xref: /linux/kernel/printk/printk.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/interrupt.h>			/* For in_interrupt() */
30 #include <linux/delay.h>
31 #include <linux/smp.h>
32 #include <linux/security.h>
33 #include <linux/bootmem.h>
34 #include <linux/memblock.h>
35 #include <linux/aio.h>
36 #include <linux/syscalls.h>
37 #include <linux/kexec.h>
38 #include <linux/kdb.h>
39 #include <linux/ratelimit.h>
40 #include <linux/kmsg_dump.h>
41 #include <linux/syslog.h>
42 #include <linux/cpu.h>
43 #include <linux/notifier.h>
44 #include <linux/rculist.h>
45 #include <linux/poll.h>
46 #include <linux/irq_work.h>
47 #include <linux/utsname.h>
48 #include <linux/ctype.h>
49 
50 #include <asm/uaccess.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 
58 int console_printk[4] = {
59 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
60 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
61 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
62 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
63 };
64 
65 /*
66  * Low level drivers may need that to know if they can schedule in
67  * their unblank() callback or not. So let's export it.
68  */
69 int oops_in_progress;
70 EXPORT_SYMBOL(oops_in_progress);
71 
72 /*
73  * console_sem protects the console_drivers list, and also
74  * provides serialisation for access to the entire console
75  * driver system.
76  */
77 static DEFINE_SEMAPHORE(console_sem);
78 struct console *console_drivers;
79 EXPORT_SYMBOL_GPL(console_drivers);
80 
81 #ifdef CONFIG_LOCKDEP
82 static struct lockdep_map console_lock_dep_map = {
83 	.name = "console_lock"
84 };
85 #endif
86 
87 /*
88  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
89  * macros instead of functions so that _RET_IP_ contains useful information.
90  */
91 #define down_console_sem() do { \
92 	down(&console_sem);\
93 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
94 } while (0)
95 
96 static int __down_trylock_console_sem(unsigned long ip)
97 {
98 	if (down_trylock(&console_sem))
99 		return 1;
100 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
101 	return 0;
102 }
103 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
104 
105 #define up_console_sem() do { \
106 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
107 	up(&console_sem);\
108 } while (0)
109 
110 /*
111  * This is used for debugging the mess that is the VT code by
112  * keeping track if we have the console semaphore held. It's
113  * definitely not the perfect debug tool (we don't know if _WE_
114  * hold it and are racing, but it helps tracking those weird code
115  * paths in the console code where we end up in places I want
116  * locked without the console sempahore held).
117  */
118 static int console_locked, console_suspended;
119 
120 /*
121  * If exclusive_console is non-NULL then only this console is to be printed to.
122  */
123 static struct console *exclusive_console;
124 
125 /*
126  *	Array of consoles built from command line options (console=)
127  */
128 
129 #define MAX_CMDLINECONSOLES 8
130 
131 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
132 
133 static int selected_console = -1;
134 static int preferred_console = -1;
135 int console_set_on_cmdline;
136 EXPORT_SYMBOL(console_set_on_cmdline);
137 
138 /* Flag: console code may call schedule() */
139 static int console_may_schedule;
140 
141 /*
142  * The printk log buffer consists of a chain of concatenated variable
143  * length records. Every record starts with a record header, containing
144  * the overall length of the record.
145  *
146  * The heads to the first and last entry in the buffer, as well as the
147  * sequence numbers of these entries are maintained when messages are
148  * stored.
149  *
150  * If the heads indicate available messages, the length in the header
151  * tells the start next message. A length == 0 for the next message
152  * indicates a wrap-around to the beginning of the buffer.
153  *
154  * Every record carries the monotonic timestamp in microseconds, as well as
155  * the standard userspace syslog level and syslog facility. The usual
156  * kernel messages use LOG_KERN; userspace-injected messages always carry
157  * a matching syslog facility, by default LOG_USER. The origin of every
158  * message can be reliably determined that way.
159  *
160  * The human readable log message directly follows the message header. The
161  * length of the message text is stored in the header, the stored message
162  * is not terminated.
163  *
164  * Optionally, a message can carry a dictionary of properties (key/value pairs),
165  * to provide userspace with a machine-readable message context.
166  *
167  * Examples for well-defined, commonly used property names are:
168  *   DEVICE=b12:8               device identifier
169  *                                b12:8         block dev_t
170  *                                c127:3        char dev_t
171  *                                n8            netdev ifindex
172  *                                +sound:card0  subsystem:devname
173  *   SUBSYSTEM=pci              driver-core subsystem name
174  *
175  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
176  * follows directly after a '=' character. Every property is terminated by
177  * a '\0' character. The last property is not terminated.
178  *
179  * Example of a message structure:
180  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
181  *   0008  34 00                        record is 52 bytes long
182  *   000a        0b 00                  text is 11 bytes long
183  *   000c              1f 00            dictionary is 23 bytes long
184  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
185  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
186  *         69 6e 65                     "ine"
187  *   001b           44 45 56 49 43      "DEVIC"
188  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
189  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
190  *         67                           "g"
191  *   0032     00 00 00                  padding to next message header
192  *
193  * The 'struct printk_log' buffer header must never be directly exported to
194  * userspace, it is a kernel-private implementation detail that might
195  * need to be changed in the future, when the requirements change.
196  *
197  * /dev/kmsg exports the structured data in the following line format:
198  *   "level,sequnum,timestamp;<message text>\n"
199  *
200  * The optional key/value pairs are attached as continuation lines starting
201  * with a space character and terminated by a newline. All possible
202  * non-prinatable characters are escaped in the "\xff" notation.
203  *
204  * Users of the export format should ignore possible additional values
205  * separated by ',', and find the message after the ';' character.
206  */
207 
208 enum log_flags {
209 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
210 	LOG_NEWLINE	= 2,	/* text ended with a newline */
211 	LOG_PREFIX	= 4,	/* text started with a prefix */
212 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
213 };
214 
215 struct printk_log {
216 	u64 ts_nsec;		/* timestamp in nanoseconds */
217 	u16 len;		/* length of entire record */
218 	u16 text_len;		/* length of text buffer */
219 	u16 dict_len;		/* length of dictionary buffer */
220 	u8 facility;		/* syslog facility */
221 	u8 flags:5;		/* internal record flags */
222 	u8 level:3;		/* syslog level */
223 };
224 
225 /*
226  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
227  * within the scheduler's rq lock. It must be released before calling
228  * console_unlock() or anything else that might wake up a process.
229  */
230 static DEFINE_RAW_SPINLOCK(logbuf_lock);
231 
232 #ifdef CONFIG_PRINTK
233 DECLARE_WAIT_QUEUE_HEAD(log_wait);
234 /* the next printk record to read by syslog(READ) or /proc/kmsg */
235 static u64 syslog_seq;
236 static u32 syslog_idx;
237 static enum log_flags syslog_prev;
238 static size_t syslog_partial;
239 
240 /* index and sequence number of the first record stored in the buffer */
241 static u64 log_first_seq;
242 static u32 log_first_idx;
243 
244 /* index and sequence number of the next record to store in the buffer */
245 static u64 log_next_seq;
246 static u32 log_next_idx;
247 
248 /* the next printk record to write to the console */
249 static u64 console_seq;
250 static u32 console_idx;
251 static enum log_flags console_prev;
252 
253 /* the next printk record to read after the last 'clear' command */
254 static u64 clear_seq;
255 static u32 clear_idx;
256 
257 #define PREFIX_MAX		32
258 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
259 
260 /* record buffer */
261 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
262 #define LOG_ALIGN 4
263 #else
264 #define LOG_ALIGN __alignof__(struct printk_log)
265 #endif
266 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
267 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
268 static char *log_buf = __log_buf;
269 static u32 log_buf_len = __LOG_BUF_LEN;
270 
271 /* Return log buffer address */
272 char *log_buf_addr_get(void)
273 {
274 	return log_buf;
275 }
276 
277 /* Return log buffer size */
278 u32 log_buf_len_get(void)
279 {
280 	return log_buf_len;
281 }
282 
283 /* human readable text of the record */
284 static char *log_text(const struct printk_log *msg)
285 {
286 	return (char *)msg + sizeof(struct printk_log);
287 }
288 
289 /* optional key/value pair dictionary attached to the record */
290 static char *log_dict(const struct printk_log *msg)
291 {
292 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
293 }
294 
295 /* get record by index; idx must point to valid msg */
296 static struct printk_log *log_from_idx(u32 idx)
297 {
298 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
299 
300 	/*
301 	 * A length == 0 record is the end of buffer marker. Wrap around and
302 	 * read the message at the start of the buffer.
303 	 */
304 	if (!msg->len)
305 		return (struct printk_log *)log_buf;
306 	return msg;
307 }
308 
309 /* get next record; idx must point to valid msg */
310 static u32 log_next(u32 idx)
311 {
312 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
313 
314 	/* length == 0 indicates the end of the buffer; wrap */
315 	/*
316 	 * A length == 0 record is the end of buffer marker. Wrap around and
317 	 * read the message at the start of the buffer as *this* one, and
318 	 * return the one after that.
319 	 */
320 	if (!msg->len) {
321 		msg = (struct printk_log *)log_buf;
322 		return msg->len;
323 	}
324 	return idx + msg->len;
325 }
326 
327 /*
328  * Check whether there is enough free space for the given message.
329  *
330  * The same values of first_idx and next_idx mean that the buffer
331  * is either empty or full.
332  *
333  * If the buffer is empty, we must respect the position of the indexes.
334  * They cannot be reset to the beginning of the buffer.
335  */
336 static int logbuf_has_space(u32 msg_size, bool empty)
337 {
338 	u32 free;
339 
340 	if (log_next_idx > log_first_idx || empty)
341 		free = max(log_buf_len - log_next_idx, log_first_idx);
342 	else
343 		free = log_first_idx - log_next_idx;
344 
345 	/*
346 	 * We need space also for an empty header that signalizes wrapping
347 	 * of the buffer.
348 	 */
349 	return free >= msg_size + sizeof(struct printk_log);
350 }
351 
352 static int log_make_free_space(u32 msg_size)
353 {
354 	while (log_first_seq < log_next_seq) {
355 		if (logbuf_has_space(msg_size, false))
356 			return 0;
357 		/* drop old messages until we have enough contiguous space */
358 		log_first_idx = log_next(log_first_idx);
359 		log_first_seq++;
360 	}
361 
362 	/* sequence numbers are equal, so the log buffer is empty */
363 	if (logbuf_has_space(msg_size, true))
364 		return 0;
365 
366 	return -ENOMEM;
367 }
368 
369 /* compute the message size including the padding bytes */
370 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
371 {
372 	u32 size;
373 
374 	size = sizeof(struct printk_log) + text_len + dict_len;
375 	*pad_len = (-size) & (LOG_ALIGN - 1);
376 	size += *pad_len;
377 
378 	return size;
379 }
380 
381 /*
382  * Define how much of the log buffer we could take at maximum. The value
383  * must be greater than two. Note that only half of the buffer is available
384  * when the index points to the middle.
385  */
386 #define MAX_LOG_TAKE_PART 4
387 static const char trunc_msg[] = "<truncated>";
388 
389 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
390 			u16 *dict_len, u32 *pad_len)
391 {
392 	/*
393 	 * The message should not take the whole buffer. Otherwise, it might
394 	 * get removed too soon.
395 	 */
396 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
397 	if (*text_len > max_text_len)
398 		*text_len = max_text_len;
399 	/* enable the warning message */
400 	*trunc_msg_len = strlen(trunc_msg);
401 	/* disable the "dict" completely */
402 	*dict_len = 0;
403 	/* compute the size again, count also the warning message */
404 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
405 }
406 
407 /* insert record into the buffer, discard old ones, update heads */
408 static int log_store(int facility, int level,
409 		     enum log_flags flags, u64 ts_nsec,
410 		     const char *dict, u16 dict_len,
411 		     const char *text, u16 text_len)
412 {
413 	struct printk_log *msg;
414 	u32 size, pad_len;
415 	u16 trunc_msg_len = 0;
416 
417 	/* number of '\0' padding bytes to next message */
418 	size = msg_used_size(text_len, dict_len, &pad_len);
419 
420 	if (log_make_free_space(size)) {
421 		/* truncate the message if it is too long for empty buffer */
422 		size = truncate_msg(&text_len, &trunc_msg_len,
423 				    &dict_len, &pad_len);
424 		/* survive when the log buffer is too small for trunc_msg */
425 		if (log_make_free_space(size))
426 			return 0;
427 	}
428 
429 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
430 		/*
431 		 * This message + an additional empty header does not fit
432 		 * at the end of the buffer. Add an empty header with len == 0
433 		 * to signify a wrap around.
434 		 */
435 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
436 		log_next_idx = 0;
437 	}
438 
439 	/* fill message */
440 	msg = (struct printk_log *)(log_buf + log_next_idx);
441 	memcpy(log_text(msg), text, text_len);
442 	msg->text_len = text_len;
443 	if (trunc_msg_len) {
444 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
445 		msg->text_len += trunc_msg_len;
446 	}
447 	memcpy(log_dict(msg), dict, dict_len);
448 	msg->dict_len = dict_len;
449 	msg->facility = facility;
450 	msg->level = level & 7;
451 	msg->flags = flags & 0x1f;
452 	if (ts_nsec > 0)
453 		msg->ts_nsec = ts_nsec;
454 	else
455 		msg->ts_nsec = local_clock();
456 	memset(log_dict(msg) + dict_len, 0, pad_len);
457 	msg->len = size;
458 
459 	/* insert message */
460 	log_next_idx += msg->len;
461 	log_next_seq++;
462 
463 	return msg->text_len;
464 }
465 
466 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
467 
468 static int syslog_action_restricted(int type)
469 {
470 	if (dmesg_restrict)
471 		return 1;
472 	/*
473 	 * Unless restricted, we allow "read all" and "get buffer size"
474 	 * for everybody.
475 	 */
476 	return type != SYSLOG_ACTION_READ_ALL &&
477 	       type != SYSLOG_ACTION_SIZE_BUFFER;
478 }
479 
480 int check_syslog_permissions(int type, bool from_file)
481 {
482 	/*
483 	 * If this is from /proc/kmsg and we've already opened it, then we've
484 	 * already done the capabilities checks at open time.
485 	 */
486 	if (from_file && type != SYSLOG_ACTION_OPEN)
487 		return 0;
488 
489 	if (syslog_action_restricted(type)) {
490 		if (capable(CAP_SYSLOG))
491 			return 0;
492 		/*
493 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
494 		 * a warning.
495 		 */
496 		if (capable(CAP_SYS_ADMIN)) {
497 			pr_warn_once("%s (%d): Attempt to access syslog with "
498 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
499 				     "(deprecated).\n",
500 				 current->comm, task_pid_nr(current));
501 			return 0;
502 		}
503 		return -EPERM;
504 	}
505 	return security_syslog(type);
506 }
507 
508 
509 /* /dev/kmsg - userspace message inject/listen interface */
510 struct devkmsg_user {
511 	u64 seq;
512 	u32 idx;
513 	enum log_flags prev;
514 	struct mutex lock;
515 	char buf[8192];
516 };
517 
518 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
519 {
520 	char *buf, *line;
521 	int i;
522 	int level = default_message_loglevel;
523 	int facility = 1;	/* LOG_USER */
524 	size_t len = iocb->ki_nbytes;
525 	ssize_t ret = len;
526 
527 	if (len > LOG_LINE_MAX)
528 		return -EINVAL;
529 	buf = kmalloc(len+1, GFP_KERNEL);
530 	if (buf == NULL)
531 		return -ENOMEM;
532 
533 	buf[len] = '\0';
534 	if (copy_from_iter(buf, len, from) != len) {
535 		kfree(buf);
536 		return -EFAULT;
537 	}
538 
539 	/*
540 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
541 	 * the decimal value represents 32bit, the lower 3 bit are the log
542 	 * level, the rest are the log facility.
543 	 *
544 	 * If no prefix or no userspace facility is specified, we
545 	 * enforce LOG_USER, to be able to reliably distinguish
546 	 * kernel-generated messages from userspace-injected ones.
547 	 */
548 	line = buf;
549 	if (line[0] == '<') {
550 		char *endp = NULL;
551 
552 		i = simple_strtoul(line+1, &endp, 10);
553 		if (endp && endp[0] == '>') {
554 			level = i & 7;
555 			if (i >> 3)
556 				facility = i >> 3;
557 			endp++;
558 			len -= endp - line;
559 			line = endp;
560 		}
561 	}
562 
563 	printk_emit(facility, level, NULL, 0, "%s", line);
564 	kfree(buf);
565 	return ret;
566 }
567 
568 static ssize_t devkmsg_read(struct file *file, char __user *buf,
569 			    size_t count, loff_t *ppos)
570 {
571 	struct devkmsg_user *user = file->private_data;
572 	struct printk_log *msg;
573 	u64 ts_usec;
574 	size_t i;
575 	char cont = '-';
576 	size_t len;
577 	ssize_t ret;
578 
579 	if (!user)
580 		return -EBADF;
581 
582 	ret = mutex_lock_interruptible(&user->lock);
583 	if (ret)
584 		return ret;
585 	raw_spin_lock_irq(&logbuf_lock);
586 	while (user->seq == log_next_seq) {
587 		if (file->f_flags & O_NONBLOCK) {
588 			ret = -EAGAIN;
589 			raw_spin_unlock_irq(&logbuf_lock);
590 			goto out;
591 		}
592 
593 		raw_spin_unlock_irq(&logbuf_lock);
594 		ret = wait_event_interruptible(log_wait,
595 					       user->seq != log_next_seq);
596 		if (ret)
597 			goto out;
598 		raw_spin_lock_irq(&logbuf_lock);
599 	}
600 
601 	if (user->seq < log_first_seq) {
602 		/* our last seen message is gone, return error and reset */
603 		user->idx = log_first_idx;
604 		user->seq = log_first_seq;
605 		ret = -EPIPE;
606 		raw_spin_unlock_irq(&logbuf_lock);
607 		goto out;
608 	}
609 
610 	msg = log_from_idx(user->idx);
611 	ts_usec = msg->ts_nsec;
612 	do_div(ts_usec, 1000);
613 
614 	/*
615 	 * If we couldn't merge continuation line fragments during the print,
616 	 * export the stored flags to allow an optional external merge of the
617 	 * records. Merging the records isn't always neccessarily correct, like
618 	 * when we hit a race during printing. In most cases though, it produces
619 	 * better readable output. 'c' in the record flags mark the first
620 	 * fragment of a line, '+' the following.
621 	 */
622 	if (msg->flags & LOG_CONT && !(user->prev & LOG_CONT))
623 		cont = 'c';
624 	else if ((msg->flags & LOG_CONT) ||
625 		 ((user->prev & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
626 		cont = '+';
627 
628 	len = sprintf(user->buf, "%u,%llu,%llu,%c;",
629 		      (msg->facility << 3) | msg->level,
630 		      user->seq, ts_usec, cont);
631 	user->prev = msg->flags;
632 
633 	/* escape non-printable characters */
634 	for (i = 0; i < msg->text_len; i++) {
635 		unsigned char c = log_text(msg)[i];
636 
637 		if (c < ' ' || c >= 127 || c == '\\')
638 			len += sprintf(user->buf + len, "\\x%02x", c);
639 		else
640 			user->buf[len++] = c;
641 	}
642 	user->buf[len++] = '\n';
643 
644 	if (msg->dict_len) {
645 		bool line = true;
646 
647 		for (i = 0; i < msg->dict_len; i++) {
648 			unsigned char c = log_dict(msg)[i];
649 
650 			if (line) {
651 				user->buf[len++] = ' ';
652 				line = false;
653 			}
654 
655 			if (c == '\0') {
656 				user->buf[len++] = '\n';
657 				line = true;
658 				continue;
659 			}
660 
661 			if (c < ' ' || c >= 127 || c == '\\') {
662 				len += sprintf(user->buf + len, "\\x%02x", c);
663 				continue;
664 			}
665 
666 			user->buf[len++] = c;
667 		}
668 		user->buf[len++] = '\n';
669 	}
670 
671 	user->idx = log_next(user->idx);
672 	user->seq++;
673 	raw_spin_unlock_irq(&logbuf_lock);
674 
675 	if (len > count) {
676 		ret = -EINVAL;
677 		goto out;
678 	}
679 
680 	if (copy_to_user(buf, user->buf, len)) {
681 		ret = -EFAULT;
682 		goto out;
683 	}
684 	ret = len;
685 out:
686 	mutex_unlock(&user->lock);
687 	return ret;
688 }
689 
690 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
691 {
692 	struct devkmsg_user *user = file->private_data;
693 	loff_t ret = 0;
694 
695 	if (!user)
696 		return -EBADF;
697 	if (offset)
698 		return -ESPIPE;
699 
700 	raw_spin_lock_irq(&logbuf_lock);
701 	switch (whence) {
702 	case SEEK_SET:
703 		/* the first record */
704 		user->idx = log_first_idx;
705 		user->seq = log_first_seq;
706 		break;
707 	case SEEK_DATA:
708 		/*
709 		 * The first record after the last SYSLOG_ACTION_CLEAR,
710 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
711 		 * changes no global state, and does not clear anything.
712 		 */
713 		user->idx = clear_idx;
714 		user->seq = clear_seq;
715 		break;
716 	case SEEK_END:
717 		/* after the last record */
718 		user->idx = log_next_idx;
719 		user->seq = log_next_seq;
720 		break;
721 	default:
722 		ret = -EINVAL;
723 	}
724 	raw_spin_unlock_irq(&logbuf_lock);
725 	return ret;
726 }
727 
728 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
729 {
730 	struct devkmsg_user *user = file->private_data;
731 	int ret = 0;
732 
733 	if (!user)
734 		return POLLERR|POLLNVAL;
735 
736 	poll_wait(file, &log_wait, wait);
737 
738 	raw_spin_lock_irq(&logbuf_lock);
739 	if (user->seq < log_next_seq) {
740 		/* return error when data has vanished underneath us */
741 		if (user->seq < log_first_seq)
742 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
743 		else
744 			ret = POLLIN|POLLRDNORM;
745 	}
746 	raw_spin_unlock_irq(&logbuf_lock);
747 
748 	return ret;
749 }
750 
751 static int devkmsg_open(struct inode *inode, struct file *file)
752 {
753 	struct devkmsg_user *user;
754 	int err;
755 
756 	/* write-only does not need any file context */
757 	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
758 		return 0;
759 
760 	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
761 				       SYSLOG_FROM_READER);
762 	if (err)
763 		return err;
764 
765 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
766 	if (!user)
767 		return -ENOMEM;
768 
769 	mutex_init(&user->lock);
770 
771 	raw_spin_lock_irq(&logbuf_lock);
772 	user->idx = log_first_idx;
773 	user->seq = log_first_seq;
774 	raw_spin_unlock_irq(&logbuf_lock);
775 
776 	file->private_data = user;
777 	return 0;
778 }
779 
780 static int devkmsg_release(struct inode *inode, struct file *file)
781 {
782 	struct devkmsg_user *user = file->private_data;
783 
784 	if (!user)
785 		return 0;
786 
787 	mutex_destroy(&user->lock);
788 	kfree(user);
789 	return 0;
790 }
791 
792 const struct file_operations kmsg_fops = {
793 	.open = devkmsg_open,
794 	.read = devkmsg_read,
795 	.write_iter = devkmsg_write,
796 	.llseek = devkmsg_llseek,
797 	.poll = devkmsg_poll,
798 	.release = devkmsg_release,
799 };
800 
801 #ifdef CONFIG_KEXEC
802 /*
803  * This appends the listed symbols to /proc/vmcore
804  *
805  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
806  * obtain access to symbols that are otherwise very difficult to locate.  These
807  * symbols are specifically used so that utilities can access and extract the
808  * dmesg log from a vmcore file after a crash.
809  */
810 void log_buf_kexec_setup(void)
811 {
812 	VMCOREINFO_SYMBOL(log_buf);
813 	VMCOREINFO_SYMBOL(log_buf_len);
814 	VMCOREINFO_SYMBOL(log_first_idx);
815 	VMCOREINFO_SYMBOL(log_next_idx);
816 	/*
817 	 * Export struct printk_log size and field offsets. User space tools can
818 	 * parse it and detect any changes to structure down the line.
819 	 */
820 	VMCOREINFO_STRUCT_SIZE(printk_log);
821 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
822 	VMCOREINFO_OFFSET(printk_log, len);
823 	VMCOREINFO_OFFSET(printk_log, text_len);
824 	VMCOREINFO_OFFSET(printk_log, dict_len);
825 }
826 #endif
827 
828 /* requested log_buf_len from kernel cmdline */
829 static unsigned long __initdata new_log_buf_len;
830 
831 /* we practice scaling the ring buffer by powers of 2 */
832 static void __init log_buf_len_update(unsigned size)
833 {
834 	if (size)
835 		size = roundup_pow_of_two(size);
836 	if (size > log_buf_len)
837 		new_log_buf_len = size;
838 }
839 
840 /* save requested log_buf_len since it's too early to process it */
841 static int __init log_buf_len_setup(char *str)
842 {
843 	unsigned size = memparse(str, &str);
844 
845 	log_buf_len_update(size);
846 
847 	return 0;
848 }
849 early_param("log_buf_len", log_buf_len_setup);
850 
851 #ifdef CONFIG_SMP
852 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
853 
854 static void __init log_buf_add_cpu(void)
855 {
856 	unsigned int cpu_extra;
857 
858 	/*
859 	 * archs should set up cpu_possible_bits properly with
860 	 * set_cpu_possible() after setup_arch() but just in
861 	 * case lets ensure this is valid.
862 	 */
863 	if (num_possible_cpus() == 1)
864 		return;
865 
866 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
867 
868 	/* by default this will only continue through for large > 64 CPUs */
869 	if (cpu_extra <= __LOG_BUF_LEN / 2)
870 		return;
871 
872 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
873 		__LOG_CPU_MAX_BUF_LEN);
874 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
875 		cpu_extra);
876 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
877 
878 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
879 }
880 #else /* !CONFIG_SMP */
881 static inline void log_buf_add_cpu(void) {}
882 #endif /* CONFIG_SMP */
883 
884 void __init setup_log_buf(int early)
885 {
886 	unsigned long flags;
887 	char *new_log_buf;
888 	int free;
889 
890 	if (log_buf != __log_buf)
891 		return;
892 
893 	if (!early && !new_log_buf_len)
894 		log_buf_add_cpu();
895 
896 	if (!new_log_buf_len)
897 		return;
898 
899 	if (early) {
900 		new_log_buf =
901 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
902 	} else {
903 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
904 							  LOG_ALIGN);
905 	}
906 
907 	if (unlikely(!new_log_buf)) {
908 		pr_err("log_buf_len: %ld bytes not available\n",
909 			new_log_buf_len);
910 		return;
911 	}
912 
913 	raw_spin_lock_irqsave(&logbuf_lock, flags);
914 	log_buf_len = new_log_buf_len;
915 	log_buf = new_log_buf;
916 	new_log_buf_len = 0;
917 	free = __LOG_BUF_LEN - log_next_idx;
918 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
919 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
920 
921 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
922 	pr_info("early log buf free: %d(%d%%)\n",
923 		free, (free * 100) / __LOG_BUF_LEN);
924 }
925 
926 static bool __read_mostly ignore_loglevel;
927 
928 static int __init ignore_loglevel_setup(char *str)
929 {
930 	ignore_loglevel = true;
931 	pr_info("debug: ignoring loglevel setting.\n");
932 
933 	return 0;
934 }
935 
936 early_param("ignore_loglevel", ignore_loglevel_setup);
937 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
938 MODULE_PARM_DESC(ignore_loglevel,
939 		 "ignore loglevel setting (prints all kernel messages to the console)");
940 
941 #ifdef CONFIG_BOOT_PRINTK_DELAY
942 
943 static int boot_delay; /* msecs delay after each printk during bootup */
944 static unsigned long long loops_per_msec;	/* based on boot_delay */
945 
946 static int __init boot_delay_setup(char *str)
947 {
948 	unsigned long lpj;
949 
950 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
951 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
952 
953 	get_option(&str, &boot_delay);
954 	if (boot_delay > 10 * 1000)
955 		boot_delay = 0;
956 
957 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
958 		"HZ: %d, loops_per_msec: %llu\n",
959 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
960 	return 0;
961 }
962 early_param("boot_delay", boot_delay_setup);
963 
964 static void boot_delay_msec(int level)
965 {
966 	unsigned long long k;
967 	unsigned long timeout;
968 
969 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
970 		|| (level >= console_loglevel && !ignore_loglevel)) {
971 		return;
972 	}
973 
974 	k = (unsigned long long)loops_per_msec * boot_delay;
975 
976 	timeout = jiffies + msecs_to_jiffies(boot_delay);
977 	while (k) {
978 		k--;
979 		cpu_relax();
980 		/*
981 		 * use (volatile) jiffies to prevent
982 		 * compiler reduction; loop termination via jiffies
983 		 * is secondary and may or may not happen.
984 		 */
985 		if (time_after(jiffies, timeout))
986 			break;
987 		touch_nmi_watchdog();
988 	}
989 }
990 #else
991 static inline void boot_delay_msec(int level)
992 {
993 }
994 #endif
995 
996 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
997 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
998 
999 static size_t print_time(u64 ts, char *buf)
1000 {
1001 	unsigned long rem_nsec;
1002 
1003 	if (!printk_time)
1004 		return 0;
1005 
1006 	rem_nsec = do_div(ts, 1000000000);
1007 
1008 	if (!buf)
1009 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1010 
1011 	return sprintf(buf, "[%5lu.%06lu] ",
1012 		       (unsigned long)ts, rem_nsec / 1000);
1013 }
1014 
1015 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1016 {
1017 	size_t len = 0;
1018 	unsigned int prefix = (msg->facility << 3) | msg->level;
1019 
1020 	if (syslog) {
1021 		if (buf) {
1022 			len += sprintf(buf, "<%u>", prefix);
1023 		} else {
1024 			len += 3;
1025 			if (prefix > 999)
1026 				len += 3;
1027 			else if (prefix > 99)
1028 				len += 2;
1029 			else if (prefix > 9)
1030 				len++;
1031 		}
1032 	}
1033 
1034 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1035 	return len;
1036 }
1037 
1038 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1039 			     bool syslog, char *buf, size_t size)
1040 {
1041 	const char *text = log_text(msg);
1042 	size_t text_size = msg->text_len;
1043 	bool prefix = true;
1044 	bool newline = true;
1045 	size_t len = 0;
1046 
1047 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1048 		prefix = false;
1049 
1050 	if (msg->flags & LOG_CONT) {
1051 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1052 			prefix = false;
1053 
1054 		if (!(msg->flags & LOG_NEWLINE))
1055 			newline = false;
1056 	}
1057 
1058 	do {
1059 		const char *next = memchr(text, '\n', text_size);
1060 		size_t text_len;
1061 
1062 		if (next) {
1063 			text_len = next - text;
1064 			next++;
1065 			text_size -= next - text;
1066 		} else {
1067 			text_len = text_size;
1068 		}
1069 
1070 		if (buf) {
1071 			if (print_prefix(msg, syslog, NULL) +
1072 			    text_len + 1 >= size - len)
1073 				break;
1074 
1075 			if (prefix)
1076 				len += print_prefix(msg, syslog, buf + len);
1077 			memcpy(buf + len, text, text_len);
1078 			len += text_len;
1079 			if (next || newline)
1080 				buf[len++] = '\n';
1081 		} else {
1082 			/* SYSLOG_ACTION_* buffer size only calculation */
1083 			if (prefix)
1084 				len += print_prefix(msg, syslog, NULL);
1085 			len += text_len;
1086 			if (next || newline)
1087 				len++;
1088 		}
1089 
1090 		prefix = true;
1091 		text = next;
1092 	} while (text);
1093 
1094 	return len;
1095 }
1096 
1097 static int syslog_print(char __user *buf, int size)
1098 {
1099 	char *text;
1100 	struct printk_log *msg;
1101 	int len = 0;
1102 
1103 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1104 	if (!text)
1105 		return -ENOMEM;
1106 
1107 	while (size > 0) {
1108 		size_t n;
1109 		size_t skip;
1110 
1111 		raw_spin_lock_irq(&logbuf_lock);
1112 		if (syslog_seq < log_first_seq) {
1113 			/* messages are gone, move to first one */
1114 			syslog_seq = log_first_seq;
1115 			syslog_idx = log_first_idx;
1116 			syslog_prev = 0;
1117 			syslog_partial = 0;
1118 		}
1119 		if (syslog_seq == log_next_seq) {
1120 			raw_spin_unlock_irq(&logbuf_lock);
1121 			break;
1122 		}
1123 
1124 		skip = syslog_partial;
1125 		msg = log_from_idx(syslog_idx);
1126 		n = msg_print_text(msg, syslog_prev, true, text,
1127 				   LOG_LINE_MAX + PREFIX_MAX);
1128 		if (n - syslog_partial <= size) {
1129 			/* message fits into buffer, move forward */
1130 			syslog_idx = log_next(syslog_idx);
1131 			syslog_seq++;
1132 			syslog_prev = msg->flags;
1133 			n -= syslog_partial;
1134 			syslog_partial = 0;
1135 		} else if (!len){
1136 			/* partial read(), remember position */
1137 			n = size;
1138 			syslog_partial += n;
1139 		} else
1140 			n = 0;
1141 		raw_spin_unlock_irq(&logbuf_lock);
1142 
1143 		if (!n)
1144 			break;
1145 
1146 		if (copy_to_user(buf, text + skip, n)) {
1147 			if (!len)
1148 				len = -EFAULT;
1149 			break;
1150 		}
1151 
1152 		len += n;
1153 		size -= n;
1154 		buf += n;
1155 	}
1156 
1157 	kfree(text);
1158 	return len;
1159 }
1160 
1161 static int syslog_print_all(char __user *buf, int size, bool clear)
1162 {
1163 	char *text;
1164 	int len = 0;
1165 
1166 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1167 	if (!text)
1168 		return -ENOMEM;
1169 
1170 	raw_spin_lock_irq(&logbuf_lock);
1171 	if (buf) {
1172 		u64 next_seq;
1173 		u64 seq;
1174 		u32 idx;
1175 		enum log_flags prev;
1176 
1177 		if (clear_seq < log_first_seq) {
1178 			/* messages are gone, move to first available one */
1179 			clear_seq = log_first_seq;
1180 			clear_idx = log_first_idx;
1181 		}
1182 
1183 		/*
1184 		 * Find first record that fits, including all following records,
1185 		 * into the user-provided buffer for this dump.
1186 		 */
1187 		seq = clear_seq;
1188 		idx = clear_idx;
1189 		prev = 0;
1190 		while (seq < log_next_seq) {
1191 			struct printk_log *msg = log_from_idx(idx);
1192 
1193 			len += msg_print_text(msg, prev, true, NULL, 0);
1194 			prev = msg->flags;
1195 			idx = log_next(idx);
1196 			seq++;
1197 		}
1198 
1199 		/* move first record forward until length fits into the buffer */
1200 		seq = clear_seq;
1201 		idx = clear_idx;
1202 		prev = 0;
1203 		while (len > size && seq < log_next_seq) {
1204 			struct printk_log *msg = log_from_idx(idx);
1205 
1206 			len -= msg_print_text(msg, prev, true, NULL, 0);
1207 			prev = msg->flags;
1208 			idx = log_next(idx);
1209 			seq++;
1210 		}
1211 
1212 		/* last message fitting into this dump */
1213 		next_seq = log_next_seq;
1214 
1215 		len = 0;
1216 		while (len >= 0 && seq < next_seq) {
1217 			struct printk_log *msg = log_from_idx(idx);
1218 			int textlen;
1219 
1220 			textlen = msg_print_text(msg, prev, true, text,
1221 						 LOG_LINE_MAX + PREFIX_MAX);
1222 			if (textlen < 0) {
1223 				len = textlen;
1224 				break;
1225 			}
1226 			idx = log_next(idx);
1227 			seq++;
1228 			prev = msg->flags;
1229 
1230 			raw_spin_unlock_irq(&logbuf_lock);
1231 			if (copy_to_user(buf + len, text, textlen))
1232 				len = -EFAULT;
1233 			else
1234 				len += textlen;
1235 			raw_spin_lock_irq(&logbuf_lock);
1236 
1237 			if (seq < log_first_seq) {
1238 				/* messages are gone, move to next one */
1239 				seq = log_first_seq;
1240 				idx = log_first_idx;
1241 				prev = 0;
1242 			}
1243 		}
1244 	}
1245 
1246 	if (clear) {
1247 		clear_seq = log_next_seq;
1248 		clear_idx = log_next_idx;
1249 	}
1250 	raw_spin_unlock_irq(&logbuf_lock);
1251 
1252 	kfree(text);
1253 	return len;
1254 }
1255 
1256 int do_syslog(int type, char __user *buf, int len, bool from_file)
1257 {
1258 	bool clear = false;
1259 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1260 	int error;
1261 
1262 	error = check_syslog_permissions(type, from_file);
1263 	if (error)
1264 		goto out;
1265 
1266 	error = security_syslog(type);
1267 	if (error)
1268 		return error;
1269 
1270 	switch (type) {
1271 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1272 		break;
1273 	case SYSLOG_ACTION_OPEN:	/* Open log */
1274 		break;
1275 	case SYSLOG_ACTION_READ:	/* Read from log */
1276 		error = -EINVAL;
1277 		if (!buf || len < 0)
1278 			goto out;
1279 		error = 0;
1280 		if (!len)
1281 			goto out;
1282 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1283 			error = -EFAULT;
1284 			goto out;
1285 		}
1286 		error = wait_event_interruptible(log_wait,
1287 						 syslog_seq != log_next_seq);
1288 		if (error)
1289 			goto out;
1290 		error = syslog_print(buf, len);
1291 		break;
1292 	/* Read/clear last kernel messages */
1293 	case SYSLOG_ACTION_READ_CLEAR:
1294 		clear = true;
1295 		/* FALL THRU */
1296 	/* Read last kernel messages */
1297 	case SYSLOG_ACTION_READ_ALL:
1298 		error = -EINVAL;
1299 		if (!buf || len < 0)
1300 			goto out;
1301 		error = 0;
1302 		if (!len)
1303 			goto out;
1304 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1305 			error = -EFAULT;
1306 			goto out;
1307 		}
1308 		error = syslog_print_all(buf, len, clear);
1309 		break;
1310 	/* Clear ring buffer */
1311 	case SYSLOG_ACTION_CLEAR:
1312 		syslog_print_all(NULL, 0, true);
1313 		break;
1314 	/* Disable logging to console */
1315 	case SYSLOG_ACTION_CONSOLE_OFF:
1316 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1317 			saved_console_loglevel = console_loglevel;
1318 		console_loglevel = minimum_console_loglevel;
1319 		break;
1320 	/* Enable logging to console */
1321 	case SYSLOG_ACTION_CONSOLE_ON:
1322 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1323 			console_loglevel = saved_console_loglevel;
1324 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1325 		}
1326 		break;
1327 	/* Set level of messages printed to console */
1328 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1329 		error = -EINVAL;
1330 		if (len < 1 || len > 8)
1331 			goto out;
1332 		if (len < minimum_console_loglevel)
1333 			len = minimum_console_loglevel;
1334 		console_loglevel = len;
1335 		/* Implicitly re-enable logging to console */
1336 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1337 		error = 0;
1338 		break;
1339 	/* Number of chars in the log buffer */
1340 	case SYSLOG_ACTION_SIZE_UNREAD:
1341 		raw_spin_lock_irq(&logbuf_lock);
1342 		if (syslog_seq < log_first_seq) {
1343 			/* messages are gone, move to first one */
1344 			syslog_seq = log_first_seq;
1345 			syslog_idx = log_first_idx;
1346 			syslog_prev = 0;
1347 			syslog_partial = 0;
1348 		}
1349 		if (from_file) {
1350 			/*
1351 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1352 			 * for pending data, not the size; return the count of
1353 			 * records, not the length.
1354 			 */
1355 			error = log_next_seq - syslog_seq;
1356 		} else {
1357 			u64 seq = syslog_seq;
1358 			u32 idx = syslog_idx;
1359 			enum log_flags prev = syslog_prev;
1360 
1361 			error = 0;
1362 			while (seq < log_next_seq) {
1363 				struct printk_log *msg = log_from_idx(idx);
1364 
1365 				error += msg_print_text(msg, prev, true, NULL, 0);
1366 				idx = log_next(idx);
1367 				seq++;
1368 				prev = msg->flags;
1369 			}
1370 			error -= syslog_partial;
1371 		}
1372 		raw_spin_unlock_irq(&logbuf_lock);
1373 		break;
1374 	/* Size of the log buffer */
1375 	case SYSLOG_ACTION_SIZE_BUFFER:
1376 		error = log_buf_len;
1377 		break;
1378 	default:
1379 		error = -EINVAL;
1380 		break;
1381 	}
1382 out:
1383 	return error;
1384 }
1385 
1386 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1387 {
1388 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1389 }
1390 
1391 /*
1392  * Call the console drivers, asking them to write out
1393  * log_buf[start] to log_buf[end - 1].
1394  * The console_lock must be held.
1395  */
1396 static void call_console_drivers(int level, const char *text, size_t len)
1397 {
1398 	struct console *con;
1399 
1400 	trace_console(text, len);
1401 
1402 	if (level >= console_loglevel && !ignore_loglevel)
1403 		return;
1404 	if (!console_drivers)
1405 		return;
1406 
1407 	for_each_console(con) {
1408 		if (exclusive_console && con != exclusive_console)
1409 			continue;
1410 		if (!(con->flags & CON_ENABLED))
1411 			continue;
1412 		if (!con->write)
1413 			continue;
1414 		if (!cpu_online(smp_processor_id()) &&
1415 		    !(con->flags & CON_ANYTIME))
1416 			continue;
1417 		con->write(con, text, len);
1418 	}
1419 }
1420 
1421 /*
1422  * Zap console related locks when oopsing.
1423  * To leave time for slow consoles to print a full oops,
1424  * only zap at most once every 30 seconds.
1425  */
1426 static void zap_locks(void)
1427 {
1428 	static unsigned long oops_timestamp;
1429 
1430 	if (time_after_eq(jiffies, oops_timestamp) &&
1431 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1432 		return;
1433 
1434 	oops_timestamp = jiffies;
1435 
1436 	debug_locks_off();
1437 	/* If a crash is occurring, make sure we can't deadlock */
1438 	raw_spin_lock_init(&logbuf_lock);
1439 	/* And make sure that we print immediately */
1440 	sema_init(&console_sem, 1);
1441 }
1442 
1443 /*
1444  * Check if we have any console that is capable of printing while cpu is
1445  * booting or shutting down. Requires console_sem.
1446  */
1447 static int have_callable_console(void)
1448 {
1449 	struct console *con;
1450 
1451 	for_each_console(con)
1452 		if (con->flags & CON_ANYTIME)
1453 			return 1;
1454 
1455 	return 0;
1456 }
1457 
1458 /*
1459  * Can we actually use the console at this time on this cpu?
1460  *
1461  * Console drivers may assume that per-cpu resources have been allocated. So
1462  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
1463  * call them until this CPU is officially up.
1464  */
1465 static inline int can_use_console(unsigned int cpu)
1466 {
1467 	return cpu_online(cpu) || have_callable_console();
1468 }
1469 
1470 /*
1471  * Try to get console ownership to actually show the kernel
1472  * messages from a 'printk'. Return true (and with the
1473  * console_lock held, and 'console_locked' set) if it
1474  * is successful, false otherwise.
1475  */
1476 static int console_trylock_for_printk(void)
1477 {
1478 	unsigned int cpu = smp_processor_id();
1479 
1480 	if (!console_trylock())
1481 		return 0;
1482 	/*
1483 	 * If we can't use the console, we need to release the console
1484 	 * semaphore by hand to avoid flushing the buffer. We need to hold the
1485 	 * console semaphore in order to do this test safely.
1486 	 */
1487 	if (!can_use_console(cpu)) {
1488 		console_locked = 0;
1489 		up_console_sem();
1490 		return 0;
1491 	}
1492 	return 1;
1493 }
1494 
1495 int printk_delay_msec __read_mostly;
1496 
1497 static inline void printk_delay(void)
1498 {
1499 	if (unlikely(printk_delay_msec)) {
1500 		int m = printk_delay_msec;
1501 
1502 		while (m--) {
1503 			mdelay(1);
1504 			touch_nmi_watchdog();
1505 		}
1506 	}
1507 }
1508 
1509 /*
1510  * Continuation lines are buffered, and not committed to the record buffer
1511  * until the line is complete, or a race forces it. The line fragments
1512  * though, are printed immediately to the consoles to ensure everything has
1513  * reached the console in case of a kernel crash.
1514  */
1515 static struct cont {
1516 	char buf[LOG_LINE_MAX];
1517 	size_t len;			/* length == 0 means unused buffer */
1518 	size_t cons;			/* bytes written to console */
1519 	struct task_struct *owner;	/* task of first print*/
1520 	u64 ts_nsec;			/* time of first print */
1521 	u8 level;			/* log level of first message */
1522 	u8 facility;			/* log facility of first message */
1523 	enum log_flags flags;		/* prefix, newline flags */
1524 	bool flushed:1;			/* buffer sealed and committed */
1525 } cont;
1526 
1527 static void cont_flush(enum log_flags flags)
1528 {
1529 	if (cont.flushed)
1530 		return;
1531 	if (cont.len == 0)
1532 		return;
1533 
1534 	if (cont.cons) {
1535 		/*
1536 		 * If a fragment of this line was directly flushed to the
1537 		 * console; wait for the console to pick up the rest of the
1538 		 * line. LOG_NOCONS suppresses a duplicated output.
1539 		 */
1540 		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1541 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1542 		cont.flags = flags;
1543 		cont.flushed = true;
1544 	} else {
1545 		/*
1546 		 * If no fragment of this line ever reached the console,
1547 		 * just submit it to the store and free the buffer.
1548 		 */
1549 		log_store(cont.facility, cont.level, flags, 0,
1550 			  NULL, 0, cont.buf, cont.len);
1551 		cont.len = 0;
1552 	}
1553 }
1554 
1555 static bool cont_add(int facility, int level, const char *text, size_t len)
1556 {
1557 	if (cont.len && cont.flushed)
1558 		return false;
1559 
1560 	if (cont.len + len > sizeof(cont.buf)) {
1561 		/* the line gets too long, split it up in separate records */
1562 		cont_flush(LOG_CONT);
1563 		return false;
1564 	}
1565 
1566 	if (!cont.len) {
1567 		cont.facility = facility;
1568 		cont.level = level;
1569 		cont.owner = current;
1570 		cont.ts_nsec = local_clock();
1571 		cont.flags = 0;
1572 		cont.cons = 0;
1573 		cont.flushed = false;
1574 	}
1575 
1576 	memcpy(cont.buf + cont.len, text, len);
1577 	cont.len += len;
1578 
1579 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1580 		cont_flush(LOG_CONT);
1581 
1582 	return true;
1583 }
1584 
1585 static size_t cont_print_text(char *text, size_t size)
1586 {
1587 	size_t textlen = 0;
1588 	size_t len;
1589 
1590 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1591 		textlen += print_time(cont.ts_nsec, text);
1592 		size -= textlen;
1593 	}
1594 
1595 	len = cont.len - cont.cons;
1596 	if (len > 0) {
1597 		if (len+1 > size)
1598 			len = size-1;
1599 		memcpy(text + textlen, cont.buf + cont.cons, len);
1600 		textlen += len;
1601 		cont.cons = cont.len;
1602 	}
1603 
1604 	if (cont.flushed) {
1605 		if (cont.flags & LOG_NEWLINE)
1606 			text[textlen++] = '\n';
1607 		/* got everything, release buffer */
1608 		cont.len = 0;
1609 	}
1610 	return textlen;
1611 }
1612 
1613 asmlinkage int vprintk_emit(int facility, int level,
1614 			    const char *dict, size_t dictlen,
1615 			    const char *fmt, va_list args)
1616 {
1617 	static int recursion_bug;
1618 	static char textbuf[LOG_LINE_MAX];
1619 	char *text = textbuf;
1620 	size_t text_len = 0;
1621 	enum log_flags lflags = 0;
1622 	unsigned long flags;
1623 	int this_cpu;
1624 	int printed_len = 0;
1625 	bool in_sched = false;
1626 	/* cpu currently holding logbuf_lock in this function */
1627 	static unsigned int logbuf_cpu = UINT_MAX;
1628 
1629 	if (level == LOGLEVEL_SCHED) {
1630 		level = LOGLEVEL_DEFAULT;
1631 		in_sched = true;
1632 	}
1633 
1634 	boot_delay_msec(level);
1635 	printk_delay();
1636 
1637 	/* This stops the holder of console_sem just where we want him */
1638 	local_irq_save(flags);
1639 	this_cpu = smp_processor_id();
1640 
1641 	/*
1642 	 * Ouch, printk recursed into itself!
1643 	 */
1644 	if (unlikely(logbuf_cpu == this_cpu)) {
1645 		/*
1646 		 * If a crash is occurring during printk() on this CPU,
1647 		 * then try to get the crash message out but make sure
1648 		 * we can't deadlock. Otherwise just return to avoid the
1649 		 * recursion and return - but flag the recursion so that
1650 		 * it can be printed at the next appropriate moment:
1651 		 */
1652 		if (!oops_in_progress && !lockdep_recursing(current)) {
1653 			recursion_bug = 1;
1654 			local_irq_restore(flags);
1655 			return 0;
1656 		}
1657 		zap_locks();
1658 	}
1659 
1660 	lockdep_off();
1661 	raw_spin_lock(&logbuf_lock);
1662 	logbuf_cpu = this_cpu;
1663 
1664 	if (unlikely(recursion_bug)) {
1665 		static const char recursion_msg[] =
1666 			"BUG: recent printk recursion!";
1667 
1668 		recursion_bug = 0;
1669 		/* emit KERN_CRIT message */
1670 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1671 					 NULL, 0, recursion_msg,
1672 					 strlen(recursion_msg));
1673 	}
1674 
1675 	/*
1676 	 * The printf needs to come first; we need the syslog
1677 	 * prefix which might be passed-in as a parameter.
1678 	 */
1679 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1680 
1681 	/* mark and strip a trailing newline */
1682 	if (text_len && text[text_len-1] == '\n') {
1683 		text_len--;
1684 		lflags |= LOG_NEWLINE;
1685 	}
1686 
1687 	/* strip kernel syslog prefix and extract log level or control flags */
1688 	if (facility == 0) {
1689 		int kern_level = printk_get_level(text);
1690 
1691 		if (kern_level) {
1692 			const char *end_of_header = printk_skip_level(text);
1693 			switch (kern_level) {
1694 			case '0' ... '7':
1695 				if (level == LOGLEVEL_DEFAULT)
1696 					level = kern_level - '0';
1697 				/* fallthrough */
1698 			case 'd':	/* KERN_DEFAULT */
1699 				lflags |= LOG_PREFIX;
1700 			}
1701 			/*
1702 			 * No need to check length here because vscnprintf
1703 			 * put '\0' at the end of the string. Only valid and
1704 			 * newly printed level is detected.
1705 			 */
1706 			text_len -= end_of_header - text;
1707 			text = (char *)end_of_header;
1708 		}
1709 	}
1710 
1711 	if (level == LOGLEVEL_DEFAULT)
1712 		level = default_message_loglevel;
1713 
1714 	if (dict)
1715 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1716 
1717 	if (!(lflags & LOG_NEWLINE)) {
1718 		/*
1719 		 * Flush the conflicting buffer. An earlier newline was missing,
1720 		 * or another task also prints continuation lines.
1721 		 */
1722 		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1723 			cont_flush(LOG_NEWLINE);
1724 
1725 		/* buffer line if possible, otherwise store it right away */
1726 		if (cont_add(facility, level, text, text_len))
1727 			printed_len += text_len;
1728 		else
1729 			printed_len += log_store(facility, level,
1730 						 lflags | LOG_CONT, 0,
1731 						 dict, dictlen, text, text_len);
1732 	} else {
1733 		bool stored = false;
1734 
1735 		/*
1736 		 * If an earlier newline was missing and it was the same task,
1737 		 * either merge it with the current buffer and flush, or if
1738 		 * there was a race with interrupts (prefix == true) then just
1739 		 * flush it out and store this line separately.
1740 		 * If the preceding printk was from a different task and missed
1741 		 * a newline, flush and append the newline.
1742 		 */
1743 		if (cont.len) {
1744 			if (cont.owner == current && !(lflags & LOG_PREFIX))
1745 				stored = cont_add(facility, level, text,
1746 						  text_len);
1747 			cont_flush(LOG_NEWLINE);
1748 		}
1749 
1750 		if (stored)
1751 			printed_len += text_len;
1752 		else
1753 			printed_len += log_store(facility, level, lflags, 0,
1754 						 dict, dictlen, text, text_len);
1755 	}
1756 
1757 	logbuf_cpu = UINT_MAX;
1758 	raw_spin_unlock(&logbuf_lock);
1759 	lockdep_on();
1760 	local_irq_restore(flags);
1761 
1762 	/* If called from the scheduler, we can not call up(). */
1763 	if (!in_sched) {
1764 		lockdep_off();
1765 		/*
1766 		 * Disable preemption to avoid being preempted while holding
1767 		 * console_sem which would prevent anyone from printing to
1768 		 * console
1769 		 */
1770 		preempt_disable();
1771 
1772 		/*
1773 		 * Try to acquire and then immediately release the console
1774 		 * semaphore.  The release will print out buffers and wake up
1775 		 * /dev/kmsg and syslog() users.
1776 		 */
1777 		if (console_trylock_for_printk())
1778 			console_unlock();
1779 		preempt_enable();
1780 		lockdep_on();
1781 	}
1782 
1783 	return printed_len;
1784 }
1785 EXPORT_SYMBOL(vprintk_emit);
1786 
1787 asmlinkage int vprintk(const char *fmt, va_list args)
1788 {
1789 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1790 }
1791 EXPORT_SYMBOL(vprintk);
1792 
1793 asmlinkage int printk_emit(int facility, int level,
1794 			   const char *dict, size_t dictlen,
1795 			   const char *fmt, ...)
1796 {
1797 	va_list args;
1798 	int r;
1799 
1800 	va_start(args, fmt);
1801 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1802 	va_end(args);
1803 
1804 	return r;
1805 }
1806 EXPORT_SYMBOL(printk_emit);
1807 
1808 int vprintk_default(const char *fmt, va_list args)
1809 {
1810 	int r;
1811 
1812 #ifdef CONFIG_KGDB_KDB
1813 	if (unlikely(kdb_trap_printk)) {
1814 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1815 		return r;
1816 	}
1817 #endif
1818 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1819 
1820 	return r;
1821 }
1822 EXPORT_SYMBOL_GPL(vprintk_default);
1823 
1824 /*
1825  * This allows printk to be diverted to another function per cpu.
1826  * This is useful for calling printk functions from within NMI
1827  * without worrying about race conditions that can lock up the
1828  * box.
1829  */
1830 DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1831 
1832 /**
1833  * printk - print a kernel message
1834  * @fmt: format string
1835  *
1836  * This is printk(). It can be called from any context. We want it to work.
1837  *
1838  * We try to grab the console_lock. If we succeed, it's easy - we log the
1839  * output and call the console drivers.  If we fail to get the semaphore, we
1840  * place the output into the log buffer and return. The current holder of
1841  * the console_sem will notice the new output in console_unlock(); and will
1842  * send it to the consoles before releasing the lock.
1843  *
1844  * One effect of this deferred printing is that code which calls printk() and
1845  * then changes console_loglevel may break. This is because console_loglevel
1846  * is inspected when the actual printing occurs.
1847  *
1848  * See also:
1849  * printf(3)
1850  *
1851  * See the vsnprintf() documentation for format string extensions over C99.
1852  */
1853 asmlinkage __visible int printk(const char *fmt, ...)
1854 {
1855 	printk_func_t vprintk_func;
1856 	va_list args;
1857 	int r;
1858 
1859 	va_start(args, fmt);
1860 
1861 	/*
1862 	 * If a caller overrides the per_cpu printk_func, then it needs
1863 	 * to disable preemption when calling printk(). Otherwise
1864 	 * the printk_func should be set to the default. No need to
1865 	 * disable preemption here.
1866 	 */
1867 	vprintk_func = this_cpu_read(printk_func);
1868 	r = vprintk_func(fmt, args);
1869 
1870 	va_end(args);
1871 
1872 	return r;
1873 }
1874 EXPORT_SYMBOL(printk);
1875 
1876 #else /* CONFIG_PRINTK */
1877 
1878 #define LOG_LINE_MAX		0
1879 #define PREFIX_MAX		0
1880 
1881 static u64 syslog_seq;
1882 static u32 syslog_idx;
1883 static u64 console_seq;
1884 static u32 console_idx;
1885 static enum log_flags syslog_prev;
1886 static u64 log_first_seq;
1887 static u32 log_first_idx;
1888 static u64 log_next_seq;
1889 static enum log_flags console_prev;
1890 static struct cont {
1891 	size_t len;
1892 	size_t cons;
1893 	u8 level;
1894 	bool flushed:1;
1895 } cont;
1896 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1897 static u32 log_next(u32 idx) { return 0; }
1898 static void call_console_drivers(int level, const char *text, size_t len) {}
1899 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1900 			     bool syslog, char *buf, size_t size) { return 0; }
1901 static size_t cont_print_text(char *text, size_t size) { return 0; }
1902 
1903 /* Still needs to be defined for users */
1904 DEFINE_PER_CPU(printk_func_t, printk_func);
1905 
1906 #endif /* CONFIG_PRINTK */
1907 
1908 #ifdef CONFIG_EARLY_PRINTK
1909 struct console *early_console;
1910 
1911 asmlinkage __visible void early_printk(const char *fmt, ...)
1912 {
1913 	va_list ap;
1914 	char buf[512];
1915 	int n;
1916 
1917 	if (!early_console)
1918 		return;
1919 
1920 	va_start(ap, fmt);
1921 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1922 	va_end(ap);
1923 
1924 	early_console->write(early_console, buf, n);
1925 }
1926 #endif
1927 
1928 static int __add_preferred_console(char *name, int idx, char *options,
1929 				   char *brl_options)
1930 {
1931 	struct console_cmdline *c;
1932 	int i;
1933 
1934 	/*
1935 	 *	See if this tty is not yet registered, and
1936 	 *	if we have a slot free.
1937 	 */
1938 	for (i = 0, c = console_cmdline;
1939 	     i < MAX_CMDLINECONSOLES && c->name[0];
1940 	     i++, c++) {
1941 		if (strcmp(c->name, name) == 0 && c->index == idx) {
1942 			if (!brl_options)
1943 				selected_console = i;
1944 			return 0;
1945 		}
1946 	}
1947 	if (i == MAX_CMDLINECONSOLES)
1948 		return -E2BIG;
1949 	if (!brl_options)
1950 		selected_console = i;
1951 	strlcpy(c->name, name, sizeof(c->name));
1952 	c->options = options;
1953 	braille_set_options(c, brl_options);
1954 
1955 	c->index = idx;
1956 	return 0;
1957 }
1958 /*
1959  * Set up a console.  Called via do_early_param() in init/main.c
1960  * for each "console=" parameter in the boot command line.
1961  */
1962 static int __init console_setup(char *str)
1963 {
1964 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1965 	char *s, *options, *brl_options = NULL;
1966 	int idx;
1967 
1968 	if (_braille_console_setup(&str, &brl_options))
1969 		return 1;
1970 
1971 	/*
1972 	 * Decode str into name, index, options.
1973 	 */
1974 	if (str[0] >= '0' && str[0] <= '9') {
1975 		strcpy(buf, "ttyS");
1976 		strncpy(buf + 4, str, sizeof(buf) - 5);
1977 	} else {
1978 		strncpy(buf, str, sizeof(buf) - 1);
1979 	}
1980 	buf[sizeof(buf) - 1] = 0;
1981 	options = strchr(str, ',');
1982 	if (options)
1983 		*(options++) = 0;
1984 #ifdef __sparc__
1985 	if (!strcmp(str, "ttya"))
1986 		strcpy(buf, "ttyS0");
1987 	if (!strcmp(str, "ttyb"))
1988 		strcpy(buf, "ttyS1");
1989 #endif
1990 	for (s = buf; *s; s++)
1991 		if (isdigit(*s) || *s == ',')
1992 			break;
1993 	idx = simple_strtoul(s, NULL, 10);
1994 	*s = 0;
1995 
1996 	__add_preferred_console(buf, idx, options, brl_options);
1997 	console_set_on_cmdline = 1;
1998 	return 1;
1999 }
2000 __setup("console=", console_setup);
2001 
2002 /**
2003  * add_preferred_console - add a device to the list of preferred consoles.
2004  * @name: device name
2005  * @idx: device index
2006  * @options: options for this console
2007  *
2008  * The last preferred console added will be used for kernel messages
2009  * and stdin/out/err for init.  Normally this is used by console_setup
2010  * above to handle user-supplied console arguments; however it can also
2011  * be used by arch-specific code either to override the user or more
2012  * commonly to provide a default console (ie from PROM variables) when
2013  * the user has not supplied one.
2014  */
2015 int add_preferred_console(char *name, int idx, char *options)
2016 {
2017 	return __add_preferred_console(name, idx, options, NULL);
2018 }
2019 
2020 int update_console_cmdline(char *name, int idx, char *name_new, int idx_new, char *options)
2021 {
2022 	struct console_cmdline *c;
2023 	int i;
2024 
2025 	for (i = 0, c = console_cmdline;
2026 	     i < MAX_CMDLINECONSOLES && c->name[0];
2027 	     i++, c++)
2028 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2029 			strlcpy(c->name, name_new, sizeof(c->name));
2030 			c->options = options;
2031 			c->index = idx_new;
2032 			return i;
2033 		}
2034 	/* not found */
2035 	return -1;
2036 }
2037 
2038 bool console_suspend_enabled = true;
2039 EXPORT_SYMBOL(console_suspend_enabled);
2040 
2041 static int __init console_suspend_disable(char *str)
2042 {
2043 	console_suspend_enabled = false;
2044 	return 1;
2045 }
2046 __setup("no_console_suspend", console_suspend_disable);
2047 module_param_named(console_suspend, console_suspend_enabled,
2048 		bool, S_IRUGO | S_IWUSR);
2049 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2050 	" and hibernate operations");
2051 
2052 /**
2053  * suspend_console - suspend the console subsystem
2054  *
2055  * This disables printk() while we go into suspend states
2056  */
2057 void suspend_console(void)
2058 {
2059 	if (!console_suspend_enabled)
2060 		return;
2061 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2062 	console_lock();
2063 	console_suspended = 1;
2064 	up_console_sem();
2065 }
2066 
2067 void resume_console(void)
2068 {
2069 	if (!console_suspend_enabled)
2070 		return;
2071 	down_console_sem();
2072 	console_suspended = 0;
2073 	console_unlock();
2074 }
2075 
2076 /**
2077  * console_cpu_notify - print deferred console messages after CPU hotplug
2078  * @self: notifier struct
2079  * @action: CPU hotplug event
2080  * @hcpu: unused
2081  *
2082  * If printk() is called from a CPU that is not online yet, the messages
2083  * will be spooled but will not show up on the console.  This function is
2084  * called when a new CPU comes online (or fails to come up), and ensures
2085  * that any such output gets printed.
2086  */
2087 static int console_cpu_notify(struct notifier_block *self,
2088 	unsigned long action, void *hcpu)
2089 {
2090 	switch (action) {
2091 	case CPU_ONLINE:
2092 	case CPU_DEAD:
2093 	case CPU_DOWN_FAILED:
2094 	case CPU_UP_CANCELED:
2095 		console_lock();
2096 		console_unlock();
2097 	}
2098 	return NOTIFY_OK;
2099 }
2100 
2101 /**
2102  * console_lock - lock the console system for exclusive use.
2103  *
2104  * Acquires a lock which guarantees that the caller has
2105  * exclusive access to the console system and the console_drivers list.
2106  *
2107  * Can sleep, returns nothing.
2108  */
2109 void console_lock(void)
2110 {
2111 	might_sleep();
2112 
2113 	down_console_sem();
2114 	if (console_suspended)
2115 		return;
2116 	console_locked = 1;
2117 	console_may_schedule = 1;
2118 }
2119 EXPORT_SYMBOL(console_lock);
2120 
2121 /**
2122  * console_trylock - try to lock the console system for exclusive use.
2123  *
2124  * Try to acquire a lock which guarantees that the caller has exclusive
2125  * access to the console system and the console_drivers list.
2126  *
2127  * returns 1 on success, and 0 on failure to acquire the lock.
2128  */
2129 int console_trylock(void)
2130 {
2131 	if (down_trylock_console_sem())
2132 		return 0;
2133 	if (console_suspended) {
2134 		up_console_sem();
2135 		return 0;
2136 	}
2137 	console_locked = 1;
2138 	console_may_schedule = 0;
2139 	return 1;
2140 }
2141 EXPORT_SYMBOL(console_trylock);
2142 
2143 int is_console_locked(void)
2144 {
2145 	return console_locked;
2146 }
2147 
2148 static void console_cont_flush(char *text, size_t size)
2149 {
2150 	unsigned long flags;
2151 	size_t len;
2152 
2153 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2154 
2155 	if (!cont.len)
2156 		goto out;
2157 
2158 	/*
2159 	 * We still queue earlier records, likely because the console was
2160 	 * busy. The earlier ones need to be printed before this one, we
2161 	 * did not flush any fragment so far, so just let it queue up.
2162 	 */
2163 	if (console_seq < log_next_seq && !cont.cons)
2164 		goto out;
2165 
2166 	len = cont_print_text(text, size);
2167 	raw_spin_unlock(&logbuf_lock);
2168 	stop_critical_timings();
2169 	call_console_drivers(cont.level, text, len);
2170 	start_critical_timings();
2171 	local_irq_restore(flags);
2172 	return;
2173 out:
2174 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2175 }
2176 
2177 /**
2178  * console_unlock - unlock the console system
2179  *
2180  * Releases the console_lock which the caller holds on the console system
2181  * and the console driver list.
2182  *
2183  * While the console_lock was held, console output may have been buffered
2184  * by printk().  If this is the case, console_unlock(); emits
2185  * the output prior to releasing the lock.
2186  *
2187  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2188  *
2189  * console_unlock(); may be called from any context.
2190  */
2191 void console_unlock(void)
2192 {
2193 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2194 	static u64 seen_seq;
2195 	unsigned long flags;
2196 	bool wake_klogd = false;
2197 	bool retry;
2198 
2199 	if (console_suspended) {
2200 		up_console_sem();
2201 		return;
2202 	}
2203 
2204 	console_may_schedule = 0;
2205 
2206 	/* flush buffered message fragment immediately to console */
2207 	console_cont_flush(text, sizeof(text));
2208 again:
2209 	for (;;) {
2210 		struct printk_log *msg;
2211 		size_t len;
2212 		int level;
2213 
2214 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2215 		if (seen_seq != log_next_seq) {
2216 			wake_klogd = true;
2217 			seen_seq = log_next_seq;
2218 		}
2219 
2220 		if (console_seq < log_first_seq) {
2221 			len = sprintf(text, "** %u printk messages dropped ** ",
2222 				      (unsigned)(log_first_seq - console_seq));
2223 
2224 			/* messages are gone, move to first one */
2225 			console_seq = log_first_seq;
2226 			console_idx = log_first_idx;
2227 			console_prev = 0;
2228 		} else {
2229 			len = 0;
2230 		}
2231 skip:
2232 		if (console_seq == log_next_seq)
2233 			break;
2234 
2235 		msg = log_from_idx(console_idx);
2236 		if (msg->flags & LOG_NOCONS) {
2237 			/*
2238 			 * Skip record we have buffered and already printed
2239 			 * directly to the console when we received it.
2240 			 */
2241 			console_idx = log_next(console_idx);
2242 			console_seq++;
2243 			/*
2244 			 * We will get here again when we register a new
2245 			 * CON_PRINTBUFFER console. Clear the flag so we
2246 			 * will properly dump everything later.
2247 			 */
2248 			msg->flags &= ~LOG_NOCONS;
2249 			console_prev = msg->flags;
2250 			goto skip;
2251 		}
2252 
2253 		level = msg->level;
2254 		len += msg_print_text(msg, console_prev, false,
2255 				      text + len, sizeof(text) - len);
2256 		console_idx = log_next(console_idx);
2257 		console_seq++;
2258 		console_prev = msg->flags;
2259 		raw_spin_unlock(&logbuf_lock);
2260 
2261 		stop_critical_timings();	/* don't trace print latency */
2262 		call_console_drivers(level, text, len);
2263 		start_critical_timings();
2264 		local_irq_restore(flags);
2265 	}
2266 	console_locked = 0;
2267 
2268 	/* Release the exclusive_console once it is used */
2269 	if (unlikely(exclusive_console))
2270 		exclusive_console = NULL;
2271 
2272 	raw_spin_unlock(&logbuf_lock);
2273 
2274 	up_console_sem();
2275 
2276 	/*
2277 	 * Someone could have filled up the buffer again, so re-check if there's
2278 	 * something to flush. In case we cannot trylock the console_sem again,
2279 	 * there's a new owner and the console_unlock() from them will do the
2280 	 * flush, no worries.
2281 	 */
2282 	raw_spin_lock(&logbuf_lock);
2283 	retry = console_seq != log_next_seq;
2284 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2285 
2286 	if (retry && console_trylock())
2287 		goto again;
2288 
2289 	if (wake_klogd)
2290 		wake_up_klogd();
2291 }
2292 EXPORT_SYMBOL(console_unlock);
2293 
2294 /**
2295  * console_conditional_schedule - yield the CPU if required
2296  *
2297  * If the console code is currently allowed to sleep, and
2298  * if this CPU should yield the CPU to another task, do
2299  * so here.
2300  *
2301  * Must be called within console_lock();.
2302  */
2303 void __sched console_conditional_schedule(void)
2304 {
2305 	if (console_may_schedule)
2306 		cond_resched();
2307 }
2308 EXPORT_SYMBOL(console_conditional_schedule);
2309 
2310 void console_unblank(void)
2311 {
2312 	struct console *c;
2313 
2314 	/*
2315 	 * console_unblank can no longer be called in interrupt context unless
2316 	 * oops_in_progress is set to 1..
2317 	 */
2318 	if (oops_in_progress) {
2319 		if (down_trylock_console_sem() != 0)
2320 			return;
2321 	} else
2322 		console_lock();
2323 
2324 	console_locked = 1;
2325 	console_may_schedule = 0;
2326 	for_each_console(c)
2327 		if ((c->flags & CON_ENABLED) && c->unblank)
2328 			c->unblank();
2329 	console_unlock();
2330 }
2331 
2332 /*
2333  * Return the console tty driver structure and its associated index
2334  */
2335 struct tty_driver *console_device(int *index)
2336 {
2337 	struct console *c;
2338 	struct tty_driver *driver = NULL;
2339 
2340 	console_lock();
2341 	for_each_console(c) {
2342 		if (!c->device)
2343 			continue;
2344 		driver = c->device(c, index);
2345 		if (driver)
2346 			break;
2347 	}
2348 	console_unlock();
2349 	return driver;
2350 }
2351 
2352 /*
2353  * Prevent further output on the passed console device so that (for example)
2354  * serial drivers can disable console output before suspending a port, and can
2355  * re-enable output afterwards.
2356  */
2357 void console_stop(struct console *console)
2358 {
2359 	console_lock();
2360 	console->flags &= ~CON_ENABLED;
2361 	console_unlock();
2362 }
2363 EXPORT_SYMBOL(console_stop);
2364 
2365 void console_start(struct console *console)
2366 {
2367 	console_lock();
2368 	console->flags |= CON_ENABLED;
2369 	console_unlock();
2370 }
2371 EXPORT_SYMBOL(console_start);
2372 
2373 static int __read_mostly keep_bootcon;
2374 
2375 static int __init keep_bootcon_setup(char *str)
2376 {
2377 	keep_bootcon = 1;
2378 	pr_info("debug: skip boot console de-registration.\n");
2379 
2380 	return 0;
2381 }
2382 
2383 early_param("keep_bootcon", keep_bootcon_setup);
2384 
2385 /*
2386  * The console driver calls this routine during kernel initialization
2387  * to register the console printing procedure with printk() and to
2388  * print any messages that were printed by the kernel before the
2389  * console driver was initialized.
2390  *
2391  * This can happen pretty early during the boot process (because of
2392  * early_printk) - sometimes before setup_arch() completes - be careful
2393  * of what kernel features are used - they may not be initialised yet.
2394  *
2395  * There are two types of consoles - bootconsoles (early_printk) and
2396  * "real" consoles (everything which is not a bootconsole) which are
2397  * handled differently.
2398  *  - Any number of bootconsoles can be registered at any time.
2399  *  - As soon as a "real" console is registered, all bootconsoles
2400  *    will be unregistered automatically.
2401  *  - Once a "real" console is registered, any attempt to register a
2402  *    bootconsoles will be rejected
2403  */
2404 void register_console(struct console *newcon)
2405 {
2406 	int i;
2407 	unsigned long flags;
2408 	struct console *bcon = NULL;
2409 	struct console_cmdline *c;
2410 
2411 	if (console_drivers)
2412 		for_each_console(bcon)
2413 			if (WARN(bcon == newcon,
2414 					"console '%s%d' already registered\n",
2415 					bcon->name, bcon->index))
2416 				return;
2417 
2418 	/*
2419 	 * before we register a new CON_BOOT console, make sure we don't
2420 	 * already have a valid console
2421 	 */
2422 	if (console_drivers && newcon->flags & CON_BOOT) {
2423 		/* find the last or real console */
2424 		for_each_console(bcon) {
2425 			if (!(bcon->flags & CON_BOOT)) {
2426 				pr_info("Too late to register bootconsole %s%d\n",
2427 					newcon->name, newcon->index);
2428 				return;
2429 			}
2430 		}
2431 	}
2432 
2433 	if (console_drivers && console_drivers->flags & CON_BOOT)
2434 		bcon = console_drivers;
2435 
2436 	if (preferred_console < 0 || bcon || !console_drivers)
2437 		preferred_console = selected_console;
2438 
2439 	if (newcon->early_setup)
2440 		newcon->early_setup();
2441 
2442 	/*
2443 	 *	See if we want to use this console driver. If we
2444 	 *	didn't select a console we take the first one
2445 	 *	that registers here.
2446 	 */
2447 	if (preferred_console < 0) {
2448 		if (newcon->index < 0)
2449 			newcon->index = 0;
2450 		if (newcon->setup == NULL ||
2451 		    newcon->setup(newcon, NULL) == 0) {
2452 			newcon->flags |= CON_ENABLED;
2453 			if (newcon->device) {
2454 				newcon->flags |= CON_CONSDEV;
2455 				preferred_console = 0;
2456 			}
2457 		}
2458 	}
2459 
2460 	/*
2461 	 *	See if this console matches one we selected on
2462 	 *	the command line.
2463 	 */
2464 	for (i = 0, c = console_cmdline;
2465 	     i < MAX_CMDLINECONSOLES && c->name[0];
2466 	     i++, c++) {
2467 		BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2468 		if (strcmp(c->name, newcon->name) != 0)
2469 			continue;
2470 		if (newcon->index >= 0 &&
2471 		    newcon->index != c->index)
2472 			continue;
2473 		if (newcon->index < 0)
2474 			newcon->index = c->index;
2475 
2476 		if (_braille_register_console(newcon, c))
2477 			return;
2478 
2479 		if (newcon->setup &&
2480 		    newcon->setup(newcon, console_cmdline[i].options) != 0)
2481 			break;
2482 		newcon->flags |= CON_ENABLED;
2483 		newcon->index = c->index;
2484 		if (i == selected_console) {
2485 			newcon->flags |= CON_CONSDEV;
2486 			preferred_console = selected_console;
2487 		}
2488 		break;
2489 	}
2490 
2491 	if (!(newcon->flags & CON_ENABLED))
2492 		return;
2493 
2494 	/*
2495 	 * If we have a bootconsole, and are switching to a real console,
2496 	 * don't print everything out again, since when the boot console, and
2497 	 * the real console are the same physical device, it's annoying to
2498 	 * see the beginning boot messages twice
2499 	 */
2500 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2501 		newcon->flags &= ~CON_PRINTBUFFER;
2502 
2503 	/*
2504 	 *	Put this console in the list - keep the
2505 	 *	preferred driver at the head of the list.
2506 	 */
2507 	console_lock();
2508 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2509 		newcon->next = console_drivers;
2510 		console_drivers = newcon;
2511 		if (newcon->next)
2512 			newcon->next->flags &= ~CON_CONSDEV;
2513 	} else {
2514 		newcon->next = console_drivers->next;
2515 		console_drivers->next = newcon;
2516 	}
2517 	if (newcon->flags & CON_PRINTBUFFER) {
2518 		/*
2519 		 * console_unlock(); will print out the buffered messages
2520 		 * for us.
2521 		 */
2522 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2523 		console_seq = syslog_seq;
2524 		console_idx = syslog_idx;
2525 		console_prev = syslog_prev;
2526 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2527 		/*
2528 		 * We're about to replay the log buffer.  Only do this to the
2529 		 * just-registered console to avoid excessive message spam to
2530 		 * the already-registered consoles.
2531 		 */
2532 		exclusive_console = newcon;
2533 	}
2534 	console_unlock();
2535 	console_sysfs_notify();
2536 
2537 	/*
2538 	 * By unregistering the bootconsoles after we enable the real console
2539 	 * we get the "console xxx enabled" message on all the consoles -
2540 	 * boot consoles, real consoles, etc - this is to ensure that end
2541 	 * users know there might be something in the kernel's log buffer that
2542 	 * went to the bootconsole (that they do not see on the real console)
2543 	 */
2544 	pr_info("%sconsole [%s%d] enabled\n",
2545 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2546 		newcon->name, newcon->index);
2547 	if (bcon &&
2548 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2549 	    !keep_bootcon) {
2550 		/* We need to iterate through all boot consoles, to make
2551 		 * sure we print everything out, before we unregister them.
2552 		 */
2553 		for_each_console(bcon)
2554 			if (bcon->flags & CON_BOOT)
2555 				unregister_console(bcon);
2556 	}
2557 }
2558 EXPORT_SYMBOL(register_console);
2559 
2560 int unregister_console(struct console *console)
2561 {
2562         struct console *a, *b;
2563 	int res;
2564 
2565 	pr_info("%sconsole [%s%d] disabled\n",
2566 		(console->flags & CON_BOOT) ? "boot" : "" ,
2567 		console->name, console->index);
2568 
2569 	res = _braille_unregister_console(console);
2570 	if (res)
2571 		return res;
2572 
2573 	res = 1;
2574 	console_lock();
2575 	if (console_drivers == console) {
2576 		console_drivers=console->next;
2577 		res = 0;
2578 	} else if (console_drivers) {
2579 		for (a=console_drivers->next, b=console_drivers ;
2580 		     a; b=a, a=b->next) {
2581 			if (a == console) {
2582 				b->next = a->next;
2583 				res = 0;
2584 				break;
2585 			}
2586 		}
2587 	}
2588 
2589 	/*
2590 	 * If this isn't the last console and it has CON_CONSDEV set, we
2591 	 * need to set it on the next preferred console.
2592 	 */
2593 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2594 		console_drivers->flags |= CON_CONSDEV;
2595 
2596 	console->flags &= ~CON_ENABLED;
2597 	console_unlock();
2598 	console_sysfs_notify();
2599 	return res;
2600 }
2601 EXPORT_SYMBOL(unregister_console);
2602 
2603 static int __init printk_late_init(void)
2604 {
2605 	struct console *con;
2606 
2607 	for_each_console(con) {
2608 		if (!keep_bootcon && con->flags & CON_BOOT) {
2609 			unregister_console(con);
2610 		}
2611 	}
2612 	hotcpu_notifier(console_cpu_notify, 0);
2613 	return 0;
2614 }
2615 late_initcall(printk_late_init);
2616 
2617 #if defined CONFIG_PRINTK
2618 /*
2619  * Delayed printk version, for scheduler-internal messages:
2620  */
2621 #define PRINTK_PENDING_WAKEUP	0x01
2622 #define PRINTK_PENDING_OUTPUT	0x02
2623 
2624 static DEFINE_PER_CPU(int, printk_pending);
2625 
2626 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2627 {
2628 	int pending = __this_cpu_xchg(printk_pending, 0);
2629 
2630 	if (pending & PRINTK_PENDING_OUTPUT) {
2631 		/* If trylock fails, someone else is doing the printing */
2632 		if (console_trylock())
2633 			console_unlock();
2634 	}
2635 
2636 	if (pending & PRINTK_PENDING_WAKEUP)
2637 		wake_up_interruptible(&log_wait);
2638 }
2639 
2640 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2641 	.func = wake_up_klogd_work_func,
2642 	.flags = IRQ_WORK_LAZY,
2643 };
2644 
2645 void wake_up_klogd(void)
2646 {
2647 	preempt_disable();
2648 	if (waitqueue_active(&log_wait)) {
2649 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2650 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2651 	}
2652 	preempt_enable();
2653 }
2654 
2655 int printk_deferred(const char *fmt, ...)
2656 {
2657 	va_list args;
2658 	int r;
2659 
2660 	preempt_disable();
2661 	va_start(args, fmt);
2662 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2663 	va_end(args);
2664 
2665 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2666 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2667 	preempt_enable();
2668 
2669 	return r;
2670 }
2671 
2672 /*
2673  * printk rate limiting, lifted from the networking subsystem.
2674  *
2675  * This enforces a rate limit: not more than 10 kernel messages
2676  * every 5s to make a denial-of-service attack impossible.
2677  */
2678 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2679 
2680 int __printk_ratelimit(const char *func)
2681 {
2682 	return ___ratelimit(&printk_ratelimit_state, func);
2683 }
2684 EXPORT_SYMBOL(__printk_ratelimit);
2685 
2686 /**
2687  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2688  * @caller_jiffies: pointer to caller's state
2689  * @interval_msecs: minimum interval between prints
2690  *
2691  * printk_timed_ratelimit() returns true if more than @interval_msecs
2692  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2693  * returned true.
2694  */
2695 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2696 			unsigned int interval_msecs)
2697 {
2698 	unsigned long elapsed = jiffies - *caller_jiffies;
2699 
2700 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2701 		return false;
2702 
2703 	*caller_jiffies = jiffies;
2704 	return true;
2705 }
2706 EXPORT_SYMBOL(printk_timed_ratelimit);
2707 
2708 static DEFINE_SPINLOCK(dump_list_lock);
2709 static LIST_HEAD(dump_list);
2710 
2711 /**
2712  * kmsg_dump_register - register a kernel log dumper.
2713  * @dumper: pointer to the kmsg_dumper structure
2714  *
2715  * Adds a kernel log dumper to the system. The dump callback in the
2716  * structure will be called when the kernel oopses or panics and must be
2717  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2718  */
2719 int kmsg_dump_register(struct kmsg_dumper *dumper)
2720 {
2721 	unsigned long flags;
2722 	int err = -EBUSY;
2723 
2724 	/* The dump callback needs to be set */
2725 	if (!dumper->dump)
2726 		return -EINVAL;
2727 
2728 	spin_lock_irqsave(&dump_list_lock, flags);
2729 	/* Don't allow registering multiple times */
2730 	if (!dumper->registered) {
2731 		dumper->registered = 1;
2732 		list_add_tail_rcu(&dumper->list, &dump_list);
2733 		err = 0;
2734 	}
2735 	spin_unlock_irqrestore(&dump_list_lock, flags);
2736 
2737 	return err;
2738 }
2739 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2740 
2741 /**
2742  * kmsg_dump_unregister - unregister a kmsg dumper.
2743  * @dumper: pointer to the kmsg_dumper structure
2744  *
2745  * Removes a dump device from the system. Returns zero on success and
2746  * %-EINVAL otherwise.
2747  */
2748 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2749 {
2750 	unsigned long flags;
2751 	int err = -EINVAL;
2752 
2753 	spin_lock_irqsave(&dump_list_lock, flags);
2754 	if (dumper->registered) {
2755 		dumper->registered = 0;
2756 		list_del_rcu(&dumper->list);
2757 		err = 0;
2758 	}
2759 	spin_unlock_irqrestore(&dump_list_lock, flags);
2760 	synchronize_rcu();
2761 
2762 	return err;
2763 }
2764 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2765 
2766 static bool always_kmsg_dump;
2767 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2768 
2769 /**
2770  * kmsg_dump - dump kernel log to kernel message dumpers.
2771  * @reason: the reason (oops, panic etc) for dumping
2772  *
2773  * Call each of the registered dumper's dump() callback, which can
2774  * retrieve the kmsg records with kmsg_dump_get_line() or
2775  * kmsg_dump_get_buffer().
2776  */
2777 void kmsg_dump(enum kmsg_dump_reason reason)
2778 {
2779 	struct kmsg_dumper *dumper;
2780 	unsigned long flags;
2781 
2782 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2783 		return;
2784 
2785 	rcu_read_lock();
2786 	list_for_each_entry_rcu(dumper, &dump_list, list) {
2787 		if (dumper->max_reason && reason > dumper->max_reason)
2788 			continue;
2789 
2790 		/* initialize iterator with data about the stored records */
2791 		dumper->active = true;
2792 
2793 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2794 		dumper->cur_seq = clear_seq;
2795 		dumper->cur_idx = clear_idx;
2796 		dumper->next_seq = log_next_seq;
2797 		dumper->next_idx = log_next_idx;
2798 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2799 
2800 		/* invoke dumper which will iterate over records */
2801 		dumper->dump(dumper, reason);
2802 
2803 		/* reset iterator */
2804 		dumper->active = false;
2805 	}
2806 	rcu_read_unlock();
2807 }
2808 
2809 /**
2810  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2811  * @dumper: registered kmsg dumper
2812  * @syslog: include the "<4>" prefixes
2813  * @line: buffer to copy the line to
2814  * @size: maximum size of the buffer
2815  * @len: length of line placed into buffer
2816  *
2817  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2818  * record, and copy one record into the provided buffer.
2819  *
2820  * Consecutive calls will return the next available record moving
2821  * towards the end of the buffer with the youngest messages.
2822  *
2823  * A return value of FALSE indicates that there are no more records to
2824  * read.
2825  *
2826  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2827  */
2828 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2829 			       char *line, size_t size, size_t *len)
2830 {
2831 	struct printk_log *msg;
2832 	size_t l = 0;
2833 	bool ret = false;
2834 
2835 	if (!dumper->active)
2836 		goto out;
2837 
2838 	if (dumper->cur_seq < log_first_seq) {
2839 		/* messages are gone, move to first available one */
2840 		dumper->cur_seq = log_first_seq;
2841 		dumper->cur_idx = log_first_idx;
2842 	}
2843 
2844 	/* last entry */
2845 	if (dumper->cur_seq >= log_next_seq)
2846 		goto out;
2847 
2848 	msg = log_from_idx(dumper->cur_idx);
2849 	l = msg_print_text(msg, 0, syslog, line, size);
2850 
2851 	dumper->cur_idx = log_next(dumper->cur_idx);
2852 	dumper->cur_seq++;
2853 	ret = true;
2854 out:
2855 	if (len)
2856 		*len = l;
2857 	return ret;
2858 }
2859 
2860 /**
2861  * kmsg_dump_get_line - retrieve one kmsg log line
2862  * @dumper: registered kmsg dumper
2863  * @syslog: include the "<4>" prefixes
2864  * @line: buffer to copy the line to
2865  * @size: maximum size of the buffer
2866  * @len: length of line placed into buffer
2867  *
2868  * Start at the beginning of the kmsg buffer, with the oldest kmsg
2869  * record, and copy one record into the provided buffer.
2870  *
2871  * Consecutive calls will return the next available record moving
2872  * towards the end of the buffer with the youngest messages.
2873  *
2874  * A return value of FALSE indicates that there are no more records to
2875  * read.
2876  */
2877 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2878 			char *line, size_t size, size_t *len)
2879 {
2880 	unsigned long flags;
2881 	bool ret;
2882 
2883 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2884 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2885 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2886 
2887 	return ret;
2888 }
2889 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2890 
2891 /**
2892  * kmsg_dump_get_buffer - copy kmsg log lines
2893  * @dumper: registered kmsg dumper
2894  * @syslog: include the "<4>" prefixes
2895  * @buf: buffer to copy the line to
2896  * @size: maximum size of the buffer
2897  * @len: length of line placed into buffer
2898  *
2899  * Start at the end of the kmsg buffer and fill the provided buffer
2900  * with as many of the the *youngest* kmsg records that fit into it.
2901  * If the buffer is large enough, all available kmsg records will be
2902  * copied with a single call.
2903  *
2904  * Consecutive calls will fill the buffer with the next block of
2905  * available older records, not including the earlier retrieved ones.
2906  *
2907  * A return value of FALSE indicates that there are no more records to
2908  * read.
2909  */
2910 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2911 			  char *buf, size_t size, size_t *len)
2912 {
2913 	unsigned long flags;
2914 	u64 seq;
2915 	u32 idx;
2916 	u64 next_seq;
2917 	u32 next_idx;
2918 	enum log_flags prev;
2919 	size_t l = 0;
2920 	bool ret = false;
2921 
2922 	if (!dumper->active)
2923 		goto out;
2924 
2925 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2926 	if (dumper->cur_seq < log_first_seq) {
2927 		/* messages are gone, move to first available one */
2928 		dumper->cur_seq = log_first_seq;
2929 		dumper->cur_idx = log_first_idx;
2930 	}
2931 
2932 	/* last entry */
2933 	if (dumper->cur_seq >= dumper->next_seq) {
2934 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2935 		goto out;
2936 	}
2937 
2938 	/* calculate length of entire buffer */
2939 	seq = dumper->cur_seq;
2940 	idx = dumper->cur_idx;
2941 	prev = 0;
2942 	while (seq < dumper->next_seq) {
2943 		struct printk_log *msg = log_from_idx(idx);
2944 
2945 		l += msg_print_text(msg, prev, true, NULL, 0);
2946 		idx = log_next(idx);
2947 		seq++;
2948 		prev = msg->flags;
2949 	}
2950 
2951 	/* move first record forward until length fits into the buffer */
2952 	seq = dumper->cur_seq;
2953 	idx = dumper->cur_idx;
2954 	prev = 0;
2955 	while (l > size && seq < dumper->next_seq) {
2956 		struct printk_log *msg = log_from_idx(idx);
2957 
2958 		l -= msg_print_text(msg, prev, true, NULL, 0);
2959 		idx = log_next(idx);
2960 		seq++;
2961 		prev = msg->flags;
2962 	}
2963 
2964 	/* last message in next interation */
2965 	next_seq = seq;
2966 	next_idx = idx;
2967 
2968 	l = 0;
2969 	while (seq < dumper->next_seq) {
2970 		struct printk_log *msg = log_from_idx(idx);
2971 
2972 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
2973 		idx = log_next(idx);
2974 		seq++;
2975 		prev = msg->flags;
2976 	}
2977 
2978 	dumper->next_seq = next_seq;
2979 	dumper->next_idx = next_idx;
2980 	ret = true;
2981 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2982 out:
2983 	if (len)
2984 		*len = l;
2985 	return ret;
2986 }
2987 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
2988 
2989 /**
2990  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
2991  * @dumper: registered kmsg dumper
2992  *
2993  * Reset the dumper's iterator so that kmsg_dump_get_line() and
2994  * kmsg_dump_get_buffer() can be called again and used multiple
2995  * times within the same dumper.dump() callback.
2996  *
2997  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
2998  */
2999 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3000 {
3001 	dumper->cur_seq = clear_seq;
3002 	dumper->cur_idx = clear_idx;
3003 	dumper->next_seq = log_next_seq;
3004 	dumper->next_idx = log_next_idx;
3005 }
3006 
3007 /**
3008  * kmsg_dump_rewind - reset the interator
3009  * @dumper: registered kmsg dumper
3010  *
3011  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3012  * kmsg_dump_get_buffer() can be called again and used multiple
3013  * times within the same dumper.dump() callback.
3014  */
3015 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3016 {
3017 	unsigned long flags;
3018 
3019 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3020 	kmsg_dump_rewind_nolock(dumper);
3021 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3022 }
3023 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3024 
3025 static char dump_stack_arch_desc_str[128];
3026 
3027 /**
3028  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3029  * @fmt: printf-style format string
3030  * @...: arguments for the format string
3031  *
3032  * The configured string will be printed right after utsname during task
3033  * dumps.  Usually used to add arch-specific system identifiers.  If an
3034  * arch wants to make use of such an ID string, it should initialize this
3035  * as soon as possible during boot.
3036  */
3037 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3038 {
3039 	va_list args;
3040 
3041 	va_start(args, fmt);
3042 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3043 		  fmt, args);
3044 	va_end(args);
3045 }
3046 
3047 /**
3048  * dump_stack_print_info - print generic debug info for dump_stack()
3049  * @log_lvl: log level
3050  *
3051  * Arch-specific dump_stack() implementations can use this function to
3052  * print out the same debug information as the generic dump_stack().
3053  */
3054 void dump_stack_print_info(const char *log_lvl)
3055 {
3056 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3057 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3058 	       print_tainted(), init_utsname()->release,
3059 	       (int)strcspn(init_utsname()->version, " "),
3060 	       init_utsname()->version);
3061 
3062 	if (dump_stack_arch_desc_str[0] != '\0')
3063 		printk("%sHardware name: %s\n",
3064 		       log_lvl, dump_stack_arch_desc_str);
3065 
3066 	print_worker_info(log_lvl, current);
3067 }
3068 
3069 /**
3070  * show_regs_print_info - print generic debug info for show_regs()
3071  * @log_lvl: log level
3072  *
3073  * show_regs() implementations can use this function to print out generic
3074  * debug information.
3075  */
3076 void show_regs_print_info(const char *log_lvl)
3077 {
3078 	dump_stack_print_info(log_lvl);
3079 
3080 	printk("%stask: %p ti: %p task.ti: %p\n",
3081 	       log_lvl, current, current_thread_info(),
3082 	       task_thread_info(current));
3083 }
3084 
3085 #endif
3086