xref: /linux/kernel/printk/printk.c (revision 3381df0954199458fa3993db72fb427f0ed1e43b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/crash_core.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/rculist.h>
44 #include <linux/poll.h>
45 #include <linux/irq_work.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/debug.h>
50 #include <linux/sched/task_stack.h>
51 
52 #include <linux/uaccess.h>
53 #include <asm/sections.h>
54 
55 #include <trace/events/initcall.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/printk.h>
58 
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 /*
75  * Low level drivers may need that to know if they can schedule in
76  * their unblank() callback or not. So let's export it.
77  */
78 int oops_in_progress;
79 EXPORT_SYMBOL(oops_in_progress);
80 
81 /*
82  * console_sem protects the console_drivers list, and also
83  * provides serialisation for access to the entire console
84  * driver system.
85  */
86 static DEFINE_SEMAPHORE(console_sem);
87 struct console *console_drivers;
88 EXPORT_SYMBOL_GPL(console_drivers);
89 
90 /*
91  * System may need to suppress printk message under certain
92  * circumstances, like after kernel panic happens.
93  */
94 int __read_mostly suppress_printk;
95 
96 #ifdef CONFIG_LOCKDEP
97 static struct lockdep_map console_lock_dep_map = {
98 	.name = "console_lock"
99 };
100 #endif
101 
102 enum devkmsg_log_bits {
103 	__DEVKMSG_LOG_BIT_ON = 0,
104 	__DEVKMSG_LOG_BIT_OFF,
105 	__DEVKMSG_LOG_BIT_LOCK,
106 };
107 
108 enum devkmsg_log_masks {
109 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
110 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
111 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
112 };
113 
114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
115 #define DEVKMSG_LOG_MASK_DEFAULT	0
116 
117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
118 
119 static int __control_devkmsg(char *str)
120 {
121 	size_t len;
122 
123 	if (!str)
124 		return -EINVAL;
125 
126 	len = str_has_prefix(str, "on");
127 	if (len) {
128 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
129 		return len;
130 	}
131 
132 	len = str_has_prefix(str, "off");
133 	if (len) {
134 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
135 		return len;
136 	}
137 
138 	len = str_has_prefix(str, "ratelimit");
139 	if (len) {
140 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 		return len;
142 	}
143 
144 	return -EINVAL;
145 }
146 
147 static int __init control_devkmsg(char *str)
148 {
149 	if (__control_devkmsg(str) < 0)
150 		return 1;
151 
152 	/*
153 	 * Set sysctl string accordingly:
154 	 */
155 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
156 		strcpy(devkmsg_log_str, "on");
157 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
158 		strcpy(devkmsg_log_str, "off");
159 	/* else "ratelimit" which is set by default. */
160 
161 	/*
162 	 * Sysctl cannot change it anymore. The kernel command line setting of
163 	 * this parameter is to force the setting to be permanent throughout the
164 	 * runtime of the system. This is a precation measure against userspace
165 	 * trying to be a smarta** and attempting to change it up on us.
166 	 */
167 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
168 
169 	return 0;
170 }
171 __setup("printk.devkmsg=", control_devkmsg);
172 
173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
174 
175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
176 			      void __user *buffer, size_t *lenp, loff_t *ppos)
177 {
178 	char old_str[DEVKMSG_STR_MAX_SIZE];
179 	unsigned int old;
180 	int err;
181 
182 	if (write) {
183 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
184 			return -EINVAL;
185 
186 		old = devkmsg_log;
187 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
188 	}
189 
190 	err = proc_dostring(table, write, buffer, lenp, ppos);
191 	if (err)
192 		return err;
193 
194 	if (write) {
195 		err = __control_devkmsg(devkmsg_log_str);
196 
197 		/*
198 		 * Do not accept an unknown string OR a known string with
199 		 * trailing crap...
200 		 */
201 		if (err < 0 || (err + 1 != *lenp)) {
202 
203 			/* ... and restore old setting. */
204 			devkmsg_log = old;
205 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
206 
207 			return -EINVAL;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 /* Number of registered extended console drivers. */
215 static int nr_ext_console_drivers;
216 
217 /*
218  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
219  * macros instead of functions so that _RET_IP_ contains useful information.
220  */
221 #define down_console_sem() do { \
222 	down(&console_sem);\
223 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
224 } while (0)
225 
226 static int __down_trylock_console_sem(unsigned long ip)
227 {
228 	int lock_failed;
229 	unsigned long flags;
230 
231 	/*
232 	 * Here and in __up_console_sem() we need to be in safe mode,
233 	 * because spindump/WARN/etc from under console ->lock will
234 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
235 	 */
236 	printk_safe_enter_irqsave(flags);
237 	lock_failed = down_trylock(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 
240 	if (lock_failed)
241 		return 1;
242 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
243 	return 0;
244 }
245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
246 
247 static void __up_console_sem(unsigned long ip)
248 {
249 	unsigned long flags;
250 
251 	mutex_release(&console_lock_dep_map, ip);
252 
253 	printk_safe_enter_irqsave(flags);
254 	up(&console_sem);
255 	printk_safe_exit_irqrestore(flags);
256 }
257 #define up_console_sem() __up_console_sem(_RET_IP_)
258 
259 /*
260  * This is used for debugging the mess that is the VT code by
261  * keeping track if we have the console semaphore held. It's
262  * definitely not the perfect debug tool (we don't know if _WE_
263  * hold it and are racing, but it helps tracking those weird code
264  * paths in the console code where we end up in places I want
265  * locked without the console sempahore held).
266  */
267 static int console_locked, console_suspended;
268 
269 /*
270  * If exclusive_console is non-NULL then only this console is to be printed to.
271  */
272 static struct console *exclusive_console;
273 
274 /*
275  *	Array of consoles built from command line options (console=)
276  */
277 
278 #define MAX_CMDLINECONSOLES 8
279 
280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
281 
282 static int preferred_console = -1;
283 int console_set_on_cmdline;
284 EXPORT_SYMBOL(console_set_on_cmdline);
285 
286 /* Flag: console code may call schedule() */
287 static int console_may_schedule;
288 
289 enum con_msg_format_flags {
290 	MSG_FORMAT_DEFAULT	= 0,
291 	MSG_FORMAT_SYSLOG	= (1 << 0),
292 };
293 
294 static int console_msg_format = MSG_FORMAT_DEFAULT;
295 
296 /*
297  * The printk log buffer consists of a chain of concatenated variable
298  * length records. Every record starts with a record header, containing
299  * the overall length of the record.
300  *
301  * The heads to the first and last entry in the buffer, as well as the
302  * sequence numbers of these entries are maintained when messages are
303  * stored.
304  *
305  * If the heads indicate available messages, the length in the header
306  * tells the start next message. A length == 0 for the next message
307  * indicates a wrap-around to the beginning of the buffer.
308  *
309  * Every record carries the monotonic timestamp in microseconds, as well as
310  * the standard userspace syslog level and syslog facility. The usual
311  * kernel messages use LOG_KERN; userspace-injected messages always carry
312  * a matching syslog facility, by default LOG_USER. The origin of every
313  * message can be reliably determined that way.
314  *
315  * The human readable log message directly follows the message header. The
316  * length of the message text is stored in the header, the stored message
317  * is not terminated.
318  *
319  * Optionally, a message can carry a dictionary of properties (key/value pairs),
320  * to provide userspace with a machine-readable message context.
321  *
322  * Examples for well-defined, commonly used property names are:
323  *   DEVICE=b12:8               device identifier
324  *                                b12:8         block dev_t
325  *                                c127:3        char dev_t
326  *                                n8            netdev ifindex
327  *                                +sound:card0  subsystem:devname
328  *   SUBSYSTEM=pci              driver-core subsystem name
329  *
330  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
331  * follows directly after a '=' character. Every property is terminated by
332  * a '\0' character. The last property is not terminated.
333  *
334  * Example of a message structure:
335  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
336  *   0008  34 00                        record is 52 bytes long
337  *   000a        0b 00                  text is 11 bytes long
338  *   000c              1f 00            dictionary is 23 bytes long
339  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
340  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
341  *         69 6e 65                     "ine"
342  *   001b           44 45 56 49 43      "DEVIC"
343  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
344  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
345  *         67                           "g"
346  *   0032     00 00 00                  padding to next message header
347  *
348  * The 'struct printk_log' buffer header must never be directly exported to
349  * userspace, it is a kernel-private implementation detail that might
350  * need to be changed in the future, when the requirements change.
351  *
352  * /dev/kmsg exports the structured data in the following line format:
353  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
354  *
355  * Users of the export format should ignore possible additional values
356  * separated by ',', and find the message after the ';' character.
357  *
358  * The optional key/value pairs are attached as continuation lines starting
359  * with a space character and terminated by a newline. All possible
360  * non-prinatable characters are escaped in the "\xff" notation.
361  */
362 
363 enum log_flags {
364 	LOG_NEWLINE	= 2,	/* text ended with a newline */
365 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
366 };
367 
368 struct printk_log {
369 	u64 ts_nsec;		/* timestamp in nanoseconds */
370 	u16 len;		/* length of entire record */
371 	u16 text_len;		/* length of text buffer */
372 	u16 dict_len;		/* length of dictionary buffer */
373 	u8 facility;		/* syslog facility */
374 	u8 flags:5;		/* internal record flags */
375 	u8 level:3;		/* syslog level */
376 #ifdef CONFIG_PRINTK_CALLER
377 	u32 caller_id;            /* thread id or processor id */
378 #endif
379 }
380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
381 __packed __aligned(4)
382 #endif
383 ;
384 
385 /*
386  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
387  * within the scheduler's rq lock. It must be released before calling
388  * console_unlock() or anything else that might wake up a process.
389  */
390 DEFINE_RAW_SPINLOCK(logbuf_lock);
391 
392 /*
393  * Helper macros to lock/unlock logbuf_lock and switch between
394  * printk-safe/unsafe modes.
395  */
396 #define logbuf_lock_irq()				\
397 	do {						\
398 		printk_safe_enter_irq();		\
399 		raw_spin_lock(&logbuf_lock);		\
400 	} while (0)
401 
402 #define logbuf_unlock_irq()				\
403 	do {						\
404 		raw_spin_unlock(&logbuf_lock);		\
405 		printk_safe_exit_irq();			\
406 	} while (0)
407 
408 #define logbuf_lock_irqsave(flags)			\
409 	do {						\
410 		printk_safe_enter_irqsave(flags);	\
411 		raw_spin_lock(&logbuf_lock);		\
412 	} while (0)
413 
414 #define logbuf_unlock_irqrestore(flags)		\
415 	do {						\
416 		raw_spin_unlock(&logbuf_lock);		\
417 		printk_safe_exit_irqrestore(flags);	\
418 	} while (0)
419 
420 #ifdef CONFIG_PRINTK
421 DECLARE_WAIT_QUEUE_HEAD(log_wait);
422 /* the next printk record to read by syslog(READ) or /proc/kmsg */
423 static u64 syslog_seq;
424 static u32 syslog_idx;
425 static size_t syslog_partial;
426 static bool syslog_time;
427 
428 /* index and sequence number of the first record stored in the buffer */
429 static u64 log_first_seq;
430 static u32 log_first_idx;
431 
432 /* index and sequence number of the next record to store in the buffer */
433 static u64 log_next_seq;
434 static u32 log_next_idx;
435 
436 /* the next printk record to write to the console */
437 static u64 console_seq;
438 static u32 console_idx;
439 static u64 exclusive_console_stop_seq;
440 
441 /* the next printk record to read after the last 'clear' command */
442 static u64 clear_seq;
443 static u32 clear_idx;
444 
445 #ifdef CONFIG_PRINTK_CALLER
446 #define PREFIX_MAX		48
447 #else
448 #define PREFIX_MAX		32
449 #endif
450 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
451 
452 #define LOG_LEVEL(v)		((v) & 0x07)
453 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
454 
455 /* record buffer */
456 #define LOG_ALIGN __alignof__(struct printk_log)
457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
458 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
460 static char *log_buf = __log_buf;
461 static u32 log_buf_len = __LOG_BUF_LEN;
462 
463 /*
464  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
465  * per_cpu_areas are initialised. This variable is set to true when
466  * it's safe to access per-CPU data.
467  */
468 static bool __printk_percpu_data_ready __read_mostly;
469 
470 bool printk_percpu_data_ready(void)
471 {
472 	return __printk_percpu_data_ready;
473 }
474 
475 /* Return log buffer address */
476 char *log_buf_addr_get(void)
477 {
478 	return log_buf;
479 }
480 
481 /* Return log buffer size */
482 u32 log_buf_len_get(void)
483 {
484 	return log_buf_len;
485 }
486 
487 /* human readable text of the record */
488 static char *log_text(const struct printk_log *msg)
489 {
490 	return (char *)msg + sizeof(struct printk_log);
491 }
492 
493 /* optional key/value pair dictionary attached to the record */
494 static char *log_dict(const struct printk_log *msg)
495 {
496 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
497 }
498 
499 /* get record by index; idx must point to valid msg */
500 static struct printk_log *log_from_idx(u32 idx)
501 {
502 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
503 
504 	/*
505 	 * A length == 0 record is the end of buffer marker. Wrap around and
506 	 * read the message at the start of the buffer.
507 	 */
508 	if (!msg->len)
509 		return (struct printk_log *)log_buf;
510 	return msg;
511 }
512 
513 /* get next record; idx must point to valid msg */
514 static u32 log_next(u32 idx)
515 {
516 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
517 
518 	/* length == 0 indicates the end of the buffer; wrap */
519 	/*
520 	 * A length == 0 record is the end of buffer marker. Wrap around and
521 	 * read the message at the start of the buffer as *this* one, and
522 	 * return the one after that.
523 	 */
524 	if (!msg->len) {
525 		msg = (struct printk_log *)log_buf;
526 		return msg->len;
527 	}
528 	return idx + msg->len;
529 }
530 
531 /*
532  * Check whether there is enough free space for the given message.
533  *
534  * The same values of first_idx and next_idx mean that the buffer
535  * is either empty or full.
536  *
537  * If the buffer is empty, we must respect the position of the indexes.
538  * They cannot be reset to the beginning of the buffer.
539  */
540 static int logbuf_has_space(u32 msg_size, bool empty)
541 {
542 	u32 free;
543 
544 	if (log_next_idx > log_first_idx || empty)
545 		free = max(log_buf_len - log_next_idx, log_first_idx);
546 	else
547 		free = log_first_idx - log_next_idx;
548 
549 	/*
550 	 * We need space also for an empty header that signalizes wrapping
551 	 * of the buffer.
552 	 */
553 	return free >= msg_size + sizeof(struct printk_log);
554 }
555 
556 static int log_make_free_space(u32 msg_size)
557 {
558 	while (log_first_seq < log_next_seq &&
559 	       !logbuf_has_space(msg_size, false)) {
560 		/* drop old messages until we have enough contiguous space */
561 		log_first_idx = log_next(log_first_idx);
562 		log_first_seq++;
563 	}
564 
565 	if (clear_seq < log_first_seq) {
566 		clear_seq = log_first_seq;
567 		clear_idx = log_first_idx;
568 	}
569 
570 	/* sequence numbers are equal, so the log buffer is empty */
571 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
572 		return 0;
573 
574 	return -ENOMEM;
575 }
576 
577 /* compute the message size including the padding bytes */
578 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
579 {
580 	u32 size;
581 
582 	size = sizeof(struct printk_log) + text_len + dict_len;
583 	*pad_len = (-size) & (LOG_ALIGN - 1);
584 	size += *pad_len;
585 
586 	return size;
587 }
588 
589 /*
590  * Define how much of the log buffer we could take at maximum. The value
591  * must be greater than two. Note that only half of the buffer is available
592  * when the index points to the middle.
593  */
594 #define MAX_LOG_TAKE_PART 4
595 static const char trunc_msg[] = "<truncated>";
596 
597 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
598 			u16 *dict_len, u32 *pad_len)
599 {
600 	/*
601 	 * The message should not take the whole buffer. Otherwise, it might
602 	 * get removed too soon.
603 	 */
604 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
605 	if (*text_len > max_text_len)
606 		*text_len = max_text_len;
607 	/* enable the warning message */
608 	*trunc_msg_len = strlen(trunc_msg);
609 	/* disable the "dict" completely */
610 	*dict_len = 0;
611 	/* compute the size again, count also the warning message */
612 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
613 }
614 
615 /* insert record into the buffer, discard old ones, update heads */
616 static int log_store(u32 caller_id, int facility, int level,
617 		     enum log_flags flags, u64 ts_nsec,
618 		     const char *dict, u16 dict_len,
619 		     const char *text, u16 text_len)
620 {
621 	struct printk_log *msg;
622 	u32 size, pad_len;
623 	u16 trunc_msg_len = 0;
624 
625 	/* number of '\0' padding bytes to next message */
626 	size = msg_used_size(text_len, dict_len, &pad_len);
627 
628 	if (log_make_free_space(size)) {
629 		/* truncate the message if it is too long for empty buffer */
630 		size = truncate_msg(&text_len, &trunc_msg_len,
631 				    &dict_len, &pad_len);
632 		/* survive when the log buffer is too small for trunc_msg */
633 		if (log_make_free_space(size))
634 			return 0;
635 	}
636 
637 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
638 		/*
639 		 * This message + an additional empty header does not fit
640 		 * at the end of the buffer. Add an empty header with len == 0
641 		 * to signify a wrap around.
642 		 */
643 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
644 		log_next_idx = 0;
645 	}
646 
647 	/* fill message */
648 	msg = (struct printk_log *)(log_buf + log_next_idx);
649 	memcpy(log_text(msg), text, text_len);
650 	msg->text_len = text_len;
651 	if (trunc_msg_len) {
652 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
653 		msg->text_len += trunc_msg_len;
654 	}
655 	memcpy(log_dict(msg), dict, dict_len);
656 	msg->dict_len = dict_len;
657 	msg->facility = facility;
658 	msg->level = level & 7;
659 	msg->flags = flags & 0x1f;
660 	if (ts_nsec > 0)
661 		msg->ts_nsec = ts_nsec;
662 	else
663 		msg->ts_nsec = local_clock();
664 #ifdef CONFIG_PRINTK_CALLER
665 	msg->caller_id = caller_id;
666 #endif
667 	memset(log_dict(msg) + dict_len, 0, pad_len);
668 	msg->len = size;
669 
670 	/* insert message */
671 	log_next_idx += msg->len;
672 	log_next_seq++;
673 
674 	return msg->text_len;
675 }
676 
677 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
678 
679 static int syslog_action_restricted(int type)
680 {
681 	if (dmesg_restrict)
682 		return 1;
683 	/*
684 	 * Unless restricted, we allow "read all" and "get buffer size"
685 	 * for everybody.
686 	 */
687 	return type != SYSLOG_ACTION_READ_ALL &&
688 	       type != SYSLOG_ACTION_SIZE_BUFFER;
689 }
690 
691 static int check_syslog_permissions(int type, int source)
692 {
693 	/*
694 	 * If this is from /proc/kmsg and we've already opened it, then we've
695 	 * already done the capabilities checks at open time.
696 	 */
697 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
698 		goto ok;
699 
700 	if (syslog_action_restricted(type)) {
701 		if (capable(CAP_SYSLOG))
702 			goto ok;
703 		/*
704 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
705 		 * a warning.
706 		 */
707 		if (capable(CAP_SYS_ADMIN)) {
708 			pr_warn_once("%s (%d): Attempt to access syslog with "
709 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
710 				     "(deprecated).\n",
711 				 current->comm, task_pid_nr(current));
712 			goto ok;
713 		}
714 		return -EPERM;
715 	}
716 ok:
717 	return security_syslog(type);
718 }
719 
720 static void append_char(char **pp, char *e, char c)
721 {
722 	if (*pp < e)
723 		*(*pp)++ = c;
724 }
725 
726 static ssize_t msg_print_ext_header(char *buf, size_t size,
727 				    struct printk_log *msg, u64 seq)
728 {
729 	u64 ts_usec = msg->ts_nsec;
730 	char caller[20];
731 #ifdef CONFIG_PRINTK_CALLER
732 	u32 id = msg->caller_id;
733 
734 	snprintf(caller, sizeof(caller), ",caller=%c%u",
735 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
736 #else
737 	caller[0] = '\0';
738 #endif
739 
740 	do_div(ts_usec, 1000);
741 
742 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
743 			 (msg->facility << 3) | msg->level, seq, ts_usec,
744 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
745 }
746 
747 static ssize_t msg_print_ext_body(char *buf, size_t size,
748 				  char *dict, size_t dict_len,
749 				  char *text, size_t text_len)
750 {
751 	char *p = buf, *e = buf + size;
752 	size_t i;
753 
754 	/* escape non-printable characters */
755 	for (i = 0; i < text_len; i++) {
756 		unsigned char c = text[i];
757 
758 		if (c < ' ' || c >= 127 || c == '\\')
759 			p += scnprintf(p, e - p, "\\x%02x", c);
760 		else
761 			append_char(&p, e, c);
762 	}
763 	append_char(&p, e, '\n');
764 
765 	if (dict_len) {
766 		bool line = true;
767 
768 		for (i = 0; i < dict_len; i++) {
769 			unsigned char c = dict[i];
770 
771 			if (line) {
772 				append_char(&p, e, ' ');
773 				line = false;
774 			}
775 
776 			if (c == '\0') {
777 				append_char(&p, e, '\n');
778 				line = true;
779 				continue;
780 			}
781 
782 			if (c < ' ' || c >= 127 || c == '\\') {
783 				p += scnprintf(p, e - p, "\\x%02x", c);
784 				continue;
785 			}
786 
787 			append_char(&p, e, c);
788 		}
789 		append_char(&p, e, '\n');
790 	}
791 
792 	return p - buf;
793 }
794 
795 /* /dev/kmsg - userspace message inject/listen interface */
796 struct devkmsg_user {
797 	u64 seq;
798 	u32 idx;
799 	struct ratelimit_state rs;
800 	struct mutex lock;
801 	char buf[CONSOLE_EXT_LOG_MAX];
802 };
803 
804 static __printf(3, 4) __cold
805 int devkmsg_emit(int facility, int level, const char *fmt, ...)
806 {
807 	va_list args;
808 	int r;
809 
810 	va_start(args, fmt);
811 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
812 	va_end(args);
813 
814 	return r;
815 }
816 
817 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
818 {
819 	char *buf, *line;
820 	int level = default_message_loglevel;
821 	int facility = 1;	/* LOG_USER */
822 	struct file *file = iocb->ki_filp;
823 	struct devkmsg_user *user = file->private_data;
824 	size_t len = iov_iter_count(from);
825 	ssize_t ret = len;
826 
827 	if (!user || len > LOG_LINE_MAX)
828 		return -EINVAL;
829 
830 	/* Ignore when user logging is disabled. */
831 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
832 		return len;
833 
834 	/* Ratelimit when not explicitly enabled. */
835 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
836 		if (!___ratelimit(&user->rs, current->comm))
837 			return ret;
838 	}
839 
840 	buf = kmalloc(len+1, GFP_KERNEL);
841 	if (buf == NULL)
842 		return -ENOMEM;
843 
844 	buf[len] = '\0';
845 	if (!copy_from_iter_full(buf, len, from)) {
846 		kfree(buf);
847 		return -EFAULT;
848 	}
849 
850 	/*
851 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
852 	 * the decimal value represents 32bit, the lower 3 bit are the log
853 	 * level, the rest are the log facility.
854 	 *
855 	 * If no prefix or no userspace facility is specified, we
856 	 * enforce LOG_USER, to be able to reliably distinguish
857 	 * kernel-generated messages from userspace-injected ones.
858 	 */
859 	line = buf;
860 	if (line[0] == '<') {
861 		char *endp = NULL;
862 		unsigned int u;
863 
864 		u = simple_strtoul(line + 1, &endp, 10);
865 		if (endp && endp[0] == '>') {
866 			level = LOG_LEVEL(u);
867 			if (LOG_FACILITY(u) != 0)
868 				facility = LOG_FACILITY(u);
869 			endp++;
870 			len -= endp - line;
871 			line = endp;
872 		}
873 	}
874 
875 	devkmsg_emit(facility, level, "%s", line);
876 	kfree(buf);
877 	return ret;
878 }
879 
880 static ssize_t devkmsg_read(struct file *file, char __user *buf,
881 			    size_t count, loff_t *ppos)
882 {
883 	struct devkmsg_user *user = file->private_data;
884 	struct printk_log *msg;
885 	size_t len;
886 	ssize_t ret;
887 
888 	if (!user)
889 		return -EBADF;
890 
891 	ret = mutex_lock_interruptible(&user->lock);
892 	if (ret)
893 		return ret;
894 
895 	logbuf_lock_irq();
896 	while (user->seq == log_next_seq) {
897 		if (file->f_flags & O_NONBLOCK) {
898 			ret = -EAGAIN;
899 			logbuf_unlock_irq();
900 			goto out;
901 		}
902 
903 		logbuf_unlock_irq();
904 		ret = wait_event_interruptible(log_wait,
905 					       user->seq != log_next_seq);
906 		if (ret)
907 			goto out;
908 		logbuf_lock_irq();
909 	}
910 
911 	if (user->seq < log_first_seq) {
912 		/* our last seen message is gone, return error and reset */
913 		user->idx = log_first_idx;
914 		user->seq = log_first_seq;
915 		ret = -EPIPE;
916 		logbuf_unlock_irq();
917 		goto out;
918 	}
919 
920 	msg = log_from_idx(user->idx);
921 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
922 				   msg, user->seq);
923 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
924 				  log_dict(msg), msg->dict_len,
925 				  log_text(msg), msg->text_len);
926 
927 	user->idx = log_next(user->idx);
928 	user->seq++;
929 	logbuf_unlock_irq();
930 
931 	if (len > count) {
932 		ret = -EINVAL;
933 		goto out;
934 	}
935 
936 	if (copy_to_user(buf, user->buf, len)) {
937 		ret = -EFAULT;
938 		goto out;
939 	}
940 	ret = len;
941 out:
942 	mutex_unlock(&user->lock);
943 	return ret;
944 }
945 
946 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
947 {
948 	struct devkmsg_user *user = file->private_data;
949 	loff_t ret = 0;
950 
951 	if (!user)
952 		return -EBADF;
953 	if (offset)
954 		return -ESPIPE;
955 
956 	logbuf_lock_irq();
957 	switch (whence) {
958 	case SEEK_SET:
959 		/* the first record */
960 		user->idx = log_first_idx;
961 		user->seq = log_first_seq;
962 		break;
963 	case SEEK_DATA:
964 		/*
965 		 * The first record after the last SYSLOG_ACTION_CLEAR,
966 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
967 		 * changes no global state, and does not clear anything.
968 		 */
969 		user->idx = clear_idx;
970 		user->seq = clear_seq;
971 		break;
972 	case SEEK_END:
973 		/* after the last record */
974 		user->idx = log_next_idx;
975 		user->seq = log_next_seq;
976 		break;
977 	default:
978 		ret = -EINVAL;
979 	}
980 	logbuf_unlock_irq();
981 	return ret;
982 }
983 
984 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
985 {
986 	struct devkmsg_user *user = file->private_data;
987 	__poll_t ret = 0;
988 
989 	if (!user)
990 		return EPOLLERR|EPOLLNVAL;
991 
992 	poll_wait(file, &log_wait, wait);
993 
994 	logbuf_lock_irq();
995 	if (user->seq < log_next_seq) {
996 		/* return error when data has vanished underneath us */
997 		if (user->seq < log_first_seq)
998 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
999 		else
1000 			ret = EPOLLIN|EPOLLRDNORM;
1001 	}
1002 	logbuf_unlock_irq();
1003 
1004 	return ret;
1005 }
1006 
1007 static int devkmsg_open(struct inode *inode, struct file *file)
1008 {
1009 	struct devkmsg_user *user;
1010 	int err;
1011 
1012 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1013 		return -EPERM;
1014 
1015 	/* write-only does not need any file context */
1016 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1017 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1018 					       SYSLOG_FROM_READER);
1019 		if (err)
1020 			return err;
1021 	}
1022 
1023 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1024 	if (!user)
1025 		return -ENOMEM;
1026 
1027 	ratelimit_default_init(&user->rs);
1028 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1029 
1030 	mutex_init(&user->lock);
1031 
1032 	logbuf_lock_irq();
1033 	user->idx = log_first_idx;
1034 	user->seq = log_first_seq;
1035 	logbuf_unlock_irq();
1036 
1037 	file->private_data = user;
1038 	return 0;
1039 }
1040 
1041 static int devkmsg_release(struct inode *inode, struct file *file)
1042 {
1043 	struct devkmsg_user *user = file->private_data;
1044 
1045 	if (!user)
1046 		return 0;
1047 
1048 	ratelimit_state_exit(&user->rs);
1049 
1050 	mutex_destroy(&user->lock);
1051 	kfree(user);
1052 	return 0;
1053 }
1054 
1055 const struct file_operations kmsg_fops = {
1056 	.open = devkmsg_open,
1057 	.read = devkmsg_read,
1058 	.write_iter = devkmsg_write,
1059 	.llseek = devkmsg_llseek,
1060 	.poll = devkmsg_poll,
1061 	.release = devkmsg_release,
1062 };
1063 
1064 #ifdef CONFIG_CRASH_CORE
1065 /*
1066  * This appends the listed symbols to /proc/vmcore
1067  *
1068  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1069  * obtain access to symbols that are otherwise very difficult to locate.  These
1070  * symbols are specifically used so that utilities can access and extract the
1071  * dmesg log from a vmcore file after a crash.
1072  */
1073 void log_buf_vmcoreinfo_setup(void)
1074 {
1075 	VMCOREINFO_SYMBOL(log_buf);
1076 	VMCOREINFO_SYMBOL(log_buf_len);
1077 	VMCOREINFO_SYMBOL(log_first_idx);
1078 	VMCOREINFO_SYMBOL(clear_idx);
1079 	VMCOREINFO_SYMBOL(log_next_idx);
1080 	/*
1081 	 * Export struct printk_log size and field offsets. User space tools can
1082 	 * parse it and detect any changes to structure down the line.
1083 	 */
1084 	VMCOREINFO_STRUCT_SIZE(printk_log);
1085 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1086 	VMCOREINFO_OFFSET(printk_log, len);
1087 	VMCOREINFO_OFFSET(printk_log, text_len);
1088 	VMCOREINFO_OFFSET(printk_log, dict_len);
1089 #ifdef CONFIG_PRINTK_CALLER
1090 	VMCOREINFO_OFFSET(printk_log, caller_id);
1091 #endif
1092 }
1093 #endif
1094 
1095 /* requested log_buf_len from kernel cmdline */
1096 static unsigned long __initdata new_log_buf_len;
1097 
1098 /* we practice scaling the ring buffer by powers of 2 */
1099 static void __init log_buf_len_update(u64 size)
1100 {
1101 	if (size > (u64)LOG_BUF_LEN_MAX) {
1102 		size = (u64)LOG_BUF_LEN_MAX;
1103 		pr_err("log_buf over 2G is not supported.\n");
1104 	}
1105 
1106 	if (size)
1107 		size = roundup_pow_of_two(size);
1108 	if (size > log_buf_len)
1109 		new_log_buf_len = (unsigned long)size;
1110 }
1111 
1112 /* save requested log_buf_len since it's too early to process it */
1113 static int __init log_buf_len_setup(char *str)
1114 {
1115 	u64 size;
1116 
1117 	if (!str)
1118 		return -EINVAL;
1119 
1120 	size = memparse(str, &str);
1121 
1122 	log_buf_len_update(size);
1123 
1124 	return 0;
1125 }
1126 early_param("log_buf_len", log_buf_len_setup);
1127 
1128 #ifdef CONFIG_SMP
1129 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1130 
1131 static void __init log_buf_add_cpu(void)
1132 {
1133 	unsigned int cpu_extra;
1134 
1135 	/*
1136 	 * archs should set up cpu_possible_bits properly with
1137 	 * set_cpu_possible() after setup_arch() but just in
1138 	 * case lets ensure this is valid.
1139 	 */
1140 	if (num_possible_cpus() == 1)
1141 		return;
1142 
1143 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1144 
1145 	/* by default this will only continue through for large > 64 CPUs */
1146 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1147 		return;
1148 
1149 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1150 		__LOG_CPU_MAX_BUF_LEN);
1151 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1152 		cpu_extra);
1153 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1154 
1155 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1156 }
1157 #else /* !CONFIG_SMP */
1158 static inline void log_buf_add_cpu(void) {}
1159 #endif /* CONFIG_SMP */
1160 
1161 static void __init set_percpu_data_ready(void)
1162 {
1163 	printk_safe_init();
1164 	/* Make sure we set this flag only after printk_safe() init is done */
1165 	barrier();
1166 	__printk_percpu_data_ready = true;
1167 }
1168 
1169 void __init setup_log_buf(int early)
1170 {
1171 	unsigned long flags;
1172 	char *new_log_buf;
1173 	unsigned int free;
1174 
1175 	/*
1176 	 * Some archs call setup_log_buf() multiple times - first is very
1177 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1178 	 * are initialised.
1179 	 */
1180 	if (!early)
1181 		set_percpu_data_ready();
1182 
1183 	if (log_buf != __log_buf)
1184 		return;
1185 
1186 	if (!early && !new_log_buf_len)
1187 		log_buf_add_cpu();
1188 
1189 	if (!new_log_buf_len)
1190 		return;
1191 
1192 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1193 	if (unlikely(!new_log_buf)) {
1194 		pr_err("log_buf_len: %lu bytes not available\n",
1195 			new_log_buf_len);
1196 		return;
1197 	}
1198 
1199 	logbuf_lock_irqsave(flags);
1200 	log_buf_len = new_log_buf_len;
1201 	log_buf = new_log_buf;
1202 	new_log_buf_len = 0;
1203 	free = __LOG_BUF_LEN - log_next_idx;
1204 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1205 	logbuf_unlock_irqrestore(flags);
1206 
1207 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1208 	pr_info("early log buf free: %u(%u%%)\n",
1209 		free, (free * 100) / __LOG_BUF_LEN);
1210 }
1211 
1212 static bool __read_mostly ignore_loglevel;
1213 
1214 static int __init ignore_loglevel_setup(char *str)
1215 {
1216 	ignore_loglevel = true;
1217 	pr_info("debug: ignoring loglevel setting.\n");
1218 
1219 	return 0;
1220 }
1221 
1222 early_param("ignore_loglevel", ignore_loglevel_setup);
1223 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1224 MODULE_PARM_DESC(ignore_loglevel,
1225 		 "ignore loglevel setting (prints all kernel messages to the console)");
1226 
1227 static bool suppress_message_printing(int level)
1228 {
1229 	return (level >= console_loglevel && !ignore_loglevel);
1230 }
1231 
1232 #ifdef CONFIG_BOOT_PRINTK_DELAY
1233 
1234 static int boot_delay; /* msecs delay after each printk during bootup */
1235 static unsigned long long loops_per_msec;	/* based on boot_delay */
1236 
1237 static int __init boot_delay_setup(char *str)
1238 {
1239 	unsigned long lpj;
1240 
1241 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1242 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1243 
1244 	get_option(&str, &boot_delay);
1245 	if (boot_delay > 10 * 1000)
1246 		boot_delay = 0;
1247 
1248 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1249 		"HZ: %d, loops_per_msec: %llu\n",
1250 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1251 	return 0;
1252 }
1253 early_param("boot_delay", boot_delay_setup);
1254 
1255 static void boot_delay_msec(int level)
1256 {
1257 	unsigned long long k;
1258 	unsigned long timeout;
1259 
1260 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1261 		|| suppress_message_printing(level)) {
1262 		return;
1263 	}
1264 
1265 	k = (unsigned long long)loops_per_msec * boot_delay;
1266 
1267 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1268 	while (k) {
1269 		k--;
1270 		cpu_relax();
1271 		/*
1272 		 * use (volatile) jiffies to prevent
1273 		 * compiler reduction; loop termination via jiffies
1274 		 * is secondary and may or may not happen.
1275 		 */
1276 		if (time_after(jiffies, timeout))
1277 			break;
1278 		touch_nmi_watchdog();
1279 	}
1280 }
1281 #else
1282 static inline void boot_delay_msec(int level)
1283 {
1284 }
1285 #endif
1286 
1287 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1288 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1289 
1290 static size_t print_syslog(unsigned int level, char *buf)
1291 {
1292 	return sprintf(buf, "<%u>", level);
1293 }
1294 
1295 static size_t print_time(u64 ts, char *buf)
1296 {
1297 	unsigned long rem_nsec = do_div(ts, 1000000000);
1298 
1299 	return sprintf(buf, "[%5lu.%06lu]",
1300 		       (unsigned long)ts, rem_nsec / 1000);
1301 }
1302 
1303 #ifdef CONFIG_PRINTK_CALLER
1304 static size_t print_caller(u32 id, char *buf)
1305 {
1306 	char caller[12];
1307 
1308 	snprintf(caller, sizeof(caller), "%c%u",
1309 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1310 	return sprintf(buf, "[%6s]", caller);
1311 }
1312 #else
1313 #define print_caller(id, buf) 0
1314 #endif
1315 
1316 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1317 			   bool time, char *buf)
1318 {
1319 	size_t len = 0;
1320 
1321 	if (syslog)
1322 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1323 
1324 	if (time)
1325 		len += print_time(msg->ts_nsec, buf + len);
1326 
1327 	len += print_caller(msg->caller_id, buf + len);
1328 
1329 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1330 		buf[len++] = ' ';
1331 		buf[len] = '\0';
1332 	}
1333 
1334 	return len;
1335 }
1336 
1337 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1338 			     bool time, char *buf, size_t size)
1339 {
1340 	const char *text = log_text(msg);
1341 	size_t text_size = msg->text_len;
1342 	size_t len = 0;
1343 	char prefix[PREFIX_MAX];
1344 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1345 
1346 	do {
1347 		const char *next = memchr(text, '\n', text_size);
1348 		size_t text_len;
1349 
1350 		if (next) {
1351 			text_len = next - text;
1352 			next++;
1353 			text_size -= next - text;
1354 		} else {
1355 			text_len = text_size;
1356 		}
1357 
1358 		if (buf) {
1359 			if (prefix_len + text_len + 1 >= size - len)
1360 				break;
1361 
1362 			memcpy(buf + len, prefix, prefix_len);
1363 			len += prefix_len;
1364 			memcpy(buf + len, text, text_len);
1365 			len += text_len;
1366 			buf[len++] = '\n';
1367 		} else {
1368 			/* SYSLOG_ACTION_* buffer size only calculation */
1369 			len += prefix_len + text_len + 1;
1370 		}
1371 
1372 		text = next;
1373 	} while (text);
1374 
1375 	return len;
1376 }
1377 
1378 static int syslog_print(char __user *buf, int size)
1379 {
1380 	char *text;
1381 	struct printk_log *msg;
1382 	int len = 0;
1383 
1384 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1385 	if (!text)
1386 		return -ENOMEM;
1387 
1388 	while (size > 0) {
1389 		size_t n;
1390 		size_t skip;
1391 
1392 		logbuf_lock_irq();
1393 		if (syslog_seq < log_first_seq) {
1394 			/* messages are gone, move to first one */
1395 			syslog_seq = log_first_seq;
1396 			syslog_idx = log_first_idx;
1397 			syslog_partial = 0;
1398 		}
1399 		if (syslog_seq == log_next_seq) {
1400 			logbuf_unlock_irq();
1401 			break;
1402 		}
1403 
1404 		/*
1405 		 * To keep reading/counting partial line consistent,
1406 		 * use printk_time value as of the beginning of a line.
1407 		 */
1408 		if (!syslog_partial)
1409 			syslog_time = printk_time;
1410 
1411 		skip = syslog_partial;
1412 		msg = log_from_idx(syslog_idx);
1413 		n = msg_print_text(msg, true, syslog_time, text,
1414 				   LOG_LINE_MAX + PREFIX_MAX);
1415 		if (n - syslog_partial <= size) {
1416 			/* message fits into buffer, move forward */
1417 			syslog_idx = log_next(syslog_idx);
1418 			syslog_seq++;
1419 			n -= syslog_partial;
1420 			syslog_partial = 0;
1421 		} else if (!len){
1422 			/* partial read(), remember position */
1423 			n = size;
1424 			syslog_partial += n;
1425 		} else
1426 			n = 0;
1427 		logbuf_unlock_irq();
1428 
1429 		if (!n)
1430 			break;
1431 
1432 		if (copy_to_user(buf, text + skip, n)) {
1433 			if (!len)
1434 				len = -EFAULT;
1435 			break;
1436 		}
1437 
1438 		len += n;
1439 		size -= n;
1440 		buf += n;
1441 	}
1442 
1443 	kfree(text);
1444 	return len;
1445 }
1446 
1447 static int syslog_print_all(char __user *buf, int size, bool clear)
1448 {
1449 	char *text;
1450 	int len = 0;
1451 	u64 next_seq;
1452 	u64 seq;
1453 	u32 idx;
1454 	bool time;
1455 
1456 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1457 	if (!text)
1458 		return -ENOMEM;
1459 
1460 	time = printk_time;
1461 	logbuf_lock_irq();
1462 	/*
1463 	 * Find first record that fits, including all following records,
1464 	 * into the user-provided buffer for this dump.
1465 	 */
1466 	seq = clear_seq;
1467 	idx = clear_idx;
1468 	while (seq < log_next_seq) {
1469 		struct printk_log *msg = log_from_idx(idx);
1470 
1471 		len += msg_print_text(msg, true, time, NULL, 0);
1472 		idx = log_next(idx);
1473 		seq++;
1474 	}
1475 
1476 	/* move first record forward until length fits into the buffer */
1477 	seq = clear_seq;
1478 	idx = clear_idx;
1479 	while (len > size && seq < log_next_seq) {
1480 		struct printk_log *msg = log_from_idx(idx);
1481 
1482 		len -= msg_print_text(msg, true, time, NULL, 0);
1483 		idx = log_next(idx);
1484 		seq++;
1485 	}
1486 
1487 	/* last message fitting into this dump */
1488 	next_seq = log_next_seq;
1489 
1490 	len = 0;
1491 	while (len >= 0 && seq < next_seq) {
1492 		struct printk_log *msg = log_from_idx(idx);
1493 		int textlen = msg_print_text(msg, true, time, text,
1494 					     LOG_LINE_MAX + PREFIX_MAX);
1495 
1496 		idx = log_next(idx);
1497 		seq++;
1498 
1499 		logbuf_unlock_irq();
1500 		if (copy_to_user(buf + len, text, textlen))
1501 			len = -EFAULT;
1502 		else
1503 			len += textlen;
1504 		logbuf_lock_irq();
1505 
1506 		if (seq < log_first_seq) {
1507 			/* messages are gone, move to next one */
1508 			seq = log_first_seq;
1509 			idx = log_first_idx;
1510 		}
1511 	}
1512 
1513 	if (clear) {
1514 		clear_seq = log_next_seq;
1515 		clear_idx = log_next_idx;
1516 	}
1517 	logbuf_unlock_irq();
1518 
1519 	kfree(text);
1520 	return len;
1521 }
1522 
1523 static void syslog_clear(void)
1524 {
1525 	logbuf_lock_irq();
1526 	clear_seq = log_next_seq;
1527 	clear_idx = log_next_idx;
1528 	logbuf_unlock_irq();
1529 }
1530 
1531 int do_syslog(int type, char __user *buf, int len, int source)
1532 {
1533 	bool clear = false;
1534 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1535 	int error;
1536 
1537 	error = check_syslog_permissions(type, source);
1538 	if (error)
1539 		return error;
1540 
1541 	switch (type) {
1542 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1543 		break;
1544 	case SYSLOG_ACTION_OPEN:	/* Open log */
1545 		break;
1546 	case SYSLOG_ACTION_READ:	/* Read from log */
1547 		if (!buf || len < 0)
1548 			return -EINVAL;
1549 		if (!len)
1550 			return 0;
1551 		if (!access_ok(buf, len))
1552 			return -EFAULT;
1553 		error = wait_event_interruptible(log_wait,
1554 						 syslog_seq != log_next_seq);
1555 		if (error)
1556 			return error;
1557 		error = syslog_print(buf, len);
1558 		break;
1559 	/* Read/clear last kernel messages */
1560 	case SYSLOG_ACTION_READ_CLEAR:
1561 		clear = true;
1562 		/* FALL THRU */
1563 	/* Read last kernel messages */
1564 	case SYSLOG_ACTION_READ_ALL:
1565 		if (!buf || len < 0)
1566 			return -EINVAL;
1567 		if (!len)
1568 			return 0;
1569 		if (!access_ok(buf, len))
1570 			return -EFAULT;
1571 		error = syslog_print_all(buf, len, clear);
1572 		break;
1573 	/* Clear ring buffer */
1574 	case SYSLOG_ACTION_CLEAR:
1575 		syslog_clear();
1576 		break;
1577 	/* Disable logging to console */
1578 	case SYSLOG_ACTION_CONSOLE_OFF:
1579 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1580 			saved_console_loglevel = console_loglevel;
1581 		console_loglevel = minimum_console_loglevel;
1582 		break;
1583 	/* Enable logging to console */
1584 	case SYSLOG_ACTION_CONSOLE_ON:
1585 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1586 			console_loglevel = saved_console_loglevel;
1587 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1588 		}
1589 		break;
1590 	/* Set level of messages printed to console */
1591 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1592 		if (len < 1 || len > 8)
1593 			return -EINVAL;
1594 		if (len < minimum_console_loglevel)
1595 			len = minimum_console_loglevel;
1596 		console_loglevel = len;
1597 		/* Implicitly re-enable logging to console */
1598 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1599 		break;
1600 	/* Number of chars in the log buffer */
1601 	case SYSLOG_ACTION_SIZE_UNREAD:
1602 		logbuf_lock_irq();
1603 		if (syslog_seq < log_first_seq) {
1604 			/* messages are gone, move to first one */
1605 			syslog_seq = log_first_seq;
1606 			syslog_idx = log_first_idx;
1607 			syslog_partial = 0;
1608 		}
1609 		if (source == SYSLOG_FROM_PROC) {
1610 			/*
1611 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1612 			 * for pending data, not the size; return the count of
1613 			 * records, not the length.
1614 			 */
1615 			error = log_next_seq - syslog_seq;
1616 		} else {
1617 			u64 seq = syslog_seq;
1618 			u32 idx = syslog_idx;
1619 			bool time = syslog_partial ? syslog_time : printk_time;
1620 
1621 			while (seq < log_next_seq) {
1622 				struct printk_log *msg = log_from_idx(idx);
1623 
1624 				error += msg_print_text(msg, true, time, NULL,
1625 							0);
1626 				time = printk_time;
1627 				idx = log_next(idx);
1628 				seq++;
1629 			}
1630 			error -= syslog_partial;
1631 		}
1632 		logbuf_unlock_irq();
1633 		break;
1634 	/* Size of the log buffer */
1635 	case SYSLOG_ACTION_SIZE_BUFFER:
1636 		error = log_buf_len;
1637 		break;
1638 	default:
1639 		error = -EINVAL;
1640 		break;
1641 	}
1642 
1643 	return error;
1644 }
1645 
1646 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1647 {
1648 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1649 }
1650 
1651 /*
1652  * Special console_lock variants that help to reduce the risk of soft-lockups.
1653  * They allow to pass console_lock to another printk() call using a busy wait.
1654  */
1655 
1656 #ifdef CONFIG_LOCKDEP
1657 static struct lockdep_map console_owner_dep_map = {
1658 	.name = "console_owner"
1659 };
1660 #endif
1661 
1662 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1663 static struct task_struct *console_owner;
1664 static bool console_waiter;
1665 
1666 /**
1667  * console_lock_spinning_enable - mark beginning of code where another
1668  *	thread might safely busy wait
1669  *
1670  * This basically converts console_lock into a spinlock. This marks
1671  * the section where the console_lock owner can not sleep, because
1672  * there may be a waiter spinning (like a spinlock). Also it must be
1673  * ready to hand over the lock at the end of the section.
1674  */
1675 static void console_lock_spinning_enable(void)
1676 {
1677 	raw_spin_lock(&console_owner_lock);
1678 	console_owner = current;
1679 	raw_spin_unlock(&console_owner_lock);
1680 
1681 	/* The waiter may spin on us after setting console_owner */
1682 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1683 }
1684 
1685 /**
1686  * console_lock_spinning_disable_and_check - mark end of code where another
1687  *	thread was able to busy wait and check if there is a waiter
1688  *
1689  * This is called at the end of the section where spinning is allowed.
1690  * It has two functions. First, it is a signal that it is no longer
1691  * safe to start busy waiting for the lock. Second, it checks if
1692  * there is a busy waiter and passes the lock rights to her.
1693  *
1694  * Important: Callers lose the lock if there was a busy waiter.
1695  *	They must not touch items synchronized by console_lock
1696  *	in this case.
1697  *
1698  * Return: 1 if the lock rights were passed, 0 otherwise.
1699  */
1700 static int console_lock_spinning_disable_and_check(void)
1701 {
1702 	int waiter;
1703 
1704 	raw_spin_lock(&console_owner_lock);
1705 	waiter = READ_ONCE(console_waiter);
1706 	console_owner = NULL;
1707 	raw_spin_unlock(&console_owner_lock);
1708 
1709 	if (!waiter) {
1710 		spin_release(&console_owner_dep_map, _THIS_IP_);
1711 		return 0;
1712 	}
1713 
1714 	/* The waiter is now free to continue */
1715 	WRITE_ONCE(console_waiter, false);
1716 
1717 	spin_release(&console_owner_dep_map, _THIS_IP_);
1718 
1719 	/*
1720 	 * Hand off console_lock to waiter. The waiter will perform
1721 	 * the up(). After this, the waiter is the console_lock owner.
1722 	 */
1723 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1724 	return 1;
1725 }
1726 
1727 /**
1728  * console_trylock_spinning - try to get console_lock by busy waiting
1729  *
1730  * This allows to busy wait for the console_lock when the current
1731  * owner is running in specially marked sections. It means that
1732  * the current owner is running and cannot reschedule until it
1733  * is ready to lose the lock.
1734  *
1735  * Return: 1 if we got the lock, 0 othrewise
1736  */
1737 static int console_trylock_spinning(void)
1738 {
1739 	struct task_struct *owner = NULL;
1740 	bool waiter;
1741 	bool spin = false;
1742 	unsigned long flags;
1743 
1744 	if (console_trylock())
1745 		return 1;
1746 
1747 	printk_safe_enter_irqsave(flags);
1748 
1749 	raw_spin_lock(&console_owner_lock);
1750 	owner = READ_ONCE(console_owner);
1751 	waiter = READ_ONCE(console_waiter);
1752 	if (!waiter && owner && owner != current) {
1753 		WRITE_ONCE(console_waiter, true);
1754 		spin = true;
1755 	}
1756 	raw_spin_unlock(&console_owner_lock);
1757 
1758 	/*
1759 	 * If there is an active printk() writing to the
1760 	 * consoles, instead of having it write our data too,
1761 	 * see if we can offload that load from the active
1762 	 * printer, and do some printing ourselves.
1763 	 * Go into a spin only if there isn't already a waiter
1764 	 * spinning, and there is an active printer, and
1765 	 * that active printer isn't us (recursive printk?).
1766 	 */
1767 	if (!spin) {
1768 		printk_safe_exit_irqrestore(flags);
1769 		return 0;
1770 	}
1771 
1772 	/* We spin waiting for the owner to release us */
1773 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1774 	/* Owner will clear console_waiter on hand off */
1775 	while (READ_ONCE(console_waiter))
1776 		cpu_relax();
1777 	spin_release(&console_owner_dep_map, _THIS_IP_);
1778 
1779 	printk_safe_exit_irqrestore(flags);
1780 	/*
1781 	 * The owner passed the console lock to us.
1782 	 * Since we did not spin on console lock, annotate
1783 	 * this as a trylock. Otherwise lockdep will
1784 	 * complain.
1785 	 */
1786 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1787 
1788 	return 1;
1789 }
1790 
1791 /*
1792  * Call the console drivers, asking them to write out
1793  * log_buf[start] to log_buf[end - 1].
1794  * The console_lock must be held.
1795  */
1796 static void call_console_drivers(const char *ext_text, size_t ext_len,
1797 				 const char *text, size_t len)
1798 {
1799 	struct console *con;
1800 
1801 	trace_console_rcuidle(text, len);
1802 
1803 	for_each_console(con) {
1804 		if (exclusive_console && con != exclusive_console)
1805 			continue;
1806 		if (!(con->flags & CON_ENABLED))
1807 			continue;
1808 		if (!con->write)
1809 			continue;
1810 		if (!cpu_online(smp_processor_id()) &&
1811 		    !(con->flags & CON_ANYTIME))
1812 			continue;
1813 		if (con->flags & CON_EXTENDED)
1814 			con->write(con, ext_text, ext_len);
1815 		else
1816 			con->write(con, text, len);
1817 	}
1818 }
1819 
1820 int printk_delay_msec __read_mostly;
1821 
1822 static inline void printk_delay(void)
1823 {
1824 	if (unlikely(printk_delay_msec)) {
1825 		int m = printk_delay_msec;
1826 
1827 		while (m--) {
1828 			mdelay(1);
1829 			touch_nmi_watchdog();
1830 		}
1831 	}
1832 }
1833 
1834 static inline u32 printk_caller_id(void)
1835 {
1836 	return in_task() ? task_pid_nr(current) :
1837 		0x80000000 + raw_smp_processor_id();
1838 }
1839 
1840 /*
1841  * Continuation lines are buffered, and not committed to the record buffer
1842  * until the line is complete, or a race forces it. The line fragments
1843  * though, are printed immediately to the consoles to ensure everything has
1844  * reached the console in case of a kernel crash.
1845  */
1846 static struct cont {
1847 	char buf[LOG_LINE_MAX];
1848 	size_t len;			/* length == 0 means unused buffer */
1849 	u32 caller_id;			/* printk_caller_id() of first print */
1850 	u64 ts_nsec;			/* time of first print */
1851 	u8 level;			/* log level of first message */
1852 	u8 facility;			/* log facility of first message */
1853 	enum log_flags flags;		/* prefix, newline flags */
1854 } cont;
1855 
1856 static void cont_flush(void)
1857 {
1858 	if (cont.len == 0)
1859 		return;
1860 
1861 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1862 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1863 	cont.len = 0;
1864 }
1865 
1866 static bool cont_add(u32 caller_id, int facility, int level,
1867 		     enum log_flags flags, const char *text, size_t len)
1868 {
1869 	/* If the line gets too long, split it up in separate records. */
1870 	if (cont.len + len > sizeof(cont.buf)) {
1871 		cont_flush();
1872 		return false;
1873 	}
1874 
1875 	if (!cont.len) {
1876 		cont.facility = facility;
1877 		cont.level = level;
1878 		cont.caller_id = caller_id;
1879 		cont.ts_nsec = local_clock();
1880 		cont.flags = flags;
1881 	}
1882 
1883 	memcpy(cont.buf + cont.len, text, len);
1884 	cont.len += len;
1885 
1886 	// The original flags come from the first line,
1887 	// but later continuations can add a newline.
1888 	if (flags & LOG_NEWLINE) {
1889 		cont.flags |= LOG_NEWLINE;
1890 		cont_flush();
1891 	}
1892 
1893 	return true;
1894 }
1895 
1896 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1897 {
1898 	const u32 caller_id = printk_caller_id();
1899 
1900 	/*
1901 	 * If an earlier line was buffered, and we're a continuation
1902 	 * write from the same context, try to add it to the buffer.
1903 	 */
1904 	if (cont.len) {
1905 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1906 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1907 				return text_len;
1908 		}
1909 		/* Otherwise, make sure it's flushed */
1910 		cont_flush();
1911 	}
1912 
1913 	/* Skip empty continuation lines that couldn't be added - they just flush */
1914 	if (!text_len && (lflags & LOG_CONT))
1915 		return 0;
1916 
1917 	/* If it doesn't end in a newline, try to buffer the current line */
1918 	if (!(lflags & LOG_NEWLINE)) {
1919 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1920 			return text_len;
1921 	}
1922 
1923 	/* Store it in the record log */
1924 	return log_store(caller_id, facility, level, lflags, 0,
1925 			 dict, dictlen, text, text_len);
1926 }
1927 
1928 /* Must be called under logbuf_lock. */
1929 int vprintk_store(int facility, int level,
1930 		  const char *dict, size_t dictlen,
1931 		  const char *fmt, va_list args)
1932 {
1933 	static char textbuf[LOG_LINE_MAX];
1934 	char *text = textbuf;
1935 	size_t text_len;
1936 	enum log_flags lflags = 0;
1937 
1938 	/*
1939 	 * The printf needs to come first; we need the syslog
1940 	 * prefix which might be passed-in as a parameter.
1941 	 */
1942 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1943 
1944 	/* mark and strip a trailing newline */
1945 	if (text_len && text[text_len-1] == '\n') {
1946 		text_len--;
1947 		lflags |= LOG_NEWLINE;
1948 	}
1949 
1950 	/* strip kernel syslog prefix and extract log level or control flags */
1951 	if (facility == 0) {
1952 		int kern_level;
1953 
1954 		while ((kern_level = printk_get_level(text)) != 0) {
1955 			switch (kern_level) {
1956 			case '0' ... '7':
1957 				if (level == LOGLEVEL_DEFAULT)
1958 					level = kern_level - '0';
1959 				break;
1960 			case 'c':	/* KERN_CONT */
1961 				lflags |= LOG_CONT;
1962 			}
1963 
1964 			text_len -= 2;
1965 			text += 2;
1966 		}
1967 	}
1968 
1969 	if (level == LOGLEVEL_DEFAULT)
1970 		level = default_message_loglevel;
1971 
1972 	if (dict)
1973 		lflags |= LOG_NEWLINE;
1974 
1975 	return log_output(facility, level, lflags,
1976 			  dict, dictlen, text, text_len);
1977 }
1978 
1979 asmlinkage int vprintk_emit(int facility, int level,
1980 			    const char *dict, size_t dictlen,
1981 			    const char *fmt, va_list args)
1982 {
1983 	int printed_len;
1984 	bool in_sched = false, pending_output;
1985 	unsigned long flags;
1986 	u64 curr_log_seq;
1987 
1988 	/* Suppress unimportant messages after panic happens */
1989 	if (unlikely(suppress_printk))
1990 		return 0;
1991 
1992 	if (level == LOGLEVEL_SCHED) {
1993 		level = LOGLEVEL_DEFAULT;
1994 		in_sched = true;
1995 	}
1996 
1997 	boot_delay_msec(level);
1998 	printk_delay();
1999 
2000 	/* This stops the holder of console_sem just where we want him */
2001 	logbuf_lock_irqsave(flags);
2002 	curr_log_seq = log_next_seq;
2003 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
2004 	pending_output = (curr_log_seq != log_next_seq);
2005 	logbuf_unlock_irqrestore(flags);
2006 
2007 	/* If called from the scheduler, we can not call up(). */
2008 	if (!in_sched && pending_output) {
2009 		/*
2010 		 * Disable preemption to avoid being preempted while holding
2011 		 * console_sem which would prevent anyone from printing to
2012 		 * console
2013 		 */
2014 		preempt_disable();
2015 		/*
2016 		 * Try to acquire and then immediately release the console
2017 		 * semaphore.  The release will print out buffers and wake up
2018 		 * /dev/kmsg and syslog() users.
2019 		 */
2020 		if (console_trylock_spinning())
2021 			console_unlock();
2022 		preempt_enable();
2023 	}
2024 
2025 	if (pending_output)
2026 		wake_up_klogd();
2027 	return printed_len;
2028 }
2029 EXPORT_SYMBOL(vprintk_emit);
2030 
2031 asmlinkage int vprintk(const char *fmt, va_list args)
2032 {
2033 	return vprintk_func(fmt, args);
2034 }
2035 EXPORT_SYMBOL(vprintk);
2036 
2037 int vprintk_default(const char *fmt, va_list args)
2038 {
2039 	int r;
2040 
2041 #ifdef CONFIG_KGDB_KDB
2042 	/* Allow to pass printk() to kdb but avoid a recursion. */
2043 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2044 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2045 		return r;
2046 	}
2047 #endif
2048 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2049 
2050 	return r;
2051 }
2052 EXPORT_SYMBOL_GPL(vprintk_default);
2053 
2054 /**
2055  * printk - print a kernel message
2056  * @fmt: format string
2057  *
2058  * This is printk(). It can be called from any context. We want it to work.
2059  *
2060  * We try to grab the console_lock. If we succeed, it's easy - we log the
2061  * output and call the console drivers.  If we fail to get the semaphore, we
2062  * place the output into the log buffer and return. The current holder of
2063  * the console_sem will notice the new output in console_unlock(); and will
2064  * send it to the consoles before releasing the lock.
2065  *
2066  * One effect of this deferred printing is that code which calls printk() and
2067  * then changes console_loglevel may break. This is because console_loglevel
2068  * is inspected when the actual printing occurs.
2069  *
2070  * See also:
2071  * printf(3)
2072  *
2073  * See the vsnprintf() documentation for format string extensions over C99.
2074  */
2075 asmlinkage __visible int printk(const char *fmt, ...)
2076 {
2077 	va_list args;
2078 	int r;
2079 
2080 	va_start(args, fmt);
2081 	r = vprintk_func(fmt, args);
2082 	va_end(args);
2083 
2084 	return r;
2085 }
2086 EXPORT_SYMBOL(printk);
2087 
2088 #else /* CONFIG_PRINTK */
2089 
2090 #define LOG_LINE_MAX		0
2091 #define PREFIX_MAX		0
2092 #define printk_time		false
2093 
2094 static u64 syslog_seq;
2095 static u32 syslog_idx;
2096 static u64 console_seq;
2097 static u32 console_idx;
2098 static u64 exclusive_console_stop_seq;
2099 static u64 log_first_seq;
2100 static u32 log_first_idx;
2101 static u64 log_next_seq;
2102 static char *log_text(const struct printk_log *msg) { return NULL; }
2103 static char *log_dict(const struct printk_log *msg) { return NULL; }
2104 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2105 static u32 log_next(u32 idx) { return 0; }
2106 static ssize_t msg_print_ext_header(char *buf, size_t size,
2107 				    struct printk_log *msg,
2108 				    u64 seq) { return 0; }
2109 static ssize_t msg_print_ext_body(char *buf, size_t size,
2110 				  char *dict, size_t dict_len,
2111 				  char *text, size_t text_len) { return 0; }
2112 static void console_lock_spinning_enable(void) { }
2113 static int console_lock_spinning_disable_and_check(void) { return 0; }
2114 static void call_console_drivers(const char *ext_text, size_t ext_len,
2115 				 const char *text, size_t len) {}
2116 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2117 			     bool time, char *buf, size_t size) { return 0; }
2118 static bool suppress_message_printing(int level) { return false; }
2119 
2120 #endif /* CONFIG_PRINTK */
2121 
2122 #ifdef CONFIG_EARLY_PRINTK
2123 struct console *early_console;
2124 
2125 asmlinkage __visible void early_printk(const char *fmt, ...)
2126 {
2127 	va_list ap;
2128 	char buf[512];
2129 	int n;
2130 
2131 	if (!early_console)
2132 		return;
2133 
2134 	va_start(ap, fmt);
2135 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2136 	va_end(ap);
2137 
2138 	early_console->write(early_console, buf, n);
2139 }
2140 #endif
2141 
2142 static int __add_preferred_console(char *name, int idx, char *options,
2143 				   char *brl_options)
2144 {
2145 	struct console_cmdline *c;
2146 	int i;
2147 
2148 	/*
2149 	 *	See if this tty is not yet registered, and
2150 	 *	if we have a slot free.
2151 	 */
2152 	for (i = 0, c = console_cmdline;
2153 	     i < MAX_CMDLINECONSOLES && c->name[0];
2154 	     i++, c++) {
2155 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2156 			if (!brl_options)
2157 				preferred_console = i;
2158 			return 0;
2159 		}
2160 	}
2161 	if (i == MAX_CMDLINECONSOLES)
2162 		return -E2BIG;
2163 	if (!brl_options)
2164 		preferred_console = i;
2165 	strlcpy(c->name, name, sizeof(c->name));
2166 	c->options = options;
2167 	braille_set_options(c, brl_options);
2168 
2169 	c->index = idx;
2170 	return 0;
2171 }
2172 
2173 static int __init console_msg_format_setup(char *str)
2174 {
2175 	if (!strcmp(str, "syslog"))
2176 		console_msg_format = MSG_FORMAT_SYSLOG;
2177 	if (!strcmp(str, "default"))
2178 		console_msg_format = MSG_FORMAT_DEFAULT;
2179 	return 1;
2180 }
2181 __setup("console_msg_format=", console_msg_format_setup);
2182 
2183 /*
2184  * Set up a console.  Called via do_early_param() in init/main.c
2185  * for each "console=" parameter in the boot command line.
2186  */
2187 static int __init console_setup(char *str)
2188 {
2189 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2190 	char *s, *options, *brl_options = NULL;
2191 	int idx;
2192 
2193 	if (_braille_console_setup(&str, &brl_options))
2194 		return 1;
2195 
2196 	/*
2197 	 * Decode str into name, index, options.
2198 	 */
2199 	if (str[0] >= '0' && str[0] <= '9') {
2200 		strcpy(buf, "ttyS");
2201 		strncpy(buf + 4, str, sizeof(buf) - 5);
2202 	} else {
2203 		strncpy(buf, str, sizeof(buf) - 1);
2204 	}
2205 	buf[sizeof(buf) - 1] = 0;
2206 	options = strchr(str, ',');
2207 	if (options)
2208 		*(options++) = 0;
2209 #ifdef __sparc__
2210 	if (!strcmp(str, "ttya"))
2211 		strcpy(buf, "ttyS0");
2212 	if (!strcmp(str, "ttyb"))
2213 		strcpy(buf, "ttyS1");
2214 #endif
2215 	for (s = buf; *s; s++)
2216 		if (isdigit(*s) || *s == ',')
2217 			break;
2218 	idx = simple_strtoul(s, NULL, 10);
2219 	*s = 0;
2220 
2221 	__add_preferred_console(buf, idx, options, brl_options);
2222 	console_set_on_cmdline = 1;
2223 	return 1;
2224 }
2225 __setup("console=", console_setup);
2226 
2227 /**
2228  * add_preferred_console - add a device to the list of preferred consoles.
2229  * @name: device name
2230  * @idx: device index
2231  * @options: options for this console
2232  *
2233  * The last preferred console added will be used for kernel messages
2234  * and stdin/out/err for init.  Normally this is used by console_setup
2235  * above to handle user-supplied console arguments; however it can also
2236  * be used by arch-specific code either to override the user or more
2237  * commonly to provide a default console (ie from PROM variables) when
2238  * the user has not supplied one.
2239  */
2240 int add_preferred_console(char *name, int idx, char *options)
2241 {
2242 	return __add_preferred_console(name, idx, options, NULL);
2243 }
2244 
2245 bool console_suspend_enabled = true;
2246 EXPORT_SYMBOL(console_suspend_enabled);
2247 
2248 static int __init console_suspend_disable(char *str)
2249 {
2250 	console_suspend_enabled = false;
2251 	return 1;
2252 }
2253 __setup("no_console_suspend", console_suspend_disable);
2254 module_param_named(console_suspend, console_suspend_enabled,
2255 		bool, S_IRUGO | S_IWUSR);
2256 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2257 	" and hibernate operations");
2258 
2259 /**
2260  * suspend_console - suspend the console subsystem
2261  *
2262  * This disables printk() while we go into suspend states
2263  */
2264 void suspend_console(void)
2265 {
2266 	if (!console_suspend_enabled)
2267 		return;
2268 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2269 	console_lock();
2270 	console_suspended = 1;
2271 	up_console_sem();
2272 }
2273 
2274 void resume_console(void)
2275 {
2276 	if (!console_suspend_enabled)
2277 		return;
2278 	down_console_sem();
2279 	console_suspended = 0;
2280 	console_unlock();
2281 }
2282 
2283 /**
2284  * console_cpu_notify - print deferred console messages after CPU hotplug
2285  * @cpu: unused
2286  *
2287  * If printk() is called from a CPU that is not online yet, the messages
2288  * will be printed on the console only if there are CON_ANYTIME consoles.
2289  * This function is called when a new CPU comes online (or fails to come
2290  * up) or goes offline.
2291  */
2292 static int console_cpu_notify(unsigned int cpu)
2293 {
2294 	if (!cpuhp_tasks_frozen) {
2295 		/* If trylock fails, someone else is doing the printing */
2296 		if (console_trylock())
2297 			console_unlock();
2298 	}
2299 	return 0;
2300 }
2301 
2302 /**
2303  * console_lock - lock the console system for exclusive use.
2304  *
2305  * Acquires a lock which guarantees that the caller has
2306  * exclusive access to the console system and the console_drivers list.
2307  *
2308  * Can sleep, returns nothing.
2309  */
2310 void console_lock(void)
2311 {
2312 	might_sleep();
2313 
2314 	down_console_sem();
2315 	if (console_suspended)
2316 		return;
2317 	console_locked = 1;
2318 	console_may_schedule = 1;
2319 }
2320 EXPORT_SYMBOL(console_lock);
2321 
2322 /**
2323  * console_trylock - try to lock the console system for exclusive use.
2324  *
2325  * Try to acquire a lock which guarantees that the caller has exclusive
2326  * access to the console system and the console_drivers list.
2327  *
2328  * returns 1 on success, and 0 on failure to acquire the lock.
2329  */
2330 int console_trylock(void)
2331 {
2332 	if (down_trylock_console_sem())
2333 		return 0;
2334 	if (console_suspended) {
2335 		up_console_sem();
2336 		return 0;
2337 	}
2338 	console_locked = 1;
2339 	console_may_schedule = 0;
2340 	return 1;
2341 }
2342 EXPORT_SYMBOL(console_trylock);
2343 
2344 int is_console_locked(void)
2345 {
2346 	return console_locked;
2347 }
2348 EXPORT_SYMBOL(is_console_locked);
2349 
2350 /*
2351  * Check if we have any console that is capable of printing while cpu is
2352  * booting or shutting down. Requires console_sem.
2353  */
2354 static int have_callable_console(void)
2355 {
2356 	struct console *con;
2357 
2358 	for_each_console(con)
2359 		if ((con->flags & CON_ENABLED) &&
2360 				(con->flags & CON_ANYTIME))
2361 			return 1;
2362 
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Can we actually use the console at this time on this cpu?
2368  *
2369  * Console drivers may assume that per-cpu resources have been allocated. So
2370  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2371  * call them until this CPU is officially up.
2372  */
2373 static inline int can_use_console(void)
2374 {
2375 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2376 }
2377 
2378 /**
2379  * console_unlock - unlock the console system
2380  *
2381  * Releases the console_lock which the caller holds on the console system
2382  * and the console driver list.
2383  *
2384  * While the console_lock was held, console output may have been buffered
2385  * by printk().  If this is the case, console_unlock(); emits
2386  * the output prior to releasing the lock.
2387  *
2388  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2389  *
2390  * console_unlock(); may be called from any context.
2391  */
2392 void console_unlock(void)
2393 {
2394 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2395 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2396 	unsigned long flags;
2397 	bool do_cond_resched, retry;
2398 
2399 	if (console_suspended) {
2400 		up_console_sem();
2401 		return;
2402 	}
2403 
2404 	/*
2405 	 * Console drivers are called with interrupts disabled, so
2406 	 * @console_may_schedule should be cleared before; however, we may
2407 	 * end up dumping a lot of lines, for example, if called from
2408 	 * console registration path, and should invoke cond_resched()
2409 	 * between lines if allowable.  Not doing so can cause a very long
2410 	 * scheduling stall on a slow console leading to RCU stall and
2411 	 * softlockup warnings which exacerbate the issue with more
2412 	 * messages practically incapacitating the system.
2413 	 *
2414 	 * console_trylock() is not able to detect the preemptive
2415 	 * context reliably. Therefore the value must be stored before
2416 	 * and cleared after the the "again" goto label.
2417 	 */
2418 	do_cond_resched = console_may_schedule;
2419 again:
2420 	console_may_schedule = 0;
2421 
2422 	/*
2423 	 * We released the console_sem lock, so we need to recheck if
2424 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2425 	 * console.
2426 	 */
2427 	if (!can_use_console()) {
2428 		console_locked = 0;
2429 		up_console_sem();
2430 		return;
2431 	}
2432 
2433 	for (;;) {
2434 		struct printk_log *msg;
2435 		size_t ext_len = 0;
2436 		size_t len;
2437 
2438 		printk_safe_enter_irqsave(flags);
2439 		raw_spin_lock(&logbuf_lock);
2440 		if (console_seq < log_first_seq) {
2441 			len = sprintf(text,
2442 				      "** %llu printk messages dropped **\n",
2443 				      log_first_seq - console_seq);
2444 
2445 			/* messages are gone, move to first one */
2446 			console_seq = log_first_seq;
2447 			console_idx = log_first_idx;
2448 		} else {
2449 			len = 0;
2450 		}
2451 skip:
2452 		if (console_seq == log_next_seq)
2453 			break;
2454 
2455 		msg = log_from_idx(console_idx);
2456 		if (suppress_message_printing(msg->level)) {
2457 			/*
2458 			 * Skip record we have buffered and already printed
2459 			 * directly to the console when we received it, and
2460 			 * record that has level above the console loglevel.
2461 			 */
2462 			console_idx = log_next(console_idx);
2463 			console_seq++;
2464 			goto skip;
2465 		}
2466 
2467 		/* Output to all consoles once old messages replayed. */
2468 		if (unlikely(exclusive_console &&
2469 			     console_seq >= exclusive_console_stop_seq)) {
2470 			exclusive_console = NULL;
2471 		}
2472 
2473 		len += msg_print_text(msg,
2474 				console_msg_format & MSG_FORMAT_SYSLOG,
2475 				printk_time, text + len, sizeof(text) - len);
2476 		if (nr_ext_console_drivers) {
2477 			ext_len = msg_print_ext_header(ext_text,
2478 						sizeof(ext_text),
2479 						msg, console_seq);
2480 			ext_len += msg_print_ext_body(ext_text + ext_len,
2481 						sizeof(ext_text) - ext_len,
2482 						log_dict(msg), msg->dict_len,
2483 						log_text(msg), msg->text_len);
2484 		}
2485 		console_idx = log_next(console_idx);
2486 		console_seq++;
2487 		raw_spin_unlock(&logbuf_lock);
2488 
2489 		/*
2490 		 * While actively printing out messages, if another printk()
2491 		 * were to occur on another CPU, it may wait for this one to
2492 		 * finish. This task can not be preempted if there is a
2493 		 * waiter waiting to take over.
2494 		 */
2495 		console_lock_spinning_enable();
2496 
2497 		stop_critical_timings();	/* don't trace print latency */
2498 		call_console_drivers(ext_text, ext_len, text, len);
2499 		start_critical_timings();
2500 
2501 		if (console_lock_spinning_disable_and_check()) {
2502 			printk_safe_exit_irqrestore(flags);
2503 			return;
2504 		}
2505 
2506 		printk_safe_exit_irqrestore(flags);
2507 
2508 		if (do_cond_resched)
2509 			cond_resched();
2510 	}
2511 
2512 	console_locked = 0;
2513 
2514 	raw_spin_unlock(&logbuf_lock);
2515 
2516 	up_console_sem();
2517 
2518 	/*
2519 	 * Someone could have filled up the buffer again, so re-check if there's
2520 	 * something to flush. In case we cannot trylock the console_sem again,
2521 	 * there's a new owner and the console_unlock() from them will do the
2522 	 * flush, no worries.
2523 	 */
2524 	raw_spin_lock(&logbuf_lock);
2525 	retry = console_seq != log_next_seq;
2526 	raw_spin_unlock(&logbuf_lock);
2527 	printk_safe_exit_irqrestore(flags);
2528 
2529 	if (retry && console_trylock())
2530 		goto again;
2531 }
2532 EXPORT_SYMBOL(console_unlock);
2533 
2534 /**
2535  * console_conditional_schedule - yield the CPU if required
2536  *
2537  * If the console code is currently allowed to sleep, and
2538  * if this CPU should yield the CPU to another task, do
2539  * so here.
2540  *
2541  * Must be called within console_lock();.
2542  */
2543 void __sched console_conditional_schedule(void)
2544 {
2545 	if (console_may_schedule)
2546 		cond_resched();
2547 }
2548 EXPORT_SYMBOL(console_conditional_schedule);
2549 
2550 void console_unblank(void)
2551 {
2552 	struct console *c;
2553 
2554 	/*
2555 	 * console_unblank can no longer be called in interrupt context unless
2556 	 * oops_in_progress is set to 1..
2557 	 */
2558 	if (oops_in_progress) {
2559 		if (down_trylock_console_sem() != 0)
2560 			return;
2561 	} else
2562 		console_lock();
2563 
2564 	console_locked = 1;
2565 	console_may_schedule = 0;
2566 	for_each_console(c)
2567 		if ((c->flags & CON_ENABLED) && c->unblank)
2568 			c->unblank();
2569 	console_unlock();
2570 }
2571 
2572 /**
2573  * console_flush_on_panic - flush console content on panic
2574  * @mode: flush all messages in buffer or just the pending ones
2575  *
2576  * Immediately output all pending messages no matter what.
2577  */
2578 void console_flush_on_panic(enum con_flush_mode mode)
2579 {
2580 	/*
2581 	 * If someone else is holding the console lock, trylock will fail
2582 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2583 	 * that messages are flushed out.  As this can be called from any
2584 	 * context and we don't want to get preempted while flushing,
2585 	 * ensure may_schedule is cleared.
2586 	 */
2587 	console_trylock();
2588 	console_may_schedule = 0;
2589 
2590 	if (mode == CONSOLE_REPLAY_ALL) {
2591 		unsigned long flags;
2592 
2593 		logbuf_lock_irqsave(flags);
2594 		console_seq = log_first_seq;
2595 		console_idx = log_first_idx;
2596 		logbuf_unlock_irqrestore(flags);
2597 	}
2598 	console_unlock();
2599 }
2600 
2601 /*
2602  * Return the console tty driver structure and its associated index
2603  */
2604 struct tty_driver *console_device(int *index)
2605 {
2606 	struct console *c;
2607 	struct tty_driver *driver = NULL;
2608 
2609 	console_lock();
2610 	for_each_console(c) {
2611 		if (!c->device)
2612 			continue;
2613 		driver = c->device(c, index);
2614 		if (driver)
2615 			break;
2616 	}
2617 	console_unlock();
2618 	return driver;
2619 }
2620 
2621 /*
2622  * Prevent further output on the passed console device so that (for example)
2623  * serial drivers can disable console output before suspending a port, and can
2624  * re-enable output afterwards.
2625  */
2626 void console_stop(struct console *console)
2627 {
2628 	console_lock();
2629 	console->flags &= ~CON_ENABLED;
2630 	console_unlock();
2631 }
2632 EXPORT_SYMBOL(console_stop);
2633 
2634 void console_start(struct console *console)
2635 {
2636 	console_lock();
2637 	console->flags |= CON_ENABLED;
2638 	console_unlock();
2639 }
2640 EXPORT_SYMBOL(console_start);
2641 
2642 static int __read_mostly keep_bootcon;
2643 
2644 static int __init keep_bootcon_setup(char *str)
2645 {
2646 	keep_bootcon = 1;
2647 	pr_info("debug: skip boot console de-registration.\n");
2648 
2649 	return 0;
2650 }
2651 
2652 early_param("keep_bootcon", keep_bootcon_setup);
2653 
2654 /*
2655  * The console driver calls this routine during kernel initialization
2656  * to register the console printing procedure with printk() and to
2657  * print any messages that were printed by the kernel before the
2658  * console driver was initialized.
2659  *
2660  * This can happen pretty early during the boot process (because of
2661  * early_printk) - sometimes before setup_arch() completes - be careful
2662  * of what kernel features are used - they may not be initialised yet.
2663  *
2664  * There are two types of consoles - bootconsoles (early_printk) and
2665  * "real" consoles (everything which is not a bootconsole) which are
2666  * handled differently.
2667  *  - Any number of bootconsoles can be registered at any time.
2668  *  - As soon as a "real" console is registered, all bootconsoles
2669  *    will be unregistered automatically.
2670  *  - Once a "real" console is registered, any attempt to register a
2671  *    bootconsoles will be rejected
2672  */
2673 void register_console(struct console *newcon)
2674 {
2675 	int i;
2676 	unsigned long flags;
2677 	struct console *bcon = NULL;
2678 	struct console_cmdline *c;
2679 	static bool has_preferred;
2680 
2681 	for_each_console(bcon) {
2682 		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2683 					 bcon->name, bcon->index))
2684 			return;
2685 	}
2686 
2687 	/*
2688 	 * before we register a new CON_BOOT console, make sure we don't
2689 	 * already have a valid console
2690 	 */
2691 	if (newcon->flags & CON_BOOT) {
2692 		for_each_console(bcon) {
2693 			if (!(bcon->flags & CON_BOOT)) {
2694 				pr_info("Too late to register bootconsole %s%d\n",
2695 					newcon->name, newcon->index);
2696 				return;
2697 			}
2698 		}
2699 	}
2700 
2701 	if (console_drivers && console_drivers->flags & CON_BOOT)
2702 		bcon = console_drivers;
2703 
2704 	if (!has_preferred || bcon || !console_drivers)
2705 		has_preferred = preferred_console >= 0;
2706 
2707 	/*
2708 	 *	See if we want to use this console driver. If we
2709 	 *	didn't select a console we take the first one
2710 	 *	that registers here.
2711 	 */
2712 	if (!has_preferred) {
2713 		if (newcon->index < 0)
2714 			newcon->index = 0;
2715 		if (newcon->setup == NULL ||
2716 		    newcon->setup(newcon, NULL) == 0) {
2717 			newcon->flags |= CON_ENABLED;
2718 			if (newcon->device) {
2719 				newcon->flags |= CON_CONSDEV;
2720 				has_preferred = true;
2721 			}
2722 		}
2723 	}
2724 
2725 	/*
2726 	 *	See if this console matches one we selected on
2727 	 *	the command line.
2728 	 */
2729 	for (i = 0, c = console_cmdline;
2730 	     i < MAX_CMDLINECONSOLES && c->name[0];
2731 	     i++, c++) {
2732 		if (!newcon->match ||
2733 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2734 			/* default matching */
2735 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2736 			if (strcmp(c->name, newcon->name) != 0)
2737 				continue;
2738 			if (newcon->index >= 0 &&
2739 			    newcon->index != c->index)
2740 				continue;
2741 			if (newcon->index < 0)
2742 				newcon->index = c->index;
2743 
2744 			if (_braille_register_console(newcon, c))
2745 				return;
2746 
2747 			if (newcon->setup &&
2748 			    newcon->setup(newcon, c->options) != 0)
2749 				break;
2750 		}
2751 
2752 		newcon->flags |= CON_ENABLED;
2753 		if (i == preferred_console) {
2754 			newcon->flags |= CON_CONSDEV;
2755 			has_preferred = true;
2756 		}
2757 		break;
2758 	}
2759 
2760 	if (!(newcon->flags & CON_ENABLED))
2761 		return;
2762 
2763 	/*
2764 	 * If we have a bootconsole, and are switching to a real console,
2765 	 * don't print everything out again, since when the boot console, and
2766 	 * the real console are the same physical device, it's annoying to
2767 	 * see the beginning boot messages twice
2768 	 */
2769 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2770 		newcon->flags &= ~CON_PRINTBUFFER;
2771 
2772 	/*
2773 	 *	Put this console in the list - keep the
2774 	 *	preferred driver at the head of the list.
2775 	 */
2776 	console_lock();
2777 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2778 		newcon->next = console_drivers;
2779 		console_drivers = newcon;
2780 		if (newcon->next)
2781 			newcon->next->flags &= ~CON_CONSDEV;
2782 	} else {
2783 		newcon->next = console_drivers->next;
2784 		console_drivers->next = newcon;
2785 	}
2786 
2787 	if (newcon->flags & CON_EXTENDED)
2788 		nr_ext_console_drivers++;
2789 
2790 	if (newcon->flags & CON_PRINTBUFFER) {
2791 		/*
2792 		 * console_unlock(); will print out the buffered messages
2793 		 * for us.
2794 		 */
2795 		logbuf_lock_irqsave(flags);
2796 		/*
2797 		 * We're about to replay the log buffer.  Only do this to the
2798 		 * just-registered console to avoid excessive message spam to
2799 		 * the already-registered consoles.
2800 		 *
2801 		 * Set exclusive_console with disabled interrupts to reduce
2802 		 * race window with eventual console_flush_on_panic() that
2803 		 * ignores console_lock.
2804 		 */
2805 		exclusive_console = newcon;
2806 		exclusive_console_stop_seq = console_seq;
2807 		console_seq = syslog_seq;
2808 		console_idx = syslog_idx;
2809 		logbuf_unlock_irqrestore(flags);
2810 	}
2811 	console_unlock();
2812 	console_sysfs_notify();
2813 
2814 	/*
2815 	 * By unregistering the bootconsoles after we enable the real console
2816 	 * we get the "console xxx enabled" message on all the consoles -
2817 	 * boot consoles, real consoles, etc - this is to ensure that end
2818 	 * users know there might be something in the kernel's log buffer that
2819 	 * went to the bootconsole (that they do not see on the real console)
2820 	 */
2821 	pr_info("%sconsole [%s%d] enabled\n",
2822 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2823 		newcon->name, newcon->index);
2824 	if (bcon &&
2825 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2826 	    !keep_bootcon) {
2827 		/* We need to iterate through all boot consoles, to make
2828 		 * sure we print everything out, before we unregister them.
2829 		 */
2830 		for_each_console(bcon)
2831 			if (bcon->flags & CON_BOOT)
2832 				unregister_console(bcon);
2833 	}
2834 }
2835 EXPORT_SYMBOL(register_console);
2836 
2837 int unregister_console(struct console *console)
2838 {
2839 	struct console *con;
2840 	int res;
2841 
2842 	pr_info("%sconsole [%s%d] disabled\n",
2843 		(console->flags & CON_BOOT) ? "boot" : "" ,
2844 		console->name, console->index);
2845 
2846 	res = _braille_unregister_console(console);
2847 	if (res < 0)
2848 		return res;
2849 	if (res > 0)
2850 		return 0;
2851 
2852 	res = -ENODEV;
2853 	console_lock();
2854 	if (console_drivers == console) {
2855 		console_drivers=console->next;
2856 		res = 0;
2857 	} else {
2858 		for_each_console(con) {
2859 			if (con->next == console) {
2860 				con->next = console->next;
2861 				res = 0;
2862 				break;
2863 			}
2864 		}
2865 	}
2866 
2867 	if (res)
2868 		goto out_disable_unlock;
2869 
2870 	if (console->flags & CON_EXTENDED)
2871 		nr_ext_console_drivers--;
2872 
2873 	/*
2874 	 * If this isn't the last console and it has CON_CONSDEV set, we
2875 	 * need to set it on the next preferred console.
2876 	 */
2877 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2878 		console_drivers->flags |= CON_CONSDEV;
2879 
2880 	console->flags &= ~CON_ENABLED;
2881 	console_unlock();
2882 	console_sysfs_notify();
2883 
2884 	if (console->exit)
2885 		res = console->exit(console);
2886 
2887 	return res;
2888 
2889 out_disable_unlock:
2890 	console->flags &= ~CON_ENABLED;
2891 	console_unlock();
2892 
2893 	return res;
2894 }
2895 EXPORT_SYMBOL(unregister_console);
2896 
2897 /*
2898  * Initialize the console device. This is called *early*, so
2899  * we can't necessarily depend on lots of kernel help here.
2900  * Just do some early initializations, and do the complex setup
2901  * later.
2902  */
2903 void __init console_init(void)
2904 {
2905 	int ret;
2906 	initcall_t call;
2907 	initcall_entry_t *ce;
2908 
2909 	/* Setup the default TTY line discipline. */
2910 	n_tty_init();
2911 
2912 	/*
2913 	 * set up the console device so that later boot sequences can
2914 	 * inform about problems etc..
2915 	 */
2916 	ce = __con_initcall_start;
2917 	trace_initcall_level("console");
2918 	while (ce < __con_initcall_end) {
2919 		call = initcall_from_entry(ce);
2920 		trace_initcall_start(call);
2921 		ret = call();
2922 		trace_initcall_finish(call, ret);
2923 		ce++;
2924 	}
2925 }
2926 
2927 /*
2928  * Some boot consoles access data that is in the init section and which will
2929  * be discarded after the initcalls have been run. To make sure that no code
2930  * will access this data, unregister the boot consoles in a late initcall.
2931  *
2932  * If for some reason, such as deferred probe or the driver being a loadable
2933  * module, the real console hasn't registered yet at this point, there will
2934  * be a brief interval in which no messages are logged to the console, which
2935  * makes it difficult to diagnose problems that occur during this time.
2936  *
2937  * To mitigate this problem somewhat, only unregister consoles whose memory
2938  * intersects with the init section. Note that all other boot consoles will
2939  * get unregistred when the real preferred console is registered.
2940  */
2941 static int __init printk_late_init(void)
2942 {
2943 	struct console *con;
2944 	int ret;
2945 
2946 	for_each_console(con) {
2947 		if (!(con->flags & CON_BOOT))
2948 			continue;
2949 
2950 		/* Check addresses that might be used for enabled consoles. */
2951 		if (init_section_intersects(con, sizeof(*con)) ||
2952 		    init_section_contains(con->write, 0) ||
2953 		    init_section_contains(con->read, 0) ||
2954 		    init_section_contains(con->device, 0) ||
2955 		    init_section_contains(con->unblank, 0) ||
2956 		    init_section_contains(con->data, 0)) {
2957 			/*
2958 			 * Please, consider moving the reported consoles out
2959 			 * of the init section.
2960 			 */
2961 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2962 				con->name, con->index);
2963 			unregister_console(con);
2964 		}
2965 	}
2966 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2967 					console_cpu_notify);
2968 	WARN_ON(ret < 0);
2969 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2970 					console_cpu_notify, NULL);
2971 	WARN_ON(ret < 0);
2972 	return 0;
2973 }
2974 late_initcall(printk_late_init);
2975 
2976 #if defined CONFIG_PRINTK
2977 /*
2978  * Delayed printk version, for scheduler-internal messages:
2979  */
2980 #define PRINTK_PENDING_WAKEUP	0x01
2981 #define PRINTK_PENDING_OUTPUT	0x02
2982 
2983 static DEFINE_PER_CPU(int, printk_pending);
2984 
2985 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2986 {
2987 	int pending = __this_cpu_xchg(printk_pending, 0);
2988 
2989 	if (pending & PRINTK_PENDING_OUTPUT) {
2990 		/* If trylock fails, someone else is doing the printing */
2991 		if (console_trylock())
2992 			console_unlock();
2993 	}
2994 
2995 	if (pending & PRINTK_PENDING_WAKEUP)
2996 		wake_up_interruptible(&log_wait);
2997 }
2998 
2999 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
3000 	.func = wake_up_klogd_work_func,
3001 	.flags = ATOMIC_INIT(IRQ_WORK_LAZY),
3002 };
3003 
3004 void wake_up_klogd(void)
3005 {
3006 	if (!printk_percpu_data_ready())
3007 		return;
3008 
3009 	preempt_disable();
3010 	if (waitqueue_active(&log_wait)) {
3011 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3012 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3013 	}
3014 	preempt_enable();
3015 }
3016 
3017 void defer_console_output(void)
3018 {
3019 	if (!printk_percpu_data_ready())
3020 		return;
3021 
3022 	preempt_disable();
3023 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3024 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3025 	preempt_enable();
3026 }
3027 
3028 int vprintk_deferred(const char *fmt, va_list args)
3029 {
3030 	int r;
3031 
3032 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
3033 	defer_console_output();
3034 
3035 	return r;
3036 }
3037 
3038 int printk_deferred(const char *fmt, ...)
3039 {
3040 	va_list args;
3041 	int r;
3042 
3043 	va_start(args, fmt);
3044 	r = vprintk_deferred(fmt, args);
3045 	va_end(args);
3046 
3047 	return r;
3048 }
3049 
3050 /*
3051  * printk rate limiting, lifted from the networking subsystem.
3052  *
3053  * This enforces a rate limit: not more than 10 kernel messages
3054  * every 5s to make a denial-of-service attack impossible.
3055  */
3056 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3057 
3058 int __printk_ratelimit(const char *func)
3059 {
3060 	return ___ratelimit(&printk_ratelimit_state, func);
3061 }
3062 EXPORT_SYMBOL(__printk_ratelimit);
3063 
3064 /**
3065  * printk_timed_ratelimit - caller-controlled printk ratelimiting
3066  * @caller_jiffies: pointer to caller's state
3067  * @interval_msecs: minimum interval between prints
3068  *
3069  * printk_timed_ratelimit() returns true if more than @interval_msecs
3070  * milliseconds have elapsed since the last time printk_timed_ratelimit()
3071  * returned true.
3072  */
3073 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3074 			unsigned int interval_msecs)
3075 {
3076 	unsigned long elapsed = jiffies - *caller_jiffies;
3077 
3078 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3079 		return false;
3080 
3081 	*caller_jiffies = jiffies;
3082 	return true;
3083 }
3084 EXPORT_SYMBOL(printk_timed_ratelimit);
3085 
3086 static DEFINE_SPINLOCK(dump_list_lock);
3087 static LIST_HEAD(dump_list);
3088 
3089 /**
3090  * kmsg_dump_register - register a kernel log dumper.
3091  * @dumper: pointer to the kmsg_dumper structure
3092  *
3093  * Adds a kernel log dumper to the system. The dump callback in the
3094  * structure will be called when the kernel oopses or panics and must be
3095  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3096  */
3097 int kmsg_dump_register(struct kmsg_dumper *dumper)
3098 {
3099 	unsigned long flags;
3100 	int err = -EBUSY;
3101 
3102 	/* The dump callback needs to be set */
3103 	if (!dumper->dump)
3104 		return -EINVAL;
3105 
3106 	spin_lock_irqsave(&dump_list_lock, flags);
3107 	/* Don't allow registering multiple times */
3108 	if (!dumper->registered) {
3109 		dumper->registered = 1;
3110 		list_add_tail_rcu(&dumper->list, &dump_list);
3111 		err = 0;
3112 	}
3113 	spin_unlock_irqrestore(&dump_list_lock, flags);
3114 
3115 	return err;
3116 }
3117 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3118 
3119 /**
3120  * kmsg_dump_unregister - unregister a kmsg dumper.
3121  * @dumper: pointer to the kmsg_dumper structure
3122  *
3123  * Removes a dump device from the system. Returns zero on success and
3124  * %-EINVAL otherwise.
3125  */
3126 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3127 {
3128 	unsigned long flags;
3129 	int err = -EINVAL;
3130 
3131 	spin_lock_irqsave(&dump_list_lock, flags);
3132 	if (dumper->registered) {
3133 		dumper->registered = 0;
3134 		list_del_rcu(&dumper->list);
3135 		err = 0;
3136 	}
3137 	spin_unlock_irqrestore(&dump_list_lock, flags);
3138 	synchronize_rcu();
3139 
3140 	return err;
3141 }
3142 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3143 
3144 static bool always_kmsg_dump;
3145 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3146 
3147 /**
3148  * kmsg_dump - dump kernel log to kernel message dumpers.
3149  * @reason: the reason (oops, panic etc) for dumping
3150  *
3151  * Call each of the registered dumper's dump() callback, which can
3152  * retrieve the kmsg records with kmsg_dump_get_line() or
3153  * kmsg_dump_get_buffer().
3154  */
3155 void kmsg_dump(enum kmsg_dump_reason reason)
3156 {
3157 	struct kmsg_dumper *dumper;
3158 	unsigned long flags;
3159 
3160 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3161 		return;
3162 
3163 	rcu_read_lock();
3164 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3165 		if (dumper->max_reason && reason > dumper->max_reason)
3166 			continue;
3167 
3168 		/* initialize iterator with data about the stored records */
3169 		dumper->active = true;
3170 
3171 		logbuf_lock_irqsave(flags);
3172 		dumper->cur_seq = clear_seq;
3173 		dumper->cur_idx = clear_idx;
3174 		dumper->next_seq = log_next_seq;
3175 		dumper->next_idx = log_next_idx;
3176 		logbuf_unlock_irqrestore(flags);
3177 
3178 		/* invoke dumper which will iterate over records */
3179 		dumper->dump(dumper, reason);
3180 
3181 		/* reset iterator */
3182 		dumper->active = false;
3183 	}
3184 	rcu_read_unlock();
3185 }
3186 
3187 /**
3188  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3189  * @dumper: registered kmsg dumper
3190  * @syslog: include the "<4>" prefixes
3191  * @line: buffer to copy the line to
3192  * @size: maximum size of the buffer
3193  * @len: length of line placed into buffer
3194  *
3195  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3196  * record, and copy one record into the provided buffer.
3197  *
3198  * Consecutive calls will return the next available record moving
3199  * towards the end of the buffer with the youngest messages.
3200  *
3201  * A return value of FALSE indicates that there are no more records to
3202  * read.
3203  *
3204  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3205  */
3206 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3207 			       char *line, size_t size, size_t *len)
3208 {
3209 	struct printk_log *msg;
3210 	size_t l = 0;
3211 	bool ret = false;
3212 
3213 	if (!dumper->active)
3214 		goto out;
3215 
3216 	if (dumper->cur_seq < log_first_seq) {
3217 		/* messages are gone, move to first available one */
3218 		dumper->cur_seq = log_first_seq;
3219 		dumper->cur_idx = log_first_idx;
3220 	}
3221 
3222 	/* last entry */
3223 	if (dumper->cur_seq >= log_next_seq)
3224 		goto out;
3225 
3226 	msg = log_from_idx(dumper->cur_idx);
3227 	l = msg_print_text(msg, syslog, printk_time, line, size);
3228 
3229 	dumper->cur_idx = log_next(dumper->cur_idx);
3230 	dumper->cur_seq++;
3231 	ret = true;
3232 out:
3233 	if (len)
3234 		*len = l;
3235 	return ret;
3236 }
3237 
3238 /**
3239  * kmsg_dump_get_line - retrieve one kmsg log line
3240  * @dumper: registered kmsg dumper
3241  * @syslog: include the "<4>" prefixes
3242  * @line: buffer to copy the line to
3243  * @size: maximum size of the buffer
3244  * @len: length of line placed into buffer
3245  *
3246  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3247  * record, and copy one record into the provided buffer.
3248  *
3249  * Consecutive calls will return the next available record moving
3250  * towards the end of the buffer with the youngest messages.
3251  *
3252  * A return value of FALSE indicates that there are no more records to
3253  * read.
3254  */
3255 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3256 			char *line, size_t size, size_t *len)
3257 {
3258 	unsigned long flags;
3259 	bool ret;
3260 
3261 	logbuf_lock_irqsave(flags);
3262 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3263 	logbuf_unlock_irqrestore(flags);
3264 
3265 	return ret;
3266 }
3267 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3268 
3269 /**
3270  * kmsg_dump_get_buffer - copy kmsg log lines
3271  * @dumper: registered kmsg dumper
3272  * @syslog: include the "<4>" prefixes
3273  * @buf: buffer to copy the line to
3274  * @size: maximum size of the buffer
3275  * @len: length of line placed into buffer
3276  *
3277  * Start at the end of the kmsg buffer and fill the provided buffer
3278  * with as many of the the *youngest* kmsg records that fit into it.
3279  * If the buffer is large enough, all available kmsg records will be
3280  * copied with a single call.
3281  *
3282  * Consecutive calls will fill the buffer with the next block of
3283  * available older records, not including the earlier retrieved ones.
3284  *
3285  * A return value of FALSE indicates that there are no more records to
3286  * read.
3287  */
3288 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3289 			  char *buf, size_t size, size_t *len)
3290 {
3291 	unsigned long flags;
3292 	u64 seq;
3293 	u32 idx;
3294 	u64 next_seq;
3295 	u32 next_idx;
3296 	size_t l = 0;
3297 	bool ret = false;
3298 	bool time = printk_time;
3299 
3300 	if (!dumper->active)
3301 		goto out;
3302 
3303 	logbuf_lock_irqsave(flags);
3304 	if (dumper->cur_seq < log_first_seq) {
3305 		/* messages are gone, move to first available one */
3306 		dumper->cur_seq = log_first_seq;
3307 		dumper->cur_idx = log_first_idx;
3308 	}
3309 
3310 	/* last entry */
3311 	if (dumper->cur_seq >= dumper->next_seq) {
3312 		logbuf_unlock_irqrestore(flags);
3313 		goto out;
3314 	}
3315 
3316 	/* calculate length of entire buffer */
3317 	seq = dumper->cur_seq;
3318 	idx = dumper->cur_idx;
3319 	while (seq < dumper->next_seq) {
3320 		struct printk_log *msg = log_from_idx(idx);
3321 
3322 		l += msg_print_text(msg, true, time, NULL, 0);
3323 		idx = log_next(idx);
3324 		seq++;
3325 	}
3326 
3327 	/* move first record forward until length fits into the buffer */
3328 	seq = dumper->cur_seq;
3329 	idx = dumper->cur_idx;
3330 	while (l >= size && seq < dumper->next_seq) {
3331 		struct printk_log *msg = log_from_idx(idx);
3332 
3333 		l -= msg_print_text(msg, true, time, NULL, 0);
3334 		idx = log_next(idx);
3335 		seq++;
3336 	}
3337 
3338 	/* last message in next interation */
3339 	next_seq = seq;
3340 	next_idx = idx;
3341 
3342 	l = 0;
3343 	while (seq < dumper->next_seq) {
3344 		struct printk_log *msg = log_from_idx(idx);
3345 
3346 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3347 		idx = log_next(idx);
3348 		seq++;
3349 	}
3350 
3351 	dumper->next_seq = next_seq;
3352 	dumper->next_idx = next_idx;
3353 	ret = true;
3354 	logbuf_unlock_irqrestore(flags);
3355 out:
3356 	if (len)
3357 		*len = l;
3358 	return ret;
3359 }
3360 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3361 
3362 /**
3363  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3364  * @dumper: registered kmsg dumper
3365  *
3366  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3367  * kmsg_dump_get_buffer() can be called again and used multiple
3368  * times within the same dumper.dump() callback.
3369  *
3370  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3371  */
3372 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3373 {
3374 	dumper->cur_seq = clear_seq;
3375 	dumper->cur_idx = clear_idx;
3376 	dumper->next_seq = log_next_seq;
3377 	dumper->next_idx = log_next_idx;
3378 }
3379 
3380 /**
3381  * kmsg_dump_rewind - reset the interator
3382  * @dumper: registered kmsg dumper
3383  *
3384  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3385  * kmsg_dump_get_buffer() can be called again and used multiple
3386  * times within the same dumper.dump() callback.
3387  */
3388 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3389 {
3390 	unsigned long flags;
3391 
3392 	logbuf_lock_irqsave(flags);
3393 	kmsg_dump_rewind_nolock(dumper);
3394 	logbuf_unlock_irqrestore(flags);
3395 }
3396 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3397 
3398 #endif
3399