified) 3220 continue; 3221 if (!newcon->match || 3222 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3223 /* default matching */ 3224 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3225 if (strcmp(c->name, newcon->name) != 0) 3226 continue; 3227 if (newcon->index >= 0 && 3228 newcon->index != c->index) 3229 continue; 3230 if (newcon->index < 0) 3231 newcon->index = c->index; 3232 3233 if (_braille_register_console(newcon, c)) 3234 return 0; 3235 3236 if (newcon->setup && 3237 (err = newcon->setup(newcon, c->options)) != 0) 3238 return err; 3239 } 3240 newcon->flags |= CON_ENABLED; 3241 if (i == preferred_console) 3242 newcon->flags |= CON_CONSDEV; 3243 return 0; 3244 } 3245 3246 /* 3247 * Some consoles, such as pstore and netconsole, can be enabled even 3248 * without matching. Accept the pre-enabled consoles only when match() 3249 * and setup() had a chance to be called. 3250 */ 3251 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3252 return 0; 3253 3254 return -ENOENT; 3255 } 3256 3257 /* Try to enable the console unconditionally */ 3258 static void try_enable_default_console(struct console *newcon) 3259 { 3260 if (newcon->index < 0) 3261 newcon->index = 0; 3262 3263 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 3264 return; 3265 3266 newcon->flags |= CON_ENABLED; 3267 3268 if (newcon->device) 3269 newcon->flags |= CON_CONSDEV; 3270 } 3271 3272 #define con_printk(lvl, con, fmt, ...) \ 3273 printk(lvl pr_fmt("%sconsole [%s%d] " fmt), \ 3274 (con->flags & CON_BOOT) ? "boot" : "", \ 3275 con->name, con->index, ##__VA_ARGS__) 3276 3277 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3278 { 3279 struct console *con; 3280 bool handover; 3281 3282 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3283 /* Get a consistent copy of @syslog_seq. */ 3284 mutex_lock(&syslog_lock); 3285 newcon->seq = syslog_seq; 3286 mutex_unlock(&syslog_lock); 3287 } else { 3288 /* Begin with next message added to ringbuffer. */ 3289 newcon->seq = prb_next_seq(prb); 3290 3291 /* 3292 * If any enabled boot consoles are due to be unregistered 3293 * shortly, some may not be caught up and may be the same 3294 * device as @newcon. Since it is not known which boot console 3295 * is the same device, flush all consoles and, if necessary, 3296 * start with the message of the enabled boot console that is 3297 * the furthest behind. 3298 */ 3299 if (bootcon_registered && !keep_bootcon) { 3300 /* 3301 * Hold the console_lock to stop console printing and 3302 * guarantee safe access to console->seq. 3303 */ 3304 console_lock(); 3305 3306 /* 3307 * Flush all consoles and set the console to start at 3308 * the next unprinted sequence number. 3309 */ 3310 if (!console_flush_all(true, &newcon->seq, &handover)) { 3311 /* 3312 * Flushing failed. Just choose the lowest 3313 * sequence of the enabled boot consoles. 3314 */ 3315 3316 /* 3317 * If there was a handover, this context no 3318 * longer holds the console_lock. 3319 */ 3320 if (handover) 3321 console_lock(); 3322 3323 newcon->seq = prb_next_seq(prb); 3324 for_each_console(con) { 3325 if ((con->flags & CON_BOOT) && 3326 (con->flags & CON_ENABLED) && 3327 con->seq < newcon->seq) { 3328 newcon->seq = con->seq; 3329 } 3330 } 3331 } 3332 3333 console_unlock(); 3334 } 3335 } 3336 } 3337 3338 #define console_first() \ 3339 hlist_entry(console_list.first, struct console, node) 3340 3341 static int unregister_console_locked(struct console *console); 3342 3343 /* 3344 * The console driver calls this routine during kernel initialization 3345 * to register the console printing procedure with printk() and to 3346 * print any messages that were printed by the kernel before the 3347 * console driver was initialized. 3348 * 3349 * This can happen pretty early during the boot process (because of 3350 * early_printk) - sometimes before setup_arch() completes - be careful 3351 * of what kernel features are used - they may not be initialised yet. 3352 * 3353 * There are two types of consoles - bootconsoles (early_printk) and 3354 * "real" consoles (everything which is not a bootconsole) which are 3355 * handled differently. 3356 * - Any number of bootconsoles can be registered at any time. 3357 * - As soon as a "real" console is registered, all bootconsoles 3358 * will be unregistered automatically. 3359 * - Once a "real" console is registered, any attempt to register a 3360 * bootconsoles will be rejected 3361 */ 3362 void register_console(struct console *newcon) 3363 { 3364 struct console *con; 3365 bool bootcon_registered = false; 3366 bool realcon_registered = false; 3367 int err; 3368 3369 console_list_lock(); 3370 3371 for_each_console(con) { 3372 if (WARN(con == newcon, "console '%s%d' already registered\n", 3373 con->name, con->index)) { 3374 goto unlock; 3375 } 3376 3377 if (con->flags & CON_BOOT) 3378 bootcon_registered = true; 3379 else 3380 realcon_registered = true; 3381 } 3382 3383 /* Do not register boot consoles when there already is a real one. */ 3384 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3385 pr_info("Too late to register bootconsole %s%d\n", 3386 newcon->name, newcon->index); 3387 goto unlock; 3388 } 3389 3390 /* 3391 * See if we want to enable this console driver by default. 3392 * 3393 * Nope when a console is preferred by the command line, device 3394 * tree, or SPCR. 3395 * 3396 * The first real console with tty binding (driver) wins. More 3397 * consoles might get enabled before the right one is found. 3398 * 3399 * Note that a console with tty binding will have CON_CONSDEV 3400 * flag set and will be first in the list. 3401 */ 3402 if (preferred_console < 0) { 3403 if (hlist_empty(&console_list) || !console_first()->device || 3404 console_first()->flags & CON_BOOT) { 3405 try_enable_default_console(newcon); 3406 } 3407 } 3408 3409 /* See if this console matches one we selected on the command line */ 3410 err = try_enable_preferred_console(newcon, true); 3411 3412 /* If not, try to match against the platform default(s) */ 3413 if (err == -ENOENT) 3414 err = try_enable_preferred_console(newcon, false); 3415 3416 /* printk() messages are not printed to the Braille console. */ 3417 if (err || newcon->flags & CON_BRL) 3418 goto unlock; 3419 3420 /* 3421 * If we have a bootconsole, and are switching to a real console, 3422 * don't print everything out again, since when the boot console, and 3423 * the real console are the same physical device, it's annoying to 3424 * see the beginning boot messages twice 3425 */ 3426 if (bootcon_registered && 3427 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3428 newcon->flags &= ~CON_PRINTBUFFER; 3429 } 3430 3431 newcon->dropped = 0; 3432 console_init_seq(newcon, bootcon_registered); 3433 3434 /* 3435 * Put this console in the list - keep the 3436 * preferred driver at the head of the list. 3437 */ 3438 if (hlist_empty(&console_list)) { 3439 /* Ensure CON_CONSDEV is always set for the head. */ 3440 newcon->flags |= CON_CONSDEV; 3441 hlist_add_head_rcu(&newcon->node, &console_list); 3442 3443 } else if (newcon->flags & CON_CONSDEV) { 3444 /* Only the new head can have CON_CONSDEV set. */ 3445 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3446 hlist_add_head_rcu(&newcon->node, &console_list); 3447 3448 } else { 3449 hlist_add_behind_rcu(&newcon->node, console_list.first); 3450 } 3451 3452 /* 3453 * No need to synchronize SRCU here! The caller does not rely 3454 * on all contexts being able to see the new console before 3455 * register_console() completes. 3456 */ 3457 3458 console_sysfs_notify(); 3459 3460 /* 3461 * By unregistering the bootconsoles after we enable the real console 3462 * we get the "console xxx enabled" message on all the consoles - 3463 * boot consoles, real consoles, etc - this is to ensure that end 3464 * users know there might be something in the kernel's log buffer that 3465 * went to the bootconsole (that they do not see on the real console) 3466 */ 3467 con_printk(KERN_INFO, newcon, "enabled\n"); 3468 if (bootcon_registered && 3469 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3470 !keep_bootcon) { 3471 struct hlist_node *tmp; 3472 3473 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3474 if (con->flags & CON_BOOT) 3475 unregister_console_locked(con); 3476 } 3477 } 3478 unlock: 3479 console_list_unlock(); 3480 } 3481 EXPORT_SYMBOL(register_console); 3482 3483 /* Must be called under console_list_lock(). */ 3484 static int unregister_console_locked(struct console *console) 3485 { 3486 int res; 3487 3488 lockdep_assert_console_list_lock_held(); 3489 3490 con_printk(KERN_INFO, console, "disabled\n"); 3491 3492 res = _braille_unregister_console(console); 3493 if (res < 0) 3494 return res; 3495 if (res > 0) 3496 return 0; 3497 3498 /* Disable it unconditionally */ 3499 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3500 3501 if (!console_is_registered_locked(console)) 3502 return -ENODEV; 3503 3504 hlist_del_init_rcu(&console->node); 3505 3506 /* 3507 * <HISTORICAL> 3508 * If this isn't the last console and it has CON_CONSDEV set, we 3509 * need to set it on the next preferred console. 3510 * </HISTORICAL> 3511 * 3512 * The above makes no sense as there is no guarantee that the next 3513 * console has any device attached. Oh well.... 3514 */ 3515 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3516 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3517 3518 /* 3519 * Ensure that all SRCU list walks have completed. All contexts 3520 * must not be able to see this console in the list so that any 3521 * exit/cleanup routines can be performed safely. 3522 */ 3523 synchronize_srcu(&console_srcu); 3524 3525 console_sysfs_notify(); 3526 3527 if (console->exit) 3528 res = console->exit(console); 3529 3530 return res; 3531 } 3532 3533 int unregister_console(struct console *console) 3534 { 3535 int res; 3536 3537 console_list_lock(); 3538 res = unregister_console_locked(console); 3539 console_list_unlock(); 3540 return res; 3541 } 3542 EXPORT_SYMBOL(unregister_console); 3543 3544 /** 3545 * console_force_preferred_locked - force a registered console preferred 3546 * @con: The registered console to force preferred. 3547 * 3548 * Must be called under console_list_lock(). 3549 */ 3550 void console_force_preferred_locked(struct console *con) 3551 { 3552 struct console *cur_pref_con; 3553 3554 if (!console_is_registered_locked(con)) 3555 return; 3556 3557 cur_pref_con = console_first(); 3558 3559 /* Already preferred? */ 3560 if (cur_pref_con == con) 3561 return; 3562 3563 /* 3564 * Delete, but do not re-initialize the entry. This allows the console 3565 * to continue to appear registered (via any hlist_unhashed_lockless() 3566 * checks), even though it was briefly removed from the console list. 3567 */ 3568 hlist_del_rcu(&con->node); 3569 3570 /* 3571 * Ensure that all SRCU list walks have completed so that the console 3572 * can be added to the beginning of the console list and its forward 3573 * list pointer can be re-initialized. 3574 */ 3575 synchronize_srcu(&console_srcu); 3576 3577 con->flags |= CON_CONSDEV; 3578 WARN_ON(!con->device); 3579 3580 /* Only the new head can have CON_CONSDEV set. */ 3581 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3582 hlist_add_head_rcu(&con->node, &console_list); 3583 } 3584 EXPORT_SYMBOL(console_force_preferred_locked); 3585 3586 /* 3587 * Initialize the console device. This is called *early*, so 3588 * we can't necessarily depend on lots of kernel help here. 3589 * Just do some early initializations, and do the complex setup 3590 * later. 3591 */ 3592 void __init console_init(void) 3593 { 3594 int ret; 3595 initcall_t call; 3596 initcall_entry_t *ce; 3597 3598 /* Setup the default TTY line discipline. */ 3599 n_tty_init(); 3600 3601 /* 3602 * set up the console device so that later boot sequences can 3603 * inform about problems etc.. 3604 */ 3605 ce = __con_initcall_start; 3606 trace_initcall_level("console"); 3607 while (ce < __con_initcall_end) { 3608 call = initcall_from_entry(ce); 3609 trace_initcall_start(call); 3610 ret = call(); 3611 trace_initcall_finish(call, ret); 3612 ce++; 3613 } 3614 } 3615 3616 /* 3617 * Some boot consoles access data that is in the init section and which will 3618 * be discarded after the initcalls have been run. To make sure that no code 3619 * will access this data, unregister the boot consoles in a late initcall. 3620 * 3621 * If for some reason, such as deferred probe or the driver being a loadable 3622 * module, the real console hasn't registered yet at this point, there will 3623 * be a brief interval in which no messages are logged to the console, which 3624 * makes it difficult to diagnose problems that occur during this time. 3625 * 3626 * To mitigate this problem somewhat, only unregister consoles whose memory 3627 * intersects with the init section. Note that all other boot consoles will 3628 * get unregistered when the real preferred console is registered. 3629 */ 3630 static int __init printk_late_init(void) 3631 { 3632 struct hlist_node *tmp; 3633 struct console *con; 3634 int ret; 3635 3636 console_list_lock(); 3637 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3638 if (!(con->flags & CON_BOOT)) 3639 continue; 3640 3641 /* Check addresses that might be used for enabled consoles. */ 3642 if (init_section_intersects(con, sizeof(*con)) || 3643 init_section_contains(con->write, 0) || 3644 init_section_contains(con->read, 0) || 3645 init_section_contains(con->device, 0) || 3646 init_section_contains(con->unblank, 0) || 3647 init_section_contains(con->data, 0)) { 3648 /* 3649 * Please, consider moving the reported consoles out 3650 * of the init section. 3651 */ 3652 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3653 con->name, con->index); 3654 unregister_console_locked(con); 3655 } 3656 } 3657 console_list_unlock(); 3658 3659 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3660 console_cpu_notify); 3661 WARN_ON(ret < 0); 3662 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3663 console_cpu_notify, NULL); 3664 WARN_ON(ret < 0); 3665 printk_sysctl_init(); 3666 return 0; 3667 } 3668 late_initcall(printk_late_init); 3669 3670 #if defined CONFIG_PRINTK 3671 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3672 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3673 { 3674 int remaining = timeout_ms; 3675 struct console *c; 3676 u64 last_diff = 0; 3677 u64 printk_seq; 3678 int cookie; 3679 u64 diff; 3680 u64 seq; 3681 3682 might_sleep(); 3683 3684 seq = prb_next_seq(prb); 3685 3686 for (;;) { 3687 diff = 0; 3688 3689 /* 3690 * Hold the console_lock to guarantee safe access to 3691 * console->seq and to prevent changes to @console_suspended 3692 * until all consoles have been processed. 3693 */ 3694 console_lock(); 3695 3696 cookie = console_srcu_read_lock(); 3697 for_each_console_srcu(c) { 3698 if (con && con != c) 3699 continue; 3700 if (!console_is_usable(c)) 3701 continue; 3702 printk_seq = c->seq; 3703 if (printk_seq < seq) 3704 diff += seq - printk_seq; 3705 } 3706 console_srcu_read_unlock(cookie); 3707 3708 /* 3709 * If consoles are suspended, it cannot be expected that they 3710 * make forward progress, so timeout immediately. @diff is 3711 * still used to return a valid flush status. 3712 */ 3713 if (console_suspended) 3714 remaining = 0; 3715 else if (diff != last_diff && reset_on_progress) 3716 remaining = timeout_ms; 3717 3718 console_unlock(); 3719 3720 if (diff == 0 || remaining == 0) 3721 break; 3722 3723 if (remaining < 0) { 3724 /* no timeout limit */ 3725 msleep(100); 3726 } else if (remaining < 100) { 3727 msleep(remaining); 3728 remaining = 0; 3729 } else { 3730 msleep(100); 3731 remaining -= 100; 3732 } 3733 3734 last_diff = diff; 3735 } 3736 3737 return (diff == 0); 3738 } 3739 3740 /** 3741 * pr_flush() - Wait for printing threads to catch up. 3742 * 3743 * @timeout_ms: The maximum time (in ms) to wait. 3744 * @reset_on_progress: Reset the timeout if forward progress is seen. 3745 * 3746 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3747 * represents infinite waiting. 3748 * 3749 * If @reset_on_progress is true, the timeout will be reset whenever any 3750 * printer has been seen to make some forward progress. 3751 * 3752 * Context: Process context. May sleep while acquiring console lock. 3753 * Return: true if all enabled printers are caught up. 3754 */ 3755 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3756 { 3757 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3758 } 3759 3760 /* 3761 * Delayed printk version, for scheduler-internal messages: 3762 */ 3763 #define PRINTK_PENDING_WAKEUP 0x01 3764 #define PRINTK_PENDING_OUTPUT 0x02 3765 3766 static DEFINE_PER_CPU(int, printk_pending); 3767 3768 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3769 { 3770 int pending = this_cpu_xchg(printk_pending, 0); 3771 3772 if (pending & PRINTK_PENDING_OUTPUT) { 3773 /* If trylock fails, someone else is doing the printing */ 3774 if (console_trylock()) 3775 console_unlock(); 3776 } 3777 3778 if (pending & PRINTK_PENDING_WAKEUP) 3779 wake_up_interruptible(&log_wait); 3780 } 3781 3782 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3783 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3784 3785 static void __wake_up_klogd(int val) 3786 { 3787 if (!printk_percpu_data_ready()) 3788 return; 3789 3790 preempt_disable(); 3791 /* 3792 * Guarantee any new records can be seen by tasks preparing to wait 3793 * before this context checks if the wait queue is empty. 3794 * 3795 * The full memory barrier within wq_has_sleeper() pairs with the full 3796 * memory barrier within set_current_state() of 3797 * prepare_to_wait_event(), which is called after ___wait_event() adds 3798 * the waiter but before it has checked the wait condition. 3799 * 3800 * This pairs with devkmsg_read:A and syslog_print:A. 3801 */ 3802 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3803 (val & PRINTK_PENDING_OUTPUT)) { 3804 this_cpu_or(printk_pending, val); 3805 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3806 } 3807 preempt_enable(); 3808 } 3809 3810 void wake_up_klogd(void) 3811 { 3812 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3813 } 3814 3815 void defer_console_output(void) 3816 { 3817 /* 3818 * New messages may have been added directly to the ringbuffer 3819 * using vprintk_store(), so wake any waiters as well. 3820 */ 3821 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3822 } 3823 3824 void printk_trigger_flush(void) 3825 { 3826 defer_console_output(); 3827 } 3828 3829 int vprintk_deferred(const char *fmt, va_list args) 3830 { 3831 int r; 3832 3833 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3834 defer_console_output(); 3835 3836 return r; 3837 } 3838 3839 int _printk_deferred(const char *fmt, ...) 3840 { 3841 va_list args; 3842 int r; 3843 3844 va_start(args, fmt); 3845 r = vprintk_deferred(fmt, args); 3846 va_end(args); 3847 3848 return r; 3849 } 3850 3851 /* 3852 * printk rate limiting, lifted from the networking subsystem. 3853 * 3854 * This enforces a rate limit: not more than 10 kernel messages 3855 * every 5s to make a denial-of-service attack impossible. 3856 */ 3857 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3858 3859 int __printk_ratelimit(const char *func) 3860 { 3861 return ___ratelimit(&printk_ratelimit_state, func); 3862 } 3863 EXPORT_SYMBOL(__printk_ratelimit); 3864 3865 /** 3866 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3867 * @caller_jiffies: pointer to caller's state 3868 * @interval_msecs: minimum interval between prints 3869 * 3870 * printk_timed_ratelimit() returns true if more than @interval_msecs 3871 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3872 * returned true. 3873 */ 3874 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3875 unsigned int interval_msecs) 3876 { 3877 unsigned long elapsed = jiffies - *caller_jiffies; 3878 3879 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3880 return false; 3881 3882 *caller_jiffies = jiffies; 3883 return true; 3884 } 3885 EXPORT_SYMBOL(printk_timed_ratelimit); 3886 3887 static DEFINE_SPINLOCK(dump_list_lock); 3888 static LIST_HEAD(dump_list); 3889 3890 /** 3891 * kmsg_dump_register - register a kernel log dumper. 3892 * @dumper: pointer to the kmsg_dumper structure 3893 * 3894 * Adds a kernel log dumper to the system. The dump callback in the 3895 * structure will be called when the kernel oopses or panics and must be 3896 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3897 */ 3898 int kmsg_dump_register(struct kmsg_dumper *dumper) 3899 { 3900 unsigned long flags; 3901 int err = -EBUSY; 3902 3903 /* The dump callback needs to be set */ 3904 if (!dumper->dump) 3905 return -EINVAL; 3906 3907 spin_lock_irqsave(&dump_list_lock, flags); 3908 /* Don't allow registering multiple times */ 3909 if (!dumper->registered) { 3910 dumper->registered = 1; 3911 list_add_tail_rcu(&dumper->list, &dump_list); 3912 err = 0; 3913 } 3914 spin_unlock_irqrestore(&dump_list_lock, flags); 3915 3916 return err; 3917 } 3918 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3919 3920 /** 3921 * kmsg_dump_unregister - unregister a kmsg dumper. 3922 * @dumper: pointer to the kmsg_dumper structure 3923 * 3924 * Removes a dump device from the system. Returns zero on success and 3925 * %-EINVAL otherwise. 3926 */ 3927 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3928 { 3929 unsigned long flags; 3930 int err = -EINVAL; 3931 3932 spin_lock_irqsave(&dump_list_lock, flags); 3933 if (dumper->registered) { 3934 dumper->registered = 0; 3935 list_del_rcu(&dumper->list); 3936 err = 0; 3937 } 3938 spin_unlock_irqrestore(&dump_list_lock, flags); 3939 synchronize_rcu(); 3940 3941 return err; 3942 } 3943 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3944 3945 static bool always_kmsg_dump; 3946 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3947 3948 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3949 { 3950 switch (reason) { 3951 case KMSG_DUMP_PANIC: 3952 return "Panic"; 3953 case KMSG_DUMP_OOPS: 3954 return "Oops"; 3955 case KMSG_DUMP_EMERG: 3956 return "Emergency"; 3957 case KMSG_DUMP_SHUTDOWN: 3958 return "Shutdown"; 3959 default: 3960 return "Unknown"; 3961 } 3962 } 3963 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3964 3965 /** 3966 * kmsg_dump - dump kernel log to kernel message dumpers. 3967 * @reason: the reason (oops, panic etc) for dumping 3968 * 3969 * Call each of the registered dumper's dump() callback, which can 3970 * retrieve the kmsg records with kmsg_dump_get_line() or 3971 * kmsg_dump_get_buffer(). 3972 */ 3973 void kmsg_dump(enum kmsg_dump_reason reason) 3974 { 3975 struct kmsg_dumper *dumper; 3976 3977 rcu_read_lock(); 3978 list_for_each_entry_rcu(dumper, &dump_list, list) { 3979 enum kmsg_dump_reason max_reason = dumper->max_reason; 3980 3981 /* 3982 * If client has not provided a specific max_reason, default 3983 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3984 */ 3985 if (max_reason == KMSG_DUMP_UNDEF) { 3986 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3987 KMSG_DUMP_OOPS; 3988 } 3989 if (reason > max_reason) 3990 continue; 3991 3992 /* invoke dumper which will iterate over records */ 3993 dumper->dump(dumper, reason); 3994 } 3995 rcu_read_unlock(); 3996 } 3997 3998 /** 3999 * kmsg_dump_get_line - retrieve one kmsg log line 4000 * @iter: kmsg dump iterator 4001 * @syslog: include the "<4>" prefixes 4002 * @line: buffer to copy the line to 4003 * @size: maximum size of the buffer 4004 * @len: length of line placed into buffer 4005 * 4006 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4007 * record, and copy one record into the provided buffer. 4008 * 4009 * Consecutive calls will return the next available record moving 4010 * towards the end of the buffer with the youngest messages. 4011 * 4012 * A return value of FALSE indicates that there are no more records to 4013 * read. 4014 */ 4015 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4016 char *line, size_t size, size_t *len) 4017 { 4018 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4019 struct printk_info info; 4020 unsigned int line_count; 4021 struct printk_record r; 4022 size_t l = 0; 4023 bool ret = false; 4024 4025 if (iter->cur_seq < min_seq) 4026 iter->cur_seq = min_seq; 4027 4028 prb_rec_init_rd(&r, &info, line, size); 4029 4030 /* Read text or count text lines? */ 4031 if (line) { 4032 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4033 goto out; 4034 l = record_print_text(&r, syslog, printk_time); 4035 } else { 4036 if (!prb_read_valid_info(prb, iter->cur_seq, 4037 &info, &line_count)) { 4038 goto out; 4039 } 4040 l = get_record_print_text_size(&info, line_count, syslog, 4041 printk_time); 4042 4043 } 4044 4045 iter->cur_seq = r.info->seq + 1; 4046 ret = true; 4047 out: 4048 if (len) 4049 *len = l; 4050 return ret; 4051 } 4052 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4053 4054 /** 4055 * kmsg_dump_get_buffer - copy kmsg log lines 4056 * @iter: kmsg dump iterator 4057 * @syslog: include the "<4>" prefixes 4058 * @buf: buffer to copy the line to 4059 * @size: maximum size of the buffer 4060 * @len_out: length of line placed into buffer 4061 * 4062 * Start at the end of the kmsg buffer and fill the provided buffer 4063 * with as many of the *youngest* kmsg records that fit into it. 4064 * If the buffer is large enough, all available kmsg records will be 4065 * copied with a single call. 4066 * 4067 * Consecutive calls will fill the buffer with the next block of 4068 * available older records, not including the earlier retrieved ones. 4069 * 4070 * A return value of FALSE indicates that there are no more records to 4071 * read. 4072 */ 4073 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4074 char *buf, size_t size, size_t *len_out) 4075 { 4076 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4077 struct printk_info info; 4078 struct printk_record r; 4079 u64 seq; 4080 u64 next_seq; 4081 size_t len = 0; 4082 bool ret = false; 4083 bool time = printk_time; 4084 4085 if (!buf || !size) 4086 goto out; 4087 4088 if (iter->cur_seq < min_seq) 4089 iter->cur_seq = min_seq; 4090 4091 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4092 if (info.seq != iter->cur_seq) { 4093 /* messages are gone, move to first available one */ 4094 iter->cur_seq = info.seq; 4095 } 4096 } 4097 4098 /* last entry */ 4099 if (iter->cur_seq >= iter->next_seq) 4100 goto out; 4101 4102 /* 4103 * Find first record that fits, including all following records, 4104 * into the user-provided buffer for this dump. Pass in size-1 4105 * because this function (by way of record_print_text()) will 4106 * not write more than size-1 bytes of text into @buf. 4107 */ 4108 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4109 size - 1, syslog, time); 4110 4111 /* 4112 * Next kmsg_dump_get_buffer() invocation will dump block of 4113 * older records stored right before this one. 4114 */ 4115 next_seq = seq; 4116 4117 prb_rec_init_rd(&r, &info, buf, size); 4118 4119 len = 0; 4120 prb_for_each_record(seq, prb, seq, &r) { 4121 if (r.info->seq >= iter->next_seq) 4122 break; 4123 4124 len += record_print_text(&r, syslog, time); 4125 4126 /* Adjust record to store to remaining buffer space. */ 4127 prb_rec_init_rd(&r, &info, buf + len, size - len); 4128 } 4129 4130 iter->next_seq = next_seq; 4131 ret = true; 4132 out: 4133 if (len_out) 4134 *len_out = len; 4135 return ret; 4136 } 4137 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4138 4139 /** 4140 * kmsg_dump_rewind - reset the iterator 4141 * @iter: kmsg dump iterator 4142 * 4143 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4144 * kmsg_dump_get_buffer() can be called again and used multiple 4145 * times within the same dumper.dump() callback. 4146 */ 4147 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4148 { 4149 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4150 iter->next_seq = prb_next_seq(prb); 4151 } 4152 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4153 4154 #endif 4155 4156 #ifdef CONFIG_SMP 4157 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4158 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4159 4160 /** 4161 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4162 * spinning lock is not owned by any CPU. 4163 * 4164 * Context: Any context. 4165 */ 4166 void __printk_cpu_sync_wait(void) 4167 { 4168 do { 4169 cpu_relax(); 4170 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4171 } 4172 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4173 4174 /** 4175 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4176 * spinning lock. 4177 * 4178 * If no processor has the lock, the calling processor takes the lock and 4179 * becomes the owner. If the calling processor is already the owner of the 4180 * lock, this function succeeds immediately. 4181 * 4182 * Context: Any context. Expects interrupts to be disabled. 4183 * Return: 1 on success, otherwise 0. 4184 */ 4185 int __printk_cpu_sync_try_get(void) 4186 { 4187 int cpu; 4188 int old; 4189 4190 cpu = smp_processor_id(); 4191 4192 /* 4193 * Guarantee loads and stores from this CPU when it is the lock owner 4194 * are _not_ visible to the previous lock owner. This pairs with 4195 * __printk_cpu_sync_put:B. 4196 * 4197 * Memory barrier involvement: 4198 * 4199 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4200 * then __printk_cpu_sync_put:A can never read from 4201 * __printk_cpu_sync_try_get:B. 4202 * 4203 * Relies on: 4204 * 4205 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4206 * of the previous CPU 4207 * matching 4208 * ACQUIRE from __printk_cpu_sync_try_get:A to 4209 * __printk_cpu_sync_try_get:B of this CPU 4210 */ 4211 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4212 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4213 if (old == -1) { 4214 /* 4215 * This CPU is now the owner and begins loading/storing 4216 * data: LMM(__printk_cpu_sync_try_get:B) 4217 */ 4218 return 1; 4219 4220 } else if (old == cpu) { 4221 /* This CPU is already the owner. */ 4222 atomic_inc(&printk_cpu_sync_nested); 4223 return 1; 4224 } 4225 4226 return 0; 4227 } 4228 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4229 4230 /** 4231 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4232 * 4233 * The calling processor must be the owner of the lock. 4234 * 4235 * Context: Any context. Expects interrupts to be disabled. 4236 */ 4237 void __printk_cpu_sync_put(void) 4238 { 4239 if (atomic_read(&printk_cpu_sync_nested)) { 4240 atomic_dec(&printk_cpu_sync_nested); 4241 return; 4242 } 4243 4244 /* 4245 * This CPU is finished loading/storing data: 4246 * LMM(__printk_cpu_sync_put:A) 4247 */ 4248 4249 /* 4250 * Guarantee loads and stores from this CPU when it was the 4251 * lock owner are visible to the next lock owner. This pairs 4252 * with __printk_cpu_sync_try_get:A. 4253 * 4254 * Memory barrier involvement: 4255 * 4256 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4257 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4258 * 4259 * Relies on: 4260 * 4261 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4262 * of this CPU 4263 * matching 4264 * ACQUIRE from __printk_cpu_sync_try_get:A to 4265 * __printk_cpu_sync_try_get:B of the next CPU 4266 */ 4267 atomic_set_release(&printk_cpu_sync_owner, 4268 -1); /* LMM(__printk_cpu_sync_put:B) */ 4269 } 4270 EXPORT_SYMBOL(__printk_cpu_sync_put); 4271 #endif /* CONFIG_SMP */ 4272