xref: /linux/kernel/printk/printk.c (revision 5c2e7736e20d9b348a44cafbfa639fe2653fbc34)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/vmcore_info.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 
59 #include "printk_ringbuffer.h"
60 #include "console_cmdline.h"
61 #include "braille.h"
62 #include "internal.h"
63 
64 int console_printk[4] = {
65 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
66 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
67 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
68 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
69 };
70 EXPORT_SYMBOL_GPL(console_printk);
71 
72 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
73 EXPORT_SYMBOL(ignore_console_lock_warning);
74 
75 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
76 
77 /*
78  * Low level drivers may need that to know if they can schedule in
79  * their unblank() callback or not. So let's export it.
80  */
81 int oops_in_progress;
82 EXPORT_SYMBOL(oops_in_progress);
83 
84 /*
85  * console_mutex protects console_list updates and console->flags updates.
86  * The flags are synchronized only for consoles that are registered, i.e.
87  * accessible via the console list.
88  */
89 static DEFINE_MUTEX(console_mutex);
90 
91 /*
92  * console_sem protects updates to console->seq
93  * and also provides serialization for console printing.
94  */
95 static DEFINE_SEMAPHORE(console_sem, 1);
96 HLIST_HEAD(console_list);
97 EXPORT_SYMBOL_GPL(console_list);
98 DEFINE_STATIC_SRCU(console_srcu);
99 
100 /*
101  * System may need to suppress printk message under certain
102  * circumstances, like after kernel panic happens.
103  */
104 int __read_mostly suppress_printk;
105 
106 #ifdef CONFIG_LOCKDEP
107 static struct lockdep_map console_lock_dep_map = {
108 	.name = "console_lock"
109 };
110 
111 void lockdep_assert_console_list_lock_held(void)
112 {
113 	lockdep_assert_held(&console_mutex);
114 }
115 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
116 #endif
117 
118 #ifdef CONFIG_DEBUG_LOCK_ALLOC
119 bool console_srcu_read_lock_is_held(void)
120 {
121 	return srcu_read_lock_held(&console_srcu);
122 }
123 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
124 #endif
125 
126 enum devkmsg_log_bits {
127 	__DEVKMSG_LOG_BIT_ON = 0,
128 	__DEVKMSG_LOG_BIT_OFF,
129 	__DEVKMSG_LOG_BIT_LOCK,
130 };
131 
132 enum devkmsg_log_masks {
133 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
134 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
135 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
136 };
137 
138 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
139 #define DEVKMSG_LOG_MASK_DEFAULT	0
140 
141 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
142 
143 static int __control_devkmsg(char *str)
144 {
145 	size_t len;
146 
147 	if (!str)
148 		return -EINVAL;
149 
150 	len = str_has_prefix(str, "on");
151 	if (len) {
152 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
153 		return len;
154 	}
155 
156 	len = str_has_prefix(str, "off");
157 	if (len) {
158 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
159 		return len;
160 	}
161 
162 	len = str_has_prefix(str, "ratelimit");
163 	if (len) {
164 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
165 		return len;
166 	}
167 
168 	return -EINVAL;
169 }
170 
171 static int __init control_devkmsg(char *str)
172 {
173 	if (__control_devkmsg(str) < 0) {
174 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
175 		return 1;
176 	}
177 
178 	/*
179 	 * Set sysctl string accordingly:
180 	 */
181 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
182 		strscpy(devkmsg_log_str, "on");
183 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
184 		strscpy(devkmsg_log_str, "off");
185 	/* else "ratelimit" which is set by default. */
186 
187 	/*
188 	 * Sysctl cannot change it anymore. The kernel command line setting of
189 	 * this parameter is to force the setting to be permanent throughout the
190 	 * runtime of the system. This is a precation measure against userspace
191 	 * trying to be a smarta** and attempting to change it up on us.
192 	 */
193 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
194 
195 	return 1;
196 }
197 __setup("printk.devkmsg=", control_devkmsg);
198 
199 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
200 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
201 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
202 			      void *buffer, size_t *lenp, loff_t *ppos)
203 {
204 	char old_str[DEVKMSG_STR_MAX_SIZE];
205 	unsigned int old;
206 	int err;
207 
208 	if (write) {
209 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
210 			return -EINVAL;
211 
212 		old = devkmsg_log;
213 		strscpy(old_str, devkmsg_log_str);
214 	}
215 
216 	err = proc_dostring(table, write, buffer, lenp, ppos);
217 	if (err)
218 		return err;
219 
220 	if (write) {
221 		err = __control_devkmsg(devkmsg_log_str);
222 
223 		/*
224 		 * Do not accept an unknown string OR a known string with
225 		 * trailing crap...
226 		 */
227 		if (err < 0 || (err + 1 != *lenp)) {
228 
229 			/* ... and restore old setting. */
230 			devkmsg_log = old;
231 			strscpy(devkmsg_log_str, old_str);
232 
233 			return -EINVAL;
234 		}
235 	}
236 
237 	return 0;
238 }
239 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
240 
241 /**
242  * console_list_lock - Lock the console list
243  *
244  * For console list or console->flags updates
245  */
246 void console_list_lock(void)
247 {
248 	/*
249 	 * In unregister_console() and console_force_preferred_locked(),
250 	 * synchronize_srcu() is called with the console_list_lock held.
251 	 * Therefore it is not allowed that the console_list_lock is taken
252 	 * with the srcu_lock held.
253 	 *
254 	 * Detecting if this context is really in the read-side critical
255 	 * section is only possible if the appropriate debug options are
256 	 * enabled.
257 	 */
258 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
259 		     srcu_read_lock_held(&console_srcu));
260 
261 	mutex_lock(&console_mutex);
262 }
263 EXPORT_SYMBOL(console_list_lock);
264 
265 /**
266  * console_list_unlock - Unlock the console list
267  *
268  * Counterpart to console_list_lock()
269  */
270 void console_list_unlock(void)
271 {
272 	mutex_unlock(&console_mutex);
273 }
274 EXPORT_SYMBOL(console_list_unlock);
275 
276 /**
277  * console_srcu_read_lock - Register a new reader for the
278  *	SRCU-protected console list
279  *
280  * Use for_each_console_srcu() to iterate the console list
281  *
282  * Context: Any context.
283  * Return: A cookie to pass to console_srcu_read_unlock().
284  */
285 int console_srcu_read_lock(void)
286 	__acquires(&console_srcu)
287 {
288 	return srcu_read_lock_nmisafe(&console_srcu);
289 }
290 EXPORT_SYMBOL(console_srcu_read_lock);
291 
292 /**
293  * console_srcu_read_unlock - Unregister an old reader from
294  *	the SRCU-protected console list
295  * @cookie: cookie returned from console_srcu_read_lock()
296  *
297  * Counterpart to console_srcu_read_lock()
298  */
299 void console_srcu_read_unlock(int cookie)
300 	__releases(&console_srcu)
301 {
302 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
303 }
304 EXPORT_SYMBOL(console_srcu_read_unlock);
305 
306 /*
307  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
308  * macros instead of functions so that _RET_IP_ contains useful information.
309  */
310 #define down_console_sem() do { \
311 	down(&console_sem);\
312 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
313 } while (0)
314 
315 static int __down_trylock_console_sem(unsigned long ip)
316 {
317 	int lock_failed;
318 	unsigned long flags;
319 
320 	/*
321 	 * Here and in __up_console_sem() we need to be in safe mode,
322 	 * because spindump/WARN/etc from under console ->lock will
323 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
324 	 */
325 	printk_safe_enter_irqsave(flags);
326 	lock_failed = down_trylock(&console_sem);
327 	printk_safe_exit_irqrestore(flags);
328 
329 	if (lock_failed)
330 		return 1;
331 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
332 	return 0;
333 }
334 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
335 
336 static void __up_console_sem(unsigned long ip)
337 {
338 	unsigned long flags;
339 
340 	mutex_release(&console_lock_dep_map, ip);
341 
342 	printk_safe_enter_irqsave(flags);
343 	up(&console_sem);
344 	printk_safe_exit_irqrestore(flags);
345 }
346 #define up_console_sem() __up_console_sem(_RET_IP_)
347 
348 static bool panic_in_progress(void)
349 {
350 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
351 }
352 
353 /* Return true if a panic is in progress on the current CPU. */
354 bool this_cpu_in_panic(void)
355 {
356 	/*
357 	 * We can use raw_smp_processor_id() here because it is impossible for
358 	 * the task to be migrated to the panic_cpu, or away from it. If
359 	 * panic_cpu has already been set, and we're not currently executing on
360 	 * that CPU, then we never will be.
361 	 */
362 	return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
363 }
364 
365 /*
366  * Return true if a panic is in progress on a remote CPU.
367  *
368  * On true, the local CPU should immediately release any printing resources
369  * that may be needed by the panic CPU.
370  */
371 bool other_cpu_in_panic(void)
372 {
373 	return (panic_in_progress() && !this_cpu_in_panic());
374 }
375 
376 /*
377  * This is used for debugging the mess that is the VT code by
378  * keeping track if we have the console semaphore held. It's
379  * definitely not the perfect debug tool (we don't know if _WE_
380  * hold it and are racing, but it helps tracking those weird code
381  * paths in the console code where we end up in places I want
382  * locked without the console semaphore held).
383  */
384 static int console_locked;
385 
386 /*
387  *	Array of consoles built from command line options (console=)
388  */
389 
390 #define MAX_CMDLINECONSOLES 8
391 
392 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
393 
394 static int preferred_console = -1;
395 int console_set_on_cmdline;
396 EXPORT_SYMBOL(console_set_on_cmdline);
397 
398 /* Flag: console code may call schedule() */
399 static int console_may_schedule;
400 
401 enum con_msg_format_flags {
402 	MSG_FORMAT_DEFAULT	= 0,
403 	MSG_FORMAT_SYSLOG	= (1 << 0),
404 };
405 
406 static int console_msg_format = MSG_FORMAT_DEFAULT;
407 
408 /*
409  * The printk log buffer consists of a sequenced collection of records, each
410  * containing variable length message text. Every record also contains its
411  * own meta-data (@info).
412  *
413  * Every record meta-data carries the timestamp in microseconds, as well as
414  * the standard userspace syslog level and syslog facility. The usual kernel
415  * messages use LOG_KERN; userspace-injected messages always carry a matching
416  * syslog facility, by default LOG_USER. The origin of every message can be
417  * reliably determined that way.
418  *
419  * The human readable log message of a record is available in @text, the
420  * length of the message text in @text_len. The stored message is not
421  * terminated.
422  *
423  * Optionally, a record can carry a dictionary of properties (key/value
424  * pairs), to provide userspace with a machine-readable message context.
425  *
426  * Examples for well-defined, commonly used property names are:
427  *   DEVICE=b12:8               device identifier
428  *                                b12:8         block dev_t
429  *                                c127:3        char dev_t
430  *                                n8            netdev ifindex
431  *                                +sound:card0  subsystem:devname
432  *   SUBSYSTEM=pci              driver-core subsystem name
433  *
434  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
435  * and values are terminated by a '\0' character.
436  *
437  * Example of record values:
438  *   record.text_buf                = "it's a line" (unterminated)
439  *   record.info.seq                = 56
440  *   record.info.ts_nsec            = 36863
441  *   record.info.text_len           = 11
442  *   record.info.facility           = 0 (LOG_KERN)
443  *   record.info.flags              = 0
444  *   record.info.level              = 3 (LOG_ERR)
445  *   record.info.caller_id          = 299 (task 299)
446  *   record.info.dev_info.subsystem = "pci" (terminated)
447  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
448  *
449  * The 'struct printk_info' buffer must never be directly exported to
450  * userspace, it is a kernel-private implementation detail that might
451  * need to be changed in the future, when the requirements change.
452  *
453  * /dev/kmsg exports the structured data in the following line format:
454  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
455  *
456  * Users of the export format should ignore possible additional values
457  * separated by ',', and find the message after the ';' character.
458  *
459  * The optional key/value pairs are attached as continuation lines starting
460  * with a space character and terminated by a newline. All possible
461  * non-prinatable characters are escaped in the "\xff" notation.
462  */
463 
464 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
465 static DEFINE_MUTEX(syslog_lock);
466 
467 /*
468  * Specifies if a legacy console is registered. If legacy consoles are
469  * present, it is necessary to perform the console lock/unlock dance
470  * whenever console flushing should occur.
471  */
472 bool have_legacy_console;
473 
474 /*
475  * Specifies if an nbcon console is registered. If nbcon consoles are present,
476  * synchronous printing of legacy consoles will not occur during panic until
477  * the backtrace has been stored to the ringbuffer.
478  */
479 bool have_nbcon_console;
480 
481 /*
482  * Specifies if a boot console is registered. If boot consoles are present,
483  * nbcon consoles cannot print simultaneously and must be synchronized by
484  * the console lock. This is because boot consoles and nbcon consoles may
485  * have mapped the same hardware.
486  */
487 bool have_boot_console;
488 
489 /* See printk_legacy_allow_panic_sync() for details. */
490 bool legacy_allow_panic_sync;
491 
492 #ifdef CONFIG_PRINTK
493 DECLARE_WAIT_QUEUE_HEAD(log_wait);
494 static DECLARE_WAIT_QUEUE_HEAD(legacy_wait);
495 /* All 3 protected by @syslog_lock. */
496 /* the next printk record to read by syslog(READ) or /proc/kmsg */
497 static u64 syslog_seq;
498 static size_t syslog_partial;
499 static bool syslog_time;
500 
501 /* True when _all_ printer threads are available for printing. */
502 bool printk_kthreads_running;
503 
504 struct latched_seq {
505 	seqcount_latch_t	latch;
506 	u64			val[2];
507 };
508 
509 /*
510  * The next printk record to read after the last 'clear' command. There are
511  * two copies (updated with seqcount_latch) so that reads can locklessly
512  * access a valid value. Writers are synchronized by @syslog_lock.
513  */
514 static struct latched_seq clear_seq = {
515 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
516 	.val[0]		= 0,
517 	.val[1]		= 0,
518 };
519 
520 #define LOG_LEVEL(v)		((v) & 0x07)
521 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
522 
523 /* record buffer */
524 #define LOG_ALIGN __alignof__(unsigned long)
525 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
526 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
527 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
528 static char *log_buf = __log_buf;
529 static u32 log_buf_len = __LOG_BUF_LEN;
530 
531 /*
532  * Define the average message size. This only affects the number of
533  * descriptors that will be available. Underestimating is better than
534  * overestimating (too many available descriptors is better than not enough).
535  */
536 #define PRB_AVGBITS 5	/* 32 character average length */
537 
538 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
539 #error CONFIG_LOG_BUF_SHIFT value too small.
540 #endif
541 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
542 		 PRB_AVGBITS, &__log_buf[0]);
543 
544 static struct printk_ringbuffer printk_rb_dynamic;
545 
546 struct printk_ringbuffer *prb = &printk_rb_static;
547 
548 /*
549  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
550  * per_cpu_areas are initialised. This variable is set to true when
551  * it's safe to access per-CPU data.
552  */
553 static bool __printk_percpu_data_ready __ro_after_init;
554 
555 bool printk_percpu_data_ready(void)
556 {
557 	return __printk_percpu_data_ready;
558 }
559 
560 /* Must be called under syslog_lock. */
561 static void latched_seq_write(struct latched_seq *ls, u64 val)
562 {
563 	write_seqcount_latch_begin(&ls->latch);
564 	ls->val[0] = val;
565 	write_seqcount_latch(&ls->latch);
566 	ls->val[1] = val;
567 	write_seqcount_latch_end(&ls->latch);
568 }
569 
570 /* Can be called from any context. */
571 static u64 latched_seq_read_nolock(struct latched_seq *ls)
572 {
573 	unsigned int seq;
574 	unsigned int idx;
575 	u64 val;
576 
577 	do {
578 		seq = read_seqcount_latch(&ls->latch);
579 		idx = seq & 0x1;
580 		val = ls->val[idx];
581 	} while (read_seqcount_latch_retry(&ls->latch, seq));
582 
583 	return val;
584 }
585 
586 /* Return log buffer address */
587 char *log_buf_addr_get(void)
588 {
589 	return log_buf;
590 }
591 
592 /* Return log buffer size */
593 u32 log_buf_len_get(void)
594 {
595 	return log_buf_len;
596 }
597 
598 /*
599  * Define how much of the log buffer we could take at maximum. The value
600  * must be greater than two. Note that only half of the buffer is available
601  * when the index points to the middle.
602  */
603 #define MAX_LOG_TAKE_PART 4
604 static const char trunc_msg[] = "<truncated>";
605 
606 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
607 {
608 	/*
609 	 * The message should not take the whole buffer. Otherwise, it might
610 	 * get removed too soon.
611 	 */
612 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
613 
614 	if (*text_len > max_text_len)
615 		*text_len = max_text_len;
616 
617 	/* enable the warning message (if there is room) */
618 	*trunc_msg_len = strlen(trunc_msg);
619 	if (*text_len >= *trunc_msg_len)
620 		*text_len -= *trunc_msg_len;
621 	else
622 		*trunc_msg_len = 0;
623 }
624 
625 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
626 
627 static int syslog_action_restricted(int type)
628 {
629 	if (dmesg_restrict)
630 		return 1;
631 	/*
632 	 * Unless restricted, we allow "read all" and "get buffer size"
633 	 * for everybody.
634 	 */
635 	return type != SYSLOG_ACTION_READ_ALL &&
636 	       type != SYSLOG_ACTION_SIZE_BUFFER;
637 }
638 
639 static int check_syslog_permissions(int type, int source)
640 {
641 	/*
642 	 * If this is from /proc/kmsg and we've already opened it, then we've
643 	 * already done the capabilities checks at open time.
644 	 */
645 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
646 		goto ok;
647 
648 	if (syslog_action_restricted(type)) {
649 		if (capable(CAP_SYSLOG))
650 			goto ok;
651 		return -EPERM;
652 	}
653 ok:
654 	return security_syslog(type);
655 }
656 
657 static void append_char(char **pp, char *e, char c)
658 {
659 	if (*pp < e)
660 		*(*pp)++ = c;
661 }
662 
663 static ssize_t info_print_ext_header(char *buf, size_t size,
664 				     struct printk_info *info)
665 {
666 	u64 ts_usec = info->ts_nsec;
667 	char caller[20];
668 #ifdef CONFIG_PRINTK_CALLER
669 	u32 id = info->caller_id;
670 
671 	snprintf(caller, sizeof(caller), ",caller=%c%u",
672 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
673 #else
674 	caller[0] = '\0';
675 #endif
676 
677 	do_div(ts_usec, 1000);
678 
679 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
680 			 (info->facility << 3) | info->level, info->seq,
681 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
682 }
683 
684 static ssize_t msg_add_ext_text(char *buf, size_t size,
685 				const char *text, size_t text_len,
686 				unsigned char endc)
687 {
688 	char *p = buf, *e = buf + size;
689 	size_t i;
690 
691 	/* escape non-printable characters */
692 	for (i = 0; i < text_len; i++) {
693 		unsigned char c = text[i];
694 
695 		if (c < ' ' || c >= 127 || c == '\\')
696 			p += scnprintf(p, e - p, "\\x%02x", c);
697 		else
698 			append_char(&p, e, c);
699 	}
700 	append_char(&p, e, endc);
701 
702 	return p - buf;
703 }
704 
705 static ssize_t msg_add_dict_text(char *buf, size_t size,
706 				 const char *key, const char *val)
707 {
708 	size_t val_len = strlen(val);
709 	ssize_t len;
710 
711 	if (!val_len)
712 		return 0;
713 
714 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
715 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
716 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
717 
718 	return len;
719 }
720 
721 static ssize_t msg_print_ext_body(char *buf, size_t size,
722 				  char *text, size_t text_len,
723 				  struct dev_printk_info *dev_info)
724 {
725 	ssize_t len;
726 
727 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
728 
729 	if (!dev_info)
730 		goto out;
731 
732 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
733 				 dev_info->subsystem);
734 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
735 				 dev_info->device);
736 out:
737 	return len;
738 }
739 
740 /* /dev/kmsg - userspace message inject/listen interface */
741 struct devkmsg_user {
742 	atomic64_t seq;
743 	struct ratelimit_state rs;
744 	struct mutex lock;
745 	struct printk_buffers pbufs;
746 };
747 
748 static __printf(3, 4) __cold
749 int devkmsg_emit(int facility, int level, const char *fmt, ...)
750 {
751 	va_list args;
752 	int r;
753 
754 	va_start(args, fmt);
755 	r = vprintk_emit(facility, level, NULL, fmt, args);
756 	va_end(args);
757 
758 	return r;
759 }
760 
761 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
762 {
763 	char *buf, *line;
764 	int level = default_message_loglevel;
765 	int facility = 1;	/* LOG_USER */
766 	struct file *file = iocb->ki_filp;
767 	struct devkmsg_user *user = file->private_data;
768 	size_t len = iov_iter_count(from);
769 	ssize_t ret = len;
770 
771 	if (len > PRINTKRB_RECORD_MAX)
772 		return -EINVAL;
773 
774 	/* Ignore when user logging is disabled. */
775 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
776 		return len;
777 
778 	/* Ratelimit when not explicitly enabled. */
779 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
780 		if (!___ratelimit(&user->rs, current->comm))
781 			return ret;
782 	}
783 
784 	buf = kmalloc(len+1, GFP_KERNEL);
785 	if (buf == NULL)
786 		return -ENOMEM;
787 
788 	buf[len] = '\0';
789 	if (!copy_from_iter_full(buf, len, from)) {
790 		kfree(buf);
791 		return -EFAULT;
792 	}
793 
794 	/*
795 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
796 	 * the decimal value represents 32bit, the lower 3 bit are the log
797 	 * level, the rest are the log facility.
798 	 *
799 	 * If no prefix or no userspace facility is specified, we
800 	 * enforce LOG_USER, to be able to reliably distinguish
801 	 * kernel-generated messages from userspace-injected ones.
802 	 */
803 	line = buf;
804 	if (line[0] == '<') {
805 		char *endp = NULL;
806 		unsigned int u;
807 
808 		u = simple_strtoul(line + 1, &endp, 10);
809 		if (endp && endp[0] == '>') {
810 			level = LOG_LEVEL(u);
811 			if (LOG_FACILITY(u) != 0)
812 				facility = LOG_FACILITY(u);
813 			endp++;
814 			line = endp;
815 		}
816 	}
817 
818 	devkmsg_emit(facility, level, "%s", line);
819 	kfree(buf);
820 	return ret;
821 }
822 
823 static ssize_t devkmsg_read(struct file *file, char __user *buf,
824 			    size_t count, loff_t *ppos)
825 {
826 	struct devkmsg_user *user = file->private_data;
827 	char *outbuf = &user->pbufs.outbuf[0];
828 	struct printk_message pmsg = {
829 		.pbufs = &user->pbufs,
830 	};
831 	ssize_t ret;
832 
833 	ret = mutex_lock_interruptible(&user->lock);
834 	if (ret)
835 		return ret;
836 
837 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
838 		if (file->f_flags & O_NONBLOCK) {
839 			ret = -EAGAIN;
840 			goto out;
841 		}
842 
843 		/*
844 		 * Guarantee this task is visible on the waitqueue before
845 		 * checking the wake condition.
846 		 *
847 		 * The full memory barrier within set_current_state() of
848 		 * prepare_to_wait_event() pairs with the full memory barrier
849 		 * within wq_has_sleeper().
850 		 *
851 		 * This pairs with __wake_up_klogd:A.
852 		 */
853 		ret = wait_event_interruptible(log_wait,
854 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
855 							false)); /* LMM(devkmsg_read:A) */
856 		if (ret)
857 			goto out;
858 	}
859 
860 	if (pmsg.dropped) {
861 		/* our last seen message is gone, return error and reset */
862 		atomic64_set(&user->seq, pmsg.seq);
863 		ret = -EPIPE;
864 		goto out;
865 	}
866 
867 	atomic64_set(&user->seq, pmsg.seq + 1);
868 
869 	if (pmsg.outbuf_len > count) {
870 		ret = -EINVAL;
871 		goto out;
872 	}
873 
874 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
875 		ret = -EFAULT;
876 		goto out;
877 	}
878 	ret = pmsg.outbuf_len;
879 out:
880 	mutex_unlock(&user->lock);
881 	return ret;
882 }
883 
884 /*
885  * Be careful when modifying this function!!!
886  *
887  * Only few operations are supported because the device works only with the
888  * entire variable length messages (records). Non-standard values are
889  * returned in the other cases and has been this way for quite some time.
890  * User space applications might depend on this behavior.
891  */
892 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
893 {
894 	struct devkmsg_user *user = file->private_data;
895 	loff_t ret = 0;
896 
897 	if (offset)
898 		return -ESPIPE;
899 
900 	switch (whence) {
901 	case SEEK_SET:
902 		/* the first record */
903 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
904 		break;
905 	case SEEK_DATA:
906 		/*
907 		 * The first record after the last SYSLOG_ACTION_CLEAR,
908 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
909 		 * changes no global state, and does not clear anything.
910 		 */
911 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
912 		break;
913 	case SEEK_END:
914 		/* after the last record */
915 		atomic64_set(&user->seq, prb_next_seq(prb));
916 		break;
917 	default:
918 		ret = -EINVAL;
919 	}
920 	return ret;
921 }
922 
923 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
924 {
925 	struct devkmsg_user *user = file->private_data;
926 	struct printk_info info;
927 	__poll_t ret = 0;
928 
929 	poll_wait(file, &log_wait, wait);
930 
931 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
932 		/* return error when data has vanished underneath us */
933 		if (info.seq != atomic64_read(&user->seq))
934 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
935 		else
936 			ret = EPOLLIN|EPOLLRDNORM;
937 	}
938 
939 	return ret;
940 }
941 
942 static int devkmsg_open(struct inode *inode, struct file *file)
943 {
944 	struct devkmsg_user *user;
945 	int err;
946 
947 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
948 		return -EPERM;
949 
950 	/* write-only does not need any file context */
951 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
952 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
953 					       SYSLOG_FROM_READER);
954 		if (err)
955 			return err;
956 	}
957 
958 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
959 	if (!user)
960 		return -ENOMEM;
961 
962 	ratelimit_default_init(&user->rs);
963 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
964 
965 	mutex_init(&user->lock);
966 
967 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
968 
969 	file->private_data = user;
970 	return 0;
971 }
972 
973 static int devkmsg_release(struct inode *inode, struct file *file)
974 {
975 	struct devkmsg_user *user = file->private_data;
976 
977 	ratelimit_state_exit(&user->rs);
978 
979 	mutex_destroy(&user->lock);
980 	kvfree(user);
981 	return 0;
982 }
983 
984 const struct file_operations kmsg_fops = {
985 	.open = devkmsg_open,
986 	.read = devkmsg_read,
987 	.write_iter = devkmsg_write,
988 	.llseek = devkmsg_llseek,
989 	.poll = devkmsg_poll,
990 	.release = devkmsg_release,
991 };
992 
993 #ifdef CONFIG_VMCORE_INFO
994 /*
995  * This appends the listed symbols to /proc/vmcore
996  *
997  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
998  * obtain access to symbols that are otherwise very difficult to locate.  These
999  * symbols are specifically used so that utilities can access and extract the
1000  * dmesg log from a vmcore file after a crash.
1001  */
1002 void log_buf_vmcoreinfo_setup(void)
1003 {
1004 	struct dev_printk_info *dev_info = NULL;
1005 
1006 	VMCOREINFO_SYMBOL(prb);
1007 	VMCOREINFO_SYMBOL(printk_rb_static);
1008 	VMCOREINFO_SYMBOL(clear_seq);
1009 
1010 	/*
1011 	 * Export struct size and field offsets. User space tools can
1012 	 * parse it and detect any changes to structure down the line.
1013 	 */
1014 
1015 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
1016 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
1017 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
1018 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
1019 
1020 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
1021 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
1022 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
1023 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
1024 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
1025 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
1026 
1027 	VMCOREINFO_STRUCT_SIZE(prb_desc);
1028 	VMCOREINFO_OFFSET(prb_desc, state_var);
1029 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
1030 
1031 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
1032 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1033 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1034 
1035 	VMCOREINFO_STRUCT_SIZE(printk_info);
1036 	VMCOREINFO_OFFSET(printk_info, seq);
1037 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1038 	VMCOREINFO_OFFSET(printk_info, text_len);
1039 	VMCOREINFO_OFFSET(printk_info, caller_id);
1040 	VMCOREINFO_OFFSET(printk_info, dev_info);
1041 
1042 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1043 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1044 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1045 	VMCOREINFO_OFFSET(dev_printk_info, device);
1046 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1047 
1048 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1049 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1050 	VMCOREINFO_OFFSET(prb_data_ring, data);
1051 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1052 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1053 
1054 	VMCOREINFO_SIZE(atomic_long_t);
1055 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1056 
1057 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1058 	VMCOREINFO_OFFSET(latched_seq, val);
1059 }
1060 #endif
1061 
1062 /* requested log_buf_len from kernel cmdline */
1063 static unsigned long __initdata new_log_buf_len;
1064 
1065 /* we practice scaling the ring buffer by powers of 2 */
1066 static void __init log_buf_len_update(u64 size)
1067 {
1068 	if (size > (u64)LOG_BUF_LEN_MAX) {
1069 		size = (u64)LOG_BUF_LEN_MAX;
1070 		pr_err("log_buf over 2G is not supported.\n");
1071 	}
1072 
1073 	if (size)
1074 		size = roundup_pow_of_two(size);
1075 	if (size > log_buf_len)
1076 		new_log_buf_len = (unsigned long)size;
1077 }
1078 
1079 /* save requested log_buf_len since it's too early to process it */
1080 static int __init log_buf_len_setup(char *str)
1081 {
1082 	u64 size;
1083 
1084 	if (!str)
1085 		return -EINVAL;
1086 
1087 	size = memparse(str, &str);
1088 
1089 	log_buf_len_update(size);
1090 
1091 	return 0;
1092 }
1093 early_param("log_buf_len", log_buf_len_setup);
1094 
1095 #ifdef CONFIG_SMP
1096 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1097 
1098 static void __init log_buf_add_cpu(void)
1099 {
1100 	unsigned int cpu_extra;
1101 
1102 	/*
1103 	 * archs should set up cpu_possible_bits properly with
1104 	 * set_cpu_possible() after setup_arch() but just in
1105 	 * case lets ensure this is valid.
1106 	 */
1107 	if (num_possible_cpus() == 1)
1108 		return;
1109 
1110 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1111 
1112 	/* by default this will only continue through for large > 64 CPUs */
1113 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1114 		return;
1115 
1116 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1117 		__LOG_CPU_MAX_BUF_LEN);
1118 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1119 		cpu_extra);
1120 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1121 
1122 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1123 }
1124 #else /* !CONFIG_SMP */
1125 static inline void log_buf_add_cpu(void) {}
1126 #endif /* CONFIG_SMP */
1127 
1128 static void __init set_percpu_data_ready(void)
1129 {
1130 	__printk_percpu_data_ready = true;
1131 }
1132 
1133 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1134 				     struct printk_record *r)
1135 {
1136 	struct prb_reserved_entry e;
1137 	struct printk_record dest_r;
1138 
1139 	prb_rec_init_wr(&dest_r, r->info->text_len);
1140 
1141 	if (!prb_reserve(&e, rb, &dest_r))
1142 		return 0;
1143 
1144 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1145 	dest_r.info->text_len = r->info->text_len;
1146 	dest_r.info->facility = r->info->facility;
1147 	dest_r.info->level = r->info->level;
1148 	dest_r.info->flags = r->info->flags;
1149 	dest_r.info->ts_nsec = r->info->ts_nsec;
1150 	dest_r.info->caller_id = r->info->caller_id;
1151 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1152 
1153 	prb_final_commit(&e);
1154 
1155 	return prb_record_text_space(&e);
1156 }
1157 
1158 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1159 
1160 void __init setup_log_buf(int early)
1161 {
1162 	struct printk_info *new_infos;
1163 	unsigned int new_descs_count;
1164 	struct prb_desc *new_descs;
1165 	struct printk_info info;
1166 	struct printk_record r;
1167 	unsigned int text_size;
1168 	size_t new_descs_size;
1169 	size_t new_infos_size;
1170 	unsigned long flags;
1171 	char *new_log_buf;
1172 	unsigned int free;
1173 	u64 seq;
1174 
1175 	/*
1176 	 * Some archs call setup_log_buf() multiple times - first is very
1177 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1178 	 * are initialised.
1179 	 */
1180 	if (!early)
1181 		set_percpu_data_ready();
1182 
1183 	if (log_buf != __log_buf)
1184 		return;
1185 
1186 	if (!early && !new_log_buf_len)
1187 		log_buf_add_cpu();
1188 
1189 	if (!new_log_buf_len)
1190 		return;
1191 
1192 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1193 	if (new_descs_count == 0) {
1194 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1195 		return;
1196 	}
1197 
1198 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1199 	if (unlikely(!new_log_buf)) {
1200 		pr_err("log_buf_len: %lu text bytes not available\n",
1201 		       new_log_buf_len);
1202 		return;
1203 	}
1204 
1205 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1206 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1207 	if (unlikely(!new_descs)) {
1208 		pr_err("log_buf_len: %zu desc bytes not available\n",
1209 		       new_descs_size);
1210 		goto err_free_log_buf;
1211 	}
1212 
1213 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1214 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1215 	if (unlikely(!new_infos)) {
1216 		pr_err("log_buf_len: %zu info bytes not available\n",
1217 		       new_infos_size);
1218 		goto err_free_descs;
1219 	}
1220 
1221 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1222 
1223 	prb_init(&printk_rb_dynamic,
1224 		 new_log_buf, ilog2(new_log_buf_len),
1225 		 new_descs, ilog2(new_descs_count),
1226 		 new_infos);
1227 
1228 	local_irq_save(flags);
1229 
1230 	log_buf_len = new_log_buf_len;
1231 	log_buf = new_log_buf;
1232 	new_log_buf_len = 0;
1233 
1234 	free = __LOG_BUF_LEN;
1235 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1236 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1237 		if (text_size > free)
1238 			free = 0;
1239 		else
1240 			free -= text_size;
1241 	}
1242 
1243 	prb = &printk_rb_dynamic;
1244 
1245 	local_irq_restore(flags);
1246 
1247 	/*
1248 	 * Copy any remaining messages that might have appeared from
1249 	 * NMI context after copying but before switching to the
1250 	 * dynamic buffer.
1251 	 */
1252 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1253 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1254 		if (text_size > free)
1255 			free = 0;
1256 		else
1257 			free -= text_size;
1258 	}
1259 
1260 	if (seq != prb_next_seq(&printk_rb_static)) {
1261 		pr_err("dropped %llu messages\n",
1262 		       prb_next_seq(&printk_rb_static) - seq);
1263 	}
1264 
1265 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1266 	pr_info("early log buf free: %u(%u%%)\n",
1267 		free, (free * 100) / __LOG_BUF_LEN);
1268 	return;
1269 
1270 err_free_descs:
1271 	memblock_free(new_descs, new_descs_size);
1272 err_free_log_buf:
1273 	memblock_free(new_log_buf, new_log_buf_len);
1274 }
1275 
1276 static bool __read_mostly ignore_loglevel;
1277 
1278 static int __init ignore_loglevel_setup(char *str)
1279 {
1280 	ignore_loglevel = true;
1281 	pr_info("debug: ignoring loglevel setting.\n");
1282 
1283 	return 0;
1284 }
1285 
1286 early_param("ignore_loglevel", ignore_loglevel_setup);
1287 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1288 MODULE_PARM_DESC(ignore_loglevel,
1289 		 "ignore loglevel setting (prints all kernel messages to the console)");
1290 
1291 static bool suppress_message_printing(int level)
1292 {
1293 	return (level >= console_loglevel && !ignore_loglevel);
1294 }
1295 
1296 #ifdef CONFIG_BOOT_PRINTK_DELAY
1297 
1298 static int boot_delay; /* msecs delay after each printk during bootup */
1299 static unsigned long long loops_per_msec;	/* based on boot_delay */
1300 
1301 static int __init boot_delay_setup(char *str)
1302 {
1303 	unsigned long lpj;
1304 
1305 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1306 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1307 
1308 	get_option(&str, &boot_delay);
1309 	if (boot_delay > 10 * 1000)
1310 		boot_delay = 0;
1311 
1312 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1313 		"HZ: %d, loops_per_msec: %llu\n",
1314 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1315 	return 0;
1316 }
1317 early_param("boot_delay", boot_delay_setup);
1318 
1319 static void boot_delay_msec(int level)
1320 {
1321 	unsigned long long k;
1322 	unsigned long timeout;
1323 
1324 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1325 		|| suppress_message_printing(level)) {
1326 		return;
1327 	}
1328 
1329 	k = (unsigned long long)loops_per_msec * boot_delay;
1330 
1331 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1332 	while (k) {
1333 		k--;
1334 		cpu_relax();
1335 		/*
1336 		 * use (volatile) jiffies to prevent
1337 		 * compiler reduction; loop termination via jiffies
1338 		 * is secondary and may or may not happen.
1339 		 */
1340 		if (time_after(jiffies, timeout))
1341 			break;
1342 		touch_nmi_watchdog();
1343 	}
1344 }
1345 #else
1346 static inline void boot_delay_msec(int level)
1347 {
1348 }
1349 #endif
1350 
1351 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1352 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1353 
1354 static size_t print_syslog(unsigned int level, char *buf)
1355 {
1356 	return sprintf(buf, "<%u>", level);
1357 }
1358 
1359 static size_t print_time(u64 ts, char *buf)
1360 {
1361 	unsigned long rem_nsec = do_div(ts, 1000000000);
1362 
1363 	return sprintf(buf, "[%5lu.%06lu]",
1364 		       (unsigned long)ts, rem_nsec / 1000);
1365 }
1366 
1367 #ifdef CONFIG_PRINTK_CALLER
1368 static size_t print_caller(u32 id, char *buf)
1369 {
1370 	char caller[12];
1371 
1372 	snprintf(caller, sizeof(caller), "%c%u",
1373 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1374 	return sprintf(buf, "[%6s]", caller);
1375 }
1376 #else
1377 #define print_caller(id, buf) 0
1378 #endif
1379 
1380 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1381 				bool time, char *buf)
1382 {
1383 	size_t len = 0;
1384 
1385 	if (syslog)
1386 		len = print_syslog((info->facility << 3) | info->level, buf);
1387 
1388 	if (time)
1389 		len += print_time(info->ts_nsec, buf + len);
1390 
1391 	len += print_caller(info->caller_id, buf + len);
1392 
1393 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1394 		buf[len++] = ' ';
1395 		buf[len] = '\0';
1396 	}
1397 
1398 	return len;
1399 }
1400 
1401 /*
1402  * Prepare the record for printing. The text is shifted within the given
1403  * buffer to avoid a need for another one. The following operations are
1404  * done:
1405  *
1406  *   - Add prefix for each line.
1407  *   - Drop truncated lines that no longer fit into the buffer.
1408  *   - Add the trailing newline that has been removed in vprintk_store().
1409  *   - Add a string terminator.
1410  *
1411  * Since the produced string is always terminated, the maximum possible
1412  * return value is @r->text_buf_size - 1;
1413  *
1414  * Return: The length of the updated/prepared text, including the added
1415  * prefixes and the newline. The terminator is not counted. The dropped
1416  * line(s) are not counted.
1417  */
1418 static size_t record_print_text(struct printk_record *r, bool syslog,
1419 				bool time)
1420 {
1421 	size_t text_len = r->info->text_len;
1422 	size_t buf_size = r->text_buf_size;
1423 	char *text = r->text_buf;
1424 	char prefix[PRINTK_PREFIX_MAX];
1425 	bool truncated = false;
1426 	size_t prefix_len;
1427 	size_t line_len;
1428 	size_t len = 0;
1429 	char *next;
1430 
1431 	/*
1432 	 * If the message was truncated because the buffer was not large
1433 	 * enough, treat the available text as if it were the full text.
1434 	 */
1435 	if (text_len > buf_size)
1436 		text_len = buf_size;
1437 
1438 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1439 
1440 	/*
1441 	 * @text_len: bytes of unprocessed text
1442 	 * @line_len: bytes of current line _without_ newline
1443 	 * @text:     pointer to beginning of current line
1444 	 * @len:      number of bytes prepared in r->text_buf
1445 	 */
1446 	for (;;) {
1447 		next = memchr(text, '\n', text_len);
1448 		if (next) {
1449 			line_len = next - text;
1450 		} else {
1451 			/* Drop truncated line(s). */
1452 			if (truncated)
1453 				break;
1454 			line_len = text_len;
1455 		}
1456 
1457 		/*
1458 		 * Truncate the text if there is not enough space to add the
1459 		 * prefix and a trailing newline and a terminator.
1460 		 */
1461 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1462 			/* Drop even the current line if no space. */
1463 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1464 				break;
1465 
1466 			text_len = buf_size - len - prefix_len - 1 - 1;
1467 			truncated = true;
1468 		}
1469 
1470 		memmove(text + prefix_len, text, text_len);
1471 		memcpy(text, prefix, prefix_len);
1472 
1473 		/*
1474 		 * Increment the prepared length to include the text and
1475 		 * prefix that were just moved+copied. Also increment for the
1476 		 * newline at the end of this line. If this is the last line,
1477 		 * there is no newline, but it will be added immediately below.
1478 		 */
1479 		len += prefix_len + line_len + 1;
1480 		if (text_len == line_len) {
1481 			/*
1482 			 * This is the last line. Add the trailing newline
1483 			 * removed in vprintk_store().
1484 			 */
1485 			text[prefix_len + line_len] = '\n';
1486 			break;
1487 		}
1488 
1489 		/*
1490 		 * Advance beyond the added prefix and the related line with
1491 		 * its newline.
1492 		 */
1493 		text += prefix_len + line_len + 1;
1494 
1495 		/*
1496 		 * The remaining text has only decreased by the line with its
1497 		 * newline.
1498 		 *
1499 		 * Note that @text_len can become zero. It happens when @text
1500 		 * ended with a newline (either due to truncation or the
1501 		 * original string ending with "\n\n"). The loop is correctly
1502 		 * repeated and (if not truncated) an empty line with a prefix
1503 		 * will be prepared.
1504 		 */
1505 		text_len -= line_len + 1;
1506 	}
1507 
1508 	/*
1509 	 * If a buffer was provided, it will be terminated. Space for the
1510 	 * string terminator is guaranteed to be available. The terminator is
1511 	 * not counted in the return value.
1512 	 */
1513 	if (buf_size > 0)
1514 		r->text_buf[len] = 0;
1515 
1516 	return len;
1517 }
1518 
1519 static size_t get_record_print_text_size(struct printk_info *info,
1520 					 unsigned int line_count,
1521 					 bool syslog, bool time)
1522 {
1523 	char prefix[PRINTK_PREFIX_MAX];
1524 	size_t prefix_len;
1525 
1526 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1527 
1528 	/*
1529 	 * Each line will be preceded with a prefix. The intermediate
1530 	 * newlines are already within the text, but a final trailing
1531 	 * newline will be added.
1532 	 */
1533 	return ((prefix_len * line_count) + info->text_len + 1);
1534 }
1535 
1536 /*
1537  * Beginning with @start_seq, find the first record where it and all following
1538  * records up to (but not including) @max_seq fit into @size.
1539  *
1540  * @max_seq is simply an upper bound and does not need to exist. If the caller
1541  * does not require an upper bound, -1 can be used for @max_seq.
1542  */
1543 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1544 				  bool syslog, bool time)
1545 {
1546 	struct printk_info info;
1547 	unsigned int line_count;
1548 	size_t len = 0;
1549 	u64 seq;
1550 
1551 	/* Determine the size of the records up to @max_seq. */
1552 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1553 		if (info.seq >= max_seq)
1554 			break;
1555 		len += get_record_print_text_size(&info, line_count, syslog, time);
1556 	}
1557 
1558 	/*
1559 	 * Adjust the upper bound for the next loop to avoid subtracting
1560 	 * lengths that were never added.
1561 	 */
1562 	if (seq < max_seq)
1563 		max_seq = seq;
1564 
1565 	/*
1566 	 * Move first record forward until length fits into the buffer. Ignore
1567 	 * newest messages that were not counted in the above cycle. Messages
1568 	 * might appear and get lost in the meantime. This is a best effort
1569 	 * that prevents an infinite loop that could occur with a retry.
1570 	 */
1571 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1572 		if (len <= size || info.seq >= max_seq)
1573 			break;
1574 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1575 	}
1576 
1577 	return seq;
1578 }
1579 
1580 /* The caller is responsible for making sure @size is greater than 0. */
1581 static int syslog_print(char __user *buf, int size)
1582 {
1583 	struct printk_info info;
1584 	struct printk_record r;
1585 	char *text;
1586 	int len = 0;
1587 	u64 seq;
1588 
1589 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1590 	if (!text)
1591 		return -ENOMEM;
1592 
1593 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1594 
1595 	mutex_lock(&syslog_lock);
1596 
1597 	/*
1598 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1599 	 * change while waiting.
1600 	 */
1601 	do {
1602 		seq = syslog_seq;
1603 
1604 		mutex_unlock(&syslog_lock);
1605 		/*
1606 		 * Guarantee this task is visible on the waitqueue before
1607 		 * checking the wake condition.
1608 		 *
1609 		 * The full memory barrier within set_current_state() of
1610 		 * prepare_to_wait_event() pairs with the full memory barrier
1611 		 * within wq_has_sleeper().
1612 		 *
1613 		 * This pairs with __wake_up_klogd:A.
1614 		 */
1615 		len = wait_event_interruptible(log_wait,
1616 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1617 		mutex_lock(&syslog_lock);
1618 
1619 		if (len)
1620 			goto out;
1621 	} while (syslog_seq != seq);
1622 
1623 	/*
1624 	 * Copy records that fit into the buffer. The above cycle makes sure
1625 	 * that the first record is always available.
1626 	 */
1627 	do {
1628 		size_t n;
1629 		size_t skip;
1630 		int err;
1631 
1632 		if (!prb_read_valid(prb, syslog_seq, &r))
1633 			break;
1634 
1635 		if (r.info->seq != syslog_seq) {
1636 			/* message is gone, move to next valid one */
1637 			syslog_seq = r.info->seq;
1638 			syslog_partial = 0;
1639 		}
1640 
1641 		/*
1642 		 * To keep reading/counting partial line consistent,
1643 		 * use printk_time value as of the beginning of a line.
1644 		 */
1645 		if (!syslog_partial)
1646 			syslog_time = printk_time;
1647 
1648 		skip = syslog_partial;
1649 		n = record_print_text(&r, true, syslog_time);
1650 		if (n - syslog_partial <= size) {
1651 			/* message fits into buffer, move forward */
1652 			syslog_seq = r.info->seq + 1;
1653 			n -= syslog_partial;
1654 			syslog_partial = 0;
1655 		} else if (!len){
1656 			/* partial read(), remember position */
1657 			n = size;
1658 			syslog_partial += n;
1659 		} else
1660 			n = 0;
1661 
1662 		if (!n)
1663 			break;
1664 
1665 		mutex_unlock(&syslog_lock);
1666 		err = copy_to_user(buf, text + skip, n);
1667 		mutex_lock(&syslog_lock);
1668 
1669 		if (err) {
1670 			if (!len)
1671 				len = -EFAULT;
1672 			break;
1673 		}
1674 
1675 		len += n;
1676 		size -= n;
1677 		buf += n;
1678 	} while (size);
1679 out:
1680 	mutex_unlock(&syslog_lock);
1681 	kfree(text);
1682 	return len;
1683 }
1684 
1685 static int syslog_print_all(char __user *buf, int size, bool clear)
1686 {
1687 	struct printk_info info;
1688 	struct printk_record r;
1689 	char *text;
1690 	int len = 0;
1691 	u64 seq;
1692 	bool time;
1693 
1694 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1695 	if (!text)
1696 		return -ENOMEM;
1697 
1698 	time = printk_time;
1699 	/*
1700 	 * Find first record that fits, including all following records,
1701 	 * into the user-provided buffer for this dump.
1702 	 */
1703 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1704 				     size, true, time);
1705 
1706 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1707 
1708 	prb_for_each_record(seq, prb, seq, &r) {
1709 		int textlen;
1710 
1711 		textlen = record_print_text(&r, true, time);
1712 
1713 		if (len + textlen > size) {
1714 			seq--;
1715 			break;
1716 		}
1717 
1718 		if (copy_to_user(buf + len, text, textlen))
1719 			len = -EFAULT;
1720 		else
1721 			len += textlen;
1722 
1723 		if (len < 0)
1724 			break;
1725 	}
1726 
1727 	if (clear) {
1728 		mutex_lock(&syslog_lock);
1729 		latched_seq_write(&clear_seq, seq);
1730 		mutex_unlock(&syslog_lock);
1731 	}
1732 
1733 	kfree(text);
1734 	return len;
1735 }
1736 
1737 static void syslog_clear(void)
1738 {
1739 	mutex_lock(&syslog_lock);
1740 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1741 	mutex_unlock(&syslog_lock);
1742 }
1743 
1744 int do_syslog(int type, char __user *buf, int len, int source)
1745 {
1746 	struct printk_info info;
1747 	bool clear = false;
1748 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1749 	int error;
1750 
1751 	error = check_syslog_permissions(type, source);
1752 	if (error)
1753 		return error;
1754 
1755 	switch (type) {
1756 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1757 		break;
1758 	case SYSLOG_ACTION_OPEN:	/* Open log */
1759 		break;
1760 	case SYSLOG_ACTION_READ:	/* Read from log */
1761 		if (!buf || len < 0)
1762 			return -EINVAL;
1763 		if (!len)
1764 			return 0;
1765 		if (!access_ok(buf, len))
1766 			return -EFAULT;
1767 		error = syslog_print(buf, len);
1768 		break;
1769 	/* Read/clear last kernel messages */
1770 	case SYSLOG_ACTION_READ_CLEAR:
1771 		clear = true;
1772 		fallthrough;
1773 	/* Read last kernel messages */
1774 	case SYSLOG_ACTION_READ_ALL:
1775 		if (!buf || len < 0)
1776 			return -EINVAL;
1777 		if (!len)
1778 			return 0;
1779 		if (!access_ok(buf, len))
1780 			return -EFAULT;
1781 		error = syslog_print_all(buf, len, clear);
1782 		break;
1783 	/* Clear ring buffer */
1784 	case SYSLOG_ACTION_CLEAR:
1785 		syslog_clear();
1786 		break;
1787 	/* Disable logging to console */
1788 	case SYSLOG_ACTION_CONSOLE_OFF:
1789 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1790 			saved_console_loglevel = console_loglevel;
1791 		console_loglevel = minimum_console_loglevel;
1792 		break;
1793 	/* Enable logging to console */
1794 	case SYSLOG_ACTION_CONSOLE_ON:
1795 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1796 			console_loglevel = saved_console_loglevel;
1797 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1798 		}
1799 		break;
1800 	/* Set level of messages printed to console */
1801 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1802 		if (len < 1 || len > 8)
1803 			return -EINVAL;
1804 		if (len < minimum_console_loglevel)
1805 			len = minimum_console_loglevel;
1806 		console_loglevel = len;
1807 		/* Implicitly re-enable logging to console */
1808 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1809 		break;
1810 	/* Number of chars in the log buffer */
1811 	case SYSLOG_ACTION_SIZE_UNREAD:
1812 		mutex_lock(&syslog_lock);
1813 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1814 			/* No unread messages. */
1815 			mutex_unlock(&syslog_lock);
1816 			return 0;
1817 		}
1818 		if (info.seq != syslog_seq) {
1819 			/* messages are gone, move to first one */
1820 			syslog_seq = info.seq;
1821 			syslog_partial = 0;
1822 		}
1823 		if (source == SYSLOG_FROM_PROC) {
1824 			/*
1825 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1826 			 * for pending data, not the size; return the count of
1827 			 * records, not the length.
1828 			 */
1829 			error = prb_next_seq(prb) - syslog_seq;
1830 		} else {
1831 			bool time = syslog_partial ? syslog_time : printk_time;
1832 			unsigned int line_count;
1833 			u64 seq;
1834 
1835 			prb_for_each_info(syslog_seq, prb, seq, &info,
1836 					  &line_count) {
1837 				error += get_record_print_text_size(&info, line_count,
1838 								    true, time);
1839 				time = printk_time;
1840 			}
1841 			error -= syslog_partial;
1842 		}
1843 		mutex_unlock(&syslog_lock);
1844 		break;
1845 	/* Size of the log buffer */
1846 	case SYSLOG_ACTION_SIZE_BUFFER:
1847 		error = log_buf_len;
1848 		break;
1849 	default:
1850 		error = -EINVAL;
1851 		break;
1852 	}
1853 
1854 	return error;
1855 }
1856 
1857 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1858 {
1859 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1860 }
1861 
1862 /*
1863  * Special console_lock variants that help to reduce the risk of soft-lockups.
1864  * They allow to pass console_lock to another printk() call using a busy wait.
1865  */
1866 
1867 #ifdef CONFIG_LOCKDEP
1868 static struct lockdep_map console_owner_dep_map = {
1869 	.name = "console_owner"
1870 };
1871 #endif
1872 
1873 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1874 static struct task_struct *console_owner;
1875 static bool console_waiter;
1876 
1877 /**
1878  * console_lock_spinning_enable - mark beginning of code where another
1879  *	thread might safely busy wait
1880  *
1881  * This basically converts console_lock into a spinlock. This marks
1882  * the section where the console_lock owner can not sleep, because
1883  * there may be a waiter spinning (like a spinlock). Also it must be
1884  * ready to hand over the lock at the end of the section.
1885  */
1886 void console_lock_spinning_enable(void)
1887 {
1888 	/*
1889 	 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1890 	 * Non-panic CPUs abandon the flush anyway.
1891 	 *
1892 	 * Just keep the lockdep annotation. The panic-CPU should avoid
1893 	 * taking console_owner_lock because it might cause a deadlock.
1894 	 * This looks like the easiest way how to prevent false lockdep
1895 	 * reports without handling races a lockless way.
1896 	 */
1897 	if (panic_in_progress())
1898 		goto lockdep;
1899 
1900 	raw_spin_lock(&console_owner_lock);
1901 	console_owner = current;
1902 	raw_spin_unlock(&console_owner_lock);
1903 
1904 lockdep:
1905 	/* The waiter may spin on us after setting console_owner */
1906 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1907 }
1908 
1909 /**
1910  * console_lock_spinning_disable_and_check - mark end of code where another
1911  *	thread was able to busy wait and check if there is a waiter
1912  * @cookie: cookie returned from console_srcu_read_lock()
1913  *
1914  * This is called at the end of the section where spinning is allowed.
1915  * It has two functions. First, it is a signal that it is no longer
1916  * safe to start busy waiting for the lock. Second, it checks if
1917  * there is a busy waiter and passes the lock rights to her.
1918  *
1919  * Important: Callers lose both the console_lock and the SRCU read lock if
1920  *	there was a busy waiter. They must not touch items synchronized by
1921  *	console_lock or SRCU read lock in this case.
1922  *
1923  * Return: 1 if the lock rights were passed, 0 otherwise.
1924  */
1925 int console_lock_spinning_disable_and_check(int cookie)
1926 {
1927 	int waiter;
1928 
1929 	/*
1930 	 * Ignore spinning waiters during panic() because they might get stopped
1931 	 * or blocked at any time,
1932 	 *
1933 	 * It is safe because nobody is allowed to start spinning during panic
1934 	 * in the first place. If there has been a waiter then non panic CPUs
1935 	 * might stay spinning. They would get stopped anyway. The panic context
1936 	 * will never start spinning and an interrupted spin on panic CPU will
1937 	 * never continue.
1938 	 */
1939 	if (panic_in_progress()) {
1940 		/* Keep lockdep happy. */
1941 		spin_release(&console_owner_dep_map, _THIS_IP_);
1942 		return 0;
1943 	}
1944 
1945 	raw_spin_lock(&console_owner_lock);
1946 	waiter = READ_ONCE(console_waiter);
1947 	console_owner = NULL;
1948 	raw_spin_unlock(&console_owner_lock);
1949 
1950 	if (!waiter) {
1951 		spin_release(&console_owner_dep_map, _THIS_IP_);
1952 		return 0;
1953 	}
1954 
1955 	/* The waiter is now free to continue */
1956 	WRITE_ONCE(console_waiter, false);
1957 
1958 	spin_release(&console_owner_dep_map, _THIS_IP_);
1959 
1960 	/*
1961 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1962 	 * releasing the console_lock.
1963 	 */
1964 	console_srcu_read_unlock(cookie);
1965 
1966 	/*
1967 	 * Hand off console_lock to waiter. The waiter will perform
1968 	 * the up(). After this, the waiter is the console_lock owner.
1969 	 */
1970 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1971 	return 1;
1972 }
1973 
1974 /**
1975  * console_trylock_spinning - try to get console_lock by busy waiting
1976  *
1977  * This allows to busy wait for the console_lock when the current
1978  * owner is running in specially marked sections. It means that
1979  * the current owner is running and cannot reschedule until it
1980  * is ready to lose the lock.
1981  *
1982  * Return: 1 if we got the lock, 0 othrewise
1983  */
1984 static int console_trylock_spinning(void)
1985 {
1986 	struct task_struct *owner = NULL;
1987 	bool waiter;
1988 	bool spin = false;
1989 	unsigned long flags;
1990 
1991 	if (console_trylock())
1992 		return 1;
1993 
1994 	/*
1995 	 * It's unsafe to spin once a panic has begun. If we are the
1996 	 * panic CPU, we may have already halted the owner of the
1997 	 * console_sem. If we are not the panic CPU, then we should
1998 	 * avoid taking console_sem, so the panic CPU has a better
1999 	 * chance of cleanly acquiring it later.
2000 	 */
2001 	if (panic_in_progress())
2002 		return 0;
2003 
2004 	printk_safe_enter_irqsave(flags);
2005 
2006 	raw_spin_lock(&console_owner_lock);
2007 	owner = READ_ONCE(console_owner);
2008 	waiter = READ_ONCE(console_waiter);
2009 	if (!waiter && owner && owner != current) {
2010 		WRITE_ONCE(console_waiter, true);
2011 		spin = true;
2012 	}
2013 	raw_spin_unlock(&console_owner_lock);
2014 
2015 	/*
2016 	 * If there is an active printk() writing to the
2017 	 * consoles, instead of having it write our data too,
2018 	 * see if we can offload that load from the active
2019 	 * printer, and do some printing ourselves.
2020 	 * Go into a spin only if there isn't already a waiter
2021 	 * spinning, and there is an active printer, and
2022 	 * that active printer isn't us (recursive printk?).
2023 	 */
2024 	if (!spin) {
2025 		printk_safe_exit_irqrestore(flags);
2026 		return 0;
2027 	}
2028 
2029 	/* We spin waiting for the owner to release us */
2030 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
2031 	/* Owner will clear console_waiter on hand off */
2032 	while (READ_ONCE(console_waiter))
2033 		cpu_relax();
2034 	spin_release(&console_owner_dep_map, _THIS_IP_);
2035 
2036 	printk_safe_exit_irqrestore(flags);
2037 	/*
2038 	 * The owner passed the console lock to us.
2039 	 * Since we did not spin on console lock, annotate
2040 	 * this as a trylock. Otherwise lockdep will
2041 	 * complain.
2042 	 */
2043 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2044 
2045 	/*
2046 	 * Update @console_may_schedule for trylock because the previous
2047 	 * owner may have been schedulable.
2048 	 */
2049 	console_may_schedule = 0;
2050 
2051 	return 1;
2052 }
2053 
2054 /*
2055  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2056  * additional NMI context per CPU is also separately tracked. Until per-CPU
2057  * is available, a separate "early tracking" is performed.
2058  */
2059 static DEFINE_PER_CPU(u8, printk_count);
2060 static u8 printk_count_early;
2061 #ifdef CONFIG_HAVE_NMI
2062 static DEFINE_PER_CPU(u8, printk_count_nmi);
2063 static u8 printk_count_nmi_early;
2064 #endif
2065 
2066 /*
2067  * Recursion is limited to keep the output sane. printk() should not require
2068  * more than 1 level of recursion (allowing, for example, printk() to trigger
2069  * a WARN), but a higher value is used in case some printk-internal errors
2070  * exist, such as the ringbuffer validation checks failing.
2071  */
2072 #define PRINTK_MAX_RECURSION 3
2073 
2074 /*
2075  * Return a pointer to the dedicated counter for the CPU+context of the
2076  * caller.
2077  */
2078 static u8 *__printk_recursion_counter(void)
2079 {
2080 #ifdef CONFIG_HAVE_NMI
2081 	if (in_nmi()) {
2082 		if (printk_percpu_data_ready())
2083 			return this_cpu_ptr(&printk_count_nmi);
2084 		return &printk_count_nmi_early;
2085 	}
2086 #endif
2087 	if (printk_percpu_data_ready())
2088 		return this_cpu_ptr(&printk_count);
2089 	return &printk_count_early;
2090 }
2091 
2092 /*
2093  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2094  * The caller must check the boolean return value to see if the recursion is
2095  * allowed. On failure, interrupts are not disabled.
2096  *
2097  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2098  * that is passed to printk_exit_irqrestore().
2099  */
2100 #define printk_enter_irqsave(recursion_ptr, flags)	\
2101 ({							\
2102 	bool success = true;				\
2103 							\
2104 	typecheck(u8 *, recursion_ptr);			\
2105 	local_irq_save(flags);				\
2106 	(recursion_ptr) = __printk_recursion_counter();	\
2107 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2108 		local_irq_restore(flags);		\
2109 		success = false;			\
2110 	} else {					\
2111 		(*(recursion_ptr))++;			\
2112 	}						\
2113 	success;					\
2114 })
2115 
2116 /* Exit recursion tracking, restoring interrupts. */
2117 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2118 	do {						\
2119 		typecheck(u8 *, recursion_ptr);		\
2120 		(*(recursion_ptr))--;			\
2121 		local_irq_restore(flags);		\
2122 	} while (0)
2123 
2124 int printk_delay_msec __read_mostly;
2125 
2126 static inline void printk_delay(int level)
2127 {
2128 	boot_delay_msec(level);
2129 
2130 	if (unlikely(printk_delay_msec)) {
2131 		int m = printk_delay_msec;
2132 
2133 		while (m--) {
2134 			mdelay(1);
2135 			touch_nmi_watchdog();
2136 		}
2137 	}
2138 }
2139 
2140 static inline u32 printk_caller_id(void)
2141 {
2142 	return in_task() ? task_pid_nr(current) :
2143 		0x80000000 + smp_processor_id();
2144 }
2145 
2146 /**
2147  * printk_parse_prefix - Parse level and control flags.
2148  *
2149  * @text:     The terminated text message.
2150  * @level:    A pointer to the current level value, will be updated.
2151  * @flags:    A pointer to the current printk_info flags, will be updated.
2152  *
2153  * @level may be NULL if the caller is not interested in the parsed value.
2154  * Otherwise the variable pointed to by @level must be set to
2155  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2156  *
2157  * @flags may be NULL if the caller is not interested in the parsed value.
2158  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2159  * value.
2160  *
2161  * Return: The length of the parsed level and control flags.
2162  */
2163 u16 printk_parse_prefix(const char *text, int *level,
2164 			enum printk_info_flags *flags)
2165 {
2166 	u16 prefix_len = 0;
2167 	int kern_level;
2168 
2169 	while (*text) {
2170 		kern_level = printk_get_level(text);
2171 		if (!kern_level)
2172 			break;
2173 
2174 		switch (kern_level) {
2175 		case '0' ... '7':
2176 			if (level && *level == LOGLEVEL_DEFAULT)
2177 				*level = kern_level - '0';
2178 			break;
2179 		case 'c':	/* KERN_CONT */
2180 			if (flags)
2181 				*flags |= LOG_CONT;
2182 		}
2183 
2184 		prefix_len += 2;
2185 		text += 2;
2186 	}
2187 
2188 	return prefix_len;
2189 }
2190 
2191 __printf(5, 0)
2192 static u16 printk_sprint(char *text, u16 size, int facility,
2193 			 enum printk_info_flags *flags, const char *fmt,
2194 			 va_list args)
2195 {
2196 	u16 text_len;
2197 
2198 	text_len = vscnprintf(text, size, fmt, args);
2199 
2200 	/* Mark and strip a trailing newline. */
2201 	if (text_len && text[text_len - 1] == '\n') {
2202 		text_len--;
2203 		*flags |= LOG_NEWLINE;
2204 	}
2205 
2206 	/* Strip log level and control flags. */
2207 	if (facility == 0) {
2208 		u16 prefix_len;
2209 
2210 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2211 		if (prefix_len) {
2212 			text_len -= prefix_len;
2213 			memmove(text, text + prefix_len, text_len);
2214 		}
2215 	}
2216 
2217 	trace_console(text, text_len);
2218 
2219 	return text_len;
2220 }
2221 
2222 __printf(4, 0)
2223 int vprintk_store(int facility, int level,
2224 		  const struct dev_printk_info *dev_info,
2225 		  const char *fmt, va_list args)
2226 {
2227 	struct prb_reserved_entry e;
2228 	enum printk_info_flags flags = 0;
2229 	struct printk_record r;
2230 	unsigned long irqflags;
2231 	u16 trunc_msg_len = 0;
2232 	char prefix_buf[8];
2233 	u8 *recursion_ptr;
2234 	u16 reserve_size;
2235 	va_list args2;
2236 	u32 caller_id;
2237 	u16 text_len;
2238 	int ret = 0;
2239 	u64 ts_nsec;
2240 
2241 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2242 		return 0;
2243 
2244 	/*
2245 	 * Since the duration of printk() can vary depending on the message
2246 	 * and state of the ringbuffer, grab the timestamp now so that it is
2247 	 * close to the call of printk(). This provides a more deterministic
2248 	 * timestamp with respect to the caller.
2249 	 */
2250 	ts_nsec = local_clock();
2251 
2252 	caller_id = printk_caller_id();
2253 
2254 	/*
2255 	 * The sprintf needs to come first since the syslog prefix might be
2256 	 * passed in as a parameter. An extra byte must be reserved so that
2257 	 * later the vscnprintf() into the reserved buffer has room for the
2258 	 * terminating '\0', which is not counted by vsnprintf().
2259 	 */
2260 	va_copy(args2, args);
2261 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2262 	va_end(args2);
2263 
2264 	if (reserve_size > PRINTKRB_RECORD_MAX)
2265 		reserve_size = PRINTKRB_RECORD_MAX;
2266 
2267 	/* Extract log level or control flags. */
2268 	if (facility == 0)
2269 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2270 
2271 	if (level == LOGLEVEL_DEFAULT)
2272 		level = default_message_loglevel;
2273 
2274 	if (dev_info)
2275 		flags |= LOG_NEWLINE;
2276 
2277 	if (flags & LOG_CONT) {
2278 		prb_rec_init_wr(&r, reserve_size);
2279 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2280 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2281 						 facility, &flags, fmt, args);
2282 			r.info->text_len += text_len;
2283 
2284 			if (flags & LOG_NEWLINE) {
2285 				r.info->flags |= LOG_NEWLINE;
2286 				prb_final_commit(&e);
2287 			} else {
2288 				prb_commit(&e);
2289 			}
2290 
2291 			ret = text_len;
2292 			goto out;
2293 		}
2294 	}
2295 
2296 	/*
2297 	 * Explicitly initialize the record before every prb_reserve() call.
2298 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2299 	 * structure when they fail.
2300 	 */
2301 	prb_rec_init_wr(&r, reserve_size);
2302 	if (!prb_reserve(&e, prb, &r)) {
2303 		/* truncate the message if it is too long for empty buffer */
2304 		truncate_msg(&reserve_size, &trunc_msg_len);
2305 
2306 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2307 		if (!prb_reserve(&e, prb, &r))
2308 			goto out;
2309 	}
2310 
2311 	/* fill message */
2312 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2313 	if (trunc_msg_len)
2314 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2315 	r.info->text_len = text_len + trunc_msg_len;
2316 	r.info->facility = facility;
2317 	r.info->level = level & 7;
2318 	r.info->flags = flags & 0x1f;
2319 	r.info->ts_nsec = ts_nsec;
2320 	r.info->caller_id = caller_id;
2321 	if (dev_info)
2322 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2323 
2324 	/* A message without a trailing newline can be continued. */
2325 	if (!(flags & LOG_NEWLINE))
2326 		prb_commit(&e);
2327 	else
2328 		prb_final_commit(&e);
2329 
2330 	ret = text_len + trunc_msg_len;
2331 out:
2332 	printk_exit_irqrestore(recursion_ptr, irqflags);
2333 	return ret;
2334 }
2335 
2336 /*
2337  * This acts as a one-way switch to allow legacy consoles to print from
2338  * the printk() caller context on a panic CPU. It also attempts to flush
2339  * the legacy consoles in this context.
2340  */
2341 void printk_legacy_allow_panic_sync(void)
2342 {
2343 	struct console_flush_type ft;
2344 
2345 	legacy_allow_panic_sync = true;
2346 
2347 	printk_get_console_flush_type(&ft);
2348 	if (ft.legacy_direct) {
2349 		if (console_trylock())
2350 			console_unlock();
2351 	}
2352 }
2353 
2354 asmlinkage int vprintk_emit(int facility, int level,
2355 			    const struct dev_printk_info *dev_info,
2356 			    const char *fmt, va_list args)
2357 {
2358 	struct console_flush_type ft;
2359 	int printed_len;
2360 
2361 	/* Suppress unimportant messages after panic happens */
2362 	if (unlikely(suppress_printk))
2363 		return 0;
2364 
2365 	/*
2366 	 * The messages on the panic CPU are the most important. If
2367 	 * non-panic CPUs are generating any messages, they will be
2368 	 * silently dropped.
2369 	 */
2370 	if (other_cpu_in_panic() && !panic_triggering_all_cpu_backtrace)
2371 		return 0;
2372 
2373 	printk_get_console_flush_type(&ft);
2374 
2375 	/* If called from the scheduler, we can not call up(). */
2376 	if (level == LOGLEVEL_SCHED) {
2377 		level = LOGLEVEL_DEFAULT;
2378 		ft.legacy_offload |= ft.legacy_direct;
2379 		ft.legacy_direct = false;
2380 	}
2381 
2382 	printk_delay(level);
2383 
2384 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2385 
2386 	if (ft.nbcon_atomic)
2387 		nbcon_atomic_flush_pending();
2388 
2389 	if (ft.nbcon_offload)
2390 		nbcon_kthreads_wake();
2391 
2392 	if (ft.legacy_direct) {
2393 		/*
2394 		 * The caller may be holding system-critical or
2395 		 * timing-sensitive locks. Disable preemption during
2396 		 * printing of all remaining records to all consoles so that
2397 		 * this context can return as soon as possible. Hopefully
2398 		 * another printk() caller will take over the printing.
2399 		 */
2400 		preempt_disable();
2401 		/*
2402 		 * Try to acquire and then immediately release the console
2403 		 * semaphore. The release will print out buffers. With the
2404 		 * spinning variant, this context tries to take over the
2405 		 * printing from another printing context.
2406 		 */
2407 		if (console_trylock_spinning())
2408 			console_unlock();
2409 		preempt_enable();
2410 	}
2411 
2412 	if (ft.legacy_offload)
2413 		defer_console_output();
2414 	else
2415 		wake_up_klogd();
2416 
2417 	return printed_len;
2418 }
2419 EXPORT_SYMBOL(vprintk_emit);
2420 
2421 int vprintk_default(const char *fmt, va_list args)
2422 {
2423 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2424 }
2425 EXPORT_SYMBOL_GPL(vprintk_default);
2426 
2427 asmlinkage __visible int _printk(const char *fmt, ...)
2428 {
2429 	va_list args;
2430 	int r;
2431 
2432 	va_start(args, fmt);
2433 	r = vprintk(fmt, args);
2434 	va_end(args);
2435 
2436 	return r;
2437 }
2438 EXPORT_SYMBOL(_printk);
2439 
2440 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2441 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2442 
2443 #else /* CONFIG_PRINTK */
2444 
2445 #define printk_time		false
2446 
2447 #define prb_read_valid(rb, seq, r)	false
2448 #define prb_first_valid_seq(rb)		0
2449 #define prb_next_seq(rb)		0
2450 
2451 static u64 syslog_seq;
2452 
2453 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2454 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2455 
2456 #endif /* CONFIG_PRINTK */
2457 
2458 #ifdef CONFIG_EARLY_PRINTK
2459 struct console *early_console;
2460 
2461 asmlinkage __visible void early_printk(const char *fmt, ...)
2462 {
2463 	va_list ap;
2464 	char buf[512];
2465 	int n;
2466 
2467 	if (!early_console)
2468 		return;
2469 
2470 	va_start(ap, fmt);
2471 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2472 	va_end(ap);
2473 
2474 	early_console->write(early_console, buf, n);
2475 }
2476 #endif
2477 
2478 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2479 {
2480 	if (!user_specified)
2481 		return;
2482 
2483 	/*
2484 	 * @c console was defined by the user on the command line.
2485 	 * Do not clear when added twice also by SPCR or the device tree.
2486 	 */
2487 	c->user_specified = true;
2488 	/* At least one console defined by the user on the command line. */
2489 	console_set_on_cmdline = 1;
2490 }
2491 
2492 static int __add_preferred_console(const char *name, const short idx,
2493 				   const char *devname, char *options,
2494 				   char *brl_options, bool user_specified)
2495 {
2496 	struct console_cmdline *c;
2497 	int i;
2498 
2499 	if (!name && !devname)
2500 		return -EINVAL;
2501 
2502 	/*
2503 	 * We use a signed short index for struct console for device drivers to
2504 	 * indicate a not yet assigned index or port. However, a negative index
2505 	 * value is not valid when the console name and index are defined on
2506 	 * the command line.
2507 	 */
2508 	if (name && idx < 0)
2509 		return -EINVAL;
2510 
2511 	/*
2512 	 *	See if this tty is not yet registered, and
2513 	 *	if we have a slot free.
2514 	 */
2515 	for (i = 0, c = console_cmdline;
2516 	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2517 	     i++, c++) {
2518 		if ((name && strcmp(c->name, name) == 0 && c->index == idx) ||
2519 		    (devname && strcmp(c->devname, devname) == 0)) {
2520 			if (!brl_options)
2521 				preferred_console = i;
2522 			set_user_specified(c, user_specified);
2523 			return 0;
2524 		}
2525 	}
2526 	if (i == MAX_CMDLINECONSOLES)
2527 		return -E2BIG;
2528 	if (!brl_options)
2529 		preferred_console = i;
2530 	if (name)
2531 		strscpy(c->name, name);
2532 	if (devname)
2533 		strscpy(c->devname, devname);
2534 	c->options = options;
2535 	set_user_specified(c, user_specified);
2536 	braille_set_options(c, brl_options);
2537 
2538 	c->index = idx;
2539 	return 0;
2540 }
2541 
2542 static int __init console_msg_format_setup(char *str)
2543 {
2544 	if (!strcmp(str, "syslog"))
2545 		console_msg_format = MSG_FORMAT_SYSLOG;
2546 	if (!strcmp(str, "default"))
2547 		console_msg_format = MSG_FORMAT_DEFAULT;
2548 	return 1;
2549 }
2550 __setup("console_msg_format=", console_msg_format_setup);
2551 
2552 /*
2553  * Set up a console.  Called via do_early_param() in init/main.c
2554  * for each "console=" parameter in the boot command line.
2555  */
2556 static int __init console_setup(char *str)
2557 {
2558 	static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4);
2559 	char buf[sizeof(console_cmdline[0].devname)];
2560 	char *brl_options = NULL;
2561 	char *ttyname = NULL;
2562 	char *devname = NULL;
2563 	char *options;
2564 	char *s;
2565 	int idx;
2566 
2567 	/*
2568 	 * console="" or console=null have been suggested as a way to
2569 	 * disable console output. Use ttynull that has been created
2570 	 * for exactly this purpose.
2571 	 */
2572 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2573 		__add_preferred_console("ttynull", 0, NULL, NULL, NULL, true);
2574 		return 1;
2575 	}
2576 
2577 	if (_braille_console_setup(&str, &brl_options))
2578 		return 1;
2579 
2580 	/* For a DEVNAME:0.0 style console the character device is unknown early */
2581 	if (strchr(str, ':'))
2582 		devname = buf;
2583 	else
2584 		ttyname = buf;
2585 
2586 	/*
2587 	 * Decode str into name, index, options.
2588 	 */
2589 	if (ttyname && isdigit(str[0]))
2590 		scnprintf(buf, sizeof(buf), "ttyS%s", str);
2591 	else
2592 		strscpy(buf, str);
2593 
2594 	options = strchr(str, ',');
2595 	if (options)
2596 		*(options++) = 0;
2597 
2598 #ifdef __sparc__
2599 	if (!strcmp(str, "ttya"))
2600 		strscpy(buf, "ttyS0");
2601 	if (!strcmp(str, "ttyb"))
2602 		strscpy(buf, "ttyS1");
2603 #endif
2604 
2605 	for (s = buf; *s; s++)
2606 		if ((ttyname && isdigit(*s)) || *s == ',')
2607 			break;
2608 
2609 	/* @idx will get defined when devname matches. */
2610 	if (devname)
2611 		idx = -1;
2612 	else
2613 		idx = simple_strtoul(s, NULL, 10);
2614 
2615 	*s = 0;
2616 
2617 	__add_preferred_console(ttyname, idx, devname, options, brl_options, true);
2618 	return 1;
2619 }
2620 __setup("console=", console_setup);
2621 
2622 /**
2623  * add_preferred_console - add a device to the list of preferred consoles.
2624  * @name: device name
2625  * @idx: device index
2626  * @options: options for this console
2627  *
2628  * The last preferred console added will be used for kernel messages
2629  * and stdin/out/err for init.  Normally this is used by console_setup
2630  * above to handle user-supplied console arguments; however it can also
2631  * be used by arch-specific code either to override the user or more
2632  * commonly to provide a default console (ie from PROM variables) when
2633  * the user has not supplied one.
2634  */
2635 int add_preferred_console(const char *name, const short idx, char *options)
2636 {
2637 	return __add_preferred_console(name, idx, NULL, options, NULL, false);
2638 }
2639 
2640 /**
2641  * match_devname_and_update_preferred_console - Update a preferred console
2642  *	when matching devname is found.
2643  * @devname: DEVNAME:0.0 style device name
2644  * @name: Name of the corresponding console driver, e.g. "ttyS"
2645  * @idx: Console index, e.g. port number.
2646  *
2647  * The function checks whether a device with the given @devname is
2648  * preferred via the console=DEVNAME:0.0 command line option.
2649  * It fills the missing console driver name and console index
2650  * so that a later register_console() call could find (match)
2651  * and enable this device.
2652  *
2653  * It might be used when a driver subsystem initializes particular
2654  * devices with already known DEVNAME:0.0 style names. And it
2655  * could predict which console driver name and index this device
2656  * would later get associated with.
2657  *
2658  * Return: 0 on success, negative error code on failure.
2659  */
2660 int match_devname_and_update_preferred_console(const char *devname,
2661 					       const char *name,
2662 					       const short idx)
2663 {
2664 	struct console_cmdline *c = console_cmdline;
2665 	int i;
2666 
2667 	if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0)
2668 		return -EINVAL;
2669 
2670 	for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2671 	     i++, c++) {
2672 		if (!strcmp(devname, c->devname)) {
2673 			pr_info("associate the preferred console \"%s\" with \"%s%d\"\n",
2674 				devname, name, idx);
2675 			strscpy(c->name, name);
2676 			c->index = idx;
2677 			return 0;
2678 		}
2679 	}
2680 
2681 	return -ENOENT;
2682 }
2683 EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console);
2684 
2685 bool console_suspend_enabled = true;
2686 EXPORT_SYMBOL(console_suspend_enabled);
2687 
2688 static int __init console_suspend_disable(char *str)
2689 {
2690 	console_suspend_enabled = false;
2691 	return 1;
2692 }
2693 __setup("no_console_suspend", console_suspend_disable);
2694 module_param_named(console_suspend, console_suspend_enabled,
2695 		bool, S_IRUGO | S_IWUSR);
2696 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2697 	" and hibernate operations");
2698 
2699 static bool printk_console_no_auto_verbose;
2700 
2701 void console_verbose(void)
2702 {
2703 	if (console_loglevel && !printk_console_no_auto_verbose)
2704 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2705 }
2706 EXPORT_SYMBOL_GPL(console_verbose);
2707 
2708 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2709 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2710 
2711 /**
2712  * suspend_console - suspend the console subsystem
2713  *
2714  * This disables printk() while we go into suspend states
2715  */
2716 void suspend_console(void)
2717 {
2718 	struct console *con;
2719 
2720 	if (!console_suspend_enabled)
2721 		return;
2722 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2723 	pr_flush(1000, true);
2724 
2725 	console_list_lock();
2726 	for_each_console(con)
2727 		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2728 	console_list_unlock();
2729 
2730 	/*
2731 	 * Ensure that all SRCU list walks have completed. All printing
2732 	 * contexts must be able to see that they are suspended so that it
2733 	 * is guaranteed that all printing has stopped when this function
2734 	 * completes.
2735 	 */
2736 	synchronize_srcu(&console_srcu);
2737 }
2738 
2739 void resume_console(void)
2740 {
2741 	struct console_flush_type ft;
2742 	struct console *con;
2743 
2744 	if (!console_suspend_enabled)
2745 		return;
2746 
2747 	console_list_lock();
2748 	for_each_console(con)
2749 		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2750 	console_list_unlock();
2751 
2752 	/*
2753 	 * Ensure that all SRCU list walks have completed. All printing
2754 	 * contexts must be able to see they are no longer suspended so
2755 	 * that they are guaranteed to wake up and resume printing.
2756 	 */
2757 	synchronize_srcu(&console_srcu);
2758 
2759 	printk_get_console_flush_type(&ft);
2760 	if (ft.nbcon_offload)
2761 		nbcon_kthreads_wake();
2762 	if (ft.legacy_offload)
2763 		defer_console_output();
2764 
2765 	pr_flush(1000, true);
2766 }
2767 
2768 /**
2769  * console_cpu_notify - print deferred console messages after CPU hotplug
2770  * @cpu: unused
2771  *
2772  * If printk() is called from a CPU that is not online yet, the messages
2773  * will be printed on the console only if there are CON_ANYTIME consoles.
2774  * This function is called when a new CPU comes online (or fails to come
2775  * up) or goes offline.
2776  */
2777 static int console_cpu_notify(unsigned int cpu)
2778 {
2779 	struct console_flush_type ft;
2780 
2781 	if (!cpuhp_tasks_frozen) {
2782 		printk_get_console_flush_type(&ft);
2783 		if (ft.nbcon_atomic)
2784 			nbcon_atomic_flush_pending();
2785 		if (ft.legacy_direct) {
2786 			if (console_trylock())
2787 				console_unlock();
2788 		}
2789 	}
2790 	return 0;
2791 }
2792 
2793 /**
2794  * console_lock - block the console subsystem from printing
2795  *
2796  * Acquires a lock which guarantees that no consoles will
2797  * be in or enter their write() callback.
2798  *
2799  * Can sleep, returns nothing.
2800  */
2801 void console_lock(void)
2802 {
2803 	might_sleep();
2804 
2805 	/* On panic, the console_lock must be left to the panic cpu. */
2806 	while (other_cpu_in_panic())
2807 		msleep(1000);
2808 
2809 	down_console_sem();
2810 	console_locked = 1;
2811 	console_may_schedule = 1;
2812 }
2813 EXPORT_SYMBOL(console_lock);
2814 
2815 /**
2816  * console_trylock - try to block the console subsystem from printing
2817  *
2818  * Try to acquire a lock which guarantees that no consoles will
2819  * be in or enter their write() callback.
2820  *
2821  * returns 1 on success, and 0 on failure to acquire the lock.
2822  */
2823 int console_trylock(void)
2824 {
2825 	/* On panic, the console_lock must be left to the panic cpu. */
2826 	if (other_cpu_in_panic())
2827 		return 0;
2828 	if (down_trylock_console_sem())
2829 		return 0;
2830 	console_locked = 1;
2831 	console_may_schedule = 0;
2832 	return 1;
2833 }
2834 EXPORT_SYMBOL(console_trylock);
2835 
2836 int is_console_locked(void)
2837 {
2838 	return console_locked;
2839 }
2840 EXPORT_SYMBOL(is_console_locked);
2841 
2842 static void __console_unlock(void)
2843 {
2844 	console_locked = 0;
2845 	up_console_sem();
2846 }
2847 
2848 #ifdef CONFIG_PRINTK
2849 
2850 /*
2851  * Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting
2852  * the existing message over and inserting the scratchbuf message.
2853  *
2854  * @pmsg is the original printk message.
2855  * @fmt is the printf format of the message which will prepend the existing one.
2856  *
2857  * If there is not enough space in @pmsg->pbufs->outbuf, the existing
2858  * message text will be sufficiently truncated.
2859  *
2860  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2861  */
2862 __printf(2, 3)
2863 static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...)
2864 {
2865 	struct printk_buffers *pbufs = pmsg->pbufs;
2866 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2867 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2868 	char *scratchbuf = &pbufs->scratchbuf[0];
2869 	char *outbuf = &pbufs->outbuf[0];
2870 	va_list args;
2871 	size_t len;
2872 
2873 	va_start(args, fmt);
2874 	len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args);
2875 	va_end(args);
2876 
2877 	/*
2878 	 * Make sure outbuf is sufficiently large before prepending.
2879 	 * Keep at least the prefix when the message must be truncated.
2880 	 * It is a rather theoretical problem when someone tries to
2881 	 * use a minimalist buffer.
2882 	 */
2883 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2884 		return;
2885 
2886 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2887 		/* Truncate the message, but keep it terminated. */
2888 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2889 		outbuf[pmsg->outbuf_len] = 0;
2890 	}
2891 
2892 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2893 	memcpy(outbuf, scratchbuf, len);
2894 	pmsg->outbuf_len += len;
2895 }
2896 
2897 /*
2898  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message".
2899  * @pmsg->outbuf_len is updated appropriately.
2900  *
2901  * @pmsg is the printk message to prepend.
2902  *
2903  * @dropped is the dropped count to report in the dropped message.
2904  */
2905 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2906 {
2907 	console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped);
2908 }
2909 
2910 /*
2911  * Prepend the message in @pmsg->pbufs->outbuf with a "replay message".
2912  * @pmsg->outbuf_len is updated appropriately.
2913  *
2914  * @pmsg is the printk message to prepend.
2915  */
2916 void console_prepend_replay(struct printk_message *pmsg)
2917 {
2918 	console_prepend_message(pmsg, "** replaying previous printk message **\n");
2919 }
2920 
2921 /*
2922  * Read and format the specified record (or a later record if the specified
2923  * record is not available).
2924  *
2925  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2926  * struct printk_buffers.
2927  *
2928  * @seq is the record to read and format. If it is not available, the next
2929  * valid record is read.
2930  *
2931  * @is_extended specifies if the message should be formatted for extended
2932  * console output.
2933  *
2934  * @may_supress specifies if records may be skipped based on loglevel.
2935  *
2936  * Returns false if no record is available. Otherwise true and all fields
2937  * of @pmsg are valid. (See the documentation of struct printk_message
2938  * for information about the @pmsg fields.)
2939  */
2940 bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2941 			     bool is_extended, bool may_suppress)
2942 {
2943 	struct printk_buffers *pbufs = pmsg->pbufs;
2944 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2945 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2946 	char *scratchbuf = &pbufs->scratchbuf[0];
2947 	char *outbuf = &pbufs->outbuf[0];
2948 	struct printk_info info;
2949 	struct printk_record r;
2950 	size_t len = 0;
2951 
2952 	/*
2953 	 * Formatting extended messages requires a separate buffer, so use the
2954 	 * scratch buffer to read in the ringbuffer text.
2955 	 *
2956 	 * Formatting normal messages is done in-place, so read the ringbuffer
2957 	 * text directly into the output buffer.
2958 	 */
2959 	if (is_extended)
2960 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2961 	else
2962 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2963 
2964 	if (!prb_read_valid(prb, seq, &r))
2965 		return false;
2966 
2967 	pmsg->seq = r.info->seq;
2968 	pmsg->dropped = r.info->seq - seq;
2969 
2970 	/* Skip record that has level above the console loglevel. */
2971 	if (may_suppress && suppress_message_printing(r.info->level))
2972 		goto out;
2973 
2974 	if (is_extended) {
2975 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2976 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2977 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2978 	} else {
2979 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2980 	}
2981 out:
2982 	pmsg->outbuf_len = len;
2983 	return true;
2984 }
2985 
2986 /*
2987  * Legacy console printing from printk() caller context does not respect
2988  * raw_spinlock/spinlock nesting. For !PREEMPT_RT the lockdep warning is a
2989  * false positive. For PREEMPT_RT the false positive condition does not
2990  * occur.
2991  *
2992  * This map is used to temporarily establish LD_WAIT_SLEEP context for the
2993  * console write() callback when legacy printing to avoid false positive
2994  * lockdep complaints, thus allowing lockdep to continue to function for
2995  * real issues.
2996  */
2997 #ifdef CONFIG_PREEMPT_RT
2998 static inline void printk_legacy_allow_spinlock_enter(void) { }
2999 static inline void printk_legacy_allow_spinlock_exit(void) { }
3000 #else
3001 static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_SLEEP);
3002 
3003 static inline void printk_legacy_allow_spinlock_enter(void)
3004 {
3005 	lock_map_acquire_try(&printk_legacy_map);
3006 }
3007 
3008 static inline void printk_legacy_allow_spinlock_exit(void)
3009 {
3010 	lock_map_release(&printk_legacy_map);
3011 }
3012 #endif /* CONFIG_PREEMPT_RT */
3013 
3014 /*
3015  * Used as the printk buffers for non-panic, serialized console printing.
3016  * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
3017  * Its usage requires the console_lock held.
3018  */
3019 struct printk_buffers printk_shared_pbufs;
3020 
3021 /*
3022  * Print one record for the given console. The record printed is whatever
3023  * record is the next available record for the given console.
3024  *
3025  * @handover will be set to true if a printk waiter has taken over the
3026  * console_lock, in which case the caller is no longer holding both the
3027  * console_lock and the SRCU read lock. Otherwise it is set to false.
3028  *
3029  * @cookie is the cookie from the SRCU read lock.
3030  *
3031  * Returns false if the given console has no next record to print, otherwise
3032  * true.
3033  *
3034  * Requires the console_lock and the SRCU read lock.
3035  */
3036 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
3037 {
3038 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
3039 	char *outbuf = &printk_shared_pbufs.outbuf[0];
3040 	struct printk_message pmsg = {
3041 		.pbufs = &printk_shared_pbufs,
3042 	};
3043 	unsigned long flags;
3044 
3045 	*handover = false;
3046 
3047 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
3048 		return false;
3049 
3050 	con->dropped += pmsg.dropped;
3051 
3052 	/* Skip messages of formatted length 0. */
3053 	if (pmsg.outbuf_len == 0) {
3054 		con->seq = pmsg.seq + 1;
3055 		goto skip;
3056 	}
3057 
3058 	if (con->dropped && !is_extended) {
3059 		console_prepend_dropped(&pmsg, con->dropped);
3060 		con->dropped = 0;
3061 	}
3062 
3063 	/* Write everything out to the hardware. */
3064 
3065 	if (force_legacy_kthread() && !panic_in_progress()) {
3066 		/*
3067 		 * With forced threading this function is in a task context
3068 		 * (either legacy kthread or get_init_console_seq()). There
3069 		 * is no need for concern about printk reentrance, handovers,
3070 		 * or lockdep complaints.
3071 		 */
3072 
3073 		con->write(con, outbuf, pmsg.outbuf_len);
3074 		con->seq = pmsg.seq + 1;
3075 	} else {
3076 		/*
3077 		 * While actively printing out messages, if another printk()
3078 		 * were to occur on another CPU, it may wait for this one to
3079 		 * finish. This task can not be preempted if there is a
3080 		 * waiter waiting to take over.
3081 		 *
3082 		 * Interrupts are disabled because the hand over to a waiter
3083 		 * must not be interrupted until the hand over is completed
3084 		 * (@console_waiter is cleared).
3085 		 */
3086 		printk_safe_enter_irqsave(flags);
3087 		console_lock_spinning_enable();
3088 
3089 		/* Do not trace print latency. */
3090 		stop_critical_timings();
3091 
3092 		printk_legacy_allow_spinlock_enter();
3093 		con->write(con, outbuf, pmsg.outbuf_len);
3094 		printk_legacy_allow_spinlock_exit();
3095 
3096 		start_critical_timings();
3097 
3098 		con->seq = pmsg.seq + 1;
3099 
3100 		*handover = console_lock_spinning_disable_and_check(cookie);
3101 		printk_safe_exit_irqrestore(flags);
3102 	}
3103 skip:
3104 	return true;
3105 }
3106 
3107 #else
3108 
3109 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
3110 {
3111 	*handover = false;
3112 	return false;
3113 }
3114 
3115 static inline void printk_kthreads_check_locked(void) { }
3116 
3117 #endif /* CONFIG_PRINTK */
3118 
3119 /*
3120  * Print out all remaining records to all consoles.
3121  *
3122  * @do_cond_resched is set by the caller. It can be true only in schedulable
3123  * context.
3124  *
3125  * @next_seq is set to the sequence number after the last available record.
3126  * The value is valid only when this function returns true. It means that all
3127  * usable consoles are completely flushed.
3128  *
3129  * @handover will be set to true if a printk waiter has taken over the
3130  * console_lock, in which case the caller is no longer holding the
3131  * console_lock. Otherwise it is set to false.
3132  *
3133  * Returns true when there was at least one usable console and all messages
3134  * were flushed to all usable consoles. A returned false informs the caller
3135  * that everything was not flushed (either there were no usable consoles or
3136  * another context has taken over printing or it is a panic situation and this
3137  * is not the panic CPU). Regardless the reason, the caller should assume it
3138  * is not useful to immediately try again.
3139  *
3140  * Requires the console_lock.
3141  */
3142 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
3143 {
3144 	struct console_flush_type ft;
3145 	bool any_usable = false;
3146 	struct console *con;
3147 	bool any_progress;
3148 	int cookie;
3149 
3150 	*next_seq = 0;
3151 	*handover = false;
3152 
3153 	do {
3154 		any_progress = false;
3155 
3156 		printk_get_console_flush_type(&ft);
3157 
3158 		cookie = console_srcu_read_lock();
3159 		for_each_console_srcu(con) {
3160 			short flags = console_srcu_read_flags(con);
3161 			u64 printk_seq;
3162 			bool progress;
3163 
3164 			/*
3165 			 * console_flush_all() is only responsible for nbcon
3166 			 * consoles when the nbcon consoles cannot print via
3167 			 * their atomic or threaded flushing.
3168 			 */
3169 			if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
3170 				continue;
3171 
3172 			if (!console_is_usable(con, flags, !do_cond_resched))
3173 				continue;
3174 			any_usable = true;
3175 
3176 			if (flags & CON_NBCON) {
3177 				progress = nbcon_legacy_emit_next_record(con, handover, cookie,
3178 									 !do_cond_resched);
3179 				printk_seq = nbcon_seq_read(con);
3180 			} else {
3181 				progress = console_emit_next_record(con, handover, cookie);
3182 				printk_seq = con->seq;
3183 			}
3184 
3185 			/*
3186 			 * If a handover has occurred, the SRCU read lock
3187 			 * is already released.
3188 			 */
3189 			if (*handover)
3190 				return false;
3191 
3192 			/* Track the next of the highest seq flushed. */
3193 			if (printk_seq > *next_seq)
3194 				*next_seq = printk_seq;
3195 
3196 			if (!progress)
3197 				continue;
3198 			any_progress = true;
3199 
3200 			/* Allow panic_cpu to take over the consoles safely. */
3201 			if (other_cpu_in_panic())
3202 				goto abandon;
3203 
3204 			if (do_cond_resched)
3205 				cond_resched();
3206 		}
3207 		console_srcu_read_unlock(cookie);
3208 	} while (any_progress);
3209 
3210 	return any_usable;
3211 
3212 abandon:
3213 	console_srcu_read_unlock(cookie);
3214 	return false;
3215 }
3216 
3217 static void __console_flush_and_unlock(void)
3218 {
3219 	bool do_cond_resched;
3220 	bool handover;
3221 	bool flushed;
3222 	u64 next_seq;
3223 
3224 	/*
3225 	 * Console drivers are called with interrupts disabled, so
3226 	 * @console_may_schedule should be cleared before; however, we may
3227 	 * end up dumping a lot of lines, for example, if called from
3228 	 * console registration path, and should invoke cond_resched()
3229 	 * between lines if allowable.  Not doing so can cause a very long
3230 	 * scheduling stall on a slow console leading to RCU stall and
3231 	 * softlockup warnings which exacerbate the issue with more
3232 	 * messages practically incapacitating the system. Therefore, create
3233 	 * a local to use for the printing loop.
3234 	 */
3235 	do_cond_resched = console_may_schedule;
3236 
3237 	do {
3238 		console_may_schedule = 0;
3239 
3240 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3241 		if (!handover)
3242 			__console_unlock();
3243 
3244 		/*
3245 		 * Abort if there was a failure to flush all messages to all
3246 		 * usable consoles. Either it is not possible to flush (in
3247 		 * which case it would be an infinite loop of retrying) or
3248 		 * another context has taken over printing.
3249 		 */
3250 		if (!flushed)
3251 			break;
3252 
3253 		/*
3254 		 * Some context may have added new records after
3255 		 * console_flush_all() but before unlocking the console.
3256 		 * Re-check if there is a new record to flush. If the trylock
3257 		 * fails, another context is already handling the printing.
3258 		 */
3259 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3260 }
3261 
3262 /**
3263  * console_unlock - unblock the legacy console subsystem from printing
3264  *
3265  * Releases the console_lock which the caller holds to block printing of
3266  * the legacy console subsystem.
3267  *
3268  * While the console_lock was held, console output may have been buffered
3269  * by printk(). If this is the case, console_unlock() emits the output on
3270  * legacy consoles prior to releasing the lock.
3271  *
3272  * console_unlock(); may be called from any context.
3273  */
3274 void console_unlock(void)
3275 {
3276 	struct console_flush_type ft;
3277 
3278 	printk_get_console_flush_type(&ft);
3279 	if (ft.legacy_direct)
3280 		__console_flush_and_unlock();
3281 	else
3282 		__console_unlock();
3283 }
3284 EXPORT_SYMBOL(console_unlock);
3285 
3286 /**
3287  * console_conditional_schedule - yield the CPU if required
3288  *
3289  * If the console code is currently allowed to sleep, and
3290  * if this CPU should yield the CPU to another task, do
3291  * so here.
3292  *
3293  * Must be called within console_lock();.
3294  */
3295 void __sched console_conditional_schedule(void)
3296 {
3297 	if (console_may_schedule)
3298 		cond_resched();
3299 }
3300 EXPORT_SYMBOL(console_conditional_schedule);
3301 
3302 void console_unblank(void)
3303 {
3304 	bool found_unblank = false;
3305 	struct console *c;
3306 	int cookie;
3307 
3308 	/*
3309 	 * First check if there are any consoles implementing the unblank()
3310 	 * callback. If not, there is no reason to continue and take the
3311 	 * console lock, which in particular can be dangerous if
3312 	 * @oops_in_progress is set.
3313 	 */
3314 	cookie = console_srcu_read_lock();
3315 	for_each_console_srcu(c) {
3316 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3317 			found_unblank = true;
3318 			break;
3319 		}
3320 	}
3321 	console_srcu_read_unlock(cookie);
3322 	if (!found_unblank)
3323 		return;
3324 
3325 	/*
3326 	 * Stop console printing because the unblank() callback may
3327 	 * assume the console is not within its write() callback.
3328 	 *
3329 	 * If @oops_in_progress is set, this may be an atomic context.
3330 	 * In that case, attempt a trylock as best-effort.
3331 	 */
3332 	if (oops_in_progress) {
3333 		/* Semaphores are not NMI-safe. */
3334 		if (in_nmi())
3335 			return;
3336 
3337 		/*
3338 		 * Attempting to trylock the console lock can deadlock
3339 		 * if another CPU was stopped while modifying the
3340 		 * semaphore. "Hope and pray" that this is not the
3341 		 * current situation.
3342 		 */
3343 		if (down_trylock_console_sem() != 0)
3344 			return;
3345 	} else
3346 		console_lock();
3347 
3348 	console_locked = 1;
3349 	console_may_schedule = 0;
3350 
3351 	cookie = console_srcu_read_lock();
3352 	for_each_console_srcu(c) {
3353 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3354 			c->unblank();
3355 	}
3356 	console_srcu_read_unlock(cookie);
3357 
3358 	console_unlock();
3359 
3360 	if (!oops_in_progress)
3361 		pr_flush(1000, true);
3362 }
3363 
3364 /*
3365  * Rewind all consoles to the oldest available record.
3366  *
3367  * IMPORTANT: The function is safe only when called under
3368  *            console_lock(). It is not enforced because
3369  *            it is used as a best effort in panic().
3370  */
3371 static void __console_rewind_all(void)
3372 {
3373 	struct console *c;
3374 	short flags;
3375 	int cookie;
3376 	u64 seq;
3377 
3378 	seq = prb_first_valid_seq(prb);
3379 
3380 	cookie = console_srcu_read_lock();
3381 	for_each_console_srcu(c) {
3382 		flags = console_srcu_read_flags(c);
3383 
3384 		if (flags & CON_NBCON) {
3385 			nbcon_seq_force(c, seq);
3386 		} else {
3387 			/*
3388 			 * This assignment is safe only when called under
3389 			 * console_lock(). On panic, legacy consoles are
3390 			 * only best effort.
3391 			 */
3392 			c->seq = seq;
3393 		}
3394 	}
3395 	console_srcu_read_unlock(cookie);
3396 }
3397 
3398 /**
3399  * console_flush_on_panic - flush console content on panic
3400  * @mode: flush all messages in buffer or just the pending ones
3401  *
3402  * Immediately output all pending messages no matter what.
3403  */
3404 void console_flush_on_panic(enum con_flush_mode mode)
3405 {
3406 	struct console_flush_type ft;
3407 	bool handover;
3408 	u64 next_seq;
3409 
3410 	/*
3411 	 * Ignore the console lock and flush out the messages. Attempting a
3412 	 * trylock would not be useful because:
3413 	 *
3414 	 *   - if it is contended, it must be ignored anyway
3415 	 *   - console_lock() and console_trylock() block and fail
3416 	 *     respectively in panic for non-panic CPUs
3417 	 *   - semaphores are not NMI-safe
3418 	 */
3419 
3420 	/*
3421 	 * If another context is holding the console lock,
3422 	 * @console_may_schedule might be set. Clear it so that
3423 	 * this context does not call cond_resched() while flushing.
3424 	 */
3425 	console_may_schedule = 0;
3426 
3427 	if (mode == CONSOLE_REPLAY_ALL)
3428 		__console_rewind_all();
3429 
3430 	printk_get_console_flush_type(&ft);
3431 	if (ft.nbcon_atomic)
3432 		nbcon_atomic_flush_pending();
3433 
3434 	/* Flush legacy consoles once allowed, even when dangerous. */
3435 	if (legacy_allow_panic_sync)
3436 		console_flush_all(false, &next_seq, &handover);
3437 }
3438 
3439 /*
3440  * Return the console tty driver structure and its associated index
3441  */
3442 struct tty_driver *console_device(int *index)
3443 {
3444 	struct console *c;
3445 	struct tty_driver *driver = NULL;
3446 	int cookie;
3447 
3448 	/*
3449 	 * Take console_lock to serialize device() callback with
3450 	 * other console operations. For example, fg_console is
3451 	 * modified under console_lock when switching vt.
3452 	 */
3453 	console_lock();
3454 
3455 	cookie = console_srcu_read_lock();
3456 	for_each_console_srcu(c) {
3457 		if (!c->device)
3458 			continue;
3459 		driver = c->device(c, index);
3460 		if (driver)
3461 			break;
3462 	}
3463 	console_srcu_read_unlock(cookie);
3464 
3465 	console_unlock();
3466 	return driver;
3467 }
3468 
3469 /*
3470  * Prevent further output on the passed console device so that (for example)
3471  * serial drivers can disable console output before suspending a port, and can
3472  * re-enable output afterwards.
3473  */
3474 void console_stop(struct console *console)
3475 {
3476 	__pr_flush(console, 1000, true);
3477 	console_list_lock();
3478 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3479 	console_list_unlock();
3480 
3481 	/*
3482 	 * Ensure that all SRCU list walks have completed. All contexts must
3483 	 * be able to see that this console is disabled so that (for example)
3484 	 * the caller can suspend the port without risk of another context
3485 	 * using the port.
3486 	 */
3487 	synchronize_srcu(&console_srcu);
3488 }
3489 EXPORT_SYMBOL(console_stop);
3490 
3491 void console_start(struct console *console)
3492 {
3493 	struct console_flush_type ft;
3494 	bool is_nbcon;
3495 
3496 	console_list_lock();
3497 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3498 	is_nbcon = console->flags & CON_NBCON;
3499 	console_list_unlock();
3500 
3501 	/*
3502 	 * Ensure that all SRCU list walks have completed. The related
3503 	 * printing context must be able to see it is enabled so that
3504 	 * it is guaranteed to wake up and resume printing.
3505 	 */
3506 	synchronize_srcu(&console_srcu);
3507 
3508 	printk_get_console_flush_type(&ft);
3509 	if (is_nbcon && ft.nbcon_offload)
3510 		nbcon_kthread_wake(console);
3511 	else if (ft.legacy_offload)
3512 		defer_console_output();
3513 
3514 	__pr_flush(console, 1000, true);
3515 }
3516 EXPORT_SYMBOL(console_start);
3517 
3518 #ifdef CONFIG_PRINTK
3519 static int unregister_console_locked(struct console *console);
3520 
3521 /* True when system boot is far enough to create printer threads. */
3522 static bool printk_kthreads_ready __ro_after_init;
3523 
3524 static struct task_struct *printk_legacy_kthread;
3525 
3526 static bool legacy_kthread_should_wakeup(void)
3527 {
3528 	struct console_flush_type ft;
3529 	struct console *con;
3530 	bool ret = false;
3531 	int cookie;
3532 
3533 	if (kthread_should_stop())
3534 		return true;
3535 
3536 	printk_get_console_flush_type(&ft);
3537 
3538 	cookie = console_srcu_read_lock();
3539 	for_each_console_srcu(con) {
3540 		short flags = console_srcu_read_flags(con);
3541 		u64 printk_seq;
3542 
3543 		/*
3544 		 * The legacy printer thread is only responsible for nbcon
3545 		 * consoles when the nbcon consoles cannot print via their
3546 		 * atomic or threaded flushing.
3547 		 */
3548 		if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload))
3549 			continue;
3550 
3551 		if (!console_is_usable(con, flags, false))
3552 			continue;
3553 
3554 		if (flags & CON_NBCON) {
3555 			printk_seq = nbcon_seq_read(con);
3556 		} else {
3557 			/*
3558 			 * It is safe to read @seq because only this
3559 			 * thread context updates @seq.
3560 			 */
3561 			printk_seq = con->seq;
3562 		}
3563 
3564 		if (prb_read_valid(prb, printk_seq, NULL)) {
3565 			ret = true;
3566 			break;
3567 		}
3568 	}
3569 	console_srcu_read_unlock(cookie);
3570 
3571 	return ret;
3572 }
3573 
3574 static int legacy_kthread_func(void *unused)
3575 {
3576 	for (;;) {
3577 		wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup());
3578 
3579 		if (kthread_should_stop())
3580 			break;
3581 
3582 		console_lock();
3583 		__console_flush_and_unlock();
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 static bool legacy_kthread_create(void)
3590 {
3591 	struct task_struct *kt;
3592 
3593 	lockdep_assert_console_list_lock_held();
3594 
3595 	kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy");
3596 	if (WARN_ON(IS_ERR(kt))) {
3597 		pr_err("failed to start legacy printing thread\n");
3598 		return false;
3599 	}
3600 
3601 	printk_legacy_kthread = kt;
3602 
3603 	/*
3604 	 * It is important that console printing threads are scheduled
3605 	 * shortly after a printk call and with generous runtime budgets.
3606 	 */
3607 	sched_set_normal(printk_legacy_kthread, -20);
3608 
3609 	return true;
3610 }
3611 
3612 /**
3613  * printk_kthreads_shutdown - shutdown all threaded printers
3614  *
3615  * On system shutdown all threaded printers are stopped. This allows printk
3616  * to transition back to atomic printing, thus providing a robust mechanism
3617  * for the final shutdown/reboot messages to be output.
3618  */
3619 static void printk_kthreads_shutdown(void)
3620 {
3621 	struct console *con;
3622 
3623 	console_list_lock();
3624 	if (printk_kthreads_running) {
3625 		printk_kthreads_running = false;
3626 
3627 		for_each_console(con) {
3628 			if (con->flags & CON_NBCON)
3629 				nbcon_kthread_stop(con);
3630 		}
3631 
3632 		/*
3633 		 * The threads may have been stopped while printing a
3634 		 * backlog. Flush any records left over.
3635 		 */
3636 		nbcon_atomic_flush_pending();
3637 	}
3638 	console_list_unlock();
3639 }
3640 
3641 static struct syscore_ops printk_syscore_ops = {
3642 	.shutdown = printk_kthreads_shutdown,
3643 };
3644 
3645 /*
3646  * If appropriate, start nbcon kthreads and set @printk_kthreads_running.
3647  * If any kthreads fail to start, those consoles are unregistered.
3648  *
3649  * Must be called under console_list_lock().
3650  */
3651 static void printk_kthreads_check_locked(void)
3652 {
3653 	struct hlist_node *tmp;
3654 	struct console *con;
3655 
3656 	lockdep_assert_console_list_lock_held();
3657 
3658 	if (!printk_kthreads_ready)
3659 		return;
3660 
3661 	if (have_legacy_console || have_boot_console) {
3662 		if (!printk_legacy_kthread &&
3663 		    force_legacy_kthread() &&
3664 		    !legacy_kthread_create()) {
3665 			/*
3666 			 * All legacy consoles must be unregistered. If there
3667 			 * are any nbcon consoles, they will set up their own
3668 			 * kthread.
3669 			 */
3670 			hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3671 				if (con->flags & CON_NBCON)
3672 					continue;
3673 
3674 				unregister_console_locked(con);
3675 			}
3676 		}
3677 	} else if (printk_legacy_kthread) {
3678 		kthread_stop(printk_legacy_kthread);
3679 		printk_legacy_kthread = NULL;
3680 	}
3681 
3682 	/*
3683 	 * Printer threads cannot be started as long as any boot console is
3684 	 * registered because there is no way to synchronize the hardware
3685 	 * registers between boot console code and regular console code.
3686 	 * It can only be known that there will be no new boot consoles when
3687 	 * an nbcon console is registered.
3688 	 */
3689 	if (have_boot_console || !have_nbcon_console) {
3690 		/* Clear flag in case all nbcon consoles unregistered. */
3691 		printk_kthreads_running = false;
3692 		return;
3693 	}
3694 
3695 	if (printk_kthreads_running)
3696 		return;
3697 
3698 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3699 		if (!(con->flags & CON_NBCON))
3700 			continue;
3701 
3702 		if (!nbcon_kthread_create(con))
3703 			unregister_console_locked(con);
3704 	}
3705 
3706 	printk_kthreads_running = true;
3707 }
3708 
3709 static int __init printk_set_kthreads_ready(void)
3710 {
3711 	register_syscore_ops(&printk_syscore_ops);
3712 
3713 	console_list_lock();
3714 	printk_kthreads_ready = true;
3715 	printk_kthreads_check_locked();
3716 	console_list_unlock();
3717 
3718 	return 0;
3719 }
3720 early_initcall(printk_set_kthreads_ready);
3721 #endif /* CONFIG_PRINTK */
3722 
3723 static int __read_mostly keep_bootcon;
3724 
3725 static int __init keep_bootcon_setup(char *str)
3726 {
3727 	keep_bootcon = 1;
3728 	pr_info("debug: skip boot console de-registration.\n");
3729 
3730 	return 0;
3731 }
3732 
3733 early_param("keep_bootcon", keep_bootcon_setup);
3734 
3735 static int console_call_setup(struct console *newcon, char *options)
3736 {
3737 	int err;
3738 
3739 	if (!newcon->setup)
3740 		return 0;
3741 
3742 	/* Synchronize with possible boot console. */
3743 	console_lock();
3744 	err = newcon->setup(newcon, options);
3745 	console_unlock();
3746 
3747 	return err;
3748 }
3749 
3750 /*
3751  * This is called by register_console() to try to match
3752  * the newly registered console with any of the ones selected
3753  * by either the command line or add_preferred_console() and
3754  * setup/enable it.
3755  *
3756  * Care need to be taken with consoles that are statically
3757  * enabled such as netconsole
3758  */
3759 static int try_enable_preferred_console(struct console *newcon,
3760 					bool user_specified)
3761 {
3762 	struct console_cmdline *c;
3763 	int i, err;
3764 
3765 	for (i = 0, c = console_cmdline;
3766 	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
3767 	     i++, c++) {
3768 		/* Console not yet initialized? */
3769 		if (!c->name[0])
3770 			continue;
3771 		if (c->user_specified != user_specified)
3772 			continue;
3773 		if (!newcon->match ||
3774 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3775 			/* default matching */
3776 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3777 			if (strcmp(c->name, newcon->name) != 0)
3778 				continue;
3779 			if (newcon->index >= 0 &&
3780 			    newcon->index != c->index)
3781 				continue;
3782 			if (newcon->index < 0)
3783 				newcon->index = c->index;
3784 
3785 			if (_braille_register_console(newcon, c))
3786 				return 0;
3787 
3788 			err = console_call_setup(newcon, c->options);
3789 			if (err)
3790 				return err;
3791 		}
3792 		newcon->flags |= CON_ENABLED;
3793 		if (i == preferred_console)
3794 			newcon->flags |= CON_CONSDEV;
3795 		return 0;
3796 	}
3797 
3798 	/*
3799 	 * Some consoles, such as pstore and netconsole, can be enabled even
3800 	 * without matching. Accept the pre-enabled consoles only when match()
3801 	 * and setup() had a chance to be called.
3802 	 */
3803 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3804 		return 0;
3805 
3806 	return -ENOENT;
3807 }
3808 
3809 /* Try to enable the console unconditionally */
3810 static void try_enable_default_console(struct console *newcon)
3811 {
3812 	if (newcon->index < 0)
3813 		newcon->index = 0;
3814 
3815 	if (console_call_setup(newcon, NULL) != 0)
3816 		return;
3817 
3818 	newcon->flags |= CON_ENABLED;
3819 
3820 	if (newcon->device)
3821 		newcon->flags |= CON_CONSDEV;
3822 }
3823 
3824 /* Return the starting sequence number for a newly registered console. */
3825 static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered)
3826 {
3827 	struct console *con;
3828 	bool handover;
3829 	u64 init_seq;
3830 
3831 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3832 		/* Get a consistent copy of @syslog_seq. */
3833 		mutex_lock(&syslog_lock);
3834 		init_seq = syslog_seq;
3835 		mutex_unlock(&syslog_lock);
3836 	} else {
3837 		/* Begin with next message added to ringbuffer. */
3838 		init_seq = prb_next_seq(prb);
3839 
3840 		/*
3841 		 * If any enabled boot consoles are due to be unregistered
3842 		 * shortly, some may not be caught up and may be the same
3843 		 * device as @newcon. Since it is not known which boot console
3844 		 * is the same device, flush all consoles and, if necessary,
3845 		 * start with the message of the enabled boot console that is
3846 		 * the furthest behind.
3847 		 */
3848 		if (bootcon_registered && !keep_bootcon) {
3849 			/*
3850 			 * Hold the console_lock to stop console printing and
3851 			 * guarantee safe access to console->seq.
3852 			 */
3853 			console_lock();
3854 
3855 			/*
3856 			 * Flush all consoles and set the console to start at
3857 			 * the next unprinted sequence number.
3858 			 */
3859 			if (!console_flush_all(true, &init_seq, &handover)) {
3860 				/*
3861 				 * Flushing failed. Just choose the lowest
3862 				 * sequence of the enabled boot consoles.
3863 				 */
3864 
3865 				/*
3866 				 * If there was a handover, this context no
3867 				 * longer holds the console_lock.
3868 				 */
3869 				if (handover)
3870 					console_lock();
3871 
3872 				init_seq = prb_next_seq(prb);
3873 				for_each_console(con) {
3874 					u64 seq;
3875 
3876 					if (!(con->flags & CON_BOOT) ||
3877 					    !(con->flags & CON_ENABLED)) {
3878 						continue;
3879 					}
3880 
3881 					if (con->flags & CON_NBCON)
3882 						seq = nbcon_seq_read(con);
3883 					else
3884 						seq = con->seq;
3885 
3886 					if (seq < init_seq)
3887 						init_seq = seq;
3888 				}
3889 			}
3890 
3891 			console_unlock();
3892 		}
3893 	}
3894 
3895 	return init_seq;
3896 }
3897 
3898 #define console_first()				\
3899 	hlist_entry(console_list.first, struct console, node)
3900 
3901 static int unregister_console_locked(struct console *console);
3902 
3903 /*
3904  * The console driver calls this routine during kernel initialization
3905  * to register the console printing procedure with printk() and to
3906  * print any messages that were printed by the kernel before the
3907  * console driver was initialized.
3908  *
3909  * This can happen pretty early during the boot process (because of
3910  * early_printk) - sometimes before setup_arch() completes - be careful
3911  * of what kernel features are used - they may not be initialised yet.
3912  *
3913  * There are two types of consoles - bootconsoles (early_printk) and
3914  * "real" consoles (everything which is not a bootconsole) which are
3915  * handled differently.
3916  *  - Any number of bootconsoles can be registered at any time.
3917  *  - As soon as a "real" console is registered, all bootconsoles
3918  *    will be unregistered automatically.
3919  *  - Once a "real" console is registered, any attempt to register a
3920  *    bootconsoles will be rejected
3921  */
3922 void register_console(struct console *newcon)
3923 {
3924 	bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic;
3925 	bool bootcon_registered = false;
3926 	bool realcon_registered = false;
3927 	struct console *con;
3928 	unsigned long flags;
3929 	u64 init_seq;
3930 	int err;
3931 
3932 	console_list_lock();
3933 
3934 	for_each_console(con) {
3935 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3936 					 con->name, con->index)) {
3937 			goto unlock;
3938 		}
3939 
3940 		if (con->flags & CON_BOOT)
3941 			bootcon_registered = true;
3942 		else
3943 			realcon_registered = true;
3944 	}
3945 
3946 	/* Do not register boot consoles when there already is a real one. */
3947 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3948 		pr_info("Too late to register bootconsole %s%d\n",
3949 			newcon->name, newcon->index);
3950 		goto unlock;
3951 	}
3952 
3953 	if (newcon->flags & CON_NBCON) {
3954 		/*
3955 		 * Ensure the nbcon console buffers can be allocated
3956 		 * before modifying any global data.
3957 		 */
3958 		if (!nbcon_alloc(newcon))
3959 			goto unlock;
3960 	}
3961 
3962 	/*
3963 	 * See if we want to enable this console driver by default.
3964 	 *
3965 	 * Nope when a console is preferred by the command line, device
3966 	 * tree, or SPCR.
3967 	 *
3968 	 * The first real console with tty binding (driver) wins. More
3969 	 * consoles might get enabled before the right one is found.
3970 	 *
3971 	 * Note that a console with tty binding will have CON_CONSDEV
3972 	 * flag set and will be first in the list.
3973 	 */
3974 	if (preferred_console < 0) {
3975 		if (hlist_empty(&console_list) || !console_first()->device ||
3976 		    console_first()->flags & CON_BOOT) {
3977 			try_enable_default_console(newcon);
3978 		}
3979 	}
3980 
3981 	/* See if this console matches one we selected on the command line */
3982 	err = try_enable_preferred_console(newcon, true);
3983 
3984 	/* If not, try to match against the platform default(s) */
3985 	if (err == -ENOENT)
3986 		err = try_enable_preferred_console(newcon, false);
3987 
3988 	/* printk() messages are not printed to the Braille console. */
3989 	if (err || newcon->flags & CON_BRL) {
3990 		if (newcon->flags & CON_NBCON)
3991 			nbcon_free(newcon);
3992 		goto unlock;
3993 	}
3994 
3995 	/*
3996 	 * If we have a bootconsole, and are switching to a real console,
3997 	 * don't print everything out again, since when the boot console, and
3998 	 * the real console are the same physical device, it's annoying to
3999 	 * see the beginning boot messages twice
4000 	 */
4001 	if (bootcon_registered &&
4002 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
4003 		newcon->flags &= ~CON_PRINTBUFFER;
4004 	}
4005 
4006 	newcon->dropped = 0;
4007 	init_seq = get_init_console_seq(newcon, bootcon_registered);
4008 
4009 	if (newcon->flags & CON_NBCON) {
4010 		have_nbcon_console = true;
4011 		nbcon_seq_force(newcon, init_seq);
4012 	} else {
4013 		have_legacy_console = true;
4014 		newcon->seq = init_seq;
4015 	}
4016 
4017 	if (newcon->flags & CON_BOOT)
4018 		have_boot_console = true;
4019 
4020 	/*
4021 	 * If another context is actively using the hardware of this new
4022 	 * console, it will not be aware of the nbcon synchronization. This
4023 	 * is a risk that two contexts could access the hardware
4024 	 * simultaneously if this new console is used for atomic printing
4025 	 * and the other context is still using the hardware.
4026 	 *
4027 	 * Use the driver synchronization to ensure that the hardware is not
4028 	 * in use while this new console transitions to being registered.
4029 	 */
4030 	if (use_device_lock)
4031 		newcon->device_lock(newcon, &flags);
4032 
4033 	/*
4034 	 * Put this console in the list - keep the
4035 	 * preferred driver at the head of the list.
4036 	 */
4037 	if (hlist_empty(&console_list)) {
4038 		/* Ensure CON_CONSDEV is always set for the head. */
4039 		newcon->flags |= CON_CONSDEV;
4040 		hlist_add_head_rcu(&newcon->node, &console_list);
4041 
4042 	} else if (newcon->flags & CON_CONSDEV) {
4043 		/* Only the new head can have CON_CONSDEV set. */
4044 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
4045 		hlist_add_head_rcu(&newcon->node, &console_list);
4046 
4047 	} else {
4048 		hlist_add_behind_rcu(&newcon->node, console_list.first);
4049 	}
4050 
4051 	/*
4052 	 * No need to synchronize SRCU here! The caller does not rely
4053 	 * on all contexts being able to see the new console before
4054 	 * register_console() completes.
4055 	 */
4056 
4057 	/* This new console is now registered. */
4058 	if (use_device_lock)
4059 		newcon->device_unlock(newcon, flags);
4060 
4061 	console_sysfs_notify();
4062 
4063 	/*
4064 	 * By unregistering the bootconsoles after we enable the real console
4065 	 * we get the "console xxx enabled" message on all the consoles -
4066 	 * boot consoles, real consoles, etc - this is to ensure that end
4067 	 * users know there might be something in the kernel's log buffer that
4068 	 * went to the bootconsole (that they do not see on the real console)
4069 	 */
4070 	con_printk(KERN_INFO, newcon, "enabled\n");
4071 	if (bootcon_registered &&
4072 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
4073 	    !keep_bootcon) {
4074 		struct hlist_node *tmp;
4075 
4076 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
4077 			if (con->flags & CON_BOOT)
4078 				unregister_console_locked(con);
4079 		}
4080 	}
4081 
4082 	/* Changed console list, may require printer threads to start/stop. */
4083 	printk_kthreads_check_locked();
4084 unlock:
4085 	console_list_unlock();
4086 }
4087 EXPORT_SYMBOL(register_console);
4088 
4089 /* Must be called under console_list_lock(). */
4090 static int unregister_console_locked(struct console *console)
4091 {
4092 	bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic;
4093 	bool found_legacy_con = false;
4094 	bool found_nbcon_con = false;
4095 	bool found_boot_con = false;
4096 	unsigned long flags;
4097 	struct console *c;
4098 	int res;
4099 
4100 	lockdep_assert_console_list_lock_held();
4101 
4102 	con_printk(KERN_INFO, console, "disabled\n");
4103 
4104 	res = _braille_unregister_console(console);
4105 	if (res < 0)
4106 		return res;
4107 	if (res > 0)
4108 		return 0;
4109 
4110 	if (!console_is_registered_locked(console))
4111 		res = -ENODEV;
4112 	else if (console_is_usable(console, console->flags, true))
4113 		__pr_flush(console, 1000, true);
4114 
4115 	/* Disable it unconditionally */
4116 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
4117 
4118 	if (res < 0)
4119 		return res;
4120 
4121 	/*
4122 	 * Use the driver synchronization to ensure that the hardware is not
4123 	 * in use while this console transitions to being unregistered.
4124 	 */
4125 	if (use_device_lock)
4126 		console->device_lock(console, &flags);
4127 
4128 	hlist_del_init_rcu(&console->node);
4129 
4130 	if (use_device_lock)
4131 		console->device_unlock(console, flags);
4132 
4133 	/*
4134 	 * <HISTORICAL>
4135 	 * If this isn't the last console and it has CON_CONSDEV set, we
4136 	 * need to set it on the next preferred console.
4137 	 * </HISTORICAL>
4138 	 *
4139 	 * The above makes no sense as there is no guarantee that the next
4140 	 * console has any device attached. Oh well....
4141 	 */
4142 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
4143 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
4144 
4145 	/*
4146 	 * Ensure that all SRCU list walks have completed. All contexts
4147 	 * must not be able to see this console in the list so that any
4148 	 * exit/cleanup routines can be performed safely.
4149 	 */
4150 	synchronize_srcu(&console_srcu);
4151 
4152 	if (console->flags & CON_NBCON)
4153 		nbcon_free(console);
4154 
4155 	console_sysfs_notify();
4156 
4157 	if (console->exit)
4158 		res = console->exit(console);
4159 
4160 	/*
4161 	 * With this console gone, the global flags tracking registered
4162 	 * console types may have changed. Update them.
4163 	 */
4164 	for_each_console(c) {
4165 		if (c->flags & CON_BOOT)
4166 			found_boot_con = true;
4167 
4168 		if (c->flags & CON_NBCON)
4169 			found_nbcon_con = true;
4170 		else
4171 			found_legacy_con = true;
4172 	}
4173 	if (!found_boot_con)
4174 		have_boot_console = found_boot_con;
4175 	if (!found_legacy_con)
4176 		have_legacy_console = found_legacy_con;
4177 	if (!found_nbcon_con)
4178 		have_nbcon_console = found_nbcon_con;
4179 
4180 	/* Changed console list, may require printer threads to start/stop. */
4181 	printk_kthreads_check_locked();
4182 
4183 	return res;
4184 }
4185 
4186 int unregister_console(struct console *console)
4187 {
4188 	int res;
4189 
4190 	console_list_lock();
4191 	res = unregister_console_locked(console);
4192 	console_list_unlock();
4193 	return res;
4194 }
4195 EXPORT_SYMBOL(unregister_console);
4196 
4197 /**
4198  * console_force_preferred_locked - force a registered console preferred
4199  * @con: The registered console to force preferred.
4200  *
4201  * Must be called under console_list_lock().
4202  */
4203 void console_force_preferred_locked(struct console *con)
4204 {
4205 	struct console *cur_pref_con;
4206 
4207 	if (!console_is_registered_locked(con))
4208 		return;
4209 
4210 	cur_pref_con = console_first();
4211 
4212 	/* Already preferred? */
4213 	if (cur_pref_con == con)
4214 		return;
4215 
4216 	/*
4217 	 * Delete, but do not re-initialize the entry. This allows the console
4218 	 * to continue to appear registered (via any hlist_unhashed_lockless()
4219 	 * checks), even though it was briefly removed from the console list.
4220 	 */
4221 	hlist_del_rcu(&con->node);
4222 
4223 	/*
4224 	 * Ensure that all SRCU list walks have completed so that the console
4225 	 * can be added to the beginning of the console list and its forward
4226 	 * list pointer can be re-initialized.
4227 	 */
4228 	synchronize_srcu(&console_srcu);
4229 
4230 	con->flags |= CON_CONSDEV;
4231 	WARN_ON(!con->device);
4232 
4233 	/* Only the new head can have CON_CONSDEV set. */
4234 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
4235 	hlist_add_head_rcu(&con->node, &console_list);
4236 }
4237 EXPORT_SYMBOL(console_force_preferred_locked);
4238 
4239 /*
4240  * Initialize the console device. This is called *early*, so
4241  * we can't necessarily depend on lots of kernel help here.
4242  * Just do some early initializations, and do the complex setup
4243  * later.
4244  */
4245 void __init console_init(void)
4246 {
4247 	int ret;
4248 	initcall_t call;
4249 	initcall_entry_t *ce;
4250 
4251 	/* Setup the default TTY line discipline. */
4252 	n_tty_init();
4253 
4254 	/*
4255 	 * set up the console device so that later boot sequences can
4256 	 * inform about problems etc..
4257 	 */
4258 	ce = __con_initcall_start;
4259 	trace_initcall_level("console");
4260 	while (ce < __con_initcall_end) {
4261 		call = initcall_from_entry(ce);
4262 		trace_initcall_start(call);
4263 		ret = call();
4264 		trace_initcall_finish(call, ret);
4265 		ce++;
4266 	}
4267 }
4268 
4269 /*
4270  * Some boot consoles access data that is in the init section and which will
4271  * be discarded after the initcalls have been run. To make sure that no code
4272  * will access this data, unregister the boot consoles in a late initcall.
4273  *
4274  * If for some reason, such as deferred probe or the driver being a loadable
4275  * module, the real console hasn't registered yet at this point, there will
4276  * be a brief interval in which no messages are logged to the console, which
4277  * makes it difficult to diagnose problems that occur during this time.
4278  *
4279  * To mitigate this problem somewhat, only unregister consoles whose memory
4280  * intersects with the init section. Note that all other boot consoles will
4281  * get unregistered when the real preferred console is registered.
4282  */
4283 static int __init printk_late_init(void)
4284 {
4285 	struct hlist_node *tmp;
4286 	struct console *con;
4287 	int ret;
4288 
4289 	console_list_lock();
4290 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
4291 		if (!(con->flags & CON_BOOT))
4292 			continue;
4293 
4294 		/* Check addresses that might be used for enabled consoles. */
4295 		if (init_section_intersects(con, sizeof(*con)) ||
4296 		    init_section_contains(con->write, 0) ||
4297 		    init_section_contains(con->read, 0) ||
4298 		    init_section_contains(con->device, 0) ||
4299 		    init_section_contains(con->unblank, 0) ||
4300 		    init_section_contains(con->data, 0)) {
4301 			/*
4302 			 * Please, consider moving the reported consoles out
4303 			 * of the init section.
4304 			 */
4305 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
4306 				con->name, con->index);
4307 			unregister_console_locked(con);
4308 		}
4309 	}
4310 	console_list_unlock();
4311 
4312 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
4313 					console_cpu_notify);
4314 	WARN_ON(ret < 0);
4315 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
4316 					console_cpu_notify, NULL);
4317 	WARN_ON(ret < 0);
4318 	printk_sysctl_init();
4319 	return 0;
4320 }
4321 late_initcall(printk_late_init);
4322 
4323 #if defined CONFIG_PRINTK
4324 /* If @con is specified, only wait for that console. Otherwise wait for all. */
4325 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
4326 {
4327 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
4328 	unsigned long remaining_jiffies = timeout_jiffies;
4329 	struct console_flush_type ft;
4330 	struct console *c;
4331 	u64 last_diff = 0;
4332 	u64 printk_seq;
4333 	short flags;
4334 	int cookie;
4335 	u64 diff;
4336 	u64 seq;
4337 
4338 	/* Sorry, pr_flush() will not work this early. */
4339 	if (system_state < SYSTEM_SCHEDULING)
4340 		return false;
4341 
4342 	might_sleep();
4343 
4344 	seq = prb_next_reserve_seq(prb);
4345 
4346 	/* Flush the consoles so that records up to @seq are printed. */
4347 	printk_get_console_flush_type(&ft);
4348 	if (ft.nbcon_atomic)
4349 		nbcon_atomic_flush_pending();
4350 	if (ft.legacy_direct) {
4351 		console_lock();
4352 		console_unlock();
4353 	}
4354 
4355 	for (;;) {
4356 		unsigned long begin_jiffies;
4357 		unsigned long slept_jiffies;
4358 
4359 		diff = 0;
4360 
4361 		/*
4362 		 * Hold the console_lock to guarantee safe access to
4363 		 * console->seq. Releasing console_lock flushes more
4364 		 * records in case @seq is still not printed on all
4365 		 * usable consoles.
4366 		 *
4367 		 * Holding the console_lock is not necessary if there
4368 		 * are no legacy or boot consoles. However, such a
4369 		 * console could register at any time. Always hold the
4370 		 * console_lock as a precaution rather than
4371 		 * synchronizing against register_console().
4372 		 */
4373 		console_lock();
4374 
4375 		cookie = console_srcu_read_lock();
4376 		for_each_console_srcu(c) {
4377 			if (con && con != c)
4378 				continue;
4379 
4380 			flags = console_srcu_read_flags(c);
4381 
4382 			/*
4383 			 * If consoles are not usable, it cannot be expected
4384 			 * that they make forward progress, so only increment
4385 			 * @diff for usable consoles.
4386 			 */
4387 			if (!console_is_usable(c, flags, true) &&
4388 			    !console_is_usable(c, flags, false)) {
4389 				continue;
4390 			}
4391 
4392 			if (flags & CON_NBCON) {
4393 				printk_seq = nbcon_seq_read(c);
4394 			} else {
4395 				printk_seq = c->seq;
4396 			}
4397 
4398 			if (printk_seq < seq)
4399 				diff += seq - printk_seq;
4400 		}
4401 		console_srcu_read_unlock(cookie);
4402 
4403 		if (diff != last_diff && reset_on_progress)
4404 			remaining_jiffies = timeout_jiffies;
4405 
4406 		console_unlock();
4407 
4408 		/* Note: @diff is 0 if there are no usable consoles. */
4409 		if (diff == 0 || remaining_jiffies == 0)
4410 			break;
4411 
4412 		/* msleep(1) might sleep much longer. Check time by jiffies. */
4413 		begin_jiffies = jiffies;
4414 		msleep(1);
4415 		slept_jiffies = jiffies - begin_jiffies;
4416 
4417 		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
4418 
4419 		last_diff = diff;
4420 	}
4421 
4422 	return (diff == 0);
4423 }
4424 
4425 /**
4426  * pr_flush() - Wait for printing threads to catch up.
4427  *
4428  * @timeout_ms:        The maximum time (in ms) to wait.
4429  * @reset_on_progress: Reset the timeout if forward progress is seen.
4430  *
4431  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
4432  * represents infinite waiting.
4433  *
4434  * If @reset_on_progress is true, the timeout will be reset whenever any
4435  * printer has been seen to make some forward progress.
4436  *
4437  * Context: Process context. May sleep while acquiring console lock.
4438  * Return: true if all usable printers are caught up.
4439  */
4440 static bool pr_flush(int timeout_ms, bool reset_on_progress)
4441 {
4442 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
4443 }
4444 
4445 /*
4446  * Delayed printk version, for scheduler-internal messages:
4447  */
4448 #define PRINTK_PENDING_WAKEUP	0x01
4449 #define PRINTK_PENDING_OUTPUT	0x02
4450 
4451 static DEFINE_PER_CPU(int, printk_pending);
4452 
4453 static void wake_up_klogd_work_func(struct irq_work *irq_work)
4454 {
4455 	int pending = this_cpu_xchg(printk_pending, 0);
4456 
4457 	if (pending & PRINTK_PENDING_OUTPUT) {
4458 		if (force_legacy_kthread()) {
4459 			if (printk_legacy_kthread)
4460 				wake_up_interruptible(&legacy_wait);
4461 		} else {
4462 			if (console_trylock())
4463 				console_unlock();
4464 		}
4465 	}
4466 
4467 	if (pending & PRINTK_PENDING_WAKEUP)
4468 		wake_up_interruptible(&log_wait);
4469 }
4470 
4471 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
4472 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
4473 
4474 static void __wake_up_klogd(int val)
4475 {
4476 	if (!printk_percpu_data_ready())
4477 		return;
4478 
4479 	preempt_disable();
4480 	/*
4481 	 * Guarantee any new records can be seen by tasks preparing to wait
4482 	 * before this context checks if the wait queue is empty.
4483 	 *
4484 	 * The full memory barrier within wq_has_sleeper() pairs with the full
4485 	 * memory barrier within set_current_state() of
4486 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
4487 	 * the waiter but before it has checked the wait condition.
4488 	 *
4489 	 * This pairs with devkmsg_read:A and syslog_print:A.
4490 	 */
4491 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
4492 	    (val & PRINTK_PENDING_OUTPUT)) {
4493 		this_cpu_or(printk_pending, val);
4494 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
4495 	}
4496 	preempt_enable();
4497 }
4498 
4499 /**
4500  * wake_up_klogd - Wake kernel logging daemon
4501  *
4502  * Use this function when new records have been added to the ringbuffer
4503  * and the console printing of those records has already occurred or is
4504  * known to be handled by some other context. This function will only
4505  * wake the logging daemon.
4506  *
4507  * Context: Any context.
4508  */
4509 void wake_up_klogd(void)
4510 {
4511 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
4512 }
4513 
4514 /**
4515  * defer_console_output - Wake kernel logging daemon and trigger
4516  *	console printing in a deferred context
4517  *
4518  * Use this function when new records have been added to the ringbuffer,
4519  * this context is responsible for console printing those records, but
4520  * the current context is not allowed to perform the console printing.
4521  * Trigger an irq_work context to perform the console printing. This
4522  * function also wakes the logging daemon.
4523  *
4524  * Context: Any context.
4525  */
4526 void defer_console_output(void)
4527 {
4528 	/*
4529 	 * New messages may have been added directly to the ringbuffer
4530 	 * using vprintk_store(), so wake any waiters as well.
4531 	 */
4532 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
4533 }
4534 
4535 void printk_trigger_flush(void)
4536 {
4537 	defer_console_output();
4538 }
4539 
4540 int vprintk_deferred(const char *fmt, va_list args)
4541 {
4542 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
4543 }
4544 
4545 int _printk_deferred(const char *fmt, ...)
4546 {
4547 	va_list args;
4548 	int r;
4549 
4550 	va_start(args, fmt);
4551 	r = vprintk_deferred(fmt, args);
4552 	va_end(args);
4553 
4554 	return r;
4555 }
4556 
4557 /*
4558  * printk rate limiting, lifted from the networking subsystem.
4559  *
4560  * This enforces a rate limit: not more than 10 kernel messages
4561  * every 5s to make a denial-of-service attack impossible.
4562  */
4563 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
4564 
4565 int __printk_ratelimit(const char *func)
4566 {
4567 	return ___ratelimit(&printk_ratelimit_state, func);
4568 }
4569 EXPORT_SYMBOL(__printk_ratelimit);
4570 
4571 /**
4572  * printk_timed_ratelimit - caller-controlled printk ratelimiting
4573  * @caller_jiffies: pointer to caller's state
4574  * @interval_msecs: minimum interval between prints
4575  *
4576  * printk_timed_ratelimit() returns true if more than @interval_msecs
4577  * milliseconds have elapsed since the last time printk_timed_ratelimit()
4578  * returned true.
4579  */
4580 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4581 			unsigned int interval_msecs)
4582 {
4583 	unsigned long elapsed = jiffies - *caller_jiffies;
4584 
4585 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4586 		return false;
4587 
4588 	*caller_jiffies = jiffies;
4589 	return true;
4590 }
4591 EXPORT_SYMBOL(printk_timed_ratelimit);
4592 
4593 static DEFINE_SPINLOCK(dump_list_lock);
4594 static LIST_HEAD(dump_list);
4595 
4596 /**
4597  * kmsg_dump_register - register a kernel log dumper.
4598  * @dumper: pointer to the kmsg_dumper structure
4599  *
4600  * Adds a kernel log dumper to the system. The dump callback in the
4601  * structure will be called when the kernel oopses or panics and must be
4602  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4603  */
4604 int kmsg_dump_register(struct kmsg_dumper *dumper)
4605 {
4606 	unsigned long flags;
4607 	int err = -EBUSY;
4608 
4609 	/* The dump callback needs to be set */
4610 	if (!dumper->dump)
4611 		return -EINVAL;
4612 
4613 	spin_lock_irqsave(&dump_list_lock, flags);
4614 	/* Don't allow registering multiple times */
4615 	if (!dumper->registered) {
4616 		dumper->registered = 1;
4617 		list_add_tail_rcu(&dumper->list, &dump_list);
4618 		err = 0;
4619 	}
4620 	spin_unlock_irqrestore(&dump_list_lock, flags);
4621 
4622 	return err;
4623 }
4624 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4625 
4626 /**
4627  * kmsg_dump_unregister - unregister a kmsg dumper.
4628  * @dumper: pointer to the kmsg_dumper structure
4629  *
4630  * Removes a dump device from the system. Returns zero on success and
4631  * %-EINVAL otherwise.
4632  */
4633 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4634 {
4635 	unsigned long flags;
4636 	int err = -EINVAL;
4637 
4638 	spin_lock_irqsave(&dump_list_lock, flags);
4639 	if (dumper->registered) {
4640 		dumper->registered = 0;
4641 		list_del_rcu(&dumper->list);
4642 		err = 0;
4643 	}
4644 	spin_unlock_irqrestore(&dump_list_lock, flags);
4645 	synchronize_rcu();
4646 
4647 	return err;
4648 }
4649 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4650 
4651 static bool always_kmsg_dump;
4652 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4653 
4654 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4655 {
4656 	switch (reason) {
4657 	case KMSG_DUMP_PANIC:
4658 		return "Panic";
4659 	case KMSG_DUMP_OOPS:
4660 		return "Oops";
4661 	case KMSG_DUMP_EMERG:
4662 		return "Emergency";
4663 	case KMSG_DUMP_SHUTDOWN:
4664 		return "Shutdown";
4665 	default:
4666 		return "Unknown";
4667 	}
4668 }
4669 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4670 
4671 /**
4672  * kmsg_dump_desc - dump kernel log to kernel message dumpers.
4673  * @reason: the reason (oops, panic etc) for dumping
4674  * @desc: a short string to describe what caused the panic or oops. Can be NULL
4675  * if no additional description is available.
4676  *
4677  * Call each of the registered dumper's dump() callback, which can
4678  * retrieve the kmsg records with kmsg_dump_get_line() or
4679  * kmsg_dump_get_buffer().
4680  */
4681 void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc)
4682 {
4683 	struct kmsg_dumper *dumper;
4684 	struct kmsg_dump_detail detail = {
4685 		.reason = reason,
4686 		.description = desc};
4687 
4688 	rcu_read_lock();
4689 	list_for_each_entry_rcu(dumper, &dump_list, list) {
4690 		enum kmsg_dump_reason max_reason = dumper->max_reason;
4691 
4692 		/*
4693 		 * If client has not provided a specific max_reason, default
4694 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4695 		 */
4696 		if (max_reason == KMSG_DUMP_UNDEF) {
4697 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4698 							KMSG_DUMP_OOPS;
4699 		}
4700 		if (reason > max_reason)
4701 			continue;
4702 
4703 		/* invoke dumper which will iterate over records */
4704 		dumper->dump(dumper, &detail);
4705 	}
4706 	rcu_read_unlock();
4707 }
4708 
4709 /**
4710  * kmsg_dump_get_line - retrieve one kmsg log line
4711  * @iter: kmsg dump iterator
4712  * @syslog: include the "<4>" prefixes
4713  * @line: buffer to copy the line to
4714  * @size: maximum size of the buffer
4715  * @len: length of line placed into buffer
4716  *
4717  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4718  * record, and copy one record into the provided buffer.
4719  *
4720  * Consecutive calls will return the next available record moving
4721  * towards the end of the buffer with the youngest messages.
4722  *
4723  * A return value of FALSE indicates that there are no more records to
4724  * read.
4725  */
4726 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4727 			char *line, size_t size, size_t *len)
4728 {
4729 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4730 	struct printk_info info;
4731 	unsigned int line_count;
4732 	struct printk_record r;
4733 	size_t l = 0;
4734 	bool ret = false;
4735 
4736 	if (iter->cur_seq < min_seq)
4737 		iter->cur_seq = min_seq;
4738 
4739 	prb_rec_init_rd(&r, &info, line, size);
4740 
4741 	/* Read text or count text lines? */
4742 	if (line) {
4743 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4744 			goto out;
4745 		l = record_print_text(&r, syslog, printk_time);
4746 	} else {
4747 		if (!prb_read_valid_info(prb, iter->cur_seq,
4748 					 &info, &line_count)) {
4749 			goto out;
4750 		}
4751 		l = get_record_print_text_size(&info, line_count, syslog,
4752 					       printk_time);
4753 
4754 	}
4755 
4756 	iter->cur_seq = r.info->seq + 1;
4757 	ret = true;
4758 out:
4759 	if (len)
4760 		*len = l;
4761 	return ret;
4762 }
4763 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4764 
4765 /**
4766  * kmsg_dump_get_buffer - copy kmsg log lines
4767  * @iter: kmsg dump iterator
4768  * @syslog: include the "<4>" prefixes
4769  * @buf: buffer to copy the line to
4770  * @size: maximum size of the buffer
4771  * @len_out: length of line placed into buffer
4772  *
4773  * Start at the end of the kmsg buffer and fill the provided buffer
4774  * with as many of the *youngest* kmsg records that fit into it.
4775  * If the buffer is large enough, all available kmsg records will be
4776  * copied with a single call.
4777  *
4778  * Consecutive calls will fill the buffer with the next block of
4779  * available older records, not including the earlier retrieved ones.
4780  *
4781  * A return value of FALSE indicates that there are no more records to
4782  * read.
4783  */
4784 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4785 			  char *buf, size_t size, size_t *len_out)
4786 {
4787 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4788 	struct printk_info info;
4789 	struct printk_record r;
4790 	u64 seq;
4791 	u64 next_seq;
4792 	size_t len = 0;
4793 	bool ret = false;
4794 	bool time = printk_time;
4795 
4796 	if (!buf || !size)
4797 		goto out;
4798 
4799 	if (iter->cur_seq < min_seq)
4800 		iter->cur_seq = min_seq;
4801 
4802 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4803 		if (info.seq != iter->cur_seq) {
4804 			/* messages are gone, move to first available one */
4805 			iter->cur_seq = info.seq;
4806 		}
4807 	}
4808 
4809 	/* last entry */
4810 	if (iter->cur_seq >= iter->next_seq)
4811 		goto out;
4812 
4813 	/*
4814 	 * Find first record that fits, including all following records,
4815 	 * into the user-provided buffer for this dump. Pass in size-1
4816 	 * because this function (by way of record_print_text()) will
4817 	 * not write more than size-1 bytes of text into @buf.
4818 	 */
4819 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4820 				     size - 1, syslog, time);
4821 
4822 	/*
4823 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4824 	 * older records stored right before this one.
4825 	 */
4826 	next_seq = seq;
4827 
4828 	prb_rec_init_rd(&r, &info, buf, size);
4829 
4830 	prb_for_each_record(seq, prb, seq, &r) {
4831 		if (r.info->seq >= iter->next_seq)
4832 			break;
4833 
4834 		len += record_print_text(&r, syslog, time);
4835 
4836 		/* Adjust record to store to remaining buffer space. */
4837 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4838 	}
4839 
4840 	iter->next_seq = next_seq;
4841 	ret = true;
4842 out:
4843 	if (len_out)
4844 		*len_out = len;
4845 	return ret;
4846 }
4847 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4848 
4849 /**
4850  * kmsg_dump_rewind - reset the iterator
4851  * @iter: kmsg dump iterator
4852  *
4853  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4854  * kmsg_dump_get_buffer() can be called again and used multiple
4855  * times within the same dumper.dump() callback.
4856  */
4857 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4858 {
4859 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4860 	iter->next_seq = prb_next_seq(prb);
4861 }
4862 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4863 
4864 /**
4865  * console_try_replay_all - try to replay kernel log on consoles
4866  *
4867  * Try to obtain lock on console subsystem and replay all
4868  * available records in printk buffer on the consoles.
4869  * Does nothing if lock is not obtained.
4870  *
4871  * Context: Any, except for NMI.
4872  */
4873 void console_try_replay_all(void)
4874 {
4875 	struct console_flush_type ft;
4876 
4877 	printk_get_console_flush_type(&ft);
4878 	if (console_trylock()) {
4879 		__console_rewind_all();
4880 		if (ft.nbcon_atomic)
4881 			nbcon_atomic_flush_pending();
4882 		if (ft.nbcon_offload)
4883 			nbcon_kthreads_wake();
4884 		if (ft.legacy_offload)
4885 			defer_console_output();
4886 		/* Consoles are flushed as part of console_unlock(). */
4887 		console_unlock();
4888 	}
4889 }
4890 #endif
4891 
4892 #ifdef CONFIG_SMP
4893 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4894 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4895 
4896 /**
4897  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4898  *                            spinning lock is not owned by any CPU.
4899  *
4900  * Context: Any context.
4901  */
4902 void __printk_cpu_sync_wait(void)
4903 {
4904 	do {
4905 		cpu_relax();
4906 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4907 }
4908 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4909 
4910 /**
4911  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4912  *                               spinning lock.
4913  *
4914  * If no processor has the lock, the calling processor takes the lock and
4915  * becomes the owner. If the calling processor is already the owner of the
4916  * lock, this function succeeds immediately.
4917  *
4918  * Context: Any context. Expects interrupts to be disabled.
4919  * Return: 1 on success, otherwise 0.
4920  */
4921 int __printk_cpu_sync_try_get(void)
4922 {
4923 	int cpu;
4924 	int old;
4925 
4926 	cpu = smp_processor_id();
4927 
4928 	/*
4929 	 * Guarantee loads and stores from this CPU when it is the lock owner
4930 	 * are _not_ visible to the previous lock owner. This pairs with
4931 	 * __printk_cpu_sync_put:B.
4932 	 *
4933 	 * Memory barrier involvement:
4934 	 *
4935 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4936 	 * then __printk_cpu_sync_put:A can never read from
4937 	 * __printk_cpu_sync_try_get:B.
4938 	 *
4939 	 * Relies on:
4940 	 *
4941 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4942 	 * of the previous CPU
4943 	 *    matching
4944 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4945 	 * __printk_cpu_sync_try_get:B of this CPU
4946 	 */
4947 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4948 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4949 	if (old == -1) {
4950 		/*
4951 		 * This CPU is now the owner and begins loading/storing
4952 		 * data: LMM(__printk_cpu_sync_try_get:B)
4953 		 */
4954 		return 1;
4955 
4956 	} else if (old == cpu) {
4957 		/* This CPU is already the owner. */
4958 		atomic_inc(&printk_cpu_sync_nested);
4959 		return 1;
4960 	}
4961 
4962 	return 0;
4963 }
4964 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4965 
4966 /**
4967  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4968  *
4969  * The calling processor must be the owner of the lock.
4970  *
4971  * Context: Any context. Expects interrupts to be disabled.
4972  */
4973 void __printk_cpu_sync_put(void)
4974 {
4975 	if (atomic_read(&printk_cpu_sync_nested)) {
4976 		atomic_dec(&printk_cpu_sync_nested);
4977 		return;
4978 	}
4979 
4980 	/*
4981 	 * This CPU is finished loading/storing data:
4982 	 * LMM(__printk_cpu_sync_put:A)
4983 	 */
4984 
4985 	/*
4986 	 * Guarantee loads and stores from this CPU when it was the
4987 	 * lock owner are visible to the next lock owner. This pairs
4988 	 * with __printk_cpu_sync_try_get:A.
4989 	 *
4990 	 * Memory barrier involvement:
4991 	 *
4992 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4993 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4994 	 *
4995 	 * Relies on:
4996 	 *
4997 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4998 	 * of this CPU
4999 	 *    matching
5000 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
5001 	 * __printk_cpu_sync_try_get:B of the next CPU
5002 	 */
5003 	atomic_set_release(&printk_cpu_sync_owner,
5004 			   -1); /* LMM(__printk_cpu_sync_put:B) */
5005 }
5006 EXPORT_SYMBOL(__printk_cpu_sync_put);
5007 #endif /* CONFIG_SMP */
5008