1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/tty.h> 22 #include <linux/tty_driver.h> 23 #include <linux/console.h> 24 #include <linux/init.h> 25 #include <linux/jiffies.h> 26 #include <linux/nmi.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/delay.h> 30 #include <linux/smp.h> 31 #include <linux/security.h> 32 #include <linux/bootmem.h> 33 #include <linux/memblock.h> 34 #include <linux/syscalls.h> 35 #include <linux/crash_core.h> 36 #include <linux/kdb.h> 37 #include <linux/ratelimit.h> 38 #include <linux/kmsg_dump.h> 39 #include <linux/syslog.h> 40 #include <linux/cpu.h> 41 #include <linux/notifier.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/utsname.h> 46 #include <linux/ctype.h> 47 #include <linux/uio.h> 48 #include <linux/sched/clock.h> 49 #include <linux/sched/debug.h> 50 #include <linux/sched/task_stack.h> 51 52 #include <linux/uaccess.h> 53 #include <asm/sections.h> 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 69 /* 70 * Low level drivers may need that to know if they can schedule in 71 * their unblank() callback or not. So let's export it. 72 */ 73 int oops_in_progress; 74 EXPORT_SYMBOL(oops_in_progress); 75 76 /* 77 * console_sem protects the console_drivers list, and also 78 * provides serialisation for access to the entire console 79 * driver system. 80 */ 81 static DEFINE_SEMAPHORE(console_sem); 82 struct console *console_drivers; 83 EXPORT_SYMBOL_GPL(console_drivers); 84 85 #ifdef CONFIG_LOCKDEP 86 static struct lockdep_map console_lock_dep_map = { 87 .name = "console_lock" 88 }; 89 #endif 90 91 enum devkmsg_log_bits { 92 __DEVKMSG_LOG_BIT_ON = 0, 93 __DEVKMSG_LOG_BIT_OFF, 94 __DEVKMSG_LOG_BIT_LOCK, 95 }; 96 97 enum devkmsg_log_masks { 98 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 99 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 100 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 101 }; 102 103 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 104 #define DEVKMSG_LOG_MASK_DEFAULT 0 105 106 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 107 108 static int __control_devkmsg(char *str) 109 { 110 if (!str) 111 return -EINVAL; 112 113 if (!strncmp(str, "on", 2)) { 114 devkmsg_log = DEVKMSG_LOG_MASK_ON; 115 return 2; 116 } else if (!strncmp(str, "off", 3)) { 117 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 118 return 3; 119 } else if (!strncmp(str, "ratelimit", 9)) { 120 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 121 return 9; 122 } 123 return -EINVAL; 124 } 125 126 static int __init control_devkmsg(char *str) 127 { 128 if (__control_devkmsg(str) < 0) 129 return 1; 130 131 /* 132 * Set sysctl string accordingly: 133 */ 134 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) { 135 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 136 strncpy(devkmsg_log_str, "on", 2); 137 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) { 138 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE); 139 strncpy(devkmsg_log_str, "off", 3); 140 } 141 /* else "ratelimit" which is set by default. */ 142 143 /* 144 * Sysctl cannot change it anymore. The kernel command line setting of 145 * this parameter is to force the setting to be permanent throughout the 146 * runtime of the system. This is a precation measure against userspace 147 * trying to be a smarta** and attempting to change it up on us. 148 */ 149 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 150 151 return 0; 152 } 153 __setup("printk.devkmsg=", control_devkmsg); 154 155 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 156 157 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 158 void __user *buffer, size_t *lenp, loff_t *ppos) 159 { 160 char old_str[DEVKMSG_STR_MAX_SIZE]; 161 unsigned int old; 162 int err; 163 164 if (write) { 165 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 166 return -EINVAL; 167 168 old = devkmsg_log; 169 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 170 } 171 172 err = proc_dostring(table, write, buffer, lenp, ppos); 173 if (err) 174 return err; 175 176 if (write) { 177 err = __control_devkmsg(devkmsg_log_str); 178 179 /* 180 * Do not accept an unknown string OR a known string with 181 * trailing crap... 182 */ 183 if (err < 0 || (err + 1 != *lenp)) { 184 185 /* ... and restore old setting. */ 186 devkmsg_log = old; 187 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 188 189 return -EINVAL; 190 } 191 } 192 193 return 0; 194 } 195 196 /* 197 * Number of registered extended console drivers. 198 * 199 * If extended consoles are present, in-kernel cont reassembly is disabled 200 * and each fragment is stored as a separate log entry with proper 201 * continuation flag so that every emitted message has full metadata. This 202 * doesn't change the result for regular consoles or /proc/kmsg. For 203 * /dev/kmsg, as long as the reader concatenates messages according to 204 * consecutive continuation flags, the end result should be the same too. 205 */ 206 static int nr_ext_console_drivers; 207 208 /* 209 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 210 * macros instead of functions so that _RET_IP_ contains useful information. 211 */ 212 #define down_console_sem() do { \ 213 down(&console_sem);\ 214 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 215 } while (0) 216 217 static int __down_trylock_console_sem(unsigned long ip) 218 { 219 int lock_failed; 220 unsigned long flags; 221 222 /* 223 * Here and in __up_console_sem() we need to be in safe mode, 224 * because spindump/WARN/etc from under console ->lock will 225 * deadlock in printk()->down_trylock_console_sem() otherwise. 226 */ 227 printk_safe_enter_irqsave(flags); 228 lock_failed = down_trylock(&console_sem); 229 printk_safe_exit_irqrestore(flags); 230 231 if (lock_failed) 232 return 1; 233 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 234 return 0; 235 } 236 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 237 238 static void __up_console_sem(unsigned long ip) 239 { 240 unsigned long flags; 241 242 mutex_release(&console_lock_dep_map, 1, ip); 243 244 printk_safe_enter_irqsave(flags); 245 up(&console_sem); 246 printk_safe_exit_irqrestore(flags); 247 } 248 #define up_console_sem() __up_console_sem(_RET_IP_) 249 250 /* 251 * This is used for debugging the mess that is the VT code by 252 * keeping track if we have the console semaphore held. It's 253 * definitely not the perfect debug tool (we don't know if _WE_ 254 * hold it and are racing, but it helps tracking those weird code 255 * paths in the console code where we end up in places I want 256 * locked without the console sempahore held). 257 */ 258 static int console_locked, console_suspended; 259 260 /* 261 * If exclusive_console is non-NULL then only this console is to be printed to. 262 */ 263 static struct console *exclusive_console; 264 265 /* 266 * Array of consoles built from command line options (console=) 267 */ 268 269 #define MAX_CMDLINECONSOLES 8 270 271 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 272 273 static int preferred_console = -1; 274 int console_set_on_cmdline; 275 EXPORT_SYMBOL(console_set_on_cmdline); 276 277 /* Flag: console code may call schedule() */ 278 static int console_may_schedule; 279 280 /* 281 * The printk log buffer consists of a chain of concatenated variable 282 * length records. Every record starts with a record header, containing 283 * the overall length of the record. 284 * 285 * The heads to the first and last entry in the buffer, as well as the 286 * sequence numbers of these entries are maintained when messages are 287 * stored. 288 * 289 * If the heads indicate available messages, the length in the header 290 * tells the start next message. A length == 0 for the next message 291 * indicates a wrap-around to the beginning of the buffer. 292 * 293 * Every record carries the monotonic timestamp in microseconds, as well as 294 * the standard userspace syslog level and syslog facility. The usual 295 * kernel messages use LOG_KERN; userspace-injected messages always carry 296 * a matching syslog facility, by default LOG_USER. The origin of every 297 * message can be reliably determined that way. 298 * 299 * The human readable log message directly follows the message header. The 300 * length of the message text is stored in the header, the stored message 301 * is not terminated. 302 * 303 * Optionally, a message can carry a dictionary of properties (key/value pairs), 304 * to provide userspace with a machine-readable message context. 305 * 306 * Examples for well-defined, commonly used property names are: 307 * DEVICE=b12:8 device identifier 308 * b12:8 block dev_t 309 * c127:3 char dev_t 310 * n8 netdev ifindex 311 * +sound:card0 subsystem:devname 312 * SUBSYSTEM=pci driver-core subsystem name 313 * 314 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 315 * follows directly after a '=' character. Every property is terminated by 316 * a '\0' character. The last property is not terminated. 317 * 318 * Example of a message structure: 319 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 320 * 0008 34 00 record is 52 bytes long 321 * 000a 0b 00 text is 11 bytes long 322 * 000c 1f 00 dictionary is 23 bytes long 323 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 324 * 0010 69 74 27 73 20 61 20 6c "it's a l" 325 * 69 6e 65 "ine" 326 * 001b 44 45 56 49 43 "DEVIC" 327 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 328 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 329 * 67 "g" 330 * 0032 00 00 00 padding to next message header 331 * 332 * The 'struct printk_log' buffer header must never be directly exported to 333 * userspace, it is a kernel-private implementation detail that might 334 * need to be changed in the future, when the requirements change. 335 * 336 * /dev/kmsg exports the structured data in the following line format: 337 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 338 * 339 * Users of the export format should ignore possible additional values 340 * separated by ',', and find the message after the ';' character. 341 * 342 * The optional key/value pairs are attached as continuation lines starting 343 * with a space character and terminated by a newline. All possible 344 * non-prinatable characters are escaped in the "\xff" notation. 345 */ 346 347 enum log_flags { 348 LOG_NOCONS = 1, /* already flushed, do not print to console */ 349 LOG_NEWLINE = 2, /* text ended with a newline */ 350 LOG_PREFIX = 4, /* text started with a prefix */ 351 LOG_CONT = 8, /* text is a fragment of a continuation line */ 352 }; 353 354 struct printk_log { 355 u64 ts_nsec; /* timestamp in nanoseconds */ 356 u16 len; /* length of entire record */ 357 u16 text_len; /* length of text buffer */ 358 u16 dict_len; /* length of dictionary buffer */ 359 u8 facility; /* syslog facility */ 360 u8 flags:5; /* internal record flags */ 361 u8 level:3; /* syslog level */ 362 } 363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 364 __packed __aligned(4) 365 #endif 366 ; 367 368 /* 369 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 370 * within the scheduler's rq lock. It must be released before calling 371 * console_unlock() or anything else that might wake up a process. 372 */ 373 DEFINE_RAW_SPINLOCK(logbuf_lock); 374 375 /* 376 * Helper macros to lock/unlock logbuf_lock and switch between 377 * printk-safe/unsafe modes. 378 */ 379 #define logbuf_lock_irq() \ 380 do { \ 381 printk_safe_enter_irq(); \ 382 raw_spin_lock(&logbuf_lock); \ 383 } while (0) 384 385 #define logbuf_unlock_irq() \ 386 do { \ 387 raw_spin_unlock(&logbuf_lock); \ 388 printk_safe_exit_irq(); \ 389 } while (0) 390 391 #define logbuf_lock_irqsave(flags) \ 392 do { \ 393 printk_safe_enter_irqsave(flags); \ 394 raw_spin_lock(&logbuf_lock); \ 395 } while (0) 396 397 #define logbuf_unlock_irqrestore(flags) \ 398 do { \ 399 raw_spin_unlock(&logbuf_lock); \ 400 printk_safe_exit_irqrestore(flags); \ 401 } while (0) 402 403 #ifdef CONFIG_PRINTK 404 DECLARE_WAIT_QUEUE_HEAD(log_wait); 405 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 406 static u64 syslog_seq; 407 static u32 syslog_idx; 408 static size_t syslog_partial; 409 410 /* index and sequence number of the first record stored in the buffer */ 411 static u64 log_first_seq; 412 static u32 log_first_idx; 413 414 /* index and sequence number of the next record to store in the buffer */ 415 static u64 log_next_seq; 416 static u32 log_next_idx; 417 418 /* the next printk record to write to the console */ 419 static u64 console_seq; 420 static u32 console_idx; 421 422 /* the next printk record to read after the last 'clear' command */ 423 static u64 clear_seq; 424 static u32 clear_idx; 425 426 #define PREFIX_MAX 32 427 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 428 429 #define LOG_LEVEL(v) ((v) & 0x07) 430 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 431 432 /* record buffer */ 433 #define LOG_ALIGN __alignof__(struct printk_log) 434 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 435 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 436 static char *log_buf = __log_buf; 437 static u32 log_buf_len = __LOG_BUF_LEN; 438 439 /* Return log buffer address */ 440 char *log_buf_addr_get(void) 441 { 442 return log_buf; 443 } 444 445 /* Return log buffer size */ 446 u32 log_buf_len_get(void) 447 { 448 return log_buf_len; 449 } 450 451 /* human readable text of the record */ 452 static char *log_text(const struct printk_log *msg) 453 { 454 return (char *)msg + sizeof(struct printk_log); 455 } 456 457 /* optional key/value pair dictionary attached to the record */ 458 static char *log_dict(const struct printk_log *msg) 459 { 460 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 461 } 462 463 /* get record by index; idx must point to valid msg */ 464 static struct printk_log *log_from_idx(u32 idx) 465 { 466 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 467 468 /* 469 * A length == 0 record is the end of buffer marker. Wrap around and 470 * read the message at the start of the buffer. 471 */ 472 if (!msg->len) 473 return (struct printk_log *)log_buf; 474 return msg; 475 } 476 477 /* get next record; idx must point to valid msg */ 478 static u32 log_next(u32 idx) 479 { 480 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 481 482 /* length == 0 indicates the end of the buffer; wrap */ 483 /* 484 * A length == 0 record is the end of buffer marker. Wrap around and 485 * read the message at the start of the buffer as *this* one, and 486 * return the one after that. 487 */ 488 if (!msg->len) { 489 msg = (struct printk_log *)log_buf; 490 return msg->len; 491 } 492 return idx + msg->len; 493 } 494 495 /* 496 * Check whether there is enough free space for the given message. 497 * 498 * The same values of first_idx and next_idx mean that the buffer 499 * is either empty or full. 500 * 501 * If the buffer is empty, we must respect the position of the indexes. 502 * They cannot be reset to the beginning of the buffer. 503 */ 504 static int logbuf_has_space(u32 msg_size, bool empty) 505 { 506 u32 free; 507 508 if (log_next_idx > log_first_idx || empty) 509 free = max(log_buf_len - log_next_idx, log_first_idx); 510 else 511 free = log_first_idx - log_next_idx; 512 513 /* 514 * We need space also for an empty header that signalizes wrapping 515 * of the buffer. 516 */ 517 return free >= msg_size + sizeof(struct printk_log); 518 } 519 520 static int log_make_free_space(u32 msg_size) 521 { 522 while (log_first_seq < log_next_seq && 523 !logbuf_has_space(msg_size, false)) { 524 /* drop old messages until we have enough contiguous space */ 525 log_first_idx = log_next(log_first_idx); 526 log_first_seq++; 527 } 528 529 if (clear_seq < log_first_seq) { 530 clear_seq = log_first_seq; 531 clear_idx = log_first_idx; 532 } 533 534 /* sequence numbers are equal, so the log buffer is empty */ 535 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 536 return 0; 537 538 return -ENOMEM; 539 } 540 541 /* compute the message size including the padding bytes */ 542 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 543 { 544 u32 size; 545 546 size = sizeof(struct printk_log) + text_len + dict_len; 547 *pad_len = (-size) & (LOG_ALIGN - 1); 548 size += *pad_len; 549 550 return size; 551 } 552 553 /* 554 * Define how much of the log buffer we could take at maximum. The value 555 * must be greater than two. Note that only half of the buffer is available 556 * when the index points to the middle. 557 */ 558 #define MAX_LOG_TAKE_PART 4 559 static const char trunc_msg[] = "<truncated>"; 560 561 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 562 u16 *dict_len, u32 *pad_len) 563 { 564 /* 565 * The message should not take the whole buffer. Otherwise, it might 566 * get removed too soon. 567 */ 568 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 569 if (*text_len > max_text_len) 570 *text_len = max_text_len; 571 /* enable the warning message */ 572 *trunc_msg_len = strlen(trunc_msg); 573 /* disable the "dict" completely */ 574 *dict_len = 0; 575 /* compute the size again, count also the warning message */ 576 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 577 } 578 579 /* insert record into the buffer, discard old ones, update heads */ 580 static int log_store(int facility, int level, 581 enum log_flags flags, u64 ts_nsec, 582 const char *dict, u16 dict_len, 583 const char *text, u16 text_len) 584 { 585 struct printk_log *msg; 586 u32 size, pad_len; 587 u16 trunc_msg_len = 0; 588 589 /* number of '\0' padding bytes to next message */ 590 size = msg_used_size(text_len, dict_len, &pad_len); 591 592 if (log_make_free_space(size)) { 593 /* truncate the message if it is too long for empty buffer */ 594 size = truncate_msg(&text_len, &trunc_msg_len, 595 &dict_len, &pad_len); 596 /* survive when the log buffer is too small for trunc_msg */ 597 if (log_make_free_space(size)) 598 return 0; 599 } 600 601 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 602 /* 603 * This message + an additional empty header does not fit 604 * at the end of the buffer. Add an empty header with len == 0 605 * to signify a wrap around. 606 */ 607 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 608 log_next_idx = 0; 609 } 610 611 /* fill message */ 612 msg = (struct printk_log *)(log_buf + log_next_idx); 613 memcpy(log_text(msg), text, text_len); 614 msg->text_len = text_len; 615 if (trunc_msg_len) { 616 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 617 msg->text_len += trunc_msg_len; 618 } 619 memcpy(log_dict(msg), dict, dict_len); 620 msg->dict_len = dict_len; 621 msg->facility = facility; 622 msg->level = level & 7; 623 msg->flags = flags & 0x1f; 624 if (ts_nsec > 0) 625 msg->ts_nsec = ts_nsec; 626 else 627 msg->ts_nsec = local_clock(); 628 memset(log_dict(msg) + dict_len, 0, pad_len); 629 msg->len = size; 630 631 /* insert message */ 632 log_next_idx += msg->len; 633 log_next_seq++; 634 635 return msg->text_len; 636 } 637 638 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 639 640 static int syslog_action_restricted(int type) 641 { 642 if (dmesg_restrict) 643 return 1; 644 /* 645 * Unless restricted, we allow "read all" and "get buffer size" 646 * for everybody. 647 */ 648 return type != SYSLOG_ACTION_READ_ALL && 649 type != SYSLOG_ACTION_SIZE_BUFFER; 650 } 651 652 int check_syslog_permissions(int type, int source) 653 { 654 /* 655 * If this is from /proc/kmsg and we've already opened it, then we've 656 * already done the capabilities checks at open time. 657 */ 658 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 659 goto ok; 660 661 if (syslog_action_restricted(type)) { 662 if (capable(CAP_SYSLOG)) 663 goto ok; 664 /* 665 * For historical reasons, accept CAP_SYS_ADMIN too, with 666 * a warning. 667 */ 668 if (capable(CAP_SYS_ADMIN)) { 669 pr_warn_once("%s (%d): Attempt to access syslog with " 670 "CAP_SYS_ADMIN but no CAP_SYSLOG " 671 "(deprecated).\n", 672 current->comm, task_pid_nr(current)); 673 goto ok; 674 } 675 return -EPERM; 676 } 677 ok: 678 return security_syslog(type); 679 } 680 EXPORT_SYMBOL_GPL(check_syslog_permissions); 681 682 static void append_char(char **pp, char *e, char c) 683 { 684 if (*pp < e) 685 *(*pp)++ = c; 686 } 687 688 static ssize_t msg_print_ext_header(char *buf, size_t size, 689 struct printk_log *msg, u64 seq) 690 { 691 u64 ts_usec = msg->ts_nsec; 692 693 do_div(ts_usec, 1000); 694 695 return scnprintf(buf, size, "%u,%llu,%llu,%c;", 696 (msg->facility << 3) | msg->level, seq, ts_usec, 697 msg->flags & LOG_CONT ? 'c' : '-'); 698 } 699 700 static ssize_t msg_print_ext_body(char *buf, size_t size, 701 char *dict, size_t dict_len, 702 char *text, size_t text_len) 703 { 704 char *p = buf, *e = buf + size; 705 size_t i; 706 707 /* escape non-printable characters */ 708 for (i = 0; i < text_len; i++) { 709 unsigned char c = text[i]; 710 711 if (c < ' ' || c >= 127 || c == '\\') 712 p += scnprintf(p, e - p, "\\x%02x", c); 713 else 714 append_char(&p, e, c); 715 } 716 append_char(&p, e, '\n'); 717 718 if (dict_len) { 719 bool line = true; 720 721 for (i = 0; i < dict_len; i++) { 722 unsigned char c = dict[i]; 723 724 if (line) { 725 append_char(&p, e, ' '); 726 line = false; 727 } 728 729 if (c == '\0') { 730 append_char(&p, e, '\n'); 731 line = true; 732 continue; 733 } 734 735 if (c < ' ' || c >= 127 || c == '\\') { 736 p += scnprintf(p, e - p, "\\x%02x", c); 737 continue; 738 } 739 740 append_char(&p, e, c); 741 } 742 append_char(&p, e, '\n'); 743 } 744 745 return p - buf; 746 } 747 748 /* /dev/kmsg - userspace message inject/listen interface */ 749 struct devkmsg_user { 750 u64 seq; 751 u32 idx; 752 struct ratelimit_state rs; 753 struct mutex lock; 754 char buf[CONSOLE_EXT_LOG_MAX]; 755 }; 756 757 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 758 { 759 char *buf, *line; 760 int level = default_message_loglevel; 761 int facility = 1; /* LOG_USER */ 762 struct file *file = iocb->ki_filp; 763 struct devkmsg_user *user = file->private_data; 764 size_t len = iov_iter_count(from); 765 ssize_t ret = len; 766 767 if (!user || len > LOG_LINE_MAX) 768 return -EINVAL; 769 770 /* Ignore when user logging is disabled. */ 771 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 772 return len; 773 774 /* Ratelimit when not explicitly enabled. */ 775 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 776 if (!___ratelimit(&user->rs, current->comm)) 777 return ret; 778 } 779 780 buf = kmalloc(len+1, GFP_KERNEL); 781 if (buf == NULL) 782 return -ENOMEM; 783 784 buf[len] = '\0'; 785 if (!copy_from_iter_full(buf, len, from)) { 786 kfree(buf); 787 return -EFAULT; 788 } 789 790 /* 791 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 792 * the decimal value represents 32bit, the lower 3 bit are the log 793 * level, the rest are the log facility. 794 * 795 * If no prefix or no userspace facility is specified, we 796 * enforce LOG_USER, to be able to reliably distinguish 797 * kernel-generated messages from userspace-injected ones. 798 */ 799 line = buf; 800 if (line[0] == '<') { 801 char *endp = NULL; 802 unsigned int u; 803 804 u = simple_strtoul(line + 1, &endp, 10); 805 if (endp && endp[0] == '>') { 806 level = LOG_LEVEL(u); 807 if (LOG_FACILITY(u) != 0) 808 facility = LOG_FACILITY(u); 809 endp++; 810 len -= endp - line; 811 line = endp; 812 } 813 } 814 815 printk_emit(facility, level, NULL, 0, "%s", line); 816 kfree(buf); 817 return ret; 818 } 819 820 static ssize_t devkmsg_read(struct file *file, char __user *buf, 821 size_t count, loff_t *ppos) 822 { 823 struct devkmsg_user *user = file->private_data; 824 struct printk_log *msg; 825 size_t len; 826 ssize_t ret; 827 828 if (!user) 829 return -EBADF; 830 831 ret = mutex_lock_interruptible(&user->lock); 832 if (ret) 833 return ret; 834 835 logbuf_lock_irq(); 836 while (user->seq == log_next_seq) { 837 if (file->f_flags & O_NONBLOCK) { 838 ret = -EAGAIN; 839 logbuf_unlock_irq(); 840 goto out; 841 } 842 843 logbuf_unlock_irq(); 844 ret = wait_event_interruptible(log_wait, 845 user->seq != log_next_seq); 846 if (ret) 847 goto out; 848 logbuf_lock_irq(); 849 } 850 851 if (user->seq < log_first_seq) { 852 /* our last seen message is gone, return error and reset */ 853 user->idx = log_first_idx; 854 user->seq = log_first_seq; 855 ret = -EPIPE; 856 logbuf_unlock_irq(); 857 goto out; 858 } 859 860 msg = log_from_idx(user->idx); 861 len = msg_print_ext_header(user->buf, sizeof(user->buf), 862 msg, user->seq); 863 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 864 log_dict(msg), msg->dict_len, 865 log_text(msg), msg->text_len); 866 867 user->idx = log_next(user->idx); 868 user->seq++; 869 logbuf_unlock_irq(); 870 871 if (len > count) { 872 ret = -EINVAL; 873 goto out; 874 } 875 876 if (copy_to_user(buf, user->buf, len)) { 877 ret = -EFAULT; 878 goto out; 879 } 880 ret = len; 881 out: 882 mutex_unlock(&user->lock); 883 return ret; 884 } 885 886 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 887 { 888 struct devkmsg_user *user = file->private_data; 889 loff_t ret = 0; 890 891 if (!user) 892 return -EBADF; 893 if (offset) 894 return -ESPIPE; 895 896 logbuf_lock_irq(); 897 switch (whence) { 898 case SEEK_SET: 899 /* the first record */ 900 user->idx = log_first_idx; 901 user->seq = log_first_seq; 902 break; 903 case SEEK_DATA: 904 /* 905 * The first record after the last SYSLOG_ACTION_CLEAR, 906 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 907 * changes no global state, and does not clear anything. 908 */ 909 user->idx = clear_idx; 910 user->seq = clear_seq; 911 break; 912 case SEEK_END: 913 /* after the last record */ 914 user->idx = log_next_idx; 915 user->seq = log_next_seq; 916 break; 917 default: 918 ret = -EINVAL; 919 } 920 logbuf_unlock_irq(); 921 return ret; 922 } 923 924 static unsigned int devkmsg_poll(struct file *file, poll_table *wait) 925 { 926 struct devkmsg_user *user = file->private_data; 927 int ret = 0; 928 929 if (!user) 930 return POLLERR|POLLNVAL; 931 932 poll_wait(file, &log_wait, wait); 933 934 logbuf_lock_irq(); 935 if (user->seq < log_next_seq) { 936 /* return error when data has vanished underneath us */ 937 if (user->seq < log_first_seq) 938 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI; 939 else 940 ret = POLLIN|POLLRDNORM; 941 } 942 logbuf_unlock_irq(); 943 944 return ret; 945 } 946 947 static int devkmsg_open(struct inode *inode, struct file *file) 948 { 949 struct devkmsg_user *user; 950 int err; 951 952 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 953 return -EPERM; 954 955 /* write-only does not need any file context */ 956 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 957 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 958 SYSLOG_FROM_READER); 959 if (err) 960 return err; 961 } 962 963 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 964 if (!user) 965 return -ENOMEM; 966 967 ratelimit_default_init(&user->rs); 968 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 969 970 mutex_init(&user->lock); 971 972 logbuf_lock_irq(); 973 user->idx = log_first_idx; 974 user->seq = log_first_seq; 975 logbuf_unlock_irq(); 976 977 file->private_data = user; 978 return 0; 979 } 980 981 static int devkmsg_release(struct inode *inode, struct file *file) 982 { 983 struct devkmsg_user *user = file->private_data; 984 985 if (!user) 986 return 0; 987 988 ratelimit_state_exit(&user->rs); 989 990 mutex_destroy(&user->lock); 991 kfree(user); 992 return 0; 993 } 994 995 const struct file_operations kmsg_fops = { 996 .open = devkmsg_open, 997 .read = devkmsg_read, 998 .write_iter = devkmsg_write, 999 .llseek = devkmsg_llseek, 1000 .poll = devkmsg_poll, 1001 .release = devkmsg_release, 1002 }; 1003 1004 #ifdef CONFIG_CRASH_CORE 1005 /* 1006 * This appends the listed symbols to /proc/vmcore 1007 * 1008 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1009 * obtain access to symbols that are otherwise very difficult to locate. These 1010 * symbols are specifically used so that utilities can access and extract the 1011 * dmesg log from a vmcore file after a crash. 1012 */ 1013 void log_buf_vmcoreinfo_setup(void) 1014 { 1015 VMCOREINFO_SYMBOL(log_buf); 1016 VMCOREINFO_SYMBOL(log_buf_len); 1017 VMCOREINFO_SYMBOL(log_first_idx); 1018 VMCOREINFO_SYMBOL(clear_idx); 1019 VMCOREINFO_SYMBOL(log_next_idx); 1020 /* 1021 * Export struct printk_log size and field offsets. User space tools can 1022 * parse it and detect any changes to structure down the line. 1023 */ 1024 VMCOREINFO_STRUCT_SIZE(printk_log); 1025 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1026 VMCOREINFO_OFFSET(printk_log, len); 1027 VMCOREINFO_OFFSET(printk_log, text_len); 1028 VMCOREINFO_OFFSET(printk_log, dict_len); 1029 } 1030 #endif 1031 1032 /* requested log_buf_len from kernel cmdline */ 1033 static unsigned long __initdata new_log_buf_len; 1034 1035 /* we practice scaling the ring buffer by powers of 2 */ 1036 static void __init log_buf_len_update(unsigned size) 1037 { 1038 if (size) 1039 size = roundup_pow_of_two(size); 1040 if (size > log_buf_len) 1041 new_log_buf_len = size; 1042 } 1043 1044 /* save requested log_buf_len since it's too early to process it */ 1045 static int __init log_buf_len_setup(char *str) 1046 { 1047 unsigned size = memparse(str, &str); 1048 1049 log_buf_len_update(size); 1050 1051 return 0; 1052 } 1053 early_param("log_buf_len", log_buf_len_setup); 1054 1055 #ifdef CONFIG_SMP 1056 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1057 1058 static void __init log_buf_add_cpu(void) 1059 { 1060 unsigned int cpu_extra; 1061 1062 /* 1063 * archs should set up cpu_possible_bits properly with 1064 * set_cpu_possible() after setup_arch() but just in 1065 * case lets ensure this is valid. 1066 */ 1067 if (num_possible_cpus() == 1) 1068 return; 1069 1070 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1071 1072 /* by default this will only continue through for large > 64 CPUs */ 1073 if (cpu_extra <= __LOG_BUF_LEN / 2) 1074 return; 1075 1076 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1077 __LOG_CPU_MAX_BUF_LEN); 1078 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1079 cpu_extra); 1080 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1081 1082 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1083 } 1084 #else /* !CONFIG_SMP */ 1085 static inline void log_buf_add_cpu(void) {} 1086 #endif /* CONFIG_SMP */ 1087 1088 void __init setup_log_buf(int early) 1089 { 1090 unsigned long flags; 1091 char *new_log_buf; 1092 int free; 1093 1094 if (log_buf != __log_buf) 1095 return; 1096 1097 if (!early && !new_log_buf_len) 1098 log_buf_add_cpu(); 1099 1100 if (!new_log_buf_len) 1101 return; 1102 1103 if (early) { 1104 new_log_buf = 1105 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN); 1106 } else { 1107 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len, 1108 LOG_ALIGN); 1109 } 1110 1111 if (unlikely(!new_log_buf)) { 1112 pr_err("log_buf_len: %ld bytes not available\n", 1113 new_log_buf_len); 1114 return; 1115 } 1116 1117 logbuf_lock_irqsave(flags); 1118 log_buf_len = new_log_buf_len; 1119 log_buf = new_log_buf; 1120 new_log_buf_len = 0; 1121 free = __LOG_BUF_LEN - log_next_idx; 1122 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1123 logbuf_unlock_irqrestore(flags); 1124 1125 pr_info("log_buf_len: %d bytes\n", log_buf_len); 1126 pr_info("early log buf free: %d(%d%%)\n", 1127 free, (free * 100) / __LOG_BUF_LEN); 1128 } 1129 1130 static bool __read_mostly ignore_loglevel; 1131 1132 static int __init ignore_loglevel_setup(char *str) 1133 { 1134 ignore_loglevel = true; 1135 pr_info("debug: ignoring loglevel setting.\n"); 1136 1137 return 0; 1138 } 1139 1140 early_param("ignore_loglevel", ignore_loglevel_setup); 1141 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1142 MODULE_PARM_DESC(ignore_loglevel, 1143 "ignore loglevel setting (prints all kernel messages to the console)"); 1144 1145 static bool suppress_message_printing(int level) 1146 { 1147 return (level >= console_loglevel && !ignore_loglevel); 1148 } 1149 1150 #ifdef CONFIG_BOOT_PRINTK_DELAY 1151 1152 static int boot_delay; /* msecs delay after each printk during bootup */ 1153 static unsigned long long loops_per_msec; /* based on boot_delay */ 1154 1155 static int __init boot_delay_setup(char *str) 1156 { 1157 unsigned long lpj; 1158 1159 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1160 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1161 1162 get_option(&str, &boot_delay); 1163 if (boot_delay > 10 * 1000) 1164 boot_delay = 0; 1165 1166 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1167 "HZ: %d, loops_per_msec: %llu\n", 1168 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1169 return 0; 1170 } 1171 early_param("boot_delay", boot_delay_setup); 1172 1173 static void boot_delay_msec(int level) 1174 { 1175 unsigned long long k; 1176 unsigned long timeout; 1177 1178 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1179 || suppress_message_printing(level)) { 1180 return; 1181 } 1182 1183 k = (unsigned long long)loops_per_msec * boot_delay; 1184 1185 timeout = jiffies + msecs_to_jiffies(boot_delay); 1186 while (k) { 1187 k--; 1188 cpu_relax(); 1189 /* 1190 * use (volatile) jiffies to prevent 1191 * compiler reduction; loop termination via jiffies 1192 * is secondary and may or may not happen. 1193 */ 1194 if (time_after(jiffies, timeout)) 1195 break; 1196 touch_nmi_watchdog(); 1197 } 1198 } 1199 #else 1200 static inline void boot_delay_msec(int level) 1201 { 1202 } 1203 #endif 1204 1205 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1206 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1207 1208 static size_t print_time(u64 ts, char *buf) 1209 { 1210 unsigned long rem_nsec; 1211 1212 if (!printk_time) 1213 return 0; 1214 1215 rem_nsec = do_div(ts, 1000000000); 1216 1217 if (!buf) 1218 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts); 1219 1220 return sprintf(buf, "[%5lu.%06lu] ", 1221 (unsigned long)ts, rem_nsec / 1000); 1222 } 1223 1224 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf) 1225 { 1226 size_t len = 0; 1227 unsigned int prefix = (msg->facility << 3) | msg->level; 1228 1229 if (syslog) { 1230 if (buf) { 1231 len += sprintf(buf, "<%u>", prefix); 1232 } else { 1233 len += 3; 1234 if (prefix > 999) 1235 len += 3; 1236 else if (prefix > 99) 1237 len += 2; 1238 else if (prefix > 9) 1239 len++; 1240 } 1241 } 1242 1243 len += print_time(msg->ts_nsec, buf ? buf + len : NULL); 1244 return len; 1245 } 1246 1247 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size) 1248 { 1249 const char *text = log_text(msg); 1250 size_t text_size = msg->text_len; 1251 size_t len = 0; 1252 1253 do { 1254 const char *next = memchr(text, '\n', text_size); 1255 size_t text_len; 1256 1257 if (next) { 1258 text_len = next - text; 1259 next++; 1260 text_size -= next - text; 1261 } else { 1262 text_len = text_size; 1263 } 1264 1265 if (buf) { 1266 if (print_prefix(msg, syslog, NULL) + 1267 text_len + 1 >= size - len) 1268 break; 1269 1270 len += print_prefix(msg, syslog, buf + len); 1271 memcpy(buf + len, text, text_len); 1272 len += text_len; 1273 buf[len++] = '\n'; 1274 } else { 1275 /* SYSLOG_ACTION_* buffer size only calculation */ 1276 len += print_prefix(msg, syslog, NULL); 1277 len += text_len; 1278 len++; 1279 } 1280 1281 text = next; 1282 } while (text); 1283 1284 return len; 1285 } 1286 1287 static int syslog_print(char __user *buf, int size) 1288 { 1289 char *text; 1290 struct printk_log *msg; 1291 int len = 0; 1292 1293 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1294 if (!text) 1295 return -ENOMEM; 1296 1297 while (size > 0) { 1298 size_t n; 1299 size_t skip; 1300 1301 logbuf_lock_irq(); 1302 if (syslog_seq < log_first_seq) { 1303 /* messages are gone, move to first one */ 1304 syslog_seq = log_first_seq; 1305 syslog_idx = log_first_idx; 1306 syslog_partial = 0; 1307 } 1308 if (syslog_seq == log_next_seq) { 1309 logbuf_unlock_irq(); 1310 break; 1311 } 1312 1313 skip = syslog_partial; 1314 msg = log_from_idx(syslog_idx); 1315 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX); 1316 if (n - syslog_partial <= size) { 1317 /* message fits into buffer, move forward */ 1318 syslog_idx = log_next(syslog_idx); 1319 syslog_seq++; 1320 n -= syslog_partial; 1321 syslog_partial = 0; 1322 } else if (!len){ 1323 /* partial read(), remember position */ 1324 n = size; 1325 syslog_partial += n; 1326 } else 1327 n = 0; 1328 logbuf_unlock_irq(); 1329 1330 if (!n) 1331 break; 1332 1333 if (copy_to_user(buf, text + skip, n)) { 1334 if (!len) 1335 len = -EFAULT; 1336 break; 1337 } 1338 1339 len += n; 1340 size -= n; 1341 buf += n; 1342 } 1343 1344 kfree(text); 1345 return len; 1346 } 1347 1348 static int syslog_print_all(char __user *buf, int size, bool clear) 1349 { 1350 char *text; 1351 int len = 0; 1352 1353 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1354 if (!text) 1355 return -ENOMEM; 1356 1357 logbuf_lock_irq(); 1358 if (buf) { 1359 u64 next_seq; 1360 u64 seq; 1361 u32 idx; 1362 1363 /* 1364 * Find first record that fits, including all following records, 1365 * into the user-provided buffer for this dump. 1366 */ 1367 seq = clear_seq; 1368 idx = clear_idx; 1369 while (seq < log_next_seq) { 1370 struct printk_log *msg = log_from_idx(idx); 1371 1372 len += msg_print_text(msg, true, NULL, 0); 1373 idx = log_next(idx); 1374 seq++; 1375 } 1376 1377 /* move first record forward until length fits into the buffer */ 1378 seq = clear_seq; 1379 idx = clear_idx; 1380 while (len > size && seq < log_next_seq) { 1381 struct printk_log *msg = log_from_idx(idx); 1382 1383 len -= msg_print_text(msg, true, NULL, 0); 1384 idx = log_next(idx); 1385 seq++; 1386 } 1387 1388 /* last message fitting into this dump */ 1389 next_seq = log_next_seq; 1390 1391 len = 0; 1392 while (len >= 0 && seq < next_seq) { 1393 struct printk_log *msg = log_from_idx(idx); 1394 int textlen; 1395 1396 textlen = msg_print_text(msg, true, text, 1397 LOG_LINE_MAX + PREFIX_MAX); 1398 if (textlen < 0) { 1399 len = textlen; 1400 break; 1401 } 1402 idx = log_next(idx); 1403 seq++; 1404 1405 logbuf_unlock_irq(); 1406 if (copy_to_user(buf + len, text, textlen)) 1407 len = -EFAULT; 1408 else 1409 len += textlen; 1410 logbuf_lock_irq(); 1411 1412 if (seq < log_first_seq) { 1413 /* messages are gone, move to next one */ 1414 seq = log_first_seq; 1415 idx = log_first_idx; 1416 } 1417 } 1418 } 1419 1420 if (clear) { 1421 clear_seq = log_next_seq; 1422 clear_idx = log_next_idx; 1423 } 1424 logbuf_unlock_irq(); 1425 1426 kfree(text); 1427 return len; 1428 } 1429 1430 int do_syslog(int type, char __user *buf, int len, int source) 1431 { 1432 bool clear = false; 1433 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1434 int error; 1435 1436 error = check_syslog_permissions(type, source); 1437 if (error) 1438 goto out; 1439 1440 switch (type) { 1441 case SYSLOG_ACTION_CLOSE: /* Close log */ 1442 break; 1443 case SYSLOG_ACTION_OPEN: /* Open log */ 1444 break; 1445 case SYSLOG_ACTION_READ: /* Read from log */ 1446 error = -EINVAL; 1447 if (!buf || len < 0) 1448 goto out; 1449 error = 0; 1450 if (!len) 1451 goto out; 1452 if (!access_ok(VERIFY_WRITE, buf, len)) { 1453 error = -EFAULT; 1454 goto out; 1455 } 1456 error = wait_event_interruptible(log_wait, 1457 syslog_seq != log_next_seq); 1458 if (error) 1459 goto out; 1460 error = syslog_print(buf, len); 1461 break; 1462 /* Read/clear last kernel messages */ 1463 case SYSLOG_ACTION_READ_CLEAR: 1464 clear = true; 1465 /* FALL THRU */ 1466 /* Read last kernel messages */ 1467 case SYSLOG_ACTION_READ_ALL: 1468 error = -EINVAL; 1469 if (!buf || len < 0) 1470 goto out; 1471 error = 0; 1472 if (!len) 1473 goto out; 1474 if (!access_ok(VERIFY_WRITE, buf, len)) { 1475 error = -EFAULT; 1476 goto out; 1477 } 1478 error = syslog_print_all(buf, len, clear); 1479 break; 1480 /* Clear ring buffer */ 1481 case SYSLOG_ACTION_CLEAR: 1482 syslog_print_all(NULL, 0, true); 1483 break; 1484 /* Disable logging to console */ 1485 case SYSLOG_ACTION_CONSOLE_OFF: 1486 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1487 saved_console_loglevel = console_loglevel; 1488 console_loglevel = minimum_console_loglevel; 1489 break; 1490 /* Enable logging to console */ 1491 case SYSLOG_ACTION_CONSOLE_ON: 1492 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1493 console_loglevel = saved_console_loglevel; 1494 saved_console_loglevel = LOGLEVEL_DEFAULT; 1495 } 1496 break; 1497 /* Set level of messages printed to console */ 1498 case SYSLOG_ACTION_CONSOLE_LEVEL: 1499 error = -EINVAL; 1500 if (len < 1 || len > 8) 1501 goto out; 1502 if (len < minimum_console_loglevel) 1503 len = minimum_console_loglevel; 1504 console_loglevel = len; 1505 /* Implicitly re-enable logging to console */ 1506 saved_console_loglevel = LOGLEVEL_DEFAULT; 1507 error = 0; 1508 break; 1509 /* Number of chars in the log buffer */ 1510 case SYSLOG_ACTION_SIZE_UNREAD: 1511 logbuf_lock_irq(); 1512 if (syslog_seq < log_first_seq) { 1513 /* messages are gone, move to first one */ 1514 syslog_seq = log_first_seq; 1515 syslog_idx = log_first_idx; 1516 syslog_partial = 0; 1517 } 1518 if (source == SYSLOG_FROM_PROC) { 1519 /* 1520 * Short-cut for poll(/"proc/kmsg") which simply checks 1521 * for pending data, not the size; return the count of 1522 * records, not the length. 1523 */ 1524 error = log_next_seq - syslog_seq; 1525 } else { 1526 u64 seq = syslog_seq; 1527 u32 idx = syslog_idx; 1528 1529 error = 0; 1530 while (seq < log_next_seq) { 1531 struct printk_log *msg = log_from_idx(idx); 1532 1533 error += msg_print_text(msg, true, NULL, 0); 1534 idx = log_next(idx); 1535 seq++; 1536 } 1537 error -= syslog_partial; 1538 } 1539 logbuf_unlock_irq(); 1540 break; 1541 /* Size of the log buffer */ 1542 case SYSLOG_ACTION_SIZE_BUFFER: 1543 error = log_buf_len; 1544 break; 1545 default: 1546 error = -EINVAL; 1547 break; 1548 } 1549 out: 1550 return error; 1551 } 1552 1553 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1554 { 1555 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1556 } 1557 1558 /* 1559 * Call the console drivers, asking them to write out 1560 * log_buf[start] to log_buf[end - 1]. 1561 * The console_lock must be held. 1562 */ 1563 static void call_console_drivers(const char *ext_text, size_t ext_len, 1564 const char *text, size_t len) 1565 { 1566 struct console *con; 1567 1568 trace_console_rcuidle(text, len); 1569 1570 if (!console_drivers) 1571 return; 1572 1573 for_each_console(con) { 1574 if (exclusive_console && con != exclusive_console) 1575 continue; 1576 if (!(con->flags & CON_ENABLED)) 1577 continue; 1578 if (!con->write) 1579 continue; 1580 if (!cpu_online(smp_processor_id()) && 1581 !(con->flags & CON_ANYTIME)) 1582 continue; 1583 if (con->flags & CON_EXTENDED) 1584 con->write(con, ext_text, ext_len); 1585 else 1586 con->write(con, text, len); 1587 } 1588 } 1589 1590 int printk_delay_msec __read_mostly; 1591 1592 static inline void printk_delay(void) 1593 { 1594 if (unlikely(printk_delay_msec)) { 1595 int m = printk_delay_msec; 1596 1597 while (m--) { 1598 mdelay(1); 1599 touch_nmi_watchdog(); 1600 } 1601 } 1602 } 1603 1604 /* 1605 * Continuation lines are buffered, and not committed to the record buffer 1606 * until the line is complete, or a race forces it. The line fragments 1607 * though, are printed immediately to the consoles to ensure everything has 1608 * reached the console in case of a kernel crash. 1609 */ 1610 static struct cont { 1611 char buf[LOG_LINE_MAX]; 1612 size_t len; /* length == 0 means unused buffer */ 1613 struct task_struct *owner; /* task of first print*/ 1614 u64 ts_nsec; /* time of first print */ 1615 u8 level; /* log level of first message */ 1616 u8 facility; /* log facility of first message */ 1617 enum log_flags flags; /* prefix, newline flags */ 1618 } cont; 1619 1620 static void cont_flush(void) 1621 { 1622 if (cont.len == 0) 1623 return; 1624 1625 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec, 1626 NULL, 0, cont.buf, cont.len); 1627 cont.len = 0; 1628 } 1629 1630 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len) 1631 { 1632 /* 1633 * If ext consoles are present, flush and skip in-kernel 1634 * continuation. See nr_ext_console_drivers definition. Also, if 1635 * the line gets too long, split it up in separate records. 1636 */ 1637 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) { 1638 cont_flush(); 1639 return false; 1640 } 1641 1642 if (!cont.len) { 1643 cont.facility = facility; 1644 cont.level = level; 1645 cont.owner = current; 1646 cont.ts_nsec = local_clock(); 1647 cont.flags = flags; 1648 } 1649 1650 memcpy(cont.buf + cont.len, text, len); 1651 cont.len += len; 1652 1653 // The original flags come from the first line, 1654 // but later continuations can add a newline. 1655 if (flags & LOG_NEWLINE) { 1656 cont.flags |= LOG_NEWLINE; 1657 cont_flush(); 1658 } 1659 1660 if (cont.len > (sizeof(cont.buf) * 80) / 100) 1661 cont_flush(); 1662 1663 return true; 1664 } 1665 1666 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1667 { 1668 /* 1669 * If an earlier line was buffered, and we're a continuation 1670 * write from the same process, try to add it to the buffer. 1671 */ 1672 if (cont.len) { 1673 if (cont.owner == current && (lflags & LOG_CONT)) { 1674 if (cont_add(facility, level, lflags, text, text_len)) 1675 return text_len; 1676 } 1677 /* Otherwise, make sure it's flushed */ 1678 cont_flush(); 1679 } 1680 1681 /* Skip empty continuation lines that couldn't be added - they just flush */ 1682 if (!text_len && (lflags & LOG_CONT)) 1683 return 0; 1684 1685 /* If it doesn't end in a newline, try to buffer the current line */ 1686 if (!(lflags & LOG_NEWLINE)) { 1687 if (cont_add(facility, level, lflags, text, text_len)) 1688 return text_len; 1689 } 1690 1691 /* Store it in the record log */ 1692 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len); 1693 } 1694 1695 asmlinkage int vprintk_emit(int facility, int level, 1696 const char *dict, size_t dictlen, 1697 const char *fmt, va_list args) 1698 { 1699 static char textbuf[LOG_LINE_MAX]; 1700 char *text = textbuf; 1701 size_t text_len = 0; 1702 enum log_flags lflags = 0; 1703 unsigned long flags; 1704 int printed_len = 0; 1705 bool in_sched = false; 1706 1707 if (level == LOGLEVEL_SCHED) { 1708 level = LOGLEVEL_DEFAULT; 1709 in_sched = true; 1710 } 1711 1712 boot_delay_msec(level); 1713 printk_delay(); 1714 1715 /* This stops the holder of console_sem just where we want him */ 1716 logbuf_lock_irqsave(flags); 1717 /* 1718 * The printf needs to come first; we need the syslog 1719 * prefix which might be passed-in as a parameter. 1720 */ 1721 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1722 1723 /* mark and strip a trailing newline */ 1724 if (text_len && text[text_len-1] == '\n') { 1725 text_len--; 1726 lflags |= LOG_NEWLINE; 1727 } 1728 1729 /* strip kernel syslog prefix and extract log level or control flags */ 1730 if (facility == 0) { 1731 int kern_level; 1732 1733 while ((kern_level = printk_get_level(text)) != 0) { 1734 switch (kern_level) { 1735 case '0' ... '7': 1736 if (level == LOGLEVEL_DEFAULT) 1737 level = kern_level - '0'; 1738 /* fallthrough */ 1739 case 'd': /* KERN_DEFAULT */ 1740 lflags |= LOG_PREFIX; 1741 break; 1742 case 'c': /* KERN_CONT */ 1743 lflags |= LOG_CONT; 1744 } 1745 1746 text_len -= 2; 1747 text += 2; 1748 } 1749 } 1750 1751 if (level == LOGLEVEL_DEFAULT) 1752 level = default_message_loglevel; 1753 1754 if (dict) 1755 lflags |= LOG_PREFIX|LOG_NEWLINE; 1756 1757 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len); 1758 1759 logbuf_unlock_irqrestore(flags); 1760 1761 /* If called from the scheduler, we can not call up(). */ 1762 if (!in_sched) { 1763 /* 1764 * Try to acquire and then immediately release the console 1765 * semaphore. The release will print out buffers and wake up 1766 * /dev/kmsg and syslog() users. 1767 */ 1768 if (console_trylock()) 1769 console_unlock(); 1770 } 1771 1772 return printed_len; 1773 } 1774 EXPORT_SYMBOL(vprintk_emit); 1775 1776 asmlinkage int vprintk(const char *fmt, va_list args) 1777 { 1778 return vprintk_func(fmt, args); 1779 } 1780 EXPORT_SYMBOL(vprintk); 1781 1782 asmlinkage int printk_emit(int facility, int level, 1783 const char *dict, size_t dictlen, 1784 const char *fmt, ...) 1785 { 1786 va_list args; 1787 int r; 1788 1789 va_start(args, fmt); 1790 r = vprintk_emit(facility, level, dict, dictlen, fmt, args); 1791 va_end(args); 1792 1793 return r; 1794 } 1795 EXPORT_SYMBOL(printk_emit); 1796 1797 int vprintk_default(const char *fmt, va_list args) 1798 { 1799 int r; 1800 1801 #ifdef CONFIG_KGDB_KDB 1802 /* Allow to pass printk() to kdb but avoid a recursion. */ 1803 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 1804 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 1805 return r; 1806 } 1807 #endif 1808 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 1809 1810 return r; 1811 } 1812 EXPORT_SYMBOL_GPL(vprintk_default); 1813 1814 /** 1815 * printk - print a kernel message 1816 * @fmt: format string 1817 * 1818 * This is printk(). It can be called from any context. We want it to work. 1819 * 1820 * We try to grab the console_lock. If we succeed, it's easy - we log the 1821 * output and call the console drivers. If we fail to get the semaphore, we 1822 * place the output into the log buffer and return. The current holder of 1823 * the console_sem will notice the new output in console_unlock(); and will 1824 * send it to the consoles before releasing the lock. 1825 * 1826 * One effect of this deferred printing is that code which calls printk() and 1827 * then changes console_loglevel may break. This is because console_loglevel 1828 * is inspected when the actual printing occurs. 1829 * 1830 * See also: 1831 * printf(3) 1832 * 1833 * See the vsnprintf() documentation for format string extensions over C99. 1834 */ 1835 asmlinkage __visible int printk(const char *fmt, ...) 1836 { 1837 va_list args; 1838 int r; 1839 1840 va_start(args, fmt); 1841 r = vprintk_func(fmt, args); 1842 va_end(args); 1843 1844 return r; 1845 } 1846 EXPORT_SYMBOL(printk); 1847 1848 #else /* CONFIG_PRINTK */ 1849 1850 #define LOG_LINE_MAX 0 1851 #define PREFIX_MAX 0 1852 1853 static u64 syslog_seq; 1854 static u32 syslog_idx; 1855 static u64 console_seq; 1856 static u32 console_idx; 1857 static u64 log_first_seq; 1858 static u32 log_first_idx; 1859 static u64 log_next_seq; 1860 static char *log_text(const struct printk_log *msg) { return NULL; } 1861 static char *log_dict(const struct printk_log *msg) { return NULL; } 1862 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 1863 static u32 log_next(u32 idx) { return 0; } 1864 static ssize_t msg_print_ext_header(char *buf, size_t size, 1865 struct printk_log *msg, 1866 u64 seq) { return 0; } 1867 static ssize_t msg_print_ext_body(char *buf, size_t size, 1868 char *dict, size_t dict_len, 1869 char *text, size_t text_len) { return 0; } 1870 static void call_console_drivers(const char *ext_text, size_t ext_len, 1871 const char *text, size_t len) {} 1872 static size_t msg_print_text(const struct printk_log *msg, 1873 bool syslog, char *buf, size_t size) { return 0; } 1874 static bool suppress_message_printing(int level) { return false; } 1875 1876 #endif /* CONFIG_PRINTK */ 1877 1878 #ifdef CONFIG_EARLY_PRINTK 1879 struct console *early_console; 1880 1881 asmlinkage __visible void early_printk(const char *fmt, ...) 1882 { 1883 va_list ap; 1884 char buf[512]; 1885 int n; 1886 1887 if (!early_console) 1888 return; 1889 1890 va_start(ap, fmt); 1891 n = vscnprintf(buf, sizeof(buf), fmt, ap); 1892 va_end(ap); 1893 1894 early_console->write(early_console, buf, n); 1895 } 1896 #endif 1897 1898 static int __add_preferred_console(char *name, int idx, char *options, 1899 char *brl_options) 1900 { 1901 struct console_cmdline *c; 1902 int i; 1903 1904 /* 1905 * See if this tty is not yet registered, and 1906 * if we have a slot free. 1907 */ 1908 for (i = 0, c = console_cmdline; 1909 i < MAX_CMDLINECONSOLES && c->name[0]; 1910 i++, c++) { 1911 if (strcmp(c->name, name) == 0 && c->index == idx) { 1912 if (!brl_options) 1913 preferred_console = i; 1914 return 0; 1915 } 1916 } 1917 if (i == MAX_CMDLINECONSOLES) 1918 return -E2BIG; 1919 if (!brl_options) 1920 preferred_console = i; 1921 strlcpy(c->name, name, sizeof(c->name)); 1922 c->options = options; 1923 braille_set_options(c, brl_options); 1924 1925 c->index = idx; 1926 return 0; 1927 } 1928 /* 1929 * Set up a console. Called via do_early_param() in init/main.c 1930 * for each "console=" parameter in the boot command line. 1931 */ 1932 static int __init console_setup(char *str) 1933 { 1934 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 1935 char *s, *options, *brl_options = NULL; 1936 int idx; 1937 1938 if (_braille_console_setup(&str, &brl_options)) 1939 return 1; 1940 1941 /* 1942 * Decode str into name, index, options. 1943 */ 1944 if (str[0] >= '0' && str[0] <= '9') { 1945 strcpy(buf, "ttyS"); 1946 strncpy(buf + 4, str, sizeof(buf) - 5); 1947 } else { 1948 strncpy(buf, str, sizeof(buf) - 1); 1949 } 1950 buf[sizeof(buf) - 1] = 0; 1951 options = strchr(str, ','); 1952 if (options) 1953 *(options++) = 0; 1954 #ifdef __sparc__ 1955 if (!strcmp(str, "ttya")) 1956 strcpy(buf, "ttyS0"); 1957 if (!strcmp(str, "ttyb")) 1958 strcpy(buf, "ttyS1"); 1959 #endif 1960 for (s = buf; *s; s++) 1961 if (isdigit(*s) || *s == ',') 1962 break; 1963 idx = simple_strtoul(s, NULL, 10); 1964 *s = 0; 1965 1966 __add_preferred_console(buf, idx, options, brl_options); 1967 console_set_on_cmdline = 1; 1968 return 1; 1969 } 1970 __setup("console=", console_setup); 1971 1972 /** 1973 * add_preferred_console - add a device to the list of preferred consoles. 1974 * @name: device name 1975 * @idx: device index 1976 * @options: options for this console 1977 * 1978 * The last preferred console added will be used for kernel messages 1979 * and stdin/out/err for init. Normally this is used by console_setup 1980 * above to handle user-supplied console arguments; however it can also 1981 * be used by arch-specific code either to override the user or more 1982 * commonly to provide a default console (ie from PROM variables) when 1983 * the user has not supplied one. 1984 */ 1985 int add_preferred_console(char *name, int idx, char *options) 1986 { 1987 return __add_preferred_console(name, idx, options, NULL); 1988 } 1989 1990 bool console_suspend_enabled = true; 1991 EXPORT_SYMBOL(console_suspend_enabled); 1992 1993 static int __init console_suspend_disable(char *str) 1994 { 1995 console_suspend_enabled = false; 1996 return 1; 1997 } 1998 __setup("no_console_suspend", console_suspend_disable); 1999 module_param_named(console_suspend, console_suspend_enabled, 2000 bool, S_IRUGO | S_IWUSR); 2001 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2002 " and hibernate operations"); 2003 2004 /** 2005 * suspend_console - suspend the console subsystem 2006 * 2007 * This disables printk() while we go into suspend states 2008 */ 2009 void suspend_console(void) 2010 { 2011 if (!console_suspend_enabled) 2012 return; 2013 printk("Suspending console(s) (use no_console_suspend to debug)\n"); 2014 console_lock(); 2015 console_suspended = 1; 2016 up_console_sem(); 2017 } 2018 2019 void resume_console(void) 2020 { 2021 if (!console_suspend_enabled) 2022 return; 2023 down_console_sem(); 2024 console_suspended = 0; 2025 console_unlock(); 2026 } 2027 2028 /** 2029 * console_cpu_notify - print deferred console messages after CPU hotplug 2030 * @cpu: unused 2031 * 2032 * If printk() is called from a CPU that is not online yet, the messages 2033 * will be printed on the console only if there are CON_ANYTIME consoles. 2034 * This function is called when a new CPU comes online (or fails to come 2035 * up) or goes offline. 2036 */ 2037 static int console_cpu_notify(unsigned int cpu) 2038 { 2039 if (!cpuhp_tasks_frozen) { 2040 /* If trylock fails, someone else is doing the printing */ 2041 if (console_trylock()) 2042 console_unlock(); 2043 } 2044 return 0; 2045 } 2046 2047 /** 2048 * console_lock - lock the console system for exclusive use. 2049 * 2050 * Acquires a lock which guarantees that the caller has 2051 * exclusive access to the console system and the console_drivers list. 2052 * 2053 * Can sleep, returns nothing. 2054 */ 2055 void console_lock(void) 2056 { 2057 might_sleep(); 2058 2059 down_console_sem(); 2060 if (console_suspended) 2061 return; 2062 console_locked = 1; 2063 console_may_schedule = 1; 2064 } 2065 EXPORT_SYMBOL(console_lock); 2066 2067 /** 2068 * console_trylock - try to lock the console system for exclusive use. 2069 * 2070 * Try to acquire a lock which guarantees that the caller has exclusive 2071 * access to the console system and the console_drivers list. 2072 * 2073 * returns 1 on success, and 0 on failure to acquire the lock. 2074 */ 2075 int console_trylock(void) 2076 { 2077 if (down_trylock_console_sem()) 2078 return 0; 2079 if (console_suspended) { 2080 up_console_sem(); 2081 return 0; 2082 } 2083 console_locked = 1; 2084 /* 2085 * When PREEMPT_COUNT disabled we can't reliably detect if it's 2086 * safe to schedule (e.g. calling printk while holding a spin_lock), 2087 * because preempt_disable()/preempt_enable() are just barriers there 2088 * and preempt_count() is always 0. 2089 * 2090 * RCU read sections have a separate preemption counter when 2091 * PREEMPT_RCU enabled thus we must take extra care and check 2092 * rcu_preempt_depth(), otherwise RCU read sections modify 2093 * preempt_count(). 2094 */ 2095 console_may_schedule = !oops_in_progress && 2096 preemptible() && 2097 !rcu_preempt_depth(); 2098 return 1; 2099 } 2100 EXPORT_SYMBOL(console_trylock); 2101 2102 int is_console_locked(void) 2103 { 2104 return console_locked; 2105 } 2106 2107 /* 2108 * Check if we have any console that is capable of printing while cpu is 2109 * booting or shutting down. Requires console_sem. 2110 */ 2111 static int have_callable_console(void) 2112 { 2113 struct console *con; 2114 2115 for_each_console(con) 2116 if ((con->flags & CON_ENABLED) && 2117 (con->flags & CON_ANYTIME)) 2118 return 1; 2119 2120 return 0; 2121 } 2122 2123 /* 2124 * Can we actually use the console at this time on this cpu? 2125 * 2126 * Console drivers may assume that per-cpu resources have been allocated. So 2127 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2128 * call them until this CPU is officially up. 2129 */ 2130 static inline int can_use_console(void) 2131 { 2132 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2133 } 2134 2135 /** 2136 * console_unlock - unlock the console system 2137 * 2138 * Releases the console_lock which the caller holds on the console system 2139 * and the console driver list. 2140 * 2141 * While the console_lock was held, console output may have been buffered 2142 * by printk(). If this is the case, console_unlock(); emits 2143 * the output prior to releasing the lock. 2144 * 2145 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2146 * 2147 * console_unlock(); may be called from any context. 2148 */ 2149 void console_unlock(void) 2150 { 2151 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2152 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2153 static u64 seen_seq; 2154 unsigned long flags; 2155 bool wake_klogd = false; 2156 bool do_cond_resched, retry; 2157 2158 if (console_suspended) { 2159 up_console_sem(); 2160 return; 2161 } 2162 2163 /* 2164 * Console drivers are called with interrupts disabled, so 2165 * @console_may_schedule should be cleared before; however, we may 2166 * end up dumping a lot of lines, for example, if called from 2167 * console registration path, and should invoke cond_resched() 2168 * between lines if allowable. Not doing so can cause a very long 2169 * scheduling stall on a slow console leading to RCU stall and 2170 * softlockup warnings which exacerbate the issue with more 2171 * messages practically incapacitating the system. 2172 * 2173 * console_trylock() is not able to detect the preemptive 2174 * context reliably. Therefore the value must be stored before 2175 * and cleared after the the "again" goto label. 2176 */ 2177 do_cond_resched = console_may_schedule; 2178 again: 2179 console_may_schedule = 0; 2180 2181 /* 2182 * We released the console_sem lock, so we need to recheck if 2183 * cpu is online and (if not) is there at least one CON_ANYTIME 2184 * console. 2185 */ 2186 if (!can_use_console()) { 2187 console_locked = 0; 2188 up_console_sem(); 2189 return; 2190 } 2191 2192 for (;;) { 2193 struct printk_log *msg; 2194 size_t ext_len = 0; 2195 size_t len; 2196 2197 printk_safe_enter_irqsave(flags); 2198 raw_spin_lock(&logbuf_lock); 2199 if (seen_seq != log_next_seq) { 2200 wake_klogd = true; 2201 seen_seq = log_next_seq; 2202 } 2203 2204 if (console_seq < log_first_seq) { 2205 len = sprintf(text, "** %u printk messages dropped ** ", 2206 (unsigned)(log_first_seq - console_seq)); 2207 2208 /* messages are gone, move to first one */ 2209 console_seq = log_first_seq; 2210 console_idx = log_first_idx; 2211 } else { 2212 len = 0; 2213 } 2214 skip: 2215 if (console_seq == log_next_seq) 2216 break; 2217 2218 msg = log_from_idx(console_idx); 2219 if (suppress_message_printing(msg->level)) { 2220 /* 2221 * Skip record we have buffered and already printed 2222 * directly to the console when we received it, and 2223 * record that has level above the console loglevel. 2224 */ 2225 console_idx = log_next(console_idx); 2226 console_seq++; 2227 goto skip; 2228 } 2229 2230 len += msg_print_text(msg, false, text + len, sizeof(text) - len); 2231 if (nr_ext_console_drivers) { 2232 ext_len = msg_print_ext_header(ext_text, 2233 sizeof(ext_text), 2234 msg, console_seq); 2235 ext_len += msg_print_ext_body(ext_text + ext_len, 2236 sizeof(ext_text) - ext_len, 2237 log_dict(msg), msg->dict_len, 2238 log_text(msg), msg->text_len); 2239 } 2240 console_idx = log_next(console_idx); 2241 console_seq++; 2242 raw_spin_unlock(&logbuf_lock); 2243 2244 stop_critical_timings(); /* don't trace print latency */ 2245 call_console_drivers(ext_text, ext_len, text, len); 2246 start_critical_timings(); 2247 printk_safe_exit_irqrestore(flags); 2248 2249 if (do_cond_resched) 2250 cond_resched(); 2251 } 2252 console_locked = 0; 2253 2254 /* Release the exclusive_console once it is used */ 2255 if (unlikely(exclusive_console)) 2256 exclusive_console = NULL; 2257 2258 raw_spin_unlock(&logbuf_lock); 2259 2260 up_console_sem(); 2261 2262 /* 2263 * Someone could have filled up the buffer again, so re-check if there's 2264 * something to flush. In case we cannot trylock the console_sem again, 2265 * there's a new owner and the console_unlock() from them will do the 2266 * flush, no worries. 2267 */ 2268 raw_spin_lock(&logbuf_lock); 2269 retry = console_seq != log_next_seq; 2270 raw_spin_unlock(&logbuf_lock); 2271 printk_safe_exit_irqrestore(flags); 2272 2273 if (retry && console_trylock()) 2274 goto again; 2275 2276 if (wake_klogd) 2277 wake_up_klogd(); 2278 } 2279 EXPORT_SYMBOL(console_unlock); 2280 2281 /** 2282 * console_conditional_schedule - yield the CPU if required 2283 * 2284 * If the console code is currently allowed to sleep, and 2285 * if this CPU should yield the CPU to another task, do 2286 * so here. 2287 * 2288 * Must be called within console_lock();. 2289 */ 2290 void __sched console_conditional_schedule(void) 2291 { 2292 if (console_may_schedule) 2293 cond_resched(); 2294 } 2295 EXPORT_SYMBOL(console_conditional_schedule); 2296 2297 void console_unblank(void) 2298 { 2299 struct console *c; 2300 2301 /* 2302 * console_unblank can no longer be called in interrupt context unless 2303 * oops_in_progress is set to 1.. 2304 */ 2305 if (oops_in_progress) { 2306 if (down_trylock_console_sem() != 0) 2307 return; 2308 } else 2309 console_lock(); 2310 2311 console_locked = 1; 2312 console_may_schedule = 0; 2313 for_each_console(c) 2314 if ((c->flags & CON_ENABLED) && c->unblank) 2315 c->unblank(); 2316 console_unlock(); 2317 } 2318 2319 /** 2320 * console_flush_on_panic - flush console content on panic 2321 * 2322 * Immediately output all pending messages no matter what. 2323 */ 2324 void console_flush_on_panic(void) 2325 { 2326 /* 2327 * If someone else is holding the console lock, trylock will fail 2328 * and may_schedule may be set. Ignore and proceed to unlock so 2329 * that messages are flushed out. As this can be called from any 2330 * context and we don't want to get preempted while flushing, 2331 * ensure may_schedule is cleared. 2332 */ 2333 console_trylock(); 2334 console_may_schedule = 0; 2335 console_unlock(); 2336 } 2337 2338 /* 2339 * Return the console tty driver structure and its associated index 2340 */ 2341 struct tty_driver *console_device(int *index) 2342 { 2343 struct console *c; 2344 struct tty_driver *driver = NULL; 2345 2346 console_lock(); 2347 for_each_console(c) { 2348 if (!c->device) 2349 continue; 2350 driver = c->device(c, index); 2351 if (driver) 2352 break; 2353 } 2354 console_unlock(); 2355 return driver; 2356 } 2357 2358 /* 2359 * Prevent further output on the passed console device so that (for example) 2360 * serial drivers can disable console output before suspending a port, and can 2361 * re-enable output afterwards. 2362 */ 2363 void console_stop(struct console *console) 2364 { 2365 console_lock(); 2366 console->flags &= ~CON_ENABLED; 2367 console_unlock(); 2368 } 2369 EXPORT_SYMBOL(console_stop); 2370 2371 void console_start(struct console *console) 2372 { 2373 console_lock(); 2374 console->flags |= CON_ENABLED; 2375 console_unlock(); 2376 } 2377 EXPORT_SYMBOL(console_start); 2378 2379 static int __read_mostly keep_bootcon; 2380 2381 static int __init keep_bootcon_setup(char *str) 2382 { 2383 keep_bootcon = 1; 2384 pr_info("debug: skip boot console de-registration.\n"); 2385 2386 return 0; 2387 } 2388 2389 early_param("keep_bootcon", keep_bootcon_setup); 2390 2391 /* 2392 * The console driver calls this routine during kernel initialization 2393 * to register the console printing procedure with printk() and to 2394 * print any messages that were printed by the kernel before the 2395 * console driver was initialized. 2396 * 2397 * This can happen pretty early during the boot process (because of 2398 * early_printk) - sometimes before setup_arch() completes - be careful 2399 * of what kernel features are used - they may not be initialised yet. 2400 * 2401 * There are two types of consoles - bootconsoles (early_printk) and 2402 * "real" consoles (everything which is not a bootconsole) which are 2403 * handled differently. 2404 * - Any number of bootconsoles can be registered at any time. 2405 * - As soon as a "real" console is registered, all bootconsoles 2406 * will be unregistered automatically. 2407 * - Once a "real" console is registered, any attempt to register a 2408 * bootconsoles will be rejected 2409 */ 2410 void register_console(struct console *newcon) 2411 { 2412 int i; 2413 unsigned long flags; 2414 struct console *bcon = NULL; 2415 struct console_cmdline *c; 2416 static bool has_preferred; 2417 2418 if (console_drivers) 2419 for_each_console(bcon) 2420 if (WARN(bcon == newcon, 2421 "console '%s%d' already registered\n", 2422 bcon->name, bcon->index)) 2423 return; 2424 2425 /* 2426 * before we register a new CON_BOOT console, make sure we don't 2427 * already have a valid console 2428 */ 2429 if (console_drivers && newcon->flags & CON_BOOT) { 2430 /* find the last or real console */ 2431 for_each_console(bcon) { 2432 if (!(bcon->flags & CON_BOOT)) { 2433 pr_info("Too late to register bootconsole %s%d\n", 2434 newcon->name, newcon->index); 2435 return; 2436 } 2437 } 2438 } 2439 2440 if (console_drivers && console_drivers->flags & CON_BOOT) 2441 bcon = console_drivers; 2442 2443 if (!has_preferred || bcon || !console_drivers) 2444 has_preferred = preferred_console >= 0; 2445 2446 /* 2447 * See if we want to use this console driver. If we 2448 * didn't select a console we take the first one 2449 * that registers here. 2450 */ 2451 if (!has_preferred) { 2452 if (newcon->index < 0) 2453 newcon->index = 0; 2454 if (newcon->setup == NULL || 2455 newcon->setup(newcon, NULL) == 0) { 2456 newcon->flags |= CON_ENABLED; 2457 if (newcon->device) { 2458 newcon->flags |= CON_CONSDEV; 2459 has_preferred = true; 2460 } 2461 } 2462 } 2463 2464 /* 2465 * See if this console matches one we selected on 2466 * the command line. 2467 */ 2468 for (i = 0, c = console_cmdline; 2469 i < MAX_CMDLINECONSOLES && c->name[0]; 2470 i++, c++) { 2471 if (!newcon->match || 2472 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2473 /* default matching */ 2474 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2475 if (strcmp(c->name, newcon->name) != 0) 2476 continue; 2477 if (newcon->index >= 0 && 2478 newcon->index != c->index) 2479 continue; 2480 if (newcon->index < 0) 2481 newcon->index = c->index; 2482 2483 if (_braille_register_console(newcon, c)) 2484 return; 2485 2486 if (newcon->setup && 2487 newcon->setup(newcon, c->options) != 0) 2488 break; 2489 } 2490 2491 newcon->flags |= CON_ENABLED; 2492 if (i == preferred_console) { 2493 newcon->flags |= CON_CONSDEV; 2494 has_preferred = true; 2495 } 2496 break; 2497 } 2498 2499 if (!(newcon->flags & CON_ENABLED)) 2500 return; 2501 2502 /* 2503 * If we have a bootconsole, and are switching to a real console, 2504 * don't print everything out again, since when the boot console, and 2505 * the real console are the same physical device, it's annoying to 2506 * see the beginning boot messages twice 2507 */ 2508 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2509 newcon->flags &= ~CON_PRINTBUFFER; 2510 2511 /* 2512 * Put this console in the list - keep the 2513 * preferred driver at the head of the list. 2514 */ 2515 console_lock(); 2516 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2517 newcon->next = console_drivers; 2518 console_drivers = newcon; 2519 if (newcon->next) 2520 newcon->next->flags &= ~CON_CONSDEV; 2521 } else { 2522 newcon->next = console_drivers->next; 2523 console_drivers->next = newcon; 2524 } 2525 2526 if (newcon->flags & CON_EXTENDED) 2527 if (!nr_ext_console_drivers++) 2528 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n"); 2529 2530 if (newcon->flags & CON_PRINTBUFFER) { 2531 /* 2532 * console_unlock(); will print out the buffered messages 2533 * for us. 2534 */ 2535 logbuf_lock_irqsave(flags); 2536 console_seq = syslog_seq; 2537 console_idx = syslog_idx; 2538 logbuf_unlock_irqrestore(flags); 2539 /* 2540 * We're about to replay the log buffer. Only do this to the 2541 * just-registered console to avoid excessive message spam to 2542 * the already-registered consoles. 2543 */ 2544 exclusive_console = newcon; 2545 } 2546 console_unlock(); 2547 console_sysfs_notify(); 2548 2549 /* 2550 * By unregistering the bootconsoles after we enable the real console 2551 * we get the "console xxx enabled" message on all the consoles - 2552 * boot consoles, real consoles, etc - this is to ensure that end 2553 * users know there might be something in the kernel's log buffer that 2554 * went to the bootconsole (that they do not see on the real console) 2555 */ 2556 pr_info("%sconsole [%s%d] enabled\n", 2557 (newcon->flags & CON_BOOT) ? "boot" : "" , 2558 newcon->name, newcon->index); 2559 if (bcon && 2560 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2561 !keep_bootcon) { 2562 /* We need to iterate through all boot consoles, to make 2563 * sure we print everything out, before we unregister them. 2564 */ 2565 for_each_console(bcon) 2566 if (bcon->flags & CON_BOOT) 2567 unregister_console(bcon); 2568 } 2569 } 2570 EXPORT_SYMBOL(register_console); 2571 2572 int unregister_console(struct console *console) 2573 { 2574 struct console *a, *b; 2575 int res; 2576 2577 pr_info("%sconsole [%s%d] disabled\n", 2578 (console->flags & CON_BOOT) ? "boot" : "" , 2579 console->name, console->index); 2580 2581 res = _braille_unregister_console(console); 2582 if (res) 2583 return res; 2584 2585 res = 1; 2586 console_lock(); 2587 if (console_drivers == console) { 2588 console_drivers=console->next; 2589 res = 0; 2590 } else if (console_drivers) { 2591 for (a=console_drivers->next, b=console_drivers ; 2592 a; b=a, a=b->next) { 2593 if (a == console) { 2594 b->next = a->next; 2595 res = 0; 2596 break; 2597 } 2598 } 2599 } 2600 2601 if (!res && (console->flags & CON_EXTENDED)) 2602 nr_ext_console_drivers--; 2603 2604 /* 2605 * If this isn't the last console and it has CON_CONSDEV set, we 2606 * need to set it on the next preferred console. 2607 */ 2608 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2609 console_drivers->flags |= CON_CONSDEV; 2610 2611 console->flags &= ~CON_ENABLED; 2612 console_unlock(); 2613 console_sysfs_notify(); 2614 return res; 2615 } 2616 EXPORT_SYMBOL(unregister_console); 2617 2618 /* 2619 * Initialize the console device. This is called *early*, so 2620 * we can't necessarily depend on lots of kernel help here. 2621 * Just do some early initializations, and do the complex setup 2622 * later. 2623 */ 2624 void __init console_init(void) 2625 { 2626 initcall_t *call; 2627 2628 /* Setup the default TTY line discipline. */ 2629 n_tty_init(); 2630 2631 /* 2632 * set up the console device so that later boot sequences can 2633 * inform about problems etc.. 2634 */ 2635 call = __con_initcall_start; 2636 while (call < __con_initcall_end) { 2637 (*call)(); 2638 call++; 2639 } 2640 } 2641 2642 /* 2643 * Some boot consoles access data that is in the init section and which will 2644 * be discarded after the initcalls have been run. To make sure that no code 2645 * will access this data, unregister the boot consoles in a late initcall. 2646 * 2647 * If for some reason, such as deferred probe or the driver being a loadable 2648 * module, the real console hasn't registered yet at this point, there will 2649 * be a brief interval in which no messages are logged to the console, which 2650 * makes it difficult to diagnose problems that occur during this time. 2651 * 2652 * To mitigate this problem somewhat, only unregister consoles whose memory 2653 * intersects with the init section. Note that code exists elsewhere to get 2654 * rid of the boot console as soon as the proper console shows up, so there 2655 * won't be side-effects from postponing the removal. 2656 */ 2657 static int __init printk_late_init(void) 2658 { 2659 struct console *con; 2660 int ret; 2661 2662 for_each_console(con) { 2663 if (!keep_bootcon && con->flags & CON_BOOT) { 2664 /* 2665 * Make sure to unregister boot consoles whose data 2666 * resides in the init section before the init section 2667 * is discarded. Boot consoles whose data will stick 2668 * around will automatically be unregistered when the 2669 * proper console replaces them. 2670 */ 2671 if (init_section_intersects(con, sizeof(*con))) 2672 unregister_console(con); 2673 } 2674 } 2675 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2676 console_cpu_notify); 2677 WARN_ON(ret < 0); 2678 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2679 console_cpu_notify, NULL); 2680 WARN_ON(ret < 0); 2681 return 0; 2682 } 2683 late_initcall(printk_late_init); 2684 2685 #if defined CONFIG_PRINTK 2686 /* 2687 * Delayed printk version, for scheduler-internal messages: 2688 */ 2689 #define PRINTK_PENDING_WAKEUP 0x01 2690 #define PRINTK_PENDING_OUTPUT 0x02 2691 2692 static DEFINE_PER_CPU(int, printk_pending); 2693 2694 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2695 { 2696 int pending = __this_cpu_xchg(printk_pending, 0); 2697 2698 if (pending & PRINTK_PENDING_OUTPUT) { 2699 /* If trylock fails, someone else is doing the printing */ 2700 if (console_trylock()) 2701 console_unlock(); 2702 } 2703 2704 if (pending & PRINTK_PENDING_WAKEUP) 2705 wake_up_interruptible(&log_wait); 2706 } 2707 2708 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2709 .func = wake_up_klogd_work_func, 2710 .flags = IRQ_WORK_LAZY, 2711 }; 2712 2713 void wake_up_klogd(void) 2714 { 2715 preempt_disable(); 2716 if (waitqueue_active(&log_wait)) { 2717 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2718 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2719 } 2720 preempt_enable(); 2721 } 2722 2723 int vprintk_deferred(const char *fmt, va_list args) 2724 { 2725 int r; 2726 2727 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2728 2729 preempt_disable(); 2730 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2731 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2732 preempt_enable(); 2733 2734 return r; 2735 } 2736 2737 int printk_deferred(const char *fmt, ...) 2738 { 2739 va_list args; 2740 int r; 2741 2742 va_start(args, fmt); 2743 r = vprintk_deferred(fmt, args); 2744 va_end(args); 2745 2746 return r; 2747 } 2748 2749 /* 2750 * printk rate limiting, lifted from the networking subsystem. 2751 * 2752 * This enforces a rate limit: not more than 10 kernel messages 2753 * every 5s to make a denial-of-service attack impossible. 2754 */ 2755 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2756 2757 int __printk_ratelimit(const char *func) 2758 { 2759 return ___ratelimit(&printk_ratelimit_state, func); 2760 } 2761 EXPORT_SYMBOL(__printk_ratelimit); 2762 2763 /** 2764 * printk_timed_ratelimit - caller-controlled printk ratelimiting 2765 * @caller_jiffies: pointer to caller's state 2766 * @interval_msecs: minimum interval between prints 2767 * 2768 * printk_timed_ratelimit() returns true if more than @interval_msecs 2769 * milliseconds have elapsed since the last time printk_timed_ratelimit() 2770 * returned true. 2771 */ 2772 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 2773 unsigned int interval_msecs) 2774 { 2775 unsigned long elapsed = jiffies - *caller_jiffies; 2776 2777 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 2778 return false; 2779 2780 *caller_jiffies = jiffies; 2781 return true; 2782 } 2783 EXPORT_SYMBOL(printk_timed_ratelimit); 2784 2785 static DEFINE_SPINLOCK(dump_list_lock); 2786 static LIST_HEAD(dump_list); 2787 2788 /** 2789 * kmsg_dump_register - register a kernel log dumper. 2790 * @dumper: pointer to the kmsg_dumper structure 2791 * 2792 * Adds a kernel log dumper to the system. The dump callback in the 2793 * structure will be called when the kernel oopses or panics and must be 2794 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 2795 */ 2796 int kmsg_dump_register(struct kmsg_dumper *dumper) 2797 { 2798 unsigned long flags; 2799 int err = -EBUSY; 2800 2801 /* The dump callback needs to be set */ 2802 if (!dumper->dump) 2803 return -EINVAL; 2804 2805 spin_lock_irqsave(&dump_list_lock, flags); 2806 /* Don't allow registering multiple times */ 2807 if (!dumper->registered) { 2808 dumper->registered = 1; 2809 list_add_tail_rcu(&dumper->list, &dump_list); 2810 err = 0; 2811 } 2812 spin_unlock_irqrestore(&dump_list_lock, flags); 2813 2814 return err; 2815 } 2816 EXPORT_SYMBOL_GPL(kmsg_dump_register); 2817 2818 /** 2819 * kmsg_dump_unregister - unregister a kmsg dumper. 2820 * @dumper: pointer to the kmsg_dumper structure 2821 * 2822 * Removes a dump device from the system. Returns zero on success and 2823 * %-EINVAL otherwise. 2824 */ 2825 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 2826 { 2827 unsigned long flags; 2828 int err = -EINVAL; 2829 2830 spin_lock_irqsave(&dump_list_lock, flags); 2831 if (dumper->registered) { 2832 dumper->registered = 0; 2833 list_del_rcu(&dumper->list); 2834 err = 0; 2835 } 2836 spin_unlock_irqrestore(&dump_list_lock, flags); 2837 synchronize_rcu(); 2838 2839 return err; 2840 } 2841 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 2842 2843 static bool always_kmsg_dump; 2844 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 2845 2846 /** 2847 * kmsg_dump - dump kernel log to kernel message dumpers. 2848 * @reason: the reason (oops, panic etc) for dumping 2849 * 2850 * Call each of the registered dumper's dump() callback, which can 2851 * retrieve the kmsg records with kmsg_dump_get_line() or 2852 * kmsg_dump_get_buffer(). 2853 */ 2854 void kmsg_dump(enum kmsg_dump_reason reason) 2855 { 2856 struct kmsg_dumper *dumper; 2857 unsigned long flags; 2858 2859 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 2860 return; 2861 2862 rcu_read_lock(); 2863 list_for_each_entry_rcu(dumper, &dump_list, list) { 2864 if (dumper->max_reason && reason > dumper->max_reason) 2865 continue; 2866 2867 /* initialize iterator with data about the stored records */ 2868 dumper->active = true; 2869 2870 logbuf_lock_irqsave(flags); 2871 dumper->cur_seq = clear_seq; 2872 dumper->cur_idx = clear_idx; 2873 dumper->next_seq = log_next_seq; 2874 dumper->next_idx = log_next_idx; 2875 logbuf_unlock_irqrestore(flags); 2876 2877 /* invoke dumper which will iterate over records */ 2878 dumper->dump(dumper, reason); 2879 2880 /* reset iterator */ 2881 dumper->active = false; 2882 } 2883 rcu_read_unlock(); 2884 } 2885 2886 /** 2887 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 2888 * @dumper: registered kmsg dumper 2889 * @syslog: include the "<4>" prefixes 2890 * @line: buffer to copy the line to 2891 * @size: maximum size of the buffer 2892 * @len: length of line placed into buffer 2893 * 2894 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2895 * record, and copy one record into the provided buffer. 2896 * 2897 * Consecutive calls will return the next available record moving 2898 * towards the end of the buffer with the youngest messages. 2899 * 2900 * A return value of FALSE indicates that there are no more records to 2901 * read. 2902 * 2903 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 2904 */ 2905 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 2906 char *line, size_t size, size_t *len) 2907 { 2908 struct printk_log *msg; 2909 size_t l = 0; 2910 bool ret = false; 2911 2912 if (!dumper->active) 2913 goto out; 2914 2915 if (dumper->cur_seq < log_first_seq) { 2916 /* messages are gone, move to first available one */ 2917 dumper->cur_seq = log_first_seq; 2918 dumper->cur_idx = log_first_idx; 2919 } 2920 2921 /* last entry */ 2922 if (dumper->cur_seq >= log_next_seq) 2923 goto out; 2924 2925 msg = log_from_idx(dumper->cur_idx); 2926 l = msg_print_text(msg, syslog, line, size); 2927 2928 dumper->cur_idx = log_next(dumper->cur_idx); 2929 dumper->cur_seq++; 2930 ret = true; 2931 out: 2932 if (len) 2933 *len = l; 2934 return ret; 2935 } 2936 2937 /** 2938 * kmsg_dump_get_line - retrieve one kmsg log line 2939 * @dumper: registered kmsg dumper 2940 * @syslog: include the "<4>" prefixes 2941 * @line: buffer to copy the line to 2942 * @size: maximum size of the buffer 2943 * @len: length of line placed into buffer 2944 * 2945 * Start at the beginning of the kmsg buffer, with the oldest kmsg 2946 * record, and copy one record into the provided buffer. 2947 * 2948 * Consecutive calls will return the next available record moving 2949 * towards the end of the buffer with the youngest messages. 2950 * 2951 * A return value of FALSE indicates that there are no more records to 2952 * read. 2953 */ 2954 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 2955 char *line, size_t size, size_t *len) 2956 { 2957 unsigned long flags; 2958 bool ret; 2959 2960 logbuf_lock_irqsave(flags); 2961 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 2962 logbuf_unlock_irqrestore(flags); 2963 2964 return ret; 2965 } 2966 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 2967 2968 /** 2969 * kmsg_dump_get_buffer - copy kmsg log lines 2970 * @dumper: registered kmsg dumper 2971 * @syslog: include the "<4>" prefixes 2972 * @buf: buffer to copy the line to 2973 * @size: maximum size of the buffer 2974 * @len: length of line placed into buffer 2975 * 2976 * Start at the end of the kmsg buffer and fill the provided buffer 2977 * with as many of the the *youngest* kmsg records that fit into it. 2978 * If the buffer is large enough, all available kmsg records will be 2979 * copied with a single call. 2980 * 2981 * Consecutive calls will fill the buffer with the next block of 2982 * available older records, not including the earlier retrieved ones. 2983 * 2984 * A return value of FALSE indicates that there are no more records to 2985 * read. 2986 */ 2987 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 2988 char *buf, size_t size, size_t *len) 2989 { 2990 unsigned long flags; 2991 u64 seq; 2992 u32 idx; 2993 u64 next_seq; 2994 u32 next_idx; 2995 size_t l = 0; 2996 bool ret = false; 2997 2998 if (!dumper->active) 2999 goto out; 3000 3001 logbuf_lock_irqsave(flags); 3002 if (dumper->cur_seq < log_first_seq) { 3003 /* messages are gone, move to first available one */ 3004 dumper->cur_seq = log_first_seq; 3005 dumper->cur_idx = log_first_idx; 3006 } 3007 3008 /* last entry */ 3009 if (dumper->cur_seq >= dumper->next_seq) { 3010 logbuf_unlock_irqrestore(flags); 3011 goto out; 3012 } 3013 3014 /* calculate length of entire buffer */ 3015 seq = dumper->cur_seq; 3016 idx = dumper->cur_idx; 3017 while (seq < dumper->next_seq) { 3018 struct printk_log *msg = log_from_idx(idx); 3019 3020 l += msg_print_text(msg, true, NULL, 0); 3021 idx = log_next(idx); 3022 seq++; 3023 } 3024 3025 /* move first record forward until length fits into the buffer */ 3026 seq = dumper->cur_seq; 3027 idx = dumper->cur_idx; 3028 while (l > size && seq < dumper->next_seq) { 3029 struct printk_log *msg = log_from_idx(idx); 3030 3031 l -= msg_print_text(msg, true, NULL, 0); 3032 idx = log_next(idx); 3033 seq++; 3034 } 3035 3036 /* last message in next interation */ 3037 next_seq = seq; 3038 next_idx = idx; 3039 3040 l = 0; 3041 while (seq < dumper->next_seq) { 3042 struct printk_log *msg = log_from_idx(idx); 3043 3044 l += msg_print_text(msg, syslog, buf + l, size - l); 3045 idx = log_next(idx); 3046 seq++; 3047 } 3048 3049 dumper->next_seq = next_seq; 3050 dumper->next_idx = next_idx; 3051 ret = true; 3052 logbuf_unlock_irqrestore(flags); 3053 out: 3054 if (len) 3055 *len = l; 3056 return ret; 3057 } 3058 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3059 3060 /** 3061 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3062 * @dumper: registered kmsg dumper 3063 * 3064 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3065 * kmsg_dump_get_buffer() can be called again and used multiple 3066 * times within the same dumper.dump() callback. 3067 * 3068 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3069 */ 3070 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3071 { 3072 dumper->cur_seq = clear_seq; 3073 dumper->cur_idx = clear_idx; 3074 dumper->next_seq = log_next_seq; 3075 dumper->next_idx = log_next_idx; 3076 } 3077 3078 /** 3079 * kmsg_dump_rewind - reset the interator 3080 * @dumper: registered kmsg dumper 3081 * 3082 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3083 * kmsg_dump_get_buffer() can be called again and used multiple 3084 * times within the same dumper.dump() callback. 3085 */ 3086 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3087 { 3088 unsigned long flags; 3089 3090 logbuf_lock_irqsave(flags); 3091 kmsg_dump_rewind_nolock(dumper); 3092 logbuf_unlock_irqrestore(flags); 3093 } 3094 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3095 3096 static char dump_stack_arch_desc_str[128]; 3097 3098 /** 3099 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps 3100 * @fmt: printf-style format string 3101 * @...: arguments for the format string 3102 * 3103 * The configured string will be printed right after utsname during task 3104 * dumps. Usually used to add arch-specific system identifiers. If an 3105 * arch wants to make use of such an ID string, it should initialize this 3106 * as soon as possible during boot. 3107 */ 3108 void __init dump_stack_set_arch_desc(const char *fmt, ...) 3109 { 3110 va_list args; 3111 3112 va_start(args, fmt); 3113 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str), 3114 fmt, args); 3115 va_end(args); 3116 } 3117 3118 /** 3119 * dump_stack_print_info - print generic debug info for dump_stack() 3120 * @log_lvl: log level 3121 * 3122 * Arch-specific dump_stack() implementations can use this function to 3123 * print out the same debug information as the generic dump_stack(). 3124 */ 3125 void dump_stack_print_info(const char *log_lvl) 3126 { 3127 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n", 3128 log_lvl, raw_smp_processor_id(), current->pid, current->comm, 3129 print_tainted(), init_utsname()->release, 3130 (int)strcspn(init_utsname()->version, " "), 3131 init_utsname()->version); 3132 3133 if (dump_stack_arch_desc_str[0] != '\0') 3134 printk("%sHardware name: %s\n", 3135 log_lvl, dump_stack_arch_desc_str); 3136 3137 print_worker_info(log_lvl, current); 3138 } 3139 3140 /** 3141 * show_regs_print_info - print generic debug info for show_regs() 3142 * @log_lvl: log level 3143 * 3144 * show_regs() implementations can use this function to print out generic 3145 * debug information. 3146 */ 3147 void show_regs_print_info(const char *log_lvl) 3148 { 3149 dump_stack_print_info(log_lvl); 3150 3151 printk("%stask: %p task.stack: %p\n", 3152 log_lvl, current, task_stack_page(current)); 3153 } 3154 3155 #endif 3156