1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 EXPORT_SYMBOL_GPL(console_printk); 69 70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 71 EXPORT_SYMBOL(ignore_console_lock_warning); 72 73 /* 74 * Low level drivers may need that to know if they can schedule in 75 * their unblank() callback or not. So let's export it. 76 */ 77 int oops_in_progress; 78 EXPORT_SYMBOL(oops_in_progress); 79 80 /* 81 * console_sem protects the console_drivers list, and also 82 * provides serialisation for access to the entire console 83 * driver system. 84 */ 85 static DEFINE_SEMAPHORE(console_sem); 86 struct console *console_drivers; 87 EXPORT_SYMBOL_GPL(console_drivers); 88 89 /* 90 * System may need to suppress printk message under certain 91 * circumstances, like after kernel panic happens. 92 */ 93 int __read_mostly suppress_printk; 94 95 #ifdef CONFIG_LOCKDEP 96 static struct lockdep_map console_lock_dep_map = { 97 .name = "console_lock" 98 }; 99 #endif 100 101 enum devkmsg_log_bits { 102 __DEVKMSG_LOG_BIT_ON = 0, 103 __DEVKMSG_LOG_BIT_OFF, 104 __DEVKMSG_LOG_BIT_LOCK, 105 }; 106 107 enum devkmsg_log_masks { 108 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 109 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 110 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 111 }; 112 113 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 114 #define DEVKMSG_LOG_MASK_DEFAULT 0 115 116 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 117 118 static int __control_devkmsg(char *str) 119 { 120 size_t len; 121 122 if (!str) 123 return -EINVAL; 124 125 len = str_has_prefix(str, "on"); 126 if (len) { 127 devkmsg_log = DEVKMSG_LOG_MASK_ON; 128 return len; 129 } 130 131 len = str_has_prefix(str, "off"); 132 if (len) { 133 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 134 return len; 135 } 136 137 len = str_has_prefix(str, "ratelimit"); 138 if (len) { 139 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 140 return len; 141 } 142 143 return -EINVAL; 144 } 145 146 static int __init control_devkmsg(char *str) 147 { 148 if (__control_devkmsg(str) < 0) 149 return 1; 150 151 /* 152 * Set sysctl string accordingly: 153 */ 154 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 155 strcpy(devkmsg_log_str, "on"); 156 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 157 strcpy(devkmsg_log_str, "off"); 158 /* else "ratelimit" which is set by default. */ 159 160 /* 161 * Sysctl cannot change it anymore. The kernel command line setting of 162 * this parameter is to force the setting to be permanent throughout the 163 * runtime of the system. This is a precation measure against userspace 164 * trying to be a smarta** and attempting to change it up on us. 165 */ 166 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 167 168 return 0; 169 } 170 __setup("printk.devkmsg=", control_devkmsg); 171 172 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 173 174 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 175 void *buffer, size_t *lenp, loff_t *ppos) 176 { 177 char old_str[DEVKMSG_STR_MAX_SIZE]; 178 unsigned int old; 179 int err; 180 181 if (write) { 182 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 183 return -EINVAL; 184 185 old = devkmsg_log; 186 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 187 } 188 189 err = proc_dostring(table, write, buffer, lenp, ppos); 190 if (err) 191 return err; 192 193 if (write) { 194 err = __control_devkmsg(devkmsg_log_str); 195 196 /* 197 * Do not accept an unknown string OR a known string with 198 * trailing crap... 199 */ 200 if (err < 0 || (err + 1 != *lenp)) { 201 202 /* ... and restore old setting. */ 203 devkmsg_log = old; 204 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 205 206 return -EINVAL; 207 } 208 } 209 210 return 0; 211 } 212 213 /* Number of registered extended console drivers. */ 214 static int nr_ext_console_drivers; 215 216 /* 217 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 218 * macros instead of functions so that _RET_IP_ contains useful information. 219 */ 220 #define down_console_sem() do { \ 221 down(&console_sem);\ 222 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 223 } while (0) 224 225 static int __down_trylock_console_sem(unsigned long ip) 226 { 227 int lock_failed; 228 unsigned long flags; 229 230 /* 231 * Here and in __up_console_sem() we need to be in safe mode, 232 * because spindump/WARN/etc from under console ->lock will 233 * deadlock in printk()->down_trylock_console_sem() otherwise. 234 */ 235 printk_safe_enter_irqsave(flags); 236 lock_failed = down_trylock(&console_sem); 237 printk_safe_exit_irqrestore(flags); 238 239 if (lock_failed) 240 return 1; 241 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 242 return 0; 243 } 244 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 245 246 static void __up_console_sem(unsigned long ip) 247 { 248 unsigned long flags; 249 250 mutex_release(&console_lock_dep_map, ip); 251 252 printk_safe_enter_irqsave(flags); 253 up(&console_sem); 254 printk_safe_exit_irqrestore(flags); 255 } 256 #define up_console_sem() __up_console_sem(_RET_IP_) 257 258 /* 259 * This is used for debugging the mess that is the VT code by 260 * keeping track if we have the console semaphore held. It's 261 * definitely not the perfect debug tool (we don't know if _WE_ 262 * hold it and are racing, but it helps tracking those weird code 263 * paths in the console code where we end up in places I want 264 * locked without the console sempahore held). 265 */ 266 static int console_locked, console_suspended; 267 268 /* 269 * If exclusive_console is non-NULL then only this console is to be printed to. 270 */ 271 static struct console *exclusive_console; 272 273 /* 274 * Array of consoles built from command line options (console=) 275 */ 276 277 #define MAX_CMDLINECONSOLES 8 278 279 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 280 281 static int preferred_console = -1; 282 static bool has_preferred_console; 283 int console_set_on_cmdline; 284 EXPORT_SYMBOL(console_set_on_cmdline); 285 286 /* Flag: console code may call schedule() */ 287 static int console_may_schedule; 288 289 enum con_msg_format_flags { 290 MSG_FORMAT_DEFAULT = 0, 291 MSG_FORMAT_SYSLOG = (1 << 0), 292 }; 293 294 static int console_msg_format = MSG_FORMAT_DEFAULT; 295 296 /* 297 * The printk log buffer consists of a chain of concatenated variable 298 * length records. Every record starts with a record header, containing 299 * the overall length of the record. 300 * 301 * The heads to the first and last entry in the buffer, as well as the 302 * sequence numbers of these entries are maintained when messages are 303 * stored. 304 * 305 * If the heads indicate available messages, the length in the header 306 * tells the start next message. A length == 0 for the next message 307 * indicates a wrap-around to the beginning of the buffer. 308 * 309 * Every record carries the monotonic timestamp in microseconds, as well as 310 * the standard userspace syslog level and syslog facility. The usual 311 * kernel messages use LOG_KERN; userspace-injected messages always carry 312 * a matching syslog facility, by default LOG_USER. The origin of every 313 * message can be reliably determined that way. 314 * 315 * The human readable log message directly follows the message header. The 316 * length of the message text is stored in the header, the stored message 317 * is not terminated. 318 * 319 * Optionally, a message can carry a dictionary of properties (key/value pairs), 320 * to provide userspace with a machine-readable message context. 321 * 322 * Examples for well-defined, commonly used property names are: 323 * DEVICE=b12:8 device identifier 324 * b12:8 block dev_t 325 * c127:3 char dev_t 326 * n8 netdev ifindex 327 * +sound:card0 subsystem:devname 328 * SUBSYSTEM=pci driver-core subsystem name 329 * 330 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 331 * follows directly after a '=' character. Every property is terminated by 332 * a '\0' character. The last property is not terminated. 333 * 334 * Example of a message structure: 335 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 336 * 0008 34 00 record is 52 bytes long 337 * 000a 0b 00 text is 11 bytes long 338 * 000c 1f 00 dictionary is 23 bytes long 339 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 340 * 0010 69 74 27 73 20 61 20 6c "it's a l" 341 * 69 6e 65 "ine" 342 * 001b 44 45 56 49 43 "DEVIC" 343 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 344 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 345 * 67 "g" 346 * 0032 00 00 00 padding to next message header 347 * 348 * The 'struct printk_log' buffer header must never be directly exported to 349 * userspace, it is a kernel-private implementation detail that might 350 * need to be changed in the future, when the requirements change. 351 * 352 * /dev/kmsg exports the structured data in the following line format: 353 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 354 * 355 * Users of the export format should ignore possible additional values 356 * separated by ',', and find the message after the ';' character. 357 * 358 * The optional key/value pairs are attached as continuation lines starting 359 * with a space character and terminated by a newline. All possible 360 * non-prinatable characters are escaped in the "\xff" notation. 361 */ 362 363 enum log_flags { 364 LOG_NEWLINE = 2, /* text ended with a newline */ 365 LOG_CONT = 8, /* text is a fragment of a continuation line */ 366 }; 367 368 struct printk_log { 369 u64 ts_nsec; /* timestamp in nanoseconds */ 370 u16 len; /* length of entire record */ 371 u16 text_len; /* length of text buffer */ 372 u16 dict_len; /* length of dictionary buffer */ 373 u8 facility; /* syslog facility */ 374 u8 flags:5; /* internal record flags */ 375 u8 level:3; /* syslog level */ 376 #ifdef CONFIG_PRINTK_CALLER 377 u32 caller_id; /* thread id or processor id */ 378 #endif 379 } 380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 381 __packed __aligned(4) 382 #endif 383 ; 384 385 /* 386 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 387 * within the scheduler's rq lock. It must be released before calling 388 * console_unlock() or anything else that might wake up a process. 389 */ 390 DEFINE_RAW_SPINLOCK(logbuf_lock); 391 392 /* 393 * Helper macros to lock/unlock logbuf_lock and switch between 394 * printk-safe/unsafe modes. 395 */ 396 #define logbuf_lock_irq() \ 397 do { \ 398 printk_safe_enter_irq(); \ 399 raw_spin_lock(&logbuf_lock); \ 400 } while (0) 401 402 #define logbuf_unlock_irq() \ 403 do { \ 404 raw_spin_unlock(&logbuf_lock); \ 405 printk_safe_exit_irq(); \ 406 } while (0) 407 408 #define logbuf_lock_irqsave(flags) \ 409 do { \ 410 printk_safe_enter_irqsave(flags); \ 411 raw_spin_lock(&logbuf_lock); \ 412 } while (0) 413 414 #define logbuf_unlock_irqrestore(flags) \ 415 do { \ 416 raw_spin_unlock(&logbuf_lock); \ 417 printk_safe_exit_irqrestore(flags); \ 418 } while (0) 419 420 #ifdef CONFIG_PRINTK 421 DECLARE_WAIT_QUEUE_HEAD(log_wait); 422 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 423 static u64 syslog_seq; 424 static u32 syslog_idx; 425 static size_t syslog_partial; 426 static bool syslog_time; 427 428 /* index and sequence number of the first record stored in the buffer */ 429 static u64 log_first_seq; 430 static u32 log_first_idx; 431 432 /* index and sequence number of the next record to store in the buffer */ 433 static u64 log_next_seq; 434 static u32 log_next_idx; 435 436 /* the next printk record to write to the console */ 437 static u64 console_seq; 438 static u32 console_idx; 439 static u64 exclusive_console_stop_seq; 440 441 /* the next printk record to read after the last 'clear' command */ 442 static u64 clear_seq; 443 static u32 clear_idx; 444 445 #ifdef CONFIG_PRINTK_CALLER 446 #define PREFIX_MAX 48 447 #else 448 #define PREFIX_MAX 32 449 #endif 450 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 451 452 #define LOG_LEVEL(v) ((v) & 0x07) 453 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 454 455 /* record buffer */ 456 #define LOG_ALIGN __alignof__(struct printk_log) 457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 458 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 460 static char *log_buf = __log_buf; 461 static u32 log_buf_len = __LOG_BUF_LEN; 462 463 /* 464 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 465 * per_cpu_areas are initialised. This variable is set to true when 466 * it's safe to access per-CPU data. 467 */ 468 static bool __printk_percpu_data_ready __read_mostly; 469 470 bool printk_percpu_data_ready(void) 471 { 472 return __printk_percpu_data_ready; 473 } 474 475 /* Return log buffer address */ 476 char *log_buf_addr_get(void) 477 { 478 return log_buf; 479 } 480 481 /* Return log buffer size */ 482 u32 log_buf_len_get(void) 483 { 484 return log_buf_len; 485 } 486 487 /* human readable text of the record */ 488 static char *log_text(const struct printk_log *msg) 489 { 490 return (char *)msg + sizeof(struct printk_log); 491 } 492 493 /* optional key/value pair dictionary attached to the record */ 494 static char *log_dict(const struct printk_log *msg) 495 { 496 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 497 } 498 499 /* get record by index; idx must point to valid msg */ 500 static struct printk_log *log_from_idx(u32 idx) 501 { 502 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 503 504 /* 505 * A length == 0 record is the end of buffer marker. Wrap around and 506 * read the message at the start of the buffer. 507 */ 508 if (!msg->len) 509 return (struct printk_log *)log_buf; 510 return msg; 511 } 512 513 /* get next record; idx must point to valid msg */ 514 static u32 log_next(u32 idx) 515 { 516 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 517 518 /* length == 0 indicates the end of the buffer; wrap */ 519 /* 520 * A length == 0 record is the end of buffer marker. Wrap around and 521 * read the message at the start of the buffer as *this* one, and 522 * return the one after that. 523 */ 524 if (!msg->len) { 525 msg = (struct printk_log *)log_buf; 526 return msg->len; 527 } 528 return idx + msg->len; 529 } 530 531 /* 532 * Check whether there is enough free space for the given message. 533 * 534 * The same values of first_idx and next_idx mean that the buffer 535 * is either empty or full. 536 * 537 * If the buffer is empty, we must respect the position of the indexes. 538 * They cannot be reset to the beginning of the buffer. 539 */ 540 static int logbuf_has_space(u32 msg_size, bool empty) 541 { 542 u32 free; 543 544 if (log_next_idx > log_first_idx || empty) 545 free = max(log_buf_len - log_next_idx, log_first_idx); 546 else 547 free = log_first_idx - log_next_idx; 548 549 /* 550 * We need space also for an empty header that signalizes wrapping 551 * of the buffer. 552 */ 553 return free >= msg_size + sizeof(struct printk_log); 554 } 555 556 static int log_make_free_space(u32 msg_size) 557 { 558 while (log_first_seq < log_next_seq && 559 !logbuf_has_space(msg_size, false)) { 560 /* drop old messages until we have enough contiguous space */ 561 log_first_idx = log_next(log_first_idx); 562 log_first_seq++; 563 } 564 565 if (clear_seq < log_first_seq) { 566 clear_seq = log_first_seq; 567 clear_idx = log_first_idx; 568 } 569 570 /* sequence numbers are equal, so the log buffer is empty */ 571 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 572 return 0; 573 574 return -ENOMEM; 575 } 576 577 /* compute the message size including the padding bytes */ 578 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 579 { 580 u32 size; 581 582 size = sizeof(struct printk_log) + text_len + dict_len; 583 *pad_len = (-size) & (LOG_ALIGN - 1); 584 size += *pad_len; 585 586 return size; 587 } 588 589 /* 590 * Define how much of the log buffer we could take at maximum. The value 591 * must be greater than two. Note that only half of the buffer is available 592 * when the index points to the middle. 593 */ 594 #define MAX_LOG_TAKE_PART 4 595 static const char trunc_msg[] = "<truncated>"; 596 597 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 598 u16 *dict_len, u32 *pad_len) 599 { 600 /* 601 * The message should not take the whole buffer. Otherwise, it might 602 * get removed too soon. 603 */ 604 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 605 if (*text_len > max_text_len) 606 *text_len = max_text_len; 607 /* enable the warning message */ 608 *trunc_msg_len = strlen(trunc_msg); 609 /* disable the "dict" completely */ 610 *dict_len = 0; 611 /* compute the size again, count also the warning message */ 612 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 613 } 614 615 /* insert record into the buffer, discard old ones, update heads */ 616 static int log_store(u32 caller_id, int facility, int level, 617 enum log_flags flags, u64 ts_nsec, 618 const char *dict, u16 dict_len, 619 const char *text, u16 text_len) 620 { 621 struct printk_log *msg; 622 u32 size, pad_len; 623 u16 trunc_msg_len = 0; 624 625 /* number of '\0' padding bytes to next message */ 626 size = msg_used_size(text_len, dict_len, &pad_len); 627 628 if (log_make_free_space(size)) { 629 /* truncate the message if it is too long for empty buffer */ 630 size = truncate_msg(&text_len, &trunc_msg_len, 631 &dict_len, &pad_len); 632 /* survive when the log buffer is too small for trunc_msg */ 633 if (log_make_free_space(size)) 634 return 0; 635 } 636 637 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 638 /* 639 * This message + an additional empty header does not fit 640 * at the end of the buffer. Add an empty header with len == 0 641 * to signify a wrap around. 642 */ 643 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 644 log_next_idx = 0; 645 } 646 647 /* fill message */ 648 msg = (struct printk_log *)(log_buf + log_next_idx); 649 memcpy(log_text(msg), text, text_len); 650 msg->text_len = text_len; 651 if (trunc_msg_len) { 652 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 653 msg->text_len += trunc_msg_len; 654 } 655 memcpy(log_dict(msg), dict, dict_len); 656 msg->dict_len = dict_len; 657 msg->facility = facility; 658 msg->level = level & 7; 659 msg->flags = flags & 0x1f; 660 if (ts_nsec > 0) 661 msg->ts_nsec = ts_nsec; 662 else 663 msg->ts_nsec = local_clock(); 664 #ifdef CONFIG_PRINTK_CALLER 665 msg->caller_id = caller_id; 666 #endif 667 memset(log_dict(msg) + dict_len, 0, pad_len); 668 msg->len = size; 669 670 /* insert message */ 671 log_next_idx += msg->len; 672 log_next_seq++; 673 674 return msg->text_len; 675 } 676 677 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 678 679 static int syslog_action_restricted(int type) 680 { 681 if (dmesg_restrict) 682 return 1; 683 /* 684 * Unless restricted, we allow "read all" and "get buffer size" 685 * for everybody. 686 */ 687 return type != SYSLOG_ACTION_READ_ALL && 688 type != SYSLOG_ACTION_SIZE_BUFFER; 689 } 690 691 static int check_syslog_permissions(int type, int source) 692 { 693 /* 694 * If this is from /proc/kmsg and we've already opened it, then we've 695 * already done the capabilities checks at open time. 696 */ 697 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 698 goto ok; 699 700 if (syslog_action_restricted(type)) { 701 if (capable(CAP_SYSLOG)) 702 goto ok; 703 /* 704 * For historical reasons, accept CAP_SYS_ADMIN too, with 705 * a warning. 706 */ 707 if (capable(CAP_SYS_ADMIN)) { 708 pr_warn_once("%s (%d): Attempt to access syslog with " 709 "CAP_SYS_ADMIN but no CAP_SYSLOG " 710 "(deprecated).\n", 711 current->comm, task_pid_nr(current)); 712 goto ok; 713 } 714 return -EPERM; 715 } 716 ok: 717 return security_syslog(type); 718 } 719 720 static void append_char(char **pp, char *e, char c) 721 { 722 if (*pp < e) 723 *(*pp)++ = c; 724 } 725 726 static ssize_t msg_print_ext_header(char *buf, size_t size, 727 struct printk_log *msg, u64 seq) 728 { 729 u64 ts_usec = msg->ts_nsec; 730 char caller[20]; 731 #ifdef CONFIG_PRINTK_CALLER 732 u32 id = msg->caller_id; 733 734 snprintf(caller, sizeof(caller), ",caller=%c%u", 735 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 736 #else 737 caller[0] = '\0'; 738 #endif 739 740 do_div(ts_usec, 1000); 741 742 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 743 (msg->facility << 3) | msg->level, seq, ts_usec, 744 msg->flags & LOG_CONT ? 'c' : '-', caller); 745 } 746 747 static ssize_t msg_print_ext_body(char *buf, size_t size, 748 char *dict, size_t dict_len, 749 char *text, size_t text_len) 750 { 751 char *p = buf, *e = buf + size; 752 size_t i; 753 754 /* escape non-printable characters */ 755 for (i = 0; i < text_len; i++) { 756 unsigned char c = text[i]; 757 758 if (c < ' ' || c >= 127 || c == '\\') 759 p += scnprintf(p, e - p, "\\x%02x", c); 760 else 761 append_char(&p, e, c); 762 } 763 append_char(&p, e, '\n'); 764 765 if (dict_len) { 766 bool line = true; 767 768 for (i = 0; i < dict_len; i++) { 769 unsigned char c = dict[i]; 770 771 if (line) { 772 append_char(&p, e, ' '); 773 line = false; 774 } 775 776 if (c == '\0') { 777 append_char(&p, e, '\n'); 778 line = true; 779 continue; 780 } 781 782 if (c < ' ' || c >= 127 || c == '\\') { 783 p += scnprintf(p, e - p, "\\x%02x", c); 784 continue; 785 } 786 787 append_char(&p, e, c); 788 } 789 append_char(&p, e, '\n'); 790 } 791 792 return p - buf; 793 } 794 795 /* /dev/kmsg - userspace message inject/listen interface */ 796 struct devkmsg_user { 797 u64 seq; 798 u32 idx; 799 struct ratelimit_state rs; 800 struct mutex lock; 801 char buf[CONSOLE_EXT_LOG_MAX]; 802 }; 803 804 static __printf(3, 4) __cold 805 int devkmsg_emit(int facility, int level, const char *fmt, ...) 806 { 807 va_list args; 808 int r; 809 810 va_start(args, fmt); 811 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 812 va_end(args); 813 814 return r; 815 } 816 817 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 818 { 819 char *buf, *line; 820 int level = default_message_loglevel; 821 int facility = 1; /* LOG_USER */ 822 struct file *file = iocb->ki_filp; 823 struct devkmsg_user *user = file->private_data; 824 size_t len = iov_iter_count(from); 825 ssize_t ret = len; 826 827 if (!user || len > LOG_LINE_MAX) 828 return -EINVAL; 829 830 /* Ignore when user logging is disabled. */ 831 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 832 return len; 833 834 /* Ratelimit when not explicitly enabled. */ 835 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 836 if (!___ratelimit(&user->rs, current->comm)) 837 return ret; 838 } 839 840 buf = kmalloc(len+1, GFP_KERNEL); 841 if (buf == NULL) 842 return -ENOMEM; 843 844 buf[len] = '\0'; 845 if (!copy_from_iter_full(buf, len, from)) { 846 kfree(buf); 847 return -EFAULT; 848 } 849 850 /* 851 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 852 * the decimal value represents 32bit, the lower 3 bit are the log 853 * level, the rest are the log facility. 854 * 855 * If no prefix or no userspace facility is specified, we 856 * enforce LOG_USER, to be able to reliably distinguish 857 * kernel-generated messages from userspace-injected ones. 858 */ 859 line = buf; 860 if (line[0] == '<') { 861 char *endp = NULL; 862 unsigned int u; 863 864 u = simple_strtoul(line + 1, &endp, 10); 865 if (endp && endp[0] == '>') { 866 level = LOG_LEVEL(u); 867 if (LOG_FACILITY(u) != 0) 868 facility = LOG_FACILITY(u); 869 endp++; 870 len -= endp - line; 871 line = endp; 872 } 873 } 874 875 devkmsg_emit(facility, level, "%s", line); 876 kfree(buf); 877 return ret; 878 } 879 880 static ssize_t devkmsg_read(struct file *file, char __user *buf, 881 size_t count, loff_t *ppos) 882 { 883 struct devkmsg_user *user = file->private_data; 884 struct printk_log *msg; 885 size_t len; 886 ssize_t ret; 887 888 if (!user) 889 return -EBADF; 890 891 ret = mutex_lock_interruptible(&user->lock); 892 if (ret) 893 return ret; 894 895 logbuf_lock_irq(); 896 while (user->seq == log_next_seq) { 897 if (file->f_flags & O_NONBLOCK) { 898 ret = -EAGAIN; 899 logbuf_unlock_irq(); 900 goto out; 901 } 902 903 logbuf_unlock_irq(); 904 ret = wait_event_interruptible(log_wait, 905 user->seq != log_next_seq); 906 if (ret) 907 goto out; 908 logbuf_lock_irq(); 909 } 910 911 if (user->seq < log_first_seq) { 912 /* our last seen message is gone, return error and reset */ 913 user->idx = log_first_idx; 914 user->seq = log_first_seq; 915 ret = -EPIPE; 916 logbuf_unlock_irq(); 917 goto out; 918 } 919 920 msg = log_from_idx(user->idx); 921 len = msg_print_ext_header(user->buf, sizeof(user->buf), 922 msg, user->seq); 923 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 924 log_dict(msg), msg->dict_len, 925 log_text(msg), msg->text_len); 926 927 user->idx = log_next(user->idx); 928 user->seq++; 929 logbuf_unlock_irq(); 930 931 if (len > count) { 932 ret = -EINVAL; 933 goto out; 934 } 935 936 if (copy_to_user(buf, user->buf, len)) { 937 ret = -EFAULT; 938 goto out; 939 } 940 ret = len; 941 out: 942 mutex_unlock(&user->lock); 943 return ret; 944 } 945 946 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 947 { 948 struct devkmsg_user *user = file->private_data; 949 loff_t ret = 0; 950 951 if (!user) 952 return -EBADF; 953 if (offset) 954 return -ESPIPE; 955 956 logbuf_lock_irq(); 957 switch (whence) { 958 case SEEK_SET: 959 /* the first record */ 960 user->idx = log_first_idx; 961 user->seq = log_first_seq; 962 break; 963 case SEEK_DATA: 964 /* 965 * The first record after the last SYSLOG_ACTION_CLEAR, 966 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 967 * changes no global state, and does not clear anything. 968 */ 969 user->idx = clear_idx; 970 user->seq = clear_seq; 971 break; 972 case SEEK_END: 973 /* after the last record */ 974 user->idx = log_next_idx; 975 user->seq = log_next_seq; 976 break; 977 case SEEK_CUR: 978 /* 979 * It isn't supported due to the record nature of this 980 * interface: _SET _DATA and _END point to very specific 981 * record positions, while _CUR would be more useful in case 982 * of a byte-based log. Because of that, return the default 983 * errno value for invalid seek operation. 984 */ 985 ret = -ESPIPE; 986 break; 987 default: 988 ret = -EINVAL; 989 } 990 logbuf_unlock_irq(); 991 return ret; 992 } 993 994 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 995 { 996 struct devkmsg_user *user = file->private_data; 997 __poll_t ret = 0; 998 999 if (!user) 1000 return EPOLLERR|EPOLLNVAL; 1001 1002 poll_wait(file, &log_wait, wait); 1003 1004 logbuf_lock_irq(); 1005 if (user->seq < log_next_seq) { 1006 /* return error when data has vanished underneath us */ 1007 if (user->seq < log_first_seq) 1008 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 1009 else 1010 ret = EPOLLIN|EPOLLRDNORM; 1011 } 1012 logbuf_unlock_irq(); 1013 1014 return ret; 1015 } 1016 1017 static int devkmsg_open(struct inode *inode, struct file *file) 1018 { 1019 struct devkmsg_user *user; 1020 int err; 1021 1022 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 1023 return -EPERM; 1024 1025 /* write-only does not need any file context */ 1026 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 1027 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 1028 SYSLOG_FROM_READER); 1029 if (err) 1030 return err; 1031 } 1032 1033 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 1034 if (!user) 1035 return -ENOMEM; 1036 1037 ratelimit_default_init(&user->rs); 1038 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 1039 1040 mutex_init(&user->lock); 1041 1042 logbuf_lock_irq(); 1043 user->idx = log_first_idx; 1044 user->seq = log_first_seq; 1045 logbuf_unlock_irq(); 1046 1047 file->private_data = user; 1048 return 0; 1049 } 1050 1051 static int devkmsg_release(struct inode *inode, struct file *file) 1052 { 1053 struct devkmsg_user *user = file->private_data; 1054 1055 if (!user) 1056 return 0; 1057 1058 ratelimit_state_exit(&user->rs); 1059 1060 mutex_destroy(&user->lock); 1061 kfree(user); 1062 return 0; 1063 } 1064 1065 const struct file_operations kmsg_fops = { 1066 .open = devkmsg_open, 1067 .read = devkmsg_read, 1068 .write_iter = devkmsg_write, 1069 .llseek = devkmsg_llseek, 1070 .poll = devkmsg_poll, 1071 .release = devkmsg_release, 1072 }; 1073 1074 #ifdef CONFIG_CRASH_CORE 1075 /* 1076 * This appends the listed symbols to /proc/vmcore 1077 * 1078 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1079 * obtain access to symbols that are otherwise very difficult to locate. These 1080 * symbols are specifically used so that utilities can access and extract the 1081 * dmesg log from a vmcore file after a crash. 1082 */ 1083 void log_buf_vmcoreinfo_setup(void) 1084 { 1085 VMCOREINFO_SYMBOL(log_buf); 1086 VMCOREINFO_SYMBOL(log_buf_len); 1087 VMCOREINFO_SYMBOL(log_first_idx); 1088 VMCOREINFO_SYMBOL(clear_idx); 1089 VMCOREINFO_SYMBOL(log_next_idx); 1090 /* 1091 * Export struct printk_log size and field offsets. User space tools can 1092 * parse it and detect any changes to structure down the line. 1093 */ 1094 VMCOREINFO_STRUCT_SIZE(printk_log); 1095 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1096 VMCOREINFO_OFFSET(printk_log, len); 1097 VMCOREINFO_OFFSET(printk_log, text_len); 1098 VMCOREINFO_OFFSET(printk_log, dict_len); 1099 #ifdef CONFIG_PRINTK_CALLER 1100 VMCOREINFO_OFFSET(printk_log, caller_id); 1101 #endif 1102 } 1103 #endif 1104 1105 /* requested log_buf_len from kernel cmdline */ 1106 static unsigned long __initdata new_log_buf_len; 1107 1108 /* we practice scaling the ring buffer by powers of 2 */ 1109 static void __init log_buf_len_update(u64 size) 1110 { 1111 if (size > (u64)LOG_BUF_LEN_MAX) { 1112 size = (u64)LOG_BUF_LEN_MAX; 1113 pr_err("log_buf over 2G is not supported.\n"); 1114 } 1115 1116 if (size) 1117 size = roundup_pow_of_two(size); 1118 if (size > log_buf_len) 1119 new_log_buf_len = (unsigned long)size; 1120 } 1121 1122 /* save requested log_buf_len since it's too early to process it */ 1123 static int __init log_buf_len_setup(char *str) 1124 { 1125 u64 size; 1126 1127 if (!str) 1128 return -EINVAL; 1129 1130 size = memparse(str, &str); 1131 1132 log_buf_len_update(size); 1133 1134 return 0; 1135 } 1136 early_param("log_buf_len", log_buf_len_setup); 1137 1138 #ifdef CONFIG_SMP 1139 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1140 1141 static void __init log_buf_add_cpu(void) 1142 { 1143 unsigned int cpu_extra; 1144 1145 /* 1146 * archs should set up cpu_possible_bits properly with 1147 * set_cpu_possible() after setup_arch() but just in 1148 * case lets ensure this is valid. 1149 */ 1150 if (num_possible_cpus() == 1) 1151 return; 1152 1153 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1154 1155 /* by default this will only continue through for large > 64 CPUs */ 1156 if (cpu_extra <= __LOG_BUF_LEN / 2) 1157 return; 1158 1159 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1160 __LOG_CPU_MAX_BUF_LEN); 1161 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1162 cpu_extra); 1163 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1164 1165 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1166 } 1167 #else /* !CONFIG_SMP */ 1168 static inline void log_buf_add_cpu(void) {} 1169 #endif /* CONFIG_SMP */ 1170 1171 static void __init set_percpu_data_ready(void) 1172 { 1173 printk_safe_init(); 1174 /* Make sure we set this flag only after printk_safe() init is done */ 1175 barrier(); 1176 __printk_percpu_data_ready = true; 1177 } 1178 1179 void __init setup_log_buf(int early) 1180 { 1181 unsigned long flags; 1182 char *new_log_buf; 1183 unsigned int free; 1184 1185 /* 1186 * Some archs call setup_log_buf() multiple times - first is very 1187 * early, e.g. from setup_arch(), and second - when percpu_areas 1188 * are initialised. 1189 */ 1190 if (!early) 1191 set_percpu_data_ready(); 1192 1193 if (log_buf != __log_buf) 1194 return; 1195 1196 if (!early && !new_log_buf_len) 1197 log_buf_add_cpu(); 1198 1199 if (!new_log_buf_len) 1200 return; 1201 1202 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1203 if (unlikely(!new_log_buf)) { 1204 pr_err("log_buf_len: %lu bytes not available\n", 1205 new_log_buf_len); 1206 return; 1207 } 1208 1209 logbuf_lock_irqsave(flags); 1210 log_buf_len = new_log_buf_len; 1211 log_buf = new_log_buf; 1212 new_log_buf_len = 0; 1213 free = __LOG_BUF_LEN - log_next_idx; 1214 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1215 logbuf_unlock_irqrestore(flags); 1216 1217 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1218 pr_info("early log buf free: %u(%u%%)\n", 1219 free, (free * 100) / __LOG_BUF_LEN); 1220 } 1221 1222 static bool __read_mostly ignore_loglevel; 1223 1224 static int __init ignore_loglevel_setup(char *str) 1225 { 1226 ignore_loglevel = true; 1227 pr_info("debug: ignoring loglevel setting.\n"); 1228 1229 return 0; 1230 } 1231 1232 early_param("ignore_loglevel", ignore_loglevel_setup); 1233 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1234 MODULE_PARM_DESC(ignore_loglevel, 1235 "ignore loglevel setting (prints all kernel messages to the console)"); 1236 1237 static bool suppress_message_printing(int level) 1238 { 1239 return (level >= console_loglevel && !ignore_loglevel); 1240 } 1241 1242 #ifdef CONFIG_BOOT_PRINTK_DELAY 1243 1244 static int boot_delay; /* msecs delay after each printk during bootup */ 1245 static unsigned long long loops_per_msec; /* based on boot_delay */ 1246 1247 static int __init boot_delay_setup(char *str) 1248 { 1249 unsigned long lpj; 1250 1251 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1252 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1253 1254 get_option(&str, &boot_delay); 1255 if (boot_delay > 10 * 1000) 1256 boot_delay = 0; 1257 1258 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1259 "HZ: %d, loops_per_msec: %llu\n", 1260 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1261 return 0; 1262 } 1263 early_param("boot_delay", boot_delay_setup); 1264 1265 static void boot_delay_msec(int level) 1266 { 1267 unsigned long long k; 1268 unsigned long timeout; 1269 1270 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1271 || suppress_message_printing(level)) { 1272 return; 1273 } 1274 1275 k = (unsigned long long)loops_per_msec * boot_delay; 1276 1277 timeout = jiffies + msecs_to_jiffies(boot_delay); 1278 while (k) { 1279 k--; 1280 cpu_relax(); 1281 /* 1282 * use (volatile) jiffies to prevent 1283 * compiler reduction; loop termination via jiffies 1284 * is secondary and may or may not happen. 1285 */ 1286 if (time_after(jiffies, timeout)) 1287 break; 1288 touch_nmi_watchdog(); 1289 } 1290 } 1291 #else 1292 static inline void boot_delay_msec(int level) 1293 { 1294 } 1295 #endif 1296 1297 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1298 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1299 1300 static size_t print_syslog(unsigned int level, char *buf) 1301 { 1302 return sprintf(buf, "<%u>", level); 1303 } 1304 1305 static size_t print_time(u64 ts, char *buf) 1306 { 1307 unsigned long rem_nsec = do_div(ts, 1000000000); 1308 1309 return sprintf(buf, "[%5lu.%06lu]", 1310 (unsigned long)ts, rem_nsec / 1000); 1311 } 1312 1313 #ifdef CONFIG_PRINTK_CALLER 1314 static size_t print_caller(u32 id, char *buf) 1315 { 1316 char caller[12]; 1317 1318 snprintf(caller, sizeof(caller), "%c%u", 1319 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1320 return sprintf(buf, "[%6s]", caller); 1321 } 1322 #else 1323 #define print_caller(id, buf) 0 1324 #endif 1325 1326 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1327 bool time, char *buf) 1328 { 1329 size_t len = 0; 1330 1331 if (syslog) 1332 len = print_syslog((msg->facility << 3) | msg->level, buf); 1333 1334 if (time) 1335 len += print_time(msg->ts_nsec, buf + len); 1336 1337 len += print_caller(msg->caller_id, buf + len); 1338 1339 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1340 buf[len++] = ' '; 1341 buf[len] = '\0'; 1342 } 1343 1344 return len; 1345 } 1346 1347 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1348 bool time, char *buf, size_t size) 1349 { 1350 const char *text = log_text(msg); 1351 size_t text_size = msg->text_len; 1352 size_t len = 0; 1353 char prefix[PREFIX_MAX]; 1354 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1355 1356 do { 1357 const char *next = memchr(text, '\n', text_size); 1358 size_t text_len; 1359 1360 if (next) { 1361 text_len = next - text; 1362 next++; 1363 text_size -= next - text; 1364 } else { 1365 text_len = text_size; 1366 } 1367 1368 if (buf) { 1369 if (prefix_len + text_len + 1 >= size - len) 1370 break; 1371 1372 memcpy(buf + len, prefix, prefix_len); 1373 len += prefix_len; 1374 memcpy(buf + len, text, text_len); 1375 len += text_len; 1376 buf[len++] = '\n'; 1377 } else { 1378 /* SYSLOG_ACTION_* buffer size only calculation */ 1379 len += prefix_len + text_len + 1; 1380 } 1381 1382 text = next; 1383 } while (text); 1384 1385 return len; 1386 } 1387 1388 static int syslog_print(char __user *buf, int size) 1389 { 1390 char *text; 1391 struct printk_log *msg; 1392 int len = 0; 1393 1394 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1395 if (!text) 1396 return -ENOMEM; 1397 1398 while (size > 0) { 1399 size_t n; 1400 size_t skip; 1401 1402 logbuf_lock_irq(); 1403 if (syslog_seq < log_first_seq) { 1404 /* messages are gone, move to first one */ 1405 syslog_seq = log_first_seq; 1406 syslog_idx = log_first_idx; 1407 syslog_partial = 0; 1408 } 1409 if (syslog_seq == log_next_seq) { 1410 logbuf_unlock_irq(); 1411 break; 1412 } 1413 1414 /* 1415 * To keep reading/counting partial line consistent, 1416 * use printk_time value as of the beginning of a line. 1417 */ 1418 if (!syslog_partial) 1419 syslog_time = printk_time; 1420 1421 skip = syslog_partial; 1422 msg = log_from_idx(syslog_idx); 1423 n = msg_print_text(msg, true, syslog_time, text, 1424 LOG_LINE_MAX + PREFIX_MAX); 1425 if (n - syslog_partial <= size) { 1426 /* message fits into buffer, move forward */ 1427 syslog_idx = log_next(syslog_idx); 1428 syslog_seq++; 1429 n -= syslog_partial; 1430 syslog_partial = 0; 1431 } else if (!len){ 1432 /* partial read(), remember position */ 1433 n = size; 1434 syslog_partial += n; 1435 } else 1436 n = 0; 1437 logbuf_unlock_irq(); 1438 1439 if (!n) 1440 break; 1441 1442 if (copy_to_user(buf, text + skip, n)) { 1443 if (!len) 1444 len = -EFAULT; 1445 break; 1446 } 1447 1448 len += n; 1449 size -= n; 1450 buf += n; 1451 } 1452 1453 kfree(text); 1454 return len; 1455 } 1456 1457 static int syslog_print_all(char __user *buf, int size, bool clear) 1458 { 1459 char *text; 1460 int len = 0; 1461 u64 next_seq; 1462 u64 seq; 1463 u32 idx; 1464 bool time; 1465 1466 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1467 if (!text) 1468 return -ENOMEM; 1469 1470 time = printk_time; 1471 logbuf_lock_irq(); 1472 /* 1473 * Find first record that fits, including all following records, 1474 * into the user-provided buffer for this dump. 1475 */ 1476 seq = clear_seq; 1477 idx = clear_idx; 1478 while (seq < log_next_seq) { 1479 struct printk_log *msg = log_from_idx(idx); 1480 1481 len += msg_print_text(msg, true, time, NULL, 0); 1482 idx = log_next(idx); 1483 seq++; 1484 } 1485 1486 /* move first record forward until length fits into the buffer */ 1487 seq = clear_seq; 1488 idx = clear_idx; 1489 while (len > size && seq < log_next_seq) { 1490 struct printk_log *msg = log_from_idx(idx); 1491 1492 len -= msg_print_text(msg, true, time, NULL, 0); 1493 idx = log_next(idx); 1494 seq++; 1495 } 1496 1497 /* last message fitting into this dump */ 1498 next_seq = log_next_seq; 1499 1500 len = 0; 1501 while (len >= 0 && seq < next_seq) { 1502 struct printk_log *msg = log_from_idx(idx); 1503 int textlen = msg_print_text(msg, true, time, text, 1504 LOG_LINE_MAX + PREFIX_MAX); 1505 1506 idx = log_next(idx); 1507 seq++; 1508 1509 logbuf_unlock_irq(); 1510 if (copy_to_user(buf + len, text, textlen)) 1511 len = -EFAULT; 1512 else 1513 len += textlen; 1514 logbuf_lock_irq(); 1515 1516 if (seq < log_first_seq) { 1517 /* messages are gone, move to next one */ 1518 seq = log_first_seq; 1519 idx = log_first_idx; 1520 } 1521 } 1522 1523 if (clear) { 1524 clear_seq = log_next_seq; 1525 clear_idx = log_next_idx; 1526 } 1527 logbuf_unlock_irq(); 1528 1529 kfree(text); 1530 return len; 1531 } 1532 1533 static void syslog_clear(void) 1534 { 1535 logbuf_lock_irq(); 1536 clear_seq = log_next_seq; 1537 clear_idx = log_next_idx; 1538 logbuf_unlock_irq(); 1539 } 1540 1541 int do_syslog(int type, char __user *buf, int len, int source) 1542 { 1543 bool clear = false; 1544 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1545 int error; 1546 1547 error = check_syslog_permissions(type, source); 1548 if (error) 1549 return error; 1550 1551 switch (type) { 1552 case SYSLOG_ACTION_CLOSE: /* Close log */ 1553 break; 1554 case SYSLOG_ACTION_OPEN: /* Open log */ 1555 break; 1556 case SYSLOG_ACTION_READ: /* Read from log */ 1557 if (!buf || len < 0) 1558 return -EINVAL; 1559 if (!len) 1560 return 0; 1561 if (!access_ok(buf, len)) 1562 return -EFAULT; 1563 error = wait_event_interruptible(log_wait, 1564 syslog_seq != log_next_seq); 1565 if (error) 1566 return error; 1567 error = syslog_print(buf, len); 1568 break; 1569 /* Read/clear last kernel messages */ 1570 case SYSLOG_ACTION_READ_CLEAR: 1571 clear = true; 1572 /* FALL THRU */ 1573 /* Read last kernel messages */ 1574 case SYSLOG_ACTION_READ_ALL: 1575 if (!buf || len < 0) 1576 return -EINVAL; 1577 if (!len) 1578 return 0; 1579 if (!access_ok(buf, len)) 1580 return -EFAULT; 1581 error = syslog_print_all(buf, len, clear); 1582 break; 1583 /* Clear ring buffer */ 1584 case SYSLOG_ACTION_CLEAR: 1585 syslog_clear(); 1586 break; 1587 /* Disable logging to console */ 1588 case SYSLOG_ACTION_CONSOLE_OFF: 1589 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1590 saved_console_loglevel = console_loglevel; 1591 console_loglevel = minimum_console_loglevel; 1592 break; 1593 /* Enable logging to console */ 1594 case SYSLOG_ACTION_CONSOLE_ON: 1595 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1596 console_loglevel = saved_console_loglevel; 1597 saved_console_loglevel = LOGLEVEL_DEFAULT; 1598 } 1599 break; 1600 /* Set level of messages printed to console */ 1601 case SYSLOG_ACTION_CONSOLE_LEVEL: 1602 if (len < 1 || len > 8) 1603 return -EINVAL; 1604 if (len < minimum_console_loglevel) 1605 len = minimum_console_loglevel; 1606 console_loglevel = len; 1607 /* Implicitly re-enable logging to console */ 1608 saved_console_loglevel = LOGLEVEL_DEFAULT; 1609 break; 1610 /* Number of chars in the log buffer */ 1611 case SYSLOG_ACTION_SIZE_UNREAD: 1612 logbuf_lock_irq(); 1613 if (syslog_seq < log_first_seq) { 1614 /* messages are gone, move to first one */ 1615 syslog_seq = log_first_seq; 1616 syslog_idx = log_first_idx; 1617 syslog_partial = 0; 1618 } 1619 if (source == SYSLOG_FROM_PROC) { 1620 /* 1621 * Short-cut for poll(/"proc/kmsg") which simply checks 1622 * for pending data, not the size; return the count of 1623 * records, not the length. 1624 */ 1625 error = log_next_seq - syslog_seq; 1626 } else { 1627 u64 seq = syslog_seq; 1628 u32 idx = syslog_idx; 1629 bool time = syslog_partial ? syslog_time : printk_time; 1630 1631 while (seq < log_next_seq) { 1632 struct printk_log *msg = log_from_idx(idx); 1633 1634 error += msg_print_text(msg, true, time, NULL, 1635 0); 1636 time = printk_time; 1637 idx = log_next(idx); 1638 seq++; 1639 } 1640 error -= syslog_partial; 1641 } 1642 logbuf_unlock_irq(); 1643 break; 1644 /* Size of the log buffer */ 1645 case SYSLOG_ACTION_SIZE_BUFFER: 1646 error = log_buf_len; 1647 break; 1648 default: 1649 error = -EINVAL; 1650 break; 1651 } 1652 1653 return error; 1654 } 1655 1656 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1657 { 1658 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1659 } 1660 1661 /* 1662 * Special console_lock variants that help to reduce the risk of soft-lockups. 1663 * They allow to pass console_lock to another printk() call using a busy wait. 1664 */ 1665 1666 #ifdef CONFIG_LOCKDEP 1667 static struct lockdep_map console_owner_dep_map = { 1668 .name = "console_owner" 1669 }; 1670 #endif 1671 1672 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1673 static struct task_struct *console_owner; 1674 static bool console_waiter; 1675 1676 /** 1677 * console_lock_spinning_enable - mark beginning of code where another 1678 * thread might safely busy wait 1679 * 1680 * This basically converts console_lock into a spinlock. This marks 1681 * the section where the console_lock owner can not sleep, because 1682 * there may be a waiter spinning (like a spinlock). Also it must be 1683 * ready to hand over the lock at the end of the section. 1684 */ 1685 static void console_lock_spinning_enable(void) 1686 { 1687 raw_spin_lock(&console_owner_lock); 1688 console_owner = current; 1689 raw_spin_unlock(&console_owner_lock); 1690 1691 /* The waiter may spin on us after setting console_owner */ 1692 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1693 } 1694 1695 /** 1696 * console_lock_spinning_disable_and_check - mark end of code where another 1697 * thread was able to busy wait and check if there is a waiter 1698 * 1699 * This is called at the end of the section where spinning is allowed. 1700 * It has two functions. First, it is a signal that it is no longer 1701 * safe to start busy waiting for the lock. Second, it checks if 1702 * there is a busy waiter and passes the lock rights to her. 1703 * 1704 * Important: Callers lose the lock if there was a busy waiter. 1705 * They must not touch items synchronized by console_lock 1706 * in this case. 1707 * 1708 * Return: 1 if the lock rights were passed, 0 otherwise. 1709 */ 1710 static int console_lock_spinning_disable_and_check(void) 1711 { 1712 int waiter; 1713 1714 raw_spin_lock(&console_owner_lock); 1715 waiter = READ_ONCE(console_waiter); 1716 console_owner = NULL; 1717 raw_spin_unlock(&console_owner_lock); 1718 1719 if (!waiter) { 1720 spin_release(&console_owner_dep_map, _THIS_IP_); 1721 return 0; 1722 } 1723 1724 /* The waiter is now free to continue */ 1725 WRITE_ONCE(console_waiter, false); 1726 1727 spin_release(&console_owner_dep_map, _THIS_IP_); 1728 1729 /* 1730 * Hand off console_lock to waiter. The waiter will perform 1731 * the up(). After this, the waiter is the console_lock owner. 1732 */ 1733 mutex_release(&console_lock_dep_map, _THIS_IP_); 1734 return 1; 1735 } 1736 1737 /** 1738 * console_trylock_spinning - try to get console_lock by busy waiting 1739 * 1740 * This allows to busy wait for the console_lock when the current 1741 * owner is running in specially marked sections. It means that 1742 * the current owner is running and cannot reschedule until it 1743 * is ready to lose the lock. 1744 * 1745 * Return: 1 if we got the lock, 0 othrewise 1746 */ 1747 static int console_trylock_spinning(void) 1748 { 1749 struct task_struct *owner = NULL; 1750 bool waiter; 1751 bool spin = false; 1752 unsigned long flags; 1753 1754 if (console_trylock()) 1755 return 1; 1756 1757 printk_safe_enter_irqsave(flags); 1758 1759 raw_spin_lock(&console_owner_lock); 1760 owner = READ_ONCE(console_owner); 1761 waiter = READ_ONCE(console_waiter); 1762 if (!waiter && owner && owner != current) { 1763 WRITE_ONCE(console_waiter, true); 1764 spin = true; 1765 } 1766 raw_spin_unlock(&console_owner_lock); 1767 1768 /* 1769 * If there is an active printk() writing to the 1770 * consoles, instead of having it write our data too, 1771 * see if we can offload that load from the active 1772 * printer, and do some printing ourselves. 1773 * Go into a spin only if there isn't already a waiter 1774 * spinning, and there is an active printer, and 1775 * that active printer isn't us (recursive printk?). 1776 */ 1777 if (!spin) { 1778 printk_safe_exit_irqrestore(flags); 1779 return 0; 1780 } 1781 1782 /* We spin waiting for the owner to release us */ 1783 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1784 /* Owner will clear console_waiter on hand off */ 1785 while (READ_ONCE(console_waiter)) 1786 cpu_relax(); 1787 spin_release(&console_owner_dep_map, _THIS_IP_); 1788 1789 printk_safe_exit_irqrestore(flags); 1790 /* 1791 * The owner passed the console lock to us. 1792 * Since we did not spin on console lock, annotate 1793 * this as a trylock. Otherwise lockdep will 1794 * complain. 1795 */ 1796 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1797 1798 return 1; 1799 } 1800 1801 /* 1802 * Call the console drivers, asking them to write out 1803 * log_buf[start] to log_buf[end - 1]. 1804 * The console_lock must be held. 1805 */ 1806 static void call_console_drivers(const char *ext_text, size_t ext_len, 1807 const char *text, size_t len) 1808 { 1809 struct console *con; 1810 1811 trace_console_rcuidle(text, len); 1812 1813 for_each_console(con) { 1814 if (exclusive_console && con != exclusive_console) 1815 continue; 1816 if (!(con->flags & CON_ENABLED)) 1817 continue; 1818 if (!con->write) 1819 continue; 1820 if (!cpu_online(smp_processor_id()) && 1821 !(con->flags & CON_ANYTIME)) 1822 continue; 1823 if (con->flags & CON_EXTENDED) 1824 con->write(con, ext_text, ext_len); 1825 else 1826 con->write(con, text, len); 1827 } 1828 } 1829 1830 int printk_delay_msec __read_mostly; 1831 1832 static inline void printk_delay(void) 1833 { 1834 if (unlikely(printk_delay_msec)) { 1835 int m = printk_delay_msec; 1836 1837 while (m--) { 1838 mdelay(1); 1839 touch_nmi_watchdog(); 1840 } 1841 } 1842 } 1843 1844 static inline u32 printk_caller_id(void) 1845 { 1846 return in_task() ? task_pid_nr(current) : 1847 0x80000000 + raw_smp_processor_id(); 1848 } 1849 1850 /* 1851 * Continuation lines are buffered, and not committed to the record buffer 1852 * until the line is complete, or a race forces it. The line fragments 1853 * though, are printed immediately to the consoles to ensure everything has 1854 * reached the console in case of a kernel crash. 1855 */ 1856 static struct cont { 1857 char buf[LOG_LINE_MAX]; 1858 size_t len; /* length == 0 means unused buffer */ 1859 u32 caller_id; /* printk_caller_id() of first print */ 1860 u64 ts_nsec; /* time of first print */ 1861 u8 level; /* log level of first message */ 1862 u8 facility; /* log facility of first message */ 1863 enum log_flags flags; /* prefix, newline flags */ 1864 } cont; 1865 1866 static void cont_flush(void) 1867 { 1868 if (cont.len == 0) 1869 return; 1870 1871 log_store(cont.caller_id, cont.facility, cont.level, cont.flags, 1872 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1873 cont.len = 0; 1874 } 1875 1876 static bool cont_add(u32 caller_id, int facility, int level, 1877 enum log_flags flags, const char *text, size_t len) 1878 { 1879 /* If the line gets too long, split it up in separate records. */ 1880 if (cont.len + len > sizeof(cont.buf)) { 1881 cont_flush(); 1882 return false; 1883 } 1884 1885 if (!cont.len) { 1886 cont.facility = facility; 1887 cont.level = level; 1888 cont.caller_id = caller_id; 1889 cont.ts_nsec = local_clock(); 1890 cont.flags = flags; 1891 } 1892 1893 memcpy(cont.buf + cont.len, text, len); 1894 cont.len += len; 1895 1896 // The original flags come from the first line, 1897 // but later continuations can add a newline. 1898 if (flags & LOG_NEWLINE) { 1899 cont.flags |= LOG_NEWLINE; 1900 cont_flush(); 1901 } 1902 1903 return true; 1904 } 1905 1906 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1907 { 1908 const u32 caller_id = printk_caller_id(); 1909 1910 /* 1911 * If an earlier line was buffered, and we're a continuation 1912 * write from the same context, try to add it to the buffer. 1913 */ 1914 if (cont.len) { 1915 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) { 1916 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1917 return text_len; 1918 } 1919 /* Otherwise, make sure it's flushed */ 1920 cont_flush(); 1921 } 1922 1923 /* Skip empty continuation lines that couldn't be added - they just flush */ 1924 if (!text_len && (lflags & LOG_CONT)) 1925 return 0; 1926 1927 /* If it doesn't end in a newline, try to buffer the current line */ 1928 if (!(lflags & LOG_NEWLINE)) { 1929 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1930 return text_len; 1931 } 1932 1933 /* Store it in the record log */ 1934 return log_store(caller_id, facility, level, lflags, 0, 1935 dict, dictlen, text, text_len); 1936 } 1937 1938 /* Must be called under logbuf_lock. */ 1939 int vprintk_store(int facility, int level, 1940 const char *dict, size_t dictlen, 1941 const char *fmt, va_list args) 1942 { 1943 static char textbuf[LOG_LINE_MAX]; 1944 char *text = textbuf; 1945 size_t text_len; 1946 enum log_flags lflags = 0; 1947 1948 /* 1949 * The printf needs to come first; we need the syslog 1950 * prefix which might be passed-in as a parameter. 1951 */ 1952 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1953 1954 /* mark and strip a trailing newline */ 1955 if (text_len && text[text_len-1] == '\n') { 1956 text_len--; 1957 lflags |= LOG_NEWLINE; 1958 } 1959 1960 /* strip kernel syslog prefix and extract log level or control flags */ 1961 if (facility == 0) { 1962 int kern_level; 1963 1964 while ((kern_level = printk_get_level(text)) != 0) { 1965 switch (kern_level) { 1966 case '0' ... '7': 1967 if (level == LOGLEVEL_DEFAULT) 1968 level = kern_level - '0'; 1969 break; 1970 case 'c': /* KERN_CONT */ 1971 lflags |= LOG_CONT; 1972 } 1973 1974 text_len -= 2; 1975 text += 2; 1976 } 1977 } 1978 1979 if (level == LOGLEVEL_DEFAULT) 1980 level = default_message_loglevel; 1981 1982 if (dict) 1983 lflags |= LOG_NEWLINE; 1984 1985 return log_output(facility, level, lflags, 1986 dict, dictlen, text, text_len); 1987 } 1988 1989 asmlinkage int vprintk_emit(int facility, int level, 1990 const char *dict, size_t dictlen, 1991 const char *fmt, va_list args) 1992 { 1993 int printed_len; 1994 bool in_sched = false, pending_output; 1995 unsigned long flags; 1996 u64 curr_log_seq; 1997 1998 /* Suppress unimportant messages after panic happens */ 1999 if (unlikely(suppress_printk)) 2000 return 0; 2001 2002 if (level == LOGLEVEL_SCHED) { 2003 level = LOGLEVEL_DEFAULT; 2004 in_sched = true; 2005 } 2006 2007 boot_delay_msec(level); 2008 printk_delay(); 2009 2010 /* This stops the holder of console_sem just where we want him */ 2011 logbuf_lock_irqsave(flags); 2012 curr_log_seq = log_next_seq; 2013 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 2014 pending_output = (curr_log_seq != log_next_seq); 2015 logbuf_unlock_irqrestore(flags); 2016 2017 /* If called from the scheduler, we can not call up(). */ 2018 if (!in_sched && pending_output) { 2019 /* 2020 * Disable preemption to avoid being preempted while holding 2021 * console_sem which would prevent anyone from printing to 2022 * console 2023 */ 2024 preempt_disable(); 2025 /* 2026 * Try to acquire and then immediately release the console 2027 * semaphore. The release will print out buffers and wake up 2028 * /dev/kmsg and syslog() users. 2029 */ 2030 if (console_trylock_spinning()) 2031 console_unlock(); 2032 preempt_enable(); 2033 } 2034 2035 if (pending_output) 2036 wake_up_klogd(); 2037 return printed_len; 2038 } 2039 EXPORT_SYMBOL(vprintk_emit); 2040 2041 asmlinkage int vprintk(const char *fmt, va_list args) 2042 { 2043 return vprintk_func(fmt, args); 2044 } 2045 EXPORT_SYMBOL(vprintk); 2046 2047 int vprintk_default(const char *fmt, va_list args) 2048 { 2049 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 2050 } 2051 EXPORT_SYMBOL_GPL(vprintk_default); 2052 2053 /** 2054 * printk - print a kernel message 2055 * @fmt: format string 2056 * 2057 * This is printk(). It can be called from any context. We want it to work. 2058 * 2059 * We try to grab the console_lock. If we succeed, it's easy - we log the 2060 * output and call the console drivers. If we fail to get the semaphore, we 2061 * place the output into the log buffer and return. The current holder of 2062 * the console_sem will notice the new output in console_unlock(); and will 2063 * send it to the consoles before releasing the lock. 2064 * 2065 * One effect of this deferred printing is that code which calls printk() and 2066 * then changes console_loglevel may break. This is because console_loglevel 2067 * is inspected when the actual printing occurs. 2068 * 2069 * See also: 2070 * printf(3) 2071 * 2072 * See the vsnprintf() documentation for format string extensions over C99. 2073 */ 2074 asmlinkage __visible int printk(const char *fmt, ...) 2075 { 2076 va_list args; 2077 int r; 2078 2079 va_start(args, fmt); 2080 r = vprintk_func(fmt, args); 2081 va_end(args); 2082 2083 return r; 2084 } 2085 EXPORT_SYMBOL(printk); 2086 2087 #else /* CONFIG_PRINTK */ 2088 2089 #define LOG_LINE_MAX 0 2090 #define PREFIX_MAX 0 2091 #define printk_time false 2092 2093 static u64 syslog_seq; 2094 static u32 syslog_idx; 2095 static u64 console_seq; 2096 static u32 console_idx; 2097 static u64 exclusive_console_stop_seq; 2098 static u64 log_first_seq; 2099 static u32 log_first_idx; 2100 static u64 log_next_seq; 2101 static char *log_text(const struct printk_log *msg) { return NULL; } 2102 static char *log_dict(const struct printk_log *msg) { return NULL; } 2103 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2104 static u32 log_next(u32 idx) { return 0; } 2105 static ssize_t msg_print_ext_header(char *buf, size_t size, 2106 struct printk_log *msg, 2107 u64 seq) { return 0; } 2108 static ssize_t msg_print_ext_body(char *buf, size_t size, 2109 char *dict, size_t dict_len, 2110 char *text, size_t text_len) { return 0; } 2111 static void console_lock_spinning_enable(void) { } 2112 static int console_lock_spinning_disable_and_check(void) { return 0; } 2113 static void call_console_drivers(const char *ext_text, size_t ext_len, 2114 const char *text, size_t len) {} 2115 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2116 bool time, char *buf, size_t size) { return 0; } 2117 static bool suppress_message_printing(int level) { return false; } 2118 2119 #endif /* CONFIG_PRINTK */ 2120 2121 #ifdef CONFIG_EARLY_PRINTK 2122 struct console *early_console; 2123 2124 asmlinkage __visible void early_printk(const char *fmt, ...) 2125 { 2126 va_list ap; 2127 char buf[512]; 2128 int n; 2129 2130 if (!early_console) 2131 return; 2132 2133 va_start(ap, fmt); 2134 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2135 va_end(ap); 2136 2137 early_console->write(early_console, buf, n); 2138 } 2139 #endif 2140 2141 static int __add_preferred_console(char *name, int idx, char *options, 2142 char *brl_options, bool user_specified) 2143 { 2144 struct console_cmdline *c; 2145 int i; 2146 2147 /* 2148 * See if this tty is not yet registered, and 2149 * if we have a slot free. 2150 */ 2151 for (i = 0, c = console_cmdline; 2152 i < MAX_CMDLINECONSOLES && c->name[0]; 2153 i++, c++) { 2154 if (strcmp(c->name, name) == 0 && c->index == idx) { 2155 if (!brl_options) 2156 preferred_console = i; 2157 if (user_specified) 2158 c->user_specified = true; 2159 return 0; 2160 } 2161 } 2162 if (i == MAX_CMDLINECONSOLES) 2163 return -E2BIG; 2164 if (!brl_options) 2165 preferred_console = i; 2166 strlcpy(c->name, name, sizeof(c->name)); 2167 c->options = options; 2168 c->user_specified = user_specified; 2169 braille_set_options(c, brl_options); 2170 2171 c->index = idx; 2172 return 0; 2173 } 2174 2175 static int __init console_msg_format_setup(char *str) 2176 { 2177 if (!strcmp(str, "syslog")) 2178 console_msg_format = MSG_FORMAT_SYSLOG; 2179 if (!strcmp(str, "default")) 2180 console_msg_format = MSG_FORMAT_DEFAULT; 2181 return 1; 2182 } 2183 __setup("console_msg_format=", console_msg_format_setup); 2184 2185 /* 2186 * Set up a console. Called via do_early_param() in init/main.c 2187 * for each "console=" parameter in the boot command line. 2188 */ 2189 static int __init console_setup(char *str) 2190 { 2191 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2192 char *s, *options, *brl_options = NULL; 2193 int idx; 2194 2195 if (str[0] == 0) 2196 return 1; 2197 2198 if (_braille_console_setup(&str, &brl_options)) 2199 return 1; 2200 2201 /* 2202 * Decode str into name, index, options. 2203 */ 2204 if (str[0] >= '0' && str[0] <= '9') { 2205 strcpy(buf, "ttyS"); 2206 strncpy(buf + 4, str, sizeof(buf) - 5); 2207 } else { 2208 strncpy(buf, str, sizeof(buf) - 1); 2209 } 2210 buf[sizeof(buf) - 1] = 0; 2211 options = strchr(str, ','); 2212 if (options) 2213 *(options++) = 0; 2214 #ifdef __sparc__ 2215 if (!strcmp(str, "ttya")) 2216 strcpy(buf, "ttyS0"); 2217 if (!strcmp(str, "ttyb")) 2218 strcpy(buf, "ttyS1"); 2219 #endif 2220 for (s = buf; *s; s++) 2221 if (isdigit(*s) || *s == ',') 2222 break; 2223 idx = simple_strtoul(s, NULL, 10); 2224 *s = 0; 2225 2226 __add_preferred_console(buf, idx, options, brl_options, true); 2227 console_set_on_cmdline = 1; 2228 return 1; 2229 } 2230 __setup("console=", console_setup); 2231 2232 /** 2233 * add_preferred_console - add a device to the list of preferred consoles. 2234 * @name: device name 2235 * @idx: device index 2236 * @options: options for this console 2237 * 2238 * The last preferred console added will be used for kernel messages 2239 * and stdin/out/err for init. Normally this is used by console_setup 2240 * above to handle user-supplied console arguments; however it can also 2241 * be used by arch-specific code either to override the user or more 2242 * commonly to provide a default console (ie from PROM variables) when 2243 * the user has not supplied one. 2244 */ 2245 int add_preferred_console(char *name, int idx, char *options) 2246 { 2247 return __add_preferred_console(name, idx, options, NULL, false); 2248 } 2249 2250 bool console_suspend_enabled = true; 2251 EXPORT_SYMBOL(console_suspend_enabled); 2252 2253 static int __init console_suspend_disable(char *str) 2254 { 2255 console_suspend_enabled = false; 2256 return 1; 2257 } 2258 __setup("no_console_suspend", console_suspend_disable); 2259 module_param_named(console_suspend, console_suspend_enabled, 2260 bool, S_IRUGO | S_IWUSR); 2261 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2262 " and hibernate operations"); 2263 2264 /** 2265 * suspend_console - suspend the console subsystem 2266 * 2267 * This disables printk() while we go into suspend states 2268 */ 2269 void suspend_console(void) 2270 { 2271 if (!console_suspend_enabled) 2272 return; 2273 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2274 console_lock(); 2275 console_suspended = 1; 2276 up_console_sem(); 2277 } 2278 2279 void resume_console(void) 2280 { 2281 if (!console_suspend_enabled) 2282 return; 2283 down_console_sem(); 2284 console_suspended = 0; 2285 console_unlock(); 2286 } 2287 2288 /** 2289 * console_cpu_notify - print deferred console messages after CPU hotplug 2290 * @cpu: unused 2291 * 2292 * If printk() is called from a CPU that is not online yet, the messages 2293 * will be printed on the console only if there are CON_ANYTIME consoles. 2294 * This function is called when a new CPU comes online (or fails to come 2295 * up) or goes offline. 2296 */ 2297 static int console_cpu_notify(unsigned int cpu) 2298 { 2299 if (!cpuhp_tasks_frozen) { 2300 /* If trylock fails, someone else is doing the printing */ 2301 if (console_trylock()) 2302 console_unlock(); 2303 } 2304 return 0; 2305 } 2306 2307 /** 2308 * console_lock - lock the console system for exclusive use. 2309 * 2310 * Acquires a lock which guarantees that the caller has 2311 * exclusive access to the console system and the console_drivers list. 2312 * 2313 * Can sleep, returns nothing. 2314 */ 2315 void console_lock(void) 2316 { 2317 might_sleep(); 2318 2319 down_console_sem(); 2320 if (console_suspended) 2321 return; 2322 console_locked = 1; 2323 console_may_schedule = 1; 2324 } 2325 EXPORT_SYMBOL(console_lock); 2326 2327 /** 2328 * console_trylock - try to lock the console system for exclusive use. 2329 * 2330 * Try to acquire a lock which guarantees that the caller has exclusive 2331 * access to the console system and the console_drivers list. 2332 * 2333 * returns 1 on success, and 0 on failure to acquire the lock. 2334 */ 2335 int console_trylock(void) 2336 { 2337 if (down_trylock_console_sem()) 2338 return 0; 2339 if (console_suspended) { 2340 up_console_sem(); 2341 return 0; 2342 } 2343 console_locked = 1; 2344 console_may_schedule = 0; 2345 return 1; 2346 } 2347 EXPORT_SYMBOL(console_trylock); 2348 2349 int is_console_locked(void) 2350 { 2351 return console_locked; 2352 } 2353 EXPORT_SYMBOL(is_console_locked); 2354 2355 /* 2356 * Check if we have any console that is capable of printing while cpu is 2357 * booting or shutting down. Requires console_sem. 2358 */ 2359 static int have_callable_console(void) 2360 { 2361 struct console *con; 2362 2363 for_each_console(con) 2364 if ((con->flags & CON_ENABLED) && 2365 (con->flags & CON_ANYTIME)) 2366 return 1; 2367 2368 return 0; 2369 } 2370 2371 /* 2372 * Can we actually use the console at this time on this cpu? 2373 * 2374 * Console drivers may assume that per-cpu resources have been allocated. So 2375 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2376 * call them until this CPU is officially up. 2377 */ 2378 static inline int can_use_console(void) 2379 { 2380 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2381 } 2382 2383 /** 2384 * console_unlock - unlock the console system 2385 * 2386 * Releases the console_lock which the caller holds on the console system 2387 * and the console driver list. 2388 * 2389 * While the console_lock was held, console output may have been buffered 2390 * by printk(). If this is the case, console_unlock(); emits 2391 * the output prior to releasing the lock. 2392 * 2393 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2394 * 2395 * console_unlock(); may be called from any context. 2396 */ 2397 void console_unlock(void) 2398 { 2399 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2400 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2401 unsigned long flags; 2402 bool do_cond_resched, retry; 2403 2404 if (console_suspended) { 2405 up_console_sem(); 2406 return; 2407 } 2408 2409 /* 2410 * Console drivers are called with interrupts disabled, so 2411 * @console_may_schedule should be cleared before; however, we may 2412 * end up dumping a lot of lines, for example, if called from 2413 * console registration path, and should invoke cond_resched() 2414 * between lines if allowable. Not doing so can cause a very long 2415 * scheduling stall on a slow console leading to RCU stall and 2416 * softlockup warnings which exacerbate the issue with more 2417 * messages practically incapacitating the system. 2418 * 2419 * console_trylock() is not able to detect the preemptive 2420 * context reliably. Therefore the value must be stored before 2421 * and cleared after the the "again" goto label. 2422 */ 2423 do_cond_resched = console_may_schedule; 2424 again: 2425 console_may_schedule = 0; 2426 2427 /* 2428 * We released the console_sem lock, so we need to recheck if 2429 * cpu is online and (if not) is there at least one CON_ANYTIME 2430 * console. 2431 */ 2432 if (!can_use_console()) { 2433 console_locked = 0; 2434 up_console_sem(); 2435 return; 2436 } 2437 2438 for (;;) { 2439 struct printk_log *msg; 2440 size_t ext_len = 0; 2441 size_t len; 2442 2443 printk_safe_enter_irqsave(flags); 2444 raw_spin_lock(&logbuf_lock); 2445 if (console_seq < log_first_seq) { 2446 len = snprintf(text, sizeof(text), 2447 "** %llu printk messages dropped **\n", 2448 log_first_seq - console_seq); 2449 2450 /* messages are gone, move to first one */ 2451 console_seq = log_first_seq; 2452 console_idx = log_first_idx; 2453 } else { 2454 len = 0; 2455 } 2456 skip: 2457 if (console_seq == log_next_seq) 2458 break; 2459 2460 msg = log_from_idx(console_idx); 2461 if (suppress_message_printing(msg->level)) { 2462 /* 2463 * Skip record we have buffered and already printed 2464 * directly to the console when we received it, and 2465 * record that has level above the console loglevel. 2466 */ 2467 console_idx = log_next(console_idx); 2468 console_seq++; 2469 goto skip; 2470 } 2471 2472 /* Output to all consoles once old messages replayed. */ 2473 if (unlikely(exclusive_console && 2474 console_seq >= exclusive_console_stop_seq)) { 2475 exclusive_console = NULL; 2476 } 2477 2478 len += msg_print_text(msg, 2479 console_msg_format & MSG_FORMAT_SYSLOG, 2480 printk_time, text + len, sizeof(text) - len); 2481 if (nr_ext_console_drivers) { 2482 ext_len = msg_print_ext_header(ext_text, 2483 sizeof(ext_text), 2484 msg, console_seq); 2485 ext_len += msg_print_ext_body(ext_text + ext_len, 2486 sizeof(ext_text) - ext_len, 2487 log_dict(msg), msg->dict_len, 2488 log_text(msg), msg->text_len); 2489 } 2490 console_idx = log_next(console_idx); 2491 console_seq++; 2492 raw_spin_unlock(&logbuf_lock); 2493 2494 /* 2495 * While actively printing out messages, if another printk() 2496 * were to occur on another CPU, it may wait for this one to 2497 * finish. This task can not be preempted if there is a 2498 * waiter waiting to take over. 2499 */ 2500 console_lock_spinning_enable(); 2501 2502 stop_critical_timings(); /* don't trace print latency */ 2503 call_console_drivers(ext_text, ext_len, text, len); 2504 start_critical_timings(); 2505 2506 if (console_lock_spinning_disable_and_check()) { 2507 printk_safe_exit_irqrestore(flags); 2508 return; 2509 } 2510 2511 printk_safe_exit_irqrestore(flags); 2512 2513 if (do_cond_resched) 2514 cond_resched(); 2515 } 2516 2517 console_locked = 0; 2518 2519 raw_spin_unlock(&logbuf_lock); 2520 2521 up_console_sem(); 2522 2523 /* 2524 * Someone could have filled up the buffer again, so re-check if there's 2525 * something to flush. In case we cannot trylock the console_sem again, 2526 * there's a new owner and the console_unlock() from them will do the 2527 * flush, no worries. 2528 */ 2529 raw_spin_lock(&logbuf_lock); 2530 retry = console_seq != log_next_seq; 2531 raw_spin_unlock(&logbuf_lock); 2532 printk_safe_exit_irqrestore(flags); 2533 2534 if (retry && console_trylock()) 2535 goto again; 2536 } 2537 EXPORT_SYMBOL(console_unlock); 2538 2539 /** 2540 * console_conditional_schedule - yield the CPU if required 2541 * 2542 * If the console code is currently allowed to sleep, and 2543 * if this CPU should yield the CPU to another task, do 2544 * so here. 2545 * 2546 * Must be called within console_lock();. 2547 */ 2548 void __sched console_conditional_schedule(void) 2549 { 2550 if (console_may_schedule) 2551 cond_resched(); 2552 } 2553 EXPORT_SYMBOL(console_conditional_schedule); 2554 2555 void console_unblank(void) 2556 { 2557 struct console *c; 2558 2559 /* 2560 * console_unblank can no longer be called in interrupt context unless 2561 * oops_in_progress is set to 1.. 2562 */ 2563 if (oops_in_progress) { 2564 if (down_trylock_console_sem() != 0) 2565 return; 2566 } else 2567 console_lock(); 2568 2569 console_locked = 1; 2570 console_may_schedule = 0; 2571 for_each_console(c) 2572 if ((c->flags & CON_ENABLED) && c->unblank) 2573 c->unblank(); 2574 console_unlock(); 2575 } 2576 2577 /** 2578 * console_flush_on_panic - flush console content on panic 2579 * @mode: flush all messages in buffer or just the pending ones 2580 * 2581 * Immediately output all pending messages no matter what. 2582 */ 2583 void console_flush_on_panic(enum con_flush_mode mode) 2584 { 2585 /* 2586 * If someone else is holding the console lock, trylock will fail 2587 * and may_schedule may be set. Ignore and proceed to unlock so 2588 * that messages are flushed out. As this can be called from any 2589 * context and we don't want to get preempted while flushing, 2590 * ensure may_schedule is cleared. 2591 */ 2592 console_trylock(); 2593 console_may_schedule = 0; 2594 2595 if (mode == CONSOLE_REPLAY_ALL) { 2596 unsigned long flags; 2597 2598 logbuf_lock_irqsave(flags); 2599 console_seq = log_first_seq; 2600 console_idx = log_first_idx; 2601 logbuf_unlock_irqrestore(flags); 2602 } 2603 console_unlock(); 2604 } 2605 2606 /* 2607 * Return the console tty driver structure and its associated index 2608 */ 2609 struct tty_driver *console_device(int *index) 2610 { 2611 struct console *c; 2612 struct tty_driver *driver = NULL; 2613 2614 console_lock(); 2615 for_each_console(c) { 2616 if (!c->device) 2617 continue; 2618 driver = c->device(c, index); 2619 if (driver) 2620 break; 2621 } 2622 console_unlock(); 2623 return driver; 2624 } 2625 2626 /* 2627 * Prevent further output on the passed console device so that (for example) 2628 * serial drivers can disable console output before suspending a port, and can 2629 * re-enable output afterwards. 2630 */ 2631 void console_stop(struct console *console) 2632 { 2633 console_lock(); 2634 console->flags &= ~CON_ENABLED; 2635 console_unlock(); 2636 } 2637 EXPORT_SYMBOL(console_stop); 2638 2639 void console_start(struct console *console) 2640 { 2641 console_lock(); 2642 console->flags |= CON_ENABLED; 2643 console_unlock(); 2644 } 2645 EXPORT_SYMBOL(console_start); 2646 2647 static int __read_mostly keep_bootcon; 2648 2649 static int __init keep_bootcon_setup(char *str) 2650 { 2651 keep_bootcon = 1; 2652 pr_info("debug: skip boot console de-registration.\n"); 2653 2654 return 0; 2655 } 2656 2657 early_param("keep_bootcon", keep_bootcon_setup); 2658 2659 /* 2660 * This is called by register_console() to try to match 2661 * the newly registered console with any of the ones selected 2662 * by either the command line or add_preferred_console() and 2663 * setup/enable it. 2664 * 2665 * Care need to be taken with consoles that are statically 2666 * enabled such as netconsole 2667 */ 2668 static int try_enable_new_console(struct console *newcon, bool user_specified) 2669 { 2670 struct console_cmdline *c; 2671 int i; 2672 2673 for (i = 0, c = console_cmdline; 2674 i < MAX_CMDLINECONSOLES && c->name[0]; 2675 i++, c++) { 2676 if (c->user_specified != user_specified) 2677 continue; 2678 if (!newcon->match || 2679 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2680 /* default matching */ 2681 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2682 if (strcmp(c->name, newcon->name) != 0) 2683 continue; 2684 if (newcon->index >= 0 && 2685 newcon->index != c->index) 2686 continue; 2687 if (newcon->index < 0) 2688 newcon->index = c->index; 2689 2690 if (_braille_register_console(newcon, c)) 2691 return 0; 2692 2693 if (newcon->setup && 2694 newcon->setup(newcon, c->options) != 0) 2695 return -EIO; 2696 } 2697 newcon->flags |= CON_ENABLED; 2698 if (i == preferred_console) { 2699 newcon->flags |= CON_CONSDEV; 2700 has_preferred_console = true; 2701 } 2702 return 0; 2703 } 2704 2705 /* 2706 * Some consoles, such as pstore and netconsole, can be enabled even 2707 * without matching. Accept the pre-enabled consoles only when match() 2708 * and setup() had a change to be called. 2709 */ 2710 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 2711 return 0; 2712 2713 return -ENOENT; 2714 } 2715 2716 /* 2717 * The console driver calls this routine during kernel initialization 2718 * to register the console printing procedure with printk() and to 2719 * print any messages that were printed by the kernel before the 2720 * console driver was initialized. 2721 * 2722 * This can happen pretty early during the boot process (because of 2723 * early_printk) - sometimes before setup_arch() completes - be careful 2724 * of what kernel features are used - they may not be initialised yet. 2725 * 2726 * There are two types of consoles - bootconsoles (early_printk) and 2727 * "real" consoles (everything which is not a bootconsole) which are 2728 * handled differently. 2729 * - Any number of bootconsoles can be registered at any time. 2730 * - As soon as a "real" console is registered, all bootconsoles 2731 * will be unregistered automatically. 2732 * - Once a "real" console is registered, any attempt to register a 2733 * bootconsoles will be rejected 2734 */ 2735 void register_console(struct console *newcon) 2736 { 2737 unsigned long flags; 2738 struct console *bcon = NULL; 2739 int err; 2740 2741 for_each_console(bcon) { 2742 if (WARN(bcon == newcon, "console '%s%d' already registered\n", 2743 bcon->name, bcon->index)) 2744 return; 2745 } 2746 2747 /* 2748 * before we register a new CON_BOOT console, make sure we don't 2749 * already have a valid console 2750 */ 2751 if (newcon->flags & CON_BOOT) { 2752 for_each_console(bcon) { 2753 if (!(bcon->flags & CON_BOOT)) { 2754 pr_info("Too late to register bootconsole %s%d\n", 2755 newcon->name, newcon->index); 2756 return; 2757 } 2758 } 2759 } 2760 2761 if (console_drivers && console_drivers->flags & CON_BOOT) 2762 bcon = console_drivers; 2763 2764 if (!has_preferred_console || bcon || !console_drivers) 2765 has_preferred_console = preferred_console >= 0; 2766 2767 /* 2768 * See if we want to use this console driver. If we 2769 * didn't select a console we take the first one 2770 * that registers here. 2771 */ 2772 if (!has_preferred_console) { 2773 if (newcon->index < 0) 2774 newcon->index = 0; 2775 if (newcon->setup == NULL || 2776 newcon->setup(newcon, NULL) == 0) { 2777 newcon->flags |= CON_ENABLED; 2778 if (newcon->device) { 2779 newcon->flags |= CON_CONSDEV; 2780 has_preferred_console = true; 2781 } 2782 } 2783 } 2784 2785 /* See if this console matches one we selected on the command line */ 2786 err = try_enable_new_console(newcon, true); 2787 2788 /* If not, try to match against the platform default(s) */ 2789 if (err == -ENOENT) 2790 err = try_enable_new_console(newcon, false); 2791 2792 /* printk() messages are not printed to the Braille console. */ 2793 if (err || newcon->flags & CON_BRL) 2794 return; 2795 2796 /* 2797 * If we have a bootconsole, and are switching to a real console, 2798 * don't print everything out again, since when the boot console, and 2799 * the real console are the same physical device, it's annoying to 2800 * see the beginning boot messages twice 2801 */ 2802 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2803 newcon->flags &= ~CON_PRINTBUFFER; 2804 2805 /* 2806 * Put this console in the list - keep the 2807 * preferred driver at the head of the list. 2808 */ 2809 console_lock(); 2810 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2811 newcon->next = console_drivers; 2812 console_drivers = newcon; 2813 if (newcon->next) 2814 newcon->next->flags &= ~CON_CONSDEV; 2815 /* Ensure this flag is always set for the head of the list */ 2816 newcon->flags |= CON_CONSDEV; 2817 } else { 2818 newcon->next = console_drivers->next; 2819 console_drivers->next = newcon; 2820 } 2821 2822 if (newcon->flags & CON_EXTENDED) 2823 nr_ext_console_drivers++; 2824 2825 if (newcon->flags & CON_PRINTBUFFER) { 2826 /* 2827 * console_unlock(); will print out the buffered messages 2828 * for us. 2829 */ 2830 logbuf_lock_irqsave(flags); 2831 /* 2832 * We're about to replay the log buffer. Only do this to the 2833 * just-registered console to avoid excessive message spam to 2834 * the already-registered consoles. 2835 * 2836 * Set exclusive_console with disabled interrupts to reduce 2837 * race window with eventual console_flush_on_panic() that 2838 * ignores console_lock. 2839 */ 2840 exclusive_console = newcon; 2841 exclusive_console_stop_seq = console_seq; 2842 console_seq = syslog_seq; 2843 console_idx = syslog_idx; 2844 logbuf_unlock_irqrestore(flags); 2845 } 2846 console_unlock(); 2847 console_sysfs_notify(); 2848 2849 /* 2850 * By unregistering the bootconsoles after we enable the real console 2851 * we get the "console xxx enabled" message on all the consoles - 2852 * boot consoles, real consoles, etc - this is to ensure that end 2853 * users know there might be something in the kernel's log buffer that 2854 * went to the bootconsole (that they do not see on the real console) 2855 */ 2856 pr_info("%sconsole [%s%d] enabled\n", 2857 (newcon->flags & CON_BOOT) ? "boot" : "" , 2858 newcon->name, newcon->index); 2859 if (bcon && 2860 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2861 !keep_bootcon) { 2862 /* We need to iterate through all boot consoles, to make 2863 * sure we print everything out, before we unregister them. 2864 */ 2865 for_each_console(bcon) 2866 if (bcon->flags & CON_BOOT) 2867 unregister_console(bcon); 2868 } 2869 } 2870 EXPORT_SYMBOL(register_console); 2871 2872 int unregister_console(struct console *console) 2873 { 2874 struct console *con; 2875 int res; 2876 2877 pr_info("%sconsole [%s%d] disabled\n", 2878 (console->flags & CON_BOOT) ? "boot" : "" , 2879 console->name, console->index); 2880 2881 res = _braille_unregister_console(console); 2882 if (res < 0) 2883 return res; 2884 if (res > 0) 2885 return 0; 2886 2887 res = -ENODEV; 2888 console_lock(); 2889 if (console_drivers == console) { 2890 console_drivers=console->next; 2891 res = 0; 2892 } else { 2893 for_each_console(con) { 2894 if (con->next == console) { 2895 con->next = console->next; 2896 res = 0; 2897 break; 2898 } 2899 } 2900 } 2901 2902 if (res) 2903 goto out_disable_unlock; 2904 2905 if (console->flags & CON_EXTENDED) 2906 nr_ext_console_drivers--; 2907 2908 /* 2909 * If this isn't the last console and it has CON_CONSDEV set, we 2910 * need to set it on the next preferred console. 2911 */ 2912 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2913 console_drivers->flags |= CON_CONSDEV; 2914 2915 console->flags &= ~CON_ENABLED; 2916 console_unlock(); 2917 console_sysfs_notify(); 2918 2919 if (console->exit) 2920 res = console->exit(console); 2921 2922 return res; 2923 2924 out_disable_unlock: 2925 console->flags &= ~CON_ENABLED; 2926 console_unlock(); 2927 2928 return res; 2929 } 2930 EXPORT_SYMBOL(unregister_console); 2931 2932 /* 2933 * Initialize the console device. This is called *early*, so 2934 * we can't necessarily depend on lots of kernel help here. 2935 * Just do some early initializations, and do the complex setup 2936 * later. 2937 */ 2938 void __init console_init(void) 2939 { 2940 int ret; 2941 initcall_t call; 2942 initcall_entry_t *ce; 2943 2944 /* Setup the default TTY line discipline. */ 2945 n_tty_init(); 2946 2947 /* 2948 * set up the console device so that later boot sequences can 2949 * inform about problems etc.. 2950 */ 2951 ce = __con_initcall_start; 2952 trace_initcall_level("console"); 2953 while (ce < __con_initcall_end) { 2954 call = initcall_from_entry(ce); 2955 trace_initcall_start(call); 2956 ret = call(); 2957 trace_initcall_finish(call, ret); 2958 ce++; 2959 } 2960 } 2961 2962 /* 2963 * Some boot consoles access data that is in the init section and which will 2964 * be discarded after the initcalls have been run. To make sure that no code 2965 * will access this data, unregister the boot consoles in a late initcall. 2966 * 2967 * If for some reason, such as deferred probe or the driver being a loadable 2968 * module, the real console hasn't registered yet at this point, there will 2969 * be a brief interval in which no messages are logged to the console, which 2970 * makes it difficult to diagnose problems that occur during this time. 2971 * 2972 * To mitigate this problem somewhat, only unregister consoles whose memory 2973 * intersects with the init section. Note that all other boot consoles will 2974 * get unregistred when the real preferred console is registered. 2975 */ 2976 static int __init printk_late_init(void) 2977 { 2978 struct console *con; 2979 int ret; 2980 2981 for_each_console(con) { 2982 if (!(con->flags & CON_BOOT)) 2983 continue; 2984 2985 /* Check addresses that might be used for enabled consoles. */ 2986 if (init_section_intersects(con, sizeof(*con)) || 2987 init_section_contains(con->write, 0) || 2988 init_section_contains(con->read, 0) || 2989 init_section_contains(con->device, 0) || 2990 init_section_contains(con->unblank, 0) || 2991 init_section_contains(con->data, 0)) { 2992 /* 2993 * Please, consider moving the reported consoles out 2994 * of the init section. 2995 */ 2996 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2997 con->name, con->index); 2998 unregister_console(con); 2999 } 3000 } 3001 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3002 console_cpu_notify); 3003 WARN_ON(ret < 0); 3004 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3005 console_cpu_notify, NULL); 3006 WARN_ON(ret < 0); 3007 return 0; 3008 } 3009 late_initcall(printk_late_init); 3010 3011 #if defined CONFIG_PRINTK 3012 /* 3013 * Delayed printk version, for scheduler-internal messages: 3014 */ 3015 #define PRINTK_PENDING_WAKEUP 0x01 3016 #define PRINTK_PENDING_OUTPUT 0x02 3017 3018 static DEFINE_PER_CPU(int, printk_pending); 3019 3020 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3021 { 3022 int pending = __this_cpu_xchg(printk_pending, 0); 3023 3024 if (pending & PRINTK_PENDING_OUTPUT) { 3025 /* If trylock fails, someone else is doing the printing */ 3026 if (console_trylock()) 3027 console_unlock(); 3028 } 3029 3030 if (pending & PRINTK_PENDING_WAKEUP) 3031 wake_up_interruptible(&log_wait); 3032 } 3033 3034 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 3035 .func = wake_up_klogd_work_func, 3036 .flags = ATOMIC_INIT(IRQ_WORK_LAZY), 3037 }; 3038 3039 void wake_up_klogd(void) 3040 { 3041 if (!printk_percpu_data_ready()) 3042 return; 3043 3044 preempt_disable(); 3045 if (waitqueue_active(&log_wait)) { 3046 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3047 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3048 } 3049 preempt_enable(); 3050 } 3051 3052 void defer_console_output(void) 3053 { 3054 if (!printk_percpu_data_ready()) 3055 return; 3056 3057 preempt_disable(); 3058 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3059 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3060 preempt_enable(); 3061 } 3062 3063 int vprintk_deferred(const char *fmt, va_list args) 3064 { 3065 int r; 3066 3067 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 3068 defer_console_output(); 3069 3070 return r; 3071 } 3072 3073 int printk_deferred(const char *fmt, ...) 3074 { 3075 va_list args; 3076 int r; 3077 3078 va_start(args, fmt); 3079 r = vprintk_deferred(fmt, args); 3080 va_end(args); 3081 3082 return r; 3083 } 3084 3085 /* 3086 * printk rate limiting, lifted from the networking subsystem. 3087 * 3088 * This enforces a rate limit: not more than 10 kernel messages 3089 * every 5s to make a denial-of-service attack impossible. 3090 */ 3091 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3092 3093 int __printk_ratelimit(const char *func) 3094 { 3095 return ___ratelimit(&printk_ratelimit_state, func); 3096 } 3097 EXPORT_SYMBOL(__printk_ratelimit); 3098 3099 /** 3100 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3101 * @caller_jiffies: pointer to caller's state 3102 * @interval_msecs: minimum interval between prints 3103 * 3104 * printk_timed_ratelimit() returns true if more than @interval_msecs 3105 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3106 * returned true. 3107 */ 3108 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3109 unsigned int interval_msecs) 3110 { 3111 unsigned long elapsed = jiffies - *caller_jiffies; 3112 3113 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3114 return false; 3115 3116 *caller_jiffies = jiffies; 3117 return true; 3118 } 3119 EXPORT_SYMBOL(printk_timed_ratelimit); 3120 3121 static DEFINE_SPINLOCK(dump_list_lock); 3122 static LIST_HEAD(dump_list); 3123 3124 /** 3125 * kmsg_dump_register - register a kernel log dumper. 3126 * @dumper: pointer to the kmsg_dumper structure 3127 * 3128 * Adds a kernel log dumper to the system. The dump callback in the 3129 * structure will be called when the kernel oopses or panics and must be 3130 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3131 */ 3132 int kmsg_dump_register(struct kmsg_dumper *dumper) 3133 { 3134 unsigned long flags; 3135 int err = -EBUSY; 3136 3137 /* The dump callback needs to be set */ 3138 if (!dumper->dump) 3139 return -EINVAL; 3140 3141 spin_lock_irqsave(&dump_list_lock, flags); 3142 /* Don't allow registering multiple times */ 3143 if (!dumper->registered) { 3144 dumper->registered = 1; 3145 list_add_tail_rcu(&dumper->list, &dump_list); 3146 err = 0; 3147 } 3148 spin_unlock_irqrestore(&dump_list_lock, flags); 3149 3150 return err; 3151 } 3152 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3153 3154 /** 3155 * kmsg_dump_unregister - unregister a kmsg dumper. 3156 * @dumper: pointer to the kmsg_dumper structure 3157 * 3158 * Removes a dump device from the system. Returns zero on success and 3159 * %-EINVAL otherwise. 3160 */ 3161 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3162 { 3163 unsigned long flags; 3164 int err = -EINVAL; 3165 3166 spin_lock_irqsave(&dump_list_lock, flags); 3167 if (dumper->registered) { 3168 dumper->registered = 0; 3169 list_del_rcu(&dumper->list); 3170 err = 0; 3171 } 3172 spin_unlock_irqrestore(&dump_list_lock, flags); 3173 synchronize_rcu(); 3174 3175 return err; 3176 } 3177 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3178 3179 static bool always_kmsg_dump; 3180 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3181 3182 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 3183 { 3184 switch (reason) { 3185 case KMSG_DUMP_PANIC: 3186 return "Panic"; 3187 case KMSG_DUMP_OOPS: 3188 return "Oops"; 3189 case KMSG_DUMP_EMERG: 3190 return "Emergency"; 3191 case KMSG_DUMP_SHUTDOWN: 3192 return "Shutdown"; 3193 default: 3194 return "Unknown"; 3195 } 3196 } 3197 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 3198 3199 /** 3200 * kmsg_dump - dump kernel log to kernel message dumpers. 3201 * @reason: the reason (oops, panic etc) for dumping 3202 * 3203 * Call each of the registered dumper's dump() callback, which can 3204 * retrieve the kmsg records with kmsg_dump_get_line() or 3205 * kmsg_dump_get_buffer(). 3206 */ 3207 void kmsg_dump(enum kmsg_dump_reason reason) 3208 { 3209 struct kmsg_dumper *dumper; 3210 unsigned long flags; 3211 3212 rcu_read_lock(); 3213 list_for_each_entry_rcu(dumper, &dump_list, list) { 3214 enum kmsg_dump_reason max_reason = dumper->max_reason; 3215 3216 /* 3217 * If client has not provided a specific max_reason, default 3218 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 3219 */ 3220 if (max_reason == KMSG_DUMP_UNDEF) { 3221 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 3222 KMSG_DUMP_OOPS; 3223 } 3224 if (reason > max_reason) 3225 continue; 3226 3227 /* initialize iterator with data about the stored records */ 3228 dumper->active = true; 3229 3230 logbuf_lock_irqsave(flags); 3231 dumper->cur_seq = clear_seq; 3232 dumper->cur_idx = clear_idx; 3233 dumper->next_seq = log_next_seq; 3234 dumper->next_idx = log_next_idx; 3235 logbuf_unlock_irqrestore(flags); 3236 3237 /* invoke dumper which will iterate over records */ 3238 dumper->dump(dumper, reason); 3239 3240 /* reset iterator */ 3241 dumper->active = false; 3242 } 3243 rcu_read_unlock(); 3244 } 3245 3246 /** 3247 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3248 * @dumper: registered kmsg dumper 3249 * @syslog: include the "<4>" prefixes 3250 * @line: buffer to copy the line to 3251 * @size: maximum size of the buffer 3252 * @len: length of line placed into buffer 3253 * 3254 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3255 * record, and copy one record into the provided buffer. 3256 * 3257 * Consecutive calls will return the next available record moving 3258 * towards the end of the buffer with the youngest messages. 3259 * 3260 * A return value of FALSE indicates that there are no more records to 3261 * read. 3262 * 3263 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3264 */ 3265 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3266 char *line, size_t size, size_t *len) 3267 { 3268 struct printk_log *msg; 3269 size_t l = 0; 3270 bool ret = false; 3271 3272 if (!dumper->active) 3273 goto out; 3274 3275 if (dumper->cur_seq < log_first_seq) { 3276 /* messages are gone, move to first available one */ 3277 dumper->cur_seq = log_first_seq; 3278 dumper->cur_idx = log_first_idx; 3279 } 3280 3281 /* last entry */ 3282 if (dumper->cur_seq >= log_next_seq) 3283 goto out; 3284 3285 msg = log_from_idx(dumper->cur_idx); 3286 l = msg_print_text(msg, syslog, printk_time, line, size); 3287 3288 dumper->cur_idx = log_next(dumper->cur_idx); 3289 dumper->cur_seq++; 3290 ret = true; 3291 out: 3292 if (len) 3293 *len = l; 3294 return ret; 3295 } 3296 3297 /** 3298 * kmsg_dump_get_line - retrieve one kmsg log line 3299 * @dumper: registered kmsg dumper 3300 * @syslog: include the "<4>" prefixes 3301 * @line: buffer to copy the line to 3302 * @size: maximum size of the buffer 3303 * @len: length of line placed into buffer 3304 * 3305 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3306 * record, and copy one record into the provided buffer. 3307 * 3308 * Consecutive calls will return the next available record moving 3309 * towards the end of the buffer with the youngest messages. 3310 * 3311 * A return value of FALSE indicates that there are no more records to 3312 * read. 3313 */ 3314 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3315 char *line, size_t size, size_t *len) 3316 { 3317 unsigned long flags; 3318 bool ret; 3319 3320 logbuf_lock_irqsave(flags); 3321 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3322 logbuf_unlock_irqrestore(flags); 3323 3324 return ret; 3325 } 3326 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3327 3328 /** 3329 * kmsg_dump_get_buffer - copy kmsg log lines 3330 * @dumper: registered kmsg dumper 3331 * @syslog: include the "<4>" prefixes 3332 * @buf: buffer to copy the line to 3333 * @size: maximum size of the buffer 3334 * @len: length of line placed into buffer 3335 * 3336 * Start at the end of the kmsg buffer and fill the provided buffer 3337 * with as many of the the *youngest* kmsg records that fit into it. 3338 * If the buffer is large enough, all available kmsg records will be 3339 * copied with a single call. 3340 * 3341 * Consecutive calls will fill the buffer with the next block of 3342 * available older records, not including the earlier retrieved ones. 3343 * 3344 * A return value of FALSE indicates that there are no more records to 3345 * read. 3346 */ 3347 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3348 char *buf, size_t size, size_t *len) 3349 { 3350 unsigned long flags; 3351 u64 seq; 3352 u32 idx; 3353 u64 next_seq; 3354 u32 next_idx; 3355 size_t l = 0; 3356 bool ret = false; 3357 bool time = printk_time; 3358 3359 if (!dumper->active) 3360 goto out; 3361 3362 logbuf_lock_irqsave(flags); 3363 if (dumper->cur_seq < log_first_seq) { 3364 /* messages are gone, move to first available one */ 3365 dumper->cur_seq = log_first_seq; 3366 dumper->cur_idx = log_first_idx; 3367 } 3368 3369 /* last entry */ 3370 if (dumper->cur_seq >= dumper->next_seq) { 3371 logbuf_unlock_irqrestore(flags); 3372 goto out; 3373 } 3374 3375 /* calculate length of entire buffer */ 3376 seq = dumper->cur_seq; 3377 idx = dumper->cur_idx; 3378 while (seq < dumper->next_seq) { 3379 struct printk_log *msg = log_from_idx(idx); 3380 3381 l += msg_print_text(msg, true, time, NULL, 0); 3382 idx = log_next(idx); 3383 seq++; 3384 } 3385 3386 /* move first record forward until length fits into the buffer */ 3387 seq = dumper->cur_seq; 3388 idx = dumper->cur_idx; 3389 while (l >= size && seq < dumper->next_seq) { 3390 struct printk_log *msg = log_from_idx(idx); 3391 3392 l -= msg_print_text(msg, true, time, NULL, 0); 3393 idx = log_next(idx); 3394 seq++; 3395 } 3396 3397 /* last message in next interation */ 3398 next_seq = seq; 3399 next_idx = idx; 3400 3401 l = 0; 3402 while (seq < dumper->next_seq) { 3403 struct printk_log *msg = log_from_idx(idx); 3404 3405 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3406 idx = log_next(idx); 3407 seq++; 3408 } 3409 3410 dumper->next_seq = next_seq; 3411 dumper->next_idx = next_idx; 3412 ret = true; 3413 logbuf_unlock_irqrestore(flags); 3414 out: 3415 if (len) 3416 *len = l; 3417 return ret; 3418 } 3419 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3420 3421 /** 3422 * kmsg_dump_rewind_nolock - reset the iterator (unlocked version) 3423 * @dumper: registered kmsg dumper 3424 * 3425 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3426 * kmsg_dump_get_buffer() can be called again and used multiple 3427 * times within the same dumper.dump() callback. 3428 * 3429 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3430 */ 3431 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3432 { 3433 dumper->cur_seq = clear_seq; 3434 dumper->cur_idx = clear_idx; 3435 dumper->next_seq = log_next_seq; 3436 dumper->next_idx = log_next_idx; 3437 } 3438 3439 /** 3440 * kmsg_dump_rewind - reset the iterator 3441 * @dumper: registered kmsg dumper 3442 * 3443 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3444 * kmsg_dump_get_buffer() can be called again and used multiple 3445 * times within the same dumper.dump() callback. 3446 */ 3447 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3448 { 3449 unsigned long flags; 3450 3451 logbuf_lock_irqsave(flags); 3452 kmsg_dump_rewind_nolock(dumper); 3453 logbuf_unlock_irqrestore(flags); 3454 } 3455 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3456 3457 #endif 3458