1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/interrupt.h> /* For in_interrupt() */ 30 #include <linux/delay.h> 31 #include <linux/smp.h> 32 #include <linux/security.h> 33 #include <linux/bootmem.h> 34 #include <linux/memblock.h> 35 #include <linux/aio.h> 36 #include <linux/syscalls.h> 37 #include <linux/kexec.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/notifier.h> 44 #include <linux/rculist.h> 45 #include <linux/poll.h> 46 #include <linux/irq_work.h> 47 #include <linux/utsname.h> 48 #include <linux/ctype.h> 49 50 #include <asm/uaccess.h> 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/printk.h> 54 55 #include "console_cmdline.h" 56 #include "braille.h" 57 58 int console_printk[4] = { 59 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 60 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 61 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 62 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 63 }; 64 65 /* Deferred messaged from sched code are marked by this special level */ 66 #define SCHED_MESSAGE_LOGLEVEL -2 67 68 /* 69 * Low level drivers may need that to know if they can schedule in 70 * their unblank() callback or not. So let's export it. 71 */ 72 int oops_in_progress; 73 EXPORT_SYMBOL(oops_in_progress); 74 75 /* 76 * console_sem protects the console_drivers list, and also 77 * provides serialisation for access to the entire console 78 * driver system. 79 */ 80 static DEFINE_SEMAPHORE(console_sem); 81 struct console *console_drivers; 82 EXPORT_SYMBOL_GPL(console_drivers); 83 84 #ifdef CONFIG_LOCKDEP 85 static struct lockdep_map console_lock_dep_map = { 86 .name = "console_lock" 87 }; 88 #endif 89 90 /* 91 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 92 * macros instead of functions so that _RET_IP_ contains useful information. 93 */ 94 #define down_console_sem() do { \ 95 down(&console_sem);\ 96 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 97 } while (0) 98 99 static int __down_trylock_console_sem(unsigned long ip) 100 { 101 if (down_trylock(&console_sem)) 102 return 1; 103 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 104 return 0; 105 } 106 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 107 108 #define up_console_sem() do { \ 109 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\ 110 up(&console_sem);\ 111 } while (0) 112 113 /* 114 * This is used for debugging the mess that is the VT code by 115 * keeping track if we have the console semaphore held. It's 116 * definitely not the perfect debug tool (we don't know if _WE_ 117 * hold it and are racing, but it helps tracking those weird code 118 * paths in the console code where we end up in places I want 119 * locked without the console sempahore held). 120 */ 121 static int console_locked, console_suspended; 122 123 /* 124 * If exclusive_console is non-NULL then only this console is to be printed to. 125 */ 126 static struct console *exclusive_console; 127 128 /* 129 * Array of consoles built from command line options (console=) 130 */ 131 132 #define MAX_CMDLINECONSOLES 8 133 134 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 135 136 static int selected_console = -1; 137 static int preferred_console = -1; 138 int console_set_on_cmdline; 139 EXPORT_SYMBOL(console_set_on_cmdline); 140 141 /* Flag: console code may call schedule() */ 142 static int console_may_schedule; 143 144 /* 145 * The printk log buffer consists of a chain of concatenated variable 146 * length records. Every record starts with a record header, containing 147 * the overall length of the record. 148 * 149 * The heads to the first and last entry in the buffer, as well as the 150 * sequence numbers of these entries are maintained when messages are 151 * stored. 152 * 153 * If the heads indicate available messages, the length in the header 154 * tells the start next message. A length == 0 for the next message 155 * indicates a wrap-around to the beginning of the buffer. 156 * 157 * Every record carries the monotonic timestamp in microseconds, as well as 158 * the standard userspace syslog level and syslog facility. The usual 159 * kernel messages use LOG_KERN; userspace-injected messages always carry 160 * a matching syslog facility, by default LOG_USER. The origin of every 161 * message can be reliably determined that way. 162 * 163 * The human readable log message directly follows the message header. The 164 * length of the message text is stored in the header, the stored message 165 * is not terminated. 166 * 167 * Optionally, a message can carry a dictionary of properties (key/value pairs), 168 * to provide userspace with a machine-readable message context. 169 * 170 * Examples for well-defined, commonly used property names are: 171 * DEVICE=b12:8 device identifier 172 * b12:8 block dev_t 173 * c127:3 char dev_t 174 * n8 netdev ifindex 175 * +sound:card0 subsystem:devname 176 * SUBSYSTEM=pci driver-core subsystem name 177 * 178 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 179 * follows directly after a '=' character. Every property is terminated by 180 * a '\0' character. The last property is not terminated. 181 * 182 * Example of a message structure: 183 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 184 * 0008 34 00 record is 52 bytes long 185 * 000a 0b 00 text is 11 bytes long 186 * 000c 1f 00 dictionary is 23 bytes long 187 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 188 * 0010 69 74 27 73 20 61 20 6c "it's a l" 189 * 69 6e 65 "ine" 190 * 001b 44 45 56 49 43 "DEVIC" 191 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 192 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 193 * 67 "g" 194 * 0032 00 00 00 padding to next message header 195 * 196 * The 'struct printk_log' buffer header must never be directly exported to 197 * userspace, it is a kernel-private implementation detail that might 198 * need to be changed in the future, when the requirements change. 199 * 200 * /dev/kmsg exports the structured data in the following line format: 201 * "level,sequnum,timestamp;<message text>\n" 202 * 203 * The optional key/value pairs are attached as continuation lines starting 204 * with a space character and terminated by a newline. All possible 205 * non-prinatable characters are escaped in the "\xff" notation. 206 * 207 * Users of the export format should ignore possible additional values 208 * separated by ',', and find the message after the ';' character. 209 */ 210 211 enum log_flags { 212 LOG_NOCONS = 1, /* already flushed, do not print to console */ 213 LOG_NEWLINE = 2, /* text ended with a newline */ 214 LOG_PREFIX = 4, /* text started with a prefix */ 215 LOG_CONT = 8, /* text is a fragment of a continuation line */ 216 }; 217 218 struct printk_log { 219 u64 ts_nsec; /* timestamp in nanoseconds */ 220 u16 len; /* length of entire record */ 221 u16 text_len; /* length of text buffer */ 222 u16 dict_len; /* length of dictionary buffer */ 223 u8 facility; /* syslog facility */ 224 u8 flags:5; /* internal record flags */ 225 u8 level:3; /* syslog level */ 226 }; 227 228 /* 229 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 230 * within the scheduler's rq lock. It must be released before calling 231 * console_unlock() or anything else that might wake up a process. 232 */ 233 static DEFINE_RAW_SPINLOCK(logbuf_lock); 234 235 #ifdef CONFIG_PRINTK 236 DECLARE_WAIT_QUEUE_HEAD(log_wait); 237 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 238 static u64 syslog_seq; 239 static u32 syslog_idx; 240 static enum log_flags syslog_prev; 241 static size_t syslog_partial; 242 243 /* index and sequence number of the first record stored in the buffer */ 244 static u64 log_first_seq; 245 static u32 log_first_idx; 246 247 /* index and sequence number of the next record to store in the buffer */ 248 static u64 log_next_seq; 249 static u32 log_next_idx; 250 251 /* the next printk record to write to the console */ 252 static u64 console_seq; 253 static u32 console_idx; 254 static enum log_flags console_prev; 255 256 /* the next printk record to read after the last 'clear' command */ 257 static u64 clear_seq; 258 static u32 clear_idx; 259 260 #define PREFIX_MAX 32 261 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 262 263 /* record buffer */ 264 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) 265 #define LOG_ALIGN 4 266 #else 267 #define LOG_ALIGN __alignof__(struct printk_log) 268 #endif 269 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 270 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 271 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 272 static char *log_buf = __log_buf; 273 static u32 log_buf_len = __LOG_BUF_LEN; 274 275 /* Return log buffer address */ 276 char *log_buf_addr_get(void) 277 { 278 return log_buf; 279 } 280 281 /* Return log buffer size */ 282 u32 log_buf_len_get(void) 283 { 284 return log_buf_len; 285 } 286 287 /* human readable text of the record */ 288 static char *log_text(const struct printk_log *msg) 289 { 290 return (char *)msg + sizeof(struct printk_log); 291 } 292 293 /* optional key/value pair dictionary attached to the record */ 294 static char *log_dict(const struct printk_log *msg) 295 { 296 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 297 } 298 299 /* get record by index; idx must point to valid msg */ 300 static struct printk_log *log_from_idx(u32 idx) 301 { 302 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 303 304 /* 305 * A length == 0 record is the end of buffer marker. Wrap around and 306 * read the message at the start of the buffer. 307 */ 308 if (!msg->len) 309 return (struct printk_log *)log_buf; 310 return msg; 311 } 312 313 /* get next record; idx must point to valid msg */ 314 static u32 log_next(u32 idx) 315 { 316 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 317 318 /* length == 0 indicates the end of the buffer; wrap */ 319 /* 320 * A length == 0 record is the end of buffer marker. Wrap around and 321 * read the message at the start of the buffer as *this* one, and 322 * return the one after that. 323 */ 324 if (!msg->len) { 325 msg = (struct printk_log *)log_buf; 326 return msg->len; 327 } 328 return idx + msg->len; 329 } 330 331 /* 332 * Check whether there is enough free space for the given message. 333 * 334 * The same values of first_idx and next_idx mean that the buffer 335 * is either empty or full. 336 * 337 * If the buffer is empty, we must respect the position of the indexes. 338 * They cannot be reset to the beginning of the buffer. 339 */ 340 static int logbuf_has_space(u32 msg_size, bool empty) 341 { 342 u32 free; 343 344 if (log_next_idx > log_first_idx || empty) 345 free = max(log_buf_len - log_next_idx, log_first_idx); 346 else 347 free = log_first_idx - log_next_idx; 348 349 /* 350 * We need space also for an empty header that signalizes wrapping 351 * of the buffer. 352 */ 353 return free >= msg_size + sizeof(struct printk_log); 354 } 355 356 static int log_make_free_space(u32 msg_size) 357 { 358 while (log_first_seq < log_next_seq) { 359 if (logbuf_has_space(msg_size, false)) 360 return 0; 361 /* drop old messages until we have enough contiguous space */ 362 log_first_idx = log_next(log_first_idx); 363 log_first_seq++; 364 } 365 366 /* sequence numbers are equal, so the log buffer is empty */ 367 if (logbuf_has_space(msg_size, true)) 368 return 0; 369 370 return -ENOMEM; 371 } 372 373 /* compute the message size including the padding bytes */ 374 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 375 { 376 u32 size; 377 378 size = sizeof(struct printk_log) + text_len + dict_len; 379 *pad_len = (-size) & (LOG_ALIGN - 1); 380 size += *pad_len; 381 382 return size; 383 } 384 385 /* 386 * Define how much of the log buffer we could take at maximum. The value 387 * must be greater than two. Note that only half of the buffer is available 388 * when the index points to the middle. 389 */ 390 #define MAX_LOG_TAKE_PART 4 391 static const char trunc_msg[] = "<truncated>"; 392 393 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 394 u16 *dict_len, u32 *pad_len) 395 { 396 /* 397 * The message should not take the whole buffer. Otherwise, it might 398 * get removed too soon. 399 */ 400 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 401 if (*text_len > max_text_len) 402 *text_len = max_text_len; 403 /* enable the warning message */ 404 *trunc_msg_len = strlen(trunc_msg); 405 /* disable the "dict" completely */ 406 *dict_len = 0; 407 /* compute the size again, count also the warning message */ 408 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 409 } 410 411 /* insert record into the buffer, discard old ones, update heads */ 412 static int log_store(int facility, int level, 413 enum log_flags flags, u64 ts_nsec, 414 const char *dict, u16 dict_len, 415 const char *text, u16 text_len) 416 { 417 struct printk_log *msg; 418 u32 size, pad_len; 419 u16 trunc_msg_len = 0; 420 421 /* number of '\0' padding bytes to next message */ 422 size = msg_used_size(text_len, dict_len, &pad_len); 423 424 if (log_make_free_space(size)) { 425 /* truncate the message if it is too long for empty buffer */ 426 size = truncate_msg(&text_len, &trunc_msg_len, 427 &dict_len, &pad_len); 428 /* survive when the log buffer is too small for trunc_msg */ 429 if (log_make_free_space(size)) 430 return 0; 431 } 432 433 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 434 /* 435 * This message + an additional empty header does not fit 436 * at the end of the buffer. Add an empty header with len == 0 437 * to signify a wrap around. 438 */ 439 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 440 log_next_idx = 0; 441 } 442 443 /* fill message */ 444 msg = (struct printk_log *)(log_buf + log_next_idx); 445 memcpy(log_text(msg), text, text_len); 446 msg->text_len = text_len; 447 if (trunc_msg_len) { 448 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 449 msg->text_len += trunc_msg_len; 450 } 451 memcpy(log_dict(msg), dict, dict_len); 452 msg->dict_len = dict_len; 453 msg->facility = facility; 454 msg->level = level & 7; 455 msg->flags = flags & 0x1f; 456 if (ts_nsec > 0) 457 msg->ts_nsec = ts_nsec; 458 else 459 msg->ts_nsec = local_clock(); 460 memset(log_dict(msg) + dict_len, 0, pad_len); 461 msg->len = size; 462 463 /* insert message */ 464 log_next_idx += msg->len; 465 log_next_seq++; 466 467 return msg->text_len; 468 } 469 470 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 471 472 static int syslog_action_restricted(int type) 473 { 474 if (dmesg_restrict) 475 return 1; 476 /* 477 * Unless restricted, we allow "read all" and "get buffer size" 478 * for everybody. 479 */ 480 return type != SYSLOG_ACTION_READ_ALL && 481 type != SYSLOG_ACTION_SIZE_BUFFER; 482 } 483 484 static int check_syslog_permissions(int type, bool from_file) 485 { 486 /* 487 * If this is from /proc/kmsg and we've already opened it, then we've 488 * already done the capabilities checks at open time. 489 */ 490 if (from_file && type != SYSLOG_ACTION_OPEN) 491 return 0; 492 493 if (syslog_action_restricted(type)) { 494 if (capable(CAP_SYSLOG)) 495 return 0; 496 /* 497 * For historical reasons, accept CAP_SYS_ADMIN too, with 498 * a warning. 499 */ 500 if (capable(CAP_SYS_ADMIN)) { 501 pr_warn_once("%s (%d): Attempt to access syslog with " 502 "CAP_SYS_ADMIN but no CAP_SYSLOG " 503 "(deprecated).\n", 504 current->comm, task_pid_nr(current)); 505 return 0; 506 } 507 return -EPERM; 508 } 509 return security_syslog(type); 510 } 511 512 513 /* /dev/kmsg - userspace message inject/listen interface */ 514 struct devkmsg_user { 515 u64 seq; 516 u32 idx; 517 enum log_flags prev; 518 struct mutex lock; 519 char buf[8192]; 520 }; 521 522 static ssize_t devkmsg_writev(struct kiocb *iocb, const struct iovec *iv, 523 unsigned long count, loff_t pos) 524 { 525 char *buf, *line; 526 int i; 527 int level = default_message_loglevel; 528 int facility = 1; /* LOG_USER */ 529 size_t len = iov_length(iv, count); 530 ssize_t ret = len; 531 532 if (len > LOG_LINE_MAX) 533 return -EINVAL; 534 buf = kmalloc(len+1, GFP_KERNEL); 535 if (buf == NULL) 536 return -ENOMEM; 537 538 line = buf; 539 for (i = 0; i < count; i++) { 540 if (copy_from_user(line, iv[i].iov_base, iv[i].iov_len)) { 541 ret = -EFAULT; 542 goto out; 543 } 544 line += iv[i].iov_len; 545 } 546 547 /* 548 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 549 * the decimal value represents 32bit, the lower 3 bit are the log 550 * level, the rest are the log facility. 551 * 552 * If no prefix or no userspace facility is specified, we 553 * enforce LOG_USER, to be able to reliably distinguish 554 * kernel-generated messages from userspace-injected ones. 555 */ 556 line = buf; 557 if (line[0] == '<') { 558 char *endp = NULL; 559 560 i = simple_strtoul(line+1, &endp, 10); 561 if (endp && endp[0] == '>') { 562 level = i & 7; 563 if (i >> 3) 564 facility = i >> 3; 565 endp++; 566 len -= endp - line; 567 line = endp; 568 } 569 } 570 line[len] = '\0'; 571 572 printk_emit(facility, level, NULL, 0, "%s", line); 573 out: 574 kfree(buf); 575 return ret; 576 } 577 578 static ssize_t devkmsg_read(struct file *file, char __user *buf, 579 size_t count, loff_t *ppos) 580 { 581 struct devkmsg_user *user = file->private_data; 582 struct printk_log *msg; 583 u64 ts_usec; 584 size_t i; 585 char cont = '-'; 586 size_t len; 587 ssize_t ret; 588 589 if (!user) 590 return -EBADF; 591 592 ret = mutex_lock_interruptible(&user->lock); 593 if (ret) 594 return ret; 595 raw_spin_lock_irq(&logbuf_lock); 596 while (user->seq == log_next_seq) { 597 if (file->f_flags & O_NONBLOCK) { 598 ret = -EAGAIN; 599 raw_spin_unlock_irq(&logbuf_lock); 600 goto out; 601 } 602 603 raw_spin_unlock_irq(&logbuf_lock); 604 ret = wait_event_interruptible(log_wait, 605 user->seq != log_next_seq); 606 if (ret) 607 goto out; 608 raw_spin_lock_irq(&logbuf_lock); 609 } 610 611 if (user->seq < log_first_seq) { 612 /* our last seen message is gone, return error and reset */ 613 user->idx = log_first_idx; 614 user->seq = log_first_seq; 615 ret = -EPIPE; 616 raw_spin_unlock_irq(&logbuf_lock); 617 goto out; 618 } 619 620 msg = log_from_idx(user->idx); 621 ts_usec = msg->ts_nsec; 622 do_div(ts_usec, 1000); 623 624 /* 625 * If we couldn't merge continuation line fragments during the print, 626 * export the stored flags to allow an optional external merge of the 627 * records. Merging the records isn't always neccessarily correct, like 628 * when we hit a race during printing. In most cases though, it produces 629 * better readable output. 'c' in the record flags mark the first 630 * fragment of a line, '+' the following. 631 */ 632 if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT)) 633 cont = 'c'; 634 else if ((msg->flags & LOG_CONT) || 635 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))) 636 cont = '+'; 637 638 len = sprintf(user->buf, "%u,%llu,%llu,%c;", 639 (msg->facility << 3) | msg->level, 640 user->seq, ts_usec, cont); 641 user->prev = msg->flags; 642 643 /* escape non-printable characters */ 644 for (i = 0; i < msg->text_len; i++) { 645 unsigned char c = log_text(msg)[i]; 646 647 if (c < ' ' || c >= 127 || c == '\\') 648 len += sprintf(user->buf + len, "\\x%02x", c); 649 else 650 user->buf[len++] = c; 651 } 652 user->buf[len++] = '\n'; 653 654 if (msg->dict_len) { 655 bool line = true; 656 657 for (i = 0; i < msg->dict_len; i++) { 658 unsigned char c = log_dict(msg)[i]; 659 660 if (line) { 661 user->buf[len++] = ' '; 662 line = false; 663 } 664 665 if (c == '\0') { 666 user->buf[len++] = '\n'; 667 line = true; 668 continue; 669 } 670 671 if (c < ' ' || c >= 127 || c == '\\') { 672 len += sprintf(user->buf + len, "\\x%02x", c); 673 continue; 674 } 675 676 user->buf[len++] = c; 677 } 678 user->buf[len++] = '\n'; 679 } 680 681 user->idx = log_next(user->idx); 682 user->seq++; 683 raw_spin_unlock_irq(&logbuf_lock); 684 685 if (len > count) { 686 ret = -EINVAL; 687 goto out; 688 } 689 690 if (copy_to_user(buf, user->buf, len)) { 691 ret = -EFAULT; 692 goto out; 693 } 694 ret = len; 695 out: 696 mutex_unlock(&user->lock); 697 return ret; 698 } 699 700 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 701 { 702 struct devkmsg_user *user = file->private_data; 703 loff_t ret = 0; 704 705 if (!user) 706 return -EBADF; 707 if (offset) 708 return -ESPIPE; 709 710 raw_spin_lock_irq(&logbuf_lock); 711 switch (whence) { 712 case SEEK_SET: 713 /* the first record */ 714 user->idx = log_first_idx; 715 user->seq = log_first_seq; 716 break; 717 case SEEK_DATA: 718 /* 719 * The first record after the last SYSLOG_ACTION_CLEAR, 720 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 721 * changes no global state, and does not clear anything. 722 */ 723 user->idx = clear_idx; 724 user->seq = clear_seq; 725 break; 726 case SEEK_END: 727 /* after the last record */ 728 user->idx = log_next_idx; 729 user->seq = log_next_seq; 730 break; 731 default: 732 ret = -EINVAL; 733 } 734 raw_spin_unlock_irq(&logbuf_lock); 735 return ret; 736 } 737 738 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 739 { 740 struct devkmsg_user *user = file->private_data; 741 int ret = 0; 742 743 if (!user) 744 return POLLERR|POLLNVAL; 745 746 poll_wait(file, &log_wait, wait); 747 748 raw_spin_lock_irq(&logbuf_lock); 749 if (user->seq < log_next_seq) { 750 /* return error when data has vanished underneath us */ 751 if (user->seq < log_first_seq) 752 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 753 else 754 ret = POLLIN|POLLRDNORM; 755 } 756 raw_spin_unlock_irq(&logbuf_lock); 757 758 return ret; 759 } 760 761 static int devkmsg_open(struct inode *inode, struct file *file) 762 { 763 struct devkmsg_user *user; 764 int err; 765 766 /* write-only does not need any file context */ 767 if ((file->f_flags & O_ACCMODE) == O_WRONLY) 768 return 0; 769 770 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 771 SYSLOG_FROM_READER); 772 if (err) 773 return err; 774 775 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 776 if (!user) 777 return -ENOMEM; 778 779 mutex_init(&user->lock); 780 781 raw_spin_lock_irq(&logbuf_lock); 782 user->idx = log_first_idx; 783 user->seq = log_first_seq; 784 raw_spin_unlock_irq(&logbuf_lock); 785 786 file->private_data = user; 787 return 0; 788 } 789 790 static int devkmsg_release(struct inode *inode, struct file *file) 791 { 792 struct devkmsg_user *user = file->private_data; 793 794 if (!user) 795 return 0; 796 797 mutex_destroy(&user->lock); 798 kfree(user); 799 return 0; 800 } 801 802 const struct file_operations kmsg_fops = { 803 .open = devkmsg_open, 804 .read = devkmsg_read, 805 .aio_write = devkmsg_writev, 806 .llseek = devkmsg_llseek, 807 .poll = devkmsg_poll, 808 .release = devkmsg_release, 809 }; 810 811 #ifdef CONFIG_KEXEC 812 /* 813 * This appends the listed symbols to /proc/vmcore 814 * 815 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 816 * obtain access to symbols that are otherwise very difficult to locate. These 817 * symbols are specifically used so that utilities can access and extract the 818 * dmesg log from a vmcore file after a crash. 819 */ 820 void log_buf_kexec_setup(void) 821 { 822 VMCOREINFO_SYMBOL(log_buf); 823 VMCOREINFO_SYMBOL(log_buf_len); 824 VMCOREINFO_SYMBOL(log_first_idx); 825 VMCOREINFO_SYMBOL(log_next_idx); 826 /* 827 * Export struct printk_log size and field offsets. User space tools can 828 * parse it and detect any changes to structure down the line. 829 */ 830 VMCOREINFO_STRUCT_SIZE(printk_log); 831 VMCOREINFO_OFFSET(printk_log, ts_nsec); 832 VMCOREINFO_OFFSET(printk_log, len); 833 VMCOREINFO_OFFSET(printk_log, text_len); 834 VMCOREINFO_OFFSET(printk_log, dict_len); 835 } 836 #endif 837 838 /* requested log_buf_len from kernel cmdline */ 839 static unsigned long __initdata new_log_buf_len; 840 841 /* we practice scaling the ring buffer by powers of 2 */ 842 static void __init log_buf_len_update(unsigned size) 843 { 844 if (size) 845 size = roundup_pow_of_two(size); 846 if (size > log_buf_len) 847 new_log_buf_len = size; 848 } 849 850 /* save requested log_buf_len since it's too early to process it */ 851 static int __init log_buf_len_setup(char *str) 852 { 853 unsigned size = memparse(str, &str); 854 855 log_buf_len_update(size); 856 857 return 0; 858 } 859 early_param("log_buf_len", log_buf_len_setup); 860 861 static void __init log_buf_add_cpu(void) 862 { 863 unsigned int cpu_extra; 864 865 /* 866 * archs should set up cpu_possible_bits properly with 867 * set_cpu_possible() after setup_arch() but just in 868 * case lets ensure this is valid. 869 */ 870 if (num_possible_cpus() == 1) 871 return; 872 873 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 874 875 /* by default this will only continue through for large > 64 CPUs */ 876 if (cpu_extra <= __LOG_BUF_LEN / 2) 877 return; 878 879 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 880 __LOG_CPU_MAX_BUF_LEN); 881 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 882 cpu_extra); 883 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 884 885 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 886 } 887 888 void __init setup_log_buf(int early) 889 { 890 unsigned long flags; 891 char *new_log_buf; 892 int free; 893 894 if (log_buf != __log_buf) 895 return; 896 897 if (!early && !new_log_buf_len) 898 log_buf_add_cpu(); 899 900 if (!new_log_buf_len) 901 return; 902 903 if (early) { 904 new_log_buf = 905 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 906 } else { 907 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 908 LOG_ALIGN); 909 } 910 911 if (unlikely(!new_log_buf)) { 912 pr_err("log_buf_len: %ld bytes not available\n", 913 new_log_buf_len); 914 return; 915 } 916 917 raw_spin_lock_irqsave(&logbuf_lock, flags); 918 log_buf_len = new_log_buf_len; 919 log_buf = new_log_buf; 920 new_log_buf_len = 0; 921 free = __LOG_BUF_LEN - log_next_idx; 922 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 923 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 924 925 pr_info("log_buf_len: %d bytes\n", log_buf_len); 926 pr_info("early log buf free: %d(%d%%)\n", 927 free, (free * 100) / __LOG_BUF_LEN); 928 } 929 930 static bool __read_mostly ignore_loglevel; 931 932 static int __init ignore_loglevel_setup(char *str) 933 { 934 ignore_loglevel = true; 935 pr_info("debug: ignoring loglevel setting.\n"); 936 937 return 0; 938 } 939 940 early_param("ignore_loglevel", ignore_loglevel_setup); 941 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 942 MODULE_PARM_DESC(ignore_loglevel, "ignore loglevel setting, to" 943 "print all kernel messages to the console."); 944 945 #ifdef CONFIG_BOOT_PRINTK_DELAY 946 947 static int boot_delay; /* msecs delay after each printk during bootup */ 948 static unsigned long long loops_per_msec; /* based on boot_delay */ 949 950 static int __init boot_delay_setup(char *str) 951 { 952 unsigned long lpj; 953 954 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 955 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 956 957 get_option(&str, &boot_delay); 958 if (boot_delay > 10 * 1000) 959 boot_delay = 0; 960 961 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 962 "HZ: %d, loops_per_msec: %llu\n", 963 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 964 return 0; 965 } 966 early_param("boot_delay", boot_delay_setup); 967 968 static void boot_delay_msec(int level) 969 { 970 unsigned long long k; 971 unsigned long timeout; 972 973 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING) 974 || (level >= console_loglevel && !ignore_loglevel)) { 975 return; 976 } 977 978 k = (unsigned long long)loops_per_msec * boot_delay; 979 980 timeout = jiffies + msecs_to_jiffies(boot_delay); 981 while (k) { 982 k--; 983 cpu_relax(); 984 /* 985 * use (volatile) jiffies to prevent 986 * compiler reduction; loop termination via jiffies 987 * is secondary and may or may not happen. 988 */ 989 if (time_after(jiffies, timeout)) 990 break; 991 touch_nmi_watchdog(); 992 } 993 } 994 #else 995 static inline void boot_delay_msec(int level) 996 { 997 } 998 #endif 999 1000 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1001 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1002 1003 static size_t print_time(u64 ts, char *buf) 1004 { 1005 unsigned long rem_nsec; 1006 1007 if (!printk_time) 1008 return 0; 1009 1010 rem_nsec = do_div(ts, 1000000000); 1011 1012 if (!buf) 1013 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1014 1015 return sprintf(buf, "[%5lu.%06lu] ", 1016 (unsigned long)ts, rem_nsec / 1000); 1017 } 1018 1019 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1020 { 1021 size_t len = 0; 1022 unsigned int prefix = (msg->facility << 3) | msg->level; 1023 1024 if (syslog) { 1025 if (buf) { 1026 len += sprintf(buf, "<%u>", prefix); 1027 } else { 1028 len += 3; 1029 if (prefix > 999) 1030 len += 3; 1031 else if (prefix > 99) 1032 len += 2; 1033 else if (prefix > 9) 1034 len++; 1035 } 1036 } 1037 1038 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1039 return len; 1040 } 1041 1042 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1043 bool syslog, char *buf, size_t size) 1044 { 1045 const char *text = log_text(msg); 1046 size_t text_size = msg->text_len; 1047 bool prefix = true; 1048 bool newline = true; 1049 size_t len = 0; 1050 1051 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)) 1052 prefix = false; 1053 1054 if (msg->flags & LOG_CONT) { 1055 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE)) 1056 prefix = false; 1057 1058 if (!(msg->flags & LOG_NEWLINE)) 1059 newline = false; 1060 } 1061 1062 do { 1063 const char *next = memchr(text, '\n', text_size); 1064 size_t text_len; 1065 1066 if (next) { 1067 text_len = next - text; 1068 next++; 1069 text_size -= next - text; 1070 } else { 1071 text_len = text_size; 1072 } 1073 1074 if (buf) { 1075 if (print_prefix(msg, syslog, NULL) + 1076 text_len + 1 >= size - len) 1077 break; 1078 1079 if (prefix) 1080 len += print_prefix(msg, syslog, buf + len); 1081 memcpy(buf + len, text, text_len); 1082 len += text_len; 1083 if (next || newline) 1084 buf[len++] = '\n'; 1085 } else { 1086 /* SYSLOG_ACTION_* buffer size only calculation */ 1087 if (prefix) 1088 len += print_prefix(msg, syslog, NULL); 1089 len += text_len; 1090 if (next || newline) 1091 len++; 1092 } 1093 1094 prefix = true; 1095 text = next; 1096 } while (text); 1097 1098 return len; 1099 } 1100 1101 static int syslog_print(char __user *buf, int size) 1102 { 1103 char *text; 1104 struct printk_log *msg; 1105 int len = 0; 1106 1107 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1108 if (!text) 1109 return -ENOMEM; 1110 1111 while (size > 0) { 1112 size_t n; 1113 size_t skip; 1114 1115 raw_spin_lock_irq(&logbuf_lock); 1116 if (syslog_seq < log_first_seq) { 1117 /* messages are gone, move to first one */ 1118 syslog_seq = log_first_seq; 1119 syslog_idx = log_first_idx; 1120 syslog_prev = 0; 1121 syslog_partial = 0; 1122 } 1123 if (syslog_seq == log_next_seq) { 1124 raw_spin_unlock_irq(&logbuf_lock); 1125 break; 1126 } 1127 1128 skip = syslog_partial; 1129 msg = log_from_idx(syslog_idx); 1130 n = msg_print_text(msg, syslog_prev, true, text, 1131 LOG_LINE_MAX + PREFIX_MAX); 1132 if (n - syslog_partial <= size) { 1133 /* message fits into buffer, move forward */ 1134 syslog_idx = log_next(syslog_idx); 1135 syslog_seq++; 1136 syslog_prev = msg->flags; 1137 n -= syslog_partial; 1138 syslog_partial = 0; 1139 } else if (!len){ 1140 /* partial read(), remember position */ 1141 n = size; 1142 syslog_partial += n; 1143 } else 1144 n = 0; 1145 raw_spin_unlock_irq(&logbuf_lock); 1146 1147 if (!n) 1148 break; 1149 1150 if (copy_to_user(buf, text + skip, n)) { 1151 if (!len) 1152 len = -EFAULT; 1153 break; 1154 } 1155 1156 len += n; 1157 size -= n; 1158 buf += n; 1159 } 1160 1161 kfree(text); 1162 return len; 1163 } 1164 1165 static int syslog_print_all(char __user *buf, int size, bool clear) 1166 { 1167 char *text; 1168 int len = 0; 1169 1170 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1171 if (!text) 1172 return -ENOMEM; 1173 1174 raw_spin_lock_irq(&logbuf_lock); 1175 if (buf) { 1176 u64 next_seq; 1177 u64 seq; 1178 u32 idx; 1179 enum log_flags prev; 1180 1181 if (clear_seq < log_first_seq) { 1182 /* messages are gone, move to first available one */ 1183 clear_seq = log_first_seq; 1184 clear_idx = log_first_idx; 1185 } 1186 1187 /* 1188 * Find first record that fits, including all following records, 1189 * into the user-provided buffer for this dump. 1190 */ 1191 seq = clear_seq; 1192 idx = clear_idx; 1193 prev = 0; 1194 while (seq < log_next_seq) { 1195 struct printk_log *msg = log_from_idx(idx); 1196 1197 len += msg_print_text(msg, prev, true, NULL, 0); 1198 prev = msg->flags; 1199 idx = log_next(idx); 1200 seq++; 1201 } 1202 1203 /* move first record forward until length fits into the buffer */ 1204 seq = clear_seq; 1205 idx = clear_idx; 1206 prev = 0; 1207 while (len > size && seq < log_next_seq) { 1208 struct printk_log *msg = log_from_idx(idx); 1209 1210 len -= msg_print_text(msg, prev, true, NULL, 0); 1211 prev = msg->flags; 1212 idx = log_next(idx); 1213 seq++; 1214 } 1215 1216 /* last message fitting into this dump */ 1217 next_seq = log_next_seq; 1218 1219 len = 0; 1220 while (len >= 0 && seq < next_seq) { 1221 struct printk_log *msg = log_from_idx(idx); 1222 int textlen; 1223 1224 textlen = msg_print_text(msg, prev, true, text, 1225 LOG_LINE_MAX + PREFIX_MAX); 1226 if (textlen < 0) { 1227 len = textlen; 1228 break; 1229 } 1230 idx = log_next(idx); 1231 seq++; 1232 prev = msg->flags; 1233 1234 raw_spin_unlock_irq(&logbuf_lock); 1235 if (copy_to_user(buf + len, text, textlen)) 1236 len = -EFAULT; 1237 else 1238 len += textlen; 1239 raw_spin_lock_irq(&logbuf_lock); 1240 1241 if (seq < log_first_seq) { 1242 /* messages are gone, move to next one */ 1243 seq = log_first_seq; 1244 idx = log_first_idx; 1245 prev = 0; 1246 } 1247 } 1248 } 1249 1250 if (clear) { 1251 clear_seq = log_next_seq; 1252 clear_idx = log_next_idx; 1253 } 1254 raw_spin_unlock_irq(&logbuf_lock); 1255 1256 kfree(text); 1257 return len; 1258 } 1259 1260 int do_syslog(int type, char __user *buf, int len, bool from_file) 1261 { 1262 bool clear = false; 1263 static int saved_console_loglevel = -1; 1264 int error; 1265 1266 error = check_syslog_permissions(type, from_file); 1267 if (error) 1268 goto out; 1269 1270 error = security_syslog(type); 1271 if (error) 1272 return error; 1273 1274 switch (type) { 1275 case SYSLOG_ACTION_CLOSE: /* Close log */ 1276 break; 1277 case SYSLOG_ACTION_OPEN: /* Open log */ 1278 break; 1279 case SYSLOG_ACTION_READ: /* Read from log */ 1280 error = -EINVAL; 1281 if (!buf || len < 0) 1282 goto out; 1283 error = 0; 1284 if (!len) 1285 goto out; 1286 if (!access_ok(VERIFY_WRITE, buf, len)) { 1287 error = -EFAULT; 1288 goto out; 1289 } 1290 error = wait_event_interruptible(log_wait, 1291 syslog_seq != log_next_seq); 1292 if (error) 1293 goto out; 1294 error = syslog_print(buf, len); 1295 break; 1296 /* Read/clear last kernel messages */ 1297 case SYSLOG_ACTION_READ_CLEAR: 1298 clear = true; 1299 /* FALL THRU */ 1300 /* Read last kernel messages */ 1301 case SYSLOG_ACTION_READ_ALL: 1302 error = -EINVAL; 1303 if (!buf || len < 0) 1304 goto out; 1305 error = 0; 1306 if (!len) 1307 goto out; 1308 if (!access_ok(VERIFY_WRITE, buf, len)) { 1309 error = -EFAULT; 1310 goto out; 1311 } 1312 error = syslog_print_all(buf, len, clear); 1313 break; 1314 /* Clear ring buffer */ 1315 case SYSLOG_ACTION_CLEAR: 1316 syslog_print_all(NULL, 0, true); 1317 break; 1318 /* Disable logging to console */ 1319 case SYSLOG_ACTION_CONSOLE_OFF: 1320 if (saved_console_loglevel == -1) 1321 saved_console_loglevel = console_loglevel; 1322 console_loglevel = minimum_console_loglevel; 1323 break; 1324 /* Enable logging to console */ 1325 case SYSLOG_ACTION_CONSOLE_ON: 1326 if (saved_console_loglevel != -1) { 1327 console_loglevel = saved_console_loglevel; 1328 saved_console_loglevel = -1; 1329 } 1330 break; 1331 /* Set level of messages printed to console */ 1332 case SYSLOG_ACTION_CONSOLE_LEVEL: 1333 error = -EINVAL; 1334 if (len < 1 || len > 8) 1335 goto out; 1336 if (len < minimum_console_loglevel) 1337 len = minimum_console_loglevel; 1338 console_loglevel = len; 1339 /* Implicitly re-enable logging to console */ 1340 saved_console_loglevel = -1; 1341 error = 0; 1342 break; 1343 /* Number of chars in the log buffer */ 1344 case SYSLOG_ACTION_SIZE_UNREAD: 1345 raw_spin_lock_irq(&logbuf_lock); 1346 if (syslog_seq < log_first_seq) { 1347 /* messages are gone, move to first one */ 1348 syslog_seq = log_first_seq; 1349 syslog_idx = log_first_idx; 1350 syslog_prev = 0; 1351 syslog_partial = 0; 1352 } 1353 if (from_file) { 1354 /* 1355 * Short-cut for poll(/"proc/kmsg") which simply checks 1356 * for pending data, not the size; return the count of 1357 * records, not the length. 1358 */ 1359 error = log_next_seq - syslog_seq; 1360 } else { 1361 u64 seq = syslog_seq; 1362 u32 idx = syslog_idx; 1363 enum log_flags prev = syslog_prev; 1364 1365 error = 0; 1366 while (seq < log_next_seq) { 1367 struct printk_log *msg = log_from_idx(idx); 1368 1369 error += msg_print_text(msg, prev, true, NULL, 0); 1370 idx = log_next(idx); 1371 seq++; 1372 prev = msg->flags; 1373 } 1374 error -= syslog_partial; 1375 } 1376 raw_spin_unlock_irq(&logbuf_lock); 1377 break; 1378 /* Size of the log buffer */ 1379 case SYSLOG_ACTION_SIZE_BUFFER: 1380 error = log_buf_len; 1381 break; 1382 default: 1383 error = -EINVAL; 1384 break; 1385 } 1386 out: 1387 return error; 1388 } 1389 1390 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1391 { 1392 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1393 } 1394 1395 /* 1396 * Call the console drivers, asking them to write out 1397 * log_buf[start] to log_buf[end - 1]. 1398 * The console_lock must be held. 1399 */ 1400 static void call_console_drivers(int level, const char *text, size_t len) 1401 { 1402 struct console *con; 1403 1404 trace_console(text, len); 1405 1406 if (level >= console_loglevel && !ignore_loglevel) 1407 return; 1408 if (!console_drivers) 1409 return; 1410 1411 for_each_console(con) { 1412 if (exclusive_console && con != exclusive_console) 1413 continue; 1414 if (!(con->flags & CON_ENABLED)) 1415 continue; 1416 if (!con->write) 1417 continue; 1418 if (!cpu_online(smp_processor_id()) && 1419 !(con->flags & CON_ANYTIME)) 1420 continue; 1421 con->write(con, text, len); 1422 } 1423 } 1424 1425 /* 1426 * Zap console related locks when oopsing. Only zap at most once 1427 * every 10 seconds, to leave time for slow consoles to print a 1428 * full oops. 1429 */ 1430 static void zap_locks(void) 1431 { 1432 static unsigned long oops_timestamp; 1433 1434 if (time_after_eq(jiffies, oops_timestamp) && 1435 !time_after(jiffies, oops_timestamp + 30 * HZ)) 1436 return; 1437 1438 oops_timestamp = jiffies; 1439 1440 debug_locks_off(); 1441 /* If a crash is occurring, make sure we can't deadlock */ 1442 raw_spin_lock_init(&logbuf_lock); 1443 /* And make sure that we print immediately */ 1444 sema_init(&console_sem, 1); 1445 } 1446 1447 /* 1448 * Check if we have any console that is capable of printing while cpu is 1449 * booting or shutting down. Requires console_sem. 1450 */ 1451 static int have_callable_console(void) 1452 { 1453 struct console *con; 1454 1455 for_each_console(con) 1456 if (con->flags & CON_ANYTIME) 1457 return 1; 1458 1459 return 0; 1460 } 1461 1462 /* 1463 * Can we actually use the console at this time on this cpu? 1464 * 1465 * Console drivers may assume that per-cpu resources have been allocated. So 1466 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 1467 * call them until this CPU is officially up. 1468 */ 1469 static inline int can_use_console(unsigned int cpu) 1470 { 1471 return cpu_online(cpu) || have_callable_console(); 1472 } 1473 1474 /* 1475 * Try to get console ownership to actually show the kernel 1476 * messages from a 'printk'. Return true (and with the 1477 * console_lock held, and 'console_locked' set) if it 1478 * is successful, false otherwise. 1479 */ 1480 static int console_trylock_for_printk(void) 1481 { 1482 unsigned int cpu = smp_processor_id(); 1483 1484 if (!console_trylock()) 1485 return 0; 1486 /* 1487 * If we can't use the console, we need to release the console 1488 * semaphore by hand to avoid flushing the buffer. We need to hold the 1489 * console semaphore in order to do this test safely. 1490 */ 1491 if (!can_use_console(cpu)) { 1492 console_locked = 0; 1493 up_console_sem(); 1494 return 0; 1495 } 1496 return 1; 1497 } 1498 1499 int printk_delay_msec __read_mostly; 1500 1501 static inline void printk_delay(void) 1502 { 1503 if (unlikely(printk_delay_msec)) { 1504 int m = printk_delay_msec; 1505 1506 while (m--) { 1507 mdelay(1); 1508 touch_nmi_watchdog(); 1509 } 1510 } 1511 } 1512 1513 /* 1514 * Continuation lines are buffered, and not committed to the record buffer 1515 * until the line is complete, or a race forces it. The line fragments 1516 * though, are printed immediately to the consoles to ensure everything has 1517 * reached the console in case of a kernel crash. 1518 */ 1519 static struct cont { 1520 char buf[LOG_LINE_MAX]; 1521 size_t len; /* length == 0 means unused buffer */ 1522 size_t cons; /* bytes written to console */ 1523 struct task_struct *owner; /* task of first print*/ 1524 u64 ts_nsec; /* time of first print */ 1525 u8 level; /* log level of first message */ 1526 u8 facility; /* log facility of first message */ 1527 enum log_flags flags; /* prefix, newline flags */ 1528 bool flushed:1; /* buffer sealed and committed */ 1529 } cont; 1530 1531 static void cont_flush(enum log_flags flags) 1532 { 1533 if (cont.flushed) 1534 return; 1535 if (cont.len == 0) 1536 return; 1537 1538 if (cont.cons) { 1539 /* 1540 * If a fragment of this line was directly flushed to the 1541 * console; wait for the console to pick up the rest of the 1542 * line. LOG_NOCONS suppresses a duplicated output. 1543 */ 1544 log_store(cont.facility, cont.level, flags | LOG_NOCONS, 1545 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1546 cont.flags = flags; 1547 cont.flushed = true; 1548 } else { 1549 /* 1550 * If no fragment of this line ever reached the console, 1551 * just submit it to the store and free the buffer. 1552 */ 1553 log_store(cont.facility, cont.level, flags, 0, 1554 NULL, 0, cont.buf, cont.len); 1555 cont.len = 0; 1556 } 1557 } 1558 1559 static bool cont_add(int facility, int level, const char *text, size_t len) 1560 { 1561 if (cont.len && cont.flushed) 1562 return false; 1563 1564 if (cont.len + len > sizeof(cont.buf)) { 1565 /* the line gets too long, split it up in separate records */ 1566 cont_flush(LOG_CONT); 1567 return false; 1568 } 1569 1570 if (!cont.len) { 1571 cont.facility = facility; 1572 cont.level = level; 1573 cont.owner = current; 1574 cont.ts_nsec = local_clock(); 1575 cont.flags = 0; 1576 cont.cons = 0; 1577 cont.flushed = false; 1578 } 1579 1580 memcpy(cont.buf + cont.len, text, len); 1581 cont.len += len; 1582 1583 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1584 cont_flush(LOG_CONT); 1585 1586 return true; 1587 } 1588 1589 static size_t cont_print_text(char *text, size_t size) 1590 { 1591 size_t textlen = 0; 1592 size_t len; 1593 1594 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) { 1595 textlen += print_time(cont.ts_nsec, text); 1596 size -= textlen; 1597 } 1598 1599 len = cont.len - cont.cons; 1600 if (len > 0) { 1601 if (len+1 > size) 1602 len = size-1; 1603 memcpy(text + textlen, cont.buf + cont.cons, len); 1604 textlen += len; 1605 cont.cons = cont.len; 1606 } 1607 1608 if (cont.flushed) { 1609 if (cont.flags & LOG_NEWLINE) 1610 text[textlen++] = '\n'; 1611 /* got everything, release buffer */ 1612 cont.len = 0; 1613 } 1614 return textlen; 1615 } 1616 1617 asmlinkage int vprintk_emit(int facility, int level, 1618 const char *dict, size_t dictlen, 1619 const char *fmt, va_list args) 1620 { 1621 static int recursion_bug; 1622 static char textbuf[LOG_LINE_MAX]; 1623 char *text = textbuf; 1624 size_t text_len = 0; 1625 enum log_flags lflags = 0; 1626 unsigned long flags; 1627 int this_cpu; 1628 int printed_len = 0; 1629 bool in_sched = false; 1630 /* cpu currently holding logbuf_lock in this function */ 1631 static volatile unsigned int logbuf_cpu = UINT_MAX; 1632 1633 if (level == SCHED_MESSAGE_LOGLEVEL) { 1634 level = -1; 1635 in_sched = true; 1636 } 1637 1638 boot_delay_msec(level); 1639 printk_delay(); 1640 1641 /* This stops the holder of console_sem just where we want him */ 1642 local_irq_save(flags); 1643 this_cpu = smp_processor_id(); 1644 1645 /* 1646 * Ouch, printk recursed into itself! 1647 */ 1648 if (unlikely(logbuf_cpu == this_cpu)) { 1649 /* 1650 * If a crash is occurring during printk() on this CPU, 1651 * then try to get the crash message out but make sure 1652 * we can't deadlock. Otherwise just return to avoid the 1653 * recursion and return - but flag the recursion so that 1654 * it can be printed at the next appropriate moment: 1655 */ 1656 if (!oops_in_progress && !lockdep_recursing(current)) { 1657 recursion_bug = 1; 1658 local_irq_restore(flags); 1659 return 0; 1660 } 1661 zap_locks(); 1662 } 1663 1664 lockdep_off(); 1665 raw_spin_lock(&logbuf_lock); 1666 logbuf_cpu = this_cpu; 1667 1668 if (unlikely(recursion_bug)) { 1669 static const char recursion_msg[] = 1670 "BUG: recent printk recursion!"; 1671 1672 recursion_bug = 0; 1673 /* emit KERN_CRIT message */ 1674 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0, 1675 NULL, 0, recursion_msg, 1676 strlen(recursion_msg)); 1677 } 1678 1679 /* 1680 * The printf needs to come first; we need the syslog 1681 * prefix which might be passed-in as a parameter. 1682 */ 1683 if (in_sched) 1684 text_len = scnprintf(text, sizeof(textbuf), 1685 KERN_WARNING "[sched_delayed] "); 1686 1687 text_len += vscnprintf(text + text_len, 1688 sizeof(textbuf) - text_len, fmt, args); 1689 1690 /* mark and strip a trailing newline */ 1691 if (text_len && text[text_len-1] == '\n') { 1692 text_len--; 1693 lflags |= LOG_NEWLINE; 1694 } 1695 1696 /* strip kernel syslog prefix and extract log level or control flags */ 1697 if (facility == 0) { 1698 int kern_level = printk_get_level(text); 1699 1700 if (kern_level) { 1701 const char *end_of_header = printk_skip_level(text); 1702 switch (kern_level) { 1703 case '0' ... '7': 1704 if (level == -1) 1705 level = kern_level - '0'; 1706 case 'd': /* KERN_DEFAULT */ 1707 lflags |= LOG_PREFIX; 1708 } 1709 /* 1710 * No need to check length here because vscnprintf 1711 * put '\0' at the end of the string. Only valid and 1712 * newly printed level is detected. 1713 */ 1714 text_len -= end_of_header - text; 1715 text = (char *)end_of_header; 1716 } 1717 } 1718 1719 if (level == -1) 1720 level = default_message_loglevel; 1721 1722 if (dict) 1723 lflags |= LOG_PREFIX|LOG_NEWLINE; 1724 1725 if (!(lflags & LOG_NEWLINE)) { 1726 /* 1727 * Flush the conflicting buffer. An earlier newline was missing, 1728 * or another task also prints continuation lines. 1729 */ 1730 if (cont.len && (lflags & LOG_PREFIX || cont.owner != current)) 1731 cont_flush(LOG_NEWLINE); 1732 1733 /* buffer line if possible, otherwise store it right away */ 1734 if (cont_add(facility, level, text, text_len)) 1735 printed_len += text_len; 1736 else 1737 printed_len += log_store(facility, level, 1738 lflags | LOG_CONT, 0, 1739 dict, dictlen, text, text_len); 1740 } else { 1741 bool stored = false; 1742 1743 /* 1744 * If an earlier newline was missing and it was the same task, 1745 * either merge it with the current buffer and flush, or if 1746 * there was a race with interrupts (prefix == true) then just 1747 * flush it out and store this line separately. 1748 * If the preceding printk was from a different task and missed 1749 * a newline, flush and append the newline. 1750 */ 1751 if (cont.len) { 1752 if (cont.owner == current && !(lflags & LOG_PREFIX)) 1753 stored = cont_add(facility, level, text, 1754 text_len); 1755 cont_flush(LOG_NEWLINE); 1756 } 1757 1758 if (stored) 1759 printed_len += text_len; 1760 else 1761 printed_len += log_store(facility, level, lflags, 0, 1762 dict, dictlen, text, text_len); 1763 } 1764 1765 logbuf_cpu = UINT_MAX; 1766 raw_spin_unlock(&logbuf_lock); 1767 lockdep_on(); 1768 local_irq_restore(flags); 1769 1770 /* If called from the scheduler, we can not call up(). */ 1771 if (!in_sched) { 1772 lockdep_off(); 1773 /* 1774 * Disable preemption to avoid being preempted while holding 1775 * console_sem which would prevent anyone from printing to 1776 * console 1777 */ 1778 preempt_disable(); 1779 1780 /* 1781 * Try to acquire and then immediately release the console 1782 * semaphore. The release will print out buffers and wake up 1783 * /dev/kmsg and syslog() users. 1784 */ 1785 if (console_trylock_for_printk()) 1786 console_unlock(); 1787 preempt_enable(); 1788 lockdep_on(); 1789 } 1790 1791 return printed_len; 1792 } 1793 EXPORT_SYMBOL(vprintk_emit); 1794 1795 asmlinkage int vprintk(const char *fmt, va_list args) 1796 { 1797 return vprintk_emit(0, -1, NULL, 0, fmt, args); 1798 } 1799 EXPORT_SYMBOL(vprintk); 1800 1801 asmlinkage int printk_emit(int facility, int level, 1802 const char *dict, size_t dictlen, 1803 const char *fmt, ...) 1804 { 1805 va_list args; 1806 int r; 1807 1808 va_start(args, fmt); 1809 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1810 va_end(args); 1811 1812 return r; 1813 } 1814 EXPORT_SYMBOL(printk_emit); 1815 1816 /** 1817 * printk - print a kernel message 1818 * @fmt: format string 1819 * 1820 * This is printk(). It can be called from any context. We want it to work. 1821 * 1822 * We try to grab the console_lock. If we succeed, it's easy - we log the 1823 * output and call the console drivers. If we fail to get the semaphore, we 1824 * place the output into the log buffer and return. The current holder of 1825 * the console_sem will notice the new output in console_unlock(); and will 1826 * send it to the consoles before releasing the lock. 1827 * 1828 * One effect of this deferred printing is that code which calls printk() and 1829 * then changes console_loglevel may break. This is because console_loglevel 1830 * is inspected when the actual printing occurs. 1831 * 1832 * See also: 1833 * printf(3) 1834 * 1835 * See the vsnprintf() documentation for format string extensions over C99. 1836 */ 1837 asmlinkage __visible int printk(const char *fmt, ...) 1838 { 1839 va_list args; 1840 int r; 1841 1842 #ifdef CONFIG_KGDB_KDB 1843 if (unlikely(kdb_trap_printk)) { 1844 va_start(args, fmt); 1845 r = vkdb_printf(fmt, args); 1846 va_end(args); 1847 return r; 1848 } 1849 #endif 1850 va_start(args, fmt); 1851 r = vprintk_emit(0, -1, NULL, 0, fmt, args); 1852 va_end(args); 1853 1854 return r; 1855 } 1856 EXPORT_SYMBOL(printk); 1857 1858 #else /* CONFIG_PRINTK */ 1859 1860 #define LOG_LINE_MAX 0 1861 #define PREFIX_MAX 0 1862 1863 static u64 syslog_seq; 1864 static u32 syslog_idx; 1865 static u64 console_seq; 1866 static u32 console_idx; 1867 static enum log_flags syslog_prev; 1868 static u64 log_first_seq; 1869 static u32 log_first_idx; 1870 static u64 log_next_seq; 1871 static enum log_flags console_prev; 1872 static struct cont { 1873 size_t len; 1874 size_t cons; 1875 u8 level; 1876 bool flushed:1; 1877 } cont; 1878 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1879 static u32 log_next(u32 idx) { return 0; } 1880 static void call_console_drivers(int level, const char *text, size_t len) {} 1881 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev, 1882 bool syslog, char *buf, size_t size) { return 0; } 1883 static size_t cont_print_text(char *text, size_t size) { return 0; } 1884 1885 #endif /* CONFIG_PRINTK */ 1886 1887 #ifdef CONFIG_EARLY_PRINTK 1888 struct console *early_console; 1889 1890 void early_vprintk(const char *fmt, va_list ap) 1891 { 1892 if (early_console) { 1893 char buf[512]; 1894 int n = vscnprintf(buf, sizeof(buf), fmt, ap); 1895 1896 early_console->write(early_console, buf, n); 1897 } 1898 } 1899 1900 asmlinkage __visible void early_printk(const char *fmt, ...) 1901 { 1902 va_list ap; 1903 1904 va_start(ap, fmt); 1905 early_vprintk(fmt, ap); 1906 va_end(ap); 1907 } 1908 #endif 1909 1910 static int __add_preferred_console(char *name, int idx, char *options, 1911 char *brl_options) 1912 { 1913 struct console_cmdline *c; 1914 int i; 1915 1916 /* 1917 * See if this tty is not yet registered, and 1918 * if we have a slot free. 1919 */ 1920 for (i = 0, c = console_cmdline; 1921 i < MAX_CMDLINECONSOLES && c->name[0]; 1922 i++, c++) { 1923 if (strcmp(c->name, name) == 0 && c->index == idx) { 1924 if (!brl_options) 1925 selected_console = i; 1926 return 0; 1927 } 1928 } 1929 if (i == MAX_CMDLINECONSOLES) 1930 return -E2BIG; 1931 if (!brl_options) 1932 selected_console = i; 1933 strlcpy(c->name, name, sizeof(c->name)); 1934 c->options = options; 1935 braille_set_options(c, brl_options); 1936 1937 c->index = idx; 1938 return 0; 1939 } 1940 /* 1941 * Set up a console. Called via do_early_param() in init/main.c 1942 * for each "console=" parameter in the boot command line. 1943 */ 1944 static int __init console_setup(char *str) 1945 { 1946 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1947 char *s, *options, *brl_options = NULL; 1948 int idx; 1949 1950 if (_braille_console_setup(&str, &brl_options)) 1951 return 1; 1952 1953 /* 1954 * Decode str into name, index, options. 1955 */ 1956 if (str[0] >= '0' && str[0] <= '9') { 1957 strcpy(buf, "ttyS"); 1958 strncpy(buf + 4, str, sizeof(buf) - 5); 1959 } else { 1960 strncpy(buf, str, sizeof(buf) - 1); 1961 } 1962 buf[sizeof(buf) - 1] = 0; 1963 options = strchr(str, ','); 1964 if (options) 1965 *(options++) = 0; 1966 #ifdef __sparc__ 1967 if (!strcmp(str, "ttya")) 1968 strcpy(buf, "ttyS0"); 1969 if (!strcmp(str, "ttyb")) 1970 strcpy(buf, "ttyS1"); 1971 #endif 1972 for (s = buf; *s; s++) 1973 if (isdigit(*s) || *s == ',') 1974 break; 1975 idx = simple_strtoul(s, NULL, 10); 1976 *s = 0; 1977 1978 __add_preferred_console(buf, idx, options, brl_options); 1979 console_set_on_cmdline = 1; 1980 return 1; 1981 } 1982 __setup("console=", console_setup); 1983 1984 /** 1985 * add_preferred_console - add a device to the list of preferred consoles. 1986 * @name: device name 1987 * @idx: device index 1988 * @options: options for this console 1989 * 1990 * The last preferred console added will be used for kernel messages 1991 * and stdin/out/err for init. Normally this is used by console_setup 1992 * above to handle user-supplied console arguments; however it can also 1993 * be used by arch-specific code either to override the user or more 1994 * commonly to provide a default console (ie from PROM variables) when 1995 * the user has not supplied one. 1996 */ 1997 int add_preferred_console(char *name, int idx, char *options) 1998 { 1999 return __add_preferred_console(name, idx, options, NULL); 2000 } 2001 2002 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options) 2003 { 2004 struct console_cmdline *c; 2005 int i; 2006 2007 for (i = 0, c = console_cmdline; 2008 i < MAX_CMDLINECONSOLES && c->name[0]; 2009 i++, c++) 2010 if (strcmp(c->name, name) == 0 && c->index == idx) { 2011 strlcpy(c->name, name_new, sizeof(c->name)); 2012 c->options = options; 2013 c->index = idx_new; 2014 return i; 2015 } 2016 /* not found */ 2017 return -1; 2018 } 2019 2020 bool console_suspend_enabled = true; 2021 EXPORT_SYMBOL(console_suspend_enabled); 2022 2023 static int __init console_suspend_disable(char *str) 2024 { 2025 console_suspend_enabled = false; 2026 return 1; 2027 } 2028 __setup("no_console_suspend", console_suspend_disable); 2029 module_param_named(console_suspend, console_suspend_enabled, 2030 bool, S_IRUGO | S_IWUSR); 2031 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2032 " and hibernate operations"); 2033 2034 /** 2035 * suspend_console - suspend the console subsystem 2036 * 2037 * This disables printk() while we go into suspend states 2038 */ 2039 void suspend_console(void) 2040 { 2041 if (!console_suspend_enabled) 2042 return; 2043 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2044 console_lock(); 2045 console_suspended = 1; 2046 up_console_sem(); 2047 } 2048 2049 void resume_console(void) 2050 { 2051 if (!console_suspend_enabled) 2052 return; 2053 down_console_sem(); 2054 console_suspended = 0; 2055 console_unlock(); 2056 } 2057 2058 /** 2059 * console_cpu_notify - print deferred console messages after CPU hotplug 2060 * @self: notifier struct 2061 * @action: CPU hotplug event 2062 * @hcpu: unused 2063 * 2064 * If printk() is called from a CPU that is not online yet, the messages 2065 * will be spooled but will not show up on the console. This function is 2066 * called when a new CPU comes online (or fails to come up), and ensures 2067 * that any such output gets printed. 2068 */ 2069 static int console_cpu_notify(struct notifier_block *self, 2070 unsigned long action, void *hcpu) 2071 { 2072 switch (action) { 2073 case CPU_ONLINE: 2074 case CPU_DEAD: 2075 case CPU_DOWN_FAILED: 2076 case CPU_UP_CANCELED: 2077 console_lock(); 2078 console_unlock(); 2079 } 2080 return NOTIFY_OK; 2081 } 2082 2083 /** 2084 * console_lock - lock the console system for exclusive use. 2085 * 2086 * Acquires a lock which guarantees that the caller has 2087 * exclusive access to the console system and the console_drivers list. 2088 * 2089 * Can sleep, returns nothing. 2090 */ 2091 void console_lock(void) 2092 { 2093 might_sleep(); 2094 2095 down_console_sem(); 2096 if (console_suspended) 2097 return; 2098 console_locked = 1; 2099 console_may_schedule = 1; 2100 } 2101 EXPORT_SYMBOL(console_lock); 2102 2103 /** 2104 * console_trylock - try to lock the console system for exclusive use. 2105 * 2106 * Try to acquire a lock which guarantees that the caller has exclusive 2107 * access to the console system and the console_drivers list. 2108 * 2109 * returns 1 on success, and 0 on failure to acquire the lock. 2110 */ 2111 int console_trylock(void) 2112 { 2113 if (down_trylock_console_sem()) 2114 return 0; 2115 if (console_suspended) { 2116 up_console_sem(); 2117 return 0; 2118 } 2119 console_locked = 1; 2120 console_may_schedule = 0; 2121 return 1; 2122 } 2123 EXPORT_SYMBOL(console_trylock); 2124 2125 int is_console_locked(void) 2126 { 2127 return console_locked; 2128 } 2129 2130 static void console_cont_flush(char *text, size_t size) 2131 { 2132 unsigned long flags; 2133 size_t len; 2134 2135 raw_spin_lock_irqsave(&logbuf_lock, flags); 2136 2137 if (!cont.len) 2138 goto out; 2139 2140 /* 2141 * We still queue earlier records, likely because the console was 2142 * busy. The earlier ones need to be printed before this one, we 2143 * did not flush any fragment so far, so just let it queue up. 2144 */ 2145 if (console_seq < log_next_seq && !cont.cons) 2146 goto out; 2147 2148 len = cont_print_text(text, size); 2149 raw_spin_unlock(&logbuf_lock); 2150 stop_critical_timings(); 2151 call_console_drivers(cont.level, text, len); 2152 start_critical_timings(); 2153 local_irq_restore(flags); 2154 return; 2155 out: 2156 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2157 } 2158 2159 /** 2160 * console_unlock - unlock the console system 2161 * 2162 * Releases the console_lock which the caller holds on the console system 2163 * and the console driver list. 2164 * 2165 * While the console_lock was held, console output may have been buffered 2166 * by printk(). If this is the case, console_unlock(); emits 2167 * the output prior to releasing the lock. 2168 * 2169 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2170 * 2171 * console_unlock(); may be called from any context. 2172 */ 2173 void console_unlock(void) 2174 { 2175 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2176 static u64 seen_seq; 2177 unsigned long flags; 2178 bool wake_klogd = false; 2179 bool retry; 2180 2181 if (console_suspended) { 2182 up_console_sem(); 2183 return; 2184 } 2185 2186 console_may_schedule = 0; 2187 2188 /* flush buffered message fragment immediately to console */ 2189 console_cont_flush(text, sizeof(text)); 2190 again: 2191 for (;;) { 2192 struct printk_log *msg; 2193 size_t len; 2194 int level; 2195 2196 raw_spin_lock_irqsave(&logbuf_lock, flags); 2197 if (seen_seq != log_next_seq) { 2198 wake_klogd = true; 2199 seen_seq = log_next_seq; 2200 } 2201 2202 if (console_seq < log_first_seq) { 2203 len = sprintf(text, "** %u printk messages dropped ** ", 2204 (unsigned)(log_first_seq - console_seq)); 2205 2206 /* messages are gone, move to first one */ 2207 console_seq = log_first_seq; 2208 console_idx = log_first_idx; 2209 console_prev = 0; 2210 } else { 2211 len = 0; 2212 } 2213 skip: 2214 if (console_seq == log_next_seq) 2215 break; 2216 2217 msg = log_from_idx(console_idx); 2218 if (msg->flags & LOG_NOCONS) { 2219 /* 2220 * Skip record we have buffered and already printed 2221 * directly to the console when we received it. 2222 */ 2223 console_idx = log_next(console_idx); 2224 console_seq++; 2225 /* 2226 * We will get here again when we register a new 2227 * CON_PRINTBUFFER console. Clear the flag so we 2228 * will properly dump everything later. 2229 */ 2230 msg->flags &= ~LOG_NOCONS; 2231 console_prev = msg->flags; 2232 goto skip; 2233 } 2234 2235 level = msg->level; 2236 len += msg_print_text(msg, console_prev, false, 2237 text + len, sizeof(text) - len); 2238 console_idx = log_next(console_idx); 2239 console_seq++; 2240 console_prev = msg->flags; 2241 raw_spin_unlock(&logbuf_lock); 2242 2243 stop_critical_timings(); /* don't trace print latency */ 2244 call_console_drivers(level, text, len); 2245 start_critical_timings(); 2246 local_irq_restore(flags); 2247 } 2248 console_locked = 0; 2249 2250 /* Release the exclusive_console once it is used */ 2251 if (unlikely(exclusive_console)) 2252 exclusive_console = NULL; 2253 2254 raw_spin_unlock(&logbuf_lock); 2255 2256 up_console_sem(); 2257 2258 /* 2259 * Someone could have filled up the buffer again, so re-check if there's 2260 * something to flush. In case we cannot trylock the console_sem again, 2261 * there's a new owner and the console_unlock() from them will do the 2262 * flush, no worries. 2263 */ 2264 raw_spin_lock(&logbuf_lock); 2265 retry = console_seq != log_next_seq; 2266 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2267 2268 if (retry && console_trylock()) 2269 goto again; 2270 2271 if (wake_klogd) 2272 wake_up_klogd(); 2273 } 2274 EXPORT_SYMBOL(console_unlock); 2275 2276 /** 2277 * console_conditional_schedule - yield the CPU if required 2278 * 2279 * If the console code is currently allowed to sleep, and 2280 * if this CPU should yield the CPU to another task, do 2281 * so here. 2282 * 2283 * Must be called within console_lock();. 2284 */ 2285 void __sched console_conditional_schedule(void) 2286 { 2287 if (console_may_schedule) 2288 cond_resched(); 2289 } 2290 EXPORT_SYMBOL(console_conditional_schedule); 2291 2292 void console_unblank(void) 2293 { 2294 struct console *c; 2295 2296 /* 2297 * console_unblank can no longer be called in interrupt context unless 2298 * oops_in_progress is set to 1.. 2299 */ 2300 if (oops_in_progress) { 2301 if (down_trylock_console_sem() != 0) 2302 return; 2303 } else 2304 console_lock(); 2305 2306 console_locked = 1; 2307 console_may_schedule = 0; 2308 for_each_console(c) 2309 if ((c->flags & CON_ENABLED) && c->unblank) 2310 c->unblank(); 2311 console_unlock(); 2312 } 2313 2314 /* 2315 * Return the console tty driver structure and its associated index 2316 */ 2317 struct tty_driver *console_device(int *index) 2318 { 2319 struct console *c; 2320 struct tty_driver *driver = NULL; 2321 2322 console_lock(); 2323 for_each_console(c) { 2324 if (!c->device) 2325 continue; 2326 driver = c->device(c, index); 2327 if (driver) 2328 break; 2329 } 2330 console_unlock(); 2331 return driver; 2332 } 2333 2334 /* 2335 * Prevent further output on the passed console device so that (for example) 2336 * serial drivers can disable console output before suspending a port, and can 2337 * re-enable output afterwards. 2338 */ 2339 void console_stop(struct console *console) 2340 { 2341 console_lock(); 2342 console->flags &= ~CON_ENABLED; 2343 console_unlock(); 2344 } 2345 EXPORT_SYMBOL(console_stop); 2346 2347 void console_start(struct console *console) 2348 { 2349 console_lock(); 2350 console->flags |= CON_ENABLED; 2351 console_unlock(); 2352 } 2353 EXPORT_SYMBOL(console_start); 2354 2355 static int __read_mostly keep_bootcon; 2356 2357 static int __init keep_bootcon_setup(char *str) 2358 { 2359 keep_bootcon = 1; 2360 pr_info("debug: skip boot console de-registration.\n"); 2361 2362 return 0; 2363 } 2364 2365 early_param("keep_bootcon", keep_bootcon_setup); 2366 2367 /* 2368 * The console driver calls this routine during kernel initialization 2369 * to register the console printing procedure with printk() and to 2370 * print any messages that were printed by the kernel before the 2371 * console driver was initialized. 2372 * 2373 * This can happen pretty early during the boot process (because of 2374 * early_printk) - sometimes before setup_arch() completes - be careful 2375 * of what kernel features are used - they may not be initialised yet. 2376 * 2377 * There are two types of consoles - bootconsoles (early_printk) and 2378 * "real" consoles (everything which is not a bootconsole) which are 2379 * handled differently. 2380 * - Any number of bootconsoles can be registered at any time. 2381 * - As soon as a "real" console is registered, all bootconsoles 2382 * will be unregistered automatically. 2383 * - Once a "real" console is registered, any attempt to register a 2384 * bootconsoles will be rejected 2385 */ 2386 void register_console(struct console *newcon) 2387 { 2388 int i; 2389 unsigned long flags; 2390 struct console *bcon = NULL; 2391 struct console_cmdline *c; 2392 2393 if (console_drivers) 2394 for_each_console(bcon) 2395 if (WARN(bcon == newcon, 2396 "console '%s%d' already registered\n", 2397 bcon->name, bcon->index)) 2398 return; 2399 2400 /* 2401 * before we register a new CON_BOOT console, make sure we don't 2402 * already have a valid console 2403 */ 2404 if (console_drivers && newcon->flags & CON_BOOT) { 2405 /* find the last or real console */ 2406 for_each_console(bcon) { 2407 if (!(bcon->flags & CON_BOOT)) { 2408 pr_info("Too late to register bootconsole %s%d\n", 2409 newcon->name, newcon->index); 2410 return; 2411 } 2412 } 2413 } 2414 2415 if (console_drivers && console_drivers->flags & CON_BOOT) 2416 bcon = console_drivers; 2417 2418 if (preferred_console < 0 || bcon || !console_drivers) 2419 preferred_console = selected_console; 2420 2421 if (newcon->early_setup) 2422 newcon->early_setup(); 2423 2424 /* 2425 * See if we want to use this console driver. If we 2426 * didn't select a console we take the first one 2427 * that registers here. 2428 */ 2429 if (preferred_console < 0) { 2430 if (newcon->index < 0) 2431 newcon->index = 0; 2432 if (newcon->setup == NULL || 2433 newcon->setup(newcon, NULL) == 0) { 2434 newcon->flags |= CON_ENABLED; 2435 if (newcon->device) { 2436 newcon->flags |= CON_CONSDEV; 2437 preferred_console = 0; 2438 } 2439 } 2440 } 2441 2442 /* 2443 * See if this console matches one we selected on 2444 * the command line. 2445 */ 2446 for (i = 0, c = console_cmdline; 2447 i < MAX_CMDLINECONSOLES && c->name[0]; 2448 i++, c++) { 2449 if (strcmp(c->name, newcon->name) != 0) 2450 continue; 2451 if (newcon->index >= 0 && 2452 newcon->index != c->index) 2453 continue; 2454 if (newcon->index < 0) 2455 newcon->index = c->index; 2456 2457 if (_braille_register_console(newcon, c)) 2458 return; 2459 2460 if (newcon->setup && 2461 newcon->setup(newcon, console_cmdline[i].options) != 0) 2462 break; 2463 newcon->flags |= CON_ENABLED; 2464 newcon->index = c->index; 2465 if (i == selected_console) { 2466 newcon->flags |= CON_CONSDEV; 2467 preferred_console = selected_console; 2468 } 2469 break; 2470 } 2471 2472 if (!(newcon->flags & CON_ENABLED)) 2473 return; 2474 2475 /* 2476 * If we have a bootconsole, and are switching to a real console, 2477 * don't print everything out again, since when the boot console, and 2478 * the real console are the same physical device, it's annoying to 2479 * see the beginning boot messages twice 2480 */ 2481 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2482 newcon->flags &= ~CON_PRINTBUFFER; 2483 2484 /* 2485 * Put this console in the list - keep the 2486 * preferred driver at the head of the list. 2487 */ 2488 console_lock(); 2489 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2490 newcon->next = console_drivers; 2491 console_drivers = newcon; 2492 if (newcon->next) 2493 newcon->next->flags &= ~CON_CONSDEV; 2494 } else { 2495 newcon->next = console_drivers->next; 2496 console_drivers->next = newcon; 2497 } 2498 if (newcon->flags & CON_PRINTBUFFER) { 2499 /* 2500 * console_unlock(); will print out the buffered messages 2501 * for us. 2502 */ 2503 raw_spin_lock_irqsave(&logbuf_lock, flags); 2504 console_seq = syslog_seq; 2505 console_idx = syslog_idx; 2506 console_prev = syslog_prev; 2507 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2508 /* 2509 * We're about to replay the log buffer. Only do this to the 2510 * just-registered console to avoid excessive message spam to 2511 * the already-registered consoles. 2512 */ 2513 exclusive_console = newcon; 2514 } 2515 console_unlock(); 2516 console_sysfs_notify(); 2517 2518 /* 2519 * By unregistering the bootconsoles after we enable the real console 2520 * we get the "console xxx enabled" message on all the consoles - 2521 * boot consoles, real consoles, etc - this is to ensure that end 2522 * users know there might be something in the kernel's log buffer that 2523 * went to the bootconsole (that they do not see on the real console) 2524 */ 2525 pr_info("%sconsole [%s%d] enabled\n", 2526 (newcon->flags & CON_BOOT) ? "boot" : "" , 2527 newcon->name, newcon->index); 2528 if (bcon && 2529 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2530 !keep_bootcon) { 2531 /* We need to iterate through all boot consoles, to make 2532 * sure we print everything out, before we unregister them. 2533 */ 2534 for_each_console(bcon) 2535 if (bcon->flags & CON_BOOT) 2536 unregister_console(bcon); 2537 } 2538 } 2539 EXPORT_SYMBOL(register_console); 2540 2541 int unregister_console(struct console *console) 2542 { 2543 struct console *a, *b; 2544 int res; 2545 2546 pr_info("%sconsole [%s%d] disabled\n", 2547 (console->flags & CON_BOOT) ? "boot" : "" , 2548 console->name, console->index); 2549 2550 res = _braille_unregister_console(console); 2551 if (res) 2552 return res; 2553 2554 res = 1; 2555 console_lock(); 2556 if (console_drivers == console) { 2557 console_drivers=console->next; 2558 res = 0; 2559 } else if (console_drivers) { 2560 for (a=console_drivers->next, b=console_drivers ; 2561 a; b=a, a=b->next) { 2562 if (a == console) { 2563 b->next = a->next; 2564 res = 0; 2565 break; 2566 } 2567 } 2568 } 2569 2570 /* 2571 * If this isn't the last console and it has CON_CONSDEV set, we 2572 * need to set it on the next preferred console. 2573 */ 2574 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2575 console_drivers->flags |= CON_CONSDEV; 2576 2577 console->flags &= ~CON_ENABLED; 2578 console_unlock(); 2579 console_sysfs_notify(); 2580 return res; 2581 } 2582 EXPORT_SYMBOL(unregister_console); 2583 2584 static int __init printk_late_init(void) 2585 { 2586 struct console *con; 2587 2588 for_each_console(con) { 2589 if (!keep_bootcon && con->flags & CON_BOOT) { 2590 unregister_console(con); 2591 } 2592 } 2593 hotcpu_notifier(console_cpu_notify, 0); 2594 return 0; 2595 } 2596 late_initcall(printk_late_init); 2597 2598 #if defined CONFIG_PRINTK 2599 /* 2600 * Delayed printk version, for scheduler-internal messages: 2601 */ 2602 #define PRINTK_PENDING_WAKEUP 0x01 2603 #define PRINTK_PENDING_OUTPUT 0x02 2604 2605 static DEFINE_PER_CPU(int, printk_pending); 2606 2607 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2608 { 2609 int pending = __this_cpu_xchg(printk_pending, 0); 2610 2611 if (pending & PRINTK_PENDING_OUTPUT) { 2612 /* If trylock fails, someone else is doing the printing */ 2613 if (console_trylock()) 2614 console_unlock(); 2615 } 2616 2617 if (pending & PRINTK_PENDING_WAKEUP) 2618 wake_up_interruptible(&log_wait); 2619 } 2620 2621 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2622 .func = wake_up_klogd_work_func, 2623 .flags = IRQ_WORK_LAZY, 2624 }; 2625 2626 void wake_up_klogd(void) 2627 { 2628 preempt_disable(); 2629 if (waitqueue_active(&log_wait)) { 2630 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2631 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2632 } 2633 preempt_enable(); 2634 } 2635 2636 int printk_deferred(const char *fmt, ...) 2637 { 2638 va_list args; 2639 int r; 2640 2641 preempt_disable(); 2642 va_start(args, fmt); 2643 r = vprintk_emit(0, SCHED_MESSAGE_LOGLEVEL, NULL, 0, fmt, args); 2644 va_end(args); 2645 2646 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2647 irq_work_queue(&__get_cpu_var(wake_up_klogd_work)); 2648 preempt_enable(); 2649 2650 return r; 2651 } 2652 2653 /* 2654 * printk rate limiting, lifted from the networking subsystem. 2655 * 2656 * This enforces a rate limit: not more than 10 kernel messages 2657 * every 5s to make a denial-of-service attack impossible. 2658 */ 2659 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2660 2661 int __printk_ratelimit(const char *func) 2662 { 2663 return ___ratelimit(&printk_ratelimit_state, func); 2664 } 2665 EXPORT_SYMBOL(__printk_ratelimit); 2666 2667 /** 2668 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2669 * @caller_jiffies: pointer to caller's state 2670 * @interval_msecs: minimum interval between prints 2671 * 2672 * printk_timed_ratelimit() returns true if more than @interval_msecs 2673 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2674 * returned true. 2675 */ 2676 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2677 unsigned int interval_msecs) 2678 { 2679 unsigned long elapsed = jiffies - *caller_jiffies; 2680 2681 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2682 return false; 2683 2684 *caller_jiffies = jiffies; 2685 return true; 2686 } 2687 EXPORT_SYMBOL(printk_timed_ratelimit); 2688 2689 static DEFINE_SPINLOCK(dump_list_lock); 2690 static LIST_HEAD(dump_list); 2691 2692 /** 2693 * kmsg_dump_register - register a kernel log dumper. 2694 * @dumper: pointer to the kmsg_dumper structure 2695 * 2696 * Adds a kernel log dumper to the system. The dump callback in the 2697 * structure will be called when the kernel oopses or panics and must be 2698 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2699 */ 2700 int kmsg_dump_register(struct kmsg_dumper *dumper) 2701 { 2702 unsigned long flags; 2703 int err = -EBUSY; 2704 2705 /* The dump callback needs to be set */ 2706 if (!dumper->dump) 2707 return -EINVAL; 2708 2709 spin_lock_irqsave(&dump_list_lock, flags); 2710 /* Don't allow registering multiple times */ 2711 if (!dumper->registered) { 2712 dumper->registered = 1; 2713 list_add_tail_rcu(&dumper->list, &dump_list); 2714 err = 0; 2715 } 2716 spin_unlock_irqrestore(&dump_list_lock, flags); 2717 2718 return err; 2719 } 2720 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2721 2722 /** 2723 * kmsg_dump_unregister - unregister a kmsg dumper. 2724 * @dumper: pointer to the kmsg_dumper structure 2725 * 2726 * Removes a dump device from the system. Returns zero on success and 2727 * %-EINVAL otherwise. 2728 */ 2729 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2730 { 2731 unsigned long flags; 2732 int err = -EINVAL; 2733 2734 spin_lock_irqsave(&dump_list_lock, flags); 2735 if (dumper->registered) { 2736 dumper->registered = 0; 2737 list_del_rcu(&dumper->list); 2738 err = 0; 2739 } 2740 spin_unlock_irqrestore(&dump_list_lock, flags); 2741 synchronize_rcu(); 2742 2743 return err; 2744 } 2745 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2746 2747 static bool always_kmsg_dump; 2748 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2749 2750 /** 2751 * kmsg_dump - dump kernel log to kernel message dumpers. 2752 * @reason: the reason (oops, panic etc) for dumping 2753 * 2754 * Call each of the registered dumper's dump() callback, which can 2755 * retrieve the kmsg records with kmsg_dump_get_line() or 2756 * kmsg_dump_get_buffer(). 2757 */ 2758 void kmsg_dump(enum kmsg_dump_reason reason) 2759 { 2760 struct kmsg_dumper *dumper; 2761 unsigned long flags; 2762 2763 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2764 return; 2765 2766 rcu_read_lock(); 2767 list_for_each_entry_rcu(dumper, &dump_list, list) { 2768 if (dumper->max_reason && reason > dumper->max_reason) 2769 continue; 2770 2771 /* initialize iterator with data about the stored records */ 2772 dumper->active = true; 2773 2774 raw_spin_lock_irqsave(&logbuf_lock, flags); 2775 dumper->cur_seq = clear_seq; 2776 dumper->cur_idx = clear_idx; 2777 dumper->next_seq = log_next_seq; 2778 dumper->next_idx = log_next_idx; 2779 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2780 2781 /* invoke dumper which will iterate over records */ 2782 dumper->dump(dumper, reason); 2783 2784 /* reset iterator */ 2785 dumper->active = false; 2786 } 2787 rcu_read_unlock(); 2788 } 2789 2790 /** 2791 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2792 * @dumper: registered kmsg dumper 2793 * @syslog: include the "<4>" prefixes 2794 * @line: buffer to copy the line to 2795 * @size: maximum size of the buffer 2796 * @len: length of line placed into buffer 2797 * 2798 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2799 * record, and copy one record into the provided buffer. 2800 * 2801 * Consecutive calls will return the next available record moving 2802 * towards the end of the buffer with the youngest messages. 2803 * 2804 * A return value of FALSE indicates that there are no more records to 2805 * read. 2806 * 2807 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2808 */ 2809 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2810 char *line, size_t size, size_t *len) 2811 { 2812 struct printk_log *msg; 2813 size_t l = 0; 2814 bool ret = false; 2815 2816 if (!dumper->active) 2817 goto out; 2818 2819 if (dumper->cur_seq < log_first_seq) { 2820 /* messages are gone, move to first available one */ 2821 dumper->cur_seq = log_first_seq; 2822 dumper->cur_idx = log_first_idx; 2823 } 2824 2825 /* last entry */ 2826 if (dumper->cur_seq >= log_next_seq) 2827 goto out; 2828 2829 msg = log_from_idx(dumper->cur_idx); 2830 l = msg_print_text(msg, 0, syslog, line, size); 2831 2832 dumper->cur_idx = log_next(dumper->cur_idx); 2833 dumper->cur_seq++; 2834 ret = true; 2835 out: 2836 if (len) 2837 *len = l; 2838 return ret; 2839 } 2840 2841 /** 2842 * kmsg_dump_get_line - retrieve one kmsg log line 2843 * @dumper: registered kmsg dumper 2844 * @syslog: include the "<4>" prefixes 2845 * @line: buffer to copy the line to 2846 * @size: maximum size of the buffer 2847 * @len: length of line placed into buffer 2848 * 2849 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2850 * record, and copy one record into the provided buffer. 2851 * 2852 * Consecutive calls will return the next available record moving 2853 * towards the end of the buffer with the youngest messages. 2854 * 2855 * A return value of FALSE indicates that there are no more records to 2856 * read. 2857 */ 2858 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2859 char *line, size_t size, size_t *len) 2860 { 2861 unsigned long flags; 2862 bool ret; 2863 2864 raw_spin_lock_irqsave(&logbuf_lock, flags); 2865 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2866 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2867 2868 return ret; 2869 } 2870 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2871 2872 /** 2873 * kmsg_dump_get_buffer - copy kmsg log lines 2874 * @dumper: registered kmsg dumper 2875 * @syslog: include the "<4>" prefixes 2876 * @buf: buffer to copy the line to 2877 * @size: maximum size of the buffer 2878 * @len: length of line placed into buffer 2879 * 2880 * Start at the end of the kmsg buffer and fill the provided buffer 2881 * with as many of the the *youngest* kmsg records that fit into it. 2882 * If the buffer is large enough, all available kmsg records will be 2883 * copied with a single call. 2884 * 2885 * Consecutive calls will fill the buffer with the next block of 2886 * available older records, not including the earlier retrieved ones. 2887 * 2888 * A return value of FALSE indicates that there are no more records to 2889 * read. 2890 */ 2891 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2892 char *buf, size_t size, size_t *len) 2893 { 2894 unsigned long flags; 2895 u64 seq; 2896 u32 idx; 2897 u64 next_seq; 2898 u32 next_idx; 2899 enum log_flags prev; 2900 size_t l = 0; 2901 bool ret = false; 2902 2903 if (!dumper->active) 2904 goto out; 2905 2906 raw_spin_lock_irqsave(&logbuf_lock, flags); 2907 if (dumper->cur_seq < log_first_seq) { 2908 /* messages are gone, move to first available one */ 2909 dumper->cur_seq = log_first_seq; 2910 dumper->cur_idx = log_first_idx; 2911 } 2912 2913 /* last entry */ 2914 if (dumper->cur_seq >= dumper->next_seq) { 2915 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2916 goto out; 2917 } 2918 2919 /* calculate length of entire buffer */ 2920 seq = dumper->cur_seq; 2921 idx = dumper->cur_idx; 2922 prev = 0; 2923 while (seq < dumper->next_seq) { 2924 struct printk_log *msg = log_from_idx(idx); 2925 2926 l += msg_print_text(msg, prev, true, NULL, 0); 2927 idx = log_next(idx); 2928 seq++; 2929 prev = msg->flags; 2930 } 2931 2932 /* move first record forward until length fits into the buffer */ 2933 seq = dumper->cur_seq; 2934 idx = dumper->cur_idx; 2935 prev = 0; 2936 while (l > size && seq < dumper->next_seq) { 2937 struct printk_log *msg = log_from_idx(idx); 2938 2939 l -= msg_print_text(msg, prev, true, NULL, 0); 2940 idx = log_next(idx); 2941 seq++; 2942 prev = msg->flags; 2943 } 2944 2945 /* last message in next interation */ 2946 next_seq = seq; 2947 next_idx = idx; 2948 2949 l = 0; 2950 while (seq < dumper->next_seq) { 2951 struct printk_log *msg = log_from_idx(idx); 2952 2953 l += msg_print_text(msg, prev, syslog, buf + l, size - l); 2954 idx = log_next(idx); 2955 seq++; 2956 prev = msg->flags; 2957 } 2958 2959 dumper->next_seq = next_seq; 2960 dumper->next_idx = next_idx; 2961 ret = true; 2962 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 2963 out: 2964 if (len) 2965 *len = l; 2966 return ret; 2967 } 2968 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 2969 2970 /** 2971 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 2972 * @dumper: registered kmsg dumper 2973 * 2974 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2975 * kmsg_dump_get_buffer() can be called again and used multiple 2976 * times within the same dumper.dump() callback. 2977 * 2978 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 2979 */ 2980 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 2981 { 2982 dumper->cur_seq = clear_seq; 2983 dumper->cur_idx = clear_idx; 2984 dumper->next_seq = log_next_seq; 2985 dumper->next_idx = log_next_idx; 2986 } 2987 2988 /** 2989 * kmsg_dump_rewind - reset the interator 2990 * @dumper: registered kmsg dumper 2991 * 2992 * Reset the dumper's iterator so that kmsg_dump_get_line() and 2993 * kmsg_dump_get_buffer() can be called again and used multiple 2994 * times within the same dumper.dump() callback. 2995 */ 2996 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 2997 { 2998 unsigned long flags; 2999 3000 raw_spin_lock_irqsave(&logbuf_lock, flags); 3001 kmsg_dump_rewind_nolock(dumper); 3002 raw_spin_unlock_irqrestore(&logbuf_lock, flags); 3003 } 3004 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3005 3006 static char dump_stack_arch_desc_str[128]; 3007 3008 /** 3009 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3010 * @fmt: printf-style format string 3011 * @...: arguments for the format string 3012 * 3013 * The configured string will be printed right after utsname during task 3014 * dumps. Usually used to add arch-specific system identifiers. If an 3015 * arch wants to make use of such an ID string, it should initialize this 3016 * as soon as possible during boot. 3017 */ 3018 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3019 { 3020 va_list args; 3021 3022 va_start(args, fmt); 3023 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3024 fmt, args); 3025 va_end(args); 3026 } 3027 3028 /** 3029 * dump_stack_print_info - print generic debug info for dump_stack() 3030 * @log_lvl: log level 3031 * 3032 * Arch-specific dump_stack() implementations can use this function to 3033 * print out the same debug information as the generic dump_stack(). 3034 */ 3035 void dump_stack_print_info(const char *log_lvl) 3036 { 3037 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3038 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3039 print_tainted(), init_utsname()->release, 3040 (int)strcspn(init_utsname()->version, " "), 3041 init_utsname()->version); 3042 3043 if (dump_stack_arch_desc_str[0] != '\0') 3044 printk("%sHardware name: %s\n", 3045 log_lvl, dump_stack_arch_desc_str); 3046 3047 print_worker_info(log_lvl, current); 3048 } 3049 3050 /** 3051 * show_regs_print_info - print generic debug info for show_regs() 3052 * @log_lvl: log level 3053 * 3054 * show_regs() implementations can use this function to print out generic 3055 * debug information. 3056 */ 3057 void show_regs_print_info(const char *log_lvl) 3058 { 3059 dump_stack_print_info(log_lvl); 3060 3061 printk("%stask: %p ti: %p task.ti: %p\n", 3062 log_lvl, current, current_thread_info(), 3063 task_thread_info(current)); 3064 } 3065 3066 #endif 3067