1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/syscore_ops.h> 38 #include <linux/vmcore_info.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 #include <linux/panic.h> 52 53 #include <linux/uaccess.h> 54 #include <asm/sections.h> 55 56 #include <trace/events/initcall.h> 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/printk.h> 59 60 #include "printk_ringbuffer.h" 61 #include "console_cmdline.h" 62 #include "braille.h" 63 #include "internal.h" 64 65 int console_printk[4] = { 66 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 67 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 68 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 69 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 70 }; 71 EXPORT_SYMBOL_GPL(console_printk); 72 73 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 74 EXPORT_SYMBOL(ignore_console_lock_warning); 75 76 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 77 78 /* 79 * Low level drivers may need that to know if they can schedule in 80 * their unblank() callback or not. So let's export it. 81 */ 82 int oops_in_progress; 83 EXPORT_SYMBOL(oops_in_progress); 84 85 /* 86 * console_mutex protects console_list updates and console->flags updates. 87 * The flags are synchronized only for consoles that are registered, i.e. 88 * accessible via the console list. 89 */ 90 static DEFINE_MUTEX(console_mutex); 91 92 /* 93 * console_sem protects updates to console->seq 94 * and also provides serialization for console printing. 95 */ 96 static DEFINE_SEMAPHORE(console_sem, 1); 97 HLIST_HEAD(console_list); 98 EXPORT_SYMBOL_GPL(console_list); 99 DEFINE_STATIC_SRCU(console_srcu); 100 101 /* 102 * System may need to suppress printk message under certain 103 * circumstances, like after kernel panic happens. 104 */ 105 int __read_mostly suppress_printk; 106 107 #ifdef CONFIG_LOCKDEP 108 static struct lockdep_map console_lock_dep_map = { 109 .name = "console_lock" 110 }; 111 112 void lockdep_assert_console_list_lock_held(void) 113 { 114 lockdep_assert_held(&console_mutex); 115 } 116 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 117 #endif 118 119 #ifdef CONFIG_DEBUG_LOCK_ALLOC 120 bool console_srcu_read_lock_is_held(void) 121 { 122 return srcu_read_lock_held(&console_srcu); 123 } 124 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 125 #endif 126 127 enum devkmsg_log_bits { 128 __DEVKMSG_LOG_BIT_ON = 0, 129 __DEVKMSG_LOG_BIT_OFF, 130 __DEVKMSG_LOG_BIT_LOCK, 131 }; 132 133 enum devkmsg_log_masks { 134 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 135 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 136 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 137 }; 138 139 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 140 #define DEVKMSG_LOG_MASK_DEFAULT 0 141 142 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 143 144 static int __control_devkmsg(char *str) 145 { 146 size_t len; 147 148 if (!str) 149 return -EINVAL; 150 151 len = str_has_prefix(str, "on"); 152 if (len) { 153 devkmsg_log = DEVKMSG_LOG_MASK_ON; 154 return len; 155 } 156 157 len = str_has_prefix(str, "off"); 158 if (len) { 159 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 160 return len; 161 } 162 163 len = str_has_prefix(str, "ratelimit"); 164 if (len) { 165 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 166 return len; 167 } 168 169 return -EINVAL; 170 } 171 172 static int __init control_devkmsg(char *str) 173 { 174 if (__control_devkmsg(str) < 0) { 175 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 176 return 1; 177 } 178 179 /* 180 * Set sysctl string accordingly: 181 */ 182 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 183 strscpy(devkmsg_log_str, "on"); 184 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 185 strscpy(devkmsg_log_str, "off"); 186 /* else "ratelimit" which is set by default. */ 187 188 /* 189 * Sysctl cannot change it anymore. The kernel command line setting of 190 * this parameter is to force the setting to be permanent throughout the 191 * runtime of the system. This is a precation measure against userspace 192 * trying to be a smarta** and attempting to change it up on us. 193 */ 194 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 195 196 return 1; 197 } 198 __setup("printk.devkmsg=", control_devkmsg); 199 200 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 201 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 202 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write, 203 void *buffer, size_t *lenp, loff_t *ppos) 204 { 205 char old_str[DEVKMSG_STR_MAX_SIZE]; 206 unsigned int old; 207 int err; 208 209 if (write) { 210 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 211 return -EINVAL; 212 213 old = devkmsg_log; 214 strscpy(old_str, devkmsg_log_str); 215 } 216 217 err = proc_dostring(table, write, buffer, lenp, ppos); 218 if (err) 219 return err; 220 221 if (write) { 222 err = __control_devkmsg(devkmsg_log_str); 223 224 /* 225 * Do not accept an unknown string OR a known string with 226 * trailing crap... 227 */ 228 if (err < 0 || (err + 1 != *lenp)) { 229 230 /* ... and restore old setting. */ 231 devkmsg_log = old; 232 strscpy(devkmsg_log_str, old_str); 233 234 return -EINVAL; 235 } 236 } 237 238 return 0; 239 } 240 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 241 242 /** 243 * console_list_lock - Lock the console list 244 * 245 * For console list or console->flags updates 246 */ 247 void console_list_lock(void) 248 { 249 /* 250 * In unregister_console() and console_force_preferred_locked(), 251 * synchronize_srcu() is called with the console_list_lock held. 252 * Therefore it is not allowed that the console_list_lock is taken 253 * with the srcu_lock held. 254 * 255 * Detecting if this context is really in the read-side critical 256 * section is only possible if the appropriate debug options are 257 * enabled. 258 */ 259 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 260 srcu_read_lock_held(&console_srcu)); 261 262 mutex_lock(&console_mutex); 263 } 264 EXPORT_SYMBOL(console_list_lock); 265 266 /** 267 * console_list_unlock - Unlock the console list 268 * 269 * Counterpart to console_list_lock() 270 */ 271 void console_list_unlock(void) 272 { 273 mutex_unlock(&console_mutex); 274 } 275 EXPORT_SYMBOL(console_list_unlock); 276 277 /** 278 * console_srcu_read_lock - Register a new reader for the 279 * SRCU-protected console list 280 * 281 * Use for_each_console_srcu() to iterate the console list 282 * 283 * Context: Any context. 284 * Return: A cookie to pass to console_srcu_read_unlock(). 285 */ 286 int console_srcu_read_lock(void) 287 __acquires(&console_srcu) 288 { 289 return srcu_read_lock_nmisafe(&console_srcu); 290 } 291 EXPORT_SYMBOL(console_srcu_read_lock); 292 293 /** 294 * console_srcu_read_unlock - Unregister an old reader from 295 * the SRCU-protected console list 296 * @cookie: cookie returned from console_srcu_read_lock() 297 * 298 * Counterpart to console_srcu_read_lock() 299 */ 300 void console_srcu_read_unlock(int cookie) 301 __releases(&console_srcu) 302 { 303 srcu_read_unlock_nmisafe(&console_srcu, cookie); 304 } 305 EXPORT_SYMBOL(console_srcu_read_unlock); 306 307 /* 308 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 309 * macros instead of functions so that _RET_IP_ contains useful information. 310 */ 311 #define down_console_sem() do { \ 312 down(&console_sem);\ 313 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 314 } while (0) 315 316 static int __down_trylock_console_sem(unsigned long ip) 317 { 318 int lock_failed; 319 unsigned long flags; 320 321 /* 322 * Here and in __up_console_sem() we need to be in safe mode, 323 * because spindump/WARN/etc from under console ->lock will 324 * deadlock in printk()->down_trylock_console_sem() otherwise. 325 */ 326 printk_safe_enter_irqsave(flags); 327 lock_failed = down_trylock(&console_sem); 328 printk_safe_exit_irqrestore(flags); 329 330 if (lock_failed) 331 return 1; 332 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 333 return 0; 334 } 335 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 336 337 static void __up_console_sem(unsigned long ip) 338 { 339 unsigned long flags; 340 341 mutex_release(&console_lock_dep_map, ip); 342 343 printk_safe_enter_irqsave(flags); 344 up(&console_sem); 345 printk_safe_exit_irqrestore(flags); 346 } 347 #define up_console_sem() __up_console_sem(_RET_IP_) 348 349 /* 350 * This is used for debugging the mess that is the VT code by 351 * keeping track if we have the console semaphore held. It's 352 * definitely not the perfect debug tool (we don't know if _WE_ 353 * hold it and are racing, but it helps tracking those weird code 354 * paths in the console code where we end up in places I want 355 * locked without the console semaphore held). 356 */ 357 static int console_locked; 358 359 /* 360 * Array of consoles built from command line options (console=) 361 */ 362 363 #define MAX_CMDLINECONSOLES 8 364 365 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 366 367 static int preferred_console = -1; 368 int console_set_on_cmdline; 369 EXPORT_SYMBOL(console_set_on_cmdline); 370 371 /* Flag: console code may call schedule() */ 372 static int console_may_schedule; 373 374 enum con_msg_format_flags { 375 MSG_FORMAT_DEFAULT = 0, 376 MSG_FORMAT_SYSLOG = (1 << 0), 377 }; 378 379 static int console_msg_format = MSG_FORMAT_DEFAULT; 380 381 /* 382 * The printk log buffer consists of a sequenced collection of records, each 383 * containing variable length message text. Every record also contains its 384 * own meta-data (@info). 385 * 386 * Every record meta-data carries the timestamp in microseconds, as well as 387 * the standard userspace syslog level and syslog facility. The usual kernel 388 * messages use LOG_KERN; userspace-injected messages always carry a matching 389 * syslog facility, by default LOG_USER. The origin of every message can be 390 * reliably determined that way. 391 * 392 * The human readable log message of a record is available in @text, the 393 * length of the message text in @text_len. The stored message is not 394 * terminated. 395 * 396 * Optionally, a record can carry a dictionary of properties (key/value 397 * pairs), to provide userspace with a machine-readable message context. 398 * 399 * Examples for well-defined, commonly used property names are: 400 * DEVICE=b12:8 device identifier 401 * b12:8 block dev_t 402 * c127:3 char dev_t 403 * n8 netdev ifindex 404 * +sound:card0 subsystem:devname 405 * SUBSYSTEM=pci driver-core subsystem name 406 * 407 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 408 * and values are terminated by a '\0' character. 409 * 410 * Example of record values: 411 * record.text_buf = "it's a line" (unterminated) 412 * record.info.seq = 56 413 * record.info.ts_nsec = 36863 414 * record.info.text_len = 11 415 * record.info.facility = 0 (LOG_KERN) 416 * record.info.flags = 0 417 * record.info.level = 3 (LOG_ERR) 418 * record.info.caller_id = 299 (task 299) 419 * record.info.dev_info.subsystem = "pci" (terminated) 420 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 421 * 422 * The 'struct printk_info' buffer must never be directly exported to 423 * userspace, it is a kernel-private implementation detail that might 424 * need to be changed in the future, when the requirements change. 425 * 426 * /dev/kmsg exports the structured data in the following line format: 427 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 428 * 429 * Users of the export format should ignore possible additional values 430 * separated by ',', and find the message after the ';' character. 431 * 432 * The optional key/value pairs are attached as continuation lines starting 433 * with a space character and terminated by a newline. All possible 434 * non-prinatable characters are escaped in the "\xff" notation. 435 */ 436 437 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 438 static DEFINE_MUTEX(syslog_lock); 439 440 /* 441 * Specifies if a legacy console is registered. If legacy consoles are 442 * present, it is necessary to perform the console lock/unlock dance 443 * whenever console flushing should occur. 444 */ 445 bool have_legacy_console; 446 447 /* 448 * Specifies if an nbcon console is registered. If nbcon consoles are present, 449 * synchronous printing of legacy consoles will not occur during panic until 450 * the backtrace has been stored to the ringbuffer. 451 */ 452 bool have_nbcon_console; 453 454 /* 455 * Specifies if a boot console is registered. If boot consoles are present, 456 * nbcon consoles cannot print simultaneously and must be synchronized by 457 * the console lock. This is because boot consoles and nbcon consoles may 458 * have mapped the same hardware. 459 */ 460 bool have_boot_console; 461 462 /* See printk_legacy_allow_panic_sync() for details. */ 463 bool legacy_allow_panic_sync; 464 465 #ifdef CONFIG_PRINTK 466 DECLARE_WAIT_QUEUE_HEAD(log_wait); 467 static DECLARE_WAIT_QUEUE_HEAD(legacy_wait); 468 /* All 3 protected by @syslog_lock. */ 469 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 470 static u64 syslog_seq; 471 static size_t syslog_partial; 472 static bool syslog_time; 473 474 /* True when _all_ printer threads are available for printing. */ 475 bool printk_kthreads_running; 476 477 struct latched_seq { 478 seqcount_latch_t latch; 479 u64 val[2]; 480 }; 481 482 /* 483 * The next printk record to read after the last 'clear' command. There are 484 * two copies (updated with seqcount_latch) so that reads can locklessly 485 * access a valid value. Writers are synchronized by @syslog_lock. 486 */ 487 static struct latched_seq clear_seq = { 488 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 489 .val[0] = 0, 490 .val[1] = 0, 491 }; 492 493 #define LOG_LEVEL(v) ((v) & 0x07) 494 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 495 496 /* record buffer */ 497 #define LOG_ALIGN __alignof__(unsigned long) 498 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 499 #define LOG_BUF_LEN_MAX ((u32)1 << 31) 500 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 501 static char *log_buf = __log_buf; 502 static u32 log_buf_len = __LOG_BUF_LEN; 503 504 /* 505 * Define the average message size. This only affects the number of 506 * descriptors that will be available. Underestimating is better than 507 * overestimating (too many available descriptors is better than not enough). 508 */ 509 #define PRB_AVGBITS 5 /* 32 character average length */ 510 511 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 512 #error CONFIG_LOG_BUF_SHIFT value too small. 513 #endif 514 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 515 PRB_AVGBITS, &__log_buf[0]); 516 517 static struct printk_ringbuffer printk_rb_dynamic; 518 519 struct printk_ringbuffer *prb = &printk_rb_static; 520 521 /* 522 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 523 * per_cpu_areas are initialised. This variable is set to true when 524 * it's safe to access per-CPU data. 525 */ 526 static bool __printk_percpu_data_ready __ro_after_init; 527 528 bool printk_percpu_data_ready(void) 529 { 530 return __printk_percpu_data_ready; 531 } 532 533 /* Must be called under syslog_lock. */ 534 static void latched_seq_write(struct latched_seq *ls, u64 val) 535 { 536 write_seqcount_latch_begin(&ls->latch); 537 ls->val[0] = val; 538 write_seqcount_latch(&ls->latch); 539 ls->val[1] = val; 540 write_seqcount_latch_end(&ls->latch); 541 } 542 543 /* Can be called from any context. */ 544 static u64 latched_seq_read_nolock(struct latched_seq *ls) 545 { 546 unsigned int seq; 547 unsigned int idx; 548 u64 val; 549 550 do { 551 seq = read_seqcount_latch(&ls->latch); 552 idx = seq & 0x1; 553 val = ls->val[idx]; 554 } while (read_seqcount_latch_retry(&ls->latch, seq)); 555 556 return val; 557 } 558 559 /* Return log buffer address */ 560 char *log_buf_addr_get(void) 561 { 562 return log_buf; 563 } 564 565 /* Return log buffer size */ 566 u32 log_buf_len_get(void) 567 { 568 return log_buf_len; 569 } 570 571 /* 572 * Define how much of the log buffer we could take at maximum. The value 573 * must be greater than two. Note that only half of the buffer is available 574 * when the index points to the middle. 575 */ 576 #define MAX_LOG_TAKE_PART 4 577 static const char trunc_msg[] = "<truncated>"; 578 579 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 580 { 581 /* 582 * The message should not take the whole buffer. Otherwise, it might 583 * get removed too soon. 584 */ 585 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 586 587 if (*text_len > max_text_len) 588 *text_len = max_text_len; 589 590 /* enable the warning message (if there is room) */ 591 *trunc_msg_len = strlen(trunc_msg); 592 if (*text_len >= *trunc_msg_len) 593 *text_len -= *trunc_msg_len; 594 else 595 *trunc_msg_len = 0; 596 } 597 598 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 599 600 static int syslog_action_restricted(int type) 601 { 602 if (dmesg_restrict) 603 return 1; 604 /* 605 * Unless restricted, we allow "read all" and "get buffer size" 606 * for everybody. 607 */ 608 return type != SYSLOG_ACTION_READ_ALL && 609 type != SYSLOG_ACTION_SIZE_BUFFER; 610 } 611 612 static int check_syslog_permissions(int type, int source) 613 { 614 /* 615 * If this is from /proc/kmsg and we've already opened it, then we've 616 * already done the capabilities checks at open time. 617 */ 618 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 619 goto ok; 620 621 if (syslog_action_restricted(type)) { 622 if (capable(CAP_SYSLOG)) 623 goto ok; 624 return -EPERM; 625 } 626 ok: 627 return security_syslog(type); 628 } 629 630 static void append_char(char **pp, char *e, char c) 631 { 632 if (*pp < e) 633 *(*pp)++ = c; 634 } 635 636 static ssize_t info_print_ext_header(char *buf, size_t size, 637 struct printk_info *info) 638 { 639 u64 ts_usec = info->ts_nsec; 640 char caller[20]; 641 #ifdef CONFIG_PRINTK_CALLER 642 u32 id = info->caller_id; 643 644 snprintf(caller, sizeof(caller), ",caller=%c%u", 645 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 646 #else 647 caller[0] = '\0'; 648 #endif 649 650 do_div(ts_usec, 1000); 651 652 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 653 (info->facility << 3) | info->level, info->seq, 654 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 655 } 656 657 static ssize_t msg_add_ext_text(char *buf, size_t size, 658 const char *text, size_t text_len, 659 unsigned char endc) 660 { 661 char *p = buf, *e = buf + size; 662 size_t i; 663 664 /* escape non-printable characters */ 665 for (i = 0; i < text_len; i++) { 666 unsigned char c = text[i]; 667 668 if (c < ' ' || c >= 127 || c == '\\') 669 p += scnprintf(p, e - p, "\\x%02x", c); 670 else 671 append_char(&p, e, c); 672 } 673 append_char(&p, e, endc); 674 675 return p - buf; 676 } 677 678 static ssize_t msg_add_dict_text(char *buf, size_t size, 679 const char *key, const char *val) 680 { 681 size_t val_len = strlen(val); 682 ssize_t len; 683 684 if (!val_len) 685 return 0; 686 687 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 688 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 689 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 690 691 return len; 692 } 693 694 static ssize_t msg_print_ext_body(char *buf, size_t size, 695 char *text, size_t text_len, 696 struct dev_printk_info *dev_info) 697 { 698 ssize_t len; 699 700 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 701 702 if (!dev_info) 703 goto out; 704 705 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 706 dev_info->subsystem); 707 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 708 dev_info->device); 709 out: 710 return len; 711 } 712 713 /* /dev/kmsg - userspace message inject/listen interface */ 714 struct devkmsg_user { 715 atomic64_t seq; 716 struct ratelimit_state rs; 717 struct mutex lock; 718 struct printk_buffers pbufs; 719 }; 720 721 static __printf(3, 4) __cold 722 int devkmsg_emit(int facility, int level, const char *fmt, ...) 723 { 724 va_list args; 725 int r; 726 727 va_start(args, fmt); 728 r = vprintk_emit(facility, level, NULL, fmt, args); 729 va_end(args); 730 731 return r; 732 } 733 734 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 735 { 736 char *buf, *line; 737 int level = default_message_loglevel; 738 int facility = 1; /* LOG_USER */ 739 struct file *file = iocb->ki_filp; 740 struct devkmsg_user *user = file->private_data; 741 size_t len = iov_iter_count(from); 742 ssize_t ret = len; 743 744 if (len > PRINTKRB_RECORD_MAX) 745 return -EINVAL; 746 747 /* Ignore when user logging is disabled. */ 748 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 749 return len; 750 751 /* Ratelimit when not explicitly enabled. */ 752 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 753 if (!___ratelimit(&user->rs, current->comm)) 754 return ret; 755 } 756 757 buf = kmalloc(len+1, GFP_KERNEL); 758 if (buf == NULL) 759 return -ENOMEM; 760 761 buf[len] = '\0'; 762 if (!copy_from_iter_full(buf, len, from)) { 763 kfree(buf); 764 return -EFAULT; 765 } 766 767 /* 768 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 769 * the decimal value represents 32bit, the lower 3 bit are the log 770 * level, the rest are the log facility. 771 * 772 * If no prefix or no userspace facility is specified, we 773 * enforce LOG_USER, to be able to reliably distinguish 774 * kernel-generated messages from userspace-injected ones. 775 */ 776 line = buf; 777 if (line[0] == '<') { 778 char *endp = NULL; 779 unsigned int u; 780 781 u = simple_strtoul(line + 1, &endp, 10); 782 if (endp && endp[0] == '>') { 783 level = LOG_LEVEL(u); 784 if (LOG_FACILITY(u) != 0) 785 facility = LOG_FACILITY(u); 786 endp++; 787 line = endp; 788 } 789 } 790 791 devkmsg_emit(facility, level, "%s", line); 792 kfree(buf); 793 return ret; 794 } 795 796 static ssize_t devkmsg_read(struct file *file, char __user *buf, 797 size_t count, loff_t *ppos) 798 { 799 struct devkmsg_user *user = file->private_data; 800 char *outbuf = &user->pbufs.outbuf[0]; 801 struct printk_message pmsg = { 802 .pbufs = &user->pbufs, 803 }; 804 ssize_t ret; 805 806 ret = mutex_lock_interruptible(&user->lock); 807 if (ret) 808 return ret; 809 810 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 811 if (file->f_flags & O_NONBLOCK) { 812 ret = -EAGAIN; 813 goto out; 814 } 815 816 /* 817 * Guarantee this task is visible on the waitqueue before 818 * checking the wake condition. 819 * 820 * The full memory barrier within set_current_state() of 821 * prepare_to_wait_event() pairs with the full memory barrier 822 * within wq_has_sleeper(). 823 * 824 * This pairs with __wake_up_klogd:A. 825 */ 826 ret = wait_event_interruptible(log_wait, 827 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 828 false)); /* LMM(devkmsg_read:A) */ 829 if (ret) 830 goto out; 831 } 832 833 if (pmsg.dropped) { 834 /* our last seen message is gone, return error and reset */ 835 atomic64_set(&user->seq, pmsg.seq); 836 ret = -EPIPE; 837 goto out; 838 } 839 840 atomic64_set(&user->seq, pmsg.seq + 1); 841 842 if (pmsg.outbuf_len > count) { 843 ret = -EINVAL; 844 goto out; 845 } 846 847 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 848 ret = -EFAULT; 849 goto out; 850 } 851 ret = pmsg.outbuf_len; 852 out: 853 mutex_unlock(&user->lock); 854 return ret; 855 } 856 857 /* 858 * Be careful when modifying this function!!! 859 * 860 * Only few operations are supported because the device works only with the 861 * entire variable length messages (records). Non-standard values are 862 * returned in the other cases and has been this way for quite some time. 863 * User space applications might depend on this behavior. 864 */ 865 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 866 { 867 struct devkmsg_user *user = file->private_data; 868 loff_t ret = 0; 869 870 if (offset) 871 return -ESPIPE; 872 873 switch (whence) { 874 case SEEK_SET: 875 /* the first record */ 876 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 877 break; 878 case SEEK_DATA: 879 /* 880 * The first record after the last SYSLOG_ACTION_CLEAR, 881 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 882 * changes no global state, and does not clear anything. 883 */ 884 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 885 break; 886 case SEEK_END: 887 /* after the last record */ 888 atomic64_set(&user->seq, prb_next_seq(prb)); 889 break; 890 default: 891 ret = -EINVAL; 892 } 893 return ret; 894 } 895 896 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 897 { 898 struct devkmsg_user *user = file->private_data; 899 struct printk_info info; 900 __poll_t ret = 0; 901 902 poll_wait(file, &log_wait, wait); 903 904 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 905 /* return error when data has vanished underneath us */ 906 if (info.seq != atomic64_read(&user->seq)) 907 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 908 else 909 ret = EPOLLIN|EPOLLRDNORM; 910 } 911 912 return ret; 913 } 914 915 static int devkmsg_open(struct inode *inode, struct file *file) 916 { 917 struct devkmsg_user *user; 918 int err; 919 920 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 921 return -EPERM; 922 923 /* write-only does not need any file context */ 924 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 925 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 926 SYSLOG_FROM_READER); 927 if (err) 928 return err; 929 } 930 931 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 932 if (!user) 933 return -ENOMEM; 934 935 ratelimit_default_init(&user->rs); 936 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 937 938 mutex_init(&user->lock); 939 940 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 941 942 file->private_data = user; 943 return 0; 944 } 945 946 static int devkmsg_release(struct inode *inode, struct file *file) 947 { 948 struct devkmsg_user *user = file->private_data; 949 950 ratelimit_state_exit(&user->rs); 951 952 mutex_destroy(&user->lock); 953 kvfree(user); 954 return 0; 955 } 956 957 const struct file_operations kmsg_fops = { 958 .open = devkmsg_open, 959 .read = devkmsg_read, 960 .write_iter = devkmsg_write, 961 .llseek = devkmsg_llseek, 962 .poll = devkmsg_poll, 963 .release = devkmsg_release, 964 }; 965 966 #ifdef CONFIG_VMCORE_INFO 967 /* 968 * This appends the listed symbols to /proc/vmcore 969 * 970 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 971 * obtain access to symbols that are otherwise very difficult to locate. These 972 * symbols are specifically used so that utilities can access and extract the 973 * dmesg log from a vmcore file after a crash. 974 */ 975 void log_buf_vmcoreinfo_setup(void) 976 { 977 struct dev_printk_info *dev_info = NULL; 978 979 VMCOREINFO_SYMBOL(prb); 980 VMCOREINFO_SYMBOL(printk_rb_static); 981 VMCOREINFO_SYMBOL(clear_seq); 982 983 /* 984 * Export struct size and field offsets. User space tools can 985 * parse it and detect any changes to structure down the line. 986 */ 987 988 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 989 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 990 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 991 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 992 993 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 994 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 995 VMCOREINFO_OFFSET(prb_desc_ring, descs); 996 VMCOREINFO_OFFSET(prb_desc_ring, infos); 997 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 998 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 999 1000 VMCOREINFO_STRUCT_SIZE(prb_desc); 1001 VMCOREINFO_OFFSET(prb_desc, state_var); 1002 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 1003 1004 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 1005 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 1006 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 1007 1008 VMCOREINFO_STRUCT_SIZE(printk_info); 1009 VMCOREINFO_OFFSET(printk_info, seq); 1010 VMCOREINFO_OFFSET(printk_info, ts_nsec); 1011 VMCOREINFO_OFFSET(printk_info, text_len); 1012 VMCOREINFO_OFFSET(printk_info, caller_id); 1013 VMCOREINFO_OFFSET(printk_info, dev_info); 1014 1015 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1016 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1017 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1018 VMCOREINFO_OFFSET(dev_printk_info, device); 1019 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1020 1021 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1022 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1023 VMCOREINFO_OFFSET(prb_data_ring, data); 1024 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1025 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1026 1027 VMCOREINFO_SIZE(atomic_long_t); 1028 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1029 1030 VMCOREINFO_STRUCT_SIZE(latched_seq); 1031 VMCOREINFO_OFFSET(latched_seq, val); 1032 } 1033 #endif 1034 1035 /* requested log_buf_len from kernel cmdline */ 1036 static unsigned long __initdata new_log_buf_len; 1037 1038 /* we practice scaling the ring buffer by powers of 2 */ 1039 static void __init log_buf_len_update(u64 size) 1040 { 1041 if (size > (u64)LOG_BUF_LEN_MAX) { 1042 size = (u64)LOG_BUF_LEN_MAX; 1043 pr_err("log_buf over 2G is not supported.\n"); 1044 } 1045 1046 if (size) 1047 size = roundup_pow_of_two(size); 1048 if (size > log_buf_len) 1049 new_log_buf_len = (unsigned long)size; 1050 } 1051 1052 /* save requested log_buf_len since it's too early to process it */ 1053 static int __init log_buf_len_setup(char *str) 1054 { 1055 u64 size; 1056 1057 if (!str) 1058 return -EINVAL; 1059 1060 size = memparse(str, &str); 1061 1062 log_buf_len_update(size); 1063 1064 return 0; 1065 } 1066 early_param("log_buf_len", log_buf_len_setup); 1067 1068 #ifdef CONFIG_SMP 1069 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1070 1071 static void __init log_buf_add_cpu(void) 1072 { 1073 unsigned int cpu_extra; 1074 1075 /* 1076 * archs should set up cpu_possible_bits properly with 1077 * set_cpu_possible() after setup_arch() but just in 1078 * case lets ensure this is valid. 1079 */ 1080 if (num_possible_cpus() == 1) 1081 return; 1082 1083 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1084 1085 /* by default this will only continue through for large > 64 CPUs */ 1086 if (cpu_extra <= __LOG_BUF_LEN / 2) 1087 return; 1088 1089 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1090 __LOG_CPU_MAX_BUF_LEN); 1091 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1092 cpu_extra); 1093 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1094 1095 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1096 } 1097 #else /* !CONFIG_SMP */ 1098 static inline void log_buf_add_cpu(void) {} 1099 #endif /* CONFIG_SMP */ 1100 1101 static void __init set_percpu_data_ready(void) 1102 { 1103 __printk_percpu_data_ready = true; 1104 } 1105 1106 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1107 struct printk_record *r) 1108 { 1109 struct prb_reserved_entry e; 1110 struct printk_record dest_r; 1111 1112 prb_rec_init_wr(&dest_r, r->info->text_len); 1113 1114 if (!prb_reserve(&e, rb, &dest_r)) 1115 return 0; 1116 1117 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1118 dest_r.info->text_len = r->info->text_len; 1119 dest_r.info->facility = r->info->facility; 1120 dest_r.info->level = r->info->level; 1121 dest_r.info->flags = r->info->flags; 1122 dest_r.info->ts_nsec = r->info->ts_nsec; 1123 dest_r.info->caller_id = r->info->caller_id; 1124 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1125 1126 prb_final_commit(&e); 1127 1128 return prb_record_text_space(&e); 1129 } 1130 1131 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1132 1133 static void print_log_buf_usage_stats(void) 1134 { 1135 unsigned int descs_count = log_buf_len >> PRB_AVGBITS; 1136 size_t meta_data_size; 1137 1138 meta_data_size = descs_count * (sizeof(struct prb_desc) + sizeof(struct printk_info)); 1139 1140 pr_info("log buffer data + meta data: %u + %zu = %zu bytes\n", 1141 log_buf_len, meta_data_size, log_buf_len + meta_data_size); 1142 } 1143 1144 void __init setup_log_buf(int early) 1145 { 1146 struct printk_info *new_infos; 1147 unsigned int new_descs_count; 1148 struct prb_desc *new_descs; 1149 struct printk_info info; 1150 struct printk_record r; 1151 unsigned int text_size; 1152 size_t new_descs_size; 1153 size_t new_infos_size; 1154 unsigned long flags; 1155 char *new_log_buf; 1156 unsigned int free; 1157 u64 seq; 1158 1159 /* 1160 * Some archs call setup_log_buf() multiple times - first is very 1161 * early, e.g. from setup_arch(), and second - when percpu_areas 1162 * are initialised. 1163 */ 1164 if (!early) 1165 set_percpu_data_ready(); 1166 1167 if (log_buf != __log_buf) 1168 return; 1169 1170 if (!early && !new_log_buf_len) 1171 log_buf_add_cpu(); 1172 1173 if (!new_log_buf_len) { 1174 /* Show the memory stats only once. */ 1175 if (!early) 1176 goto out; 1177 1178 return; 1179 } 1180 1181 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1182 if (new_descs_count == 0) { 1183 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1184 goto out; 1185 } 1186 1187 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1188 if (unlikely(!new_log_buf)) { 1189 pr_err("log_buf_len: %lu text bytes not available\n", 1190 new_log_buf_len); 1191 goto out; 1192 } 1193 1194 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1195 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1196 if (unlikely(!new_descs)) { 1197 pr_err("log_buf_len: %zu desc bytes not available\n", 1198 new_descs_size); 1199 goto err_free_log_buf; 1200 } 1201 1202 new_infos_size = new_descs_count * sizeof(struct printk_info); 1203 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1204 if (unlikely(!new_infos)) { 1205 pr_err("log_buf_len: %zu info bytes not available\n", 1206 new_infos_size); 1207 goto err_free_descs; 1208 } 1209 1210 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1211 1212 prb_init(&printk_rb_dynamic, 1213 new_log_buf, ilog2(new_log_buf_len), 1214 new_descs, ilog2(new_descs_count), 1215 new_infos); 1216 1217 local_irq_save(flags); 1218 1219 log_buf_len = new_log_buf_len; 1220 log_buf = new_log_buf; 1221 new_log_buf_len = 0; 1222 1223 free = __LOG_BUF_LEN; 1224 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1225 text_size = add_to_rb(&printk_rb_dynamic, &r); 1226 if (text_size > free) 1227 free = 0; 1228 else 1229 free -= text_size; 1230 } 1231 1232 prb = &printk_rb_dynamic; 1233 1234 local_irq_restore(flags); 1235 1236 /* 1237 * Copy any remaining messages that might have appeared from 1238 * NMI context after copying but before switching to the 1239 * dynamic buffer. 1240 */ 1241 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1242 text_size = add_to_rb(&printk_rb_dynamic, &r); 1243 if (text_size > free) 1244 free = 0; 1245 else 1246 free -= text_size; 1247 } 1248 1249 if (seq != prb_next_seq(&printk_rb_static)) { 1250 pr_err("dropped %llu messages\n", 1251 prb_next_seq(&printk_rb_static) - seq); 1252 } 1253 1254 print_log_buf_usage_stats(); 1255 pr_info("early log buf free: %u(%u%%)\n", 1256 free, (free * 100) / __LOG_BUF_LEN); 1257 return; 1258 1259 err_free_descs: 1260 memblock_free(new_descs, new_descs_size); 1261 err_free_log_buf: 1262 memblock_free(new_log_buf, new_log_buf_len); 1263 out: 1264 print_log_buf_usage_stats(); 1265 } 1266 1267 static bool __read_mostly ignore_loglevel; 1268 1269 static int __init ignore_loglevel_setup(char *str) 1270 { 1271 ignore_loglevel = true; 1272 pr_info("debug: ignoring loglevel setting.\n"); 1273 1274 return 0; 1275 } 1276 1277 early_param("ignore_loglevel", ignore_loglevel_setup); 1278 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1279 MODULE_PARM_DESC(ignore_loglevel, 1280 "ignore loglevel setting (prints all kernel messages to the console)"); 1281 1282 static bool suppress_message_printing(int level) 1283 { 1284 return (level >= console_loglevel && !ignore_loglevel); 1285 } 1286 1287 #ifdef CONFIG_BOOT_PRINTK_DELAY 1288 1289 static int boot_delay; /* msecs delay after each printk during bootup */ 1290 static unsigned long long loops_per_msec; /* based on boot_delay */ 1291 1292 static int __init boot_delay_setup(char *str) 1293 { 1294 unsigned long lpj; 1295 1296 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1297 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1298 1299 get_option(&str, &boot_delay); 1300 if (boot_delay > 10 * 1000) 1301 boot_delay = 0; 1302 1303 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1304 "HZ: %d, loops_per_msec: %llu\n", 1305 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1306 return 0; 1307 } 1308 early_param("boot_delay", boot_delay_setup); 1309 1310 static void boot_delay_msec(int level) 1311 { 1312 unsigned long long k; 1313 unsigned long timeout; 1314 bool suppress = !is_printk_force_console() && 1315 suppress_message_printing(level); 1316 1317 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) || suppress) 1318 return; 1319 1320 k = (unsigned long long)loops_per_msec * boot_delay; 1321 1322 timeout = jiffies + msecs_to_jiffies(boot_delay); 1323 while (k) { 1324 k--; 1325 cpu_relax(); 1326 /* 1327 * use (volatile) jiffies to prevent 1328 * compiler reduction; loop termination via jiffies 1329 * is secondary and may or may not happen. 1330 */ 1331 if (time_after(jiffies, timeout)) 1332 break; 1333 touch_nmi_watchdog(); 1334 } 1335 } 1336 #else 1337 static inline void boot_delay_msec(int level) 1338 { 1339 } 1340 #endif 1341 1342 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1343 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1344 1345 static size_t print_syslog(unsigned int level, char *buf) 1346 { 1347 return sprintf(buf, "<%u>", level); 1348 } 1349 1350 static size_t print_time(u64 ts, char *buf) 1351 { 1352 unsigned long rem_nsec = do_div(ts, 1000000000); 1353 1354 return sprintf(buf, "[%5lu.%06lu]", 1355 (unsigned long)ts, rem_nsec / 1000); 1356 } 1357 1358 #ifdef CONFIG_PRINTK_CALLER 1359 static size_t print_caller(u32 id, char *buf) 1360 { 1361 char caller[12]; 1362 1363 snprintf(caller, sizeof(caller), "%c%u", 1364 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1365 return sprintf(buf, "[%6s]", caller); 1366 } 1367 #else 1368 #define print_caller(id, buf) 0 1369 #endif 1370 1371 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1372 bool time, char *buf) 1373 { 1374 size_t len = 0; 1375 1376 if (syslog) 1377 len = print_syslog((info->facility << 3) | info->level, buf); 1378 1379 if (time) 1380 len += print_time(info->ts_nsec, buf + len); 1381 1382 len += print_caller(info->caller_id, buf + len); 1383 1384 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1385 buf[len++] = ' '; 1386 buf[len] = '\0'; 1387 } 1388 1389 return len; 1390 } 1391 1392 /* 1393 * Prepare the record for printing. The text is shifted within the given 1394 * buffer to avoid a need for another one. The following operations are 1395 * done: 1396 * 1397 * - Add prefix for each line. 1398 * - Drop truncated lines that no longer fit into the buffer. 1399 * - Add the trailing newline that has been removed in vprintk_store(). 1400 * - Add a string terminator. 1401 * 1402 * Since the produced string is always terminated, the maximum possible 1403 * return value is @r->text_buf_size - 1; 1404 * 1405 * Return: The length of the updated/prepared text, including the added 1406 * prefixes and the newline. The terminator is not counted. The dropped 1407 * line(s) are not counted. 1408 */ 1409 static size_t record_print_text(struct printk_record *r, bool syslog, 1410 bool time) 1411 { 1412 size_t text_len = r->info->text_len; 1413 size_t buf_size = r->text_buf_size; 1414 char *text = r->text_buf; 1415 char prefix[PRINTK_PREFIX_MAX]; 1416 bool truncated = false; 1417 size_t prefix_len; 1418 size_t line_len; 1419 size_t len = 0; 1420 char *next; 1421 1422 /* 1423 * If the message was truncated because the buffer was not large 1424 * enough, treat the available text as if it were the full text. 1425 */ 1426 if (text_len > buf_size) 1427 text_len = buf_size; 1428 1429 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1430 1431 /* 1432 * @text_len: bytes of unprocessed text 1433 * @line_len: bytes of current line _without_ newline 1434 * @text: pointer to beginning of current line 1435 * @len: number of bytes prepared in r->text_buf 1436 */ 1437 for (;;) { 1438 next = memchr(text, '\n', text_len); 1439 if (next) { 1440 line_len = next - text; 1441 } else { 1442 /* Drop truncated line(s). */ 1443 if (truncated) 1444 break; 1445 line_len = text_len; 1446 } 1447 1448 /* 1449 * Truncate the text if there is not enough space to add the 1450 * prefix and a trailing newline and a terminator. 1451 */ 1452 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1453 /* Drop even the current line if no space. */ 1454 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1455 break; 1456 1457 text_len = buf_size - len - prefix_len - 1 - 1; 1458 truncated = true; 1459 } 1460 1461 memmove(text + prefix_len, text, text_len); 1462 memcpy(text, prefix, prefix_len); 1463 1464 /* 1465 * Increment the prepared length to include the text and 1466 * prefix that were just moved+copied. Also increment for the 1467 * newline at the end of this line. If this is the last line, 1468 * there is no newline, but it will be added immediately below. 1469 */ 1470 len += prefix_len + line_len + 1; 1471 if (text_len == line_len) { 1472 /* 1473 * This is the last line. Add the trailing newline 1474 * removed in vprintk_store(). 1475 */ 1476 text[prefix_len + line_len] = '\n'; 1477 break; 1478 } 1479 1480 /* 1481 * Advance beyond the added prefix and the related line with 1482 * its newline. 1483 */ 1484 text += prefix_len + line_len + 1; 1485 1486 /* 1487 * The remaining text has only decreased by the line with its 1488 * newline. 1489 * 1490 * Note that @text_len can become zero. It happens when @text 1491 * ended with a newline (either due to truncation or the 1492 * original string ending with "\n\n"). The loop is correctly 1493 * repeated and (if not truncated) an empty line with a prefix 1494 * will be prepared. 1495 */ 1496 text_len -= line_len + 1; 1497 } 1498 1499 /* 1500 * If a buffer was provided, it will be terminated. Space for the 1501 * string terminator is guaranteed to be available. The terminator is 1502 * not counted in the return value. 1503 */ 1504 if (buf_size > 0) 1505 r->text_buf[len] = 0; 1506 1507 return len; 1508 } 1509 1510 static size_t get_record_print_text_size(struct printk_info *info, 1511 unsigned int line_count, 1512 bool syslog, bool time) 1513 { 1514 char prefix[PRINTK_PREFIX_MAX]; 1515 size_t prefix_len; 1516 1517 prefix_len = info_print_prefix(info, syslog, time, prefix); 1518 1519 /* 1520 * Each line will be preceded with a prefix. The intermediate 1521 * newlines are already within the text, but a final trailing 1522 * newline will be added. 1523 */ 1524 return ((prefix_len * line_count) + info->text_len + 1); 1525 } 1526 1527 /* 1528 * Beginning with @start_seq, find the first record where it and all following 1529 * records up to (but not including) @max_seq fit into @size. 1530 * 1531 * @max_seq is simply an upper bound and does not need to exist. If the caller 1532 * does not require an upper bound, -1 can be used for @max_seq. 1533 */ 1534 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1535 bool syslog, bool time) 1536 { 1537 struct printk_info info; 1538 unsigned int line_count; 1539 size_t len = 0; 1540 u64 seq; 1541 1542 /* Determine the size of the records up to @max_seq. */ 1543 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1544 if (info.seq >= max_seq) 1545 break; 1546 len += get_record_print_text_size(&info, line_count, syslog, time); 1547 } 1548 1549 /* 1550 * Adjust the upper bound for the next loop to avoid subtracting 1551 * lengths that were never added. 1552 */ 1553 if (seq < max_seq) 1554 max_seq = seq; 1555 1556 /* 1557 * Move first record forward until length fits into the buffer. Ignore 1558 * newest messages that were not counted in the above cycle. Messages 1559 * might appear and get lost in the meantime. This is a best effort 1560 * that prevents an infinite loop that could occur with a retry. 1561 */ 1562 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1563 if (len <= size || info.seq >= max_seq) 1564 break; 1565 len -= get_record_print_text_size(&info, line_count, syslog, time); 1566 } 1567 1568 return seq; 1569 } 1570 1571 /* The caller is responsible for making sure @size is greater than 0. */ 1572 static int syslog_print(char __user *buf, int size) 1573 { 1574 struct printk_info info; 1575 struct printk_record r; 1576 char *text; 1577 int len = 0; 1578 u64 seq; 1579 1580 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1581 if (!text) 1582 return -ENOMEM; 1583 1584 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1585 1586 mutex_lock(&syslog_lock); 1587 1588 /* 1589 * Wait for the @syslog_seq record to be available. @syslog_seq may 1590 * change while waiting. 1591 */ 1592 do { 1593 seq = syslog_seq; 1594 1595 mutex_unlock(&syslog_lock); 1596 /* 1597 * Guarantee this task is visible on the waitqueue before 1598 * checking the wake condition. 1599 * 1600 * The full memory barrier within set_current_state() of 1601 * prepare_to_wait_event() pairs with the full memory barrier 1602 * within wq_has_sleeper(). 1603 * 1604 * This pairs with __wake_up_klogd:A. 1605 */ 1606 len = wait_event_interruptible(log_wait, 1607 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1608 mutex_lock(&syslog_lock); 1609 1610 if (len) 1611 goto out; 1612 } while (syslog_seq != seq); 1613 1614 /* 1615 * Copy records that fit into the buffer. The above cycle makes sure 1616 * that the first record is always available. 1617 */ 1618 do { 1619 size_t n; 1620 size_t skip; 1621 int err; 1622 1623 if (!prb_read_valid(prb, syslog_seq, &r)) 1624 break; 1625 1626 if (r.info->seq != syslog_seq) { 1627 /* message is gone, move to next valid one */ 1628 syslog_seq = r.info->seq; 1629 syslog_partial = 0; 1630 } 1631 1632 /* 1633 * To keep reading/counting partial line consistent, 1634 * use printk_time value as of the beginning of a line. 1635 */ 1636 if (!syslog_partial) 1637 syslog_time = printk_time; 1638 1639 skip = syslog_partial; 1640 n = record_print_text(&r, true, syslog_time); 1641 if (n - syslog_partial <= size) { 1642 /* message fits into buffer, move forward */ 1643 syslog_seq = r.info->seq + 1; 1644 n -= syslog_partial; 1645 syslog_partial = 0; 1646 } else if (!len){ 1647 /* partial read(), remember position */ 1648 n = size; 1649 syslog_partial += n; 1650 } else 1651 n = 0; 1652 1653 if (!n) 1654 break; 1655 1656 mutex_unlock(&syslog_lock); 1657 err = copy_to_user(buf, text + skip, n); 1658 mutex_lock(&syslog_lock); 1659 1660 if (err) { 1661 if (!len) 1662 len = -EFAULT; 1663 break; 1664 } 1665 1666 len += n; 1667 size -= n; 1668 buf += n; 1669 } while (size); 1670 out: 1671 mutex_unlock(&syslog_lock); 1672 kfree(text); 1673 return len; 1674 } 1675 1676 static int syslog_print_all(char __user *buf, int size, bool clear) 1677 { 1678 struct printk_info info; 1679 struct printk_record r; 1680 char *text; 1681 int len = 0; 1682 u64 seq; 1683 bool time; 1684 1685 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1686 if (!text) 1687 return -ENOMEM; 1688 1689 time = printk_time; 1690 /* 1691 * Find first record that fits, including all following records, 1692 * into the user-provided buffer for this dump. 1693 */ 1694 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1695 size, true, time); 1696 1697 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1698 1699 prb_for_each_record(seq, prb, seq, &r) { 1700 int textlen; 1701 1702 textlen = record_print_text(&r, true, time); 1703 1704 if (len + textlen > size) { 1705 seq--; 1706 break; 1707 } 1708 1709 if (copy_to_user(buf + len, text, textlen)) 1710 len = -EFAULT; 1711 else 1712 len += textlen; 1713 1714 if (len < 0) 1715 break; 1716 } 1717 1718 if (clear) { 1719 mutex_lock(&syslog_lock); 1720 latched_seq_write(&clear_seq, seq); 1721 mutex_unlock(&syslog_lock); 1722 } 1723 1724 kfree(text); 1725 return len; 1726 } 1727 1728 static void syslog_clear(void) 1729 { 1730 mutex_lock(&syslog_lock); 1731 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1732 mutex_unlock(&syslog_lock); 1733 } 1734 1735 int do_syslog(int type, char __user *buf, int len, int source) 1736 { 1737 struct printk_info info; 1738 bool clear = false; 1739 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1740 int error; 1741 1742 error = check_syslog_permissions(type, source); 1743 if (error) 1744 return error; 1745 1746 switch (type) { 1747 case SYSLOG_ACTION_CLOSE: /* Close log */ 1748 break; 1749 case SYSLOG_ACTION_OPEN: /* Open log */ 1750 break; 1751 case SYSLOG_ACTION_READ: /* Read from log */ 1752 if (!buf || len < 0) 1753 return -EINVAL; 1754 if (!len) 1755 return 0; 1756 if (!access_ok(buf, len)) 1757 return -EFAULT; 1758 error = syslog_print(buf, len); 1759 break; 1760 /* Read/clear last kernel messages */ 1761 case SYSLOG_ACTION_READ_CLEAR: 1762 clear = true; 1763 fallthrough; 1764 /* Read last kernel messages */ 1765 case SYSLOG_ACTION_READ_ALL: 1766 if (!buf || len < 0) 1767 return -EINVAL; 1768 if (!len) 1769 return 0; 1770 if (!access_ok(buf, len)) 1771 return -EFAULT; 1772 error = syslog_print_all(buf, len, clear); 1773 break; 1774 /* Clear ring buffer */ 1775 case SYSLOG_ACTION_CLEAR: 1776 syslog_clear(); 1777 break; 1778 /* Disable logging to console */ 1779 case SYSLOG_ACTION_CONSOLE_OFF: 1780 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1781 saved_console_loglevel = console_loglevel; 1782 console_loglevel = minimum_console_loglevel; 1783 break; 1784 /* Enable logging to console */ 1785 case SYSLOG_ACTION_CONSOLE_ON: 1786 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1787 console_loglevel = saved_console_loglevel; 1788 saved_console_loglevel = LOGLEVEL_DEFAULT; 1789 } 1790 break; 1791 /* Set level of messages printed to console */ 1792 case SYSLOG_ACTION_CONSOLE_LEVEL: 1793 if (len < 1 || len > 8) 1794 return -EINVAL; 1795 if (len < minimum_console_loglevel) 1796 len = minimum_console_loglevel; 1797 console_loglevel = len; 1798 /* Implicitly re-enable logging to console */ 1799 saved_console_loglevel = LOGLEVEL_DEFAULT; 1800 break; 1801 /* Number of chars in the log buffer */ 1802 case SYSLOG_ACTION_SIZE_UNREAD: 1803 mutex_lock(&syslog_lock); 1804 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1805 /* No unread messages. */ 1806 mutex_unlock(&syslog_lock); 1807 return 0; 1808 } 1809 if (info.seq != syslog_seq) { 1810 /* messages are gone, move to first one */ 1811 syslog_seq = info.seq; 1812 syslog_partial = 0; 1813 } 1814 if (source == SYSLOG_FROM_PROC) { 1815 /* 1816 * Short-cut for poll(/"proc/kmsg") which simply checks 1817 * for pending data, not the size; return the count of 1818 * records, not the length. 1819 */ 1820 error = prb_next_seq(prb) - syslog_seq; 1821 } else { 1822 bool time = syslog_partial ? syslog_time : printk_time; 1823 unsigned int line_count; 1824 u64 seq; 1825 1826 prb_for_each_info(syslog_seq, prb, seq, &info, 1827 &line_count) { 1828 error += get_record_print_text_size(&info, line_count, 1829 true, time); 1830 time = printk_time; 1831 } 1832 error -= syslog_partial; 1833 } 1834 mutex_unlock(&syslog_lock); 1835 break; 1836 /* Size of the log buffer */ 1837 case SYSLOG_ACTION_SIZE_BUFFER: 1838 error = log_buf_len; 1839 break; 1840 default: 1841 error = -EINVAL; 1842 break; 1843 } 1844 1845 return error; 1846 } 1847 1848 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1849 { 1850 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1851 } 1852 1853 /* 1854 * Special console_lock variants that help to reduce the risk of soft-lockups. 1855 * They allow to pass console_lock to another printk() call using a busy wait. 1856 */ 1857 1858 #ifdef CONFIG_LOCKDEP 1859 static struct lockdep_map console_owner_dep_map = { 1860 .name = "console_owner" 1861 }; 1862 #endif 1863 1864 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1865 static struct task_struct *console_owner; 1866 static bool console_waiter; 1867 1868 /** 1869 * console_lock_spinning_enable - mark beginning of code where another 1870 * thread might safely busy wait 1871 * 1872 * This basically converts console_lock into a spinlock. This marks 1873 * the section where the console_lock owner can not sleep, because 1874 * there may be a waiter spinning (like a spinlock). Also it must be 1875 * ready to hand over the lock at the end of the section. 1876 */ 1877 void console_lock_spinning_enable(void) 1878 { 1879 /* 1880 * Do not use spinning in panic(). The panic CPU wants to keep the lock. 1881 * Non-panic CPUs abandon the flush anyway. 1882 * 1883 * Just keep the lockdep annotation. The panic-CPU should avoid 1884 * taking console_owner_lock because it might cause a deadlock. 1885 * This looks like the easiest way how to prevent false lockdep 1886 * reports without handling races a lockless way. 1887 */ 1888 if (panic_in_progress()) 1889 goto lockdep; 1890 1891 raw_spin_lock(&console_owner_lock); 1892 console_owner = current; 1893 raw_spin_unlock(&console_owner_lock); 1894 1895 lockdep: 1896 /* The waiter may spin on us after setting console_owner */ 1897 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1898 } 1899 1900 /** 1901 * console_lock_spinning_disable_and_check - mark end of code where another 1902 * thread was able to busy wait and check if there is a waiter 1903 * @cookie: cookie returned from console_srcu_read_lock() 1904 * 1905 * This is called at the end of the section where spinning is allowed. 1906 * It has two functions. First, it is a signal that it is no longer 1907 * safe to start busy waiting for the lock. Second, it checks if 1908 * there is a busy waiter and passes the lock rights to her. 1909 * 1910 * Important: Callers lose both the console_lock and the SRCU read lock if 1911 * there was a busy waiter. They must not touch items synchronized by 1912 * console_lock or SRCU read lock in this case. 1913 * 1914 * Return: 1 if the lock rights were passed, 0 otherwise. 1915 */ 1916 int console_lock_spinning_disable_and_check(int cookie) 1917 { 1918 int waiter; 1919 1920 /* 1921 * Ignore spinning waiters during panic() because they might get stopped 1922 * or blocked at any time, 1923 * 1924 * It is safe because nobody is allowed to start spinning during panic 1925 * in the first place. If there has been a waiter then non panic CPUs 1926 * might stay spinning. They would get stopped anyway. The panic context 1927 * will never start spinning and an interrupted spin on panic CPU will 1928 * never continue. 1929 */ 1930 if (panic_in_progress()) { 1931 /* Keep lockdep happy. */ 1932 spin_release(&console_owner_dep_map, _THIS_IP_); 1933 return 0; 1934 } 1935 1936 raw_spin_lock(&console_owner_lock); 1937 waiter = READ_ONCE(console_waiter); 1938 console_owner = NULL; 1939 raw_spin_unlock(&console_owner_lock); 1940 1941 if (!waiter) { 1942 spin_release(&console_owner_dep_map, _THIS_IP_); 1943 return 0; 1944 } 1945 1946 /* The waiter is now free to continue */ 1947 WRITE_ONCE(console_waiter, false); 1948 1949 spin_release(&console_owner_dep_map, _THIS_IP_); 1950 1951 /* 1952 * Preserve lockdep lock ordering. Release the SRCU read lock before 1953 * releasing the console_lock. 1954 */ 1955 console_srcu_read_unlock(cookie); 1956 1957 /* 1958 * Hand off console_lock to waiter. The waiter will perform 1959 * the up(). After this, the waiter is the console_lock owner. 1960 */ 1961 mutex_release(&console_lock_dep_map, _THIS_IP_); 1962 return 1; 1963 } 1964 1965 /** 1966 * console_trylock_spinning - try to get console_lock by busy waiting 1967 * 1968 * This allows to busy wait for the console_lock when the current 1969 * owner is running in specially marked sections. It means that 1970 * the current owner is running and cannot reschedule until it 1971 * is ready to lose the lock. 1972 * 1973 * Return: 1 if we got the lock, 0 othrewise 1974 */ 1975 static int console_trylock_spinning(void) 1976 { 1977 struct task_struct *owner = NULL; 1978 bool waiter; 1979 bool spin = false; 1980 unsigned long flags; 1981 1982 if (console_trylock()) 1983 return 1; 1984 1985 /* 1986 * It's unsafe to spin once a panic has begun. If we are the 1987 * panic CPU, we may have already halted the owner of the 1988 * console_sem. If we are not the panic CPU, then we should 1989 * avoid taking console_sem, so the panic CPU has a better 1990 * chance of cleanly acquiring it later. 1991 */ 1992 if (panic_in_progress()) 1993 return 0; 1994 1995 printk_safe_enter_irqsave(flags); 1996 1997 raw_spin_lock(&console_owner_lock); 1998 owner = READ_ONCE(console_owner); 1999 waiter = READ_ONCE(console_waiter); 2000 if (!waiter && owner && owner != current) { 2001 WRITE_ONCE(console_waiter, true); 2002 spin = true; 2003 } 2004 raw_spin_unlock(&console_owner_lock); 2005 2006 /* 2007 * If there is an active printk() writing to the 2008 * consoles, instead of having it write our data too, 2009 * see if we can offload that load from the active 2010 * printer, and do some printing ourselves. 2011 * Go into a spin only if there isn't already a waiter 2012 * spinning, and there is an active printer, and 2013 * that active printer isn't us (recursive printk?). 2014 */ 2015 if (!spin) { 2016 printk_safe_exit_irqrestore(flags); 2017 return 0; 2018 } 2019 2020 /* We spin waiting for the owner to release us */ 2021 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 2022 /* Owner will clear console_waiter on hand off */ 2023 while (READ_ONCE(console_waiter)) 2024 cpu_relax(); 2025 spin_release(&console_owner_dep_map, _THIS_IP_); 2026 2027 printk_safe_exit_irqrestore(flags); 2028 /* 2029 * The owner passed the console lock to us. 2030 * Since we did not spin on console lock, annotate 2031 * this as a trylock. Otherwise lockdep will 2032 * complain. 2033 */ 2034 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 2035 2036 /* 2037 * Update @console_may_schedule for trylock because the previous 2038 * owner may have been schedulable. 2039 */ 2040 console_may_schedule = 0; 2041 2042 return 1; 2043 } 2044 2045 /* 2046 * Recursion is tracked separately on each CPU. If NMIs are supported, an 2047 * additional NMI context per CPU is also separately tracked. Until per-CPU 2048 * is available, a separate "early tracking" is performed. 2049 */ 2050 static DEFINE_PER_CPU(u8, printk_count); 2051 static u8 printk_count_early; 2052 #ifdef CONFIG_HAVE_NMI 2053 static DEFINE_PER_CPU(u8, printk_count_nmi); 2054 static u8 printk_count_nmi_early; 2055 #endif 2056 2057 /* 2058 * Recursion is limited to keep the output sane. printk() should not require 2059 * more than 1 level of recursion (allowing, for example, printk() to trigger 2060 * a WARN), but a higher value is used in case some printk-internal errors 2061 * exist, such as the ringbuffer validation checks failing. 2062 */ 2063 #define PRINTK_MAX_RECURSION 3 2064 2065 /* 2066 * Return a pointer to the dedicated counter for the CPU+context of the 2067 * caller. 2068 */ 2069 static u8 *__printk_recursion_counter(void) 2070 { 2071 #ifdef CONFIG_HAVE_NMI 2072 if (in_nmi()) { 2073 if (printk_percpu_data_ready()) 2074 return this_cpu_ptr(&printk_count_nmi); 2075 return &printk_count_nmi_early; 2076 } 2077 #endif 2078 if (printk_percpu_data_ready()) 2079 return this_cpu_ptr(&printk_count); 2080 return &printk_count_early; 2081 } 2082 2083 /* 2084 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2085 * The caller must check the boolean return value to see if the recursion is 2086 * allowed. On failure, interrupts are not disabled. 2087 * 2088 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2089 * that is passed to printk_exit_irqrestore(). 2090 */ 2091 #define printk_enter_irqsave(recursion_ptr, flags) \ 2092 ({ \ 2093 bool success = true; \ 2094 \ 2095 typecheck(u8 *, recursion_ptr); \ 2096 local_irq_save(flags); \ 2097 (recursion_ptr) = __printk_recursion_counter(); \ 2098 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2099 local_irq_restore(flags); \ 2100 success = false; \ 2101 } else { \ 2102 (*(recursion_ptr))++; \ 2103 } \ 2104 success; \ 2105 }) 2106 2107 /* Exit recursion tracking, restoring interrupts. */ 2108 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2109 do { \ 2110 typecheck(u8 *, recursion_ptr); \ 2111 (*(recursion_ptr))--; \ 2112 local_irq_restore(flags); \ 2113 } while (0) 2114 2115 int printk_delay_msec __read_mostly; 2116 2117 static inline void printk_delay(int level) 2118 { 2119 boot_delay_msec(level); 2120 2121 if (unlikely(printk_delay_msec)) { 2122 int m = printk_delay_msec; 2123 2124 while (m--) { 2125 mdelay(1); 2126 touch_nmi_watchdog(); 2127 } 2128 } 2129 } 2130 2131 static inline u32 printk_caller_id(void) 2132 { 2133 return in_task() ? task_pid_nr(current) : 2134 0x80000000 + smp_processor_id(); 2135 } 2136 2137 /** 2138 * printk_parse_prefix - Parse level and control flags. 2139 * 2140 * @text: The terminated text message. 2141 * @level: A pointer to the current level value, will be updated. 2142 * @flags: A pointer to the current printk_info flags, will be updated. 2143 * 2144 * @level may be NULL if the caller is not interested in the parsed value. 2145 * Otherwise the variable pointed to by @level must be set to 2146 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2147 * 2148 * @flags may be NULL if the caller is not interested in the parsed value. 2149 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2150 * value. 2151 * 2152 * Return: The length of the parsed level and control flags. 2153 */ 2154 u16 printk_parse_prefix(const char *text, int *level, 2155 enum printk_info_flags *flags) 2156 { 2157 u16 prefix_len = 0; 2158 int kern_level; 2159 2160 while (*text) { 2161 kern_level = printk_get_level(text); 2162 if (!kern_level) 2163 break; 2164 2165 switch (kern_level) { 2166 case '0' ... '7': 2167 if (level && *level == LOGLEVEL_DEFAULT) 2168 *level = kern_level - '0'; 2169 break; 2170 case 'c': /* KERN_CONT */ 2171 if (flags) 2172 *flags |= LOG_CONT; 2173 } 2174 2175 prefix_len += 2; 2176 text += 2; 2177 } 2178 2179 return prefix_len; 2180 } 2181 2182 __printf(5, 0) 2183 static u16 printk_sprint(char *text, u16 size, int facility, 2184 enum printk_info_flags *flags, const char *fmt, 2185 va_list args) 2186 { 2187 u16 text_len; 2188 2189 text_len = vscnprintf(text, size, fmt, args); 2190 2191 /* Mark and strip a trailing newline. */ 2192 if (text_len && text[text_len - 1] == '\n') { 2193 text_len--; 2194 *flags |= LOG_NEWLINE; 2195 } 2196 2197 /* Strip log level and control flags. */ 2198 if (facility == 0) { 2199 u16 prefix_len; 2200 2201 prefix_len = printk_parse_prefix(text, NULL, NULL); 2202 if (prefix_len) { 2203 text_len -= prefix_len; 2204 memmove(text, text + prefix_len, text_len); 2205 } 2206 } 2207 2208 trace_console(text, text_len); 2209 2210 return text_len; 2211 } 2212 2213 __printf(4, 0) 2214 int vprintk_store(int facility, int level, 2215 const struct dev_printk_info *dev_info, 2216 const char *fmt, va_list args) 2217 { 2218 struct prb_reserved_entry e; 2219 enum printk_info_flags flags = 0; 2220 struct printk_record r; 2221 unsigned long irqflags; 2222 u16 trunc_msg_len = 0; 2223 char prefix_buf[8]; 2224 u8 *recursion_ptr; 2225 u16 reserve_size; 2226 va_list args2; 2227 u32 caller_id; 2228 u16 text_len; 2229 int ret = 0; 2230 u64 ts_nsec; 2231 2232 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2233 return 0; 2234 2235 /* 2236 * Since the duration of printk() can vary depending on the message 2237 * and state of the ringbuffer, grab the timestamp now so that it is 2238 * close to the call of printk(). This provides a more deterministic 2239 * timestamp with respect to the caller. 2240 */ 2241 ts_nsec = local_clock(); 2242 2243 caller_id = printk_caller_id(); 2244 2245 /* 2246 * The sprintf needs to come first since the syslog prefix might be 2247 * passed in as a parameter. An extra byte must be reserved so that 2248 * later the vscnprintf() into the reserved buffer has room for the 2249 * terminating '\0', which is not counted by vsnprintf(). 2250 */ 2251 va_copy(args2, args); 2252 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2253 va_end(args2); 2254 2255 if (reserve_size > PRINTKRB_RECORD_MAX) 2256 reserve_size = PRINTKRB_RECORD_MAX; 2257 2258 /* Extract log level or control flags. */ 2259 if (facility == 0) 2260 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2261 2262 if (level == LOGLEVEL_DEFAULT) 2263 level = default_message_loglevel; 2264 2265 if (dev_info) 2266 flags |= LOG_NEWLINE; 2267 2268 if (is_printk_force_console()) 2269 flags |= LOG_FORCE_CON; 2270 2271 if (flags & LOG_CONT) { 2272 prb_rec_init_wr(&r, reserve_size); 2273 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2274 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2275 facility, &flags, fmt, args); 2276 r.info->text_len += text_len; 2277 2278 if (flags & LOG_FORCE_CON) 2279 r.info->flags |= LOG_FORCE_CON; 2280 2281 if (flags & LOG_NEWLINE) { 2282 r.info->flags |= LOG_NEWLINE; 2283 prb_final_commit(&e); 2284 } else { 2285 prb_commit(&e); 2286 } 2287 2288 ret = text_len; 2289 goto out; 2290 } 2291 } 2292 2293 /* 2294 * Explicitly initialize the record before every prb_reserve() call. 2295 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2296 * structure when they fail. 2297 */ 2298 prb_rec_init_wr(&r, reserve_size); 2299 if (!prb_reserve(&e, prb, &r)) { 2300 /* truncate the message if it is too long for empty buffer */ 2301 truncate_msg(&reserve_size, &trunc_msg_len); 2302 2303 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2304 if (!prb_reserve(&e, prb, &r)) 2305 goto out; 2306 } 2307 2308 /* fill message */ 2309 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2310 if (trunc_msg_len) 2311 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2312 r.info->text_len = text_len + trunc_msg_len; 2313 r.info->facility = facility; 2314 r.info->level = level & 7; 2315 r.info->flags = flags & 0x1f; 2316 r.info->ts_nsec = ts_nsec; 2317 r.info->caller_id = caller_id; 2318 if (dev_info) 2319 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2320 2321 /* A message without a trailing newline can be continued. */ 2322 if (!(flags & LOG_NEWLINE)) 2323 prb_commit(&e); 2324 else 2325 prb_final_commit(&e); 2326 2327 ret = text_len + trunc_msg_len; 2328 out: 2329 printk_exit_irqrestore(recursion_ptr, irqflags); 2330 return ret; 2331 } 2332 2333 /* 2334 * This acts as a one-way switch to allow legacy consoles to print from 2335 * the printk() caller context on a panic CPU. It also attempts to flush 2336 * the legacy consoles in this context. 2337 */ 2338 void printk_legacy_allow_panic_sync(void) 2339 { 2340 struct console_flush_type ft; 2341 2342 legacy_allow_panic_sync = true; 2343 2344 printk_get_console_flush_type(&ft); 2345 if (ft.legacy_direct) { 2346 if (console_trylock()) 2347 console_unlock(); 2348 } 2349 } 2350 2351 bool __read_mostly debug_non_panic_cpus; 2352 2353 #ifdef CONFIG_PRINTK_CALLER 2354 static int __init debug_non_panic_cpus_setup(char *str) 2355 { 2356 debug_non_panic_cpus = true; 2357 pr_info("allow messages from non-panic CPUs in panic()\n"); 2358 2359 return 0; 2360 } 2361 early_param("debug_non_panic_cpus", debug_non_panic_cpus_setup); 2362 module_param(debug_non_panic_cpus, bool, 0644); 2363 MODULE_PARM_DESC(debug_non_panic_cpus, 2364 "allow messages from non-panic CPUs in panic()"); 2365 #endif 2366 2367 asmlinkage int vprintk_emit(int facility, int level, 2368 const struct dev_printk_info *dev_info, 2369 const char *fmt, va_list args) 2370 { 2371 struct console_flush_type ft; 2372 int printed_len; 2373 2374 /* Suppress unimportant messages after panic happens */ 2375 if (unlikely(suppress_printk)) 2376 return 0; 2377 2378 /* 2379 * The messages on the panic CPU are the most important. If 2380 * non-panic CPUs are generating any messages, they will be 2381 * silently dropped. 2382 */ 2383 if (panic_on_other_cpu() && 2384 !debug_non_panic_cpus && 2385 !panic_triggering_all_cpu_backtrace) 2386 return 0; 2387 2388 printk_get_console_flush_type(&ft); 2389 2390 /* If called from the scheduler, we can not call up(). */ 2391 if (level == LOGLEVEL_SCHED) { 2392 level = LOGLEVEL_DEFAULT; 2393 ft.legacy_offload |= ft.legacy_direct; 2394 ft.legacy_direct = false; 2395 } 2396 2397 printk_delay(level); 2398 2399 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2400 2401 if (ft.nbcon_atomic) 2402 nbcon_atomic_flush_pending(); 2403 2404 if (ft.nbcon_offload) 2405 nbcon_kthreads_wake(); 2406 2407 if (ft.legacy_direct) { 2408 /* 2409 * The caller may be holding system-critical or 2410 * timing-sensitive locks. Disable preemption during 2411 * printing of all remaining records to all consoles so that 2412 * this context can return as soon as possible. Hopefully 2413 * another printk() caller will take over the printing. 2414 */ 2415 preempt_disable(); 2416 /* 2417 * Try to acquire and then immediately release the console 2418 * semaphore. The release will print out buffers. With the 2419 * spinning variant, this context tries to take over the 2420 * printing from another printing context. 2421 */ 2422 if (console_trylock_spinning()) 2423 console_unlock(); 2424 preempt_enable(); 2425 } 2426 2427 if (ft.legacy_offload) 2428 defer_console_output(); 2429 else 2430 wake_up_klogd(); 2431 2432 return printed_len; 2433 } 2434 EXPORT_SYMBOL(vprintk_emit); 2435 2436 int vprintk_default(const char *fmt, va_list args) 2437 { 2438 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2439 } 2440 EXPORT_SYMBOL_GPL(vprintk_default); 2441 2442 asmlinkage __visible int _printk(const char *fmt, ...) 2443 { 2444 va_list args; 2445 int r; 2446 2447 va_start(args, fmt); 2448 r = vprintk(fmt, args); 2449 va_end(args); 2450 2451 return r; 2452 } 2453 EXPORT_SYMBOL(_printk); 2454 2455 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2456 2457 #else /* CONFIG_PRINTK */ 2458 2459 #define printk_time false 2460 2461 #define prb_read_valid(rb, seq, r) false 2462 #define prb_first_valid_seq(rb) 0 2463 #define prb_next_seq(rb) 0 2464 2465 static u64 syslog_seq; 2466 2467 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2468 2469 #endif /* CONFIG_PRINTK */ 2470 2471 #ifdef CONFIG_EARLY_PRINTK 2472 struct console *early_console; 2473 2474 asmlinkage __visible void early_printk(const char *fmt, ...) 2475 { 2476 va_list ap; 2477 char buf[512]; 2478 int n; 2479 2480 if (!early_console) 2481 return; 2482 2483 va_start(ap, fmt); 2484 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2485 va_end(ap); 2486 2487 early_console->write(early_console, buf, n); 2488 } 2489 #endif 2490 2491 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2492 { 2493 if (!user_specified) 2494 return; 2495 2496 /* 2497 * @c console was defined by the user on the command line. 2498 * Do not clear when added twice also by SPCR or the device tree. 2499 */ 2500 c->user_specified = true; 2501 /* At least one console defined by the user on the command line. */ 2502 console_set_on_cmdline = 1; 2503 } 2504 2505 static int __add_preferred_console(const char *name, const short idx, 2506 const char *devname, char *options, 2507 char *brl_options, bool user_specified) 2508 { 2509 struct console_cmdline *c; 2510 int i; 2511 2512 if (!name && !devname) 2513 return -EINVAL; 2514 2515 /* 2516 * We use a signed short index for struct console for device drivers to 2517 * indicate a not yet assigned index or port. However, a negative index 2518 * value is not valid when the console name and index are defined on 2519 * the command line. 2520 */ 2521 if (name && idx < 0) 2522 return -EINVAL; 2523 2524 /* 2525 * See if this tty is not yet registered, and 2526 * if we have a slot free. 2527 */ 2528 for (i = 0, c = console_cmdline; 2529 i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 2530 i++, c++) { 2531 if ((name && strcmp(c->name, name) == 0 && c->index == idx) || 2532 (devname && strcmp(c->devname, devname) == 0)) { 2533 if (!brl_options) 2534 preferred_console = i; 2535 set_user_specified(c, user_specified); 2536 return 0; 2537 } 2538 } 2539 if (i == MAX_CMDLINECONSOLES) 2540 return -E2BIG; 2541 if (!brl_options) 2542 preferred_console = i; 2543 if (name) 2544 strscpy(c->name, name); 2545 if (devname) 2546 strscpy(c->devname, devname); 2547 c->options = options; 2548 set_user_specified(c, user_specified); 2549 braille_set_options(c, brl_options); 2550 2551 c->index = idx; 2552 return 0; 2553 } 2554 2555 static int __init console_msg_format_setup(char *str) 2556 { 2557 if (!strcmp(str, "syslog")) 2558 console_msg_format = MSG_FORMAT_SYSLOG; 2559 if (!strcmp(str, "default")) 2560 console_msg_format = MSG_FORMAT_DEFAULT; 2561 return 1; 2562 } 2563 __setup("console_msg_format=", console_msg_format_setup); 2564 2565 /* 2566 * Set up a console. Called via do_early_param() in init/main.c 2567 * for each "console=" parameter in the boot command line. 2568 */ 2569 static int __init console_setup(char *str) 2570 { 2571 static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4); 2572 char buf[sizeof(console_cmdline[0].devname)]; 2573 char *brl_options = NULL; 2574 char *ttyname = NULL; 2575 char *devname = NULL; 2576 char *options; 2577 char *s; 2578 int idx; 2579 2580 /* 2581 * console="" or console=null have been suggested as a way to 2582 * disable console output. Use ttynull that has been created 2583 * for exactly this purpose. 2584 */ 2585 if (str[0] == 0 || strcmp(str, "null") == 0) { 2586 __add_preferred_console("ttynull", 0, NULL, NULL, NULL, true); 2587 return 1; 2588 } 2589 2590 if (_braille_console_setup(&str, &brl_options)) 2591 return 1; 2592 2593 /* For a DEVNAME:0.0 style console the character device is unknown early */ 2594 if (strchr(str, ':')) 2595 devname = buf; 2596 else 2597 ttyname = buf; 2598 2599 /* 2600 * Decode str into name, index, options. 2601 */ 2602 if (ttyname && isdigit(str[0])) 2603 scnprintf(buf, sizeof(buf), "ttyS%s", str); 2604 else 2605 strscpy(buf, str); 2606 2607 options = strchr(str, ','); 2608 if (options) 2609 *(options++) = 0; 2610 2611 #ifdef __sparc__ 2612 if (!strcmp(str, "ttya")) 2613 strscpy(buf, "ttyS0"); 2614 if (!strcmp(str, "ttyb")) 2615 strscpy(buf, "ttyS1"); 2616 #endif 2617 2618 for (s = buf; *s; s++) 2619 if ((ttyname && isdigit(*s)) || *s == ',') 2620 break; 2621 2622 /* @idx will get defined when devname matches. */ 2623 if (devname) 2624 idx = -1; 2625 else 2626 idx = simple_strtoul(s, NULL, 10); 2627 2628 *s = 0; 2629 2630 __add_preferred_console(ttyname, idx, devname, options, brl_options, true); 2631 return 1; 2632 } 2633 __setup("console=", console_setup); 2634 2635 /** 2636 * add_preferred_console - add a device to the list of preferred consoles. 2637 * @name: device name 2638 * @idx: device index 2639 * @options: options for this console 2640 * 2641 * The last preferred console added will be used for kernel messages 2642 * and stdin/out/err for init. Normally this is used by console_setup 2643 * above to handle user-supplied console arguments; however it can also 2644 * be used by arch-specific code either to override the user or more 2645 * commonly to provide a default console (ie from PROM variables) when 2646 * the user has not supplied one. 2647 */ 2648 int add_preferred_console(const char *name, const short idx, char *options) 2649 { 2650 return __add_preferred_console(name, idx, NULL, options, NULL, false); 2651 } 2652 2653 /** 2654 * match_devname_and_update_preferred_console - Update a preferred console 2655 * when matching devname is found. 2656 * @devname: DEVNAME:0.0 style device name 2657 * @name: Name of the corresponding console driver, e.g. "ttyS" 2658 * @idx: Console index, e.g. port number. 2659 * 2660 * The function checks whether a device with the given @devname is 2661 * preferred via the console=DEVNAME:0.0 command line option. 2662 * It fills the missing console driver name and console index 2663 * so that a later register_console() call could find (match) 2664 * and enable this device. 2665 * 2666 * It might be used when a driver subsystem initializes particular 2667 * devices with already known DEVNAME:0.0 style names. And it 2668 * could predict which console driver name and index this device 2669 * would later get associated with. 2670 * 2671 * Return: 0 on success, negative error code on failure. 2672 */ 2673 int match_devname_and_update_preferred_console(const char *devname, 2674 const char *name, 2675 const short idx) 2676 { 2677 struct console_cmdline *c = console_cmdline; 2678 int i; 2679 2680 if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0) 2681 return -EINVAL; 2682 2683 for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 2684 i++, c++) { 2685 if (!strcmp(devname, c->devname)) { 2686 pr_info("associate the preferred console \"%s\" with \"%s%d\"\n", 2687 devname, name, idx); 2688 strscpy(c->name, name); 2689 c->index = idx; 2690 return 0; 2691 } 2692 } 2693 2694 return -ENOENT; 2695 } 2696 EXPORT_SYMBOL_GPL(match_devname_and_update_preferred_console); 2697 2698 bool console_suspend_enabled = true; 2699 EXPORT_SYMBOL(console_suspend_enabled); 2700 2701 static int __init console_suspend_disable(char *str) 2702 { 2703 console_suspend_enabled = false; 2704 return 1; 2705 } 2706 __setup("no_console_suspend", console_suspend_disable); 2707 module_param_named(console_suspend, console_suspend_enabled, 2708 bool, S_IRUGO | S_IWUSR); 2709 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2710 " and hibernate operations"); 2711 2712 static bool printk_console_no_auto_verbose; 2713 2714 void console_verbose(void) 2715 { 2716 if (console_loglevel && !printk_console_no_auto_verbose) 2717 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2718 } 2719 EXPORT_SYMBOL_GPL(console_verbose); 2720 2721 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2722 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2723 2724 /** 2725 * console_suspend_all - suspend the console subsystem 2726 * 2727 * This disables printk() while we go into suspend states 2728 */ 2729 void console_suspend_all(void) 2730 { 2731 struct console *con; 2732 2733 if (!console_suspend_enabled) 2734 return; 2735 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2736 pr_flush(1000, true); 2737 2738 console_list_lock(); 2739 for_each_console(con) 2740 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2741 console_list_unlock(); 2742 2743 /* 2744 * Ensure that all SRCU list walks have completed. All printing 2745 * contexts must be able to see that they are suspended so that it 2746 * is guaranteed that all printing has stopped when this function 2747 * completes. 2748 */ 2749 synchronize_srcu(&console_srcu); 2750 } 2751 2752 void console_resume_all(void) 2753 { 2754 struct console_flush_type ft; 2755 struct console *con; 2756 2757 if (!console_suspend_enabled) 2758 return; 2759 2760 console_list_lock(); 2761 for_each_console(con) 2762 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2763 console_list_unlock(); 2764 2765 /* 2766 * Ensure that all SRCU list walks have completed. All printing 2767 * contexts must be able to see they are no longer suspended so 2768 * that they are guaranteed to wake up and resume printing. 2769 */ 2770 synchronize_srcu(&console_srcu); 2771 2772 printk_get_console_flush_type(&ft); 2773 if (ft.nbcon_offload) 2774 nbcon_kthreads_wake(); 2775 if (ft.legacy_offload) 2776 defer_console_output(); 2777 2778 pr_flush(1000, true); 2779 } 2780 2781 /** 2782 * console_cpu_notify - print deferred console messages after CPU hotplug 2783 * @cpu: unused 2784 * 2785 * If printk() is called from a CPU that is not online yet, the messages 2786 * will be printed on the console only if there are CON_ANYTIME consoles. 2787 * This function is called when a new CPU comes online (or fails to come 2788 * up) or goes offline. 2789 */ 2790 static int console_cpu_notify(unsigned int cpu) 2791 { 2792 struct console_flush_type ft; 2793 2794 if (!cpuhp_tasks_frozen) { 2795 printk_get_console_flush_type(&ft); 2796 if (ft.nbcon_atomic) 2797 nbcon_atomic_flush_pending(); 2798 if (ft.legacy_direct) { 2799 if (console_trylock()) 2800 console_unlock(); 2801 } 2802 } 2803 return 0; 2804 } 2805 2806 /** 2807 * console_lock - block the console subsystem from printing 2808 * 2809 * Acquires a lock which guarantees that no consoles will 2810 * be in or enter their write() callback. 2811 * 2812 * Can sleep, returns nothing. 2813 */ 2814 void console_lock(void) 2815 { 2816 might_sleep(); 2817 2818 /* On panic, the console_lock must be left to the panic cpu. */ 2819 while (panic_on_other_cpu()) 2820 msleep(1000); 2821 2822 down_console_sem(); 2823 console_locked = 1; 2824 console_may_schedule = 1; 2825 } 2826 EXPORT_SYMBOL(console_lock); 2827 2828 /** 2829 * console_trylock - try to block the console subsystem from printing 2830 * 2831 * Try to acquire a lock which guarantees that no consoles will 2832 * be in or enter their write() callback. 2833 * 2834 * returns 1 on success, and 0 on failure to acquire the lock. 2835 */ 2836 int console_trylock(void) 2837 { 2838 /* On panic, the console_lock must be left to the panic cpu. */ 2839 if (panic_on_other_cpu()) 2840 return 0; 2841 if (down_trylock_console_sem()) 2842 return 0; 2843 console_locked = 1; 2844 console_may_schedule = 0; 2845 return 1; 2846 } 2847 EXPORT_SYMBOL(console_trylock); 2848 2849 int is_console_locked(void) 2850 { 2851 return console_locked; 2852 } 2853 EXPORT_SYMBOL(is_console_locked); 2854 2855 static void __console_unlock(void) 2856 { 2857 console_locked = 0; 2858 up_console_sem(); 2859 } 2860 2861 #ifdef CONFIG_PRINTK 2862 2863 /* 2864 * Prepend the message in @pmsg->pbufs->outbuf. This is achieved by shifting 2865 * the existing message over and inserting the scratchbuf message. 2866 * 2867 * @pmsg is the original printk message. 2868 * @fmt is the printf format of the message which will prepend the existing one. 2869 * 2870 * If there is not enough space in @pmsg->pbufs->outbuf, the existing 2871 * message text will be sufficiently truncated. 2872 * 2873 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2874 */ 2875 __printf(2, 3) 2876 static void console_prepend_message(struct printk_message *pmsg, const char *fmt, ...) 2877 { 2878 struct printk_buffers *pbufs = pmsg->pbufs; 2879 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2880 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2881 char *scratchbuf = &pbufs->scratchbuf[0]; 2882 char *outbuf = &pbufs->outbuf[0]; 2883 va_list args; 2884 size_t len; 2885 2886 va_start(args, fmt); 2887 len = vscnprintf(scratchbuf, scratchbuf_sz, fmt, args); 2888 va_end(args); 2889 2890 /* 2891 * Make sure outbuf is sufficiently large before prepending. 2892 * Keep at least the prefix when the message must be truncated. 2893 * It is a rather theoretical problem when someone tries to 2894 * use a minimalist buffer. 2895 */ 2896 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2897 return; 2898 2899 if (pmsg->outbuf_len + len >= outbuf_sz) { 2900 /* Truncate the message, but keep it terminated. */ 2901 pmsg->outbuf_len = outbuf_sz - (len + 1); 2902 outbuf[pmsg->outbuf_len] = 0; 2903 } 2904 2905 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2906 memcpy(outbuf, scratchbuf, len); 2907 pmsg->outbuf_len += len; 2908 } 2909 2910 /* 2911 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". 2912 * @pmsg->outbuf_len is updated appropriately. 2913 * 2914 * @pmsg is the printk message to prepend. 2915 * 2916 * @dropped is the dropped count to report in the dropped message. 2917 */ 2918 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2919 { 2920 console_prepend_message(pmsg, "** %lu printk messages dropped **\n", dropped); 2921 } 2922 2923 /* 2924 * Prepend the message in @pmsg->pbufs->outbuf with a "replay message". 2925 * @pmsg->outbuf_len is updated appropriately. 2926 * 2927 * @pmsg is the printk message to prepend. 2928 */ 2929 void console_prepend_replay(struct printk_message *pmsg) 2930 { 2931 console_prepend_message(pmsg, "** replaying previous printk message **\n"); 2932 } 2933 2934 /* 2935 * Read and format the specified record (or a later record if the specified 2936 * record is not available). 2937 * 2938 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2939 * struct printk_buffers. 2940 * 2941 * @seq is the record to read and format. If it is not available, the next 2942 * valid record is read. 2943 * 2944 * @is_extended specifies if the message should be formatted for extended 2945 * console output. 2946 * 2947 * @may_supress specifies if records may be skipped based on loglevel. 2948 * 2949 * Returns false if no record is available. Otherwise true and all fields 2950 * of @pmsg are valid. (See the documentation of struct printk_message 2951 * for information about the @pmsg fields.) 2952 */ 2953 bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2954 bool is_extended, bool may_suppress) 2955 { 2956 struct printk_buffers *pbufs = pmsg->pbufs; 2957 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2958 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2959 char *scratchbuf = &pbufs->scratchbuf[0]; 2960 char *outbuf = &pbufs->outbuf[0]; 2961 struct printk_info info; 2962 struct printk_record r; 2963 size_t len = 0; 2964 bool force_con; 2965 2966 /* 2967 * Formatting extended messages requires a separate buffer, so use the 2968 * scratch buffer to read in the ringbuffer text. 2969 * 2970 * Formatting normal messages is done in-place, so read the ringbuffer 2971 * text directly into the output buffer. 2972 */ 2973 if (is_extended) 2974 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2975 else 2976 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2977 2978 if (!prb_read_valid(prb, seq, &r)) 2979 return false; 2980 2981 pmsg->seq = r.info->seq; 2982 pmsg->dropped = r.info->seq - seq; 2983 force_con = r.info->flags & LOG_FORCE_CON; 2984 2985 /* 2986 * Skip records that are not forced to be printed on consoles and that 2987 * has level above the console loglevel. 2988 */ 2989 if (!force_con && may_suppress && suppress_message_printing(r.info->level)) 2990 goto out; 2991 2992 if (is_extended) { 2993 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2994 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2995 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2996 } else { 2997 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2998 } 2999 out: 3000 pmsg->outbuf_len = len; 3001 return true; 3002 } 3003 3004 /* 3005 * Legacy console printing from printk() caller context does not respect 3006 * raw_spinlock/spinlock nesting. For !PREEMPT_RT the lockdep warning is a 3007 * false positive. For PREEMPT_RT the false positive condition does not 3008 * occur. 3009 * 3010 * This map is used to temporarily establish LD_WAIT_SLEEP context for the 3011 * console write() callback when legacy printing to avoid false positive 3012 * lockdep complaints, thus allowing lockdep to continue to function for 3013 * real issues. 3014 */ 3015 #ifdef CONFIG_PREEMPT_RT 3016 static inline void printk_legacy_allow_spinlock_enter(void) { } 3017 static inline void printk_legacy_allow_spinlock_exit(void) { } 3018 #else 3019 static DEFINE_WAIT_OVERRIDE_MAP(printk_legacy_map, LD_WAIT_SLEEP); 3020 3021 static inline void printk_legacy_allow_spinlock_enter(void) 3022 { 3023 lock_map_acquire_try(&printk_legacy_map); 3024 } 3025 3026 static inline void printk_legacy_allow_spinlock_exit(void) 3027 { 3028 lock_map_release(&printk_legacy_map); 3029 } 3030 #endif /* CONFIG_PREEMPT_RT */ 3031 3032 /* 3033 * Used as the printk buffers for non-panic, serialized console printing. 3034 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles. 3035 * Its usage requires the console_lock held. 3036 */ 3037 struct printk_buffers printk_shared_pbufs; 3038 3039 /* 3040 * Print one record for the given console. The record printed is whatever 3041 * record is the next available record for the given console. 3042 * 3043 * @handover will be set to true if a printk waiter has taken over the 3044 * console_lock, in which case the caller is no longer holding both the 3045 * console_lock and the SRCU read lock. Otherwise it is set to false. 3046 * 3047 * @cookie is the cookie from the SRCU read lock. 3048 * 3049 * Returns false if the given console has no next record to print, otherwise 3050 * true. 3051 * 3052 * Requires the console_lock and the SRCU read lock. 3053 */ 3054 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 3055 { 3056 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 3057 char *outbuf = &printk_shared_pbufs.outbuf[0]; 3058 struct printk_message pmsg = { 3059 .pbufs = &printk_shared_pbufs, 3060 }; 3061 unsigned long flags; 3062 3063 *handover = false; 3064 3065 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 3066 return false; 3067 3068 con->dropped += pmsg.dropped; 3069 3070 /* Skip messages of formatted length 0. */ 3071 if (pmsg.outbuf_len == 0) { 3072 con->seq = pmsg.seq + 1; 3073 goto skip; 3074 } 3075 3076 if (con->dropped && !is_extended) { 3077 console_prepend_dropped(&pmsg, con->dropped); 3078 con->dropped = 0; 3079 } 3080 3081 /* Write everything out to the hardware. */ 3082 3083 if (force_legacy_kthread() && !panic_in_progress()) { 3084 /* 3085 * With forced threading this function is in a task context 3086 * (either legacy kthread or get_init_console_seq()). There 3087 * is no need for concern about printk reentrance, handovers, 3088 * or lockdep complaints. 3089 */ 3090 3091 con->write(con, outbuf, pmsg.outbuf_len); 3092 con->seq = pmsg.seq + 1; 3093 } else { 3094 /* 3095 * While actively printing out messages, if another printk() 3096 * were to occur on another CPU, it may wait for this one to 3097 * finish. This task can not be preempted if there is a 3098 * waiter waiting to take over. 3099 * 3100 * Interrupts are disabled because the hand over to a waiter 3101 * must not be interrupted until the hand over is completed 3102 * (@console_waiter is cleared). 3103 */ 3104 printk_safe_enter_irqsave(flags); 3105 console_lock_spinning_enable(); 3106 3107 /* Do not trace print latency. */ 3108 stop_critical_timings(); 3109 3110 printk_legacy_allow_spinlock_enter(); 3111 con->write(con, outbuf, pmsg.outbuf_len); 3112 printk_legacy_allow_spinlock_exit(); 3113 3114 start_critical_timings(); 3115 3116 con->seq = pmsg.seq + 1; 3117 3118 *handover = console_lock_spinning_disable_and_check(cookie); 3119 printk_safe_exit_irqrestore(flags); 3120 } 3121 skip: 3122 return true; 3123 } 3124 3125 #else 3126 3127 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 3128 { 3129 *handover = false; 3130 return false; 3131 } 3132 3133 static inline void printk_kthreads_check_locked(void) { } 3134 3135 #endif /* CONFIG_PRINTK */ 3136 3137 /* 3138 * Print out all remaining records to all consoles. 3139 * 3140 * @do_cond_resched is set by the caller. It can be true only in schedulable 3141 * context. 3142 * 3143 * @next_seq is set to the sequence number after the last available record. 3144 * The value is valid only when this function returns true. It means that all 3145 * usable consoles are completely flushed. 3146 * 3147 * @handover will be set to true if a printk waiter has taken over the 3148 * console_lock, in which case the caller is no longer holding the 3149 * console_lock. Otherwise it is set to false. 3150 * 3151 * Returns true when there was at least one usable console and all messages 3152 * were flushed to all usable consoles. A returned false informs the caller 3153 * that everything was not flushed (either there were no usable consoles or 3154 * another context has taken over printing or it is a panic situation and this 3155 * is not the panic CPU). Regardless the reason, the caller should assume it 3156 * is not useful to immediately try again. 3157 * 3158 * Requires the console_lock. 3159 */ 3160 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 3161 { 3162 struct console_flush_type ft; 3163 bool any_usable = false; 3164 struct console *con; 3165 bool any_progress; 3166 int cookie; 3167 3168 *next_seq = 0; 3169 *handover = false; 3170 3171 do { 3172 any_progress = false; 3173 3174 printk_get_console_flush_type(&ft); 3175 3176 cookie = console_srcu_read_lock(); 3177 for_each_console_srcu(con) { 3178 short flags = console_srcu_read_flags(con); 3179 u64 printk_seq; 3180 bool progress; 3181 3182 /* 3183 * console_flush_all() is only responsible for nbcon 3184 * consoles when the nbcon consoles cannot print via 3185 * their atomic or threaded flushing. 3186 */ 3187 if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload)) 3188 continue; 3189 3190 if (!console_is_usable(con, flags, !do_cond_resched)) 3191 continue; 3192 any_usable = true; 3193 3194 if (flags & CON_NBCON) { 3195 progress = nbcon_legacy_emit_next_record(con, handover, cookie, 3196 !do_cond_resched); 3197 printk_seq = nbcon_seq_read(con); 3198 } else { 3199 progress = console_emit_next_record(con, handover, cookie); 3200 printk_seq = con->seq; 3201 } 3202 3203 /* 3204 * If a handover has occurred, the SRCU read lock 3205 * is already released. 3206 */ 3207 if (*handover) 3208 return false; 3209 3210 /* Track the next of the highest seq flushed. */ 3211 if (printk_seq > *next_seq) 3212 *next_seq = printk_seq; 3213 3214 if (!progress) 3215 continue; 3216 any_progress = true; 3217 3218 /* Allow panic_cpu to take over the consoles safely. */ 3219 if (panic_on_other_cpu()) 3220 goto abandon; 3221 3222 if (do_cond_resched) 3223 cond_resched(); 3224 } 3225 console_srcu_read_unlock(cookie); 3226 } while (any_progress); 3227 3228 return any_usable; 3229 3230 abandon: 3231 console_srcu_read_unlock(cookie); 3232 return false; 3233 } 3234 3235 static void __console_flush_and_unlock(void) 3236 { 3237 bool do_cond_resched; 3238 bool handover; 3239 bool flushed; 3240 u64 next_seq; 3241 3242 /* 3243 * Console drivers are called with interrupts disabled, so 3244 * @console_may_schedule should be cleared before; however, we may 3245 * end up dumping a lot of lines, for example, if called from 3246 * console registration path, and should invoke cond_resched() 3247 * between lines if allowable. Not doing so can cause a very long 3248 * scheduling stall on a slow console leading to RCU stall and 3249 * softlockup warnings which exacerbate the issue with more 3250 * messages practically incapacitating the system. Therefore, create 3251 * a local to use for the printing loop. 3252 */ 3253 do_cond_resched = console_may_schedule; 3254 3255 do { 3256 console_may_schedule = 0; 3257 3258 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3259 if (!handover) 3260 __console_unlock(); 3261 3262 /* 3263 * Abort if there was a failure to flush all messages to all 3264 * usable consoles. Either it is not possible to flush (in 3265 * which case it would be an infinite loop of retrying) or 3266 * another context has taken over printing. 3267 */ 3268 if (!flushed) 3269 break; 3270 3271 /* 3272 * Some context may have added new records after 3273 * console_flush_all() but before unlocking the console. 3274 * Re-check if there is a new record to flush. If the trylock 3275 * fails, another context is already handling the printing. 3276 */ 3277 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3278 } 3279 3280 /** 3281 * console_unlock - unblock the legacy console subsystem from printing 3282 * 3283 * Releases the console_lock which the caller holds to block printing of 3284 * the legacy console subsystem. 3285 * 3286 * While the console_lock was held, console output may have been buffered 3287 * by printk(). If this is the case, console_unlock() emits the output on 3288 * legacy consoles prior to releasing the lock. 3289 * 3290 * console_unlock(); may be called from any context. 3291 */ 3292 void console_unlock(void) 3293 { 3294 struct console_flush_type ft; 3295 3296 printk_get_console_flush_type(&ft); 3297 if (ft.legacy_direct) 3298 __console_flush_and_unlock(); 3299 else 3300 __console_unlock(); 3301 } 3302 EXPORT_SYMBOL(console_unlock); 3303 3304 /** 3305 * console_conditional_schedule - yield the CPU if required 3306 * 3307 * If the console code is currently allowed to sleep, and 3308 * if this CPU should yield the CPU to another task, do 3309 * so here. 3310 * 3311 * Must be called within console_lock();. 3312 */ 3313 void __sched console_conditional_schedule(void) 3314 { 3315 if (console_may_schedule) 3316 cond_resched(); 3317 } 3318 EXPORT_SYMBOL(console_conditional_schedule); 3319 3320 void console_unblank(void) 3321 { 3322 bool found_unblank = false; 3323 struct console *c; 3324 int cookie; 3325 3326 /* 3327 * First check if there are any consoles implementing the unblank() 3328 * callback. If not, there is no reason to continue and take the 3329 * console lock, which in particular can be dangerous if 3330 * @oops_in_progress is set. 3331 */ 3332 cookie = console_srcu_read_lock(); 3333 for_each_console_srcu(c) { 3334 short flags = console_srcu_read_flags(c); 3335 3336 if (flags & CON_SUSPENDED) 3337 continue; 3338 3339 if ((flags & CON_ENABLED) && c->unblank) { 3340 found_unblank = true; 3341 break; 3342 } 3343 } 3344 console_srcu_read_unlock(cookie); 3345 if (!found_unblank) 3346 return; 3347 3348 /* 3349 * Stop console printing because the unblank() callback may 3350 * assume the console is not within its write() callback. 3351 * 3352 * If @oops_in_progress is set, this may be an atomic context. 3353 * In that case, attempt a trylock as best-effort. 3354 */ 3355 if (oops_in_progress) { 3356 /* Semaphores are not NMI-safe. */ 3357 if (in_nmi()) 3358 return; 3359 3360 /* 3361 * Attempting to trylock the console lock can deadlock 3362 * if another CPU was stopped while modifying the 3363 * semaphore. "Hope and pray" that this is not the 3364 * current situation. 3365 */ 3366 if (down_trylock_console_sem() != 0) 3367 return; 3368 } else 3369 console_lock(); 3370 3371 console_locked = 1; 3372 console_may_schedule = 0; 3373 3374 cookie = console_srcu_read_lock(); 3375 for_each_console_srcu(c) { 3376 short flags = console_srcu_read_flags(c); 3377 3378 if (flags & CON_SUSPENDED) 3379 continue; 3380 3381 if ((flags & CON_ENABLED) && c->unblank) 3382 c->unblank(); 3383 } 3384 console_srcu_read_unlock(cookie); 3385 3386 console_unlock(); 3387 3388 if (!oops_in_progress) 3389 pr_flush(1000, true); 3390 } 3391 3392 /* 3393 * Rewind all consoles to the oldest available record. 3394 * 3395 * IMPORTANT: The function is safe only when called under 3396 * console_lock(). It is not enforced because 3397 * it is used as a best effort in panic(). 3398 */ 3399 static void __console_rewind_all(void) 3400 { 3401 struct console *c; 3402 short flags; 3403 int cookie; 3404 u64 seq; 3405 3406 seq = prb_first_valid_seq(prb); 3407 3408 cookie = console_srcu_read_lock(); 3409 for_each_console_srcu(c) { 3410 flags = console_srcu_read_flags(c); 3411 3412 if (flags & CON_NBCON) { 3413 nbcon_seq_force(c, seq); 3414 } else { 3415 /* 3416 * This assignment is safe only when called under 3417 * console_lock(). On panic, legacy consoles are 3418 * only best effort. 3419 */ 3420 c->seq = seq; 3421 } 3422 } 3423 console_srcu_read_unlock(cookie); 3424 } 3425 3426 /** 3427 * console_flush_on_panic - flush console content on panic 3428 * @mode: flush all messages in buffer or just the pending ones 3429 * 3430 * Immediately output all pending messages no matter what. 3431 */ 3432 void console_flush_on_panic(enum con_flush_mode mode) 3433 { 3434 struct console_flush_type ft; 3435 bool handover; 3436 u64 next_seq; 3437 3438 /* 3439 * Ignore the console lock and flush out the messages. Attempting a 3440 * trylock would not be useful because: 3441 * 3442 * - if it is contended, it must be ignored anyway 3443 * - console_lock() and console_trylock() block and fail 3444 * respectively in panic for non-panic CPUs 3445 * - semaphores are not NMI-safe 3446 */ 3447 3448 /* 3449 * If another context is holding the console lock, 3450 * @console_may_schedule might be set. Clear it so that 3451 * this context does not call cond_resched() while flushing. 3452 */ 3453 console_may_schedule = 0; 3454 3455 if (mode == CONSOLE_REPLAY_ALL) 3456 __console_rewind_all(); 3457 3458 printk_get_console_flush_type(&ft); 3459 if (ft.nbcon_atomic) 3460 nbcon_atomic_flush_pending(); 3461 3462 /* Flush legacy consoles once allowed, even when dangerous. */ 3463 if (legacy_allow_panic_sync) 3464 console_flush_all(false, &next_seq, &handover); 3465 } 3466 3467 /* 3468 * Return the console tty driver structure and its associated index 3469 */ 3470 struct tty_driver *console_device(int *index) 3471 { 3472 struct console *c; 3473 struct tty_driver *driver = NULL; 3474 int cookie; 3475 3476 /* 3477 * Take console_lock to serialize device() callback with 3478 * other console operations. For example, fg_console is 3479 * modified under console_lock when switching vt. 3480 */ 3481 console_lock(); 3482 3483 cookie = console_srcu_read_lock(); 3484 for_each_console_srcu(c) { 3485 if (!c->device) 3486 continue; 3487 driver = c->device(c, index); 3488 if (driver) 3489 break; 3490 } 3491 console_srcu_read_unlock(cookie); 3492 3493 console_unlock(); 3494 return driver; 3495 } 3496 3497 /* 3498 * Prevent further output on the passed console device so that (for example) 3499 * serial drivers can suspend console output before suspending a port, and can 3500 * re-enable output afterwards. 3501 */ 3502 void console_suspend(struct console *console) 3503 { 3504 __pr_flush(console, 1000, true); 3505 console_list_lock(); 3506 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3507 console_list_unlock(); 3508 3509 /* 3510 * Ensure that all SRCU list walks have completed. All contexts must 3511 * be able to see that this console is disabled so that (for example) 3512 * the caller can suspend the port without risk of another context 3513 * using the port. 3514 */ 3515 synchronize_srcu(&console_srcu); 3516 } 3517 EXPORT_SYMBOL(console_suspend); 3518 3519 void console_resume(struct console *console) 3520 { 3521 struct console_flush_type ft; 3522 bool is_nbcon; 3523 3524 console_list_lock(); 3525 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3526 is_nbcon = console->flags & CON_NBCON; 3527 console_list_unlock(); 3528 3529 /* 3530 * Ensure that all SRCU list walks have completed. The related 3531 * printing context must be able to see it is enabled so that 3532 * it is guaranteed to wake up and resume printing. 3533 */ 3534 synchronize_srcu(&console_srcu); 3535 3536 printk_get_console_flush_type(&ft); 3537 if (is_nbcon && ft.nbcon_offload) 3538 nbcon_kthread_wake(console); 3539 else if (ft.legacy_offload) 3540 defer_console_output(); 3541 3542 __pr_flush(console, 1000, true); 3543 } 3544 EXPORT_SYMBOL(console_resume); 3545 3546 #ifdef CONFIG_PRINTK 3547 static int unregister_console_locked(struct console *console); 3548 3549 /* True when system boot is far enough to create printer threads. */ 3550 bool printk_kthreads_ready __ro_after_init; 3551 3552 static struct task_struct *printk_legacy_kthread; 3553 3554 static bool legacy_kthread_should_wakeup(void) 3555 { 3556 struct console_flush_type ft; 3557 struct console *con; 3558 bool ret = false; 3559 int cookie; 3560 3561 if (kthread_should_stop()) 3562 return true; 3563 3564 printk_get_console_flush_type(&ft); 3565 3566 cookie = console_srcu_read_lock(); 3567 for_each_console_srcu(con) { 3568 short flags = console_srcu_read_flags(con); 3569 u64 printk_seq; 3570 3571 /* 3572 * The legacy printer thread is only responsible for nbcon 3573 * consoles when the nbcon consoles cannot print via their 3574 * atomic or threaded flushing. 3575 */ 3576 if ((flags & CON_NBCON) && (ft.nbcon_atomic || ft.nbcon_offload)) 3577 continue; 3578 3579 if (!console_is_usable(con, flags, false)) 3580 continue; 3581 3582 if (flags & CON_NBCON) { 3583 printk_seq = nbcon_seq_read(con); 3584 } else { 3585 /* 3586 * It is safe to read @seq because only this 3587 * thread context updates @seq. 3588 */ 3589 printk_seq = con->seq; 3590 } 3591 3592 if (prb_read_valid(prb, printk_seq, NULL)) { 3593 ret = true; 3594 break; 3595 } 3596 } 3597 console_srcu_read_unlock(cookie); 3598 3599 return ret; 3600 } 3601 3602 static int legacy_kthread_func(void *unused) 3603 { 3604 for (;;) { 3605 wait_event_interruptible(legacy_wait, legacy_kthread_should_wakeup()); 3606 3607 if (kthread_should_stop()) 3608 break; 3609 3610 console_lock(); 3611 __console_flush_and_unlock(); 3612 } 3613 3614 return 0; 3615 } 3616 3617 static bool legacy_kthread_create(void) 3618 { 3619 struct task_struct *kt; 3620 3621 lockdep_assert_console_list_lock_held(); 3622 3623 kt = kthread_run(legacy_kthread_func, NULL, "pr/legacy"); 3624 if (WARN_ON(IS_ERR(kt))) { 3625 pr_err("failed to start legacy printing thread\n"); 3626 return false; 3627 } 3628 3629 printk_legacy_kthread = kt; 3630 3631 /* 3632 * It is important that console printing threads are scheduled 3633 * shortly after a printk call and with generous runtime budgets. 3634 */ 3635 sched_set_normal(printk_legacy_kthread, -20); 3636 3637 return true; 3638 } 3639 3640 /** 3641 * printk_kthreads_shutdown - shutdown all threaded printers 3642 * 3643 * On system shutdown all threaded printers are stopped. This allows printk 3644 * to transition back to atomic printing, thus providing a robust mechanism 3645 * for the final shutdown/reboot messages to be output. 3646 */ 3647 static void printk_kthreads_shutdown(void) 3648 { 3649 struct console *con; 3650 3651 console_list_lock(); 3652 if (printk_kthreads_running) { 3653 printk_kthreads_running = false; 3654 3655 for_each_console(con) { 3656 if (con->flags & CON_NBCON) 3657 nbcon_kthread_stop(con); 3658 } 3659 3660 /* 3661 * The threads may have been stopped while printing a 3662 * backlog. Flush any records left over. 3663 */ 3664 nbcon_atomic_flush_pending(); 3665 } 3666 console_list_unlock(); 3667 } 3668 3669 static struct syscore_ops printk_syscore_ops = { 3670 .shutdown = printk_kthreads_shutdown, 3671 }; 3672 3673 /* 3674 * If appropriate, start nbcon kthreads and set @printk_kthreads_running. 3675 * If any kthreads fail to start, those consoles are unregistered. 3676 * 3677 * Must be called under console_list_lock(). 3678 */ 3679 static void printk_kthreads_check_locked(void) 3680 { 3681 struct hlist_node *tmp; 3682 struct console *con; 3683 3684 lockdep_assert_console_list_lock_held(); 3685 3686 if (!printk_kthreads_ready) 3687 return; 3688 3689 /* Start or stop the legacy kthread when needed. */ 3690 if (have_legacy_console || have_boot_console) { 3691 if (!printk_legacy_kthread && 3692 force_legacy_kthread() && 3693 !legacy_kthread_create()) { 3694 /* 3695 * All legacy consoles must be unregistered. If there 3696 * are any nbcon consoles, they will set up their own 3697 * kthread. 3698 */ 3699 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3700 if (con->flags & CON_NBCON) 3701 continue; 3702 3703 unregister_console_locked(con); 3704 } 3705 } 3706 } else if (printk_legacy_kthread) { 3707 kthread_stop(printk_legacy_kthread); 3708 printk_legacy_kthread = NULL; 3709 } 3710 3711 /* 3712 * Printer threads cannot be started as long as any boot console is 3713 * registered because there is no way to synchronize the hardware 3714 * registers between boot console code and regular console code. 3715 * It can only be known that there will be no new boot consoles when 3716 * an nbcon console is registered. 3717 */ 3718 if (have_boot_console || !have_nbcon_console) { 3719 /* Clear flag in case all nbcon consoles unregistered. */ 3720 printk_kthreads_running = false; 3721 return; 3722 } 3723 3724 if (printk_kthreads_running) 3725 return; 3726 3727 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3728 if (!(con->flags & CON_NBCON)) 3729 continue; 3730 3731 if (!nbcon_kthread_create(con)) 3732 unregister_console_locked(con); 3733 } 3734 3735 printk_kthreads_running = true; 3736 } 3737 3738 static int __init printk_set_kthreads_ready(void) 3739 { 3740 register_syscore_ops(&printk_syscore_ops); 3741 3742 console_list_lock(); 3743 printk_kthreads_ready = true; 3744 printk_kthreads_check_locked(); 3745 console_list_unlock(); 3746 3747 return 0; 3748 } 3749 early_initcall(printk_set_kthreads_ready); 3750 #endif /* CONFIG_PRINTK */ 3751 3752 static int __read_mostly keep_bootcon; 3753 3754 static int __init keep_bootcon_setup(char *str) 3755 { 3756 keep_bootcon = 1; 3757 pr_info("debug: skip boot console de-registration.\n"); 3758 3759 return 0; 3760 } 3761 3762 early_param("keep_bootcon", keep_bootcon_setup); 3763 3764 static int console_call_setup(struct console *newcon, char *options) 3765 { 3766 int err; 3767 3768 if (!newcon->setup) 3769 return 0; 3770 3771 /* Synchronize with possible boot console. */ 3772 console_lock(); 3773 err = newcon->setup(newcon, options); 3774 console_unlock(); 3775 3776 return err; 3777 } 3778 3779 /* 3780 * This is called by register_console() to try to match 3781 * the newly registered console with any of the ones selected 3782 * by either the command line or add_preferred_console() and 3783 * setup/enable it. 3784 * 3785 * Care need to be taken with consoles that are statically 3786 * enabled such as netconsole 3787 */ 3788 static int try_enable_preferred_console(struct console *newcon, 3789 bool user_specified) 3790 { 3791 struct console_cmdline *c; 3792 int i, err; 3793 3794 for (i = 0, c = console_cmdline; 3795 i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]); 3796 i++, c++) { 3797 /* Console not yet initialized? */ 3798 if (!c->name[0]) 3799 continue; 3800 if (c->user_specified != user_specified) 3801 continue; 3802 if (!newcon->match || 3803 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3804 /* default matching */ 3805 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3806 if (strcmp(c->name, newcon->name) != 0) 3807 continue; 3808 if (newcon->index >= 0 && 3809 newcon->index != c->index) 3810 continue; 3811 if (newcon->index < 0) 3812 newcon->index = c->index; 3813 3814 if (_braille_register_console(newcon, c)) 3815 return 0; 3816 3817 err = console_call_setup(newcon, c->options); 3818 if (err) 3819 return err; 3820 } 3821 newcon->flags |= CON_ENABLED; 3822 if (i == preferred_console) 3823 newcon->flags |= CON_CONSDEV; 3824 return 0; 3825 } 3826 3827 /* 3828 * Some consoles, such as pstore and netconsole, can be enabled even 3829 * without matching. Accept the pre-enabled consoles only when match() 3830 * and setup() had a chance to be called. 3831 */ 3832 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3833 return 0; 3834 3835 return -ENOENT; 3836 } 3837 3838 /* Try to enable the console unconditionally */ 3839 static void try_enable_default_console(struct console *newcon) 3840 { 3841 if (newcon->index < 0) 3842 newcon->index = 0; 3843 3844 if (console_call_setup(newcon, NULL) != 0) 3845 return; 3846 3847 newcon->flags |= CON_ENABLED; 3848 3849 if (newcon->device) 3850 newcon->flags |= CON_CONSDEV; 3851 } 3852 3853 /* Return the starting sequence number for a newly registered console. */ 3854 static u64 get_init_console_seq(struct console *newcon, bool bootcon_registered) 3855 { 3856 struct console *con; 3857 bool handover; 3858 u64 init_seq; 3859 3860 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3861 /* Get a consistent copy of @syslog_seq. */ 3862 mutex_lock(&syslog_lock); 3863 init_seq = syslog_seq; 3864 mutex_unlock(&syslog_lock); 3865 } else { 3866 /* Begin with next message added to ringbuffer. */ 3867 init_seq = prb_next_seq(prb); 3868 3869 /* 3870 * If any enabled boot consoles are due to be unregistered 3871 * shortly, some may not be caught up and may be the same 3872 * device as @newcon. Since it is not known which boot console 3873 * is the same device, flush all consoles and, if necessary, 3874 * start with the message of the enabled boot console that is 3875 * the furthest behind. 3876 */ 3877 if (bootcon_registered && !keep_bootcon) { 3878 /* 3879 * Hold the console_lock to stop console printing and 3880 * guarantee safe access to console->seq. 3881 */ 3882 console_lock(); 3883 3884 /* 3885 * Flush all consoles and set the console to start at 3886 * the next unprinted sequence number. 3887 */ 3888 if (!console_flush_all(true, &init_seq, &handover)) { 3889 /* 3890 * Flushing failed. Just choose the lowest 3891 * sequence of the enabled boot consoles. 3892 */ 3893 3894 /* 3895 * If there was a handover, this context no 3896 * longer holds the console_lock. 3897 */ 3898 if (handover) 3899 console_lock(); 3900 3901 init_seq = prb_next_seq(prb); 3902 for_each_console(con) { 3903 u64 seq; 3904 3905 if (!(con->flags & CON_BOOT) || 3906 !(con->flags & CON_ENABLED)) { 3907 continue; 3908 } 3909 3910 if (con->flags & CON_NBCON) 3911 seq = nbcon_seq_read(con); 3912 else 3913 seq = con->seq; 3914 3915 if (seq < init_seq) 3916 init_seq = seq; 3917 } 3918 } 3919 3920 console_unlock(); 3921 } 3922 } 3923 3924 return init_seq; 3925 } 3926 3927 #define console_first() \ 3928 hlist_entry(console_list.first, struct console, node) 3929 3930 static int unregister_console_locked(struct console *console); 3931 3932 /* 3933 * The console driver calls this routine during kernel initialization 3934 * to register the console printing procedure with printk() and to 3935 * print any messages that were printed by the kernel before the 3936 * console driver was initialized. 3937 * 3938 * This can happen pretty early during the boot process (because of 3939 * early_printk) - sometimes before setup_arch() completes - be careful 3940 * of what kernel features are used - they may not be initialised yet. 3941 * 3942 * There are two types of consoles - bootconsoles (early_printk) and 3943 * "real" consoles (everything which is not a bootconsole) which are 3944 * handled differently. 3945 * - Any number of bootconsoles can be registered at any time. 3946 * - As soon as a "real" console is registered, all bootconsoles 3947 * will be unregistered automatically. 3948 * - Once a "real" console is registered, any attempt to register a 3949 * bootconsoles will be rejected 3950 */ 3951 void register_console(struct console *newcon) 3952 { 3953 bool use_device_lock = (newcon->flags & CON_NBCON) && newcon->write_atomic; 3954 bool bootcon_registered = false; 3955 bool realcon_registered = false; 3956 struct console *con; 3957 unsigned long flags; 3958 u64 init_seq; 3959 int err; 3960 3961 console_list_lock(); 3962 3963 for_each_console(con) { 3964 if (WARN(con == newcon, "console '%s%d' already registered\n", 3965 con->name, con->index)) { 3966 goto unlock; 3967 } 3968 3969 if (con->flags & CON_BOOT) 3970 bootcon_registered = true; 3971 else 3972 realcon_registered = true; 3973 } 3974 3975 /* Do not register boot consoles when there already is a real one. */ 3976 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3977 pr_info("Too late to register bootconsole %s%d\n", 3978 newcon->name, newcon->index); 3979 goto unlock; 3980 } 3981 3982 if (newcon->flags & CON_NBCON) { 3983 /* 3984 * Ensure the nbcon console buffers can be allocated 3985 * before modifying any global data. 3986 */ 3987 if (!nbcon_alloc(newcon)) 3988 goto unlock; 3989 } 3990 3991 /* 3992 * See if we want to enable this console driver by default. 3993 * 3994 * Nope when a console is preferred by the command line, device 3995 * tree, or SPCR. 3996 * 3997 * The first real console with tty binding (driver) wins. More 3998 * consoles might get enabled before the right one is found. 3999 * 4000 * Note that a console with tty binding will have CON_CONSDEV 4001 * flag set and will be first in the list. 4002 */ 4003 if (preferred_console < 0) { 4004 if (hlist_empty(&console_list) || !console_first()->device || 4005 console_first()->flags & CON_BOOT) { 4006 try_enable_default_console(newcon); 4007 } 4008 } 4009 4010 /* See if this console matches one we selected on the command line */ 4011 err = try_enable_preferred_console(newcon, true); 4012 4013 /* If not, try to match against the platform default(s) */ 4014 if (err == -ENOENT) 4015 err = try_enable_preferred_console(newcon, false); 4016 4017 /* printk() messages are not printed to the Braille console. */ 4018 if (err || newcon->flags & CON_BRL) { 4019 if (newcon->flags & CON_NBCON) 4020 nbcon_free(newcon); 4021 goto unlock; 4022 } 4023 4024 /* 4025 * If we have a bootconsole, and are switching to a real console, 4026 * don't print everything out again, since when the boot console, and 4027 * the real console are the same physical device, it's annoying to 4028 * see the beginning boot messages twice 4029 */ 4030 if (bootcon_registered && 4031 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 4032 newcon->flags &= ~CON_PRINTBUFFER; 4033 } 4034 4035 newcon->dropped = 0; 4036 init_seq = get_init_console_seq(newcon, bootcon_registered); 4037 4038 if (newcon->flags & CON_NBCON) { 4039 have_nbcon_console = true; 4040 nbcon_seq_force(newcon, init_seq); 4041 } else { 4042 have_legacy_console = true; 4043 newcon->seq = init_seq; 4044 } 4045 4046 if (newcon->flags & CON_BOOT) 4047 have_boot_console = true; 4048 4049 /* 4050 * If another context is actively using the hardware of this new 4051 * console, it will not be aware of the nbcon synchronization. This 4052 * is a risk that two contexts could access the hardware 4053 * simultaneously if this new console is used for atomic printing 4054 * and the other context is still using the hardware. 4055 * 4056 * Use the driver synchronization to ensure that the hardware is not 4057 * in use while this new console transitions to being registered. 4058 */ 4059 if (use_device_lock) 4060 newcon->device_lock(newcon, &flags); 4061 4062 /* 4063 * Put this console in the list - keep the 4064 * preferred driver at the head of the list. 4065 */ 4066 if (hlist_empty(&console_list)) { 4067 /* Ensure CON_CONSDEV is always set for the head. */ 4068 newcon->flags |= CON_CONSDEV; 4069 hlist_add_head_rcu(&newcon->node, &console_list); 4070 4071 } else if (newcon->flags & CON_CONSDEV) { 4072 /* Only the new head can have CON_CONSDEV set. */ 4073 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 4074 hlist_add_head_rcu(&newcon->node, &console_list); 4075 4076 } else { 4077 hlist_add_behind_rcu(&newcon->node, console_list.first); 4078 } 4079 4080 /* 4081 * No need to synchronize SRCU here! The caller does not rely 4082 * on all contexts being able to see the new console before 4083 * register_console() completes. 4084 */ 4085 4086 /* This new console is now registered. */ 4087 if (use_device_lock) 4088 newcon->device_unlock(newcon, flags); 4089 4090 console_sysfs_notify(); 4091 4092 /* 4093 * By unregistering the bootconsoles after we enable the real console 4094 * we get the "console xxx enabled" message on all the consoles - 4095 * boot consoles, real consoles, etc - this is to ensure that end 4096 * users know there might be something in the kernel's log buffer that 4097 * went to the bootconsole (that they do not see on the real console) 4098 */ 4099 con_printk(KERN_INFO, newcon, "enabled\n"); 4100 if (bootcon_registered && 4101 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 4102 !keep_bootcon) { 4103 struct hlist_node *tmp; 4104 4105 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 4106 if (con->flags & CON_BOOT) 4107 unregister_console_locked(con); 4108 } 4109 } 4110 4111 /* Changed console list, may require printer threads to start/stop. */ 4112 printk_kthreads_check_locked(); 4113 unlock: 4114 console_list_unlock(); 4115 } 4116 EXPORT_SYMBOL(register_console); 4117 4118 /* Must be called under console_list_lock(). */ 4119 static int unregister_console_locked(struct console *console) 4120 { 4121 bool use_device_lock = (console->flags & CON_NBCON) && console->write_atomic; 4122 bool found_legacy_con = false; 4123 bool found_nbcon_con = false; 4124 bool found_boot_con = false; 4125 unsigned long flags; 4126 struct console *c; 4127 int res; 4128 4129 lockdep_assert_console_list_lock_held(); 4130 4131 con_printk(KERN_INFO, console, "disabled\n"); 4132 4133 res = _braille_unregister_console(console); 4134 if (res < 0) 4135 return res; 4136 if (res > 0) 4137 return 0; 4138 4139 if (!console_is_registered_locked(console)) 4140 res = -ENODEV; 4141 else if (console_is_usable(console, console->flags, true)) 4142 __pr_flush(console, 1000, true); 4143 4144 /* Disable it unconditionally */ 4145 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 4146 4147 if (res < 0) 4148 return res; 4149 4150 /* 4151 * Use the driver synchronization to ensure that the hardware is not 4152 * in use while this console transitions to being unregistered. 4153 */ 4154 if (use_device_lock) 4155 console->device_lock(console, &flags); 4156 4157 hlist_del_init_rcu(&console->node); 4158 4159 if (use_device_lock) 4160 console->device_unlock(console, flags); 4161 4162 /* 4163 * <HISTORICAL> 4164 * If this isn't the last console and it has CON_CONSDEV set, we 4165 * need to set it on the next preferred console. 4166 * </HISTORICAL> 4167 * 4168 * The above makes no sense as there is no guarantee that the next 4169 * console has any device attached. Oh well.... 4170 */ 4171 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 4172 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 4173 4174 /* 4175 * Ensure that all SRCU list walks have completed. All contexts 4176 * must not be able to see this console in the list so that any 4177 * exit/cleanup routines can be performed safely. 4178 */ 4179 synchronize_srcu(&console_srcu); 4180 4181 /* 4182 * With this console gone, the global flags tracking registered 4183 * console types may have changed. Update them. 4184 */ 4185 for_each_console(c) { 4186 if (c->flags & CON_BOOT) 4187 found_boot_con = true; 4188 4189 if (c->flags & CON_NBCON) 4190 found_nbcon_con = true; 4191 else 4192 found_legacy_con = true; 4193 } 4194 if (!found_boot_con) 4195 have_boot_console = found_boot_con; 4196 if (!found_legacy_con) 4197 have_legacy_console = found_legacy_con; 4198 if (!found_nbcon_con) 4199 have_nbcon_console = found_nbcon_con; 4200 4201 /* @have_nbcon_console must be updated before calling nbcon_free(). */ 4202 if (console->flags & CON_NBCON) 4203 nbcon_free(console); 4204 4205 console_sysfs_notify(); 4206 4207 if (console->exit) 4208 res = console->exit(console); 4209 4210 /* Changed console list, may require printer threads to start/stop. */ 4211 printk_kthreads_check_locked(); 4212 4213 return res; 4214 } 4215 4216 int unregister_console(struct console *console) 4217 { 4218 int res; 4219 4220 console_list_lock(); 4221 res = unregister_console_locked(console); 4222 console_list_unlock(); 4223 return res; 4224 } 4225 EXPORT_SYMBOL(unregister_console); 4226 4227 /** 4228 * console_force_preferred_locked - force a registered console preferred 4229 * @con: The registered console to force preferred. 4230 * 4231 * Must be called under console_list_lock(). 4232 */ 4233 void console_force_preferred_locked(struct console *con) 4234 { 4235 struct console *cur_pref_con; 4236 4237 if (!console_is_registered_locked(con)) 4238 return; 4239 4240 cur_pref_con = console_first(); 4241 4242 /* Already preferred? */ 4243 if (cur_pref_con == con) 4244 return; 4245 4246 /* 4247 * Delete, but do not re-initialize the entry. This allows the console 4248 * to continue to appear registered (via any hlist_unhashed_lockless() 4249 * checks), even though it was briefly removed from the console list. 4250 */ 4251 hlist_del_rcu(&con->node); 4252 4253 /* 4254 * Ensure that all SRCU list walks have completed so that the console 4255 * can be added to the beginning of the console list and its forward 4256 * list pointer can be re-initialized. 4257 */ 4258 synchronize_srcu(&console_srcu); 4259 4260 con->flags |= CON_CONSDEV; 4261 WARN_ON(!con->device); 4262 4263 /* Only the new head can have CON_CONSDEV set. */ 4264 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 4265 hlist_add_head_rcu(&con->node, &console_list); 4266 } 4267 EXPORT_SYMBOL(console_force_preferred_locked); 4268 4269 /* 4270 * Initialize the console device. This is called *early*, so 4271 * we can't necessarily depend on lots of kernel help here. 4272 * Just do some early initializations, and do the complex setup 4273 * later. 4274 */ 4275 void __init console_init(void) 4276 { 4277 int ret; 4278 initcall_t call; 4279 initcall_entry_t *ce; 4280 4281 #ifdef CONFIG_NULL_TTY_DEFAULT_CONSOLE 4282 if (!console_set_on_cmdline) 4283 add_preferred_console("ttynull", 0, NULL); 4284 #endif 4285 4286 /* Setup the default TTY line discipline. */ 4287 n_tty_init(); 4288 4289 /* 4290 * set up the console device so that later boot sequences can 4291 * inform about problems etc.. 4292 */ 4293 ce = __con_initcall_start; 4294 trace_initcall_level("console"); 4295 while (ce < __con_initcall_end) { 4296 call = initcall_from_entry(ce); 4297 trace_initcall_start(call); 4298 ret = call(); 4299 trace_initcall_finish(call, ret); 4300 ce++; 4301 } 4302 } 4303 4304 /* 4305 * Some boot consoles access data that is in the init section and which will 4306 * be discarded after the initcalls have been run. To make sure that no code 4307 * will access this data, unregister the boot consoles in a late initcall. 4308 * 4309 * If for some reason, such as deferred probe or the driver being a loadable 4310 * module, the real console hasn't registered yet at this point, there will 4311 * be a brief interval in which no messages are logged to the console, which 4312 * makes it difficult to diagnose problems that occur during this time. 4313 * 4314 * To mitigate this problem somewhat, only unregister consoles whose memory 4315 * intersects with the init section. Note that all other boot consoles will 4316 * get unregistered when the real preferred console is registered. 4317 */ 4318 static int __init printk_late_init(void) 4319 { 4320 struct hlist_node *tmp; 4321 struct console *con; 4322 int ret; 4323 4324 console_list_lock(); 4325 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 4326 if (!(con->flags & CON_BOOT)) 4327 continue; 4328 4329 /* Check addresses that might be used for enabled consoles. */ 4330 if (init_section_intersects(con, sizeof(*con)) || 4331 init_section_contains(con->write, 0) || 4332 init_section_contains(con->read, 0) || 4333 init_section_contains(con->device, 0) || 4334 init_section_contains(con->unblank, 0) || 4335 init_section_contains(con->data, 0)) { 4336 /* 4337 * Please, consider moving the reported consoles out 4338 * of the init section. 4339 */ 4340 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 4341 con->name, con->index); 4342 unregister_console_locked(con); 4343 } 4344 } 4345 console_list_unlock(); 4346 4347 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 4348 console_cpu_notify); 4349 WARN_ON(ret < 0); 4350 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 4351 console_cpu_notify, NULL); 4352 WARN_ON(ret < 0); 4353 printk_sysctl_init(); 4354 return 0; 4355 } 4356 late_initcall(printk_late_init); 4357 4358 #if defined CONFIG_PRINTK 4359 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 4360 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 4361 { 4362 unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms); 4363 unsigned long remaining_jiffies = timeout_jiffies; 4364 struct console_flush_type ft; 4365 struct console *c; 4366 u64 last_diff = 0; 4367 u64 printk_seq; 4368 short flags; 4369 int cookie; 4370 u64 diff; 4371 u64 seq; 4372 4373 /* Sorry, pr_flush() will not work this early. */ 4374 if (system_state < SYSTEM_SCHEDULING) 4375 return false; 4376 4377 might_sleep(); 4378 4379 seq = prb_next_reserve_seq(prb); 4380 4381 /* Flush the consoles so that records up to @seq are printed. */ 4382 printk_get_console_flush_type(&ft); 4383 if (ft.nbcon_atomic) 4384 nbcon_atomic_flush_pending(); 4385 if (ft.legacy_direct) { 4386 console_lock(); 4387 console_unlock(); 4388 } 4389 4390 for (;;) { 4391 unsigned long begin_jiffies; 4392 unsigned long slept_jiffies; 4393 4394 diff = 0; 4395 4396 /* 4397 * Hold the console_lock to guarantee safe access to 4398 * console->seq. Releasing console_lock flushes more 4399 * records in case @seq is still not printed on all 4400 * usable consoles. 4401 * 4402 * Holding the console_lock is not necessary if there 4403 * are no legacy or boot consoles. However, such a 4404 * console could register at any time. Always hold the 4405 * console_lock as a precaution rather than 4406 * synchronizing against register_console(). 4407 */ 4408 console_lock(); 4409 4410 cookie = console_srcu_read_lock(); 4411 for_each_console_srcu(c) { 4412 if (con && con != c) 4413 continue; 4414 4415 flags = console_srcu_read_flags(c); 4416 4417 /* 4418 * If consoles are not usable, it cannot be expected 4419 * that they make forward progress, so only increment 4420 * @diff for usable consoles. 4421 */ 4422 if (!console_is_usable(c, flags, true) && 4423 !console_is_usable(c, flags, false)) { 4424 continue; 4425 } 4426 4427 if (flags & CON_NBCON) { 4428 printk_seq = nbcon_seq_read(c); 4429 } else { 4430 printk_seq = c->seq; 4431 } 4432 4433 if (printk_seq < seq) 4434 diff += seq - printk_seq; 4435 } 4436 console_srcu_read_unlock(cookie); 4437 4438 if (diff != last_diff && reset_on_progress) 4439 remaining_jiffies = timeout_jiffies; 4440 4441 console_unlock(); 4442 4443 /* Note: @diff is 0 if there are no usable consoles. */ 4444 if (diff == 0 || remaining_jiffies == 0) 4445 break; 4446 4447 /* msleep(1) might sleep much longer. Check time by jiffies. */ 4448 begin_jiffies = jiffies; 4449 msleep(1); 4450 slept_jiffies = jiffies - begin_jiffies; 4451 4452 remaining_jiffies -= min(slept_jiffies, remaining_jiffies); 4453 4454 last_diff = diff; 4455 } 4456 4457 return (diff == 0); 4458 } 4459 4460 /** 4461 * pr_flush() - Wait for printing threads to catch up. 4462 * 4463 * @timeout_ms: The maximum time (in ms) to wait. 4464 * @reset_on_progress: Reset the timeout if forward progress is seen. 4465 * 4466 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 4467 * represents infinite waiting. 4468 * 4469 * If @reset_on_progress is true, the timeout will be reset whenever any 4470 * printer has been seen to make some forward progress. 4471 * 4472 * Context: Process context. May sleep while acquiring console lock. 4473 * Return: true if all usable printers are caught up. 4474 */ 4475 bool pr_flush(int timeout_ms, bool reset_on_progress) 4476 { 4477 return __pr_flush(NULL, timeout_ms, reset_on_progress); 4478 } 4479 4480 /* 4481 * Delayed printk version, for scheduler-internal messages: 4482 */ 4483 #define PRINTK_PENDING_WAKEUP 0x01 4484 #define PRINTK_PENDING_OUTPUT 0x02 4485 4486 static DEFINE_PER_CPU(int, printk_pending); 4487 4488 static void wake_up_klogd_work_func(struct irq_work *irq_work) 4489 { 4490 int pending = this_cpu_xchg(printk_pending, 0); 4491 4492 if (pending & PRINTK_PENDING_OUTPUT) { 4493 if (force_legacy_kthread()) { 4494 if (printk_legacy_kthread) 4495 wake_up_interruptible(&legacy_wait); 4496 } else { 4497 if (console_trylock()) 4498 console_unlock(); 4499 } 4500 } 4501 4502 if (pending & PRINTK_PENDING_WAKEUP) 4503 wake_up_interruptible(&log_wait); 4504 } 4505 4506 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 4507 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 4508 4509 static void __wake_up_klogd(int val) 4510 { 4511 if (!printk_percpu_data_ready()) 4512 return; 4513 4514 preempt_disable(); 4515 /* 4516 * Guarantee any new records can be seen by tasks preparing to wait 4517 * before this context checks if the wait queue is empty. 4518 * 4519 * The full memory barrier within wq_has_sleeper() pairs with the full 4520 * memory barrier within set_current_state() of 4521 * prepare_to_wait_event(), which is called after ___wait_event() adds 4522 * the waiter but before it has checked the wait condition. 4523 * 4524 * This pairs with devkmsg_read:A and syslog_print:A. 4525 */ 4526 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 4527 (val & PRINTK_PENDING_OUTPUT)) { 4528 this_cpu_or(printk_pending, val); 4529 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 4530 } 4531 preempt_enable(); 4532 } 4533 4534 /** 4535 * wake_up_klogd - Wake kernel logging daemon 4536 * 4537 * Use this function when new records have been added to the ringbuffer 4538 * and the console printing of those records has already occurred or is 4539 * known to be handled by some other context. This function will only 4540 * wake the logging daemon. 4541 * 4542 * Context: Any context. 4543 */ 4544 void wake_up_klogd(void) 4545 { 4546 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 4547 } 4548 4549 /** 4550 * defer_console_output - Wake kernel logging daemon and trigger 4551 * console printing in a deferred context 4552 * 4553 * Use this function when new records have been added to the ringbuffer, 4554 * this context is responsible for console printing those records, but 4555 * the current context is not allowed to perform the console printing. 4556 * Trigger an irq_work context to perform the console printing. This 4557 * function also wakes the logging daemon. 4558 * 4559 * Context: Any context. 4560 */ 4561 void defer_console_output(void) 4562 { 4563 /* 4564 * New messages may have been added directly to the ringbuffer 4565 * using vprintk_store(), so wake any waiters as well. 4566 */ 4567 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 4568 } 4569 4570 void printk_trigger_flush(void) 4571 { 4572 defer_console_output(); 4573 } 4574 4575 int vprintk_deferred(const char *fmt, va_list args) 4576 { 4577 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 4578 } 4579 4580 int _printk_deferred(const char *fmt, ...) 4581 { 4582 va_list args; 4583 int r; 4584 4585 va_start(args, fmt); 4586 r = vprintk_deferred(fmt, args); 4587 va_end(args); 4588 4589 return r; 4590 } 4591 4592 /* 4593 * printk rate limiting, lifted from the networking subsystem. 4594 * 4595 * This enforces a rate limit: not more than 10 kernel messages 4596 * every 5s to make a denial-of-service attack impossible. 4597 */ 4598 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 4599 4600 int __printk_ratelimit(const char *func) 4601 { 4602 return ___ratelimit(&printk_ratelimit_state, func); 4603 } 4604 EXPORT_SYMBOL(__printk_ratelimit); 4605 4606 /** 4607 * printk_timed_ratelimit - caller-controlled printk ratelimiting 4608 * @caller_jiffies: pointer to caller's state 4609 * @interval_msecs: minimum interval between prints 4610 * 4611 * printk_timed_ratelimit() returns true if more than @interval_msecs 4612 * milliseconds have elapsed since the last time printk_timed_ratelimit() 4613 * returned true. 4614 */ 4615 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 4616 unsigned int interval_msecs) 4617 { 4618 unsigned long elapsed = jiffies - *caller_jiffies; 4619 4620 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 4621 return false; 4622 4623 *caller_jiffies = jiffies; 4624 return true; 4625 } 4626 EXPORT_SYMBOL(printk_timed_ratelimit); 4627 4628 static DEFINE_SPINLOCK(dump_list_lock); 4629 static LIST_HEAD(dump_list); 4630 4631 /** 4632 * kmsg_dump_register - register a kernel log dumper. 4633 * @dumper: pointer to the kmsg_dumper structure 4634 * 4635 * Adds a kernel log dumper to the system. The dump callback in the 4636 * structure will be called when the kernel oopses or panics and must be 4637 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 4638 */ 4639 int kmsg_dump_register(struct kmsg_dumper *dumper) 4640 { 4641 unsigned long flags; 4642 int err = -EBUSY; 4643 4644 /* The dump callback needs to be set */ 4645 if (!dumper->dump) 4646 return -EINVAL; 4647 4648 spin_lock_irqsave(&dump_list_lock, flags); 4649 /* Don't allow registering multiple times */ 4650 if (!dumper->registered) { 4651 dumper->registered = 1; 4652 list_add_tail_rcu(&dumper->list, &dump_list); 4653 err = 0; 4654 } 4655 spin_unlock_irqrestore(&dump_list_lock, flags); 4656 4657 return err; 4658 } 4659 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4660 4661 /** 4662 * kmsg_dump_unregister - unregister a kmsg dumper. 4663 * @dumper: pointer to the kmsg_dumper structure 4664 * 4665 * Removes a dump device from the system. Returns zero on success and 4666 * %-EINVAL otherwise. 4667 */ 4668 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4669 { 4670 unsigned long flags; 4671 int err = -EINVAL; 4672 4673 spin_lock_irqsave(&dump_list_lock, flags); 4674 if (dumper->registered) { 4675 dumper->registered = 0; 4676 list_del_rcu(&dumper->list); 4677 err = 0; 4678 } 4679 spin_unlock_irqrestore(&dump_list_lock, flags); 4680 synchronize_rcu(); 4681 4682 return err; 4683 } 4684 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4685 4686 static bool always_kmsg_dump; 4687 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4688 4689 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4690 { 4691 switch (reason) { 4692 case KMSG_DUMP_PANIC: 4693 return "Panic"; 4694 case KMSG_DUMP_OOPS: 4695 return "Oops"; 4696 case KMSG_DUMP_EMERG: 4697 return "Emergency"; 4698 case KMSG_DUMP_SHUTDOWN: 4699 return "Shutdown"; 4700 default: 4701 return "Unknown"; 4702 } 4703 } 4704 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4705 4706 /** 4707 * kmsg_dump_desc - dump kernel log to kernel message dumpers. 4708 * @reason: the reason (oops, panic etc) for dumping 4709 * @desc: a short string to describe what caused the panic or oops. Can be NULL 4710 * if no additional description is available. 4711 * 4712 * Call each of the registered dumper's dump() callback, which can 4713 * retrieve the kmsg records with kmsg_dump_get_line() or 4714 * kmsg_dump_get_buffer(). 4715 */ 4716 void kmsg_dump_desc(enum kmsg_dump_reason reason, const char *desc) 4717 { 4718 struct kmsg_dumper *dumper; 4719 struct kmsg_dump_detail detail = { 4720 .reason = reason, 4721 .description = desc}; 4722 4723 rcu_read_lock(); 4724 list_for_each_entry_rcu(dumper, &dump_list, list) { 4725 enum kmsg_dump_reason max_reason = dumper->max_reason; 4726 4727 /* 4728 * If client has not provided a specific max_reason, default 4729 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4730 */ 4731 if (max_reason == KMSG_DUMP_UNDEF) { 4732 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4733 KMSG_DUMP_OOPS; 4734 } 4735 if (reason > max_reason) 4736 continue; 4737 4738 /* invoke dumper which will iterate over records */ 4739 dumper->dump(dumper, &detail); 4740 } 4741 rcu_read_unlock(); 4742 } 4743 4744 /** 4745 * kmsg_dump_get_line - retrieve one kmsg log line 4746 * @iter: kmsg dump iterator 4747 * @syslog: include the "<4>" prefixes 4748 * @line: buffer to copy the line to 4749 * @size: maximum size of the buffer 4750 * @len: length of line placed into buffer 4751 * 4752 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4753 * record, and copy one record into the provided buffer. 4754 * 4755 * Consecutive calls will return the next available record moving 4756 * towards the end of the buffer with the youngest messages. 4757 * 4758 * A return value of FALSE indicates that there are no more records to 4759 * read. 4760 */ 4761 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4762 char *line, size_t size, size_t *len) 4763 { 4764 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4765 struct printk_info info; 4766 unsigned int line_count; 4767 struct printk_record r; 4768 size_t l = 0; 4769 bool ret = false; 4770 4771 if (iter->cur_seq < min_seq) 4772 iter->cur_seq = min_seq; 4773 4774 prb_rec_init_rd(&r, &info, line, size); 4775 4776 /* Read text or count text lines? */ 4777 if (line) { 4778 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4779 goto out; 4780 l = record_print_text(&r, syslog, printk_time); 4781 } else { 4782 if (!prb_read_valid_info(prb, iter->cur_seq, 4783 &info, &line_count)) { 4784 goto out; 4785 } 4786 l = get_record_print_text_size(&info, line_count, syslog, 4787 printk_time); 4788 4789 } 4790 4791 iter->cur_seq = r.info->seq + 1; 4792 ret = true; 4793 out: 4794 if (len) 4795 *len = l; 4796 return ret; 4797 } 4798 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4799 4800 /** 4801 * kmsg_dump_get_buffer - copy kmsg log lines 4802 * @iter: kmsg dump iterator 4803 * @syslog: include the "<4>" prefixes 4804 * @buf: buffer to copy the line to 4805 * @size: maximum size of the buffer 4806 * @len_out: length of line placed into buffer 4807 * 4808 * Start at the end of the kmsg buffer and fill the provided buffer 4809 * with as many of the *youngest* kmsg records that fit into it. 4810 * If the buffer is large enough, all available kmsg records will be 4811 * copied with a single call. 4812 * 4813 * Consecutive calls will fill the buffer with the next block of 4814 * available older records, not including the earlier retrieved ones. 4815 * 4816 * A return value of FALSE indicates that there are no more records to 4817 * read. 4818 */ 4819 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4820 char *buf, size_t size, size_t *len_out) 4821 { 4822 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4823 struct printk_info info; 4824 struct printk_record r; 4825 u64 seq; 4826 u64 next_seq; 4827 size_t len = 0; 4828 bool ret = false; 4829 bool time = printk_time; 4830 4831 if (!buf || !size) 4832 goto out; 4833 4834 if (iter->cur_seq < min_seq) 4835 iter->cur_seq = min_seq; 4836 4837 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4838 if (info.seq != iter->cur_seq) { 4839 /* messages are gone, move to first available one */ 4840 iter->cur_seq = info.seq; 4841 } 4842 } 4843 4844 /* last entry */ 4845 if (iter->cur_seq >= iter->next_seq) 4846 goto out; 4847 4848 /* 4849 * Find first record that fits, including all following records, 4850 * into the user-provided buffer for this dump. Pass in size-1 4851 * because this function (by way of record_print_text()) will 4852 * not write more than size-1 bytes of text into @buf. 4853 */ 4854 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4855 size - 1, syslog, time); 4856 4857 /* 4858 * Next kmsg_dump_get_buffer() invocation will dump block of 4859 * older records stored right before this one. 4860 */ 4861 next_seq = seq; 4862 4863 prb_rec_init_rd(&r, &info, buf, size); 4864 4865 prb_for_each_record(seq, prb, seq, &r) { 4866 if (r.info->seq >= iter->next_seq) 4867 break; 4868 4869 len += record_print_text(&r, syslog, time); 4870 4871 /* Adjust record to store to remaining buffer space. */ 4872 prb_rec_init_rd(&r, &info, buf + len, size - len); 4873 } 4874 4875 iter->next_seq = next_seq; 4876 ret = true; 4877 out: 4878 if (len_out) 4879 *len_out = len; 4880 return ret; 4881 } 4882 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4883 4884 /** 4885 * kmsg_dump_rewind - reset the iterator 4886 * @iter: kmsg dump iterator 4887 * 4888 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4889 * kmsg_dump_get_buffer() can be called again and used multiple 4890 * times within the same dumper.dump() callback. 4891 */ 4892 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4893 { 4894 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4895 iter->next_seq = prb_next_seq(prb); 4896 } 4897 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4898 4899 /** 4900 * console_try_replay_all - try to replay kernel log on consoles 4901 * 4902 * Try to obtain lock on console subsystem and replay all 4903 * available records in printk buffer on the consoles. 4904 * Does nothing if lock is not obtained. 4905 * 4906 * Context: Any, except for NMI. 4907 */ 4908 void console_try_replay_all(void) 4909 { 4910 struct console_flush_type ft; 4911 4912 printk_get_console_flush_type(&ft); 4913 if (console_trylock()) { 4914 __console_rewind_all(); 4915 if (ft.nbcon_atomic) 4916 nbcon_atomic_flush_pending(); 4917 if (ft.nbcon_offload) 4918 nbcon_kthreads_wake(); 4919 if (ft.legacy_offload) 4920 defer_console_output(); 4921 /* Consoles are flushed as part of console_unlock(). */ 4922 console_unlock(); 4923 } 4924 } 4925 #endif 4926 4927 #ifdef CONFIG_SMP 4928 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4929 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4930 4931 bool is_printk_cpu_sync_owner(void) 4932 { 4933 return (atomic_read(&printk_cpu_sync_owner) == raw_smp_processor_id()); 4934 } 4935 4936 /** 4937 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4938 * spinning lock is not owned by any CPU. 4939 * 4940 * Context: Any context. 4941 */ 4942 void __printk_cpu_sync_wait(void) 4943 { 4944 do { 4945 cpu_relax(); 4946 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4947 } 4948 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4949 4950 /** 4951 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4952 * spinning lock. 4953 * 4954 * If no processor has the lock, the calling processor takes the lock and 4955 * becomes the owner. If the calling processor is already the owner of the 4956 * lock, this function succeeds immediately. 4957 * 4958 * Context: Any context. Expects interrupts to be disabled. 4959 * Return: 1 on success, otherwise 0. 4960 */ 4961 int __printk_cpu_sync_try_get(void) 4962 { 4963 int cpu; 4964 int old; 4965 4966 cpu = smp_processor_id(); 4967 4968 /* 4969 * Guarantee loads and stores from this CPU when it is the lock owner 4970 * are _not_ visible to the previous lock owner. This pairs with 4971 * __printk_cpu_sync_put:B. 4972 * 4973 * Memory barrier involvement: 4974 * 4975 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4976 * then __printk_cpu_sync_put:A can never read from 4977 * __printk_cpu_sync_try_get:B. 4978 * 4979 * Relies on: 4980 * 4981 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4982 * of the previous CPU 4983 * matching 4984 * ACQUIRE from __printk_cpu_sync_try_get:A to 4985 * __printk_cpu_sync_try_get:B of this CPU 4986 */ 4987 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4988 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4989 if (old == -1) { 4990 /* 4991 * This CPU is now the owner and begins loading/storing 4992 * data: LMM(__printk_cpu_sync_try_get:B) 4993 */ 4994 return 1; 4995 4996 } else if (old == cpu) { 4997 /* This CPU is already the owner. */ 4998 atomic_inc(&printk_cpu_sync_nested); 4999 return 1; 5000 } 5001 5002 return 0; 5003 } 5004 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 5005 5006 /** 5007 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 5008 * 5009 * The calling processor must be the owner of the lock. 5010 * 5011 * Context: Any context. Expects interrupts to be disabled. 5012 */ 5013 void __printk_cpu_sync_put(void) 5014 { 5015 if (atomic_read(&printk_cpu_sync_nested)) { 5016 atomic_dec(&printk_cpu_sync_nested); 5017 return; 5018 } 5019 5020 /* 5021 * This CPU is finished loading/storing data: 5022 * LMM(__printk_cpu_sync_put:A) 5023 */ 5024 5025 /* 5026 * Guarantee loads and stores from this CPU when it was the 5027 * lock owner are visible to the next lock owner. This pairs 5028 * with __printk_cpu_sync_try_get:A. 5029 * 5030 * Memory barrier involvement: 5031 * 5032 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 5033 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 5034 * 5035 * Relies on: 5036 * 5037 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 5038 * of this CPU 5039 * matching 5040 * ACQUIRE from __printk_cpu_sync_try_get:A to 5041 * __printk_cpu_sync_try_get:B of the next CPU 5042 */ 5043 atomic_set_release(&printk_cpu_sync_owner, 5044 -1); /* LMM(__printk_cpu_sync_put:B) */ 5045 } 5046 EXPORT_SYMBOL(__printk_cpu_sync_put); 5047 #endif /* CONFIG_SMP */ 5048