xref: /linux/kernel/printk/printk.c (revision 2fcea44e1ba16c55f4602948d2d43f3a365d6070)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/vmcore_info.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
75 
76 /*
77  * Low level drivers may need that to know if they can schedule in
78  * their unblank() callback or not. So let's export it.
79  */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82 
83 /*
84  * console_mutex protects console_list updates and console->flags updates.
85  * The flags are synchronized only for consoles that are registered, i.e.
86  * accessible via the console list.
87  */
88 static DEFINE_MUTEX(console_mutex);
89 
90 /*
91  * console_sem protects updates to console->seq
92  * and also provides serialization for console printing.
93  */
94 static DEFINE_SEMAPHORE(console_sem, 1);
95 HLIST_HEAD(console_list);
96 EXPORT_SYMBOL_GPL(console_list);
97 DEFINE_STATIC_SRCU(console_srcu);
98 
99 /*
100  * System may need to suppress printk message under certain
101  * circumstances, like after kernel panic happens.
102  */
103 int __read_mostly suppress_printk;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lockdep_map console_lock_dep_map = {
107 	.name = "console_lock"
108 };
109 
110 void lockdep_assert_console_list_lock_held(void)
111 {
112 	lockdep_assert_held(&console_mutex);
113 }
114 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
115 #endif
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 bool console_srcu_read_lock_is_held(void)
119 {
120 	return srcu_read_lock_held(&console_srcu);
121 }
122 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
123 #endif
124 
125 enum devkmsg_log_bits {
126 	__DEVKMSG_LOG_BIT_ON = 0,
127 	__DEVKMSG_LOG_BIT_OFF,
128 	__DEVKMSG_LOG_BIT_LOCK,
129 };
130 
131 enum devkmsg_log_masks {
132 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
133 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
134 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
135 };
136 
137 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
138 #define DEVKMSG_LOG_MASK_DEFAULT	0
139 
140 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 
142 static int __control_devkmsg(char *str)
143 {
144 	size_t len;
145 
146 	if (!str)
147 		return -EINVAL;
148 
149 	len = str_has_prefix(str, "on");
150 	if (len) {
151 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
152 		return len;
153 	}
154 
155 	len = str_has_prefix(str, "off");
156 	if (len) {
157 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
158 		return len;
159 	}
160 
161 	len = str_has_prefix(str, "ratelimit");
162 	if (len) {
163 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
164 		return len;
165 	}
166 
167 	return -EINVAL;
168 }
169 
170 static int __init control_devkmsg(char *str)
171 {
172 	if (__control_devkmsg(str) < 0) {
173 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
174 		return 1;
175 	}
176 
177 	/*
178 	 * Set sysctl string accordingly:
179 	 */
180 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
181 		strscpy(devkmsg_log_str, "on");
182 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
183 		strscpy(devkmsg_log_str, "off");
184 	/* else "ratelimit" which is set by default. */
185 
186 	/*
187 	 * Sysctl cannot change it anymore. The kernel command line setting of
188 	 * this parameter is to force the setting to be permanent throughout the
189 	 * runtime of the system. This is a precation measure against userspace
190 	 * trying to be a smarta** and attempting to change it up on us.
191 	 */
192 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
193 
194 	return 1;
195 }
196 __setup("printk.devkmsg=", control_devkmsg);
197 
198 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
199 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
200 int devkmsg_sysctl_set_loglvl(const struct ctl_table *table, int write,
201 			      void *buffer, size_t *lenp, loff_t *ppos)
202 {
203 	char old_str[DEVKMSG_STR_MAX_SIZE];
204 	unsigned int old;
205 	int err;
206 
207 	if (write) {
208 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
209 			return -EINVAL;
210 
211 		old = devkmsg_log;
212 		strscpy(old_str, devkmsg_log_str);
213 	}
214 
215 	err = proc_dostring(table, write, buffer, lenp, ppos);
216 	if (err)
217 		return err;
218 
219 	if (write) {
220 		err = __control_devkmsg(devkmsg_log_str);
221 
222 		/*
223 		 * Do not accept an unknown string OR a known string with
224 		 * trailing crap...
225 		 */
226 		if (err < 0 || (err + 1 != *lenp)) {
227 
228 			/* ... and restore old setting. */
229 			devkmsg_log = old;
230 			strscpy(devkmsg_log_str, old_str);
231 
232 			return -EINVAL;
233 		}
234 	}
235 
236 	return 0;
237 }
238 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
239 
240 /**
241  * console_list_lock - Lock the console list
242  *
243  * For console list or console->flags updates
244  */
245 void console_list_lock(void)
246 {
247 	/*
248 	 * In unregister_console() and console_force_preferred_locked(),
249 	 * synchronize_srcu() is called with the console_list_lock held.
250 	 * Therefore it is not allowed that the console_list_lock is taken
251 	 * with the srcu_lock held.
252 	 *
253 	 * Detecting if this context is really in the read-side critical
254 	 * section is only possible if the appropriate debug options are
255 	 * enabled.
256 	 */
257 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
258 		     srcu_read_lock_held(&console_srcu));
259 
260 	mutex_lock(&console_mutex);
261 }
262 EXPORT_SYMBOL(console_list_lock);
263 
264 /**
265  * console_list_unlock - Unlock the console list
266  *
267  * Counterpart to console_list_lock()
268  */
269 void console_list_unlock(void)
270 {
271 	mutex_unlock(&console_mutex);
272 }
273 EXPORT_SYMBOL(console_list_unlock);
274 
275 /**
276  * console_srcu_read_lock - Register a new reader for the
277  *	SRCU-protected console list
278  *
279  * Use for_each_console_srcu() to iterate the console list
280  *
281  * Context: Any context.
282  * Return: A cookie to pass to console_srcu_read_unlock().
283  */
284 int console_srcu_read_lock(void)
285 {
286 	return srcu_read_lock_nmisafe(&console_srcu);
287 }
288 EXPORT_SYMBOL(console_srcu_read_lock);
289 
290 /**
291  * console_srcu_read_unlock - Unregister an old reader from
292  *	the SRCU-protected console list
293  * @cookie: cookie returned from console_srcu_read_lock()
294  *
295  * Counterpart to console_srcu_read_lock()
296  */
297 void console_srcu_read_unlock(int cookie)
298 {
299 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
300 }
301 EXPORT_SYMBOL(console_srcu_read_unlock);
302 
303 /*
304  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
305  * macros instead of functions so that _RET_IP_ contains useful information.
306  */
307 #define down_console_sem() do { \
308 	down(&console_sem);\
309 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
310 } while (0)
311 
312 static int __down_trylock_console_sem(unsigned long ip)
313 {
314 	int lock_failed;
315 	unsigned long flags;
316 
317 	/*
318 	 * Here and in __up_console_sem() we need to be in safe mode,
319 	 * because spindump/WARN/etc from under console ->lock will
320 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
321 	 */
322 	printk_safe_enter_irqsave(flags);
323 	lock_failed = down_trylock(&console_sem);
324 	printk_safe_exit_irqrestore(flags);
325 
326 	if (lock_failed)
327 		return 1;
328 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
329 	return 0;
330 }
331 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
332 
333 static void __up_console_sem(unsigned long ip)
334 {
335 	unsigned long flags;
336 
337 	mutex_release(&console_lock_dep_map, ip);
338 
339 	printk_safe_enter_irqsave(flags);
340 	up(&console_sem);
341 	printk_safe_exit_irqrestore(flags);
342 }
343 #define up_console_sem() __up_console_sem(_RET_IP_)
344 
345 static bool panic_in_progress(void)
346 {
347 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
348 }
349 
350 /* Return true if a panic is in progress on the current CPU. */
351 bool this_cpu_in_panic(void)
352 {
353 	/*
354 	 * We can use raw_smp_processor_id() here because it is impossible for
355 	 * the task to be migrated to the panic_cpu, or away from it. If
356 	 * panic_cpu has already been set, and we're not currently executing on
357 	 * that CPU, then we never will be.
358 	 */
359 	return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
360 }
361 
362 /*
363  * Return true if a panic is in progress on a remote CPU.
364  *
365  * On true, the local CPU should immediately release any printing resources
366  * that may be needed by the panic CPU.
367  */
368 bool other_cpu_in_panic(void)
369 {
370 	return (panic_in_progress() && !this_cpu_in_panic());
371 }
372 
373 /*
374  * This is used for debugging the mess that is the VT code by
375  * keeping track if we have the console semaphore held. It's
376  * definitely not the perfect debug tool (we don't know if _WE_
377  * hold it and are racing, but it helps tracking those weird code
378  * paths in the console code where we end up in places I want
379  * locked without the console semaphore held).
380  */
381 static int console_locked;
382 
383 /*
384  *	Array of consoles built from command line options (console=)
385  */
386 
387 #define MAX_CMDLINECONSOLES 8
388 
389 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
390 
391 static int preferred_console = -1;
392 int console_set_on_cmdline;
393 EXPORT_SYMBOL(console_set_on_cmdline);
394 
395 /* Flag: console code may call schedule() */
396 static int console_may_schedule;
397 
398 enum con_msg_format_flags {
399 	MSG_FORMAT_DEFAULT	= 0,
400 	MSG_FORMAT_SYSLOG	= (1 << 0),
401 };
402 
403 static int console_msg_format = MSG_FORMAT_DEFAULT;
404 
405 /*
406  * The printk log buffer consists of a sequenced collection of records, each
407  * containing variable length message text. Every record also contains its
408  * own meta-data (@info).
409  *
410  * Every record meta-data carries the timestamp in microseconds, as well as
411  * the standard userspace syslog level and syslog facility. The usual kernel
412  * messages use LOG_KERN; userspace-injected messages always carry a matching
413  * syslog facility, by default LOG_USER. The origin of every message can be
414  * reliably determined that way.
415  *
416  * The human readable log message of a record is available in @text, the
417  * length of the message text in @text_len. The stored message is not
418  * terminated.
419  *
420  * Optionally, a record can carry a dictionary of properties (key/value
421  * pairs), to provide userspace with a machine-readable message context.
422  *
423  * Examples for well-defined, commonly used property names are:
424  *   DEVICE=b12:8               device identifier
425  *                                b12:8         block dev_t
426  *                                c127:3        char dev_t
427  *                                n8            netdev ifindex
428  *                                +sound:card0  subsystem:devname
429  *   SUBSYSTEM=pci              driver-core subsystem name
430  *
431  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
432  * and values are terminated by a '\0' character.
433  *
434  * Example of record values:
435  *   record.text_buf                = "it's a line" (unterminated)
436  *   record.info.seq                = 56
437  *   record.info.ts_nsec            = 36863
438  *   record.info.text_len           = 11
439  *   record.info.facility           = 0 (LOG_KERN)
440  *   record.info.flags              = 0
441  *   record.info.level              = 3 (LOG_ERR)
442  *   record.info.caller_id          = 299 (task 299)
443  *   record.info.dev_info.subsystem = "pci" (terminated)
444  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
445  *
446  * The 'struct printk_info' buffer must never be directly exported to
447  * userspace, it is a kernel-private implementation detail that might
448  * need to be changed in the future, when the requirements change.
449  *
450  * /dev/kmsg exports the structured data in the following line format:
451  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
452  *
453  * Users of the export format should ignore possible additional values
454  * separated by ',', and find the message after the ';' character.
455  *
456  * The optional key/value pairs are attached as continuation lines starting
457  * with a space character and terminated by a newline. All possible
458  * non-prinatable characters are escaped in the "\xff" notation.
459  */
460 
461 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
462 static DEFINE_MUTEX(syslog_lock);
463 
464 #ifdef CONFIG_PRINTK
465 DECLARE_WAIT_QUEUE_HEAD(log_wait);
466 /* All 3 protected by @syslog_lock. */
467 /* the next printk record to read by syslog(READ) or /proc/kmsg */
468 static u64 syslog_seq;
469 static size_t syslog_partial;
470 static bool syslog_time;
471 
472 struct latched_seq {
473 	seqcount_latch_t	latch;
474 	u64			val[2];
475 };
476 
477 /*
478  * The next printk record to read after the last 'clear' command. There are
479  * two copies (updated with seqcount_latch) so that reads can locklessly
480  * access a valid value. Writers are synchronized by @syslog_lock.
481  */
482 static struct latched_seq clear_seq = {
483 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
484 	.val[0]		= 0,
485 	.val[1]		= 0,
486 };
487 
488 #define LOG_LEVEL(v)		((v) & 0x07)
489 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
490 
491 /* record buffer */
492 #define LOG_ALIGN __alignof__(unsigned long)
493 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
494 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
495 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
496 static char *log_buf = __log_buf;
497 static u32 log_buf_len = __LOG_BUF_LEN;
498 
499 /*
500  * Define the average message size. This only affects the number of
501  * descriptors that will be available. Underestimating is better than
502  * overestimating (too many available descriptors is better than not enough).
503  */
504 #define PRB_AVGBITS 5	/* 32 character average length */
505 
506 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
507 #error CONFIG_LOG_BUF_SHIFT value too small.
508 #endif
509 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
510 		 PRB_AVGBITS, &__log_buf[0]);
511 
512 static struct printk_ringbuffer printk_rb_dynamic;
513 
514 struct printk_ringbuffer *prb = &printk_rb_static;
515 
516 /*
517  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
518  * per_cpu_areas are initialised. This variable is set to true when
519  * it's safe to access per-CPU data.
520  */
521 static bool __printk_percpu_data_ready __ro_after_init;
522 
523 bool printk_percpu_data_ready(void)
524 {
525 	return __printk_percpu_data_ready;
526 }
527 
528 /* Must be called under syslog_lock. */
529 static void latched_seq_write(struct latched_seq *ls, u64 val)
530 {
531 	raw_write_seqcount_latch(&ls->latch);
532 	ls->val[0] = val;
533 	raw_write_seqcount_latch(&ls->latch);
534 	ls->val[1] = val;
535 }
536 
537 /* Can be called from any context. */
538 static u64 latched_seq_read_nolock(struct latched_seq *ls)
539 {
540 	unsigned int seq;
541 	unsigned int idx;
542 	u64 val;
543 
544 	do {
545 		seq = raw_read_seqcount_latch(&ls->latch);
546 		idx = seq & 0x1;
547 		val = ls->val[idx];
548 	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
549 
550 	return val;
551 }
552 
553 /* Return log buffer address */
554 char *log_buf_addr_get(void)
555 {
556 	return log_buf;
557 }
558 
559 /* Return log buffer size */
560 u32 log_buf_len_get(void)
561 {
562 	return log_buf_len;
563 }
564 
565 /*
566  * Define how much of the log buffer we could take at maximum. The value
567  * must be greater than two. Note that only half of the buffer is available
568  * when the index points to the middle.
569  */
570 #define MAX_LOG_TAKE_PART 4
571 static const char trunc_msg[] = "<truncated>";
572 
573 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
574 {
575 	/*
576 	 * The message should not take the whole buffer. Otherwise, it might
577 	 * get removed too soon.
578 	 */
579 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
580 
581 	if (*text_len > max_text_len)
582 		*text_len = max_text_len;
583 
584 	/* enable the warning message (if there is room) */
585 	*trunc_msg_len = strlen(trunc_msg);
586 	if (*text_len >= *trunc_msg_len)
587 		*text_len -= *trunc_msg_len;
588 	else
589 		*trunc_msg_len = 0;
590 }
591 
592 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
593 
594 static int syslog_action_restricted(int type)
595 {
596 	if (dmesg_restrict)
597 		return 1;
598 	/*
599 	 * Unless restricted, we allow "read all" and "get buffer size"
600 	 * for everybody.
601 	 */
602 	return type != SYSLOG_ACTION_READ_ALL &&
603 	       type != SYSLOG_ACTION_SIZE_BUFFER;
604 }
605 
606 static int check_syslog_permissions(int type, int source)
607 {
608 	/*
609 	 * If this is from /proc/kmsg and we've already opened it, then we've
610 	 * already done the capabilities checks at open time.
611 	 */
612 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
613 		goto ok;
614 
615 	if (syslog_action_restricted(type)) {
616 		if (capable(CAP_SYSLOG))
617 			goto ok;
618 		return -EPERM;
619 	}
620 ok:
621 	return security_syslog(type);
622 }
623 
624 static void append_char(char **pp, char *e, char c)
625 {
626 	if (*pp < e)
627 		*(*pp)++ = c;
628 }
629 
630 static ssize_t info_print_ext_header(char *buf, size_t size,
631 				     struct printk_info *info)
632 {
633 	u64 ts_usec = info->ts_nsec;
634 	char caller[20];
635 #ifdef CONFIG_PRINTK_CALLER
636 	u32 id = info->caller_id;
637 
638 	snprintf(caller, sizeof(caller), ",caller=%c%u",
639 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
640 #else
641 	caller[0] = '\0';
642 #endif
643 
644 	do_div(ts_usec, 1000);
645 
646 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
647 			 (info->facility << 3) | info->level, info->seq,
648 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
649 }
650 
651 static ssize_t msg_add_ext_text(char *buf, size_t size,
652 				const char *text, size_t text_len,
653 				unsigned char endc)
654 {
655 	char *p = buf, *e = buf + size;
656 	size_t i;
657 
658 	/* escape non-printable characters */
659 	for (i = 0; i < text_len; i++) {
660 		unsigned char c = text[i];
661 
662 		if (c < ' ' || c >= 127 || c == '\\')
663 			p += scnprintf(p, e - p, "\\x%02x", c);
664 		else
665 			append_char(&p, e, c);
666 	}
667 	append_char(&p, e, endc);
668 
669 	return p - buf;
670 }
671 
672 static ssize_t msg_add_dict_text(char *buf, size_t size,
673 				 const char *key, const char *val)
674 {
675 	size_t val_len = strlen(val);
676 	ssize_t len;
677 
678 	if (!val_len)
679 		return 0;
680 
681 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
682 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
683 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
684 
685 	return len;
686 }
687 
688 static ssize_t msg_print_ext_body(char *buf, size_t size,
689 				  char *text, size_t text_len,
690 				  struct dev_printk_info *dev_info)
691 {
692 	ssize_t len;
693 
694 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
695 
696 	if (!dev_info)
697 		goto out;
698 
699 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
700 				 dev_info->subsystem);
701 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
702 				 dev_info->device);
703 out:
704 	return len;
705 }
706 
707 /* /dev/kmsg - userspace message inject/listen interface */
708 struct devkmsg_user {
709 	atomic64_t seq;
710 	struct ratelimit_state rs;
711 	struct mutex lock;
712 	struct printk_buffers pbufs;
713 };
714 
715 static __printf(3, 4) __cold
716 int devkmsg_emit(int facility, int level, const char *fmt, ...)
717 {
718 	va_list args;
719 	int r;
720 
721 	va_start(args, fmt);
722 	r = vprintk_emit(facility, level, NULL, fmt, args);
723 	va_end(args);
724 
725 	return r;
726 }
727 
728 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
729 {
730 	char *buf, *line;
731 	int level = default_message_loglevel;
732 	int facility = 1;	/* LOG_USER */
733 	struct file *file = iocb->ki_filp;
734 	struct devkmsg_user *user = file->private_data;
735 	size_t len = iov_iter_count(from);
736 	ssize_t ret = len;
737 
738 	if (len > PRINTKRB_RECORD_MAX)
739 		return -EINVAL;
740 
741 	/* Ignore when user logging is disabled. */
742 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
743 		return len;
744 
745 	/* Ratelimit when not explicitly enabled. */
746 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
747 		if (!___ratelimit(&user->rs, current->comm))
748 			return ret;
749 	}
750 
751 	buf = kmalloc(len+1, GFP_KERNEL);
752 	if (buf == NULL)
753 		return -ENOMEM;
754 
755 	buf[len] = '\0';
756 	if (!copy_from_iter_full(buf, len, from)) {
757 		kfree(buf);
758 		return -EFAULT;
759 	}
760 
761 	/*
762 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
763 	 * the decimal value represents 32bit, the lower 3 bit are the log
764 	 * level, the rest are the log facility.
765 	 *
766 	 * If no prefix or no userspace facility is specified, we
767 	 * enforce LOG_USER, to be able to reliably distinguish
768 	 * kernel-generated messages from userspace-injected ones.
769 	 */
770 	line = buf;
771 	if (line[0] == '<') {
772 		char *endp = NULL;
773 		unsigned int u;
774 
775 		u = simple_strtoul(line + 1, &endp, 10);
776 		if (endp && endp[0] == '>') {
777 			level = LOG_LEVEL(u);
778 			if (LOG_FACILITY(u) != 0)
779 				facility = LOG_FACILITY(u);
780 			endp++;
781 			line = endp;
782 		}
783 	}
784 
785 	devkmsg_emit(facility, level, "%s", line);
786 	kfree(buf);
787 	return ret;
788 }
789 
790 static ssize_t devkmsg_read(struct file *file, char __user *buf,
791 			    size_t count, loff_t *ppos)
792 {
793 	struct devkmsg_user *user = file->private_data;
794 	char *outbuf = &user->pbufs.outbuf[0];
795 	struct printk_message pmsg = {
796 		.pbufs = &user->pbufs,
797 	};
798 	ssize_t ret;
799 
800 	ret = mutex_lock_interruptible(&user->lock);
801 	if (ret)
802 		return ret;
803 
804 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
805 		if (file->f_flags & O_NONBLOCK) {
806 			ret = -EAGAIN;
807 			goto out;
808 		}
809 
810 		/*
811 		 * Guarantee this task is visible on the waitqueue before
812 		 * checking the wake condition.
813 		 *
814 		 * The full memory barrier within set_current_state() of
815 		 * prepare_to_wait_event() pairs with the full memory barrier
816 		 * within wq_has_sleeper().
817 		 *
818 		 * This pairs with __wake_up_klogd:A.
819 		 */
820 		ret = wait_event_interruptible(log_wait,
821 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
822 							false)); /* LMM(devkmsg_read:A) */
823 		if (ret)
824 			goto out;
825 	}
826 
827 	if (pmsg.dropped) {
828 		/* our last seen message is gone, return error and reset */
829 		atomic64_set(&user->seq, pmsg.seq);
830 		ret = -EPIPE;
831 		goto out;
832 	}
833 
834 	atomic64_set(&user->seq, pmsg.seq + 1);
835 
836 	if (pmsg.outbuf_len > count) {
837 		ret = -EINVAL;
838 		goto out;
839 	}
840 
841 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
842 		ret = -EFAULT;
843 		goto out;
844 	}
845 	ret = pmsg.outbuf_len;
846 out:
847 	mutex_unlock(&user->lock);
848 	return ret;
849 }
850 
851 /*
852  * Be careful when modifying this function!!!
853  *
854  * Only few operations are supported because the device works only with the
855  * entire variable length messages (records). Non-standard values are
856  * returned in the other cases and has been this way for quite some time.
857  * User space applications might depend on this behavior.
858  */
859 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
860 {
861 	struct devkmsg_user *user = file->private_data;
862 	loff_t ret = 0;
863 
864 	if (offset)
865 		return -ESPIPE;
866 
867 	switch (whence) {
868 	case SEEK_SET:
869 		/* the first record */
870 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
871 		break;
872 	case SEEK_DATA:
873 		/*
874 		 * The first record after the last SYSLOG_ACTION_CLEAR,
875 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
876 		 * changes no global state, and does not clear anything.
877 		 */
878 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
879 		break;
880 	case SEEK_END:
881 		/* after the last record */
882 		atomic64_set(&user->seq, prb_next_seq(prb));
883 		break;
884 	default:
885 		ret = -EINVAL;
886 	}
887 	return ret;
888 }
889 
890 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
891 {
892 	struct devkmsg_user *user = file->private_data;
893 	struct printk_info info;
894 	__poll_t ret = 0;
895 
896 	poll_wait(file, &log_wait, wait);
897 
898 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
899 		/* return error when data has vanished underneath us */
900 		if (info.seq != atomic64_read(&user->seq))
901 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
902 		else
903 			ret = EPOLLIN|EPOLLRDNORM;
904 	}
905 
906 	return ret;
907 }
908 
909 static int devkmsg_open(struct inode *inode, struct file *file)
910 {
911 	struct devkmsg_user *user;
912 	int err;
913 
914 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
915 		return -EPERM;
916 
917 	/* write-only does not need any file context */
918 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
919 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
920 					       SYSLOG_FROM_READER);
921 		if (err)
922 			return err;
923 	}
924 
925 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
926 	if (!user)
927 		return -ENOMEM;
928 
929 	ratelimit_default_init(&user->rs);
930 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
931 
932 	mutex_init(&user->lock);
933 
934 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
935 
936 	file->private_data = user;
937 	return 0;
938 }
939 
940 static int devkmsg_release(struct inode *inode, struct file *file)
941 {
942 	struct devkmsg_user *user = file->private_data;
943 
944 	ratelimit_state_exit(&user->rs);
945 
946 	mutex_destroy(&user->lock);
947 	kvfree(user);
948 	return 0;
949 }
950 
951 const struct file_operations kmsg_fops = {
952 	.open = devkmsg_open,
953 	.read = devkmsg_read,
954 	.write_iter = devkmsg_write,
955 	.llseek = devkmsg_llseek,
956 	.poll = devkmsg_poll,
957 	.release = devkmsg_release,
958 };
959 
960 #ifdef CONFIG_VMCORE_INFO
961 /*
962  * This appends the listed symbols to /proc/vmcore
963  *
964  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
965  * obtain access to symbols that are otherwise very difficult to locate.  These
966  * symbols are specifically used so that utilities can access and extract the
967  * dmesg log from a vmcore file after a crash.
968  */
969 void log_buf_vmcoreinfo_setup(void)
970 {
971 	struct dev_printk_info *dev_info = NULL;
972 
973 	VMCOREINFO_SYMBOL(prb);
974 	VMCOREINFO_SYMBOL(printk_rb_static);
975 	VMCOREINFO_SYMBOL(clear_seq);
976 
977 	/*
978 	 * Export struct size and field offsets. User space tools can
979 	 * parse it and detect any changes to structure down the line.
980 	 */
981 
982 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
983 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
984 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
985 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
986 
987 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
988 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
989 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
990 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
991 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
992 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
993 
994 	VMCOREINFO_STRUCT_SIZE(prb_desc);
995 	VMCOREINFO_OFFSET(prb_desc, state_var);
996 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
997 
998 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
999 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
1000 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
1001 
1002 	VMCOREINFO_STRUCT_SIZE(printk_info);
1003 	VMCOREINFO_OFFSET(printk_info, seq);
1004 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1005 	VMCOREINFO_OFFSET(printk_info, text_len);
1006 	VMCOREINFO_OFFSET(printk_info, caller_id);
1007 	VMCOREINFO_OFFSET(printk_info, dev_info);
1008 
1009 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1010 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1011 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1012 	VMCOREINFO_OFFSET(dev_printk_info, device);
1013 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1014 
1015 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1016 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1017 	VMCOREINFO_OFFSET(prb_data_ring, data);
1018 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1019 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1020 
1021 	VMCOREINFO_SIZE(atomic_long_t);
1022 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1023 
1024 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1025 	VMCOREINFO_OFFSET(latched_seq, val);
1026 }
1027 #endif
1028 
1029 /* requested log_buf_len from kernel cmdline */
1030 static unsigned long __initdata new_log_buf_len;
1031 
1032 /* we practice scaling the ring buffer by powers of 2 */
1033 static void __init log_buf_len_update(u64 size)
1034 {
1035 	if (size > (u64)LOG_BUF_LEN_MAX) {
1036 		size = (u64)LOG_BUF_LEN_MAX;
1037 		pr_err("log_buf over 2G is not supported.\n");
1038 	}
1039 
1040 	if (size)
1041 		size = roundup_pow_of_two(size);
1042 	if (size > log_buf_len)
1043 		new_log_buf_len = (unsigned long)size;
1044 }
1045 
1046 /* save requested log_buf_len since it's too early to process it */
1047 static int __init log_buf_len_setup(char *str)
1048 {
1049 	u64 size;
1050 
1051 	if (!str)
1052 		return -EINVAL;
1053 
1054 	size = memparse(str, &str);
1055 
1056 	log_buf_len_update(size);
1057 
1058 	return 0;
1059 }
1060 early_param("log_buf_len", log_buf_len_setup);
1061 
1062 #ifdef CONFIG_SMP
1063 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1064 
1065 static void __init log_buf_add_cpu(void)
1066 {
1067 	unsigned int cpu_extra;
1068 
1069 	/*
1070 	 * archs should set up cpu_possible_bits properly with
1071 	 * set_cpu_possible() after setup_arch() but just in
1072 	 * case lets ensure this is valid.
1073 	 */
1074 	if (num_possible_cpus() == 1)
1075 		return;
1076 
1077 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1078 
1079 	/* by default this will only continue through for large > 64 CPUs */
1080 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1081 		return;
1082 
1083 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1084 		__LOG_CPU_MAX_BUF_LEN);
1085 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1086 		cpu_extra);
1087 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1088 
1089 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1090 }
1091 #else /* !CONFIG_SMP */
1092 static inline void log_buf_add_cpu(void) {}
1093 #endif /* CONFIG_SMP */
1094 
1095 static void __init set_percpu_data_ready(void)
1096 {
1097 	__printk_percpu_data_ready = true;
1098 }
1099 
1100 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1101 				     struct printk_record *r)
1102 {
1103 	struct prb_reserved_entry e;
1104 	struct printk_record dest_r;
1105 
1106 	prb_rec_init_wr(&dest_r, r->info->text_len);
1107 
1108 	if (!prb_reserve(&e, rb, &dest_r))
1109 		return 0;
1110 
1111 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1112 	dest_r.info->text_len = r->info->text_len;
1113 	dest_r.info->facility = r->info->facility;
1114 	dest_r.info->level = r->info->level;
1115 	dest_r.info->flags = r->info->flags;
1116 	dest_r.info->ts_nsec = r->info->ts_nsec;
1117 	dest_r.info->caller_id = r->info->caller_id;
1118 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1119 
1120 	prb_final_commit(&e);
1121 
1122 	return prb_record_text_space(&e);
1123 }
1124 
1125 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1126 
1127 void __init setup_log_buf(int early)
1128 {
1129 	struct printk_info *new_infos;
1130 	unsigned int new_descs_count;
1131 	struct prb_desc *new_descs;
1132 	struct printk_info info;
1133 	struct printk_record r;
1134 	unsigned int text_size;
1135 	size_t new_descs_size;
1136 	size_t new_infos_size;
1137 	unsigned long flags;
1138 	char *new_log_buf;
1139 	unsigned int free;
1140 	u64 seq;
1141 
1142 	/*
1143 	 * Some archs call setup_log_buf() multiple times - first is very
1144 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1145 	 * are initialised.
1146 	 */
1147 	if (!early)
1148 		set_percpu_data_ready();
1149 
1150 	if (log_buf != __log_buf)
1151 		return;
1152 
1153 	if (!early && !new_log_buf_len)
1154 		log_buf_add_cpu();
1155 
1156 	if (!new_log_buf_len)
1157 		return;
1158 
1159 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1160 	if (new_descs_count == 0) {
1161 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1162 		return;
1163 	}
1164 
1165 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1166 	if (unlikely(!new_log_buf)) {
1167 		pr_err("log_buf_len: %lu text bytes not available\n",
1168 		       new_log_buf_len);
1169 		return;
1170 	}
1171 
1172 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1173 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1174 	if (unlikely(!new_descs)) {
1175 		pr_err("log_buf_len: %zu desc bytes not available\n",
1176 		       new_descs_size);
1177 		goto err_free_log_buf;
1178 	}
1179 
1180 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1181 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1182 	if (unlikely(!new_infos)) {
1183 		pr_err("log_buf_len: %zu info bytes not available\n",
1184 		       new_infos_size);
1185 		goto err_free_descs;
1186 	}
1187 
1188 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1189 
1190 	prb_init(&printk_rb_dynamic,
1191 		 new_log_buf, ilog2(new_log_buf_len),
1192 		 new_descs, ilog2(new_descs_count),
1193 		 new_infos);
1194 
1195 	local_irq_save(flags);
1196 
1197 	log_buf_len = new_log_buf_len;
1198 	log_buf = new_log_buf;
1199 	new_log_buf_len = 0;
1200 
1201 	free = __LOG_BUF_LEN;
1202 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1203 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1204 		if (text_size > free)
1205 			free = 0;
1206 		else
1207 			free -= text_size;
1208 	}
1209 
1210 	prb = &printk_rb_dynamic;
1211 
1212 	local_irq_restore(flags);
1213 
1214 	/*
1215 	 * Copy any remaining messages that might have appeared from
1216 	 * NMI context after copying but before switching to the
1217 	 * dynamic buffer.
1218 	 */
1219 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1220 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1221 		if (text_size > free)
1222 			free = 0;
1223 		else
1224 			free -= text_size;
1225 	}
1226 
1227 	if (seq != prb_next_seq(&printk_rb_static)) {
1228 		pr_err("dropped %llu messages\n",
1229 		       prb_next_seq(&printk_rb_static) - seq);
1230 	}
1231 
1232 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1233 	pr_info("early log buf free: %u(%u%%)\n",
1234 		free, (free * 100) / __LOG_BUF_LEN);
1235 	return;
1236 
1237 err_free_descs:
1238 	memblock_free(new_descs, new_descs_size);
1239 err_free_log_buf:
1240 	memblock_free(new_log_buf, new_log_buf_len);
1241 }
1242 
1243 static bool __read_mostly ignore_loglevel;
1244 
1245 static int __init ignore_loglevel_setup(char *str)
1246 {
1247 	ignore_loglevel = true;
1248 	pr_info("debug: ignoring loglevel setting.\n");
1249 
1250 	return 0;
1251 }
1252 
1253 early_param("ignore_loglevel", ignore_loglevel_setup);
1254 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1255 MODULE_PARM_DESC(ignore_loglevel,
1256 		 "ignore loglevel setting (prints all kernel messages to the console)");
1257 
1258 static bool suppress_message_printing(int level)
1259 {
1260 	return (level >= console_loglevel && !ignore_loglevel);
1261 }
1262 
1263 #ifdef CONFIG_BOOT_PRINTK_DELAY
1264 
1265 static int boot_delay; /* msecs delay after each printk during bootup */
1266 static unsigned long long loops_per_msec;	/* based on boot_delay */
1267 
1268 static int __init boot_delay_setup(char *str)
1269 {
1270 	unsigned long lpj;
1271 
1272 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1273 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1274 
1275 	get_option(&str, &boot_delay);
1276 	if (boot_delay > 10 * 1000)
1277 		boot_delay = 0;
1278 
1279 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1280 		"HZ: %d, loops_per_msec: %llu\n",
1281 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1282 	return 0;
1283 }
1284 early_param("boot_delay", boot_delay_setup);
1285 
1286 static void boot_delay_msec(int level)
1287 {
1288 	unsigned long long k;
1289 	unsigned long timeout;
1290 
1291 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1292 		|| suppress_message_printing(level)) {
1293 		return;
1294 	}
1295 
1296 	k = (unsigned long long)loops_per_msec * boot_delay;
1297 
1298 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1299 	while (k) {
1300 		k--;
1301 		cpu_relax();
1302 		/*
1303 		 * use (volatile) jiffies to prevent
1304 		 * compiler reduction; loop termination via jiffies
1305 		 * is secondary and may or may not happen.
1306 		 */
1307 		if (time_after(jiffies, timeout))
1308 			break;
1309 		touch_nmi_watchdog();
1310 	}
1311 }
1312 #else
1313 static inline void boot_delay_msec(int level)
1314 {
1315 }
1316 #endif
1317 
1318 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1319 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1320 
1321 static size_t print_syslog(unsigned int level, char *buf)
1322 {
1323 	return sprintf(buf, "<%u>", level);
1324 }
1325 
1326 static size_t print_time(u64 ts, char *buf)
1327 {
1328 	unsigned long rem_nsec = do_div(ts, 1000000000);
1329 
1330 	return sprintf(buf, "[%5lu.%06lu]",
1331 		       (unsigned long)ts, rem_nsec / 1000);
1332 }
1333 
1334 #ifdef CONFIG_PRINTK_CALLER
1335 static size_t print_caller(u32 id, char *buf)
1336 {
1337 	char caller[12];
1338 
1339 	snprintf(caller, sizeof(caller), "%c%u",
1340 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1341 	return sprintf(buf, "[%6s]", caller);
1342 }
1343 #else
1344 #define print_caller(id, buf) 0
1345 #endif
1346 
1347 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1348 				bool time, char *buf)
1349 {
1350 	size_t len = 0;
1351 
1352 	if (syslog)
1353 		len = print_syslog((info->facility << 3) | info->level, buf);
1354 
1355 	if (time)
1356 		len += print_time(info->ts_nsec, buf + len);
1357 
1358 	len += print_caller(info->caller_id, buf + len);
1359 
1360 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1361 		buf[len++] = ' ';
1362 		buf[len] = '\0';
1363 	}
1364 
1365 	return len;
1366 }
1367 
1368 /*
1369  * Prepare the record for printing. The text is shifted within the given
1370  * buffer to avoid a need for another one. The following operations are
1371  * done:
1372  *
1373  *   - Add prefix for each line.
1374  *   - Drop truncated lines that no longer fit into the buffer.
1375  *   - Add the trailing newline that has been removed in vprintk_store().
1376  *   - Add a string terminator.
1377  *
1378  * Since the produced string is always terminated, the maximum possible
1379  * return value is @r->text_buf_size - 1;
1380  *
1381  * Return: The length of the updated/prepared text, including the added
1382  * prefixes and the newline. The terminator is not counted. The dropped
1383  * line(s) are not counted.
1384  */
1385 static size_t record_print_text(struct printk_record *r, bool syslog,
1386 				bool time)
1387 {
1388 	size_t text_len = r->info->text_len;
1389 	size_t buf_size = r->text_buf_size;
1390 	char *text = r->text_buf;
1391 	char prefix[PRINTK_PREFIX_MAX];
1392 	bool truncated = false;
1393 	size_t prefix_len;
1394 	size_t line_len;
1395 	size_t len = 0;
1396 	char *next;
1397 
1398 	/*
1399 	 * If the message was truncated because the buffer was not large
1400 	 * enough, treat the available text as if it were the full text.
1401 	 */
1402 	if (text_len > buf_size)
1403 		text_len = buf_size;
1404 
1405 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1406 
1407 	/*
1408 	 * @text_len: bytes of unprocessed text
1409 	 * @line_len: bytes of current line _without_ newline
1410 	 * @text:     pointer to beginning of current line
1411 	 * @len:      number of bytes prepared in r->text_buf
1412 	 */
1413 	for (;;) {
1414 		next = memchr(text, '\n', text_len);
1415 		if (next) {
1416 			line_len = next - text;
1417 		} else {
1418 			/* Drop truncated line(s). */
1419 			if (truncated)
1420 				break;
1421 			line_len = text_len;
1422 		}
1423 
1424 		/*
1425 		 * Truncate the text if there is not enough space to add the
1426 		 * prefix and a trailing newline and a terminator.
1427 		 */
1428 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1429 			/* Drop even the current line if no space. */
1430 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1431 				break;
1432 
1433 			text_len = buf_size - len - prefix_len - 1 - 1;
1434 			truncated = true;
1435 		}
1436 
1437 		memmove(text + prefix_len, text, text_len);
1438 		memcpy(text, prefix, prefix_len);
1439 
1440 		/*
1441 		 * Increment the prepared length to include the text and
1442 		 * prefix that were just moved+copied. Also increment for the
1443 		 * newline at the end of this line. If this is the last line,
1444 		 * there is no newline, but it will be added immediately below.
1445 		 */
1446 		len += prefix_len + line_len + 1;
1447 		if (text_len == line_len) {
1448 			/*
1449 			 * This is the last line. Add the trailing newline
1450 			 * removed in vprintk_store().
1451 			 */
1452 			text[prefix_len + line_len] = '\n';
1453 			break;
1454 		}
1455 
1456 		/*
1457 		 * Advance beyond the added prefix and the related line with
1458 		 * its newline.
1459 		 */
1460 		text += prefix_len + line_len + 1;
1461 
1462 		/*
1463 		 * The remaining text has only decreased by the line with its
1464 		 * newline.
1465 		 *
1466 		 * Note that @text_len can become zero. It happens when @text
1467 		 * ended with a newline (either due to truncation or the
1468 		 * original string ending with "\n\n"). The loop is correctly
1469 		 * repeated and (if not truncated) an empty line with a prefix
1470 		 * will be prepared.
1471 		 */
1472 		text_len -= line_len + 1;
1473 	}
1474 
1475 	/*
1476 	 * If a buffer was provided, it will be terminated. Space for the
1477 	 * string terminator is guaranteed to be available. The terminator is
1478 	 * not counted in the return value.
1479 	 */
1480 	if (buf_size > 0)
1481 		r->text_buf[len] = 0;
1482 
1483 	return len;
1484 }
1485 
1486 static size_t get_record_print_text_size(struct printk_info *info,
1487 					 unsigned int line_count,
1488 					 bool syslog, bool time)
1489 {
1490 	char prefix[PRINTK_PREFIX_MAX];
1491 	size_t prefix_len;
1492 
1493 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1494 
1495 	/*
1496 	 * Each line will be preceded with a prefix. The intermediate
1497 	 * newlines are already within the text, but a final trailing
1498 	 * newline will be added.
1499 	 */
1500 	return ((prefix_len * line_count) + info->text_len + 1);
1501 }
1502 
1503 /*
1504  * Beginning with @start_seq, find the first record where it and all following
1505  * records up to (but not including) @max_seq fit into @size.
1506  *
1507  * @max_seq is simply an upper bound and does not need to exist. If the caller
1508  * does not require an upper bound, -1 can be used for @max_seq.
1509  */
1510 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1511 				  bool syslog, bool time)
1512 {
1513 	struct printk_info info;
1514 	unsigned int line_count;
1515 	size_t len = 0;
1516 	u64 seq;
1517 
1518 	/* Determine the size of the records up to @max_seq. */
1519 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1520 		if (info.seq >= max_seq)
1521 			break;
1522 		len += get_record_print_text_size(&info, line_count, syslog, time);
1523 	}
1524 
1525 	/*
1526 	 * Adjust the upper bound for the next loop to avoid subtracting
1527 	 * lengths that were never added.
1528 	 */
1529 	if (seq < max_seq)
1530 		max_seq = seq;
1531 
1532 	/*
1533 	 * Move first record forward until length fits into the buffer. Ignore
1534 	 * newest messages that were not counted in the above cycle. Messages
1535 	 * might appear and get lost in the meantime. This is a best effort
1536 	 * that prevents an infinite loop that could occur with a retry.
1537 	 */
1538 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1539 		if (len <= size || info.seq >= max_seq)
1540 			break;
1541 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1542 	}
1543 
1544 	return seq;
1545 }
1546 
1547 /* The caller is responsible for making sure @size is greater than 0. */
1548 static int syslog_print(char __user *buf, int size)
1549 {
1550 	struct printk_info info;
1551 	struct printk_record r;
1552 	char *text;
1553 	int len = 0;
1554 	u64 seq;
1555 
1556 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1557 	if (!text)
1558 		return -ENOMEM;
1559 
1560 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1561 
1562 	mutex_lock(&syslog_lock);
1563 
1564 	/*
1565 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1566 	 * change while waiting.
1567 	 */
1568 	do {
1569 		seq = syslog_seq;
1570 
1571 		mutex_unlock(&syslog_lock);
1572 		/*
1573 		 * Guarantee this task is visible on the waitqueue before
1574 		 * checking the wake condition.
1575 		 *
1576 		 * The full memory barrier within set_current_state() of
1577 		 * prepare_to_wait_event() pairs with the full memory barrier
1578 		 * within wq_has_sleeper().
1579 		 *
1580 		 * This pairs with __wake_up_klogd:A.
1581 		 */
1582 		len = wait_event_interruptible(log_wait,
1583 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1584 		mutex_lock(&syslog_lock);
1585 
1586 		if (len)
1587 			goto out;
1588 	} while (syslog_seq != seq);
1589 
1590 	/*
1591 	 * Copy records that fit into the buffer. The above cycle makes sure
1592 	 * that the first record is always available.
1593 	 */
1594 	do {
1595 		size_t n;
1596 		size_t skip;
1597 		int err;
1598 
1599 		if (!prb_read_valid(prb, syslog_seq, &r))
1600 			break;
1601 
1602 		if (r.info->seq != syslog_seq) {
1603 			/* message is gone, move to next valid one */
1604 			syslog_seq = r.info->seq;
1605 			syslog_partial = 0;
1606 		}
1607 
1608 		/*
1609 		 * To keep reading/counting partial line consistent,
1610 		 * use printk_time value as of the beginning of a line.
1611 		 */
1612 		if (!syslog_partial)
1613 			syslog_time = printk_time;
1614 
1615 		skip = syslog_partial;
1616 		n = record_print_text(&r, true, syslog_time);
1617 		if (n - syslog_partial <= size) {
1618 			/* message fits into buffer, move forward */
1619 			syslog_seq = r.info->seq + 1;
1620 			n -= syslog_partial;
1621 			syslog_partial = 0;
1622 		} else if (!len){
1623 			/* partial read(), remember position */
1624 			n = size;
1625 			syslog_partial += n;
1626 		} else
1627 			n = 0;
1628 
1629 		if (!n)
1630 			break;
1631 
1632 		mutex_unlock(&syslog_lock);
1633 		err = copy_to_user(buf, text + skip, n);
1634 		mutex_lock(&syslog_lock);
1635 
1636 		if (err) {
1637 			if (!len)
1638 				len = -EFAULT;
1639 			break;
1640 		}
1641 
1642 		len += n;
1643 		size -= n;
1644 		buf += n;
1645 	} while (size);
1646 out:
1647 	mutex_unlock(&syslog_lock);
1648 	kfree(text);
1649 	return len;
1650 }
1651 
1652 static int syslog_print_all(char __user *buf, int size, bool clear)
1653 {
1654 	struct printk_info info;
1655 	struct printk_record r;
1656 	char *text;
1657 	int len = 0;
1658 	u64 seq;
1659 	bool time;
1660 
1661 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1662 	if (!text)
1663 		return -ENOMEM;
1664 
1665 	time = printk_time;
1666 	/*
1667 	 * Find first record that fits, including all following records,
1668 	 * into the user-provided buffer for this dump.
1669 	 */
1670 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1671 				     size, true, time);
1672 
1673 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1674 
1675 	prb_for_each_record(seq, prb, seq, &r) {
1676 		int textlen;
1677 
1678 		textlen = record_print_text(&r, true, time);
1679 
1680 		if (len + textlen > size) {
1681 			seq--;
1682 			break;
1683 		}
1684 
1685 		if (copy_to_user(buf + len, text, textlen))
1686 			len = -EFAULT;
1687 		else
1688 			len += textlen;
1689 
1690 		if (len < 0)
1691 			break;
1692 	}
1693 
1694 	if (clear) {
1695 		mutex_lock(&syslog_lock);
1696 		latched_seq_write(&clear_seq, seq);
1697 		mutex_unlock(&syslog_lock);
1698 	}
1699 
1700 	kfree(text);
1701 	return len;
1702 }
1703 
1704 static void syslog_clear(void)
1705 {
1706 	mutex_lock(&syslog_lock);
1707 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1708 	mutex_unlock(&syslog_lock);
1709 }
1710 
1711 int do_syslog(int type, char __user *buf, int len, int source)
1712 {
1713 	struct printk_info info;
1714 	bool clear = false;
1715 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1716 	int error;
1717 
1718 	error = check_syslog_permissions(type, source);
1719 	if (error)
1720 		return error;
1721 
1722 	switch (type) {
1723 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1724 		break;
1725 	case SYSLOG_ACTION_OPEN:	/* Open log */
1726 		break;
1727 	case SYSLOG_ACTION_READ:	/* Read from log */
1728 		if (!buf || len < 0)
1729 			return -EINVAL;
1730 		if (!len)
1731 			return 0;
1732 		if (!access_ok(buf, len))
1733 			return -EFAULT;
1734 		error = syslog_print(buf, len);
1735 		break;
1736 	/* Read/clear last kernel messages */
1737 	case SYSLOG_ACTION_READ_CLEAR:
1738 		clear = true;
1739 		fallthrough;
1740 	/* Read last kernel messages */
1741 	case SYSLOG_ACTION_READ_ALL:
1742 		if (!buf || len < 0)
1743 			return -EINVAL;
1744 		if (!len)
1745 			return 0;
1746 		if (!access_ok(buf, len))
1747 			return -EFAULT;
1748 		error = syslog_print_all(buf, len, clear);
1749 		break;
1750 	/* Clear ring buffer */
1751 	case SYSLOG_ACTION_CLEAR:
1752 		syslog_clear();
1753 		break;
1754 	/* Disable logging to console */
1755 	case SYSLOG_ACTION_CONSOLE_OFF:
1756 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1757 			saved_console_loglevel = console_loglevel;
1758 		console_loglevel = minimum_console_loglevel;
1759 		break;
1760 	/* Enable logging to console */
1761 	case SYSLOG_ACTION_CONSOLE_ON:
1762 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1763 			console_loglevel = saved_console_loglevel;
1764 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1765 		}
1766 		break;
1767 	/* Set level of messages printed to console */
1768 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1769 		if (len < 1 || len > 8)
1770 			return -EINVAL;
1771 		if (len < minimum_console_loglevel)
1772 			len = minimum_console_loglevel;
1773 		console_loglevel = len;
1774 		/* Implicitly re-enable logging to console */
1775 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1776 		break;
1777 	/* Number of chars in the log buffer */
1778 	case SYSLOG_ACTION_SIZE_UNREAD:
1779 		mutex_lock(&syslog_lock);
1780 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1781 			/* No unread messages. */
1782 			mutex_unlock(&syslog_lock);
1783 			return 0;
1784 		}
1785 		if (info.seq != syslog_seq) {
1786 			/* messages are gone, move to first one */
1787 			syslog_seq = info.seq;
1788 			syslog_partial = 0;
1789 		}
1790 		if (source == SYSLOG_FROM_PROC) {
1791 			/*
1792 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1793 			 * for pending data, not the size; return the count of
1794 			 * records, not the length.
1795 			 */
1796 			error = prb_next_seq(prb) - syslog_seq;
1797 		} else {
1798 			bool time = syslog_partial ? syslog_time : printk_time;
1799 			unsigned int line_count;
1800 			u64 seq;
1801 
1802 			prb_for_each_info(syslog_seq, prb, seq, &info,
1803 					  &line_count) {
1804 				error += get_record_print_text_size(&info, line_count,
1805 								    true, time);
1806 				time = printk_time;
1807 			}
1808 			error -= syslog_partial;
1809 		}
1810 		mutex_unlock(&syslog_lock);
1811 		break;
1812 	/* Size of the log buffer */
1813 	case SYSLOG_ACTION_SIZE_BUFFER:
1814 		error = log_buf_len;
1815 		break;
1816 	default:
1817 		error = -EINVAL;
1818 		break;
1819 	}
1820 
1821 	return error;
1822 }
1823 
1824 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1825 {
1826 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1827 }
1828 
1829 /*
1830  * Special console_lock variants that help to reduce the risk of soft-lockups.
1831  * They allow to pass console_lock to another printk() call using a busy wait.
1832  */
1833 
1834 #ifdef CONFIG_LOCKDEP
1835 static struct lockdep_map console_owner_dep_map = {
1836 	.name = "console_owner"
1837 };
1838 #endif
1839 
1840 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1841 static struct task_struct *console_owner;
1842 static bool console_waiter;
1843 
1844 /**
1845  * console_lock_spinning_enable - mark beginning of code where another
1846  *	thread might safely busy wait
1847  *
1848  * This basically converts console_lock into a spinlock. This marks
1849  * the section where the console_lock owner can not sleep, because
1850  * there may be a waiter spinning (like a spinlock). Also it must be
1851  * ready to hand over the lock at the end of the section.
1852  */
1853 static void console_lock_spinning_enable(void)
1854 {
1855 	/*
1856 	 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1857 	 * Non-panic CPUs abandon the flush anyway.
1858 	 *
1859 	 * Just keep the lockdep annotation. The panic-CPU should avoid
1860 	 * taking console_owner_lock because it might cause a deadlock.
1861 	 * This looks like the easiest way how to prevent false lockdep
1862 	 * reports without handling races a lockless way.
1863 	 */
1864 	if (panic_in_progress())
1865 		goto lockdep;
1866 
1867 	raw_spin_lock(&console_owner_lock);
1868 	console_owner = current;
1869 	raw_spin_unlock(&console_owner_lock);
1870 
1871 lockdep:
1872 	/* The waiter may spin on us after setting console_owner */
1873 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1874 }
1875 
1876 /**
1877  * console_lock_spinning_disable_and_check - mark end of code where another
1878  *	thread was able to busy wait and check if there is a waiter
1879  * @cookie: cookie returned from console_srcu_read_lock()
1880  *
1881  * This is called at the end of the section where spinning is allowed.
1882  * It has two functions. First, it is a signal that it is no longer
1883  * safe to start busy waiting for the lock. Second, it checks if
1884  * there is a busy waiter and passes the lock rights to her.
1885  *
1886  * Important: Callers lose both the console_lock and the SRCU read lock if
1887  *	there was a busy waiter. They must not touch items synchronized by
1888  *	console_lock or SRCU read lock in this case.
1889  *
1890  * Return: 1 if the lock rights were passed, 0 otherwise.
1891  */
1892 static int console_lock_spinning_disable_and_check(int cookie)
1893 {
1894 	int waiter;
1895 
1896 	/*
1897 	 * Ignore spinning waiters during panic() because they might get stopped
1898 	 * or blocked at any time,
1899 	 *
1900 	 * It is safe because nobody is allowed to start spinning during panic
1901 	 * in the first place. If there has been a waiter then non panic CPUs
1902 	 * might stay spinning. They would get stopped anyway. The panic context
1903 	 * will never start spinning and an interrupted spin on panic CPU will
1904 	 * never continue.
1905 	 */
1906 	if (panic_in_progress()) {
1907 		/* Keep lockdep happy. */
1908 		spin_release(&console_owner_dep_map, _THIS_IP_);
1909 		return 0;
1910 	}
1911 
1912 	raw_spin_lock(&console_owner_lock);
1913 	waiter = READ_ONCE(console_waiter);
1914 	console_owner = NULL;
1915 	raw_spin_unlock(&console_owner_lock);
1916 
1917 	if (!waiter) {
1918 		spin_release(&console_owner_dep_map, _THIS_IP_);
1919 		return 0;
1920 	}
1921 
1922 	/* The waiter is now free to continue */
1923 	WRITE_ONCE(console_waiter, false);
1924 
1925 	spin_release(&console_owner_dep_map, _THIS_IP_);
1926 
1927 	/*
1928 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1929 	 * releasing the console_lock.
1930 	 */
1931 	console_srcu_read_unlock(cookie);
1932 
1933 	/*
1934 	 * Hand off console_lock to waiter. The waiter will perform
1935 	 * the up(). After this, the waiter is the console_lock owner.
1936 	 */
1937 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1938 	return 1;
1939 }
1940 
1941 /**
1942  * console_trylock_spinning - try to get console_lock by busy waiting
1943  *
1944  * This allows to busy wait for the console_lock when the current
1945  * owner is running in specially marked sections. It means that
1946  * the current owner is running and cannot reschedule until it
1947  * is ready to lose the lock.
1948  *
1949  * Return: 1 if we got the lock, 0 othrewise
1950  */
1951 static int console_trylock_spinning(void)
1952 {
1953 	struct task_struct *owner = NULL;
1954 	bool waiter;
1955 	bool spin = false;
1956 	unsigned long flags;
1957 
1958 	if (console_trylock())
1959 		return 1;
1960 
1961 	/*
1962 	 * It's unsafe to spin once a panic has begun. If we are the
1963 	 * panic CPU, we may have already halted the owner of the
1964 	 * console_sem. If we are not the panic CPU, then we should
1965 	 * avoid taking console_sem, so the panic CPU has a better
1966 	 * chance of cleanly acquiring it later.
1967 	 */
1968 	if (panic_in_progress())
1969 		return 0;
1970 
1971 	printk_safe_enter_irqsave(flags);
1972 
1973 	raw_spin_lock(&console_owner_lock);
1974 	owner = READ_ONCE(console_owner);
1975 	waiter = READ_ONCE(console_waiter);
1976 	if (!waiter && owner && owner != current) {
1977 		WRITE_ONCE(console_waiter, true);
1978 		spin = true;
1979 	}
1980 	raw_spin_unlock(&console_owner_lock);
1981 
1982 	/*
1983 	 * If there is an active printk() writing to the
1984 	 * consoles, instead of having it write our data too,
1985 	 * see if we can offload that load from the active
1986 	 * printer, and do some printing ourselves.
1987 	 * Go into a spin only if there isn't already a waiter
1988 	 * spinning, and there is an active printer, and
1989 	 * that active printer isn't us (recursive printk?).
1990 	 */
1991 	if (!spin) {
1992 		printk_safe_exit_irqrestore(flags);
1993 		return 0;
1994 	}
1995 
1996 	/* We spin waiting for the owner to release us */
1997 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1998 	/* Owner will clear console_waiter on hand off */
1999 	while (READ_ONCE(console_waiter))
2000 		cpu_relax();
2001 	spin_release(&console_owner_dep_map, _THIS_IP_);
2002 
2003 	printk_safe_exit_irqrestore(flags);
2004 	/*
2005 	 * The owner passed the console lock to us.
2006 	 * Since we did not spin on console lock, annotate
2007 	 * this as a trylock. Otherwise lockdep will
2008 	 * complain.
2009 	 */
2010 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2011 
2012 	/*
2013 	 * Update @console_may_schedule for trylock because the previous
2014 	 * owner may have been schedulable.
2015 	 */
2016 	console_may_schedule = 0;
2017 
2018 	return 1;
2019 }
2020 
2021 /*
2022  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2023  * additional NMI context per CPU is also separately tracked. Until per-CPU
2024  * is available, a separate "early tracking" is performed.
2025  */
2026 static DEFINE_PER_CPU(u8, printk_count);
2027 static u8 printk_count_early;
2028 #ifdef CONFIG_HAVE_NMI
2029 static DEFINE_PER_CPU(u8, printk_count_nmi);
2030 static u8 printk_count_nmi_early;
2031 #endif
2032 
2033 /*
2034  * Recursion is limited to keep the output sane. printk() should not require
2035  * more than 1 level of recursion (allowing, for example, printk() to trigger
2036  * a WARN), but a higher value is used in case some printk-internal errors
2037  * exist, such as the ringbuffer validation checks failing.
2038  */
2039 #define PRINTK_MAX_RECURSION 3
2040 
2041 /*
2042  * Return a pointer to the dedicated counter for the CPU+context of the
2043  * caller.
2044  */
2045 static u8 *__printk_recursion_counter(void)
2046 {
2047 #ifdef CONFIG_HAVE_NMI
2048 	if (in_nmi()) {
2049 		if (printk_percpu_data_ready())
2050 			return this_cpu_ptr(&printk_count_nmi);
2051 		return &printk_count_nmi_early;
2052 	}
2053 #endif
2054 	if (printk_percpu_data_ready())
2055 		return this_cpu_ptr(&printk_count);
2056 	return &printk_count_early;
2057 }
2058 
2059 /*
2060  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2061  * The caller must check the boolean return value to see if the recursion is
2062  * allowed. On failure, interrupts are not disabled.
2063  *
2064  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2065  * that is passed to printk_exit_irqrestore().
2066  */
2067 #define printk_enter_irqsave(recursion_ptr, flags)	\
2068 ({							\
2069 	bool success = true;				\
2070 							\
2071 	typecheck(u8 *, recursion_ptr);			\
2072 	local_irq_save(flags);				\
2073 	(recursion_ptr) = __printk_recursion_counter();	\
2074 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2075 		local_irq_restore(flags);		\
2076 		success = false;			\
2077 	} else {					\
2078 		(*(recursion_ptr))++;			\
2079 	}						\
2080 	success;					\
2081 })
2082 
2083 /* Exit recursion tracking, restoring interrupts. */
2084 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2085 	do {						\
2086 		typecheck(u8 *, recursion_ptr);		\
2087 		(*(recursion_ptr))--;			\
2088 		local_irq_restore(flags);		\
2089 	} while (0)
2090 
2091 int printk_delay_msec __read_mostly;
2092 
2093 static inline void printk_delay(int level)
2094 {
2095 	boot_delay_msec(level);
2096 
2097 	if (unlikely(printk_delay_msec)) {
2098 		int m = printk_delay_msec;
2099 
2100 		while (m--) {
2101 			mdelay(1);
2102 			touch_nmi_watchdog();
2103 		}
2104 	}
2105 }
2106 
2107 static inline u32 printk_caller_id(void)
2108 {
2109 	return in_task() ? task_pid_nr(current) :
2110 		0x80000000 + smp_processor_id();
2111 }
2112 
2113 /**
2114  * printk_parse_prefix - Parse level and control flags.
2115  *
2116  * @text:     The terminated text message.
2117  * @level:    A pointer to the current level value, will be updated.
2118  * @flags:    A pointer to the current printk_info flags, will be updated.
2119  *
2120  * @level may be NULL if the caller is not interested in the parsed value.
2121  * Otherwise the variable pointed to by @level must be set to
2122  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2123  *
2124  * @flags may be NULL if the caller is not interested in the parsed value.
2125  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2126  * value.
2127  *
2128  * Return: The length of the parsed level and control flags.
2129  */
2130 u16 printk_parse_prefix(const char *text, int *level,
2131 			enum printk_info_flags *flags)
2132 {
2133 	u16 prefix_len = 0;
2134 	int kern_level;
2135 
2136 	while (*text) {
2137 		kern_level = printk_get_level(text);
2138 		if (!kern_level)
2139 			break;
2140 
2141 		switch (kern_level) {
2142 		case '0' ... '7':
2143 			if (level && *level == LOGLEVEL_DEFAULT)
2144 				*level = kern_level - '0';
2145 			break;
2146 		case 'c':	/* KERN_CONT */
2147 			if (flags)
2148 				*flags |= LOG_CONT;
2149 		}
2150 
2151 		prefix_len += 2;
2152 		text += 2;
2153 	}
2154 
2155 	return prefix_len;
2156 }
2157 
2158 __printf(5, 0)
2159 static u16 printk_sprint(char *text, u16 size, int facility,
2160 			 enum printk_info_flags *flags, const char *fmt,
2161 			 va_list args)
2162 {
2163 	u16 text_len;
2164 
2165 	text_len = vscnprintf(text, size, fmt, args);
2166 
2167 	/* Mark and strip a trailing newline. */
2168 	if (text_len && text[text_len - 1] == '\n') {
2169 		text_len--;
2170 		*flags |= LOG_NEWLINE;
2171 	}
2172 
2173 	/* Strip log level and control flags. */
2174 	if (facility == 0) {
2175 		u16 prefix_len;
2176 
2177 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2178 		if (prefix_len) {
2179 			text_len -= prefix_len;
2180 			memmove(text, text + prefix_len, text_len);
2181 		}
2182 	}
2183 
2184 	trace_console(text, text_len);
2185 
2186 	return text_len;
2187 }
2188 
2189 __printf(4, 0)
2190 int vprintk_store(int facility, int level,
2191 		  const struct dev_printk_info *dev_info,
2192 		  const char *fmt, va_list args)
2193 {
2194 	struct prb_reserved_entry e;
2195 	enum printk_info_flags flags = 0;
2196 	struct printk_record r;
2197 	unsigned long irqflags;
2198 	u16 trunc_msg_len = 0;
2199 	char prefix_buf[8];
2200 	u8 *recursion_ptr;
2201 	u16 reserve_size;
2202 	va_list args2;
2203 	u32 caller_id;
2204 	u16 text_len;
2205 	int ret = 0;
2206 	u64 ts_nsec;
2207 
2208 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2209 		return 0;
2210 
2211 	/*
2212 	 * Since the duration of printk() can vary depending on the message
2213 	 * and state of the ringbuffer, grab the timestamp now so that it is
2214 	 * close to the call of printk(). This provides a more deterministic
2215 	 * timestamp with respect to the caller.
2216 	 */
2217 	ts_nsec = local_clock();
2218 
2219 	caller_id = printk_caller_id();
2220 
2221 	/*
2222 	 * The sprintf needs to come first since the syslog prefix might be
2223 	 * passed in as a parameter. An extra byte must be reserved so that
2224 	 * later the vscnprintf() into the reserved buffer has room for the
2225 	 * terminating '\0', which is not counted by vsnprintf().
2226 	 */
2227 	va_copy(args2, args);
2228 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2229 	va_end(args2);
2230 
2231 	if (reserve_size > PRINTKRB_RECORD_MAX)
2232 		reserve_size = PRINTKRB_RECORD_MAX;
2233 
2234 	/* Extract log level or control flags. */
2235 	if (facility == 0)
2236 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2237 
2238 	if (level == LOGLEVEL_DEFAULT)
2239 		level = default_message_loglevel;
2240 
2241 	if (dev_info)
2242 		flags |= LOG_NEWLINE;
2243 
2244 	if (flags & LOG_CONT) {
2245 		prb_rec_init_wr(&r, reserve_size);
2246 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2247 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2248 						 facility, &flags, fmt, args);
2249 			r.info->text_len += text_len;
2250 
2251 			if (flags & LOG_NEWLINE) {
2252 				r.info->flags |= LOG_NEWLINE;
2253 				prb_final_commit(&e);
2254 			} else {
2255 				prb_commit(&e);
2256 			}
2257 
2258 			ret = text_len;
2259 			goto out;
2260 		}
2261 	}
2262 
2263 	/*
2264 	 * Explicitly initialize the record before every prb_reserve() call.
2265 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2266 	 * structure when they fail.
2267 	 */
2268 	prb_rec_init_wr(&r, reserve_size);
2269 	if (!prb_reserve(&e, prb, &r)) {
2270 		/* truncate the message if it is too long for empty buffer */
2271 		truncate_msg(&reserve_size, &trunc_msg_len);
2272 
2273 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2274 		if (!prb_reserve(&e, prb, &r))
2275 			goto out;
2276 	}
2277 
2278 	/* fill message */
2279 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2280 	if (trunc_msg_len)
2281 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2282 	r.info->text_len = text_len + trunc_msg_len;
2283 	r.info->facility = facility;
2284 	r.info->level = level & 7;
2285 	r.info->flags = flags & 0x1f;
2286 	r.info->ts_nsec = ts_nsec;
2287 	r.info->caller_id = caller_id;
2288 	if (dev_info)
2289 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2290 
2291 	/* A message without a trailing newline can be continued. */
2292 	if (!(flags & LOG_NEWLINE))
2293 		prb_commit(&e);
2294 	else
2295 		prb_final_commit(&e);
2296 
2297 	ret = text_len + trunc_msg_len;
2298 out:
2299 	printk_exit_irqrestore(recursion_ptr, irqflags);
2300 	return ret;
2301 }
2302 
2303 asmlinkage int vprintk_emit(int facility, int level,
2304 			    const struct dev_printk_info *dev_info,
2305 			    const char *fmt, va_list args)
2306 {
2307 	int printed_len;
2308 	bool in_sched = false;
2309 
2310 	/* Suppress unimportant messages after panic happens */
2311 	if (unlikely(suppress_printk))
2312 		return 0;
2313 
2314 	/*
2315 	 * The messages on the panic CPU are the most important. If
2316 	 * non-panic CPUs are generating any messages, they will be
2317 	 * silently dropped.
2318 	 */
2319 	if (other_cpu_in_panic())
2320 		return 0;
2321 
2322 	if (level == LOGLEVEL_SCHED) {
2323 		level = LOGLEVEL_DEFAULT;
2324 		in_sched = true;
2325 	}
2326 
2327 	printk_delay(level);
2328 
2329 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2330 
2331 	/* If called from the scheduler, we can not call up(). */
2332 	if (!in_sched) {
2333 		/*
2334 		 * The caller may be holding system-critical or
2335 		 * timing-sensitive locks. Disable preemption during
2336 		 * printing of all remaining records to all consoles so that
2337 		 * this context can return as soon as possible. Hopefully
2338 		 * another printk() caller will take over the printing.
2339 		 */
2340 		preempt_disable();
2341 		/*
2342 		 * Try to acquire and then immediately release the console
2343 		 * semaphore. The release will print out buffers. With the
2344 		 * spinning variant, this context tries to take over the
2345 		 * printing from another printing context.
2346 		 */
2347 		if (console_trylock_spinning())
2348 			console_unlock();
2349 		preempt_enable();
2350 	}
2351 
2352 	if (in_sched)
2353 		defer_console_output();
2354 	else
2355 		wake_up_klogd();
2356 
2357 	return printed_len;
2358 }
2359 EXPORT_SYMBOL(vprintk_emit);
2360 
2361 int vprintk_default(const char *fmt, va_list args)
2362 {
2363 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2364 }
2365 EXPORT_SYMBOL_GPL(vprintk_default);
2366 
2367 asmlinkage __visible int _printk(const char *fmt, ...)
2368 {
2369 	va_list args;
2370 	int r;
2371 
2372 	va_start(args, fmt);
2373 	r = vprintk(fmt, args);
2374 	va_end(args);
2375 
2376 	return r;
2377 }
2378 EXPORT_SYMBOL(_printk);
2379 
2380 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2381 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2382 
2383 #else /* CONFIG_PRINTK */
2384 
2385 #define printk_time		false
2386 
2387 #define prb_read_valid(rb, seq, r)	false
2388 #define prb_first_valid_seq(rb)		0
2389 #define prb_next_seq(rb)		0
2390 
2391 static u64 syslog_seq;
2392 
2393 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2394 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2395 
2396 #endif /* CONFIG_PRINTK */
2397 
2398 #ifdef CONFIG_EARLY_PRINTK
2399 struct console *early_console;
2400 
2401 asmlinkage __visible void early_printk(const char *fmt, ...)
2402 {
2403 	va_list ap;
2404 	char buf[512];
2405 	int n;
2406 
2407 	if (!early_console)
2408 		return;
2409 
2410 	va_start(ap, fmt);
2411 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2412 	va_end(ap);
2413 
2414 	early_console->write(early_console, buf, n);
2415 }
2416 #endif
2417 
2418 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2419 {
2420 	if (!user_specified)
2421 		return;
2422 
2423 	/*
2424 	 * @c console was defined by the user on the command line.
2425 	 * Do not clear when added twice also by SPCR or the device tree.
2426 	 */
2427 	c->user_specified = true;
2428 	/* At least one console defined by the user on the command line. */
2429 	console_set_on_cmdline = 1;
2430 }
2431 
2432 static int __add_preferred_console(const char *name, const short idx,
2433 				   const char *devname, char *options,
2434 				   char *brl_options, bool user_specified)
2435 {
2436 	struct console_cmdline *c;
2437 	int i;
2438 
2439 	if (!name && !devname)
2440 		return -EINVAL;
2441 
2442 	/*
2443 	 * We use a signed short index for struct console for device drivers to
2444 	 * indicate a not yet assigned index or port. However, a negative index
2445 	 * value is not valid when the console name and index are defined on
2446 	 * the command line.
2447 	 */
2448 	if (name && idx < 0)
2449 		return -EINVAL;
2450 
2451 	/*
2452 	 *	See if this tty is not yet registered, and
2453 	 *	if we have a slot free.
2454 	 */
2455 	for (i = 0, c = console_cmdline;
2456 	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2457 	     i++, c++) {
2458 		if ((name && strcmp(c->name, name) == 0 && c->index == idx) ||
2459 		    (devname && strcmp(c->devname, devname) == 0)) {
2460 			if (!brl_options)
2461 				preferred_console = i;
2462 			set_user_specified(c, user_specified);
2463 			return 0;
2464 		}
2465 	}
2466 	if (i == MAX_CMDLINECONSOLES)
2467 		return -E2BIG;
2468 	if (!brl_options)
2469 		preferred_console = i;
2470 	if (name)
2471 		strscpy(c->name, name);
2472 	if (devname)
2473 		strscpy(c->devname, devname);
2474 	c->options = options;
2475 	set_user_specified(c, user_specified);
2476 	braille_set_options(c, brl_options);
2477 
2478 	c->index = idx;
2479 	return 0;
2480 }
2481 
2482 static int __init console_msg_format_setup(char *str)
2483 {
2484 	if (!strcmp(str, "syslog"))
2485 		console_msg_format = MSG_FORMAT_SYSLOG;
2486 	if (!strcmp(str, "default"))
2487 		console_msg_format = MSG_FORMAT_DEFAULT;
2488 	return 1;
2489 }
2490 __setup("console_msg_format=", console_msg_format_setup);
2491 
2492 /*
2493  * Set up a console.  Called via do_early_param() in init/main.c
2494  * for each "console=" parameter in the boot command line.
2495  */
2496 static int __init console_setup(char *str)
2497 {
2498 	static_assert(sizeof(console_cmdline[0].devname) >= sizeof(console_cmdline[0].name) + 4);
2499 	char buf[sizeof(console_cmdline[0].devname)];
2500 	char *brl_options = NULL;
2501 	char *ttyname = NULL;
2502 	char *devname = NULL;
2503 	char *options;
2504 	char *s;
2505 	int idx;
2506 
2507 	/*
2508 	 * console="" or console=null have been suggested as a way to
2509 	 * disable console output. Use ttynull that has been created
2510 	 * for exactly this purpose.
2511 	 */
2512 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2513 		__add_preferred_console("ttynull", 0, NULL, NULL, NULL, true);
2514 		return 1;
2515 	}
2516 
2517 	if (_braille_console_setup(&str, &brl_options))
2518 		return 1;
2519 
2520 	/* For a DEVNAME:0.0 style console the character device is unknown early */
2521 	if (strchr(str, ':'))
2522 		devname = buf;
2523 	else
2524 		ttyname = buf;
2525 
2526 	/*
2527 	 * Decode str into name, index, options.
2528 	 */
2529 	if (ttyname && isdigit(str[0]))
2530 		scnprintf(buf, sizeof(buf), "ttyS%s", str);
2531 	else
2532 		strscpy(buf, str);
2533 
2534 	options = strchr(str, ',');
2535 	if (options)
2536 		*(options++) = 0;
2537 
2538 #ifdef __sparc__
2539 	if (!strcmp(str, "ttya"))
2540 		strscpy(buf, "ttyS0");
2541 	if (!strcmp(str, "ttyb"))
2542 		strscpy(buf, "ttyS1");
2543 #endif
2544 
2545 	for (s = buf; *s; s++)
2546 		if ((ttyname && isdigit(*s)) || *s == ',')
2547 			break;
2548 
2549 	/* @idx will get defined when devname matches. */
2550 	if (devname)
2551 		idx = -1;
2552 	else
2553 		idx = simple_strtoul(s, NULL, 10);
2554 
2555 	*s = 0;
2556 
2557 	__add_preferred_console(ttyname, idx, devname, options, brl_options, true);
2558 	return 1;
2559 }
2560 __setup("console=", console_setup);
2561 
2562 /**
2563  * add_preferred_console - add a device to the list of preferred consoles.
2564  * @name: device name
2565  * @idx: device index
2566  * @options: options for this console
2567  *
2568  * The last preferred console added will be used for kernel messages
2569  * and stdin/out/err for init.  Normally this is used by console_setup
2570  * above to handle user-supplied console arguments; however it can also
2571  * be used by arch-specific code either to override the user or more
2572  * commonly to provide a default console (ie from PROM variables) when
2573  * the user has not supplied one.
2574  */
2575 int add_preferred_console(const char *name, const short idx, char *options)
2576 {
2577 	return __add_preferred_console(name, idx, NULL, options, NULL, false);
2578 }
2579 
2580 /**
2581  * match_devname_and_update_preferred_console - Update a preferred console
2582  *	when matching devname is found.
2583  * @devname: DEVNAME:0.0 style device name
2584  * @name: Name of the corresponding console driver, e.g. "ttyS"
2585  * @idx: Console index, e.g. port number.
2586  *
2587  * The function checks whether a device with the given @devname is
2588  * preferred via the console=DEVNAME:0.0 command line option.
2589  * It fills the missing console driver name and console index
2590  * so that a later register_console() call could find (match)
2591  * and enable this device.
2592  *
2593  * It might be used when a driver subsystem initializes particular
2594  * devices with already known DEVNAME:0.0 style names. And it
2595  * could predict which console driver name and index this device
2596  * would later get associated with.
2597  *
2598  * Return: 0 on success, negative error code on failure.
2599  */
2600 int match_devname_and_update_preferred_console(const char *devname,
2601 					       const char *name,
2602 					       const short idx)
2603 {
2604 	struct console_cmdline *c = console_cmdline;
2605 	int i;
2606 
2607 	if (!devname || !strlen(devname) || !name || !strlen(name) || idx < 0)
2608 		return -EINVAL;
2609 
2610 	for (i = 0; i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
2611 	     i++, c++) {
2612 		if (!strcmp(devname, c->devname)) {
2613 			pr_info("associate the preferred console \"%s\" with \"%s%d\"\n",
2614 				devname, name, idx);
2615 			strscpy(c->name, name);
2616 			c->index = idx;
2617 			return 0;
2618 		}
2619 	}
2620 
2621 	return -ENOENT;
2622 }
2623 
2624 bool console_suspend_enabled = true;
2625 EXPORT_SYMBOL(console_suspend_enabled);
2626 
2627 static int __init console_suspend_disable(char *str)
2628 {
2629 	console_suspend_enabled = false;
2630 	return 1;
2631 }
2632 __setup("no_console_suspend", console_suspend_disable);
2633 module_param_named(console_suspend, console_suspend_enabled,
2634 		bool, S_IRUGO | S_IWUSR);
2635 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2636 	" and hibernate operations");
2637 
2638 static bool printk_console_no_auto_verbose;
2639 
2640 void console_verbose(void)
2641 {
2642 	if (console_loglevel && !printk_console_no_auto_verbose)
2643 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2644 }
2645 EXPORT_SYMBOL_GPL(console_verbose);
2646 
2647 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2648 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2649 
2650 /**
2651  * suspend_console - suspend the console subsystem
2652  *
2653  * This disables printk() while we go into suspend states
2654  */
2655 void suspend_console(void)
2656 {
2657 	struct console *con;
2658 
2659 	if (!console_suspend_enabled)
2660 		return;
2661 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2662 	pr_flush(1000, true);
2663 
2664 	console_list_lock();
2665 	for_each_console(con)
2666 		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2667 	console_list_unlock();
2668 
2669 	/*
2670 	 * Ensure that all SRCU list walks have completed. All printing
2671 	 * contexts must be able to see that they are suspended so that it
2672 	 * is guaranteed that all printing has stopped when this function
2673 	 * completes.
2674 	 */
2675 	synchronize_srcu(&console_srcu);
2676 }
2677 
2678 void resume_console(void)
2679 {
2680 	struct console *con;
2681 
2682 	if (!console_suspend_enabled)
2683 		return;
2684 
2685 	console_list_lock();
2686 	for_each_console(con)
2687 		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2688 	console_list_unlock();
2689 
2690 	/*
2691 	 * Ensure that all SRCU list walks have completed. All printing
2692 	 * contexts must be able to see they are no longer suspended so
2693 	 * that they are guaranteed to wake up and resume printing.
2694 	 */
2695 	synchronize_srcu(&console_srcu);
2696 
2697 	pr_flush(1000, true);
2698 }
2699 
2700 /**
2701  * console_cpu_notify - print deferred console messages after CPU hotplug
2702  * @cpu: unused
2703  *
2704  * If printk() is called from a CPU that is not online yet, the messages
2705  * will be printed on the console only if there are CON_ANYTIME consoles.
2706  * This function is called when a new CPU comes online (or fails to come
2707  * up) or goes offline.
2708  */
2709 static int console_cpu_notify(unsigned int cpu)
2710 {
2711 	if (!cpuhp_tasks_frozen) {
2712 		/* If trylock fails, someone else is doing the printing */
2713 		if (console_trylock())
2714 			console_unlock();
2715 	}
2716 	return 0;
2717 }
2718 
2719 /**
2720  * console_lock - block the console subsystem from printing
2721  *
2722  * Acquires a lock which guarantees that no consoles will
2723  * be in or enter their write() callback.
2724  *
2725  * Can sleep, returns nothing.
2726  */
2727 void console_lock(void)
2728 {
2729 	might_sleep();
2730 
2731 	/* On panic, the console_lock must be left to the panic cpu. */
2732 	while (other_cpu_in_panic())
2733 		msleep(1000);
2734 
2735 	down_console_sem();
2736 	console_locked = 1;
2737 	console_may_schedule = 1;
2738 }
2739 EXPORT_SYMBOL(console_lock);
2740 
2741 /**
2742  * console_trylock - try to block the console subsystem from printing
2743  *
2744  * Try to acquire a lock which guarantees that no consoles will
2745  * be in or enter their write() callback.
2746  *
2747  * returns 1 on success, and 0 on failure to acquire the lock.
2748  */
2749 int console_trylock(void)
2750 {
2751 	/* On panic, the console_lock must be left to the panic cpu. */
2752 	if (other_cpu_in_panic())
2753 		return 0;
2754 	if (down_trylock_console_sem())
2755 		return 0;
2756 	console_locked = 1;
2757 	console_may_schedule = 0;
2758 	return 1;
2759 }
2760 EXPORT_SYMBOL(console_trylock);
2761 
2762 int is_console_locked(void)
2763 {
2764 	return console_locked;
2765 }
2766 EXPORT_SYMBOL(is_console_locked);
2767 
2768 /*
2769  * Check if the given console is currently capable and allowed to print
2770  * records.
2771  *
2772  * Requires the console_srcu_read_lock.
2773  */
2774 static inline bool console_is_usable(struct console *con)
2775 {
2776 	short flags = console_srcu_read_flags(con);
2777 
2778 	if (!(flags & CON_ENABLED))
2779 		return false;
2780 
2781 	if ((flags & CON_SUSPENDED))
2782 		return false;
2783 
2784 	if (!con->write)
2785 		return false;
2786 
2787 	/*
2788 	 * Console drivers may assume that per-cpu resources have been
2789 	 * allocated. So unless they're explicitly marked as being able to
2790 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2791 	 */
2792 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2793 		return false;
2794 
2795 	return true;
2796 }
2797 
2798 static void __console_unlock(void)
2799 {
2800 	console_locked = 0;
2801 	up_console_sem();
2802 }
2803 
2804 #ifdef CONFIG_PRINTK
2805 
2806 /*
2807  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2808  * is achieved by shifting the existing message over and inserting the dropped
2809  * message.
2810  *
2811  * @pmsg is the printk message to prepend.
2812  *
2813  * @dropped is the dropped count to report in the dropped message.
2814  *
2815  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2816  * the dropped message, the message text will be sufficiently truncated.
2817  *
2818  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2819  */
2820 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2821 {
2822 	struct printk_buffers *pbufs = pmsg->pbufs;
2823 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2824 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2825 	char *scratchbuf = &pbufs->scratchbuf[0];
2826 	char *outbuf = &pbufs->outbuf[0];
2827 	size_t len;
2828 
2829 	len = scnprintf(scratchbuf, scratchbuf_sz,
2830 		       "** %lu printk messages dropped **\n", dropped);
2831 
2832 	/*
2833 	 * Make sure outbuf is sufficiently large before prepending.
2834 	 * Keep at least the prefix when the message must be truncated.
2835 	 * It is a rather theoretical problem when someone tries to
2836 	 * use a minimalist buffer.
2837 	 */
2838 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2839 		return;
2840 
2841 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2842 		/* Truncate the message, but keep it terminated. */
2843 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2844 		outbuf[pmsg->outbuf_len] = 0;
2845 	}
2846 
2847 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2848 	memcpy(outbuf, scratchbuf, len);
2849 	pmsg->outbuf_len += len;
2850 }
2851 
2852 /*
2853  * Read and format the specified record (or a later record if the specified
2854  * record is not available).
2855  *
2856  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2857  * struct printk_buffers.
2858  *
2859  * @seq is the record to read and format. If it is not available, the next
2860  * valid record is read.
2861  *
2862  * @is_extended specifies if the message should be formatted for extended
2863  * console output.
2864  *
2865  * @may_supress specifies if records may be skipped based on loglevel.
2866  *
2867  * Returns false if no record is available. Otherwise true and all fields
2868  * of @pmsg are valid. (See the documentation of struct printk_message
2869  * for information about the @pmsg fields.)
2870  */
2871 bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2872 			     bool is_extended, bool may_suppress)
2873 {
2874 	struct printk_buffers *pbufs = pmsg->pbufs;
2875 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2876 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2877 	char *scratchbuf = &pbufs->scratchbuf[0];
2878 	char *outbuf = &pbufs->outbuf[0];
2879 	struct printk_info info;
2880 	struct printk_record r;
2881 	size_t len = 0;
2882 
2883 	/*
2884 	 * Formatting extended messages requires a separate buffer, so use the
2885 	 * scratch buffer to read in the ringbuffer text.
2886 	 *
2887 	 * Formatting normal messages is done in-place, so read the ringbuffer
2888 	 * text directly into the output buffer.
2889 	 */
2890 	if (is_extended)
2891 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2892 	else
2893 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2894 
2895 	if (!prb_read_valid(prb, seq, &r))
2896 		return false;
2897 
2898 	pmsg->seq = r.info->seq;
2899 	pmsg->dropped = r.info->seq - seq;
2900 
2901 	/* Skip record that has level above the console loglevel. */
2902 	if (may_suppress && suppress_message_printing(r.info->level))
2903 		goto out;
2904 
2905 	if (is_extended) {
2906 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2907 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2908 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2909 	} else {
2910 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2911 	}
2912 out:
2913 	pmsg->outbuf_len = len;
2914 	return true;
2915 }
2916 
2917 /*
2918  * Used as the printk buffers for non-panic, serialized console printing.
2919  * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
2920  * Its usage requires the console_lock held.
2921  */
2922 struct printk_buffers printk_shared_pbufs;
2923 
2924 /*
2925  * Print one record for the given console. The record printed is whatever
2926  * record is the next available record for the given console.
2927  *
2928  * @handover will be set to true if a printk waiter has taken over the
2929  * console_lock, in which case the caller is no longer holding both the
2930  * console_lock and the SRCU read lock. Otherwise it is set to false.
2931  *
2932  * @cookie is the cookie from the SRCU read lock.
2933  *
2934  * Returns false if the given console has no next record to print, otherwise
2935  * true.
2936  *
2937  * Requires the console_lock and the SRCU read lock.
2938  */
2939 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2940 {
2941 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2942 	char *outbuf = &printk_shared_pbufs.outbuf[0];
2943 	struct printk_message pmsg = {
2944 		.pbufs = &printk_shared_pbufs,
2945 	};
2946 	unsigned long flags;
2947 
2948 	*handover = false;
2949 
2950 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2951 		return false;
2952 
2953 	con->dropped += pmsg.dropped;
2954 
2955 	/* Skip messages of formatted length 0. */
2956 	if (pmsg.outbuf_len == 0) {
2957 		con->seq = pmsg.seq + 1;
2958 		goto skip;
2959 	}
2960 
2961 	if (con->dropped && !is_extended) {
2962 		console_prepend_dropped(&pmsg, con->dropped);
2963 		con->dropped = 0;
2964 	}
2965 
2966 	/*
2967 	 * While actively printing out messages, if another printk()
2968 	 * were to occur on another CPU, it may wait for this one to
2969 	 * finish. This task can not be preempted if there is a
2970 	 * waiter waiting to take over.
2971 	 *
2972 	 * Interrupts are disabled because the hand over to a waiter
2973 	 * must not be interrupted until the hand over is completed
2974 	 * (@console_waiter is cleared).
2975 	 */
2976 	printk_safe_enter_irqsave(flags);
2977 	console_lock_spinning_enable();
2978 
2979 	/* Do not trace print latency. */
2980 	stop_critical_timings();
2981 
2982 	/* Write everything out to the hardware. */
2983 	con->write(con, outbuf, pmsg.outbuf_len);
2984 
2985 	start_critical_timings();
2986 
2987 	con->seq = pmsg.seq + 1;
2988 
2989 	*handover = console_lock_spinning_disable_and_check(cookie);
2990 	printk_safe_exit_irqrestore(flags);
2991 skip:
2992 	return true;
2993 }
2994 
2995 #else
2996 
2997 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2998 {
2999 	*handover = false;
3000 	return false;
3001 }
3002 
3003 #endif /* CONFIG_PRINTK */
3004 
3005 /*
3006  * Print out all remaining records to all consoles.
3007  *
3008  * @do_cond_resched is set by the caller. It can be true only in schedulable
3009  * context.
3010  *
3011  * @next_seq is set to the sequence number after the last available record.
3012  * The value is valid only when this function returns true. It means that all
3013  * usable consoles are completely flushed.
3014  *
3015  * @handover will be set to true if a printk waiter has taken over the
3016  * console_lock, in which case the caller is no longer holding the
3017  * console_lock. Otherwise it is set to false.
3018  *
3019  * Returns true when there was at least one usable console and all messages
3020  * were flushed to all usable consoles. A returned false informs the caller
3021  * that everything was not flushed (either there were no usable consoles or
3022  * another context has taken over printing or it is a panic situation and this
3023  * is not the panic CPU). Regardless the reason, the caller should assume it
3024  * is not useful to immediately try again.
3025  *
3026  * Requires the console_lock.
3027  */
3028 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
3029 {
3030 	bool any_usable = false;
3031 	struct console *con;
3032 	bool any_progress;
3033 	int cookie;
3034 
3035 	*next_seq = 0;
3036 	*handover = false;
3037 
3038 	do {
3039 		any_progress = false;
3040 
3041 		cookie = console_srcu_read_lock();
3042 		for_each_console_srcu(con) {
3043 			bool progress;
3044 
3045 			if (!console_is_usable(con))
3046 				continue;
3047 			any_usable = true;
3048 
3049 			progress = console_emit_next_record(con, handover, cookie);
3050 
3051 			/*
3052 			 * If a handover has occurred, the SRCU read lock
3053 			 * is already released.
3054 			 */
3055 			if (*handover)
3056 				return false;
3057 
3058 			/* Track the next of the highest seq flushed. */
3059 			if (con->seq > *next_seq)
3060 				*next_seq = con->seq;
3061 
3062 			if (!progress)
3063 				continue;
3064 			any_progress = true;
3065 
3066 			/* Allow panic_cpu to take over the consoles safely. */
3067 			if (other_cpu_in_panic())
3068 				goto abandon;
3069 
3070 			if (do_cond_resched)
3071 				cond_resched();
3072 		}
3073 		console_srcu_read_unlock(cookie);
3074 	} while (any_progress);
3075 
3076 	return any_usable;
3077 
3078 abandon:
3079 	console_srcu_read_unlock(cookie);
3080 	return false;
3081 }
3082 
3083 /**
3084  * console_unlock - unblock the console subsystem from printing
3085  *
3086  * Releases the console_lock which the caller holds to block printing of
3087  * the console subsystem.
3088  *
3089  * While the console_lock was held, console output may have been buffered
3090  * by printk().  If this is the case, console_unlock(); emits
3091  * the output prior to releasing the lock.
3092  *
3093  * console_unlock(); may be called from any context.
3094  */
3095 void console_unlock(void)
3096 {
3097 	bool do_cond_resched;
3098 	bool handover;
3099 	bool flushed;
3100 	u64 next_seq;
3101 
3102 	/*
3103 	 * Console drivers are called with interrupts disabled, so
3104 	 * @console_may_schedule should be cleared before; however, we may
3105 	 * end up dumping a lot of lines, for example, if called from
3106 	 * console registration path, and should invoke cond_resched()
3107 	 * between lines if allowable.  Not doing so can cause a very long
3108 	 * scheduling stall on a slow console leading to RCU stall and
3109 	 * softlockup warnings which exacerbate the issue with more
3110 	 * messages practically incapacitating the system. Therefore, create
3111 	 * a local to use for the printing loop.
3112 	 */
3113 	do_cond_resched = console_may_schedule;
3114 
3115 	do {
3116 		console_may_schedule = 0;
3117 
3118 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3119 		if (!handover)
3120 			__console_unlock();
3121 
3122 		/*
3123 		 * Abort if there was a failure to flush all messages to all
3124 		 * usable consoles. Either it is not possible to flush (in
3125 		 * which case it would be an infinite loop of retrying) or
3126 		 * another context has taken over printing.
3127 		 */
3128 		if (!flushed)
3129 			break;
3130 
3131 		/*
3132 		 * Some context may have added new records after
3133 		 * console_flush_all() but before unlocking the console.
3134 		 * Re-check if there is a new record to flush. If the trylock
3135 		 * fails, another context is already handling the printing.
3136 		 */
3137 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3138 }
3139 EXPORT_SYMBOL(console_unlock);
3140 
3141 /**
3142  * console_conditional_schedule - yield the CPU if required
3143  *
3144  * If the console code is currently allowed to sleep, and
3145  * if this CPU should yield the CPU to another task, do
3146  * so here.
3147  *
3148  * Must be called within console_lock();.
3149  */
3150 void __sched console_conditional_schedule(void)
3151 {
3152 	if (console_may_schedule)
3153 		cond_resched();
3154 }
3155 EXPORT_SYMBOL(console_conditional_schedule);
3156 
3157 void console_unblank(void)
3158 {
3159 	bool found_unblank = false;
3160 	struct console *c;
3161 	int cookie;
3162 
3163 	/*
3164 	 * First check if there are any consoles implementing the unblank()
3165 	 * callback. If not, there is no reason to continue and take the
3166 	 * console lock, which in particular can be dangerous if
3167 	 * @oops_in_progress is set.
3168 	 */
3169 	cookie = console_srcu_read_lock();
3170 	for_each_console_srcu(c) {
3171 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3172 			found_unblank = true;
3173 			break;
3174 		}
3175 	}
3176 	console_srcu_read_unlock(cookie);
3177 	if (!found_unblank)
3178 		return;
3179 
3180 	/*
3181 	 * Stop console printing because the unblank() callback may
3182 	 * assume the console is not within its write() callback.
3183 	 *
3184 	 * If @oops_in_progress is set, this may be an atomic context.
3185 	 * In that case, attempt a trylock as best-effort.
3186 	 */
3187 	if (oops_in_progress) {
3188 		/* Semaphores are not NMI-safe. */
3189 		if (in_nmi())
3190 			return;
3191 
3192 		/*
3193 		 * Attempting to trylock the console lock can deadlock
3194 		 * if another CPU was stopped while modifying the
3195 		 * semaphore. "Hope and pray" that this is not the
3196 		 * current situation.
3197 		 */
3198 		if (down_trylock_console_sem() != 0)
3199 			return;
3200 	} else
3201 		console_lock();
3202 
3203 	console_locked = 1;
3204 	console_may_schedule = 0;
3205 
3206 	cookie = console_srcu_read_lock();
3207 	for_each_console_srcu(c) {
3208 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3209 			c->unblank();
3210 	}
3211 	console_srcu_read_unlock(cookie);
3212 
3213 	console_unlock();
3214 
3215 	if (!oops_in_progress)
3216 		pr_flush(1000, true);
3217 }
3218 
3219 /*
3220  * Rewind all consoles to the oldest available record.
3221  *
3222  * IMPORTANT: The function is safe only when called under
3223  *            console_lock(). It is not enforced because
3224  *            it is used as a best effort in panic().
3225  */
3226 static void __console_rewind_all(void)
3227 {
3228 	struct console *c;
3229 	short flags;
3230 	int cookie;
3231 	u64 seq;
3232 
3233 	seq = prb_first_valid_seq(prb);
3234 
3235 	cookie = console_srcu_read_lock();
3236 	for_each_console_srcu(c) {
3237 		flags = console_srcu_read_flags(c);
3238 
3239 		if (flags & CON_NBCON) {
3240 			nbcon_seq_force(c, seq);
3241 		} else {
3242 			/*
3243 			 * This assignment is safe only when called under
3244 			 * console_lock(). On panic, legacy consoles are
3245 			 * only best effort.
3246 			 */
3247 			c->seq = seq;
3248 		}
3249 	}
3250 	console_srcu_read_unlock(cookie);
3251 }
3252 
3253 /**
3254  * console_flush_on_panic - flush console content on panic
3255  * @mode: flush all messages in buffer or just the pending ones
3256  *
3257  * Immediately output all pending messages no matter what.
3258  */
3259 void console_flush_on_panic(enum con_flush_mode mode)
3260 {
3261 	bool handover;
3262 	u64 next_seq;
3263 
3264 	/*
3265 	 * Ignore the console lock and flush out the messages. Attempting a
3266 	 * trylock would not be useful because:
3267 	 *
3268 	 *   - if it is contended, it must be ignored anyway
3269 	 *   - console_lock() and console_trylock() block and fail
3270 	 *     respectively in panic for non-panic CPUs
3271 	 *   - semaphores are not NMI-safe
3272 	 */
3273 
3274 	/*
3275 	 * If another context is holding the console lock,
3276 	 * @console_may_schedule might be set. Clear it so that
3277 	 * this context does not call cond_resched() while flushing.
3278 	 */
3279 	console_may_schedule = 0;
3280 
3281 	if (mode == CONSOLE_REPLAY_ALL)
3282 		__console_rewind_all();
3283 
3284 	console_flush_all(false, &next_seq, &handover);
3285 }
3286 
3287 /*
3288  * Return the console tty driver structure and its associated index
3289  */
3290 struct tty_driver *console_device(int *index)
3291 {
3292 	struct console *c;
3293 	struct tty_driver *driver = NULL;
3294 	int cookie;
3295 
3296 	/*
3297 	 * Take console_lock to serialize device() callback with
3298 	 * other console operations. For example, fg_console is
3299 	 * modified under console_lock when switching vt.
3300 	 */
3301 	console_lock();
3302 
3303 	cookie = console_srcu_read_lock();
3304 	for_each_console_srcu(c) {
3305 		if (!c->device)
3306 			continue;
3307 		driver = c->device(c, index);
3308 		if (driver)
3309 			break;
3310 	}
3311 	console_srcu_read_unlock(cookie);
3312 
3313 	console_unlock();
3314 	return driver;
3315 }
3316 
3317 /*
3318  * Prevent further output on the passed console device so that (for example)
3319  * serial drivers can disable console output before suspending a port, and can
3320  * re-enable output afterwards.
3321  */
3322 void console_stop(struct console *console)
3323 {
3324 	__pr_flush(console, 1000, true);
3325 	console_list_lock();
3326 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3327 	console_list_unlock();
3328 
3329 	/*
3330 	 * Ensure that all SRCU list walks have completed. All contexts must
3331 	 * be able to see that this console is disabled so that (for example)
3332 	 * the caller can suspend the port without risk of another context
3333 	 * using the port.
3334 	 */
3335 	synchronize_srcu(&console_srcu);
3336 }
3337 EXPORT_SYMBOL(console_stop);
3338 
3339 void console_start(struct console *console)
3340 {
3341 	console_list_lock();
3342 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3343 	console_list_unlock();
3344 	__pr_flush(console, 1000, true);
3345 }
3346 EXPORT_SYMBOL(console_start);
3347 
3348 static int __read_mostly keep_bootcon;
3349 
3350 static int __init keep_bootcon_setup(char *str)
3351 {
3352 	keep_bootcon = 1;
3353 	pr_info("debug: skip boot console de-registration.\n");
3354 
3355 	return 0;
3356 }
3357 
3358 early_param("keep_bootcon", keep_bootcon_setup);
3359 
3360 static int console_call_setup(struct console *newcon, char *options)
3361 {
3362 	int err;
3363 
3364 	if (!newcon->setup)
3365 		return 0;
3366 
3367 	/* Synchronize with possible boot console. */
3368 	console_lock();
3369 	err = newcon->setup(newcon, options);
3370 	console_unlock();
3371 
3372 	return err;
3373 }
3374 
3375 /*
3376  * This is called by register_console() to try to match
3377  * the newly registered console with any of the ones selected
3378  * by either the command line or add_preferred_console() and
3379  * setup/enable it.
3380  *
3381  * Care need to be taken with consoles that are statically
3382  * enabled such as netconsole
3383  */
3384 static int try_enable_preferred_console(struct console *newcon,
3385 					bool user_specified)
3386 {
3387 	struct console_cmdline *c;
3388 	int i, err;
3389 
3390 	for (i = 0, c = console_cmdline;
3391 	     i < MAX_CMDLINECONSOLES && (c->name[0] || c->devname[0]);
3392 	     i++, c++) {
3393 		/* Console not yet initialized? */
3394 		if (!c->name[0])
3395 			continue;
3396 		if (c->user_specified != user_specified)
3397 			continue;
3398 		if (!newcon->match ||
3399 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3400 			/* default matching */
3401 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3402 			if (strcmp(c->name, newcon->name) != 0)
3403 				continue;
3404 			if (newcon->index >= 0 &&
3405 			    newcon->index != c->index)
3406 				continue;
3407 			if (newcon->index < 0)
3408 				newcon->index = c->index;
3409 
3410 			if (_braille_register_console(newcon, c))
3411 				return 0;
3412 
3413 			err = console_call_setup(newcon, c->options);
3414 			if (err)
3415 				return err;
3416 		}
3417 		newcon->flags |= CON_ENABLED;
3418 		if (i == preferred_console)
3419 			newcon->flags |= CON_CONSDEV;
3420 		return 0;
3421 	}
3422 
3423 	/*
3424 	 * Some consoles, such as pstore and netconsole, can be enabled even
3425 	 * without matching. Accept the pre-enabled consoles only when match()
3426 	 * and setup() had a chance to be called.
3427 	 */
3428 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3429 		return 0;
3430 
3431 	return -ENOENT;
3432 }
3433 
3434 /* Try to enable the console unconditionally */
3435 static void try_enable_default_console(struct console *newcon)
3436 {
3437 	if (newcon->index < 0)
3438 		newcon->index = 0;
3439 
3440 	if (console_call_setup(newcon, NULL) != 0)
3441 		return;
3442 
3443 	newcon->flags |= CON_ENABLED;
3444 
3445 	if (newcon->device)
3446 		newcon->flags |= CON_CONSDEV;
3447 }
3448 
3449 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3450 {
3451 	struct console *con;
3452 	bool handover;
3453 
3454 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3455 		/* Get a consistent copy of @syslog_seq. */
3456 		mutex_lock(&syslog_lock);
3457 		newcon->seq = syslog_seq;
3458 		mutex_unlock(&syslog_lock);
3459 	} else {
3460 		/* Begin with next message added to ringbuffer. */
3461 		newcon->seq = prb_next_seq(prb);
3462 
3463 		/*
3464 		 * If any enabled boot consoles are due to be unregistered
3465 		 * shortly, some may not be caught up and may be the same
3466 		 * device as @newcon. Since it is not known which boot console
3467 		 * is the same device, flush all consoles and, if necessary,
3468 		 * start with the message of the enabled boot console that is
3469 		 * the furthest behind.
3470 		 */
3471 		if (bootcon_registered && !keep_bootcon) {
3472 			/*
3473 			 * Hold the console_lock to stop console printing and
3474 			 * guarantee safe access to console->seq.
3475 			 */
3476 			console_lock();
3477 
3478 			/*
3479 			 * Flush all consoles and set the console to start at
3480 			 * the next unprinted sequence number.
3481 			 */
3482 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3483 				/*
3484 				 * Flushing failed. Just choose the lowest
3485 				 * sequence of the enabled boot consoles.
3486 				 */
3487 
3488 				/*
3489 				 * If there was a handover, this context no
3490 				 * longer holds the console_lock.
3491 				 */
3492 				if (handover)
3493 					console_lock();
3494 
3495 				newcon->seq = prb_next_seq(prb);
3496 				for_each_console(con) {
3497 					if ((con->flags & CON_BOOT) &&
3498 					    (con->flags & CON_ENABLED) &&
3499 					    con->seq < newcon->seq) {
3500 						newcon->seq = con->seq;
3501 					}
3502 				}
3503 			}
3504 
3505 			console_unlock();
3506 		}
3507 	}
3508 }
3509 
3510 #define console_first()				\
3511 	hlist_entry(console_list.first, struct console, node)
3512 
3513 static int unregister_console_locked(struct console *console);
3514 
3515 /*
3516  * The console driver calls this routine during kernel initialization
3517  * to register the console printing procedure with printk() and to
3518  * print any messages that were printed by the kernel before the
3519  * console driver was initialized.
3520  *
3521  * This can happen pretty early during the boot process (because of
3522  * early_printk) - sometimes before setup_arch() completes - be careful
3523  * of what kernel features are used - they may not be initialised yet.
3524  *
3525  * There are two types of consoles - bootconsoles (early_printk) and
3526  * "real" consoles (everything which is not a bootconsole) which are
3527  * handled differently.
3528  *  - Any number of bootconsoles can be registered at any time.
3529  *  - As soon as a "real" console is registered, all bootconsoles
3530  *    will be unregistered automatically.
3531  *  - Once a "real" console is registered, any attempt to register a
3532  *    bootconsoles will be rejected
3533  */
3534 void register_console(struct console *newcon)
3535 {
3536 	struct console *con;
3537 	bool bootcon_registered = false;
3538 	bool realcon_registered = false;
3539 	int err;
3540 
3541 	console_list_lock();
3542 
3543 	for_each_console(con) {
3544 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3545 					 con->name, con->index)) {
3546 			goto unlock;
3547 		}
3548 
3549 		if (con->flags & CON_BOOT)
3550 			bootcon_registered = true;
3551 		else
3552 			realcon_registered = true;
3553 	}
3554 
3555 	/* Do not register boot consoles when there already is a real one. */
3556 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3557 		pr_info("Too late to register bootconsole %s%d\n",
3558 			newcon->name, newcon->index);
3559 		goto unlock;
3560 	}
3561 
3562 	if (newcon->flags & CON_NBCON) {
3563 		/*
3564 		 * Ensure the nbcon console buffers can be allocated
3565 		 * before modifying any global data.
3566 		 */
3567 		if (!nbcon_alloc(newcon))
3568 			goto unlock;
3569 	}
3570 
3571 	/*
3572 	 * See if we want to enable this console driver by default.
3573 	 *
3574 	 * Nope when a console is preferred by the command line, device
3575 	 * tree, or SPCR.
3576 	 *
3577 	 * The first real console with tty binding (driver) wins. More
3578 	 * consoles might get enabled before the right one is found.
3579 	 *
3580 	 * Note that a console with tty binding will have CON_CONSDEV
3581 	 * flag set and will be first in the list.
3582 	 */
3583 	if (preferred_console < 0) {
3584 		if (hlist_empty(&console_list) || !console_first()->device ||
3585 		    console_first()->flags & CON_BOOT) {
3586 			try_enable_default_console(newcon);
3587 		}
3588 	}
3589 
3590 	/* See if this console matches one we selected on the command line */
3591 	err = try_enable_preferred_console(newcon, true);
3592 
3593 	/* If not, try to match against the platform default(s) */
3594 	if (err == -ENOENT)
3595 		err = try_enable_preferred_console(newcon, false);
3596 
3597 	/* printk() messages are not printed to the Braille console. */
3598 	if (err || newcon->flags & CON_BRL) {
3599 		if (newcon->flags & CON_NBCON)
3600 			nbcon_free(newcon);
3601 		goto unlock;
3602 	}
3603 
3604 	/*
3605 	 * If we have a bootconsole, and are switching to a real console,
3606 	 * don't print everything out again, since when the boot console, and
3607 	 * the real console are the same physical device, it's annoying to
3608 	 * see the beginning boot messages twice
3609 	 */
3610 	if (bootcon_registered &&
3611 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3612 		newcon->flags &= ~CON_PRINTBUFFER;
3613 	}
3614 
3615 	newcon->dropped = 0;
3616 	console_init_seq(newcon, bootcon_registered);
3617 
3618 	if (newcon->flags & CON_NBCON)
3619 		nbcon_init(newcon);
3620 
3621 	/*
3622 	 * Put this console in the list - keep the
3623 	 * preferred driver at the head of the list.
3624 	 */
3625 	if (hlist_empty(&console_list)) {
3626 		/* Ensure CON_CONSDEV is always set for the head. */
3627 		newcon->flags |= CON_CONSDEV;
3628 		hlist_add_head_rcu(&newcon->node, &console_list);
3629 
3630 	} else if (newcon->flags & CON_CONSDEV) {
3631 		/* Only the new head can have CON_CONSDEV set. */
3632 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3633 		hlist_add_head_rcu(&newcon->node, &console_list);
3634 
3635 	} else {
3636 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3637 	}
3638 
3639 	/*
3640 	 * No need to synchronize SRCU here! The caller does not rely
3641 	 * on all contexts being able to see the new console before
3642 	 * register_console() completes.
3643 	 */
3644 
3645 	console_sysfs_notify();
3646 
3647 	/*
3648 	 * By unregistering the bootconsoles after we enable the real console
3649 	 * we get the "console xxx enabled" message on all the consoles -
3650 	 * boot consoles, real consoles, etc - this is to ensure that end
3651 	 * users know there might be something in the kernel's log buffer that
3652 	 * went to the bootconsole (that they do not see on the real console)
3653 	 */
3654 	con_printk(KERN_INFO, newcon, "enabled\n");
3655 	if (bootcon_registered &&
3656 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3657 	    !keep_bootcon) {
3658 		struct hlist_node *tmp;
3659 
3660 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3661 			if (con->flags & CON_BOOT)
3662 				unregister_console_locked(con);
3663 		}
3664 	}
3665 unlock:
3666 	console_list_unlock();
3667 }
3668 EXPORT_SYMBOL(register_console);
3669 
3670 /* Must be called under console_list_lock(). */
3671 static int unregister_console_locked(struct console *console)
3672 {
3673 	int res;
3674 
3675 	lockdep_assert_console_list_lock_held();
3676 
3677 	con_printk(KERN_INFO, console, "disabled\n");
3678 
3679 	res = _braille_unregister_console(console);
3680 	if (res < 0)
3681 		return res;
3682 	if (res > 0)
3683 		return 0;
3684 
3685 	/* Disable it unconditionally */
3686 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3687 
3688 	if (!console_is_registered_locked(console))
3689 		return -ENODEV;
3690 
3691 	hlist_del_init_rcu(&console->node);
3692 
3693 	/*
3694 	 * <HISTORICAL>
3695 	 * If this isn't the last console and it has CON_CONSDEV set, we
3696 	 * need to set it on the next preferred console.
3697 	 * </HISTORICAL>
3698 	 *
3699 	 * The above makes no sense as there is no guarantee that the next
3700 	 * console has any device attached. Oh well....
3701 	 */
3702 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3703 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3704 
3705 	/*
3706 	 * Ensure that all SRCU list walks have completed. All contexts
3707 	 * must not be able to see this console in the list so that any
3708 	 * exit/cleanup routines can be performed safely.
3709 	 */
3710 	synchronize_srcu(&console_srcu);
3711 
3712 	if (console->flags & CON_NBCON)
3713 		nbcon_free(console);
3714 
3715 	console_sysfs_notify();
3716 
3717 	if (console->exit)
3718 		res = console->exit(console);
3719 
3720 	return res;
3721 }
3722 
3723 int unregister_console(struct console *console)
3724 {
3725 	int res;
3726 
3727 	console_list_lock();
3728 	res = unregister_console_locked(console);
3729 	console_list_unlock();
3730 	return res;
3731 }
3732 EXPORT_SYMBOL(unregister_console);
3733 
3734 /**
3735  * console_force_preferred_locked - force a registered console preferred
3736  * @con: The registered console to force preferred.
3737  *
3738  * Must be called under console_list_lock().
3739  */
3740 void console_force_preferred_locked(struct console *con)
3741 {
3742 	struct console *cur_pref_con;
3743 
3744 	if (!console_is_registered_locked(con))
3745 		return;
3746 
3747 	cur_pref_con = console_first();
3748 
3749 	/* Already preferred? */
3750 	if (cur_pref_con == con)
3751 		return;
3752 
3753 	/*
3754 	 * Delete, but do not re-initialize the entry. This allows the console
3755 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3756 	 * checks), even though it was briefly removed from the console list.
3757 	 */
3758 	hlist_del_rcu(&con->node);
3759 
3760 	/*
3761 	 * Ensure that all SRCU list walks have completed so that the console
3762 	 * can be added to the beginning of the console list and its forward
3763 	 * list pointer can be re-initialized.
3764 	 */
3765 	synchronize_srcu(&console_srcu);
3766 
3767 	con->flags |= CON_CONSDEV;
3768 	WARN_ON(!con->device);
3769 
3770 	/* Only the new head can have CON_CONSDEV set. */
3771 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3772 	hlist_add_head_rcu(&con->node, &console_list);
3773 }
3774 EXPORT_SYMBOL(console_force_preferred_locked);
3775 
3776 /*
3777  * Initialize the console device. This is called *early*, so
3778  * we can't necessarily depend on lots of kernel help here.
3779  * Just do some early initializations, and do the complex setup
3780  * later.
3781  */
3782 void __init console_init(void)
3783 {
3784 	int ret;
3785 	initcall_t call;
3786 	initcall_entry_t *ce;
3787 
3788 	/* Setup the default TTY line discipline. */
3789 	n_tty_init();
3790 
3791 	/*
3792 	 * set up the console device so that later boot sequences can
3793 	 * inform about problems etc..
3794 	 */
3795 	ce = __con_initcall_start;
3796 	trace_initcall_level("console");
3797 	while (ce < __con_initcall_end) {
3798 		call = initcall_from_entry(ce);
3799 		trace_initcall_start(call);
3800 		ret = call();
3801 		trace_initcall_finish(call, ret);
3802 		ce++;
3803 	}
3804 }
3805 
3806 /*
3807  * Some boot consoles access data that is in the init section and which will
3808  * be discarded after the initcalls have been run. To make sure that no code
3809  * will access this data, unregister the boot consoles in a late initcall.
3810  *
3811  * If for some reason, such as deferred probe or the driver being a loadable
3812  * module, the real console hasn't registered yet at this point, there will
3813  * be a brief interval in which no messages are logged to the console, which
3814  * makes it difficult to diagnose problems that occur during this time.
3815  *
3816  * To mitigate this problem somewhat, only unregister consoles whose memory
3817  * intersects with the init section. Note that all other boot consoles will
3818  * get unregistered when the real preferred console is registered.
3819  */
3820 static int __init printk_late_init(void)
3821 {
3822 	struct hlist_node *tmp;
3823 	struct console *con;
3824 	int ret;
3825 
3826 	console_list_lock();
3827 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3828 		if (!(con->flags & CON_BOOT))
3829 			continue;
3830 
3831 		/* Check addresses that might be used for enabled consoles. */
3832 		if (init_section_intersects(con, sizeof(*con)) ||
3833 		    init_section_contains(con->write, 0) ||
3834 		    init_section_contains(con->read, 0) ||
3835 		    init_section_contains(con->device, 0) ||
3836 		    init_section_contains(con->unblank, 0) ||
3837 		    init_section_contains(con->data, 0)) {
3838 			/*
3839 			 * Please, consider moving the reported consoles out
3840 			 * of the init section.
3841 			 */
3842 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3843 				con->name, con->index);
3844 			unregister_console_locked(con);
3845 		}
3846 	}
3847 	console_list_unlock();
3848 
3849 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3850 					console_cpu_notify);
3851 	WARN_ON(ret < 0);
3852 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3853 					console_cpu_notify, NULL);
3854 	WARN_ON(ret < 0);
3855 	printk_sysctl_init();
3856 	return 0;
3857 }
3858 late_initcall(printk_late_init);
3859 
3860 #if defined CONFIG_PRINTK
3861 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3862 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3863 {
3864 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
3865 	unsigned long remaining_jiffies = timeout_jiffies;
3866 	struct console *c;
3867 	u64 last_diff = 0;
3868 	u64 printk_seq;
3869 	short flags;
3870 	int cookie;
3871 	u64 diff;
3872 	u64 seq;
3873 
3874 	might_sleep();
3875 
3876 	seq = prb_next_reserve_seq(prb);
3877 
3878 	/* Flush the consoles so that records up to @seq are printed. */
3879 	console_lock();
3880 	console_unlock();
3881 
3882 	for (;;) {
3883 		unsigned long begin_jiffies;
3884 		unsigned long slept_jiffies;
3885 
3886 		diff = 0;
3887 
3888 		/*
3889 		 * Hold the console_lock to guarantee safe access to
3890 		 * console->seq. Releasing console_lock flushes more
3891 		 * records in case @seq is still not printed on all
3892 		 * usable consoles.
3893 		 */
3894 		console_lock();
3895 
3896 		cookie = console_srcu_read_lock();
3897 		for_each_console_srcu(c) {
3898 			if (con && con != c)
3899 				continue;
3900 
3901 			flags = console_srcu_read_flags(c);
3902 
3903 			/*
3904 			 * If consoles are not usable, it cannot be expected
3905 			 * that they make forward progress, so only increment
3906 			 * @diff for usable consoles.
3907 			 */
3908 			if (!console_is_usable(c))
3909 				continue;
3910 
3911 			if (flags & CON_NBCON) {
3912 				printk_seq = nbcon_seq_read(c);
3913 			} else {
3914 				printk_seq = c->seq;
3915 			}
3916 
3917 			if (printk_seq < seq)
3918 				diff += seq - printk_seq;
3919 		}
3920 		console_srcu_read_unlock(cookie);
3921 
3922 		if (diff != last_diff && reset_on_progress)
3923 			remaining_jiffies = timeout_jiffies;
3924 
3925 		console_unlock();
3926 
3927 		/* Note: @diff is 0 if there are no usable consoles. */
3928 		if (diff == 0 || remaining_jiffies == 0)
3929 			break;
3930 
3931 		/* msleep(1) might sleep much longer. Check time by jiffies. */
3932 		begin_jiffies = jiffies;
3933 		msleep(1);
3934 		slept_jiffies = jiffies - begin_jiffies;
3935 
3936 		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
3937 
3938 		last_diff = diff;
3939 	}
3940 
3941 	return (diff == 0);
3942 }
3943 
3944 /**
3945  * pr_flush() - Wait for printing threads to catch up.
3946  *
3947  * @timeout_ms:        The maximum time (in ms) to wait.
3948  * @reset_on_progress: Reset the timeout if forward progress is seen.
3949  *
3950  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3951  * represents infinite waiting.
3952  *
3953  * If @reset_on_progress is true, the timeout will be reset whenever any
3954  * printer has been seen to make some forward progress.
3955  *
3956  * Context: Process context. May sleep while acquiring console lock.
3957  * Return: true if all usable printers are caught up.
3958  */
3959 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3960 {
3961 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3962 }
3963 
3964 /*
3965  * Delayed printk version, for scheduler-internal messages:
3966  */
3967 #define PRINTK_PENDING_WAKEUP	0x01
3968 #define PRINTK_PENDING_OUTPUT	0x02
3969 
3970 static DEFINE_PER_CPU(int, printk_pending);
3971 
3972 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3973 {
3974 	int pending = this_cpu_xchg(printk_pending, 0);
3975 
3976 	if (pending & PRINTK_PENDING_OUTPUT) {
3977 		/* If trylock fails, someone else is doing the printing */
3978 		if (console_trylock())
3979 			console_unlock();
3980 	}
3981 
3982 	if (pending & PRINTK_PENDING_WAKEUP)
3983 		wake_up_interruptible(&log_wait);
3984 }
3985 
3986 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3987 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3988 
3989 static void __wake_up_klogd(int val)
3990 {
3991 	if (!printk_percpu_data_ready())
3992 		return;
3993 
3994 	preempt_disable();
3995 	/*
3996 	 * Guarantee any new records can be seen by tasks preparing to wait
3997 	 * before this context checks if the wait queue is empty.
3998 	 *
3999 	 * The full memory barrier within wq_has_sleeper() pairs with the full
4000 	 * memory barrier within set_current_state() of
4001 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
4002 	 * the waiter but before it has checked the wait condition.
4003 	 *
4004 	 * This pairs with devkmsg_read:A and syslog_print:A.
4005 	 */
4006 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
4007 	    (val & PRINTK_PENDING_OUTPUT)) {
4008 		this_cpu_or(printk_pending, val);
4009 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
4010 	}
4011 	preempt_enable();
4012 }
4013 
4014 /**
4015  * wake_up_klogd - Wake kernel logging daemon
4016  *
4017  * Use this function when new records have been added to the ringbuffer
4018  * and the console printing of those records has already occurred or is
4019  * known to be handled by some other context. This function will only
4020  * wake the logging daemon.
4021  *
4022  * Context: Any context.
4023  */
4024 void wake_up_klogd(void)
4025 {
4026 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
4027 }
4028 
4029 /**
4030  * defer_console_output - Wake kernel logging daemon and trigger
4031  *	console printing in a deferred context
4032  *
4033  * Use this function when new records have been added to the ringbuffer,
4034  * this context is responsible for console printing those records, but
4035  * the current context is not allowed to perform the console printing.
4036  * Trigger an irq_work context to perform the console printing. This
4037  * function also wakes the logging daemon.
4038  *
4039  * Context: Any context.
4040  */
4041 void defer_console_output(void)
4042 {
4043 	/*
4044 	 * New messages may have been added directly to the ringbuffer
4045 	 * using vprintk_store(), so wake any waiters as well.
4046 	 */
4047 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
4048 }
4049 
4050 void printk_trigger_flush(void)
4051 {
4052 	defer_console_output();
4053 }
4054 
4055 int vprintk_deferred(const char *fmt, va_list args)
4056 {
4057 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
4058 }
4059 
4060 int _printk_deferred(const char *fmt, ...)
4061 {
4062 	va_list args;
4063 	int r;
4064 
4065 	va_start(args, fmt);
4066 	r = vprintk_deferred(fmt, args);
4067 	va_end(args);
4068 
4069 	return r;
4070 }
4071 
4072 /*
4073  * printk rate limiting, lifted from the networking subsystem.
4074  *
4075  * This enforces a rate limit: not more than 10 kernel messages
4076  * every 5s to make a denial-of-service attack impossible.
4077  */
4078 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
4079 
4080 int __printk_ratelimit(const char *func)
4081 {
4082 	return ___ratelimit(&printk_ratelimit_state, func);
4083 }
4084 EXPORT_SYMBOL(__printk_ratelimit);
4085 
4086 /**
4087  * printk_timed_ratelimit - caller-controlled printk ratelimiting
4088  * @caller_jiffies: pointer to caller's state
4089  * @interval_msecs: minimum interval between prints
4090  *
4091  * printk_timed_ratelimit() returns true if more than @interval_msecs
4092  * milliseconds have elapsed since the last time printk_timed_ratelimit()
4093  * returned true.
4094  */
4095 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4096 			unsigned int interval_msecs)
4097 {
4098 	unsigned long elapsed = jiffies - *caller_jiffies;
4099 
4100 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4101 		return false;
4102 
4103 	*caller_jiffies = jiffies;
4104 	return true;
4105 }
4106 EXPORT_SYMBOL(printk_timed_ratelimit);
4107 
4108 static DEFINE_SPINLOCK(dump_list_lock);
4109 static LIST_HEAD(dump_list);
4110 
4111 /**
4112  * kmsg_dump_register - register a kernel log dumper.
4113  * @dumper: pointer to the kmsg_dumper structure
4114  *
4115  * Adds a kernel log dumper to the system. The dump callback in the
4116  * structure will be called when the kernel oopses or panics and must be
4117  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4118  */
4119 int kmsg_dump_register(struct kmsg_dumper *dumper)
4120 {
4121 	unsigned long flags;
4122 	int err = -EBUSY;
4123 
4124 	/* The dump callback needs to be set */
4125 	if (!dumper->dump)
4126 		return -EINVAL;
4127 
4128 	spin_lock_irqsave(&dump_list_lock, flags);
4129 	/* Don't allow registering multiple times */
4130 	if (!dumper->registered) {
4131 		dumper->registered = 1;
4132 		list_add_tail_rcu(&dumper->list, &dump_list);
4133 		err = 0;
4134 	}
4135 	spin_unlock_irqrestore(&dump_list_lock, flags);
4136 
4137 	return err;
4138 }
4139 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4140 
4141 /**
4142  * kmsg_dump_unregister - unregister a kmsg dumper.
4143  * @dumper: pointer to the kmsg_dumper structure
4144  *
4145  * Removes a dump device from the system. Returns zero on success and
4146  * %-EINVAL otherwise.
4147  */
4148 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4149 {
4150 	unsigned long flags;
4151 	int err = -EINVAL;
4152 
4153 	spin_lock_irqsave(&dump_list_lock, flags);
4154 	if (dumper->registered) {
4155 		dumper->registered = 0;
4156 		list_del_rcu(&dumper->list);
4157 		err = 0;
4158 	}
4159 	spin_unlock_irqrestore(&dump_list_lock, flags);
4160 	synchronize_rcu();
4161 
4162 	return err;
4163 }
4164 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4165 
4166 static bool always_kmsg_dump;
4167 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4168 
4169 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4170 {
4171 	switch (reason) {
4172 	case KMSG_DUMP_PANIC:
4173 		return "Panic";
4174 	case KMSG_DUMP_OOPS:
4175 		return "Oops";
4176 	case KMSG_DUMP_EMERG:
4177 		return "Emergency";
4178 	case KMSG_DUMP_SHUTDOWN:
4179 		return "Shutdown";
4180 	default:
4181 		return "Unknown";
4182 	}
4183 }
4184 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4185 
4186 /**
4187  * kmsg_dump - dump kernel log to kernel message dumpers.
4188  * @reason: the reason (oops, panic etc) for dumping
4189  *
4190  * Call each of the registered dumper's dump() callback, which can
4191  * retrieve the kmsg records with kmsg_dump_get_line() or
4192  * kmsg_dump_get_buffer().
4193  */
4194 void kmsg_dump(enum kmsg_dump_reason reason)
4195 {
4196 	struct kmsg_dumper *dumper;
4197 
4198 	rcu_read_lock();
4199 	list_for_each_entry_rcu(dumper, &dump_list, list) {
4200 		enum kmsg_dump_reason max_reason = dumper->max_reason;
4201 
4202 		/*
4203 		 * If client has not provided a specific max_reason, default
4204 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4205 		 */
4206 		if (max_reason == KMSG_DUMP_UNDEF) {
4207 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4208 							KMSG_DUMP_OOPS;
4209 		}
4210 		if (reason > max_reason)
4211 			continue;
4212 
4213 		/* invoke dumper which will iterate over records */
4214 		dumper->dump(dumper, reason);
4215 	}
4216 	rcu_read_unlock();
4217 }
4218 
4219 /**
4220  * kmsg_dump_get_line - retrieve one kmsg log line
4221  * @iter: kmsg dump iterator
4222  * @syslog: include the "<4>" prefixes
4223  * @line: buffer to copy the line to
4224  * @size: maximum size of the buffer
4225  * @len: length of line placed into buffer
4226  *
4227  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4228  * record, and copy one record into the provided buffer.
4229  *
4230  * Consecutive calls will return the next available record moving
4231  * towards the end of the buffer with the youngest messages.
4232  *
4233  * A return value of FALSE indicates that there are no more records to
4234  * read.
4235  */
4236 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4237 			char *line, size_t size, size_t *len)
4238 {
4239 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4240 	struct printk_info info;
4241 	unsigned int line_count;
4242 	struct printk_record r;
4243 	size_t l = 0;
4244 	bool ret = false;
4245 
4246 	if (iter->cur_seq < min_seq)
4247 		iter->cur_seq = min_seq;
4248 
4249 	prb_rec_init_rd(&r, &info, line, size);
4250 
4251 	/* Read text or count text lines? */
4252 	if (line) {
4253 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4254 			goto out;
4255 		l = record_print_text(&r, syslog, printk_time);
4256 	} else {
4257 		if (!prb_read_valid_info(prb, iter->cur_seq,
4258 					 &info, &line_count)) {
4259 			goto out;
4260 		}
4261 		l = get_record_print_text_size(&info, line_count, syslog,
4262 					       printk_time);
4263 
4264 	}
4265 
4266 	iter->cur_seq = r.info->seq + 1;
4267 	ret = true;
4268 out:
4269 	if (len)
4270 		*len = l;
4271 	return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4274 
4275 /**
4276  * kmsg_dump_get_buffer - copy kmsg log lines
4277  * @iter: kmsg dump iterator
4278  * @syslog: include the "<4>" prefixes
4279  * @buf: buffer to copy the line to
4280  * @size: maximum size of the buffer
4281  * @len_out: length of line placed into buffer
4282  *
4283  * Start at the end of the kmsg buffer and fill the provided buffer
4284  * with as many of the *youngest* kmsg records that fit into it.
4285  * If the buffer is large enough, all available kmsg records will be
4286  * copied with a single call.
4287  *
4288  * Consecutive calls will fill the buffer with the next block of
4289  * available older records, not including the earlier retrieved ones.
4290  *
4291  * A return value of FALSE indicates that there are no more records to
4292  * read.
4293  */
4294 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4295 			  char *buf, size_t size, size_t *len_out)
4296 {
4297 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4298 	struct printk_info info;
4299 	struct printk_record r;
4300 	u64 seq;
4301 	u64 next_seq;
4302 	size_t len = 0;
4303 	bool ret = false;
4304 	bool time = printk_time;
4305 
4306 	if (!buf || !size)
4307 		goto out;
4308 
4309 	if (iter->cur_seq < min_seq)
4310 		iter->cur_seq = min_seq;
4311 
4312 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4313 		if (info.seq != iter->cur_seq) {
4314 			/* messages are gone, move to first available one */
4315 			iter->cur_seq = info.seq;
4316 		}
4317 	}
4318 
4319 	/* last entry */
4320 	if (iter->cur_seq >= iter->next_seq)
4321 		goto out;
4322 
4323 	/*
4324 	 * Find first record that fits, including all following records,
4325 	 * into the user-provided buffer for this dump. Pass in size-1
4326 	 * because this function (by way of record_print_text()) will
4327 	 * not write more than size-1 bytes of text into @buf.
4328 	 */
4329 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4330 				     size - 1, syslog, time);
4331 
4332 	/*
4333 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4334 	 * older records stored right before this one.
4335 	 */
4336 	next_seq = seq;
4337 
4338 	prb_rec_init_rd(&r, &info, buf, size);
4339 
4340 	prb_for_each_record(seq, prb, seq, &r) {
4341 		if (r.info->seq >= iter->next_seq)
4342 			break;
4343 
4344 		len += record_print_text(&r, syslog, time);
4345 
4346 		/* Adjust record to store to remaining buffer space. */
4347 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4348 	}
4349 
4350 	iter->next_seq = next_seq;
4351 	ret = true;
4352 out:
4353 	if (len_out)
4354 		*len_out = len;
4355 	return ret;
4356 }
4357 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4358 
4359 /**
4360  * kmsg_dump_rewind - reset the iterator
4361  * @iter: kmsg dump iterator
4362  *
4363  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4364  * kmsg_dump_get_buffer() can be called again and used multiple
4365  * times within the same dumper.dump() callback.
4366  */
4367 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4368 {
4369 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4370 	iter->next_seq = prb_next_seq(prb);
4371 }
4372 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4373 
4374 /**
4375  * console_try_replay_all - try to replay kernel log on consoles
4376  *
4377  * Try to obtain lock on console subsystem and replay all
4378  * available records in printk buffer on the consoles.
4379  * Does nothing if lock is not obtained.
4380  *
4381  * Context: Any, except for NMI.
4382  */
4383 void console_try_replay_all(void)
4384 {
4385 	if (console_trylock()) {
4386 		__console_rewind_all();
4387 		/* Consoles are flushed as part of console_unlock(). */
4388 		console_unlock();
4389 	}
4390 }
4391 #endif
4392 
4393 #ifdef CONFIG_SMP
4394 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4395 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4396 
4397 /**
4398  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4399  *                            spinning lock is not owned by any CPU.
4400  *
4401  * Context: Any context.
4402  */
4403 void __printk_cpu_sync_wait(void)
4404 {
4405 	do {
4406 		cpu_relax();
4407 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4408 }
4409 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4410 
4411 /**
4412  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4413  *                               spinning lock.
4414  *
4415  * If no processor has the lock, the calling processor takes the lock and
4416  * becomes the owner. If the calling processor is already the owner of the
4417  * lock, this function succeeds immediately.
4418  *
4419  * Context: Any context. Expects interrupts to be disabled.
4420  * Return: 1 on success, otherwise 0.
4421  */
4422 int __printk_cpu_sync_try_get(void)
4423 {
4424 	int cpu;
4425 	int old;
4426 
4427 	cpu = smp_processor_id();
4428 
4429 	/*
4430 	 * Guarantee loads and stores from this CPU when it is the lock owner
4431 	 * are _not_ visible to the previous lock owner. This pairs with
4432 	 * __printk_cpu_sync_put:B.
4433 	 *
4434 	 * Memory barrier involvement:
4435 	 *
4436 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4437 	 * then __printk_cpu_sync_put:A can never read from
4438 	 * __printk_cpu_sync_try_get:B.
4439 	 *
4440 	 * Relies on:
4441 	 *
4442 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4443 	 * of the previous CPU
4444 	 *    matching
4445 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4446 	 * __printk_cpu_sync_try_get:B of this CPU
4447 	 */
4448 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4449 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4450 	if (old == -1) {
4451 		/*
4452 		 * This CPU is now the owner and begins loading/storing
4453 		 * data: LMM(__printk_cpu_sync_try_get:B)
4454 		 */
4455 		return 1;
4456 
4457 	} else if (old == cpu) {
4458 		/* This CPU is already the owner. */
4459 		atomic_inc(&printk_cpu_sync_nested);
4460 		return 1;
4461 	}
4462 
4463 	return 0;
4464 }
4465 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4466 
4467 /**
4468  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4469  *
4470  * The calling processor must be the owner of the lock.
4471  *
4472  * Context: Any context. Expects interrupts to be disabled.
4473  */
4474 void __printk_cpu_sync_put(void)
4475 {
4476 	if (atomic_read(&printk_cpu_sync_nested)) {
4477 		atomic_dec(&printk_cpu_sync_nested);
4478 		return;
4479 	}
4480 
4481 	/*
4482 	 * This CPU is finished loading/storing data:
4483 	 * LMM(__printk_cpu_sync_put:A)
4484 	 */
4485 
4486 	/*
4487 	 * Guarantee loads and stores from this CPU when it was the
4488 	 * lock owner are visible to the next lock owner. This pairs
4489 	 * with __printk_cpu_sync_try_get:A.
4490 	 *
4491 	 * Memory barrier involvement:
4492 	 *
4493 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4494 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4495 	 *
4496 	 * Relies on:
4497 	 *
4498 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4499 	 * of this CPU
4500 	 *    matching
4501 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4502 	 * __printk_cpu_sync_try_get:B of the next CPU
4503 	 */
4504 	atomic_set_release(&printk_cpu_sync_owner,
4505 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4506 }
4507 EXPORT_SYMBOL(__printk_cpu_sync_put);
4508 #endif /* CONFIG_SMP */
4509