xref: /linux/kernel/printk/printk.c (revision 1f2367a39f17bd553a75e179a747f9b257bc9478)
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20 
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/tty.h>
24 #include <linux/tty_driver.h>
25 #include <linux/console.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/nmi.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/delay.h>
32 #include <linux/smp.h>
33 #include <linux/security.h>
34 #include <linux/memblock.h>
35 #include <linux/syscalls.h>
36 #include <linux/crash_core.h>
37 #include <linux/kdb.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "console_cmdline.h"
59 #include "braille.h"
60 #include "internal.h"
61 
62 int console_printk[4] = {
63 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
64 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
65 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
66 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
67 };
68 EXPORT_SYMBOL_GPL(console_printk);
69 
70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
71 EXPORT_SYMBOL(ignore_console_lock_warning);
72 
73 /*
74  * Low level drivers may need that to know if they can schedule in
75  * their unblank() callback or not. So let's export it.
76  */
77 int oops_in_progress;
78 EXPORT_SYMBOL(oops_in_progress);
79 
80 /*
81  * console_sem protects the console_drivers list, and also
82  * provides serialisation for access to the entire console
83  * driver system.
84  */
85 static DEFINE_SEMAPHORE(console_sem);
86 struct console *console_drivers;
87 EXPORT_SYMBOL_GPL(console_drivers);
88 
89 #ifdef CONFIG_LOCKDEP
90 static struct lockdep_map console_lock_dep_map = {
91 	.name = "console_lock"
92 };
93 #endif
94 
95 enum devkmsg_log_bits {
96 	__DEVKMSG_LOG_BIT_ON = 0,
97 	__DEVKMSG_LOG_BIT_OFF,
98 	__DEVKMSG_LOG_BIT_LOCK,
99 };
100 
101 enum devkmsg_log_masks {
102 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
103 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
104 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
105 };
106 
107 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
108 #define DEVKMSG_LOG_MASK_DEFAULT	0
109 
110 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
111 
112 static int __control_devkmsg(char *str)
113 {
114 	if (!str)
115 		return -EINVAL;
116 
117 	if (!strncmp(str, "on", 2)) {
118 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
119 		return 2;
120 	} else if (!strncmp(str, "off", 3)) {
121 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
122 		return 3;
123 	} else if (!strncmp(str, "ratelimit", 9)) {
124 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
125 		return 9;
126 	}
127 	return -EINVAL;
128 }
129 
130 static int __init control_devkmsg(char *str)
131 {
132 	if (__control_devkmsg(str) < 0)
133 		return 1;
134 
135 	/*
136 	 * Set sysctl string accordingly:
137 	 */
138 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
139 		strcpy(devkmsg_log_str, "on");
140 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
141 		strcpy(devkmsg_log_str, "off");
142 	/* else "ratelimit" which is set by default. */
143 
144 	/*
145 	 * Sysctl cannot change it anymore. The kernel command line setting of
146 	 * this parameter is to force the setting to be permanent throughout the
147 	 * runtime of the system. This is a precation measure against userspace
148 	 * trying to be a smarta** and attempting to change it up on us.
149 	 */
150 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
151 
152 	return 0;
153 }
154 __setup("printk.devkmsg=", control_devkmsg);
155 
156 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
157 
158 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
159 			      void __user *buffer, size_t *lenp, loff_t *ppos)
160 {
161 	char old_str[DEVKMSG_STR_MAX_SIZE];
162 	unsigned int old;
163 	int err;
164 
165 	if (write) {
166 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
167 			return -EINVAL;
168 
169 		old = devkmsg_log;
170 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
171 	}
172 
173 	err = proc_dostring(table, write, buffer, lenp, ppos);
174 	if (err)
175 		return err;
176 
177 	if (write) {
178 		err = __control_devkmsg(devkmsg_log_str);
179 
180 		/*
181 		 * Do not accept an unknown string OR a known string with
182 		 * trailing crap...
183 		 */
184 		if (err < 0 || (err + 1 != *lenp)) {
185 
186 			/* ... and restore old setting. */
187 			devkmsg_log = old;
188 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
189 
190 			return -EINVAL;
191 		}
192 	}
193 
194 	return 0;
195 }
196 
197 /* Number of registered extended console drivers. */
198 static int nr_ext_console_drivers;
199 
200 /*
201  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
202  * macros instead of functions so that _RET_IP_ contains useful information.
203  */
204 #define down_console_sem() do { \
205 	down(&console_sem);\
206 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
207 } while (0)
208 
209 static int __down_trylock_console_sem(unsigned long ip)
210 {
211 	int lock_failed;
212 	unsigned long flags;
213 
214 	/*
215 	 * Here and in __up_console_sem() we need to be in safe mode,
216 	 * because spindump/WARN/etc from under console ->lock will
217 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
218 	 */
219 	printk_safe_enter_irqsave(flags);
220 	lock_failed = down_trylock(&console_sem);
221 	printk_safe_exit_irqrestore(flags);
222 
223 	if (lock_failed)
224 		return 1;
225 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
226 	return 0;
227 }
228 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
229 
230 static void __up_console_sem(unsigned long ip)
231 {
232 	unsigned long flags;
233 
234 	mutex_release(&console_lock_dep_map, 1, ip);
235 
236 	printk_safe_enter_irqsave(flags);
237 	up(&console_sem);
238 	printk_safe_exit_irqrestore(flags);
239 }
240 #define up_console_sem() __up_console_sem(_RET_IP_)
241 
242 /*
243  * This is used for debugging the mess that is the VT code by
244  * keeping track if we have the console semaphore held. It's
245  * definitely not the perfect debug tool (we don't know if _WE_
246  * hold it and are racing, but it helps tracking those weird code
247  * paths in the console code where we end up in places I want
248  * locked without the console sempahore held).
249  */
250 static int console_locked, console_suspended;
251 
252 /*
253  * If exclusive_console is non-NULL then only this console is to be printed to.
254  */
255 static struct console *exclusive_console;
256 
257 /*
258  *	Array of consoles built from command line options (console=)
259  */
260 
261 #define MAX_CMDLINECONSOLES 8
262 
263 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
264 
265 static int preferred_console = -1;
266 int console_set_on_cmdline;
267 EXPORT_SYMBOL(console_set_on_cmdline);
268 
269 /* Flag: console code may call schedule() */
270 static int console_may_schedule;
271 
272 enum con_msg_format_flags {
273 	MSG_FORMAT_DEFAULT	= 0,
274 	MSG_FORMAT_SYSLOG	= (1 << 0),
275 };
276 
277 static int console_msg_format = MSG_FORMAT_DEFAULT;
278 
279 /*
280  * The printk log buffer consists of a chain of concatenated variable
281  * length records. Every record starts with a record header, containing
282  * the overall length of the record.
283  *
284  * The heads to the first and last entry in the buffer, as well as the
285  * sequence numbers of these entries are maintained when messages are
286  * stored.
287  *
288  * If the heads indicate available messages, the length in the header
289  * tells the start next message. A length == 0 for the next message
290  * indicates a wrap-around to the beginning of the buffer.
291  *
292  * Every record carries the monotonic timestamp in microseconds, as well as
293  * the standard userspace syslog level and syslog facility. The usual
294  * kernel messages use LOG_KERN; userspace-injected messages always carry
295  * a matching syslog facility, by default LOG_USER. The origin of every
296  * message can be reliably determined that way.
297  *
298  * The human readable log message directly follows the message header. The
299  * length of the message text is stored in the header, the stored message
300  * is not terminated.
301  *
302  * Optionally, a message can carry a dictionary of properties (key/value pairs),
303  * to provide userspace with a machine-readable message context.
304  *
305  * Examples for well-defined, commonly used property names are:
306  *   DEVICE=b12:8               device identifier
307  *                                b12:8         block dev_t
308  *                                c127:3        char dev_t
309  *                                n8            netdev ifindex
310  *                                +sound:card0  subsystem:devname
311  *   SUBSYSTEM=pci              driver-core subsystem name
312  *
313  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
314  * follows directly after a '=' character. Every property is terminated by
315  * a '\0' character. The last property is not terminated.
316  *
317  * Example of a message structure:
318  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
319  *   0008  34 00                        record is 52 bytes long
320  *   000a        0b 00                  text is 11 bytes long
321  *   000c              1f 00            dictionary is 23 bytes long
322  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
323  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
324  *         69 6e 65                     "ine"
325  *   001b           44 45 56 49 43      "DEVIC"
326  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
327  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
328  *         67                           "g"
329  *   0032     00 00 00                  padding to next message header
330  *
331  * The 'struct printk_log' buffer header must never be directly exported to
332  * userspace, it is a kernel-private implementation detail that might
333  * need to be changed in the future, when the requirements change.
334  *
335  * /dev/kmsg exports the structured data in the following line format:
336  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
337  *
338  * Users of the export format should ignore possible additional values
339  * separated by ',', and find the message after the ';' character.
340  *
341  * The optional key/value pairs are attached as continuation lines starting
342  * with a space character and terminated by a newline. All possible
343  * non-prinatable characters are escaped in the "\xff" notation.
344  */
345 
346 enum log_flags {
347 	LOG_NEWLINE	= 2,	/* text ended with a newline */
348 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
349 };
350 
351 struct printk_log {
352 	u64 ts_nsec;		/* timestamp in nanoseconds */
353 	u16 len;		/* length of entire record */
354 	u16 text_len;		/* length of text buffer */
355 	u16 dict_len;		/* length of dictionary buffer */
356 	u8 facility;		/* syslog facility */
357 	u8 flags:5;		/* internal record flags */
358 	u8 level:3;		/* syslog level */
359 #ifdef CONFIG_PRINTK_CALLER
360 	u32 caller_id;            /* thread id or processor id */
361 #endif
362 }
363 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
364 __packed __aligned(4)
365 #endif
366 ;
367 
368 /*
369  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
370  * within the scheduler's rq lock. It must be released before calling
371  * console_unlock() or anything else that might wake up a process.
372  */
373 DEFINE_RAW_SPINLOCK(logbuf_lock);
374 
375 /*
376  * Helper macros to lock/unlock logbuf_lock and switch between
377  * printk-safe/unsafe modes.
378  */
379 #define logbuf_lock_irq()				\
380 	do {						\
381 		printk_safe_enter_irq();		\
382 		raw_spin_lock(&logbuf_lock);		\
383 	} while (0)
384 
385 #define logbuf_unlock_irq()				\
386 	do {						\
387 		raw_spin_unlock(&logbuf_lock);		\
388 		printk_safe_exit_irq();			\
389 	} while (0)
390 
391 #define logbuf_lock_irqsave(flags)			\
392 	do {						\
393 		printk_safe_enter_irqsave(flags);	\
394 		raw_spin_lock(&logbuf_lock);		\
395 	} while (0)
396 
397 #define logbuf_unlock_irqrestore(flags)		\
398 	do {						\
399 		raw_spin_unlock(&logbuf_lock);		\
400 		printk_safe_exit_irqrestore(flags);	\
401 	} while (0)
402 
403 #ifdef CONFIG_PRINTK
404 DECLARE_WAIT_QUEUE_HEAD(log_wait);
405 /* the next printk record to read by syslog(READ) or /proc/kmsg */
406 static u64 syslog_seq;
407 static u32 syslog_idx;
408 static size_t syslog_partial;
409 static bool syslog_time;
410 
411 /* index and sequence number of the first record stored in the buffer */
412 static u64 log_first_seq;
413 static u32 log_first_idx;
414 
415 /* index and sequence number of the next record to store in the buffer */
416 static u64 log_next_seq;
417 static u32 log_next_idx;
418 
419 /* the next printk record to write to the console */
420 static u64 console_seq;
421 static u32 console_idx;
422 static u64 exclusive_console_stop_seq;
423 
424 /* the next printk record to read after the last 'clear' command */
425 static u64 clear_seq;
426 static u32 clear_idx;
427 
428 #ifdef CONFIG_PRINTK_CALLER
429 #define PREFIX_MAX		48
430 #else
431 #define PREFIX_MAX		32
432 #endif
433 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
434 
435 #define LOG_LEVEL(v)		((v) & 0x07)
436 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
437 
438 /* record buffer */
439 #define LOG_ALIGN __alignof__(struct printk_log)
440 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
441 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
442 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
443 static char *log_buf = __log_buf;
444 static u32 log_buf_len = __LOG_BUF_LEN;
445 
446 /* Return log buffer address */
447 char *log_buf_addr_get(void)
448 {
449 	return log_buf;
450 }
451 
452 /* Return log buffer size */
453 u32 log_buf_len_get(void)
454 {
455 	return log_buf_len;
456 }
457 
458 /* human readable text of the record */
459 static char *log_text(const struct printk_log *msg)
460 {
461 	return (char *)msg + sizeof(struct printk_log);
462 }
463 
464 /* optional key/value pair dictionary attached to the record */
465 static char *log_dict(const struct printk_log *msg)
466 {
467 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
468 }
469 
470 /* get record by index; idx must point to valid msg */
471 static struct printk_log *log_from_idx(u32 idx)
472 {
473 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
474 
475 	/*
476 	 * A length == 0 record is the end of buffer marker. Wrap around and
477 	 * read the message at the start of the buffer.
478 	 */
479 	if (!msg->len)
480 		return (struct printk_log *)log_buf;
481 	return msg;
482 }
483 
484 /* get next record; idx must point to valid msg */
485 static u32 log_next(u32 idx)
486 {
487 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
488 
489 	/* length == 0 indicates the end of the buffer; wrap */
490 	/*
491 	 * A length == 0 record is the end of buffer marker. Wrap around and
492 	 * read the message at the start of the buffer as *this* one, and
493 	 * return the one after that.
494 	 */
495 	if (!msg->len) {
496 		msg = (struct printk_log *)log_buf;
497 		return msg->len;
498 	}
499 	return idx + msg->len;
500 }
501 
502 /*
503  * Check whether there is enough free space for the given message.
504  *
505  * The same values of first_idx and next_idx mean that the buffer
506  * is either empty or full.
507  *
508  * If the buffer is empty, we must respect the position of the indexes.
509  * They cannot be reset to the beginning of the buffer.
510  */
511 static int logbuf_has_space(u32 msg_size, bool empty)
512 {
513 	u32 free;
514 
515 	if (log_next_idx > log_first_idx || empty)
516 		free = max(log_buf_len - log_next_idx, log_first_idx);
517 	else
518 		free = log_first_idx - log_next_idx;
519 
520 	/*
521 	 * We need space also for an empty header that signalizes wrapping
522 	 * of the buffer.
523 	 */
524 	return free >= msg_size + sizeof(struct printk_log);
525 }
526 
527 static int log_make_free_space(u32 msg_size)
528 {
529 	while (log_first_seq < log_next_seq &&
530 	       !logbuf_has_space(msg_size, false)) {
531 		/* drop old messages until we have enough contiguous space */
532 		log_first_idx = log_next(log_first_idx);
533 		log_first_seq++;
534 	}
535 
536 	if (clear_seq < log_first_seq) {
537 		clear_seq = log_first_seq;
538 		clear_idx = log_first_idx;
539 	}
540 
541 	/* sequence numbers are equal, so the log buffer is empty */
542 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
543 		return 0;
544 
545 	return -ENOMEM;
546 }
547 
548 /* compute the message size including the padding bytes */
549 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
550 {
551 	u32 size;
552 
553 	size = sizeof(struct printk_log) + text_len + dict_len;
554 	*pad_len = (-size) & (LOG_ALIGN - 1);
555 	size += *pad_len;
556 
557 	return size;
558 }
559 
560 /*
561  * Define how much of the log buffer we could take at maximum. The value
562  * must be greater than two. Note that only half of the buffer is available
563  * when the index points to the middle.
564  */
565 #define MAX_LOG_TAKE_PART 4
566 static const char trunc_msg[] = "<truncated>";
567 
568 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
569 			u16 *dict_len, u32 *pad_len)
570 {
571 	/*
572 	 * The message should not take the whole buffer. Otherwise, it might
573 	 * get removed too soon.
574 	 */
575 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
576 	if (*text_len > max_text_len)
577 		*text_len = max_text_len;
578 	/* enable the warning message */
579 	*trunc_msg_len = strlen(trunc_msg);
580 	/* disable the "dict" completely */
581 	*dict_len = 0;
582 	/* compute the size again, count also the warning message */
583 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
584 }
585 
586 /* insert record into the buffer, discard old ones, update heads */
587 static int log_store(u32 caller_id, int facility, int level,
588 		     enum log_flags flags, u64 ts_nsec,
589 		     const char *dict, u16 dict_len,
590 		     const char *text, u16 text_len)
591 {
592 	struct printk_log *msg;
593 	u32 size, pad_len;
594 	u16 trunc_msg_len = 0;
595 
596 	/* number of '\0' padding bytes to next message */
597 	size = msg_used_size(text_len, dict_len, &pad_len);
598 
599 	if (log_make_free_space(size)) {
600 		/* truncate the message if it is too long for empty buffer */
601 		size = truncate_msg(&text_len, &trunc_msg_len,
602 				    &dict_len, &pad_len);
603 		/* survive when the log buffer is too small for trunc_msg */
604 		if (log_make_free_space(size))
605 			return 0;
606 	}
607 
608 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
609 		/*
610 		 * This message + an additional empty header does not fit
611 		 * at the end of the buffer. Add an empty header with len == 0
612 		 * to signify a wrap around.
613 		 */
614 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
615 		log_next_idx = 0;
616 	}
617 
618 	/* fill message */
619 	msg = (struct printk_log *)(log_buf + log_next_idx);
620 	memcpy(log_text(msg), text, text_len);
621 	msg->text_len = text_len;
622 	if (trunc_msg_len) {
623 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
624 		msg->text_len += trunc_msg_len;
625 	}
626 	memcpy(log_dict(msg), dict, dict_len);
627 	msg->dict_len = dict_len;
628 	msg->facility = facility;
629 	msg->level = level & 7;
630 	msg->flags = flags & 0x1f;
631 	if (ts_nsec > 0)
632 		msg->ts_nsec = ts_nsec;
633 	else
634 		msg->ts_nsec = local_clock();
635 #ifdef CONFIG_PRINTK_CALLER
636 	msg->caller_id = caller_id;
637 #endif
638 	memset(log_dict(msg) + dict_len, 0, pad_len);
639 	msg->len = size;
640 
641 	/* insert message */
642 	log_next_idx += msg->len;
643 	log_next_seq++;
644 
645 	return msg->text_len;
646 }
647 
648 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
649 
650 static int syslog_action_restricted(int type)
651 {
652 	if (dmesg_restrict)
653 		return 1;
654 	/*
655 	 * Unless restricted, we allow "read all" and "get buffer size"
656 	 * for everybody.
657 	 */
658 	return type != SYSLOG_ACTION_READ_ALL &&
659 	       type != SYSLOG_ACTION_SIZE_BUFFER;
660 }
661 
662 static int check_syslog_permissions(int type, int source)
663 {
664 	/*
665 	 * If this is from /proc/kmsg and we've already opened it, then we've
666 	 * already done the capabilities checks at open time.
667 	 */
668 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
669 		goto ok;
670 
671 	if (syslog_action_restricted(type)) {
672 		if (capable(CAP_SYSLOG))
673 			goto ok;
674 		/*
675 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
676 		 * a warning.
677 		 */
678 		if (capable(CAP_SYS_ADMIN)) {
679 			pr_warn_once("%s (%d): Attempt to access syslog with "
680 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
681 				     "(deprecated).\n",
682 				 current->comm, task_pid_nr(current));
683 			goto ok;
684 		}
685 		return -EPERM;
686 	}
687 ok:
688 	return security_syslog(type);
689 }
690 
691 static void append_char(char **pp, char *e, char c)
692 {
693 	if (*pp < e)
694 		*(*pp)++ = c;
695 }
696 
697 static ssize_t msg_print_ext_header(char *buf, size_t size,
698 				    struct printk_log *msg, u64 seq)
699 {
700 	u64 ts_usec = msg->ts_nsec;
701 	char caller[20];
702 #ifdef CONFIG_PRINTK_CALLER
703 	u32 id = msg->caller_id;
704 
705 	snprintf(caller, sizeof(caller), ",caller=%c%u",
706 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
707 #else
708 	caller[0] = '\0';
709 #endif
710 
711 	do_div(ts_usec, 1000);
712 
713 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
714 			 (msg->facility << 3) | msg->level, seq, ts_usec,
715 			 msg->flags & LOG_CONT ? 'c' : '-', caller);
716 }
717 
718 static ssize_t msg_print_ext_body(char *buf, size_t size,
719 				  char *dict, size_t dict_len,
720 				  char *text, size_t text_len)
721 {
722 	char *p = buf, *e = buf + size;
723 	size_t i;
724 
725 	/* escape non-printable characters */
726 	for (i = 0; i < text_len; i++) {
727 		unsigned char c = text[i];
728 
729 		if (c < ' ' || c >= 127 || c == '\\')
730 			p += scnprintf(p, e - p, "\\x%02x", c);
731 		else
732 			append_char(&p, e, c);
733 	}
734 	append_char(&p, e, '\n');
735 
736 	if (dict_len) {
737 		bool line = true;
738 
739 		for (i = 0; i < dict_len; i++) {
740 			unsigned char c = dict[i];
741 
742 			if (line) {
743 				append_char(&p, e, ' ');
744 				line = false;
745 			}
746 
747 			if (c == '\0') {
748 				append_char(&p, e, '\n');
749 				line = true;
750 				continue;
751 			}
752 
753 			if (c < ' ' || c >= 127 || c == '\\') {
754 				p += scnprintf(p, e - p, "\\x%02x", c);
755 				continue;
756 			}
757 
758 			append_char(&p, e, c);
759 		}
760 		append_char(&p, e, '\n');
761 	}
762 
763 	return p - buf;
764 }
765 
766 /* /dev/kmsg - userspace message inject/listen interface */
767 struct devkmsg_user {
768 	u64 seq;
769 	u32 idx;
770 	struct ratelimit_state rs;
771 	struct mutex lock;
772 	char buf[CONSOLE_EXT_LOG_MAX];
773 };
774 
775 static __printf(3, 4) __cold
776 int devkmsg_emit(int facility, int level, const char *fmt, ...)
777 {
778 	va_list args;
779 	int r;
780 
781 	va_start(args, fmt);
782 	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
783 	va_end(args);
784 
785 	return r;
786 }
787 
788 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
789 {
790 	char *buf, *line;
791 	int level = default_message_loglevel;
792 	int facility = 1;	/* LOG_USER */
793 	struct file *file = iocb->ki_filp;
794 	struct devkmsg_user *user = file->private_data;
795 	size_t len = iov_iter_count(from);
796 	ssize_t ret = len;
797 
798 	if (!user || len > LOG_LINE_MAX)
799 		return -EINVAL;
800 
801 	/* Ignore when user logging is disabled. */
802 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
803 		return len;
804 
805 	/* Ratelimit when not explicitly enabled. */
806 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
807 		if (!___ratelimit(&user->rs, current->comm))
808 			return ret;
809 	}
810 
811 	buf = kmalloc(len+1, GFP_KERNEL);
812 	if (buf == NULL)
813 		return -ENOMEM;
814 
815 	buf[len] = '\0';
816 	if (!copy_from_iter_full(buf, len, from)) {
817 		kfree(buf);
818 		return -EFAULT;
819 	}
820 
821 	/*
822 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
823 	 * the decimal value represents 32bit, the lower 3 bit are the log
824 	 * level, the rest are the log facility.
825 	 *
826 	 * If no prefix or no userspace facility is specified, we
827 	 * enforce LOG_USER, to be able to reliably distinguish
828 	 * kernel-generated messages from userspace-injected ones.
829 	 */
830 	line = buf;
831 	if (line[0] == '<') {
832 		char *endp = NULL;
833 		unsigned int u;
834 
835 		u = simple_strtoul(line + 1, &endp, 10);
836 		if (endp && endp[0] == '>') {
837 			level = LOG_LEVEL(u);
838 			if (LOG_FACILITY(u) != 0)
839 				facility = LOG_FACILITY(u);
840 			endp++;
841 			len -= endp - line;
842 			line = endp;
843 		}
844 	}
845 
846 	devkmsg_emit(facility, level, "%s", line);
847 	kfree(buf);
848 	return ret;
849 }
850 
851 static ssize_t devkmsg_read(struct file *file, char __user *buf,
852 			    size_t count, loff_t *ppos)
853 {
854 	struct devkmsg_user *user = file->private_data;
855 	struct printk_log *msg;
856 	size_t len;
857 	ssize_t ret;
858 
859 	if (!user)
860 		return -EBADF;
861 
862 	ret = mutex_lock_interruptible(&user->lock);
863 	if (ret)
864 		return ret;
865 
866 	logbuf_lock_irq();
867 	while (user->seq == log_next_seq) {
868 		if (file->f_flags & O_NONBLOCK) {
869 			ret = -EAGAIN;
870 			logbuf_unlock_irq();
871 			goto out;
872 		}
873 
874 		logbuf_unlock_irq();
875 		ret = wait_event_interruptible(log_wait,
876 					       user->seq != log_next_seq);
877 		if (ret)
878 			goto out;
879 		logbuf_lock_irq();
880 	}
881 
882 	if (user->seq < log_first_seq) {
883 		/* our last seen message is gone, return error and reset */
884 		user->idx = log_first_idx;
885 		user->seq = log_first_seq;
886 		ret = -EPIPE;
887 		logbuf_unlock_irq();
888 		goto out;
889 	}
890 
891 	msg = log_from_idx(user->idx);
892 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
893 				   msg, user->seq);
894 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
895 				  log_dict(msg), msg->dict_len,
896 				  log_text(msg), msg->text_len);
897 
898 	user->idx = log_next(user->idx);
899 	user->seq++;
900 	logbuf_unlock_irq();
901 
902 	if (len > count) {
903 		ret = -EINVAL;
904 		goto out;
905 	}
906 
907 	if (copy_to_user(buf, user->buf, len)) {
908 		ret = -EFAULT;
909 		goto out;
910 	}
911 	ret = len;
912 out:
913 	mutex_unlock(&user->lock);
914 	return ret;
915 }
916 
917 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
918 {
919 	struct devkmsg_user *user = file->private_data;
920 	loff_t ret = 0;
921 
922 	if (!user)
923 		return -EBADF;
924 	if (offset)
925 		return -ESPIPE;
926 
927 	logbuf_lock_irq();
928 	switch (whence) {
929 	case SEEK_SET:
930 		/* the first record */
931 		user->idx = log_first_idx;
932 		user->seq = log_first_seq;
933 		break;
934 	case SEEK_DATA:
935 		/*
936 		 * The first record after the last SYSLOG_ACTION_CLEAR,
937 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
938 		 * changes no global state, and does not clear anything.
939 		 */
940 		user->idx = clear_idx;
941 		user->seq = clear_seq;
942 		break;
943 	case SEEK_END:
944 		/* after the last record */
945 		user->idx = log_next_idx;
946 		user->seq = log_next_seq;
947 		break;
948 	default:
949 		ret = -EINVAL;
950 	}
951 	logbuf_unlock_irq();
952 	return ret;
953 }
954 
955 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
956 {
957 	struct devkmsg_user *user = file->private_data;
958 	__poll_t ret = 0;
959 
960 	if (!user)
961 		return EPOLLERR|EPOLLNVAL;
962 
963 	poll_wait(file, &log_wait, wait);
964 
965 	logbuf_lock_irq();
966 	if (user->seq < log_next_seq) {
967 		/* return error when data has vanished underneath us */
968 		if (user->seq < log_first_seq)
969 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
970 		else
971 			ret = EPOLLIN|EPOLLRDNORM;
972 	}
973 	logbuf_unlock_irq();
974 
975 	return ret;
976 }
977 
978 static int devkmsg_open(struct inode *inode, struct file *file)
979 {
980 	struct devkmsg_user *user;
981 	int err;
982 
983 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
984 		return -EPERM;
985 
986 	/* write-only does not need any file context */
987 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
988 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
989 					       SYSLOG_FROM_READER);
990 		if (err)
991 			return err;
992 	}
993 
994 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
995 	if (!user)
996 		return -ENOMEM;
997 
998 	ratelimit_default_init(&user->rs);
999 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1000 
1001 	mutex_init(&user->lock);
1002 
1003 	logbuf_lock_irq();
1004 	user->idx = log_first_idx;
1005 	user->seq = log_first_seq;
1006 	logbuf_unlock_irq();
1007 
1008 	file->private_data = user;
1009 	return 0;
1010 }
1011 
1012 static int devkmsg_release(struct inode *inode, struct file *file)
1013 {
1014 	struct devkmsg_user *user = file->private_data;
1015 
1016 	if (!user)
1017 		return 0;
1018 
1019 	ratelimit_state_exit(&user->rs);
1020 
1021 	mutex_destroy(&user->lock);
1022 	kfree(user);
1023 	return 0;
1024 }
1025 
1026 const struct file_operations kmsg_fops = {
1027 	.open = devkmsg_open,
1028 	.read = devkmsg_read,
1029 	.write_iter = devkmsg_write,
1030 	.llseek = devkmsg_llseek,
1031 	.poll = devkmsg_poll,
1032 	.release = devkmsg_release,
1033 };
1034 
1035 #ifdef CONFIG_CRASH_CORE
1036 /*
1037  * This appends the listed symbols to /proc/vmcore
1038  *
1039  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1040  * obtain access to symbols that are otherwise very difficult to locate.  These
1041  * symbols are specifically used so that utilities can access and extract the
1042  * dmesg log from a vmcore file after a crash.
1043  */
1044 void log_buf_vmcoreinfo_setup(void)
1045 {
1046 	VMCOREINFO_SYMBOL(log_buf);
1047 	VMCOREINFO_SYMBOL(log_buf_len);
1048 	VMCOREINFO_SYMBOL(log_first_idx);
1049 	VMCOREINFO_SYMBOL(clear_idx);
1050 	VMCOREINFO_SYMBOL(log_next_idx);
1051 	/*
1052 	 * Export struct printk_log size and field offsets. User space tools can
1053 	 * parse it and detect any changes to structure down the line.
1054 	 */
1055 	VMCOREINFO_STRUCT_SIZE(printk_log);
1056 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1057 	VMCOREINFO_OFFSET(printk_log, len);
1058 	VMCOREINFO_OFFSET(printk_log, text_len);
1059 	VMCOREINFO_OFFSET(printk_log, dict_len);
1060 #ifdef CONFIG_PRINTK_CALLER
1061 	VMCOREINFO_OFFSET(printk_log, caller_id);
1062 #endif
1063 }
1064 #endif
1065 
1066 /* requested log_buf_len from kernel cmdline */
1067 static unsigned long __initdata new_log_buf_len;
1068 
1069 /* we practice scaling the ring buffer by powers of 2 */
1070 static void __init log_buf_len_update(u64 size)
1071 {
1072 	if (size > (u64)LOG_BUF_LEN_MAX) {
1073 		size = (u64)LOG_BUF_LEN_MAX;
1074 		pr_err("log_buf over 2G is not supported.\n");
1075 	}
1076 
1077 	if (size)
1078 		size = roundup_pow_of_two(size);
1079 	if (size > log_buf_len)
1080 		new_log_buf_len = (unsigned long)size;
1081 }
1082 
1083 /* save requested log_buf_len since it's too early to process it */
1084 static int __init log_buf_len_setup(char *str)
1085 {
1086 	u64 size;
1087 
1088 	if (!str)
1089 		return -EINVAL;
1090 
1091 	size = memparse(str, &str);
1092 
1093 	log_buf_len_update(size);
1094 
1095 	return 0;
1096 }
1097 early_param("log_buf_len", log_buf_len_setup);
1098 
1099 #ifdef CONFIG_SMP
1100 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1101 
1102 static void __init log_buf_add_cpu(void)
1103 {
1104 	unsigned int cpu_extra;
1105 
1106 	/*
1107 	 * archs should set up cpu_possible_bits properly with
1108 	 * set_cpu_possible() after setup_arch() but just in
1109 	 * case lets ensure this is valid.
1110 	 */
1111 	if (num_possible_cpus() == 1)
1112 		return;
1113 
1114 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1115 
1116 	/* by default this will only continue through for large > 64 CPUs */
1117 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1118 		return;
1119 
1120 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1121 		__LOG_CPU_MAX_BUF_LEN);
1122 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1123 		cpu_extra);
1124 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1125 
1126 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1127 }
1128 #else /* !CONFIG_SMP */
1129 static inline void log_buf_add_cpu(void) {}
1130 #endif /* CONFIG_SMP */
1131 
1132 void __init setup_log_buf(int early)
1133 {
1134 	unsigned long flags;
1135 	char *new_log_buf;
1136 	unsigned int free;
1137 
1138 	if (log_buf != __log_buf)
1139 		return;
1140 
1141 	if (!early && !new_log_buf_len)
1142 		log_buf_add_cpu();
1143 
1144 	if (!new_log_buf_len)
1145 		return;
1146 
1147 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1148 	if (unlikely(!new_log_buf)) {
1149 		pr_err("log_buf_len: %lu bytes not available\n",
1150 			new_log_buf_len);
1151 		return;
1152 	}
1153 
1154 	logbuf_lock_irqsave(flags);
1155 	log_buf_len = new_log_buf_len;
1156 	log_buf = new_log_buf;
1157 	new_log_buf_len = 0;
1158 	free = __LOG_BUF_LEN - log_next_idx;
1159 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1160 	logbuf_unlock_irqrestore(flags);
1161 
1162 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1163 	pr_info("early log buf free: %u(%u%%)\n",
1164 		free, (free * 100) / __LOG_BUF_LEN);
1165 }
1166 
1167 static bool __read_mostly ignore_loglevel;
1168 
1169 static int __init ignore_loglevel_setup(char *str)
1170 {
1171 	ignore_loglevel = true;
1172 	pr_info("debug: ignoring loglevel setting.\n");
1173 
1174 	return 0;
1175 }
1176 
1177 early_param("ignore_loglevel", ignore_loglevel_setup);
1178 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1179 MODULE_PARM_DESC(ignore_loglevel,
1180 		 "ignore loglevel setting (prints all kernel messages to the console)");
1181 
1182 static bool suppress_message_printing(int level)
1183 {
1184 	return (level >= console_loglevel && !ignore_loglevel);
1185 }
1186 
1187 #ifdef CONFIG_BOOT_PRINTK_DELAY
1188 
1189 static int boot_delay; /* msecs delay after each printk during bootup */
1190 static unsigned long long loops_per_msec;	/* based on boot_delay */
1191 
1192 static int __init boot_delay_setup(char *str)
1193 {
1194 	unsigned long lpj;
1195 
1196 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1197 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1198 
1199 	get_option(&str, &boot_delay);
1200 	if (boot_delay > 10 * 1000)
1201 		boot_delay = 0;
1202 
1203 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1204 		"HZ: %d, loops_per_msec: %llu\n",
1205 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1206 	return 0;
1207 }
1208 early_param("boot_delay", boot_delay_setup);
1209 
1210 static void boot_delay_msec(int level)
1211 {
1212 	unsigned long long k;
1213 	unsigned long timeout;
1214 
1215 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1216 		|| suppress_message_printing(level)) {
1217 		return;
1218 	}
1219 
1220 	k = (unsigned long long)loops_per_msec * boot_delay;
1221 
1222 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1223 	while (k) {
1224 		k--;
1225 		cpu_relax();
1226 		/*
1227 		 * use (volatile) jiffies to prevent
1228 		 * compiler reduction; loop termination via jiffies
1229 		 * is secondary and may or may not happen.
1230 		 */
1231 		if (time_after(jiffies, timeout))
1232 			break;
1233 		touch_nmi_watchdog();
1234 	}
1235 }
1236 #else
1237 static inline void boot_delay_msec(int level)
1238 {
1239 }
1240 #endif
1241 
1242 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1243 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1244 
1245 static size_t print_syslog(unsigned int level, char *buf)
1246 {
1247 	return sprintf(buf, "<%u>", level);
1248 }
1249 
1250 static size_t print_time(u64 ts, char *buf)
1251 {
1252 	unsigned long rem_nsec = do_div(ts, 1000000000);
1253 
1254 	return sprintf(buf, "[%5lu.%06lu]",
1255 		       (unsigned long)ts, rem_nsec / 1000);
1256 }
1257 
1258 #ifdef CONFIG_PRINTK_CALLER
1259 static size_t print_caller(u32 id, char *buf)
1260 {
1261 	char caller[12];
1262 
1263 	snprintf(caller, sizeof(caller), "%c%u",
1264 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1265 	return sprintf(buf, "[%6s]", caller);
1266 }
1267 #else
1268 #define print_caller(id, buf) 0
1269 #endif
1270 
1271 static size_t print_prefix(const struct printk_log *msg, bool syslog,
1272 			   bool time, char *buf)
1273 {
1274 	size_t len = 0;
1275 
1276 	if (syslog)
1277 		len = print_syslog((msg->facility << 3) | msg->level, buf);
1278 
1279 	if (time)
1280 		len += print_time(msg->ts_nsec, buf + len);
1281 
1282 	len += print_caller(msg->caller_id, buf + len);
1283 
1284 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1285 		buf[len++] = ' ';
1286 		buf[len] = '\0';
1287 	}
1288 
1289 	return len;
1290 }
1291 
1292 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1293 			     bool time, char *buf, size_t size)
1294 {
1295 	const char *text = log_text(msg);
1296 	size_t text_size = msg->text_len;
1297 	size_t len = 0;
1298 	char prefix[PREFIX_MAX];
1299 	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
1300 
1301 	do {
1302 		const char *next = memchr(text, '\n', text_size);
1303 		size_t text_len;
1304 
1305 		if (next) {
1306 			text_len = next - text;
1307 			next++;
1308 			text_size -= next - text;
1309 		} else {
1310 			text_len = text_size;
1311 		}
1312 
1313 		if (buf) {
1314 			if (prefix_len + text_len + 1 >= size - len)
1315 				break;
1316 
1317 			memcpy(buf + len, prefix, prefix_len);
1318 			len += prefix_len;
1319 			memcpy(buf + len, text, text_len);
1320 			len += text_len;
1321 			buf[len++] = '\n';
1322 		} else {
1323 			/* SYSLOG_ACTION_* buffer size only calculation */
1324 			len += prefix_len + text_len + 1;
1325 		}
1326 
1327 		text = next;
1328 	} while (text);
1329 
1330 	return len;
1331 }
1332 
1333 static int syslog_print(char __user *buf, int size)
1334 {
1335 	char *text;
1336 	struct printk_log *msg;
1337 	int len = 0;
1338 
1339 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1340 	if (!text)
1341 		return -ENOMEM;
1342 
1343 	while (size > 0) {
1344 		size_t n;
1345 		size_t skip;
1346 
1347 		logbuf_lock_irq();
1348 		if (syslog_seq < log_first_seq) {
1349 			/* messages are gone, move to first one */
1350 			syslog_seq = log_first_seq;
1351 			syslog_idx = log_first_idx;
1352 			syslog_partial = 0;
1353 		}
1354 		if (syslog_seq == log_next_seq) {
1355 			logbuf_unlock_irq();
1356 			break;
1357 		}
1358 
1359 		/*
1360 		 * To keep reading/counting partial line consistent,
1361 		 * use printk_time value as of the beginning of a line.
1362 		 */
1363 		if (!syslog_partial)
1364 			syslog_time = printk_time;
1365 
1366 		skip = syslog_partial;
1367 		msg = log_from_idx(syslog_idx);
1368 		n = msg_print_text(msg, true, syslog_time, text,
1369 				   LOG_LINE_MAX + PREFIX_MAX);
1370 		if (n - syslog_partial <= size) {
1371 			/* message fits into buffer, move forward */
1372 			syslog_idx = log_next(syslog_idx);
1373 			syslog_seq++;
1374 			n -= syslog_partial;
1375 			syslog_partial = 0;
1376 		} else if (!len){
1377 			/* partial read(), remember position */
1378 			n = size;
1379 			syslog_partial += n;
1380 		} else
1381 			n = 0;
1382 		logbuf_unlock_irq();
1383 
1384 		if (!n)
1385 			break;
1386 
1387 		if (copy_to_user(buf, text + skip, n)) {
1388 			if (!len)
1389 				len = -EFAULT;
1390 			break;
1391 		}
1392 
1393 		len += n;
1394 		size -= n;
1395 		buf += n;
1396 	}
1397 
1398 	kfree(text);
1399 	return len;
1400 }
1401 
1402 static int syslog_print_all(char __user *buf, int size, bool clear)
1403 {
1404 	char *text;
1405 	int len = 0;
1406 	u64 next_seq;
1407 	u64 seq;
1408 	u32 idx;
1409 	bool time;
1410 
1411 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1412 	if (!text)
1413 		return -ENOMEM;
1414 
1415 	time = printk_time;
1416 	logbuf_lock_irq();
1417 	/*
1418 	 * Find first record that fits, including all following records,
1419 	 * into the user-provided buffer for this dump.
1420 	 */
1421 	seq = clear_seq;
1422 	idx = clear_idx;
1423 	while (seq < log_next_seq) {
1424 		struct printk_log *msg = log_from_idx(idx);
1425 
1426 		len += msg_print_text(msg, true, time, NULL, 0);
1427 		idx = log_next(idx);
1428 		seq++;
1429 	}
1430 
1431 	/* move first record forward until length fits into the buffer */
1432 	seq = clear_seq;
1433 	idx = clear_idx;
1434 	while (len > size && seq < log_next_seq) {
1435 		struct printk_log *msg = log_from_idx(idx);
1436 
1437 		len -= msg_print_text(msg, true, time, NULL, 0);
1438 		idx = log_next(idx);
1439 		seq++;
1440 	}
1441 
1442 	/* last message fitting into this dump */
1443 	next_seq = log_next_seq;
1444 
1445 	len = 0;
1446 	while (len >= 0 && seq < next_seq) {
1447 		struct printk_log *msg = log_from_idx(idx);
1448 		int textlen = msg_print_text(msg, true, time, text,
1449 					     LOG_LINE_MAX + PREFIX_MAX);
1450 
1451 		idx = log_next(idx);
1452 		seq++;
1453 
1454 		logbuf_unlock_irq();
1455 		if (copy_to_user(buf + len, text, textlen))
1456 			len = -EFAULT;
1457 		else
1458 			len += textlen;
1459 		logbuf_lock_irq();
1460 
1461 		if (seq < log_first_seq) {
1462 			/* messages are gone, move to next one */
1463 			seq = log_first_seq;
1464 			idx = log_first_idx;
1465 		}
1466 	}
1467 
1468 	if (clear) {
1469 		clear_seq = log_next_seq;
1470 		clear_idx = log_next_idx;
1471 	}
1472 	logbuf_unlock_irq();
1473 
1474 	kfree(text);
1475 	return len;
1476 }
1477 
1478 static void syslog_clear(void)
1479 {
1480 	logbuf_lock_irq();
1481 	clear_seq = log_next_seq;
1482 	clear_idx = log_next_idx;
1483 	logbuf_unlock_irq();
1484 }
1485 
1486 int do_syslog(int type, char __user *buf, int len, int source)
1487 {
1488 	bool clear = false;
1489 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1490 	int error;
1491 
1492 	error = check_syslog_permissions(type, source);
1493 	if (error)
1494 		return error;
1495 
1496 	switch (type) {
1497 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1498 		break;
1499 	case SYSLOG_ACTION_OPEN:	/* Open log */
1500 		break;
1501 	case SYSLOG_ACTION_READ:	/* Read from log */
1502 		if (!buf || len < 0)
1503 			return -EINVAL;
1504 		if (!len)
1505 			return 0;
1506 		if (!access_ok(buf, len))
1507 			return -EFAULT;
1508 		error = wait_event_interruptible(log_wait,
1509 						 syslog_seq != log_next_seq);
1510 		if (error)
1511 			return error;
1512 		error = syslog_print(buf, len);
1513 		break;
1514 	/* Read/clear last kernel messages */
1515 	case SYSLOG_ACTION_READ_CLEAR:
1516 		clear = true;
1517 		/* FALL THRU */
1518 	/* Read last kernel messages */
1519 	case SYSLOG_ACTION_READ_ALL:
1520 		if (!buf || len < 0)
1521 			return -EINVAL;
1522 		if (!len)
1523 			return 0;
1524 		if (!access_ok(buf, len))
1525 			return -EFAULT;
1526 		error = syslog_print_all(buf, len, clear);
1527 		break;
1528 	/* Clear ring buffer */
1529 	case SYSLOG_ACTION_CLEAR:
1530 		syslog_clear();
1531 		break;
1532 	/* Disable logging to console */
1533 	case SYSLOG_ACTION_CONSOLE_OFF:
1534 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1535 			saved_console_loglevel = console_loglevel;
1536 		console_loglevel = minimum_console_loglevel;
1537 		break;
1538 	/* Enable logging to console */
1539 	case SYSLOG_ACTION_CONSOLE_ON:
1540 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1541 			console_loglevel = saved_console_loglevel;
1542 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1543 		}
1544 		break;
1545 	/* Set level of messages printed to console */
1546 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1547 		if (len < 1 || len > 8)
1548 			return -EINVAL;
1549 		if (len < minimum_console_loglevel)
1550 			len = minimum_console_loglevel;
1551 		console_loglevel = len;
1552 		/* Implicitly re-enable logging to console */
1553 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1554 		break;
1555 	/* Number of chars in the log buffer */
1556 	case SYSLOG_ACTION_SIZE_UNREAD:
1557 		logbuf_lock_irq();
1558 		if (syslog_seq < log_first_seq) {
1559 			/* messages are gone, move to first one */
1560 			syslog_seq = log_first_seq;
1561 			syslog_idx = log_first_idx;
1562 			syslog_partial = 0;
1563 		}
1564 		if (source == SYSLOG_FROM_PROC) {
1565 			/*
1566 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1567 			 * for pending data, not the size; return the count of
1568 			 * records, not the length.
1569 			 */
1570 			error = log_next_seq - syslog_seq;
1571 		} else {
1572 			u64 seq = syslog_seq;
1573 			u32 idx = syslog_idx;
1574 			bool time = syslog_partial ? syslog_time : printk_time;
1575 
1576 			while (seq < log_next_seq) {
1577 				struct printk_log *msg = log_from_idx(idx);
1578 
1579 				error += msg_print_text(msg, true, time, NULL,
1580 							0);
1581 				time = printk_time;
1582 				idx = log_next(idx);
1583 				seq++;
1584 			}
1585 			error -= syslog_partial;
1586 		}
1587 		logbuf_unlock_irq();
1588 		break;
1589 	/* Size of the log buffer */
1590 	case SYSLOG_ACTION_SIZE_BUFFER:
1591 		error = log_buf_len;
1592 		break;
1593 	default:
1594 		error = -EINVAL;
1595 		break;
1596 	}
1597 
1598 	return error;
1599 }
1600 
1601 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1602 {
1603 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1604 }
1605 
1606 /*
1607  * Special console_lock variants that help to reduce the risk of soft-lockups.
1608  * They allow to pass console_lock to another printk() call using a busy wait.
1609  */
1610 
1611 #ifdef CONFIG_LOCKDEP
1612 static struct lockdep_map console_owner_dep_map = {
1613 	.name = "console_owner"
1614 };
1615 #endif
1616 
1617 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1618 static struct task_struct *console_owner;
1619 static bool console_waiter;
1620 
1621 /**
1622  * console_lock_spinning_enable - mark beginning of code where another
1623  *	thread might safely busy wait
1624  *
1625  * This basically converts console_lock into a spinlock. This marks
1626  * the section where the console_lock owner can not sleep, because
1627  * there may be a waiter spinning (like a spinlock). Also it must be
1628  * ready to hand over the lock at the end of the section.
1629  */
1630 static void console_lock_spinning_enable(void)
1631 {
1632 	raw_spin_lock(&console_owner_lock);
1633 	console_owner = current;
1634 	raw_spin_unlock(&console_owner_lock);
1635 
1636 	/* The waiter may spin on us after setting console_owner */
1637 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1638 }
1639 
1640 /**
1641  * console_lock_spinning_disable_and_check - mark end of code where another
1642  *	thread was able to busy wait and check if there is a waiter
1643  *
1644  * This is called at the end of the section where spinning is allowed.
1645  * It has two functions. First, it is a signal that it is no longer
1646  * safe to start busy waiting for the lock. Second, it checks if
1647  * there is a busy waiter and passes the lock rights to her.
1648  *
1649  * Important: Callers lose the lock if there was a busy waiter.
1650  *	They must not touch items synchronized by console_lock
1651  *	in this case.
1652  *
1653  * Return: 1 if the lock rights were passed, 0 otherwise.
1654  */
1655 static int console_lock_spinning_disable_and_check(void)
1656 {
1657 	int waiter;
1658 
1659 	raw_spin_lock(&console_owner_lock);
1660 	waiter = READ_ONCE(console_waiter);
1661 	console_owner = NULL;
1662 	raw_spin_unlock(&console_owner_lock);
1663 
1664 	if (!waiter) {
1665 		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1666 		return 0;
1667 	}
1668 
1669 	/* The waiter is now free to continue */
1670 	WRITE_ONCE(console_waiter, false);
1671 
1672 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1673 
1674 	/*
1675 	 * Hand off console_lock to waiter. The waiter will perform
1676 	 * the up(). After this, the waiter is the console_lock owner.
1677 	 */
1678 	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1679 	return 1;
1680 }
1681 
1682 /**
1683  * console_trylock_spinning - try to get console_lock by busy waiting
1684  *
1685  * This allows to busy wait for the console_lock when the current
1686  * owner is running in specially marked sections. It means that
1687  * the current owner is running and cannot reschedule until it
1688  * is ready to lose the lock.
1689  *
1690  * Return: 1 if we got the lock, 0 othrewise
1691  */
1692 static int console_trylock_spinning(void)
1693 {
1694 	struct task_struct *owner = NULL;
1695 	bool waiter;
1696 	bool spin = false;
1697 	unsigned long flags;
1698 
1699 	if (console_trylock())
1700 		return 1;
1701 
1702 	printk_safe_enter_irqsave(flags);
1703 
1704 	raw_spin_lock(&console_owner_lock);
1705 	owner = READ_ONCE(console_owner);
1706 	waiter = READ_ONCE(console_waiter);
1707 	if (!waiter && owner && owner != current) {
1708 		WRITE_ONCE(console_waiter, true);
1709 		spin = true;
1710 	}
1711 	raw_spin_unlock(&console_owner_lock);
1712 
1713 	/*
1714 	 * If there is an active printk() writing to the
1715 	 * consoles, instead of having it write our data too,
1716 	 * see if we can offload that load from the active
1717 	 * printer, and do some printing ourselves.
1718 	 * Go into a spin only if there isn't already a waiter
1719 	 * spinning, and there is an active printer, and
1720 	 * that active printer isn't us (recursive printk?).
1721 	 */
1722 	if (!spin) {
1723 		printk_safe_exit_irqrestore(flags);
1724 		return 0;
1725 	}
1726 
1727 	/* We spin waiting for the owner to release us */
1728 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1729 	/* Owner will clear console_waiter on hand off */
1730 	while (READ_ONCE(console_waiter))
1731 		cpu_relax();
1732 	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1733 
1734 	printk_safe_exit_irqrestore(flags);
1735 	/*
1736 	 * The owner passed the console lock to us.
1737 	 * Since we did not spin on console lock, annotate
1738 	 * this as a trylock. Otherwise lockdep will
1739 	 * complain.
1740 	 */
1741 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1742 
1743 	return 1;
1744 }
1745 
1746 /*
1747  * Call the console drivers, asking them to write out
1748  * log_buf[start] to log_buf[end - 1].
1749  * The console_lock must be held.
1750  */
1751 static void call_console_drivers(const char *ext_text, size_t ext_len,
1752 				 const char *text, size_t len)
1753 {
1754 	struct console *con;
1755 
1756 	trace_console_rcuidle(text, len);
1757 
1758 	if (!console_drivers)
1759 		return;
1760 
1761 	for_each_console(con) {
1762 		if (exclusive_console && con != exclusive_console)
1763 			continue;
1764 		if (!(con->flags & CON_ENABLED))
1765 			continue;
1766 		if (!con->write)
1767 			continue;
1768 		if (!cpu_online(smp_processor_id()) &&
1769 		    !(con->flags & CON_ANYTIME))
1770 			continue;
1771 		if (con->flags & CON_EXTENDED)
1772 			con->write(con, ext_text, ext_len);
1773 		else
1774 			con->write(con, text, len);
1775 	}
1776 }
1777 
1778 int printk_delay_msec __read_mostly;
1779 
1780 static inline void printk_delay(void)
1781 {
1782 	if (unlikely(printk_delay_msec)) {
1783 		int m = printk_delay_msec;
1784 
1785 		while (m--) {
1786 			mdelay(1);
1787 			touch_nmi_watchdog();
1788 		}
1789 	}
1790 }
1791 
1792 static inline u32 printk_caller_id(void)
1793 {
1794 	return in_task() ? task_pid_nr(current) :
1795 		0x80000000 + raw_smp_processor_id();
1796 }
1797 
1798 /*
1799  * Continuation lines are buffered, and not committed to the record buffer
1800  * until the line is complete, or a race forces it. The line fragments
1801  * though, are printed immediately to the consoles to ensure everything has
1802  * reached the console in case of a kernel crash.
1803  */
1804 static struct cont {
1805 	char buf[LOG_LINE_MAX];
1806 	size_t len;			/* length == 0 means unused buffer */
1807 	u32 caller_id;			/* printk_caller_id() of first print */
1808 	u64 ts_nsec;			/* time of first print */
1809 	u8 level;			/* log level of first message */
1810 	u8 facility;			/* log facility of first message */
1811 	enum log_flags flags;		/* prefix, newline flags */
1812 } cont;
1813 
1814 static void cont_flush(void)
1815 {
1816 	if (cont.len == 0)
1817 		return;
1818 
1819 	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1820 		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1821 	cont.len = 0;
1822 }
1823 
1824 static bool cont_add(u32 caller_id, int facility, int level,
1825 		     enum log_flags flags, const char *text, size_t len)
1826 {
1827 	/* If the line gets too long, split it up in separate records. */
1828 	if (cont.len + len > sizeof(cont.buf)) {
1829 		cont_flush();
1830 		return false;
1831 	}
1832 
1833 	if (!cont.len) {
1834 		cont.facility = facility;
1835 		cont.level = level;
1836 		cont.caller_id = caller_id;
1837 		cont.ts_nsec = local_clock();
1838 		cont.flags = flags;
1839 	}
1840 
1841 	memcpy(cont.buf + cont.len, text, len);
1842 	cont.len += len;
1843 
1844 	// The original flags come from the first line,
1845 	// but later continuations can add a newline.
1846 	if (flags & LOG_NEWLINE) {
1847 		cont.flags |= LOG_NEWLINE;
1848 		cont_flush();
1849 	}
1850 
1851 	return true;
1852 }
1853 
1854 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1855 {
1856 	const u32 caller_id = printk_caller_id();
1857 
1858 	/*
1859 	 * If an earlier line was buffered, and we're a continuation
1860 	 * write from the same context, try to add it to the buffer.
1861 	 */
1862 	if (cont.len) {
1863 		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1864 			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1865 				return text_len;
1866 		}
1867 		/* Otherwise, make sure it's flushed */
1868 		cont_flush();
1869 	}
1870 
1871 	/* Skip empty continuation lines that couldn't be added - they just flush */
1872 	if (!text_len && (lflags & LOG_CONT))
1873 		return 0;
1874 
1875 	/* If it doesn't end in a newline, try to buffer the current line */
1876 	if (!(lflags & LOG_NEWLINE)) {
1877 		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1878 			return text_len;
1879 	}
1880 
1881 	/* Store it in the record log */
1882 	return log_store(caller_id, facility, level, lflags, 0,
1883 			 dict, dictlen, text, text_len);
1884 }
1885 
1886 /* Must be called under logbuf_lock. */
1887 int vprintk_store(int facility, int level,
1888 		  const char *dict, size_t dictlen,
1889 		  const char *fmt, va_list args)
1890 {
1891 	static char textbuf[LOG_LINE_MAX];
1892 	char *text = textbuf;
1893 	size_t text_len;
1894 	enum log_flags lflags = 0;
1895 
1896 	/*
1897 	 * The printf needs to come first; we need the syslog
1898 	 * prefix which might be passed-in as a parameter.
1899 	 */
1900 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1901 
1902 	/* mark and strip a trailing newline */
1903 	if (text_len && text[text_len-1] == '\n') {
1904 		text_len--;
1905 		lflags |= LOG_NEWLINE;
1906 	}
1907 
1908 	/* strip kernel syslog prefix and extract log level or control flags */
1909 	if (facility == 0) {
1910 		int kern_level;
1911 
1912 		while ((kern_level = printk_get_level(text)) != 0) {
1913 			switch (kern_level) {
1914 			case '0' ... '7':
1915 				if (level == LOGLEVEL_DEFAULT)
1916 					level = kern_level - '0';
1917 				break;
1918 			case 'c':	/* KERN_CONT */
1919 				lflags |= LOG_CONT;
1920 			}
1921 
1922 			text_len -= 2;
1923 			text += 2;
1924 		}
1925 	}
1926 
1927 	if (level == LOGLEVEL_DEFAULT)
1928 		level = default_message_loglevel;
1929 
1930 	if (dict)
1931 		lflags |= LOG_NEWLINE;
1932 
1933 	return log_output(facility, level, lflags,
1934 			  dict, dictlen, text, text_len);
1935 }
1936 
1937 asmlinkage int vprintk_emit(int facility, int level,
1938 			    const char *dict, size_t dictlen,
1939 			    const char *fmt, va_list args)
1940 {
1941 	int printed_len;
1942 	bool in_sched = false, pending_output;
1943 	unsigned long flags;
1944 	u64 curr_log_seq;
1945 
1946 	if (level == LOGLEVEL_SCHED) {
1947 		level = LOGLEVEL_DEFAULT;
1948 		in_sched = true;
1949 	}
1950 
1951 	boot_delay_msec(level);
1952 	printk_delay();
1953 
1954 	/* This stops the holder of console_sem just where we want him */
1955 	logbuf_lock_irqsave(flags);
1956 	curr_log_seq = log_next_seq;
1957 	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1958 	pending_output = (curr_log_seq != log_next_seq);
1959 	logbuf_unlock_irqrestore(flags);
1960 
1961 	/* If called from the scheduler, we can not call up(). */
1962 	if (!in_sched && pending_output) {
1963 		/*
1964 		 * Disable preemption to avoid being preempted while holding
1965 		 * console_sem which would prevent anyone from printing to
1966 		 * console
1967 		 */
1968 		preempt_disable();
1969 		/*
1970 		 * Try to acquire and then immediately release the console
1971 		 * semaphore.  The release will print out buffers and wake up
1972 		 * /dev/kmsg and syslog() users.
1973 		 */
1974 		if (console_trylock_spinning())
1975 			console_unlock();
1976 		preempt_enable();
1977 	}
1978 
1979 	if (pending_output)
1980 		wake_up_klogd();
1981 	return printed_len;
1982 }
1983 EXPORT_SYMBOL(vprintk_emit);
1984 
1985 asmlinkage int vprintk(const char *fmt, va_list args)
1986 {
1987 	return vprintk_func(fmt, args);
1988 }
1989 EXPORT_SYMBOL(vprintk);
1990 
1991 int vprintk_default(const char *fmt, va_list args)
1992 {
1993 	int r;
1994 
1995 #ifdef CONFIG_KGDB_KDB
1996 	/* Allow to pass printk() to kdb but avoid a recursion. */
1997 	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1998 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1999 		return r;
2000 	}
2001 #endif
2002 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2003 
2004 	return r;
2005 }
2006 EXPORT_SYMBOL_GPL(vprintk_default);
2007 
2008 /**
2009  * printk - print a kernel message
2010  * @fmt: format string
2011  *
2012  * This is printk(). It can be called from any context. We want it to work.
2013  *
2014  * We try to grab the console_lock. If we succeed, it's easy - we log the
2015  * output and call the console drivers.  If we fail to get the semaphore, we
2016  * place the output into the log buffer and return. The current holder of
2017  * the console_sem will notice the new output in console_unlock(); and will
2018  * send it to the consoles before releasing the lock.
2019  *
2020  * One effect of this deferred printing is that code which calls printk() and
2021  * then changes console_loglevel may break. This is because console_loglevel
2022  * is inspected when the actual printing occurs.
2023  *
2024  * See also:
2025  * printf(3)
2026  *
2027  * See the vsnprintf() documentation for format string extensions over C99.
2028  */
2029 asmlinkage __visible int printk(const char *fmt, ...)
2030 {
2031 	va_list args;
2032 	int r;
2033 
2034 	va_start(args, fmt);
2035 	r = vprintk_func(fmt, args);
2036 	va_end(args);
2037 
2038 	return r;
2039 }
2040 EXPORT_SYMBOL(printk);
2041 
2042 #else /* CONFIG_PRINTK */
2043 
2044 #define LOG_LINE_MAX		0
2045 #define PREFIX_MAX		0
2046 #define printk_time		false
2047 
2048 static u64 syslog_seq;
2049 static u32 syslog_idx;
2050 static u64 console_seq;
2051 static u32 console_idx;
2052 static u64 exclusive_console_stop_seq;
2053 static u64 log_first_seq;
2054 static u32 log_first_idx;
2055 static u64 log_next_seq;
2056 static char *log_text(const struct printk_log *msg) { return NULL; }
2057 static char *log_dict(const struct printk_log *msg) { return NULL; }
2058 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2059 static u32 log_next(u32 idx) { return 0; }
2060 static ssize_t msg_print_ext_header(char *buf, size_t size,
2061 				    struct printk_log *msg,
2062 				    u64 seq) { return 0; }
2063 static ssize_t msg_print_ext_body(char *buf, size_t size,
2064 				  char *dict, size_t dict_len,
2065 				  char *text, size_t text_len) { return 0; }
2066 static void console_lock_spinning_enable(void) { }
2067 static int console_lock_spinning_disable_and_check(void) { return 0; }
2068 static void call_console_drivers(const char *ext_text, size_t ext_len,
2069 				 const char *text, size_t len) {}
2070 static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2071 			     bool time, char *buf, size_t size) { return 0; }
2072 static bool suppress_message_printing(int level) { return false; }
2073 
2074 #endif /* CONFIG_PRINTK */
2075 
2076 #ifdef CONFIG_EARLY_PRINTK
2077 struct console *early_console;
2078 
2079 asmlinkage __visible void early_printk(const char *fmt, ...)
2080 {
2081 	va_list ap;
2082 	char buf[512];
2083 	int n;
2084 
2085 	if (!early_console)
2086 		return;
2087 
2088 	va_start(ap, fmt);
2089 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2090 	va_end(ap);
2091 
2092 	early_console->write(early_console, buf, n);
2093 }
2094 #endif
2095 
2096 static int __add_preferred_console(char *name, int idx, char *options,
2097 				   char *brl_options)
2098 {
2099 	struct console_cmdline *c;
2100 	int i;
2101 
2102 	/*
2103 	 *	See if this tty is not yet registered, and
2104 	 *	if we have a slot free.
2105 	 */
2106 	for (i = 0, c = console_cmdline;
2107 	     i < MAX_CMDLINECONSOLES && c->name[0];
2108 	     i++, c++) {
2109 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2110 			if (!brl_options)
2111 				preferred_console = i;
2112 			return 0;
2113 		}
2114 	}
2115 	if (i == MAX_CMDLINECONSOLES)
2116 		return -E2BIG;
2117 	if (!brl_options)
2118 		preferred_console = i;
2119 	strlcpy(c->name, name, sizeof(c->name));
2120 	c->options = options;
2121 	braille_set_options(c, brl_options);
2122 
2123 	c->index = idx;
2124 	return 0;
2125 }
2126 
2127 static int __init console_msg_format_setup(char *str)
2128 {
2129 	if (!strcmp(str, "syslog"))
2130 		console_msg_format = MSG_FORMAT_SYSLOG;
2131 	if (!strcmp(str, "default"))
2132 		console_msg_format = MSG_FORMAT_DEFAULT;
2133 	return 1;
2134 }
2135 __setup("console_msg_format=", console_msg_format_setup);
2136 
2137 /*
2138  * Set up a console.  Called via do_early_param() in init/main.c
2139  * for each "console=" parameter in the boot command line.
2140  */
2141 static int __init console_setup(char *str)
2142 {
2143 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2144 	char *s, *options, *brl_options = NULL;
2145 	int idx;
2146 
2147 	if (_braille_console_setup(&str, &brl_options))
2148 		return 1;
2149 
2150 	/*
2151 	 * Decode str into name, index, options.
2152 	 */
2153 	if (str[0] >= '0' && str[0] <= '9') {
2154 		strcpy(buf, "ttyS");
2155 		strncpy(buf + 4, str, sizeof(buf) - 5);
2156 	} else {
2157 		strncpy(buf, str, sizeof(buf) - 1);
2158 	}
2159 	buf[sizeof(buf) - 1] = 0;
2160 	options = strchr(str, ',');
2161 	if (options)
2162 		*(options++) = 0;
2163 #ifdef __sparc__
2164 	if (!strcmp(str, "ttya"))
2165 		strcpy(buf, "ttyS0");
2166 	if (!strcmp(str, "ttyb"))
2167 		strcpy(buf, "ttyS1");
2168 #endif
2169 	for (s = buf; *s; s++)
2170 		if (isdigit(*s) || *s == ',')
2171 			break;
2172 	idx = simple_strtoul(s, NULL, 10);
2173 	*s = 0;
2174 
2175 	__add_preferred_console(buf, idx, options, brl_options);
2176 	console_set_on_cmdline = 1;
2177 	return 1;
2178 }
2179 __setup("console=", console_setup);
2180 
2181 /**
2182  * add_preferred_console - add a device to the list of preferred consoles.
2183  * @name: device name
2184  * @idx: device index
2185  * @options: options for this console
2186  *
2187  * The last preferred console added will be used for kernel messages
2188  * and stdin/out/err for init.  Normally this is used by console_setup
2189  * above to handle user-supplied console arguments; however it can also
2190  * be used by arch-specific code either to override the user or more
2191  * commonly to provide a default console (ie from PROM variables) when
2192  * the user has not supplied one.
2193  */
2194 int add_preferred_console(char *name, int idx, char *options)
2195 {
2196 	return __add_preferred_console(name, idx, options, NULL);
2197 }
2198 
2199 bool console_suspend_enabled = true;
2200 EXPORT_SYMBOL(console_suspend_enabled);
2201 
2202 static int __init console_suspend_disable(char *str)
2203 {
2204 	console_suspend_enabled = false;
2205 	return 1;
2206 }
2207 __setup("no_console_suspend", console_suspend_disable);
2208 module_param_named(console_suspend, console_suspend_enabled,
2209 		bool, S_IRUGO | S_IWUSR);
2210 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2211 	" and hibernate operations");
2212 
2213 /**
2214  * suspend_console - suspend the console subsystem
2215  *
2216  * This disables printk() while we go into suspend states
2217  */
2218 void suspend_console(void)
2219 {
2220 	if (!console_suspend_enabled)
2221 		return;
2222 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2223 	console_lock();
2224 	console_suspended = 1;
2225 	up_console_sem();
2226 }
2227 
2228 void resume_console(void)
2229 {
2230 	if (!console_suspend_enabled)
2231 		return;
2232 	down_console_sem();
2233 	console_suspended = 0;
2234 	console_unlock();
2235 }
2236 
2237 /**
2238  * console_cpu_notify - print deferred console messages after CPU hotplug
2239  * @cpu: unused
2240  *
2241  * If printk() is called from a CPU that is not online yet, the messages
2242  * will be printed on the console only if there are CON_ANYTIME consoles.
2243  * This function is called when a new CPU comes online (or fails to come
2244  * up) or goes offline.
2245  */
2246 static int console_cpu_notify(unsigned int cpu)
2247 {
2248 	if (!cpuhp_tasks_frozen) {
2249 		/* If trylock fails, someone else is doing the printing */
2250 		if (console_trylock())
2251 			console_unlock();
2252 	}
2253 	return 0;
2254 }
2255 
2256 /**
2257  * console_lock - lock the console system for exclusive use.
2258  *
2259  * Acquires a lock which guarantees that the caller has
2260  * exclusive access to the console system and the console_drivers list.
2261  *
2262  * Can sleep, returns nothing.
2263  */
2264 void console_lock(void)
2265 {
2266 	might_sleep();
2267 
2268 	down_console_sem();
2269 	if (console_suspended)
2270 		return;
2271 	console_locked = 1;
2272 	console_may_schedule = 1;
2273 }
2274 EXPORT_SYMBOL(console_lock);
2275 
2276 /**
2277  * console_trylock - try to lock the console system for exclusive use.
2278  *
2279  * Try to acquire a lock which guarantees that the caller has exclusive
2280  * access to the console system and the console_drivers list.
2281  *
2282  * returns 1 on success, and 0 on failure to acquire the lock.
2283  */
2284 int console_trylock(void)
2285 {
2286 	if (down_trylock_console_sem())
2287 		return 0;
2288 	if (console_suspended) {
2289 		up_console_sem();
2290 		return 0;
2291 	}
2292 	console_locked = 1;
2293 	console_may_schedule = 0;
2294 	return 1;
2295 }
2296 EXPORT_SYMBOL(console_trylock);
2297 
2298 int is_console_locked(void)
2299 {
2300 	return console_locked;
2301 }
2302 EXPORT_SYMBOL(is_console_locked);
2303 
2304 /*
2305  * Check if we have any console that is capable of printing while cpu is
2306  * booting or shutting down. Requires console_sem.
2307  */
2308 static int have_callable_console(void)
2309 {
2310 	struct console *con;
2311 
2312 	for_each_console(con)
2313 		if ((con->flags & CON_ENABLED) &&
2314 				(con->flags & CON_ANYTIME))
2315 			return 1;
2316 
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Can we actually use the console at this time on this cpu?
2322  *
2323  * Console drivers may assume that per-cpu resources have been allocated. So
2324  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2325  * call them until this CPU is officially up.
2326  */
2327 static inline int can_use_console(void)
2328 {
2329 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2330 }
2331 
2332 /**
2333  * console_unlock - unlock the console system
2334  *
2335  * Releases the console_lock which the caller holds on the console system
2336  * and the console driver list.
2337  *
2338  * While the console_lock was held, console output may have been buffered
2339  * by printk().  If this is the case, console_unlock(); emits
2340  * the output prior to releasing the lock.
2341  *
2342  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2343  *
2344  * console_unlock(); may be called from any context.
2345  */
2346 void console_unlock(void)
2347 {
2348 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2349 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2350 	unsigned long flags;
2351 	bool do_cond_resched, retry;
2352 
2353 	if (console_suspended) {
2354 		up_console_sem();
2355 		return;
2356 	}
2357 
2358 	/*
2359 	 * Console drivers are called with interrupts disabled, so
2360 	 * @console_may_schedule should be cleared before; however, we may
2361 	 * end up dumping a lot of lines, for example, if called from
2362 	 * console registration path, and should invoke cond_resched()
2363 	 * between lines if allowable.  Not doing so can cause a very long
2364 	 * scheduling stall on a slow console leading to RCU stall and
2365 	 * softlockup warnings which exacerbate the issue with more
2366 	 * messages practically incapacitating the system.
2367 	 *
2368 	 * console_trylock() is not able to detect the preemptive
2369 	 * context reliably. Therefore the value must be stored before
2370 	 * and cleared after the the "again" goto label.
2371 	 */
2372 	do_cond_resched = console_may_schedule;
2373 again:
2374 	console_may_schedule = 0;
2375 
2376 	/*
2377 	 * We released the console_sem lock, so we need to recheck if
2378 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2379 	 * console.
2380 	 */
2381 	if (!can_use_console()) {
2382 		console_locked = 0;
2383 		up_console_sem();
2384 		return;
2385 	}
2386 
2387 	for (;;) {
2388 		struct printk_log *msg;
2389 		size_t ext_len = 0;
2390 		size_t len;
2391 
2392 		printk_safe_enter_irqsave(flags);
2393 		raw_spin_lock(&logbuf_lock);
2394 		if (console_seq < log_first_seq) {
2395 			len = sprintf(text,
2396 				      "** %llu printk messages dropped **\n",
2397 				      log_first_seq - console_seq);
2398 
2399 			/* messages are gone, move to first one */
2400 			console_seq = log_first_seq;
2401 			console_idx = log_first_idx;
2402 		} else {
2403 			len = 0;
2404 		}
2405 skip:
2406 		if (console_seq == log_next_seq)
2407 			break;
2408 
2409 		msg = log_from_idx(console_idx);
2410 		if (suppress_message_printing(msg->level)) {
2411 			/*
2412 			 * Skip record we have buffered and already printed
2413 			 * directly to the console when we received it, and
2414 			 * record that has level above the console loglevel.
2415 			 */
2416 			console_idx = log_next(console_idx);
2417 			console_seq++;
2418 			goto skip;
2419 		}
2420 
2421 		/* Output to all consoles once old messages replayed. */
2422 		if (unlikely(exclusive_console &&
2423 			     console_seq >= exclusive_console_stop_seq)) {
2424 			exclusive_console = NULL;
2425 		}
2426 
2427 		len += msg_print_text(msg,
2428 				console_msg_format & MSG_FORMAT_SYSLOG,
2429 				printk_time, text + len, sizeof(text) - len);
2430 		if (nr_ext_console_drivers) {
2431 			ext_len = msg_print_ext_header(ext_text,
2432 						sizeof(ext_text),
2433 						msg, console_seq);
2434 			ext_len += msg_print_ext_body(ext_text + ext_len,
2435 						sizeof(ext_text) - ext_len,
2436 						log_dict(msg), msg->dict_len,
2437 						log_text(msg), msg->text_len);
2438 		}
2439 		console_idx = log_next(console_idx);
2440 		console_seq++;
2441 		raw_spin_unlock(&logbuf_lock);
2442 
2443 		/*
2444 		 * While actively printing out messages, if another printk()
2445 		 * were to occur on another CPU, it may wait for this one to
2446 		 * finish. This task can not be preempted if there is a
2447 		 * waiter waiting to take over.
2448 		 */
2449 		console_lock_spinning_enable();
2450 
2451 		stop_critical_timings();	/* don't trace print latency */
2452 		call_console_drivers(ext_text, ext_len, text, len);
2453 		start_critical_timings();
2454 
2455 		if (console_lock_spinning_disable_and_check()) {
2456 			printk_safe_exit_irqrestore(flags);
2457 			return;
2458 		}
2459 
2460 		printk_safe_exit_irqrestore(flags);
2461 
2462 		if (do_cond_resched)
2463 			cond_resched();
2464 	}
2465 
2466 	console_locked = 0;
2467 
2468 	raw_spin_unlock(&logbuf_lock);
2469 
2470 	up_console_sem();
2471 
2472 	/*
2473 	 * Someone could have filled up the buffer again, so re-check if there's
2474 	 * something to flush. In case we cannot trylock the console_sem again,
2475 	 * there's a new owner and the console_unlock() from them will do the
2476 	 * flush, no worries.
2477 	 */
2478 	raw_spin_lock(&logbuf_lock);
2479 	retry = console_seq != log_next_seq;
2480 	raw_spin_unlock(&logbuf_lock);
2481 	printk_safe_exit_irqrestore(flags);
2482 
2483 	if (retry && console_trylock())
2484 		goto again;
2485 }
2486 EXPORT_SYMBOL(console_unlock);
2487 
2488 /**
2489  * console_conditional_schedule - yield the CPU if required
2490  *
2491  * If the console code is currently allowed to sleep, and
2492  * if this CPU should yield the CPU to another task, do
2493  * so here.
2494  *
2495  * Must be called within console_lock();.
2496  */
2497 void __sched console_conditional_schedule(void)
2498 {
2499 	if (console_may_schedule)
2500 		cond_resched();
2501 }
2502 EXPORT_SYMBOL(console_conditional_schedule);
2503 
2504 void console_unblank(void)
2505 {
2506 	struct console *c;
2507 
2508 	/*
2509 	 * console_unblank can no longer be called in interrupt context unless
2510 	 * oops_in_progress is set to 1..
2511 	 */
2512 	if (oops_in_progress) {
2513 		if (down_trylock_console_sem() != 0)
2514 			return;
2515 	} else
2516 		console_lock();
2517 
2518 	console_locked = 1;
2519 	console_may_schedule = 0;
2520 	for_each_console(c)
2521 		if ((c->flags & CON_ENABLED) && c->unblank)
2522 			c->unblank();
2523 	console_unlock();
2524 }
2525 
2526 /**
2527  * console_flush_on_panic - flush console content on panic
2528  *
2529  * Immediately output all pending messages no matter what.
2530  */
2531 void console_flush_on_panic(void)
2532 {
2533 	/*
2534 	 * If someone else is holding the console lock, trylock will fail
2535 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2536 	 * that messages are flushed out.  As this can be called from any
2537 	 * context and we don't want to get preempted while flushing,
2538 	 * ensure may_schedule is cleared.
2539 	 */
2540 	console_trylock();
2541 	console_may_schedule = 0;
2542 	console_unlock();
2543 }
2544 
2545 /*
2546  * Return the console tty driver structure and its associated index
2547  */
2548 struct tty_driver *console_device(int *index)
2549 {
2550 	struct console *c;
2551 	struct tty_driver *driver = NULL;
2552 
2553 	console_lock();
2554 	for_each_console(c) {
2555 		if (!c->device)
2556 			continue;
2557 		driver = c->device(c, index);
2558 		if (driver)
2559 			break;
2560 	}
2561 	console_unlock();
2562 	return driver;
2563 }
2564 
2565 /*
2566  * Prevent further output on the passed console device so that (for example)
2567  * serial drivers can disable console output before suspending a port, and can
2568  * re-enable output afterwards.
2569  */
2570 void console_stop(struct console *console)
2571 {
2572 	console_lock();
2573 	console->flags &= ~CON_ENABLED;
2574 	console_unlock();
2575 }
2576 EXPORT_SYMBOL(console_stop);
2577 
2578 void console_start(struct console *console)
2579 {
2580 	console_lock();
2581 	console->flags |= CON_ENABLED;
2582 	console_unlock();
2583 }
2584 EXPORT_SYMBOL(console_start);
2585 
2586 static int __read_mostly keep_bootcon;
2587 
2588 static int __init keep_bootcon_setup(char *str)
2589 {
2590 	keep_bootcon = 1;
2591 	pr_info("debug: skip boot console de-registration.\n");
2592 
2593 	return 0;
2594 }
2595 
2596 early_param("keep_bootcon", keep_bootcon_setup);
2597 
2598 /*
2599  * The console driver calls this routine during kernel initialization
2600  * to register the console printing procedure with printk() and to
2601  * print any messages that were printed by the kernel before the
2602  * console driver was initialized.
2603  *
2604  * This can happen pretty early during the boot process (because of
2605  * early_printk) - sometimes before setup_arch() completes - be careful
2606  * of what kernel features are used - they may not be initialised yet.
2607  *
2608  * There are two types of consoles - bootconsoles (early_printk) and
2609  * "real" consoles (everything which is not a bootconsole) which are
2610  * handled differently.
2611  *  - Any number of bootconsoles can be registered at any time.
2612  *  - As soon as a "real" console is registered, all bootconsoles
2613  *    will be unregistered automatically.
2614  *  - Once a "real" console is registered, any attempt to register a
2615  *    bootconsoles will be rejected
2616  */
2617 void register_console(struct console *newcon)
2618 {
2619 	int i;
2620 	unsigned long flags;
2621 	struct console *bcon = NULL;
2622 	struct console_cmdline *c;
2623 	static bool has_preferred;
2624 
2625 	if (console_drivers)
2626 		for_each_console(bcon)
2627 			if (WARN(bcon == newcon,
2628 					"console '%s%d' already registered\n",
2629 					bcon->name, bcon->index))
2630 				return;
2631 
2632 	/*
2633 	 * before we register a new CON_BOOT console, make sure we don't
2634 	 * already have a valid console
2635 	 */
2636 	if (console_drivers && newcon->flags & CON_BOOT) {
2637 		/* find the last or real console */
2638 		for_each_console(bcon) {
2639 			if (!(bcon->flags & CON_BOOT)) {
2640 				pr_info("Too late to register bootconsole %s%d\n",
2641 					newcon->name, newcon->index);
2642 				return;
2643 			}
2644 		}
2645 	}
2646 
2647 	if (console_drivers && console_drivers->flags & CON_BOOT)
2648 		bcon = console_drivers;
2649 
2650 	if (!has_preferred || bcon || !console_drivers)
2651 		has_preferred = preferred_console >= 0;
2652 
2653 	/*
2654 	 *	See if we want to use this console driver. If we
2655 	 *	didn't select a console we take the first one
2656 	 *	that registers here.
2657 	 */
2658 	if (!has_preferred) {
2659 		if (newcon->index < 0)
2660 			newcon->index = 0;
2661 		if (newcon->setup == NULL ||
2662 		    newcon->setup(newcon, NULL) == 0) {
2663 			newcon->flags |= CON_ENABLED;
2664 			if (newcon->device) {
2665 				newcon->flags |= CON_CONSDEV;
2666 				has_preferred = true;
2667 			}
2668 		}
2669 	}
2670 
2671 	/*
2672 	 *	See if this console matches one we selected on
2673 	 *	the command line.
2674 	 */
2675 	for (i = 0, c = console_cmdline;
2676 	     i < MAX_CMDLINECONSOLES && c->name[0];
2677 	     i++, c++) {
2678 		if (!newcon->match ||
2679 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2680 			/* default matching */
2681 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2682 			if (strcmp(c->name, newcon->name) != 0)
2683 				continue;
2684 			if (newcon->index >= 0 &&
2685 			    newcon->index != c->index)
2686 				continue;
2687 			if (newcon->index < 0)
2688 				newcon->index = c->index;
2689 
2690 			if (_braille_register_console(newcon, c))
2691 				return;
2692 
2693 			if (newcon->setup &&
2694 			    newcon->setup(newcon, c->options) != 0)
2695 				break;
2696 		}
2697 
2698 		newcon->flags |= CON_ENABLED;
2699 		if (i == preferred_console) {
2700 			newcon->flags |= CON_CONSDEV;
2701 			has_preferred = true;
2702 		}
2703 		break;
2704 	}
2705 
2706 	if (!(newcon->flags & CON_ENABLED))
2707 		return;
2708 
2709 	/*
2710 	 * If we have a bootconsole, and are switching to a real console,
2711 	 * don't print everything out again, since when the boot console, and
2712 	 * the real console are the same physical device, it's annoying to
2713 	 * see the beginning boot messages twice
2714 	 */
2715 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2716 		newcon->flags &= ~CON_PRINTBUFFER;
2717 
2718 	/*
2719 	 *	Put this console in the list - keep the
2720 	 *	preferred driver at the head of the list.
2721 	 */
2722 	console_lock();
2723 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2724 		newcon->next = console_drivers;
2725 		console_drivers = newcon;
2726 		if (newcon->next)
2727 			newcon->next->flags &= ~CON_CONSDEV;
2728 	} else {
2729 		newcon->next = console_drivers->next;
2730 		console_drivers->next = newcon;
2731 	}
2732 
2733 	if (newcon->flags & CON_EXTENDED)
2734 		nr_ext_console_drivers++;
2735 
2736 	if (newcon->flags & CON_PRINTBUFFER) {
2737 		/*
2738 		 * console_unlock(); will print out the buffered messages
2739 		 * for us.
2740 		 */
2741 		logbuf_lock_irqsave(flags);
2742 		console_seq = syslog_seq;
2743 		console_idx = syslog_idx;
2744 		/*
2745 		 * We're about to replay the log buffer.  Only do this to the
2746 		 * just-registered console to avoid excessive message spam to
2747 		 * the already-registered consoles.
2748 		 *
2749 		 * Set exclusive_console with disabled interrupts to reduce
2750 		 * race window with eventual console_flush_on_panic() that
2751 		 * ignores console_lock.
2752 		 */
2753 		exclusive_console = newcon;
2754 		exclusive_console_stop_seq = console_seq;
2755 		logbuf_unlock_irqrestore(flags);
2756 	}
2757 	console_unlock();
2758 	console_sysfs_notify();
2759 
2760 	/*
2761 	 * By unregistering the bootconsoles after we enable the real console
2762 	 * we get the "console xxx enabled" message on all the consoles -
2763 	 * boot consoles, real consoles, etc - this is to ensure that end
2764 	 * users know there might be something in the kernel's log buffer that
2765 	 * went to the bootconsole (that they do not see on the real console)
2766 	 */
2767 	pr_info("%sconsole [%s%d] enabled\n",
2768 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2769 		newcon->name, newcon->index);
2770 	if (bcon &&
2771 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2772 	    !keep_bootcon) {
2773 		/* We need to iterate through all boot consoles, to make
2774 		 * sure we print everything out, before we unregister them.
2775 		 */
2776 		for_each_console(bcon)
2777 			if (bcon->flags & CON_BOOT)
2778 				unregister_console(bcon);
2779 	}
2780 }
2781 EXPORT_SYMBOL(register_console);
2782 
2783 int unregister_console(struct console *console)
2784 {
2785         struct console *a, *b;
2786 	int res;
2787 
2788 	pr_info("%sconsole [%s%d] disabled\n",
2789 		(console->flags & CON_BOOT) ? "boot" : "" ,
2790 		console->name, console->index);
2791 
2792 	res = _braille_unregister_console(console);
2793 	if (res)
2794 		return res;
2795 
2796 	res = 1;
2797 	console_lock();
2798 	if (console_drivers == console) {
2799 		console_drivers=console->next;
2800 		res = 0;
2801 	} else if (console_drivers) {
2802 		for (a=console_drivers->next, b=console_drivers ;
2803 		     a; b=a, a=b->next) {
2804 			if (a == console) {
2805 				b->next = a->next;
2806 				res = 0;
2807 				break;
2808 			}
2809 		}
2810 	}
2811 
2812 	if (!res && (console->flags & CON_EXTENDED))
2813 		nr_ext_console_drivers--;
2814 
2815 	/*
2816 	 * If this isn't the last console and it has CON_CONSDEV set, we
2817 	 * need to set it on the next preferred console.
2818 	 */
2819 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2820 		console_drivers->flags |= CON_CONSDEV;
2821 
2822 	console->flags &= ~CON_ENABLED;
2823 	console_unlock();
2824 	console_sysfs_notify();
2825 	return res;
2826 }
2827 EXPORT_SYMBOL(unregister_console);
2828 
2829 /*
2830  * Initialize the console device. This is called *early*, so
2831  * we can't necessarily depend on lots of kernel help here.
2832  * Just do some early initializations, and do the complex setup
2833  * later.
2834  */
2835 void __init console_init(void)
2836 {
2837 	int ret;
2838 	initcall_t call;
2839 	initcall_entry_t *ce;
2840 
2841 	/* Setup the default TTY line discipline. */
2842 	n_tty_init();
2843 
2844 	/*
2845 	 * set up the console device so that later boot sequences can
2846 	 * inform about problems etc..
2847 	 */
2848 	ce = __con_initcall_start;
2849 	trace_initcall_level("console");
2850 	while (ce < __con_initcall_end) {
2851 		call = initcall_from_entry(ce);
2852 		trace_initcall_start(call);
2853 		ret = call();
2854 		trace_initcall_finish(call, ret);
2855 		ce++;
2856 	}
2857 }
2858 
2859 /*
2860  * Some boot consoles access data that is in the init section and which will
2861  * be discarded after the initcalls have been run. To make sure that no code
2862  * will access this data, unregister the boot consoles in a late initcall.
2863  *
2864  * If for some reason, such as deferred probe or the driver being a loadable
2865  * module, the real console hasn't registered yet at this point, there will
2866  * be a brief interval in which no messages are logged to the console, which
2867  * makes it difficult to diagnose problems that occur during this time.
2868  *
2869  * To mitigate this problem somewhat, only unregister consoles whose memory
2870  * intersects with the init section. Note that all other boot consoles will
2871  * get unregistred when the real preferred console is registered.
2872  */
2873 static int __init printk_late_init(void)
2874 {
2875 	struct console *con;
2876 	int ret;
2877 
2878 	for_each_console(con) {
2879 		if (!(con->flags & CON_BOOT))
2880 			continue;
2881 
2882 		/* Check addresses that might be used for enabled consoles. */
2883 		if (init_section_intersects(con, sizeof(*con)) ||
2884 		    init_section_contains(con->write, 0) ||
2885 		    init_section_contains(con->read, 0) ||
2886 		    init_section_contains(con->device, 0) ||
2887 		    init_section_contains(con->unblank, 0) ||
2888 		    init_section_contains(con->data, 0)) {
2889 			/*
2890 			 * Please, consider moving the reported consoles out
2891 			 * of the init section.
2892 			 */
2893 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2894 				con->name, con->index);
2895 			unregister_console(con);
2896 		}
2897 	}
2898 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2899 					console_cpu_notify);
2900 	WARN_ON(ret < 0);
2901 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2902 					console_cpu_notify, NULL);
2903 	WARN_ON(ret < 0);
2904 	return 0;
2905 }
2906 late_initcall(printk_late_init);
2907 
2908 #if defined CONFIG_PRINTK
2909 /*
2910  * Delayed printk version, for scheduler-internal messages:
2911  */
2912 #define PRINTK_PENDING_WAKEUP	0x01
2913 #define PRINTK_PENDING_OUTPUT	0x02
2914 
2915 static DEFINE_PER_CPU(int, printk_pending);
2916 
2917 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2918 {
2919 	int pending = __this_cpu_xchg(printk_pending, 0);
2920 
2921 	if (pending & PRINTK_PENDING_OUTPUT) {
2922 		/* If trylock fails, someone else is doing the printing */
2923 		if (console_trylock())
2924 			console_unlock();
2925 	}
2926 
2927 	if (pending & PRINTK_PENDING_WAKEUP)
2928 		wake_up_interruptible(&log_wait);
2929 }
2930 
2931 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2932 	.func = wake_up_klogd_work_func,
2933 	.flags = IRQ_WORK_LAZY,
2934 };
2935 
2936 void wake_up_klogd(void)
2937 {
2938 	preempt_disable();
2939 	if (waitqueue_active(&log_wait)) {
2940 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2941 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2942 	}
2943 	preempt_enable();
2944 }
2945 
2946 void defer_console_output(void)
2947 {
2948 	preempt_disable();
2949 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2950 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2951 	preempt_enable();
2952 }
2953 
2954 int vprintk_deferred(const char *fmt, va_list args)
2955 {
2956 	int r;
2957 
2958 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2959 	defer_console_output();
2960 
2961 	return r;
2962 }
2963 
2964 int printk_deferred(const char *fmt, ...)
2965 {
2966 	va_list args;
2967 	int r;
2968 
2969 	va_start(args, fmt);
2970 	r = vprintk_deferred(fmt, args);
2971 	va_end(args);
2972 
2973 	return r;
2974 }
2975 
2976 /*
2977  * printk rate limiting, lifted from the networking subsystem.
2978  *
2979  * This enforces a rate limit: not more than 10 kernel messages
2980  * every 5s to make a denial-of-service attack impossible.
2981  */
2982 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2983 
2984 int __printk_ratelimit(const char *func)
2985 {
2986 	return ___ratelimit(&printk_ratelimit_state, func);
2987 }
2988 EXPORT_SYMBOL(__printk_ratelimit);
2989 
2990 /**
2991  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2992  * @caller_jiffies: pointer to caller's state
2993  * @interval_msecs: minimum interval between prints
2994  *
2995  * printk_timed_ratelimit() returns true if more than @interval_msecs
2996  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2997  * returned true.
2998  */
2999 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3000 			unsigned int interval_msecs)
3001 {
3002 	unsigned long elapsed = jiffies - *caller_jiffies;
3003 
3004 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3005 		return false;
3006 
3007 	*caller_jiffies = jiffies;
3008 	return true;
3009 }
3010 EXPORT_SYMBOL(printk_timed_ratelimit);
3011 
3012 static DEFINE_SPINLOCK(dump_list_lock);
3013 static LIST_HEAD(dump_list);
3014 
3015 /**
3016  * kmsg_dump_register - register a kernel log dumper.
3017  * @dumper: pointer to the kmsg_dumper structure
3018  *
3019  * Adds a kernel log dumper to the system. The dump callback in the
3020  * structure will be called when the kernel oopses or panics and must be
3021  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3022  */
3023 int kmsg_dump_register(struct kmsg_dumper *dumper)
3024 {
3025 	unsigned long flags;
3026 	int err = -EBUSY;
3027 
3028 	/* The dump callback needs to be set */
3029 	if (!dumper->dump)
3030 		return -EINVAL;
3031 
3032 	spin_lock_irqsave(&dump_list_lock, flags);
3033 	/* Don't allow registering multiple times */
3034 	if (!dumper->registered) {
3035 		dumper->registered = 1;
3036 		list_add_tail_rcu(&dumper->list, &dump_list);
3037 		err = 0;
3038 	}
3039 	spin_unlock_irqrestore(&dump_list_lock, flags);
3040 
3041 	return err;
3042 }
3043 EXPORT_SYMBOL_GPL(kmsg_dump_register);
3044 
3045 /**
3046  * kmsg_dump_unregister - unregister a kmsg dumper.
3047  * @dumper: pointer to the kmsg_dumper structure
3048  *
3049  * Removes a dump device from the system. Returns zero on success and
3050  * %-EINVAL otherwise.
3051  */
3052 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3053 {
3054 	unsigned long flags;
3055 	int err = -EINVAL;
3056 
3057 	spin_lock_irqsave(&dump_list_lock, flags);
3058 	if (dumper->registered) {
3059 		dumper->registered = 0;
3060 		list_del_rcu(&dumper->list);
3061 		err = 0;
3062 	}
3063 	spin_unlock_irqrestore(&dump_list_lock, flags);
3064 	synchronize_rcu();
3065 
3066 	return err;
3067 }
3068 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3069 
3070 static bool always_kmsg_dump;
3071 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3072 
3073 /**
3074  * kmsg_dump - dump kernel log to kernel message dumpers.
3075  * @reason: the reason (oops, panic etc) for dumping
3076  *
3077  * Call each of the registered dumper's dump() callback, which can
3078  * retrieve the kmsg records with kmsg_dump_get_line() or
3079  * kmsg_dump_get_buffer().
3080  */
3081 void kmsg_dump(enum kmsg_dump_reason reason)
3082 {
3083 	struct kmsg_dumper *dumper;
3084 	unsigned long flags;
3085 
3086 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3087 		return;
3088 
3089 	rcu_read_lock();
3090 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3091 		if (dumper->max_reason && reason > dumper->max_reason)
3092 			continue;
3093 
3094 		/* initialize iterator with data about the stored records */
3095 		dumper->active = true;
3096 
3097 		logbuf_lock_irqsave(flags);
3098 		dumper->cur_seq = clear_seq;
3099 		dumper->cur_idx = clear_idx;
3100 		dumper->next_seq = log_next_seq;
3101 		dumper->next_idx = log_next_idx;
3102 		logbuf_unlock_irqrestore(flags);
3103 
3104 		/* invoke dumper which will iterate over records */
3105 		dumper->dump(dumper, reason);
3106 
3107 		/* reset iterator */
3108 		dumper->active = false;
3109 	}
3110 	rcu_read_unlock();
3111 }
3112 
3113 /**
3114  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3115  * @dumper: registered kmsg dumper
3116  * @syslog: include the "<4>" prefixes
3117  * @line: buffer to copy the line to
3118  * @size: maximum size of the buffer
3119  * @len: length of line placed into buffer
3120  *
3121  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3122  * record, and copy one record into the provided buffer.
3123  *
3124  * Consecutive calls will return the next available record moving
3125  * towards the end of the buffer with the youngest messages.
3126  *
3127  * A return value of FALSE indicates that there are no more records to
3128  * read.
3129  *
3130  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3131  */
3132 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3133 			       char *line, size_t size, size_t *len)
3134 {
3135 	struct printk_log *msg;
3136 	size_t l = 0;
3137 	bool ret = false;
3138 
3139 	if (!dumper->active)
3140 		goto out;
3141 
3142 	if (dumper->cur_seq < log_first_seq) {
3143 		/* messages are gone, move to first available one */
3144 		dumper->cur_seq = log_first_seq;
3145 		dumper->cur_idx = log_first_idx;
3146 	}
3147 
3148 	/* last entry */
3149 	if (dumper->cur_seq >= log_next_seq)
3150 		goto out;
3151 
3152 	msg = log_from_idx(dumper->cur_idx);
3153 	l = msg_print_text(msg, syslog, printk_time, line, size);
3154 
3155 	dumper->cur_idx = log_next(dumper->cur_idx);
3156 	dumper->cur_seq++;
3157 	ret = true;
3158 out:
3159 	if (len)
3160 		*len = l;
3161 	return ret;
3162 }
3163 
3164 /**
3165  * kmsg_dump_get_line - retrieve one kmsg log line
3166  * @dumper: registered kmsg dumper
3167  * @syslog: include the "<4>" prefixes
3168  * @line: buffer to copy the line to
3169  * @size: maximum size of the buffer
3170  * @len: length of line placed into buffer
3171  *
3172  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3173  * record, and copy one record into the provided buffer.
3174  *
3175  * Consecutive calls will return the next available record moving
3176  * towards the end of the buffer with the youngest messages.
3177  *
3178  * A return value of FALSE indicates that there are no more records to
3179  * read.
3180  */
3181 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3182 			char *line, size_t size, size_t *len)
3183 {
3184 	unsigned long flags;
3185 	bool ret;
3186 
3187 	logbuf_lock_irqsave(flags);
3188 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3189 	logbuf_unlock_irqrestore(flags);
3190 
3191 	return ret;
3192 }
3193 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3194 
3195 /**
3196  * kmsg_dump_get_buffer - copy kmsg log lines
3197  * @dumper: registered kmsg dumper
3198  * @syslog: include the "<4>" prefixes
3199  * @buf: buffer to copy the line to
3200  * @size: maximum size of the buffer
3201  * @len: length of line placed into buffer
3202  *
3203  * Start at the end of the kmsg buffer and fill the provided buffer
3204  * with as many of the the *youngest* kmsg records that fit into it.
3205  * If the buffer is large enough, all available kmsg records will be
3206  * copied with a single call.
3207  *
3208  * Consecutive calls will fill the buffer with the next block of
3209  * available older records, not including the earlier retrieved ones.
3210  *
3211  * A return value of FALSE indicates that there are no more records to
3212  * read.
3213  */
3214 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3215 			  char *buf, size_t size, size_t *len)
3216 {
3217 	unsigned long flags;
3218 	u64 seq;
3219 	u32 idx;
3220 	u64 next_seq;
3221 	u32 next_idx;
3222 	size_t l = 0;
3223 	bool ret = false;
3224 	bool time = printk_time;
3225 
3226 	if (!dumper->active)
3227 		goto out;
3228 
3229 	logbuf_lock_irqsave(flags);
3230 	if (dumper->cur_seq < log_first_seq) {
3231 		/* messages are gone, move to first available one */
3232 		dumper->cur_seq = log_first_seq;
3233 		dumper->cur_idx = log_first_idx;
3234 	}
3235 
3236 	/* last entry */
3237 	if (dumper->cur_seq >= dumper->next_seq) {
3238 		logbuf_unlock_irqrestore(flags);
3239 		goto out;
3240 	}
3241 
3242 	/* calculate length of entire buffer */
3243 	seq = dumper->cur_seq;
3244 	idx = dumper->cur_idx;
3245 	while (seq < dumper->next_seq) {
3246 		struct printk_log *msg = log_from_idx(idx);
3247 
3248 		l += msg_print_text(msg, true, time, NULL, 0);
3249 		idx = log_next(idx);
3250 		seq++;
3251 	}
3252 
3253 	/* move first record forward until length fits into the buffer */
3254 	seq = dumper->cur_seq;
3255 	idx = dumper->cur_idx;
3256 	while (l > size && seq < dumper->next_seq) {
3257 		struct printk_log *msg = log_from_idx(idx);
3258 
3259 		l -= msg_print_text(msg, true, time, NULL, 0);
3260 		idx = log_next(idx);
3261 		seq++;
3262 	}
3263 
3264 	/* last message in next interation */
3265 	next_seq = seq;
3266 	next_idx = idx;
3267 
3268 	l = 0;
3269 	while (seq < dumper->next_seq) {
3270 		struct printk_log *msg = log_from_idx(idx);
3271 
3272 		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3273 		idx = log_next(idx);
3274 		seq++;
3275 	}
3276 
3277 	dumper->next_seq = next_seq;
3278 	dumper->next_idx = next_idx;
3279 	ret = true;
3280 	logbuf_unlock_irqrestore(flags);
3281 out:
3282 	if (len)
3283 		*len = l;
3284 	return ret;
3285 }
3286 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3287 
3288 /**
3289  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3290  * @dumper: registered kmsg dumper
3291  *
3292  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3293  * kmsg_dump_get_buffer() can be called again and used multiple
3294  * times within the same dumper.dump() callback.
3295  *
3296  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3297  */
3298 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3299 {
3300 	dumper->cur_seq = clear_seq;
3301 	dumper->cur_idx = clear_idx;
3302 	dumper->next_seq = log_next_seq;
3303 	dumper->next_idx = log_next_idx;
3304 }
3305 
3306 /**
3307  * kmsg_dump_rewind - reset the interator
3308  * @dumper: registered kmsg dumper
3309  *
3310  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3311  * kmsg_dump_get_buffer() can be called again and used multiple
3312  * times within the same dumper.dump() callback.
3313  */
3314 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3315 {
3316 	unsigned long flags;
3317 
3318 	logbuf_lock_irqsave(flags);
3319 	kmsg_dump_rewind_nolock(dumper);
3320 	logbuf_unlock_irqrestore(flags);
3321 }
3322 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3323 
3324 #endif
3325