1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/kdb.h> 39 #include <linux/ratelimit.h> 40 #include <linux/kmsg_dump.h> 41 #include <linux/syslog.h> 42 #include <linux/cpu.h> 43 #include <linux/rculist.h> 44 #include <linux/poll.h> 45 #include <linux/irq_work.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #include <trace/events/initcall.h> 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/printk.h> 58 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 /* 75 * Low level drivers may need that to know if they can schedule in 76 * their unblank() callback or not. So let's export it. 77 */ 78 int oops_in_progress; 79 EXPORT_SYMBOL(oops_in_progress); 80 81 /* 82 * console_sem protects the console_drivers list, and also 83 * provides serialisation for access to the entire console 84 * driver system. 85 */ 86 static DEFINE_SEMAPHORE(console_sem); 87 struct console *console_drivers; 88 EXPORT_SYMBOL_GPL(console_drivers); 89 90 /* 91 * System may need to suppress printk message under certain 92 * circumstances, like after kernel panic happens. 93 */ 94 int __read_mostly suppress_printk; 95 96 #ifdef CONFIG_LOCKDEP 97 static struct lockdep_map console_lock_dep_map = { 98 .name = "console_lock" 99 }; 100 #endif 101 102 enum devkmsg_log_bits { 103 __DEVKMSG_LOG_BIT_ON = 0, 104 __DEVKMSG_LOG_BIT_OFF, 105 __DEVKMSG_LOG_BIT_LOCK, 106 }; 107 108 enum devkmsg_log_masks { 109 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 110 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 111 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 112 }; 113 114 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 115 #define DEVKMSG_LOG_MASK_DEFAULT 0 116 117 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 118 119 static int __control_devkmsg(char *str) 120 { 121 size_t len; 122 123 if (!str) 124 return -EINVAL; 125 126 len = str_has_prefix(str, "on"); 127 if (len) { 128 devkmsg_log = DEVKMSG_LOG_MASK_ON; 129 return len; 130 } 131 132 len = str_has_prefix(str, "off"); 133 if (len) { 134 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 135 return len; 136 } 137 138 len = str_has_prefix(str, "ratelimit"); 139 if (len) { 140 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 return len; 142 } 143 144 return -EINVAL; 145 } 146 147 static int __init control_devkmsg(char *str) 148 { 149 if (__control_devkmsg(str) < 0) 150 return 1; 151 152 /* 153 * Set sysctl string accordingly: 154 */ 155 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 156 strcpy(devkmsg_log_str, "on"); 157 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 158 strcpy(devkmsg_log_str, "off"); 159 /* else "ratelimit" which is set by default. */ 160 161 /* 162 * Sysctl cannot change it anymore. The kernel command line setting of 163 * this parameter is to force the setting to be permanent throughout the 164 * runtime of the system. This is a precation measure against userspace 165 * trying to be a smarta** and attempting to change it up on us. 166 */ 167 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 168 169 return 0; 170 } 171 __setup("printk.devkmsg=", control_devkmsg); 172 173 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 174 175 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 176 void __user *buffer, size_t *lenp, loff_t *ppos) 177 { 178 char old_str[DEVKMSG_STR_MAX_SIZE]; 179 unsigned int old; 180 int err; 181 182 if (write) { 183 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 184 return -EINVAL; 185 186 old = devkmsg_log; 187 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 188 } 189 190 err = proc_dostring(table, write, buffer, lenp, ppos); 191 if (err) 192 return err; 193 194 if (write) { 195 err = __control_devkmsg(devkmsg_log_str); 196 197 /* 198 * Do not accept an unknown string OR a known string with 199 * trailing crap... 200 */ 201 if (err < 0 || (err + 1 != *lenp)) { 202 203 /* ... and restore old setting. */ 204 devkmsg_log = old; 205 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 206 207 return -EINVAL; 208 } 209 } 210 211 return 0; 212 } 213 214 /* Number of registered extended console drivers. */ 215 static int nr_ext_console_drivers; 216 217 /* 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 219 * macros instead of functions so that _RET_IP_ contains useful information. 220 */ 221 #define down_console_sem() do { \ 222 down(&console_sem);\ 223 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 224 } while (0) 225 226 static int __down_trylock_console_sem(unsigned long ip) 227 { 228 int lock_failed; 229 unsigned long flags; 230 231 /* 232 * Here and in __up_console_sem() we need to be in safe mode, 233 * because spindump/WARN/etc from under console ->lock will 234 * deadlock in printk()->down_trylock_console_sem() otherwise. 235 */ 236 printk_safe_enter_irqsave(flags); 237 lock_failed = down_trylock(&console_sem); 238 printk_safe_exit_irqrestore(flags); 239 240 if (lock_failed) 241 return 1; 242 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 243 return 0; 244 } 245 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 246 247 static void __up_console_sem(unsigned long ip) 248 { 249 unsigned long flags; 250 251 mutex_release(&console_lock_dep_map, ip); 252 253 printk_safe_enter_irqsave(flags); 254 up(&console_sem); 255 printk_safe_exit_irqrestore(flags); 256 } 257 #define up_console_sem() __up_console_sem(_RET_IP_) 258 259 /* 260 * This is used for debugging the mess that is the VT code by 261 * keeping track if we have the console semaphore held. It's 262 * definitely not the perfect debug tool (we don't know if _WE_ 263 * hold it and are racing, but it helps tracking those weird code 264 * paths in the console code where we end up in places I want 265 * locked without the console sempahore held). 266 */ 267 static int console_locked, console_suspended; 268 269 /* 270 * If exclusive_console is non-NULL then only this console is to be printed to. 271 */ 272 static struct console *exclusive_console; 273 274 /* 275 * Array of consoles built from command line options (console=) 276 */ 277 278 #define MAX_CMDLINECONSOLES 8 279 280 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 281 282 static int preferred_console = -1; 283 int console_set_on_cmdline; 284 EXPORT_SYMBOL(console_set_on_cmdline); 285 286 /* Flag: console code may call schedule() */ 287 static int console_may_schedule; 288 289 enum con_msg_format_flags { 290 MSG_FORMAT_DEFAULT = 0, 291 MSG_FORMAT_SYSLOG = (1 << 0), 292 }; 293 294 static int console_msg_format = MSG_FORMAT_DEFAULT; 295 296 /* 297 * The printk log buffer consists of a chain of concatenated variable 298 * length records. Every record starts with a record header, containing 299 * the overall length of the record. 300 * 301 * The heads to the first and last entry in the buffer, as well as the 302 * sequence numbers of these entries are maintained when messages are 303 * stored. 304 * 305 * If the heads indicate available messages, the length in the header 306 * tells the start next message. A length == 0 for the next message 307 * indicates a wrap-around to the beginning of the buffer. 308 * 309 * Every record carries the monotonic timestamp in microseconds, as well as 310 * the standard userspace syslog level and syslog facility. The usual 311 * kernel messages use LOG_KERN; userspace-injected messages always carry 312 * a matching syslog facility, by default LOG_USER. The origin of every 313 * message can be reliably determined that way. 314 * 315 * The human readable log message directly follows the message header. The 316 * length of the message text is stored in the header, the stored message 317 * is not terminated. 318 * 319 * Optionally, a message can carry a dictionary of properties (key/value pairs), 320 * to provide userspace with a machine-readable message context. 321 * 322 * Examples for well-defined, commonly used property names are: 323 * DEVICE=b12:8 device identifier 324 * b12:8 block dev_t 325 * c127:3 char dev_t 326 * n8 netdev ifindex 327 * +sound:card0 subsystem:devname 328 * SUBSYSTEM=pci driver-core subsystem name 329 * 330 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 331 * follows directly after a '=' character. Every property is terminated by 332 * a '\0' character. The last property is not terminated. 333 * 334 * Example of a message structure: 335 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 336 * 0008 34 00 record is 52 bytes long 337 * 000a 0b 00 text is 11 bytes long 338 * 000c 1f 00 dictionary is 23 bytes long 339 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 340 * 0010 69 74 27 73 20 61 20 6c "it's a l" 341 * 69 6e 65 "ine" 342 * 001b 44 45 56 49 43 "DEVIC" 343 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 344 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 345 * 67 "g" 346 * 0032 00 00 00 padding to next message header 347 * 348 * The 'struct printk_log' buffer header must never be directly exported to 349 * userspace, it is a kernel-private implementation detail that might 350 * need to be changed in the future, when the requirements change. 351 * 352 * /dev/kmsg exports the structured data in the following line format: 353 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 354 * 355 * Users of the export format should ignore possible additional values 356 * separated by ',', and find the message after the ';' character. 357 * 358 * The optional key/value pairs are attached as continuation lines starting 359 * with a space character and terminated by a newline. All possible 360 * non-prinatable characters are escaped in the "\xff" notation. 361 */ 362 363 enum log_flags { 364 LOG_NEWLINE = 2, /* text ended with a newline */ 365 LOG_CONT = 8, /* text is a fragment of a continuation line */ 366 }; 367 368 struct printk_log { 369 u64 ts_nsec; /* timestamp in nanoseconds */ 370 u16 len; /* length of entire record */ 371 u16 text_len; /* length of text buffer */ 372 u16 dict_len; /* length of dictionary buffer */ 373 u8 facility; /* syslog facility */ 374 u8 flags:5; /* internal record flags */ 375 u8 level:3; /* syslog level */ 376 #ifdef CONFIG_PRINTK_CALLER 377 u32 caller_id; /* thread id or processor id */ 378 #endif 379 } 380 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 381 __packed __aligned(4) 382 #endif 383 ; 384 385 /* 386 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 387 * within the scheduler's rq lock. It must be released before calling 388 * console_unlock() or anything else that might wake up a process. 389 */ 390 DEFINE_RAW_SPINLOCK(logbuf_lock); 391 392 /* 393 * Helper macros to lock/unlock logbuf_lock and switch between 394 * printk-safe/unsafe modes. 395 */ 396 #define logbuf_lock_irq() \ 397 do { \ 398 printk_safe_enter_irq(); \ 399 raw_spin_lock(&logbuf_lock); \ 400 } while (0) 401 402 #define logbuf_unlock_irq() \ 403 do { \ 404 raw_spin_unlock(&logbuf_lock); \ 405 printk_safe_exit_irq(); \ 406 } while (0) 407 408 #define logbuf_lock_irqsave(flags) \ 409 do { \ 410 printk_safe_enter_irqsave(flags); \ 411 raw_spin_lock(&logbuf_lock); \ 412 } while (0) 413 414 #define logbuf_unlock_irqrestore(flags) \ 415 do { \ 416 raw_spin_unlock(&logbuf_lock); \ 417 printk_safe_exit_irqrestore(flags); \ 418 } while (0) 419 420 #ifdef CONFIG_PRINTK 421 DECLARE_WAIT_QUEUE_HEAD(log_wait); 422 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 423 static u64 syslog_seq; 424 static u32 syslog_idx; 425 static size_t syslog_partial; 426 static bool syslog_time; 427 428 /* index and sequence number of the first record stored in the buffer */ 429 static u64 log_first_seq; 430 static u32 log_first_idx; 431 432 /* index and sequence number of the next record to store in the buffer */ 433 static u64 log_next_seq; 434 static u32 log_next_idx; 435 436 /* the next printk record to write to the console */ 437 static u64 console_seq; 438 static u32 console_idx; 439 static u64 exclusive_console_stop_seq; 440 441 /* the next printk record to read after the last 'clear' command */ 442 static u64 clear_seq; 443 static u32 clear_idx; 444 445 #ifdef CONFIG_PRINTK_CALLER 446 #define PREFIX_MAX 48 447 #else 448 #define PREFIX_MAX 32 449 #endif 450 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 451 452 #define LOG_LEVEL(v) ((v) & 0x07) 453 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 454 455 /* record buffer */ 456 #define LOG_ALIGN __alignof__(struct printk_log) 457 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 458 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 459 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 460 static char *log_buf = __log_buf; 461 static u32 log_buf_len = __LOG_BUF_LEN; 462 463 /* 464 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 465 * per_cpu_areas are initialised. This variable is set to true when 466 * it's safe to access per-CPU data. 467 */ 468 static bool __printk_percpu_data_ready __read_mostly; 469 470 bool printk_percpu_data_ready(void) 471 { 472 return __printk_percpu_data_ready; 473 } 474 475 /* Return log buffer address */ 476 char *log_buf_addr_get(void) 477 { 478 return log_buf; 479 } 480 481 /* Return log buffer size */ 482 u32 log_buf_len_get(void) 483 { 484 return log_buf_len; 485 } 486 487 /* human readable text of the record */ 488 static char *log_text(const struct printk_log *msg) 489 { 490 return (char *)msg + sizeof(struct printk_log); 491 } 492 493 /* optional key/value pair dictionary attached to the record */ 494 static char *log_dict(const struct printk_log *msg) 495 { 496 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 497 } 498 499 /* get record by index; idx must point to valid msg */ 500 static struct printk_log *log_from_idx(u32 idx) 501 { 502 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 503 504 /* 505 * A length == 0 record is the end of buffer marker. Wrap around and 506 * read the message at the start of the buffer. 507 */ 508 if (!msg->len) 509 return (struct printk_log *)log_buf; 510 return msg; 511 } 512 513 /* get next record; idx must point to valid msg */ 514 static u32 log_next(u32 idx) 515 { 516 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 517 518 /* length == 0 indicates the end of the buffer; wrap */ 519 /* 520 * A length == 0 record is the end of buffer marker. Wrap around and 521 * read the message at the start of the buffer as *this* one, and 522 * return the one after that. 523 */ 524 if (!msg->len) { 525 msg = (struct printk_log *)log_buf; 526 return msg->len; 527 } 528 return idx + msg->len; 529 } 530 531 /* 532 * Check whether there is enough free space for the given message. 533 * 534 * The same values of first_idx and next_idx mean that the buffer 535 * is either empty or full. 536 * 537 * If the buffer is empty, we must respect the position of the indexes. 538 * They cannot be reset to the beginning of the buffer. 539 */ 540 static int logbuf_has_space(u32 msg_size, bool empty) 541 { 542 u32 free; 543 544 if (log_next_idx > log_first_idx || empty) 545 free = max(log_buf_len - log_next_idx, log_first_idx); 546 else 547 free = log_first_idx - log_next_idx; 548 549 /* 550 * We need space also for an empty header that signalizes wrapping 551 * of the buffer. 552 */ 553 return free >= msg_size + sizeof(struct printk_log); 554 } 555 556 static int log_make_free_space(u32 msg_size) 557 { 558 while (log_first_seq < log_next_seq && 559 !logbuf_has_space(msg_size, false)) { 560 /* drop old messages until we have enough contiguous space */ 561 log_first_idx = log_next(log_first_idx); 562 log_first_seq++; 563 } 564 565 if (clear_seq < log_first_seq) { 566 clear_seq = log_first_seq; 567 clear_idx = log_first_idx; 568 } 569 570 /* sequence numbers are equal, so the log buffer is empty */ 571 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 572 return 0; 573 574 return -ENOMEM; 575 } 576 577 /* compute the message size including the padding bytes */ 578 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 579 { 580 u32 size; 581 582 size = sizeof(struct printk_log) + text_len + dict_len; 583 *pad_len = (-size) & (LOG_ALIGN - 1); 584 size += *pad_len; 585 586 return size; 587 } 588 589 /* 590 * Define how much of the log buffer we could take at maximum. The value 591 * must be greater than two. Note that only half of the buffer is available 592 * when the index points to the middle. 593 */ 594 #define MAX_LOG_TAKE_PART 4 595 static const char trunc_msg[] = "<truncated>"; 596 597 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 598 u16 *dict_len, u32 *pad_len) 599 { 600 /* 601 * The message should not take the whole buffer. Otherwise, it might 602 * get removed too soon. 603 */ 604 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 605 if (*text_len > max_text_len) 606 *text_len = max_text_len; 607 /* enable the warning message */ 608 *trunc_msg_len = strlen(trunc_msg); 609 /* disable the "dict" completely */ 610 *dict_len = 0; 611 /* compute the size again, count also the warning message */ 612 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 613 } 614 615 /* insert record into the buffer, discard old ones, update heads */ 616 static int log_store(u32 caller_id, int facility, int level, 617 enum log_flags flags, u64 ts_nsec, 618 const char *dict, u16 dict_len, 619 const char *text, u16 text_len) 620 { 621 struct printk_log *msg; 622 u32 size, pad_len; 623 u16 trunc_msg_len = 0; 624 625 /* number of '\0' padding bytes to next message */ 626 size = msg_used_size(text_len, dict_len, &pad_len); 627 628 if (log_make_free_space(size)) { 629 /* truncate the message if it is too long for empty buffer */ 630 size = truncate_msg(&text_len, &trunc_msg_len, 631 &dict_len, &pad_len); 632 /* survive when the log buffer is too small for trunc_msg */ 633 if (log_make_free_space(size)) 634 return 0; 635 } 636 637 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 638 /* 639 * This message + an additional empty header does not fit 640 * at the end of the buffer. Add an empty header with len == 0 641 * to signify a wrap around. 642 */ 643 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 644 log_next_idx = 0; 645 } 646 647 /* fill message */ 648 msg = (struct printk_log *)(log_buf + log_next_idx); 649 memcpy(log_text(msg), text, text_len); 650 msg->text_len = text_len; 651 if (trunc_msg_len) { 652 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 653 msg->text_len += trunc_msg_len; 654 } 655 memcpy(log_dict(msg), dict, dict_len); 656 msg->dict_len = dict_len; 657 msg->facility = facility; 658 msg->level = level & 7; 659 msg->flags = flags & 0x1f; 660 if (ts_nsec > 0) 661 msg->ts_nsec = ts_nsec; 662 else 663 msg->ts_nsec = local_clock(); 664 #ifdef CONFIG_PRINTK_CALLER 665 msg->caller_id = caller_id; 666 #endif 667 memset(log_dict(msg) + dict_len, 0, pad_len); 668 msg->len = size; 669 670 /* insert message */ 671 log_next_idx += msg->len; 672 log_next_seq++; 673 674 return msg->text_len; 675 } 676 677 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 678 679 static int syslog_action_restricted(int type) 680 { 681 if (dmesg_restrict) 682 return 1; 683 /* 684 * Unless restricted, we allow "read all" and "get buffer size" 685 * for everybody. 686 */ 687 return type != SYSLOG_ACTION_READ_ALL && 688 type != SYSLOG_ACTION_SIZE_BUFFER; 689 } 690 691 static int check_syslog_permissions(int type, int source) 692 { 693 /* 694 * If this is from /proc/kmsg and we've already opened it, then we've 695 * already done the capabilities checks at open time. 696 */ 697 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 698 goto ok; 699 700 if (syslog_action_restricted(type)) { 701 if (capable(CAP_SYSLOG)) 702 goto ok; 703 /* 704 * For historical reasons, accept CAP_SYS_ADMIN too, with 705 * a warning. 706 */ 707 if (capable(CAP_SYS_ADMIN)) { 708 pr_warn_once("%s (%d): Attempt to access syslog with " 709 "CAP_SYS_ADMIN but no CAP_SYSLOG " 710 "(deprecated).\n", 711 current->comm, task_pid_nr(current)); 712 goto ok; 713 } 714 return -EPERM; 715 } 716 ok: 717 return security_syslog(type); 718 } 719 720 static void append_char(char **pp, char *e, char c) 721 { 722 if (*pp < e) 723 *(*pp)++ = c; 724 } 725 726 static ssize_t msg_print_ext_header(char *buf, size_t size, 727 struct printk_log *msg, u64 seq) 728 { 729 u64 ts_usec = msg->ts_nsec; 730 char caller[20]; 731 #ifdef CONFIG_PRINTK_CALLER 732 u32 id = msg->caller_id; 733 734 snprintf(caller, sizeof(caller), ",caller=%c%u", 735 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 736 #else 737 caller[0] = '\0'; 738 #endif 739 740 do_div(ts_usec, 1000); 741 742 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 743 (msg->facility << 3) | msg->level, seq, ts_usec, 744 msg->flags & LOG_CONT ? 'c' : '-', caller); 745 } 746 747 static ssize_t msg_print_ext_body(char *buf, size_t size, 748 char *dict, size_t dict_len, 749 char *text, size_t text_len) 750 { 751 char *p = buf, *e = buf + size; 752 size_t i; 753 754 /* escape non-printable characters */ 755 for (i = 0; i < text_len; i++) { 756 unsigned char c = text[i]; 757 758 if (c < ' ' || c >= 127 || c == '\\') 759 p += scnprintf(p, e - p, "\\x%02x", c); 760 else 761 append_char(&p, e, c); 762 } 763 append_char(&p, e, '\n'); 764 765 if (dict_len) { 766 bool line = true; 767 768 for (i = 0; i < dict_len; i++) { 769 unsigned char c = dict[i]; 770 771 if (line) { 772 append_char(&p, e, ' '); 773 line = false; 774 } 775 776 if (c == '\0') { 777 append_char(&p, e, '\n'); 778 line = true; 779 continue; 780 } 781 782 if (c < ' ' || c >= 127 || c == '\\') { 783 p += scnprintf(p, e - p, "\\x%02x", c); 784 continue; 785 } 786 787 append_char(&p, e, c); 788 } 789 append_char(&p, e, '\n'); 790 } 791 792 return p - buf; 793 } 794 795 /* /dev/kmsg - userspace message inject/listen interface */ 796 struct devkmsg_user { 797 u64 seq; 798 u32 idx; 799 struct ratelimit_state rs; 800 struct mutex lock; 801 char buf[CONSOLE_EXT_LOG_MAX]; 802 }; 803 804 static __printf(3, 4) __cold 805 int devkmsg_emit(int facility, int level, const char *fmt, ...) 806 { 807 va_list args; 808 int r; 809 810 va_start(args, fmt); 811 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 812 va_end(args); 813 814 return r; 815 } 816 817 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 818 { 819 char *buf, *line; 820 int level = default_message_loglevel; 821 int facility = 1; /* LOG_USER */ 822 struct file *file = iocb->ki_filp; 823 struct devkmsg_user *user = file->private_data; 824 size_t len = iov_iter_count(from); 825 ssize_t ret = len; 826 827 if (!user || len > LOG_LINE_MAX) 828 return -EINVAL; 829 830 /* Ignore when user logging is disabled. */ 831 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 832 return len; 833 834 /* Ratelimit when not explicitly enabled. */ 835 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 836 if (!___ratelimit(&user->rs, current->comm)) 837 return ret; 838 } 839 840 buf = kmalloc(len+1, GFP_KERNEL); 841 if (buf == NULL) 842 return -ENOMEM; 843 844 buf[len] = '\0'; 845 if (!copy_from_iter_full(buf, len, from)) { 846 kfree(buf); 847 return -EFAULT; 848 } 849 850 /* 851 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 852 * the decimal value represents 32bit, the lower 3 bit are the log 853 * level, the rest are the log facility. 854 * 855 * If no prefix or no userspace facility is specified, we 856 * enforce LOG_USER, to be able to reliably distinguish 857 * kernel-generated messages from userspace-injected ones. 858 */ 859 line = buf; 860 if (line[0] == '<') { 861 char *endp = NULL; 862 unsigned int u; 863 864 u = simple_strtoul(line + 1, &endp, 10); 865 if (endp && endp[0] == '>') { 866 level = LOG_LEVEL(u); 867 if (LOG_FACILITY(u) != 0) 868 facility = LOG_FACILITY(u); 869 endp++; 870 len -= endp - line; 871 line = endp; 872 } 873 } 874 875 devkmsg_emit(facility, level, "%s", line); 876 kfree(buf); 877 return ret; 878 } 879 880 static ssize_t devkmsg_read(struct file *file, char __user *buf, 881 size_t count, loff_t *ppos) 882 { 883 struct devkmsg_user *user = file->private_data; 884 struct printk_log *msg; 885 size_t len; 886 ssize_t ret; 887 888 if (!user) 889 return -EBADF; 890 891 ret = mutex_lock_interruptible(&user->lock); 892 if (ret) 893 return ret; 894 895 logbuf_lock_irq(); 896 while (user->seq == log_next_seq) { 897 if (file->f_flags & O_NONBLOCK) { 898 ret = -EAGAIN; 899 logbuf_unlock_irq(); 900 goto out; 901 } 902 903 logbuf_unlock_irq(); 904 ret = wait_event_interruptible(log_wait, 905 user->seq != log_next_seq); 906 if (ret) 907 goto out; 908 logbuf_lock_irq(); 909 } 910 911 if (user->seq < log_first_seq) { 912 /* our last seen message is gone, return error and reset */ 913 user->idx = log_first_idx; 914 user->seq = log_first_seq; 915 ret = -EPIPE; 916 logbuf_unlock_irq(); 917 goto out; 918 } 919 920 msg = log_from_idx(user->idx); 921 len = msg_print_ext_header(user->buf, sizeof(user->buf), 922 msg, user->seq); 923 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 924 log_dict(msg), msg->dict_len, 925 log_text(msg), msg->text_len); 926 927 user->idx = log_next(user->idx); 928 user->seq++; 929 logbuf_unlock_irq(); 930 931 if (len > count) { 932 ret = -EINVAL; 933 goto out; 934 } 935 936 if (copy_to_user(buf, user->buf, len)) { 937 ret = -EFAULT; 938 goto out; 939 } 940 ret = len; 941 out: 942 mutex_unlock(&user->lock); 943 return ret; 944 } 945 946 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 947 { 948 struct devkmsg_user *user = file->private_data; 949 loff_t ret = 0; 950 951 if (!user) 952 return -EBADF; 953 if (offset) 954 return -ESPIPE; 955 956 logbuf_lock_irq(); 957 switch (whence) { 958 case SEEK_SET: 959 /* the first record */ 960 user->idx = log_first_idx; 961 user->seq = log_first_seq; 962 break; 963 case SEEK_DATA: 964 /* 965 * The first record after the last SYSLOG_ACTION_CLEAR, 966 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 967 * changes no global state, and does not clear anything. 968 */ 969 user->idx = clear_idx; 970 user->seq = clear_seq; 971 break; 972 case SEEK_END: 973 /* after the last record */ 974 user->idx = log_next_idx; 975 user->seq = log_next_seq; 976 break; 977 default: 978 ret = -EINVAL; 979 } 980 logbuf_unlock_irq(); 981 return ret; 982 } 983 984 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 985 { 986 struct devkmsg_user *user = file->private_data; 987 __poll_t ret = 0; 988 989 if (!user) 990 return EPOLLERR|EPOLLNVAL; 991 992 poll_wait(file, &log_wait, wait); 993 994 logbuf_lock_irq(); 995 if (user->seq < log_next_seq) { 996 /* return error when data has vanished underneath us */ 997 if (user->seq < log_first_seq) 998 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 999 else 1000 ret = EPOLLIN|EPOLLRDNORM; 1001 } 1002 logbuf_unlock_irq(); 1003 1004 return ret; 1005 } 1006 1007 static int devkmsg_open(struct inode *inode, struct file *file) 1008 { 1009 struct devkmsg_user *user; 1010 int err; 1011 1012 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 1013 return -EPERM; 1014 1015 /* write-only does not need any file context */ 1016 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 1017 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 1018 SYSLOG_FROM_READER); 1019 if (err) 1020 return err; 1021 } 1022 1023 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 1024 if (!user) 1025 return -ENOMEM; 1026 1027 ratelimit_default_init(&user->rs); 1028 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 1029 1030 mutex_init(&user->lock); 1031 1032 logbuf_lock_irq(); 1033 user->idx = log_first_idx; 1034 user->seq = log_first_seq; 1035 logbuf_unlock_irq(); 1036 1037 file->private_data = user; 1038 return 0; 1039 } 1040 1041 static int devkmsg_release(struct inode *inode, struct file *file) 1042 { 1043 struct devkmsg_user *user = file->private_data; 1044 1045 if (!user) 1046 return 0; 1047 1048 ratelimit_state_exit(&user->rs); 1049 1050 mutex_destroy(&user->lock); 1051 kfree(user); 1052 return 0; 1053 } 1054 1055 const struct file_operations kmsg_fops = { 1056 .open = devkmsg_open, 1057 .read = devkmsg_read, 1058 .write_iter = devkmsg_write, 1059 .llseek = devkmsg_llseek, 1060 .poll = devkmsg_poll, 1061 .release = devkmsg_release, 1062 }; 1063 1064 #ifdef CONFIG_CRASH_CORE 1065 /* 1066 * This appends the listed symbols to /proc/vmcore 1067 * 1068 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1069 * obtain access to symbols that are otherwise very difficult to locate. These 1070 * symbols are specifically used so that utilities can access and extract the 1071 * dmesg log from a vmcore file after a crash. 1072 */ 1073 void log_buf_vmcoreinfo_setup(void) 1074 { 1075 VMCOREINFO_SYMBOL(log_buf); 1076 VMCOREINFO_SYMBOL(log_buf_len); 1077 VMCOREINFO_SYMBOL(log_first_idx); 1078 VMCOREINFO_SYMBOL(clear_idx); 1079 VMCOREINFO_SYMBOL(log_next_idx); 1080 /* 1081 * Export struct printk_log size and field offsets. User space tools can 1082 * parse it and detect any changes to structure down the line. 1083 */ 1084 VMCOREINFO_STRUCT_SIZE(printk_log); 1085 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1086 VMCOREINFO_OFFSET(printk_log, len); 1087 VMCOREINFO_OFFSET(printk_log, text_len); 1088 VMCOREINFO_OFFSET(printk_log, dict_len); 1089 #ifdef CONFIG_PRINTK_CALLER 1090 VMCOREINFO_OFFSET(printk_log, caller_id); 1091 #endif 1092 } 1093 #endif 1094 1095 /* requested log_buf_len from kernel cmdline */ 1096 static unsigned long __initdata new_log_buf_len; 1097 1098 /* we practice scaling the ring buffer by powers of 2 */ 1099 static void __init log_buf_len_update(u64 size) 1100 { 1101 if (size > (u64)LOG_BUF_LEN_MAX) { 1102 size = (u64)LOG_BUF_LEN_MAX; 1103 pr_err("log_buf over 2G is not supported.\n"); 1104 } 1105 1106 if (size) 1107 size = roundup_pow_of_two(size); 1108 if (size > log_buf_len) 1109 new_log_buf_len = (unsigned long)size; 1110 } 1111 1112 /* save requested log_buf_len since it's too early to process it */ 1113 static int __init log_buf_len_setup(char *str) 1114 { 1115 u64 size; 1116 1117 if (!str) 1118 return -EINVAL; 1119 1120 size = memparse(str, &str); 1121 1122 log_buf_len_update(size); 1123 1124 return 0; 1125 } 1126 early_param("log_buf_len", log_buf_len_setup); 1127 1128 #ifdef CONFIG_SMP 1129 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1130 1131 static void __init log_buf_add_cpu(void) 1132 { 1133 unsigned int cpu_extra; 1134 1135 /* 1136 * archs should set up cpu_possible_bits properly with 1137 * set_cpu_possible() after setup_arch() but just in 1138 * case lets ensure this is valid. 1139 */ 1140 if (num_possible_cpus() == 1) 1141 return; 1142 1143 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1144 1145 /* by default this will only continue through for large > 64 CPUs */ 1146 if (cpu_extra <= __LOG_BUF_LEN / 2) 1147 return; 1148 1149 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1150 __LOG_CPU_MAX_BUF_LEN); 1151 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1152 cpu_extra); 1153 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1154 1155 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1156 } 1157 #else /* !CONFIG_SMP */ 1158 static inline void log_buf_add_cpu(void) {} 1159 #endif /* CONFIG_SMP */ 1160 1161 static void __init set_percpu_data_ready(void) 1162 { 1163 printk_safe_init(); 1164 /* Make sure we set this flag only after printk_safe() init is done */ 1165 barrier(); 1166 __printk_percpu_data_ready = true; 1167 } 1168 1169 void __init setup_log_buf(int early) 1170 { 1171 unsigned long flags; 1172 char *new_log_buf; 1173 unsigned int free; 1174 1175 /* 1176 * Some archs call setup_log_buf() multiple times - first is very 1177 * early, e.g. from setup_arch(), and second - when percpu_areas 1178 * are initialised. 1179 */ 1180 if (!early) 1181 set_percpu_data_ready(); 1182 1183 if (log_buf != __log_buf) 1184 return; 1185 1186 if (!early && !new_log_buf_len) 1187 log_buf_add_cpu(); 1188 1189 if (!new_log_buf_len) 1190 return; 1191 1192 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1193 if (unlikely(!new_log_buf)) { 1194 pr_err("log_buf_len: %lu bytes not available\n", 1195 new_log_buf_len); 1196 return; 1197 } 1198 1199 logbuf_lock_irqsave(flags); 1200 log_buf_len = new_log_buf_len; 1201 log_buf = new_log_buf; 1202 new_log_buf_len = 0; 1203 free = __LOG_BUF_LEN - log_next_idx; 1204 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1205 logbuf_unlock_irqrestore(flags); 1206 1207 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1208 pr_info("early log buf free: %u(%u%%)\n", 1209 free, (free * 100) / __LOG_BUF_LEN); 1210 } 1211 1212 static bool __read_mostly ignore_loglevel; 1213 1214 static int __init ignore_loglevel_setup(char *str) 1215 { 1216 ignore_loglevel = true; 1217 pr_info("debug: ignoring loglevel setting.\n"); 1218 1219 return 0; 1220 } 1221 1222 early_param("ignore_loglevel", ignore_loglevel_setup); 1223 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1224 MODULE_PARM_DESC(ignore_loglevel, 1225 "ignore loglevel setting (prints all kernel messages to the console)"); 1226 1227 static bool suppress_message_printing(int level) 1228 { 1229 return (level >= console_loglevel && !ignore_loglevel); 1230 } 1231 1232 #ifdef CONFIG_BOOT_PRINTK_DELAY 1233 1234 static int boot_delay; /* msecs delay after each printk during bootup */ 1235 static unsigned long long loops_per_msec; /* based on boot_delay */ 1236 1237 static int __init boot_delay_setup(char *str) 1238 { 1239 unsigned long lpj; 1240 1241 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1242 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1243 1244 get_option(&str, &boot_delay); 1245 if (boot_delay > 10 * 1000) 1246 boot_delay = 0; 1247 1248 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1249 "HZ: %d, loops_per_msec: %llu\n", 1250 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1251 return 0; 1252 } 1253 early_param("boot_delay", boot_delay_setup); 1254 1255 static void boot_delay_msec(int level) 1256 { 1257 unsigned long long k; 1258 unsigned long timeout; 1259 1260 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1261 || suppress_message_printing(level)) { 1262 return; 1263 } 1264 1265 k = (unsigned long long)loops_per_msec * boot_delay; 1266 1267 timeout = jiffies + msecs_to_jiffies(boot_delay); 1268 while (k) { 1269 k--; 1270 cpu_relax(); 1271 /* 1272 * use (volatile) jiffies to prevent 1273 * compiler reduction; loop termination via jiffies 1274 * is secondary and may or may not happen. 1275 */ 1276 if (time_after(jiffies, timeout)) 1277 break; 1278 touch_nmi_watchdog(); 1279 } 1280 } 1281 #else 1282 static inline void boot_delay_msec(int level) 1283 { 1284 } 1285 #endif 1286 1287 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1288 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1289 1290 static size_t print_syslog(unsigned int level, char *buf) 1291 { 1292 return sprintf(buf, "<%u>", level); 1293 } 1294 1295 static size_t print_time(u64 ts, char *buf) 1296 { 1297 unsigned long rem_nsec = do_div(ts, 1000000000); 1298 1299 return sprintf(buf, "[%5lu.%06lu]", 1300 (unsigned long)ts, rem_nsec / 1000); 1301 } 1302 1303 #ifdef CONFIG_PRINTK_CALLER 1304 static size_t print_caller(u32 id, char *buf) 1305 { 1306 char caller[12]; 1307 1308 snprintf(caller, sizeof(caller), "%c%u", 1309 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1310 return sprintf(buf, "[%6s]", caller); 1311 } 1312 #else 1313 #define print_caller(id, buf) 0 1314 #endif 1315 1316 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1317 bool time, char *buf) 1318 { 1319 size_t len = 0; 1320 1321 if (syslog) 1322 len = print_syslog((msg->facility << 3) | msg->level, buf); 1323 1324 if (time) 1325 len += print_time(msg->ts_nsec, buf + len); 1326 1327 len += print_caller(msg->caller_id, buf + len); 1328 1329 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1330 buf[len++] = ' '; 1331 buf[len] = '\0'; 1332 } 1333 1334 return len; 1335 } 1336 1337 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1338 bool time, char *buf, size_t size) 1339 { 1340 const char *text = log_text(msg); 1341 size_t text_size = msg->text_len; 1342 size_t len = 0; 1343 char prefix[PREFIX_MAX]; 1344 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1345 1346 do { 1347 const char *next = memchr(text, '\n', text_size); 1348 size_t text_len; 1349 1350 if (next) { 1351 text_len = next - text; 1352 next++; 1353 text_size -= next - text; 1354 } else { 1355 text_len = text_size; 1356 } 1357 1358 if (buf) { 1359 if (prefix_len + text_len + 1 >= size - len) 1360 break; 1361 1362 memcpy(buf + len, prefix, prefix_len); 1363 len += prefix_len; 1364 memcpy(buf + len, text, text_len); 1365 len += text_len; 1366 buf[len++] = '\n'; 1367 } else { 1368 /* SYSLOG_ACTION_* buffer size only calculation */ 1369 len += prefix_len + text_len + 1; 1370 } 1371 1372 text = next; 1373 } while (text); 1374 1375 return len; 1376 } 1377 1378 static int syslog_print(char __user *buf, int size) 1379 { 1380 char *text; 1381 struct printk_log *msg; 1382 int len = 0; 1383 1384 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1385 if (!text) 1386 return -ENOMEM; 1387 1388 while (size > 0) { 1389 size_t n; 1390 size_t skip; 1391 1392 logbuf_lock_irq(); 1393 if (syslog_seq < log_first_seq) { 1394 /* messages are gone, move to first one */ 1395 syslog_seq = log_first_seq; 1396 syslog_idx = log_first_idx; 1397 syslog_partial = 0; 1398 } 1399 if (syslog_seq == log_next_seq) { 1400 logbuf_unlock_irq(); 1401 break; 1402 } 1403 1404 /* 1405 * To keep reading/counting partial line consistent, 1406 * use printk_time value as of the beginning of a line. 1407 */ 1408 if (!syslog_partial) 1409 syslog_time = printk_time; 1410 1411 skip = syslog_partial; 1412 msg = log_from_idx(syslog_idx); 1413 n = msg_print_text(msg, true, syslog_time, text, 1414 LOG_LINE_MAX + PREFIX_MAX); 1415 if (n - syslog_partial <= size) { 1416 /* message fits into buffer, move forward */ 1417 syslog_idx = log_next(syslog_idx); 1418 syslog_seq++; 1419 n -= syslog_partial; 1420 syslog_partial = 0; 1421 } else if (!len){ 1422 /* partial read(), remember position */ 1423 n = size; 1424 syslog_partial += n; 1425 } else 1426 n = 0; 1427 logbuf_unlock_irq(); 1428 1429 if (!n) 1430 break; 1431 1432 if (copy_to_user(buf, text + skip, n)) { 1433 if (!len) 1434 len = -EFAULT; 1435 break; 1436 } 1437 1438 len += n; 1439 size -= n; 1440 buf += n; 1441 } 1442 1443 kfree(text); 1444 return len; 1445 } 1446 1447 static int syslog_print_all(char __user *buf, int size, bool clear) 1448 { 1449 char *text; 1450 int len = 0; 1451 u64 next_seq; 1452 u64 seq; 1453 u32 idx; 1454 bool time; 1455 1456 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1457 if (!text) 1458 return -ENOMEM; 1459 1460 time = printk_time; 1461 logbuf_lock_irq(); 1462 /* 1463 * Find first record that fits, including all following records, 1464 * into the user-provided buffer for this dump. 1465 */ 1466 seq = clear_seq; 1467 idx = clear_idx; 1468 while (seq < log_next_seq) { 1469 struct printk_log *msg = log_from_idx(idx); 1470 1471 len += msg_print_text(msg, true, time, NULL, 0); 1472 idx = log_next(idx); 1473 seq++; 1474 } 1475 1476 /* move first record forward until length fits into the buffer */ 1477 seq = clear_seq; 1478 idx = clear_idx; 1479 while (len > size && seq < log_next_seq) { 1480 struct printk_log *msg = log_from_idx(idx); 1481 1482 len -= msg_print_text(msg, true, time, NULL, 0); 1483 idx = log_next(idx); 1484 seq++; 1485 } 1486 1487 /* last message fitting into this dump */ 1488 next_seq = log_next_seq; 1489 1490 len = 0; 1491 while (len >= 0 && seq < next_seq) { 1492 struct printk_log *msg = log_from_idx(idx); 1493 int textlen = msg_print_text(msg, true, time, text, 1494 LOG_LINE_MAX + PREFIX_MAX); 1495 1496 idx = log_next(idx); 1497 seq++; 1498 1499 logbuf_unlock_irq(); 1500 if (copy_to_user(buf + len, text, textlen)) 1501 len = -EFAULT; 1502 else 1503 len += textlen; 1504 logbuf_lock_irq(); 1505 1506 if (seq < log_first_seq) { 1507 /* messages are gone, move to next one */ 1508 seq = log_first_seq; 1509 idx = log_first_idx; 1510 } 1511 } 1512 1513 if (clear) { 1514 clear_seq = log_next_seq; 1515 clear_idx = log_next_idx; 1516 } 1517 logbuf_unlock_irq(); 1518 1519 kfree(text); 1520 return len; 1521 } 1522 1523 static void syslog_clear(void) 1524 { 1525 logbuf_lock_irq(); 1526 clear_seq = log_next_seq; 1527 clear_idx = log_next_idx; 1528 logbuf_unlock_irq(); 1529 } 1530 1531 int do_syslog(int type, char __user *buf, int len, int source) 1532 { 1533 bool clear = false; 1534 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1535 int error; 1536 1537 error = check_syslog_permissions(type, source); 1538 if (error) 1539 return error; 1540 1541 switch (type) { 1542 case SYSLOG_ACTION_CLOSE: /* Close log */ 1543 break; 1544 case SYSLOG_ACTION_OPEN: /* Open log */ 1545 break; 1546 case SYSLOG_ACTION_READ: /* Read from log */ 1547 if (!buf || len < 0) 1548 return -EINVAL; 1549 if (!len) 1550 return 0; 1551 if (!access_ok(buf, len)) 1552 return -EFAULT; 1553 error = wait_event_interruptible(log_wait, 1554 syslog_seq != log_next_seq); 1555 if (error) 1556 return error; 1557 error = syslog_print(buf, len); 1558 break; 1559 /* Read/clear last kernel messages */ 1560 case SYSLOG_ACTION_READ_CLEAR: 1561 clear = true; 1562 /* FALL THRU */ 1563 /* Read last kernel messages */ 1564 case SYSLOG_ACTION_READ_ALL: 1565 if (!buf || len < 0) 1566 return -EINVAL; 1567 if (!len) 1568 return 0; 1569 if (!access_ok(buf, len)) 1570 return -EFAULT; 1571 error = syslog_print_all(buf, len, clear); 1572 break; 1573 /* Clear ring buffer */ 1574 case SYSLOG_ACTION_CLEAR: 1575 syslog_clear(); 1576 break; 1577 /* Disable logging to console */ 1578 case SYSLOG_ACTION_CONSOLE_OFF: 1579 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1580 saved_console_loglevel = console_loglevel; 1581 console_loglevel = minimum_console_loglevel; 1582 break; 1583 /* Enable logging to console */ 1584 case SYSLOG_ACTION_CONSOLE_ON: 1585 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1586 console_loglevel = saved_console_loglevel; 1587 saved_console_loglevel = LOGLEVEL_DEFAULT; 1588 } 1589 break; 1590 /* Set level of messages printed to console */ 1591 case SYSLOG_ACTION_CONSOLE_LEVEL: 1592 if (len < 1 || len > 8) 1593 return -EINVAL; 1594 if (len < minimum_console_loglevel) 1595 len = minimum_console_loglevel; 1596 console_loglevel = len; 1597 /* Implicitly re-enable logging to console */ 1598 saved_console_loglevel = LOGLEVEL_DEFAULT; 1599 break; 1600 /* Number of chars in the log buffer */ 1601 case SYSLOG_ACTION_SIZE_UNREAD: 1602 logbuf_lock_irq(); 1603 if (syslog_seq < log_first_seq) { 1604 /* messages are gone, move to first one */ 1605 syslog_seq = log_first_seq; 1606 syslog_idx = log_first_idx; 1607 syslog_partial = 0; 1608 } 1609 if (source == SYSLOG_FROM_PROC) { 1610 /* 1611 * Short-cut for poll(/"proc/kmsg") which simply checks 1612 * for pending data, not the size; return the count of 1613 * records, not the length. 1614 */ 1615 error = log_next_seq - syslog_seq; 1616 } else { 1617 u64 seq = syslog_seq; 1618 u32 idx = syslog_idx; 1619 bool time = syslog_partial ? syslog_time : printk_time; 1620 1621 while (seq < log_next_seq) { 1622 struct printk_log *msg = log_from_idx(idx); 1623 1624 error += msg_print_text(msg, true, time, NULL, 1625 0); 1626 time = printk_time; 1627 idx = log_next(idx); 1628 seq++; 1629 } 1630 error -= syslog_partial; 1631 } 1632 logbuf_unlock_irq(); 1633 break; 1634 /* Size of the log buffer */ 1635 case SYSLOG_ACTION_SIZE_BUFFER: 1636 error = log_buf_len; 1637 break; 1638 default: 1639 error = -EINVAL; 1640 break; 1641 } 1642 1643 return error; 1644 } 1645 1646 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1647 { 1648 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1649 } 1650 1651 /* 1652 * Special console_lock variants that help to reduce the risk of soft-lockups. 1653 * They allow to pass console_lock to another printk() call using a busy wait. 1654 */ 1655 1656 #ifdef CONFIG_LOCKDEP 1657 static struct lockdep_map console_owner_dep_map = { 1658 .name = "console_owner" 1659 }; 1660 #endif 1661 1662 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1663 static struct task_struct *console_owner; 1664 static bool console_waiter; 1665 1666 /** 1667 * console_lock_spinning_enable - mark beginning of code where another 1668 * thread might safely busy wait 1669 * 1670 * This basically converts console_lock into a spinlock. This marks 1671 * the section where the console_lock owner can not sleep, because 1672 * there may be a waiter spinning (like a spinlock). Also it must be 1673 * ready to hand over the lock at the end of the section. 1674 */ 1675 static void console_lock_spinning_enable(void) 1676 { 1677 raw_spin_lock(&console_owner_lock); 1678 console_owner = current; 1679 raw_spin_unlock(&console_owner_lock); 1680 1681 /* The waiter may spin on us after setting console_owner */ 1682 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1683 } 1684 1685 /** 1686 * console_lock_spinning_disable_and_check - mark end of code where another 1687 * thread was able to busy wait and check if there is a waiter 1688 * 1689 * This is called at the end of the section where spinning is allowed. 1690 * It has two functions. First, it is a signal that it is no longer 1691 * safe to start busy waiting for the lock. Second, it checks if 1692 * there is a busy waiter and passes the lock rights to her. 1693 * 1694 * Important: Callers lose the lock if there was a busy waiter. 1695 * They must not touch items synchronized by console_lock 1696 * in this case. 1697 * 1698 * Return: 1 if the lock rights were passed, 0 otherwise. 1699 */ 1700 static int console_lock_spinning_disable_and_check(void) 1701 { 1702 int waiter; 1703 1704 raw_spin_lock(&console_owner_lock); 1705 waiter = READ_ONCE(console_waiter); 1706 console_owner = NULL; 1707 raw_spin_unlock(&console_owner_lock); 1708 1709 if (!waiter) { 1710 spin_release(&console_owner_dep_map, _THIS_IP_); 1711 return 0; 1712 } 1713 1714 /* The waiter is now free to continue */ 1715 WRITE_ONCE(console_waiter, false); 1716 1717 spin_release(&console_owner_dep_map, _THIS_IP_); 1718 1719 /* 1720 * Hand off console_lock to waiter. The waiter will perform 1721 * the up(). After this, the waiter is the console_lock owner. 1722 */ 1723 mutex_release(&console_lock_dep_map, _THIS_IP_); 1724 return 1; 1725 } 1726 1727 /** 1728 * console_trylock_spinning - try to get console_lock by busy waiting 1729 * 1730 * This allows to busy wait for the console_lock when the current 1731 * owner is running in specially marked sections. It means that 1732 * the current owner is running and cannot reschedule until it 1733 * is ready to lose the lock. 1734 * 1735 * Return: 1 if we got the lock, 0 othrewise 1736 */ 1737 static int console_trylock_spinning(void) 1738 { 1739 struct task_struct *owner = NULL; 1740 bool waiter; 1741 bool spin = false; 1742 unsigned long flags; 1743 1744 if (console_trylock()) 1745 return 1; 1746 1747 printk_safe_enter_irqsave(flags); 1748 1749 raw_spin_lock(&console_owner_lock); 1750 owner = READ_ONCE(console_owner); 1751 waiter = READ_ONCE(console_waiter); 1752 if (!waiter && owner && owner != current) { 1753 WRITE_ONCE(console_waiter, true); 1754 spin = true; 1755 } 1756 raw_spin_unlock(&console_owner_lock); 1757 1758 /* 1759 * If there is an active printk() writing to the 1760 * consoles, instead of having it write our data too, 1761 * see if we can offload that load from the active 1762 * printer, and do some printing ourselves. 1763 * Go into a spin only if there isn't already a waiter 1764 * spinning, and there is an active printer, and 1765 * that active printer isn't us (recursive printk?). 1766 */ 1767 if (!spin) { 1768 printk_safe_exit_irqrestore(flags); 1769 return 0; 1770 } 1771 1772 /* We spin waiting for the owner to release us */ 1773 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1774 /* Owner will clear console_waiter on hand off */ 1775 while (READ_ONCE(console_waiter)) 1776 cpu_relax(); 1777 spin_release(&console_owner_dep_map, _THIS_IP_); 1778 1779 printk_safe_exit_irqrestore(flags); 1780 /* 1781 * The owner passed the console lock to us. 1782 * Since we did not spin on console lock, annotate 1783 * this as a trylock. Otherwise lockdep will 1784 * complain. 1785 */ 1786 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1787 1788 return 1; 1789 } 1790 1791 /* 1792 * Call the console drivers, asking them to write out 1793 * log_buf[start] to log_buf[end - 1]. 1794 * The console_lock must be held. 1795 */ 1796 static void call_console_drivers(const char *ext_text, size_t ext_len, 1797 const char *text, size_t len) 1798 { 1799 struct console *con; 1800 1801 trace_console_rcuidle(text, len); 1802 1803 for_each_console(con) { 1804 if (exclusive_console && con != exclusive_console) 1805 continue; 1806 if (!(con->flags & CON_ENABLED)) 1807 continue; 1808 if (!con->write) 1809 continue; 1810 if (!cpu_online(smp_processor_id()) && 1811 !(con->flags & CON_ANYTIME)) 1812 continue; 1813 if (con->flags & CON_EXTENDED) 1814 con->write(con, ext_text, ext_len); 1815 else 1816 con->write(con, text, len); 1817 } 1818 } 1819 1820 int printk_delay_msec __read_mostly; 1821 1822 static inline void printk_delay(void) 1823 { 1824 if (unlikely(printk_delay_msec)) { 1825 int m = printk_delay_msec; 1826 1827 while (m--) { 1828 mdelay(1); 1829 touch_nmi_watchdog(); 1830 } 1831 } 1832 } 1833 1834 static inline u32 printk_caller_id(void) 1835 { 1836 return in_task() ? task_pid_nr(current) : 1837 0x80000000 + raw_smp_processor_id(); 1838 } 1839 1840 /* 1841 * Continuation lines are buffered, and not committed to the record buffer 1842 * until the line is complete, or a race forces it. The line fragments 1843 * though, are printed immediately to the consoles to ensure everything has 1844 * reached the console in case of a kernel crash. 1845 */ 1846 static struct cont { 1847 char buf[LOG_LINE_MAX]; 1848 size_t len; /* length == 0 means unused buffer */ 1849 u32 caller_id; /* printk_caller_id() of first print */ 1850 u64 ts_nsec; /* time of first print */ 1851 u8 level; /* log level of first message */ 1852 u8 facility; /* log facility of first message */ 1853 enum log_flags flags; /* prefix, newline flags */ 1854 } cont; 1855 1856 static void cont_flush(void) 1857 { 1858 if (cont.len == 0) 1859 return; 1860 1861 log_store(cont.caller_id, cont.facility, cont.level, cont.flags, 1862 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1863 cont.len = 0; 1864 } 1865 1866 static bool cont_add(u32 caller_id, int facility, int level, 1867 enum log_flags flags, const char *text, size_t len) 1868 { 1869 /* If the line gets too long, split it up in separate records. */ 1870 if (cont.len + len > sizeof(cont.buf)) { 1871 cont_flush(); 1872 return false; 1873 } 1874 1875 if (!cont.len) { 1876 cont.facility = facility; 1877 cont.level = level; 1878 cont.caller_id = caller_id; 1879 cont.ts_nsec = local_clock(); 1880 cont.flags = flags; 1881 } 1882 1883 memcpy(cont.buf + cont.len, text, len); 1884 cont.len += len; 1885 1886 // The original flags come from the first line, 1887 // but later continuations can add a newline. 1888 if (flags & LOG_NEWLINE) { 1889 cont.flags |= LOG_NEWLINE; 1890 cont_flush(); 1891 } 1892 1893 return true; 1894 } 1895 1896 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1897 { 1898 const u32 caller_id = printk_caller_id(); 1899 1900 /* 1901 * If an earlier line was buffered, and we're a continuation 1902 * write from the same context, try to add it to the buffer. 1903 */ 1904 if (cont.len) { 1905 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) { 1906 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1907 return text_len; 1908 } 1909 /* Otherwise, make sure it's flushed */ 1910 cont_flush(); 1911 } 1912 1913 /* Skip empty continuation lines that couldn't be added - they just flush */ 1914 if (!text_len && (lflags & LOG_CONT)) 1915 return 0; 1916 1917 /* If it doesn't end in a newline, try to buffer the current line */ 1918 if (!(lflags & LOG_NEWLINE)) { 1919 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1920 return text_len; 1921 } 1922 1923 /* Store it in the record log */ 1924 return log_store(caller_id, facility, level, lflags, 0, 1925 dict, dictlen, text, text_len); 1926 } 1927 1928 /* Must be called under logbuf_lock. */ 1929 int vprintk_store(int facility, int level, 1930 const char *dict, size_t dictlen, 1931 const char *fmt, va_list args) 1932 { 1933 static char textbuf[LOG_LINE_MAX]; 1934 char *text = textbuf; 1935 size_t text_len; 1936 enum log_flags lflags = 0; 1937 1938 /* 1939 * The printf needs to come first; we need the syslog 1940 * prefix which might be passed-in as a parameter. 1941 */ 1942 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1943 1944 /* mark and strip a trailing newline */ 1945 if (text_len && text[text_len-1] == '\n') { 1946 text_len--; 1947 lflags |= LOG_NEWLINE; 1948 } 1949 1950 /* strip kernel syslog prefix and extract log level or control flags */ 1951 if (facility == 0) { 1952 int kern_level; 1953 1954 while ((kern_level = printk_get_level(text)) != 0) { 1955 switch (kern_level) { 1956 case '0' ... '7': 1957 if (level == LOGLEVEL_DEFAULT) 1958 level = kern_level - '0'; 1959 break; 1960 case 'c': /* KERN_CONT */ 1961 lflags |= LOG_CONT; 1962 } 1963 1964 text_len -= 2; 1965 text += 2; 1966 } 1967 } 1968 1969 if (level == LOGLEVEL_DEFAULT) 1970 level = default_message_loglevel; 1971 1972 if (dict) 1973 lflags |= LOG_NEWLINE; 1974 1975 return log_output(facility, level, lflags, 1976 dict, dictlen, text, text_len); 1977 } 1978 1979 asmlinkage int vprintk_emit(int facility, int level, 1980 const char *dict, size_t dictlen, 1981 const char *fmt, va_list args) 1982 { 1983 int printed_len; 1984 bool in_sched = false, pending_output; 1985 unsigned long flags; 1986 u64 curr_log_seq; 1987 1988 /* Suppress unimportant messages after panic happens */ 1989 if (unlikely(suppress_printk)) 1990 return 0; 1991 1992 if (level == LOGLEVEL_SCHED) { 1993 level = LOGLEVEL_DEFAULT; 1994 in_sched = true; 1995 } 1996 1997 boot_delay_msec(level); 1998 printk_delay(); 1999 2000 /* This stops the holder of console_sem just where we want him */ 2001 logbuf_lock_irqsave(flags); 2002 curr_log_seq = log_next_seq; 2003 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 2004 pending_output = (curr_log_seq != log_next_seq); 2005 logbuf_unlock_irqrestore(flags); 2006 2007 /* If called from the scheduler, we can not call up(). */ 2008 if (!in_sched && pending_output) { 2009 /* 2010 * Disable preemption to avoid being preempted while holding 2011 * console_sem which would prevent anyone from printing to 2012 * console 2013 */ 2014 preempt_disable(); 2015 /* 2016 * Try to acquire and then immediately release the console 2017 * semaphore. The release will print out buffers and wake up 2018 * /dev/kmsg and syslog() users. 2019 */ 2020 if (console_trylock_spinning()) 2021 console_unlock(); 2022 preempt_enable(); 2023 } 2024 2025 if (pending_output) 2026 wake_up_klogd(); 2027 return printed_len; 2028 } 2029 EXPORT_SYMBOL(vprintk_emit); 2030 2031 asmlinkage int vprintk(const char *fmt, va_list args) 2032 { 2033 return vprintk_func(fmt, args); 2034 } 2035 EXPORT_SYMBOL(vprintk); 2036 2037 int vprintk_default(const char *fmt, va_list args) 2038 { 2039 int r; 2040 2041 #ifdef CONFIG_KGDB_KDB 2042 /* Allow to pass printk() to kdb but avoid a recursion. */ 2043 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 2044 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 2045 return r; 2046 } 2047 #endif 2048 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 2049 2050 return r; 2051 } 2052 EXPORT_SYMBOL_GPL(vprintk_default); 2053 2054 /** 2055 * printk - print a kernel message 2056 * @fmt: format string 2057 * 2058 * This is printk(). It can be called from any context. We want it to work. 2059 * 2060 * We try to grab the console_lock. If we succeed, it's easy - we log the 2061 * output and call the console drivers. If we fail to get the semaphore, we 2062 * place the output into the log buffer and return. The current holder of 2063 * the console_sem will notice the new output in console_unlock(); and will 2064 * send it to the consoles before releasing the lock. 2065 * 2066 * One effect of this deferred printing is that code which calls printk() and 2067 * then changes console_loglevel may break. This is because console_loglevel 2068 * is inspected when the actual printing occurs. 2069 * 2070 * See also: 2071 * printf(3) 2072 * 2073 * See the vsnprintf() documentation for format string extensions over C99. 2074 */ 2075 asmlinkage __visible int printk(const char *fmt, ...) 2076 { 2077 va_list args; 2078 int r; 2079 2080 va_start(args, fmt); 2081 r = vprintk_func(fmt, args); 2082 va_end(args); 2083 2084 return r; 2085 } 2086 EXPORT_SYMBOL(printk); 2087 2088 #else /* CONFIG_PRINTK */ 2089 2090 #define LOG_LINE_MAX 0 2091 #define PREFIX_MAX 0 2092 #define printk_time false 2093 2094 static u64 syslog_seq; 2095 static u32 syslog_idx; 2096 static u64 console_seq; 2097 static u32 console_idx; 2098 static u64 exclusive_console_stop_seq; 2099 static u64 log_first_seq; 2100 static u32 log_first_idx; 2101 static u64 log_next_seq; 2102 static char *log_text(const struct printk_log *msg) { return NULL; } 2103 static char *log_dict(const struct printk_log *msg) { return NULL; } 2104 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2105 static u32 log_next(u32 idx) { return 0; } 2106 static ssize_t msg_print_ext_header(char *buf, size_t size, 2107 struct printk_log *msg, 2108 u64 seq) { return 0; } 2109 static ssize_t msg_print_ext_body(char *buf, size_t size, 2110 char *dict, size_t dict_len, 2111 char *text, size_t text_len) { return 0; } 2112 static void console_lock_spinning_enable(void) { } 2113 static int console_lock_spinning_disable_and_check(void) { return 0; } 2114 static void call_console_drivers(const char *ext_text, size_t ext_len, 2115 const char *text, size_t len) {} 2116 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2117 bool time, char *buf, size_t size) { return 0; } 2118 static bool suppress_message_printing(int level) { return false; } 2119 2120 #endif /* CONFIG_PRINTK */ 2121 2122 #ifdef CONFIG_EARLY_PRINTK 2123 struct console *early_console; 2124 2125 asmlinkage __visible void early_printk(const char *fmt, ...) 2126 { 2127 va_list ap; 2128 char buf[512]; 2129 int n; 2130 2131 if (!early_console) 2132 return; 2133 2134 va_start(ap, fmt); 2135 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2136 va_end(ap); 2137 2138 early_console->write(early_console, buf, n); 2139 } 2140 #endif 2141 2142 static int __add_preferred_console(char *name, int idx, char *options, 2143 char *brl_options) 2144 { 2145 struct console_cmdline *c; 2146 int i; 2147 2148 /* 2149 * See if this tty is not yet registered, and 2150 * if we have a slot free. 2151 */ 2152 for (i = 0, c = console_cmdline; 2153 i < MAX_CMDLINECONSOLES && c->name[0]; 2154 i++, c++) { 2155 if (strcmp(c->name, name) == 0 && c->index == idx) { 2156 if (!brl_options) 2157 preferred_console = i; 2158 return 0; 2159 } 2160 } 2161 if (i == MAX_CMDLINECONSOLES) 2162 return -E2BIG; 2163 if (!brl_options) 2164 preferred_console = i; 2165 strlcpy(c->name, name, sizeof(c->name)); 2166 c->options = options; 2167 braille_set_options(c, brl_options); 2168 2169 c->index = idx; 2170 return 0; 2171 } 2172 2173 static int __init console_msg_format_setup(char *str) 2174 { 2175 if (!strcmp(str, "syslog")) 2176 console_msg_format = MSG_FORMAT_SYSLOG; 2177 if (!strcmp(str, "default")) 2178 console_msg_format = MSG_FORMAT_DEFAULT; 2179 return 1; 2180 } 2181 __setup("console_msg_format=", console_msg_format_setup); 2182 2183 /* 2184 * Set up a console. Called via do_early_param() in init/main.c 2185 * for each "console=" parameter in the boot command line. 2186 */ 2187 static int __init console_setup(char *str) 2188 { 2189 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2190 char *s, *options, *brl_options = NULL; 2191 int idx; 2192 2193 if (_braille_console_setup(&str, &brl_options)) 2194 return 1; 2195 2196 /* 2197 * Decode str into name, index, options. 2198 */ 2199 if (str[0] >= '0' && str[0] <= '9') { 2200 strcpy(buf, "ttyS"); 2201 strncpy(buf + 4, str, sizeof(buf) - 5); 2202 } else { 2203 strncpy(buf, str, sizeof(buf) - 1); 2204 } 2205 buf[sizeof(buf) - 1] = 0; 2206 options = strchr(str, ','); 2207 if (options) 2208 *(options++) = 0; 2209 #ifdef __sparc__ 2210 if (!strcmp(str, "ttya")) 2211 strcpy(buf, "ttyS0"); 2212 if (!strcmp(str, "ttyb")) 2213 strcpy(buf, "ttyS1"); 2214 #endif 2215 for (s = buf; *s; s++) 2216 if (isdigit(*s) || *s == ',') 2217 break; 2218 idx = simple_strtoul(s, NULL, 10); 2219 *s = 0; 2220 2221 __add_preferred_console(buf, idx, options, brl_options); 2222 console_set_on_cmdline = 1; 2223 return 1; 2224 } 2225 __setup("console=", console_setup); 2226 2227 /** 2228 * add_preferred_console - add a device to the list of preferred consoles. 2229 * @name: device name 2230 * @idx: device index 2231 * @options: options for this console 2232 * 2233 * The last preferred console added will be used for kernel messages 2234 * and stdin/out/err for init. Normally this is used by console_setup 2235 * above to handle user-supplied console arguments; however it can also 2236 * be used by arch-specific code either to override the user or more 2237 * commonly to provide a default console (ie from PROM variables) when 2238 * the user has not supplied one. 2239 */ 2240 int add_preferred_console(char *name, int idx, char *options) 2241 { 2242 return __add_preferred_console(name, idx, options, NULL); 2243 } 2244 2245 bool console_suspend_enabled = true; 2246 EXPORT_SYMBOL(console_suspend_enabled); 2247 2248 static int __init console_suspend_disable(char *str) 2249 { 2250 console_suspend_enabled = false; 2251 return 1; 2252 } 2253 __setup("no_console_suspend", console_suspend_disable); 2254 module_param_named(console_suspend, console_suspend_enabled, 2255 bool, S_IRUGO | S_IWUSR); 2256 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2257 " and hibernate operations"); 2258 2259 /** 2260 * suspend_console - suspend the console subsystem 2261 * 2262 * This disables printk() while we go into suspend states 2263 */ 2264 void suspend_console(void) 2265 { 2266 if (!console_suspend_enabled) 2267 return; 2268 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2269 console_lock(); 2270 console_suspended = 1; 2271 up_console_sem(); 2272 } 2273 2274 void resume_console(void) 2275 { 2276 if (!console_suspend_enabled) 2277 return; 2278 down_console_sem(); 2279 console_suspended = 0; 2280 console_unlock(); 2281 } 2282 2283 /** 2284 * console_cpu_notify - print deferred console messages after CPU hotplug 2285 * @cpu: unused 2286 * 2287 * If printk() is called from a CPU that is not online yet, the messages 2288 * will be printed on the console only if there are CON_ANYTIME consoles. 2289 * This function is called when a new CPU comes online (or fails to come 2290 * up) or goes offline. 2291 */ 2292 static int console_cpu_notify(unsigned int cpu) 2293 { 2294 if (!cpuhp_tasks_frozen) { 2295 /* If trylock fails, someone else is doing the printing */ 2296 if (console_trylock()) 2297 console_unlock(); 2298 } 2299 return 0; 2300 } 2301 2302 /** 2303 * console_lock - lock the console system for exclusive use. 2304 * 2305 * Acquires a lock which guarantees that the caller has 2306 * exclusive access to the console system and the console_drivers list. 2307 * 2308 * Can sleep, returns nothing. 2309 */ 2310 void console_lock(void) 2311 { 2312 might_sleep(); 2313 2314 down_console_sem(); 2315 if (console_suspended) 2316 return; 2317 console_locked = 1; 2318 console_may_schedule = 1; 2319 } 2320 EXPORT_SYMBOL(console_lock); 2321 2322 /** 2323 * console_trylock - try to lock the console system for exclusive use. 2324 * 2325 * Try to acquire a lock which guarantees that the caller has exclusive 2326 * access to the console system and the console_drivers list. 2327 * 2328 * returns 1 on success, and 0 on failure to acquire the lock. 2329 */ 2330 int console_trylock(void) 2331 { 2332 if (down_trylock_console_sem()) 2333 return 0; 2334 if (console_suspended) { 2335 up_console_sem(); 2336 return 0; 2337 } 2338 console_locked = 1; 2339 console_may_schedule = 0; 2340 return 1; 2341 } 2342 EXPORT_SYMBOL(console_trylock); 2343 2344 int is_console_locked(void) 2345 { 2346 return console_locked; 2347 } 2348 EXPORT_SYMBOL(is_console_locked); 2349 2350 /* 2351 * Check if we have any console that is capable of printing while cpu is 2352 * booting or shutting down. Requires console_sem. 2353 */ 2354 static int have_callable_console(void) 2355 { 2356 struct console *con; 2357 2358 for_each_console(con) 2359 if ((con->flags & CON_ENABLED) && 2360 (con->flags & CON_ANYTIME)) 2361 return 1; 2362 2363 return 0; 2364 } 2365 2366 /* 2367 * Can we actually use the console at this time on this cpu? 2368 * 2369 * Console drivers may assume that per-cpu resources have been allocated. So 2370 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2371 * call them until this CPU is officially up. 2372 */ 2373 static inline int can_use_console(void) 2374 { 2375 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2376 } 2377 2378 /** 2379 * console_unlock - unlock the console system 2380 * 2381 * Releases the console_lock which the caller holds on the console system 2382 * and the console driver list. 2383 * 2384 * While the console_lock was held, console output may have been buffered 2385 * by printk(). If this is the case, console_unlock(); emits 2386 * the output prior to releasing the lock. 2387 * 2388 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2389 * 2390 * console_unlock(); may be called from any context. 2391 */ 2392 void console_unlock(void) 2393 { 2394 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2395 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2396 unsigned long flags; 2397 bool do_cond_resched, retry; 2398 2399 if (console_suspended) { 2400 up_console_sem(); 2401 return; 2402 } 2403 2404 /* 2405 * Console drivers are called with interrupts disabled, so 2406 * @console_may_schedule should be cleared before; however, we may 2407 * end up dumping a lot of lines, for example, if called from 2408 * console registration path, and should invoke cond_resched() 2409 * between lines if allowable. Not doing so can cause a very long 2410 * scheduling stall on a slow console leading to RCU stall and 2411 * softlockup warnings which exacerbate the issue with more 2412 * messages practically incapacitating the system. 2413 * 2414 * console_trylock() is not able to detect the preemptive 2415 * context reliably. Therefore the value must be stored before 2416 * and cleared after the the "again" goto label. 2417 */ 2418 do_cond_resched = console_may_schedule; 2419 again: 2420 console_may_schedule = 0; 2421 2422 /* 2423 * We released the console_sem lock, so we need to recheck if 2424 * cpu is online and (if not) is there at least one CON_ANYTIME 2425 * console. 2426 */ 2427 if (!can_use_console()) { 2428 console_locked = 0; 2429 up_console_sem(); 2430 return; 2431 } 2432 2433 for (;;) { 2434 struct printk_log *msg; 2435 size_t ext_len = 0; 2436 size_t len; 2437 2438 printk_safe_enter_irqsave(flags); 2439 raw_spin_lock(&logbuf_lock); 2440 if (console_seq < log_first_seq) { 2441 len = sprintf(text, 2442 "** %llu printk messages dropped **\n", 2443 log_first_seq - console_seq); 2444 2445 /* messages are gone, move to first one */ 2446 console_seq = log_first_seq; 2447 console_idx = log_first_idx; 2448 } else { 2449 len = 0; 2450 } 2451 skip: 2452 if (console_seq == log_next_seq) 2453 break; 2454 2455 msg = log_from_idx(console_idx); 2456 if (suppress_message_printing(msg->level)) { 2457 /* 2458 * Skip record we have buffered and already printed 2459 * directly to the console when we received it, and 2460 * record that has level above the console loglevel. 2461 */ 2462 console_idx = log_next(console_idx); 2463 console_seq++; 2464 goto skip; 2465 } 2466 2467 /* Output to all consoles once old messages replayed. */ 2468 if (unlikely(exclusive_console && 2469 console_seq >= exclusive_console_stop_seq)) { 2470 exclusive_console = NULL; 2471 } 2472 2473 len += msg_print_text(msg, 2474 console_msg_format & MSG_FORMAT_SYSLOG, 2475 printk_time, text + len, sizeof(text) - len); 2476 if (nr_ext_console_drivers) { 2477 ext_len = msg_print_ext_header(ext_text, 2478 sizeof(ext_text), 2479 msg, console_seq); 2480 ext_len += msg_print_ext_body(ext_text + ext_len, 2481 sizeof(ext_text) - ext_len, 2482 log_dict(msg), msg->dict_len, 2483 log_text(msg), msg->text_len); 2484 } 2485 console_idx = log_next(console_idx); 2486 console_seq++; 2487 raw_spin_unlock(&logbuf_lock); 2488 2489 /* 2490 * While actively printing out messages, if another printk() 2491 * were to occur on another CPU, it may wait for this one to 2492 * finish. This task can not be preempted if there is a 2493 * waiter waiting to take over. 2494 */ 2495 console_lock_spinning_enable(); 2496 2497 stop_critical_timings(); /* don't trace print latency */ 2498 call_console_drivers(ext_text, ext_len, text, len); 2499 start_critical_timings(); 2500 2501 if (console_lock_spinning_disable_and_check()) { 2502 printk_safe_exit_irqrestore(flags); 2503 return; 2504 } 2505 2506 printk_safe_exit_irqrestore(flags); 2507 2508 if (do_cond_resched) 2509 cond_resched(); 2510 } 2511 2512 console_locked = 0; 2513 2514 raw_spin_unlock(&logbuf_lock); 2515 2516 up_console_sem(); 2517 2518 /* 2519 * Someone could have filled up the buffer again, so re-check if there's 2520 * something to flush. In case we cannot trylock the console_sem again, 2521 * there's a new owner and the console_unlock() from them will do the 2522 * flush, no worries. 2523 */ 2524 raw_spin_lock(&logbuf_lock); 2525 retry = console_seq != log_next_seq; 2526 raw_spin_unlock(&logbuf_lock); 2527 printk_safe_exit_irqrestore(flags); 2528 2529 if (retry && console_trylock()) 2530 goto again; 2531 } 2532 EXPORT_SYMBOL(console_unlock); 2533 2534 /** 2535 * console_conditional_schedule - yield the CPU if required 2536 * 2537 * If the console code is currently allowed to sleep, and 2538 * if this CPU should yield the CPU to another task, do 2539 * so here. 2540 * 2541 * Must be called within console_lock();. 2542 */ 2543 void __sched console_conditional_schedule(void) 2544 { 2545 if (console_may_schedule) 2546 cond_resched(); 2547 } 2548 EXPORT_SYMBOL(console_conditional_schedule); 2549 2550 void console_unblank(void) 2551 { 2552 struct console *c; 2553 2554 /* 2555 * console_unblank can no longer be called in interrupt context unless 2556 * oops_in_progress is set to 1.. 2557 */ 2558 if (oops_in_progress) { 2559 if (down_trylock_console_sem() != 0) 2560 return; 2561 } else 2562 console_lock(); 2563 2564 console_locked = 1; 2565 console_may_schedule = 0; 2566 for_each_console(c) 2567 if ((c->flags & CON_ENABLED) && c->unblank) 2568 c->unblank(); 2569 console_unlock(); 2570 } 2571 2572 /** 2573 * console_flush_on_panic - flush console content on panic 2574 * @mode: flush all messages in buffer or just the pending ones 2575 * 2576 * Immediately output all pending messages no matter what. 2577 */ 2578 void console_flush_on_panic(enum con_flush_mode mode) 2579 { 2580 /* 2581 * If someone else is holding the console lock, trylock will fail 2582 * and may_schedule may be set. Ignore and proceed to unlock so 2583 * that messages are flushed out. As this can be called from any 2584 * context and we don't want to get preempted while flushing, 2585 * ensure may_schedule is cleared. 2586 */ 2587 console_trylock(); 2588 console_may_schedule = 0; 2589 2590 if (mode == CONSOLE_REPLAY_ALL) { 2591 unsigned long flags; 2592 2593 logbuf_lock_irqsave(flags); 2594 console_seq = log_first_seq; 2595 console_idx = log_first_idx; 2596 logbuf_unlock_irqrestore(flags); 2597 } 2598 console_unlock(); 2599 } 2600 2601 /* 2602 * Return the console tty driver structure and its associated index 2603 */ 2604 struct tty_driver *console_device(int *index) 2605 { 2606 struct console *c; 2607 struct tty_driver *driver = NULL; 2608 2609 console_lock(); 2610 for_each_console(c) { 2611 if (!c->device) 2612 continue; 2613 driver = c->device(c, index); 2614 if (driver) 2615 break; 2616 } 2617 console_unlock(); 2618 return driver; 2619 } 2620 2621 /* 2622 * Prevent further output on the passed console device so that (for example) 2623 * serial drivers can disable console output before suspending a port, and can 2624 * re-enable output afterwards. 2625 */ 2626 void console_stop(struct console *console) 2627 { 2628 console_lock(); 2629 console->flags &= ~CON_ENABLED; 2630 console_unlock(); 2631 } 2632 EXPORT_SYMBOL(console_stop); 2633 2634 void console_start(struct console *console) 2635 { 2636 console_lock(); 2637 console->flags |= CON_ENABLED; 2638 console_unlock(); 2639 } 2640 EXPORT_SYMBOL(console_start); 2641 2642 static int __read_mostly keep_bootcon; 2643 2644 static int __init keep_bootcon_setup(char *str) 2645 { 2646 keep_bootcon = 1; 2647 pr_info("debug: skip boot console de-registration.\n"); 2648 2649 return 0; 2650 } 2651 2652 early_param("keep_bootcon", keep_bootcon_setup); 2653 2654 /* 2655 * The console driver calls this routine during kernel initialization 2656 * to register the console printing procedure with printk() and to 2657 * print any messages that were printed by the kernel before the 2658 * console driver was initialized. 2659 * 2660 * This can happen pretty early during the boot process (because of 2661 * early_printk) - sometimes before setup_arch() completes - be careful 2662 * of what kernel features are used - they may not be initialised yet. 2663 * 2664 * There are two types of consoles - bootconsoles (early_printk) and 2665 * "real" consoles (everything which is not a bootconsole) which are 2666 * handled differently. 2667 * - Any number of bootconsoles can be registered at any time. 2668 * - As soon as a "real" console is registered, all bootconsoles 2669 * will be unregistered automatically. 2670 * - Once a "real" console is registered, any attempt to register a 2671 * bootconsoles will be rejected 2672 */ 2673 void register_console(struct console *newcon) 2674 { 2675 int i; 2676 unsigned long flags; 2677 struct console *bcon = NULL; 2678 struct console_cmdline *c; 2679 static bool has_preferred; 2680 2681 for_each_console(bcon) { 2682 if (WARN(bcon == newcon, "console '%s%d' already registered\n", 2683 bcon->name, bcon->index)) 2684 return; 2685 } 2686 2687 /* 2688 * before we register a new CON_BOOT console, make sure we don't 2689 * already have a valid console 2690 */ 2691 if (newcon->flags & CON_BOOT) { 2692 for_each_console(bcon) { 2693 if (!(bcon->flags & CON_BOOT)) { 2694 pr_info("Too late to register bootconsole %s%d\n", 2695 newcon->name, newcon->index); 2696 return; 2697 } 2698 } 2699 } 2700 2701 if (console_drivers && console_drivers->flags & CON_BOOT) 2702 bcon = console_drivers; 2703 2704 if (!has_preferred || bcon || !console_drivers) 2705 has_preferred = preferred_console >= 0; 2706 2707 /* 2708 * See if we want to use this console driver. If we 2709 * didn't select a console we take the first one 2710 * that registers here. 2711 */ 2712 if (!has_preferred) { 2713 if (newcon->index < 0) 2714 newcon->index = 0; 2715 if (newcon->setup == NULL || 2716 newcon->setup(newcon, NULL) == 0) { 2717 newcon->flags |= CON_ENABLED; 2718 if (newcon->device) { 2719 newcon->flags |= CON_CONSDEV; 2720 has_preferred = true; 2721 } 2722 } 2723 } 2724 2725 /* 2726 * See if this console matches one we selected on 2727 * the command line. 2728 */ 2729 for (i = 0, c = console_cmdline; 2730 i < MAX_CMDLINECONSOLES && c->name[0]; 2731 i++, c++) { 2732 if (!newcon->match || 2733 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2734 /* default matching */ 2735 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2736 if (strcmp(c->name, newcon->name) != 0) 2737 continue; 2738 if (newcon->index >= 0 && 2739 newcon->index != c->index) 2740 continue; 2741 if (newcon->index < 0) 2742 newcon->index = c->index; 2743 2744 if (_braille_register_console(newcon, c)) 2745 return; 2746 2747 if (newcon->setup && 2748 newcon->setup(newcon, c->options) != 0) 2749 break; 2750 } 2751 2752 newcon->flags |= CON_ENABLED; 2753 if (i == preferred_console) { 2754 newcon->flags |= CON_CONSDEV; 2755 has_preferred = true; 2756 } 2757 break; 2758 } 2759 2760 if (!(newcon->flags & CON_ENABLED)) 2761 return; 2762 2763 /* 2764 * If we have a bootconsole, and are switching to a real console, 2765 * don't print everything out again, since when the boot console, and 2766 * the real console are the same physical device, it's annoying to 2767 * see the beginning boot messages twice 2768 */ 2769 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2770 newcon->flags &= ~CON_PRINTBUFFER; 2771 2772 /* 2773 * Put this console in the list - keep the 2774 * preferred driver at the head of the list. 2775 */ 2776 console_lock(); 2777 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2778 newcon->next = console_drivers; 2779 console_drivers = newcon; 2780 if (newcon->next) 2781 newcon->next->flags &= ~CON_CONSDEV; 2782 } else { 2783 newcon->next = console_drivers->next; 2784 console_drivers->next = newcon; 2785 } 2786 2787 if (newcon->flags & CON_EXTENDED) 2788 nr_ext_console_drivers++; 2789 2790 if (newcon->flags & CON_PRINTBUFFER) { 2791 /* 2792 * console_unlock(); will print out the buffered messages 2793 * for us. 2794 */ 2795 logbuf_lock_irqsave(flags); 2796 /* 2797 * We're about to replay the log buffer. Only do this to the 2798 * just-registered console to avoid excessive message spam to 2799 * the already-registered consoles. 2800 * 2801 * Set exclusive_console with disabled interrupts to reduce 2802 * race window with eventual console_flush_on_panic() that 2803 * ignores console_lock. 2804 */ 2805 exclusive_console = newcon; 2806 exclusive_console_stop_seq = console_seq; 2807 console_seq = syslog_seq; 2808 console_idx = syslog_idx; 2809 logbuf_unlock_irqrestore(flags); 2810 } 2811 console_unlock(); 2812 console_sysfs_notify(); 2813 2814 /* 2815 * By unregistering the bootconsoles after we enable the real console 2816 * we get the "console xxx enabled" message on all the consoles - 2817 * boot consoles, real consoles, etc - this is to ensure that end 2818 * users know there might be something in the kernel's log buffer that 2819 * went to the bootconsole (that they do not see on the real console) 2820 */ 2821 pr_info("%sconsole [%s%d] enabled\n", 2822 (newcon->flags & CON_BOOT) ? "boot" : "" , 2823 newcon->name, newcon->index); 2824 if (bcon && 2825 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2826 !keep_bootcon) { 2827 /* We need to iterate through all boot consoles, to make 2828 * sure we print everything out, before we unregister them. 2829 */ 2830 for_each_console(bcon) 2831 if (bcon->flags & CON_BOOT) 2832 unregister_console(bcon); 2833 } 2834 } 2835 EXPORT_SYMBOL(register_console); 2836 2837 int unregister_console(struct console *console) 2838 { 2839 struct console *con; 2840 int res; 2841 2842 pr_info("%sconsole [%s%d] disabled\n", 2843 (console->flags & CON_BOOT) ? "boot" : "" , 2844 console->name, console->index); 2845 2846 res = _braille_unregister_console(console); 2847 if (res < 0) 2848 return res; 2849 if (res > 0) 2850 return 0; 2851 2852 res = -ENODEV; 2853 console_lock(); 2854 if (console_drivers == console) { 2855 console_drivers=console->next; 2856 res = 0; 2857 } else { 2858 for_each_console(con) { 2859 if (con->next == console) { 2860 con->next = console->next; 2861 res = 0; 2862 break; 2863 } 2864 } 2865 } 2866 2867 if (res) 2868 goto out_disable_unlock; 2869 2870 if (console->flags & CON_EXTENDED) 2871 nr_ext_console_drivers--; 2872 2873 /* 2874 * If this isn't the last console and it has CON_CONSDEV set, we 2875 * need to set it on the next preferred console. 2876 */ 2877 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2878 console_drivers->flags |= CON_CONSDEV; 2879 2880 console->flags &= ~CON_ENABLED; 2881 console_unlock(); 2882 console_sysfs_notify(); 2883 2884 if (console->exit) 2885 res = console->exit(console); 2886 2887 return res; 2888 2889 out_disable_unlock: 2890 console->flags &= ~CON_ENABLED; 2891 console_unlock(); 2892 2893 return res; 2894 } 2895 EXPORT_SYMBOL(unregister_console); 2896 2897 /* 2898 * Initialize the console device. This is called *early*, so 2899 * we can't necessarily depend on lots of kernel help here. 2900 * Just do some early initializations, and do the complex setup 2901 * later. 2902 */ 2903 void __init console_init(void) 2904 { 2905 int ret; 2906 initcall_t call; 2907 initcall_entry_t *ce; 2908 2909 /* Setup the default TTY line discipline. */ 2910 n_tty_init(); 2911 2912 /* 2913 * set up the console device so that later boot sequences can 2914 * inform about problems etc.. 2915 */ 2916 ce = __con_initcall_start; 2917 trace_initcall_level("console"); 2918 while (ce < __con_initcall_end) { 2919 call = initcall_from_entry(ce); 2920 trace_initcall_start(call); 2921 ret = call(); 2922 trace_initcall_finish(call, ret); 2923 ce++; 2924 } 2925 } 2926 2927 /* 2928 * Some boot consoles access data that is in the init section and which will 2929 * be discarded after the initcalls have been run. To make sure that no code 2930 * will access this data, unregister the boot consoles in a late initcall. 2931 * 2932 * If for some reason, such as deferred probe or the driver being a loadable 2933 * module, the real console hasn't registered yet at this point, there will 2934 * be a brief interval in which no messages are logged to the console, which 2935 * makes it difficult to diagnose problems that occur during this time. 2936 * 2937 * To mitigate this problem somewhat, only unregister consoles whose memory 2938 * intersects with the init section. Note that all other boot consoles will 2939 * get unregistred when the real preferred console is registered. 2940 */ 2941 static int __init printk_late_init(void) 2942 { 2943 struct console *con; 2944 int ret; 2945 2946 for_each_console(con) { 2947 if (!(con->flags & CON_BOOT)) 2948 continue; 2949 2950 /* Check addresses that might be used for enabled consoles. */ 2951 if (init_section_intersects(con, sizeof(*con)) || 2952 init_section_contains(con->write, 0) || 2953 init_section_contains(con->read, 0) || 2954 init_section_contains(con->device, 0) || 2955 init_section_contains(con->unblank, 0) || 2956 init_section_contains(con->data, 0)) { 2957 /* 2958 * Please, consider moving the reported consoles out 2959 * of the init section. 2960 */ 2961 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2962 con->name, con->index); 2963 unregister_console(con); 2964 } 2965 } 2966 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2967 console_cpu_notify); 2968 WARN_ON(ret < 0); 2969 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2970 console_cpu_notify, NULL); 2971 WARN_ON(ret < 0); 2972 return 0; 2973 } 2974 late_initcall(printk_late_init); 2975 2976 #if defined CONFIG_PRINTK 2977 /* 2978 * Delayed printk version, for scheduler-internal messages: 2979 */ 2980 #define PRINTK_PENDING_WAKEUP 0x01 2981 #define PRINTK_PENDING_OUTPUT 0x02 2982 2983 static DEFINE_PER_CPU(int, printk_pending); 2984 2985 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2986 { 2987 int pending = __this_cpu_xchg(printk_pending, 0); 2988 2989 if (pending & PRINTK_PENDING_OUTPUT) { 2990 /* If trylock fails, someone else is doing the printing */ 2991 if (console_trylock()) 2992 console_unlock(); 2993 } 2994 2995 if (pending & PRINTK_PENDING_WAKEUP) 2996 wake_up_interruptible(&log_wait); 2997 } 2998 2999 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 3000 .func = wake_up_klogd_work_func, 3001 .flags = ATOMIC_INIT(IRQ_WORK_LAZY), 3002 }; 3003 3004 void wake_up_klogd(void) 3005 { 3006 if (!printk_percpu_data_ready()) 3007 return; 3008 3009 preempt_disable(); 3010 if (waitqueue_active(&log_wait)) { 3011 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 3012 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3013 } 3014 preempt_enable(); 3015 } 3016 3017 void defer_console_output(void) 3018 { 3019 if (!printk_percpu_data_ready()) 3020 return; 3021 3022 preempt_disable(); 3023 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 3024 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3025 preempt_enable(); 3026 } 3027 3028 int vprintk_deferred(const char *fmt, va_list args) 3029 { 3030 int r; 3031 3032 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 3033 defer_console_output(); 3034 3035 return r; 3036 } 3037 3038 int printk_deferred(const char *fmt, ...) 3039 { 3040 va_list args; 3041 int r; 3042 3043 va_start(args, fmt); 3044 r = vprintk_deferred(fmt, args); 3045 va_end(args); 3046 3047 return r; 3048 } 3049 3050 /* 3051 * printk rate limiting, lifted from the networking subsystem. 3052 * 3053 * This enforces a rate limit: not more than 10 kernel messages 3054 * every 5s to make a denial-of-service attack impossible. 3055 */ 3056 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3057 3058 int __printk_ratelimit(const char *func) 3059 { 3060 return ___ratelimit(&printk_ratelimit_state, func); 3061 } 3062 EXPORT_SYMBOL(__printk_ratelimit); 3063 3064 /** 3065 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3066 * @caller_jiffies: pointer to caller's state 3067 * @interval_msecs: minimum interval between prints 3068 * 3069 * printk_timed_ratelimit() returns true if more than @interval_msecs 3070 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3071 * returned true. 3072 */ 3073 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3074 unsigned int interval_msecs) 3075 { 3076 unsigned long elapsed = jiffies - *caller_jiffies; 3077 3078 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3079 return false; 3080 3081 *caller_jiffies = jiffies; 3082 return true; 3083 } 3084 EXPORT_SYMBOL(printk_timed_ratelimit); 3085 3086 static DEFINE_SPINLOCK(dump_list_lock); 3087 static LIST_HEAD(dump_list); 3088 3089 /** 3090 * kmsg_dump_register - register a kernel log dumper. 3091 * @dumper: pointer to the kmsg_dumper structure 3092 * 3093 * Adds a kernel log dumper to the system. The dump callback in the 3094 * structure will be called when the kernel oopses or panics and must be 3095 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3096 */ 3097 int kmsg_dump_register(struct kmsg_dumper *dumper) 3098 { 3099 unsigned long flags; 3100 int err = -EBUSY; 3101 3102 /* The dump callback needs to be set */ 3103 if (!dumper->dump) 3104 return -EINVAL; 3105 3106 spin_lock_irqsave(&dump_list_lock, flags); 3107 /* Don't allow registering multiple times */ 3108 if (!dumper->registered) { 3109 dumper->registered = 1; 3110 list_add_tail_rcu(&dumper->list, &dump_list); 3111 err = 0; 3112 } 3113 spin_unlock_irqrestore(&dump_list_lock, flags); 3114 3115 return err; 3116 } 3117 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3118 3119 /** 3120 * kmsg_dump_unregister - unregister a kmsg dumper. 3121 * @dumper: pointer to the kmsg_dumper structure 3122 * 3123 * Removes a dump device from the system. Returns zero on success and 3124 * %-EINVAL otherwise. 3125 */ 3126 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3127 { 3128 unsigned long flags; 3129 int err = -EINVAL; 3130 3131 spin_lock_irqsave(&dump_list_lock, flags); 3132 if (dumper->registered) { 3133 dumper->registered = 0; 3134 list_del_rcu(&dumper->list); 3135 err = 0; 3136 } 3137 spin_unlock_irqrestore(&dump_list_lock, flags); 3138 synchronize_rcu(); 3139 3140 return err; 3141 } 3142 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3143 3144 static bool always_kmsg_dump; 3145 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3146 3147 /** 3148 * kmsg_dump - dump kernel log to kernel message dumpers. 3149 * @reason: the reason (oops, panic etc) for dumping 3150 * 3151 * Call each of the registered dumper's dump() callback, which can 3152 * retrieve the kmsg records with kmsg_dump_get_line() or 3153 * kmsg_dump_get_buffer(). 3154 */ 3155 void kmsg_dump(enum kmsg_dump_reason reason) 3156 { 3157 struct kmsg_dumper *dumper; 3158 unsigned long flags; 3159 3160 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3161 return; 3162 3163 rcu_read_lock(); 3164 list_for_each_entry_rcu(dumper, &dump_list, list) { 3165 if (dumper->max_reason && reason > dumper->max_reason) 3166 continue; 3167 3168 /* initialize iterator with data about the stored records */ 3169 dumper->active = true; 3170 3171 logbuf_lock_irqsave(flags); 3172 dumper->cur_seq = clear_seq; 3173 dumper->cur_idx = clear_idx; 3174 dumper->next_seq = log_next_seq; 3175 dumper->next_idx = log_next_idx; 3176 logbuf_unlock_irqrestore(flags); 3177 3178 /* invoke dumper which will iterate over records */ 3179 dumper->dump(dumper, reason); 3180 3181 /* reset iterator */ 3182 dumper->active = false; 3183 } 3184 rcu_read_unlock(); 3185 } 3186 3187 /** 3188 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3189 * @dumper: registered kmsg dumper 3190 * @syslog: include the "<4>" prefixes 3191 * @line: buffer to copy the line to 3192 * @size: maximum size of the buffer 3193 * @len: length of line placed into buffer 3194 * 3195 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3196 * record, and copy one record into the provided buffer. 3197 * 3198 * Consecutive calls will return the next available record moving 3199 * towards the end of the buffer with the youngest messages. 3200 * 3201 * A return value of FALSE indicates that there are no more records to 3202 * read. 3203 * 3204 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3205 */ 3206 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3207 char *line, size_t size, size_t *len) 3208 { 3209 struct printk_log *msg; 3210 size_t l = 0; 3211 bool ret = false; 3212 3213 if (!dumper->active) 3214 goto out; 3215 3216 if (dumper->cur_seq < log_first_seq) { 3217 /* messages are gone, move to first available one */ 3218 dumper->cur_seq = log_first_seq; 3219 dumper->cur_idx = log_first_idx; 3220 } 3221 3222 /* last entry */ 3223 if (dumper->cur_seq >= log_next_seq) 3224 goto out; 3225 3226 msg = log_from_idx(dumper->cur_idx); 3227 l = msg_print_text(msg, syslog, printk_time, line, size); 3228 3229 dumper->cur_idx = log_next(dumper->cur_idx); 3230 dumper->cur_seq++; 3231 ret = true; 3232 out: 3233 if (len) 3234 *len = l; 3235 return ret; 3236 } 3237 3238 /** 3239 * kmsg_dump_get_line - retrieve one kmsg log line 3240 * @dumper: registered kmsg dumper 3241 * @syslog: include the "<4>" prefixes 3242 * @line: buffer to copy the line to 3243 * @size: maximum size of the buffer 3244 * @len: length of line placed into buffer 3245 * 3246 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3247 * record, and copy one record into the provided buffer. 3248 * 3249 * Consecutive calls will return the next available record moving 3250 * towards the end of the buffer with the youngest messages. 3251 * 3252 * A return value of FALSE indicates that there are no more records to 3253 * read. 3254 */ 3255 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3256 char *line, size_t size, size_t *len) 3257 { 3258 unsigned long flags; 3259 bool ret; 3260 3261 logbuf_lock_irqsave(flags); 3262 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3263 logbuf_unlock_irqrestore(flags); 3264 3265 return ret; 3266 } 3267 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3268 3269 /** 3270 * kmsg_dump_get_buffer - copy kmsg log lines 3271 * @dumper: registered kmsg dumper 3272 * @syslog: include the "<4>" prefixes 3273 * @buf: buffer to copy the line to 3274 * @size: maximum size of the buffer 3275 * @len: length of line placed into buffer 3276 * 3277 * Start at the end of the kmsg buffer and fill the provided buffer 3278 * with as many of the the *youngest* kmsg records that fit into it. 3279 * If the buffer is large enough, all available kmsg records will be 3280 * copied with a single call. 3281 * 3282 * Consecutive calls will fill the buffer with the next block of 3283 * available older records, not including the earlier retrieved ones. 3284 * 3285 * A return value of FALSE indicates that there are no more records to 3286 * read. 3287 */ 3288 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3289 char *buf, size_t size, size_t *len) 3290 { 3291 unsigned long flags; 3292 u64 seq; 3293 u32 idx; 3294 u64 next_seq; 3295 u32 next_idx; 3296 size_t l = 0; 3297 bool ret = false; 3298 bool time = printk_time; 3299 3300 if (!dumper->active) 3301 goto out; 3302 3303 logbuf_lock_irqsave(flags); 3304 if (dumper->cur_seq < log_first_seq) { 3305 /* messages are gone, move to first available one */ 3306 dumper->cur_seq = log_first_seq; 3307 dumper->cur_idx = log_first_idx; 3308 } 3309 3310 /* last entry */ 3311 if (dumper->cur_seq >= dumper->next_seq) { 3312 logbuf_unlock_irqrestore(flags); 3313 goto out; 3314 } 3315 3316 /* calculate length of entire buffer */ 3317 seq = dumper->cur_seq; 3318 idx = dumper->cur_idx; 3319 while (seq < dumper->next_seq) { 3320 struct printk_log *msg = log_from_idx(idx); 3321 3322 l += msg_print_text(msg, true, time, NULL, 0); 3323 idx = log_next(idx); 3324 seq++; 3325 } 3326 3327 /* move first record forward until length fits into the buffer */ 3328 seq = dumper->cur_seq; 3329 idx = dumper->cur_idx; 3330 while (l >= size && seq < dumper->next_seq) { 3331 struct printk_log *msg = log_from_idx(idx); 3332 3333 l -= msg_print_text(msg, true, time, NULL, 0); 3334 idx = log_next(idx); 3335 seq++; 3336 } 3337 3338 /* last message in next interation */ 3339 next_seq = seq; 3340 next_idx = idx; 3341 3342 l = 0; 3343 while (seq < dumper->next_seq) { 3344 struct printk_log *msg = log_from_idx(idx); 3345 3346 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3347 idx = log_next(idx); 3348 seq++; 3349 } 3350 3351 dumper->next_seq = next_seq; 3352 dumper->next_idx = next_idx; 3353 ret = true; 3354 logbuf_unlock_irqrestore(flags); 3355 out: 3356 if (len) 3357 *len = l; 3358 return ret; 3359 } 3360 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3361 3362 /** 3363 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3364 * @dumper: registered kmsg dumper 3365 * 3366 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3367 * kmsg_dump_get_buffer() can be called again and used multiple 3368 * times within the same dumper.dump() callback. 3369 * 3370 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3371 */ 3372 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3373 { 3374 dumper->cur_seq = clear_seq; 3375 dumper->cur_idx = clear_idx; 3376 dumper->next_seq = log_next_seq; 3377 dumper->next_idx = log_next_idx; 3378 } 3379 3380 /** 3381 * kmsg_dump_rewind - reset the interator 3382 * @dumper: registered kmsg dumper 3383 * 3384 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3385 * kmsg_dump_get_buffer() can be called again and used multiple 3386 * times within the same dumper.dump() callback. 3387 */ 3388 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3389 { 3390 unsigned long flags; 3391 3392 logbuf_lock_irqsave(flags); 3393 kmsg_dump_rewind_nolock(dumper); 3394 logbuf_unlock_irqrestore(flags); 3395 } 3396 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3397 3398 #endif 3399