xref: /linux/kernel/printk/printk.c (revision 1553419c3c10cf386496e68b90b5d0ce966ac614)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/printk.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  * Modified to make sys_syslog() more flexible: added commands to
8  * return the last 4k of kernel messages, regardless of whether
9  * they've been read or not.  Added option to suppress kernel printk's
10  * to the console.  Added hook for sending the console messages
11  * elsewhere, in preparation for a serial line console (someday).
12  * Ted Ts'o, 2/11/93.
13  * Modified for sysctl support, 1/8/97, Chris Horn.
14  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
15  *     manfred@colorfullife.com
16  * Rewrote bits to get rid of console_lock
17  *	01Mar01 Andrew Morton
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/tty.h>
25 #include <linux/tty_driver.h>
26 #include <linux/console.h>
27 #include <linux/init.h>
28 #include <linux/jiffies.h>
29 #include <linux/nmi.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/delay.h>
33 #include <linux/smp.h>
34 #include <linux/security.h>
35 #include <linux/memblock.h>
36 #include <linux/syscalls.h>
37 #include <linux/vmcore_info.h>
38 #include <linux/ratelimit.h>
39 #include <linux/kmsg_dump.h>
40 #include <linux/syslog.h>
41 #include <linux/cpu.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/ctype.h>
46 #include <linux/uio.h>
47 #include <linux/sched/clock.h>
48 #include <linux/sched/debug.h>
49 #include <linux/sched/task_stack.h>
50 
51 #include <linux/uaccess.h>
52 #include <asm/sections.h>
53 
54 #include <trace/events/initcall.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/printk.h>
57 
58 #include "printk_ringbuffer.h"
59 #include "console_cmdline.h"
60 #include "braille.h"
61 #include "internal.h"
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 EXPORT_SYMBOL_GPL(console_printk);
70 
71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
72 EXPORT_SYMBOL(ignore_console_lock_warning);
73 
74 EXPORT_TRACEPOINT_SYMBOL_GPL(console);
75 
76 /*
77  * Low level drivers may need that to know if they can schedule in
78  * their unblank() callback or not. So let's export it.
79  */
80 int oops_in_progress;
81 EXPORT_SYMBOL(oops_in_progress);
82 
83 /*
84  * console_mutex protects console_list updates and console->flags updates.
85  * The flags are synchronized only for consoles that are registered, i.e.
86  * accessible via the console list.
87  */
88 static DEFINE_MUTEX(console_mutex);
89 
90 /*
91  * console_sem protects updates to console->seq
92  * and also provides serialization for console printing.
93  */
94 static DEFINE_SEMAPHORE(console_sem, 1);
95 HLIST_HEAD(console_list);
96 EXPORT_SYMBOL_GPL(console_list);
97 DEFINE_STATIC_SRCU(console_srcu);
98 
99 /*
100  * System may need to suppress printk message under certain
101  * circumstances, like after kernel panic happens.
102  */
103 int __read_mostly suppress_printk;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lockdep_map console_lock_dep_map = {
107 	.name = "console_lock"
108 };
109 
110 void lockdep_assert_console_list_lock_held(void)
111 {
112 	lockdep_assert_held(&console_mutex);
113 }
114 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held);
115 #endif
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 bool console_srcu_read_lock_is_held(void)
119 {
120 	return srcu_read_lock_held(&console_srcu);
121 }
122 EXPORT_SYMBOL(console_srcu_read_lock_is_held);
123 #endif
124 
125 enum devkmsg_log_bits {
126 	__DEVKMSG_LOG_BIT_ON = 0,
127 	__DEVKMSG_LOG_BIT_OFF,
128 	__DEVKMSG_LOG_BIT_LOCK,
129 };
130 
131 enum devkmsg_log_masks {
132 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
133 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
134 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
135 };
136 
137 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
138 #define DEVKMSG_LOG_MASK_DEFAULT	0
139 
140 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
141 
142 static int __control_devkmsg(char *str)
143 {
144 	size_t len;
145 
146 	if (!str)
147 		return -EINVAL;
148 
149 	len = str_has_prefix(str, "on");
150 	if (len) {
151 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
152 		return len;
153 	}
154 
155 	len = str_has_prefix(str, "off");
156 	if (len) {
157 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
158 		return len;
159 	}
160 
161 	len = str_has_prefix(str, "ratelimit");
162 	if (len) {
163 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
164 		return len;
165 	}
166 
167 	return -EINVAL;
168 }
169 
170 static int __init control_devkmsg(char *str)
171 {
172 	if (__control_devkmsg(str) < 0) {
173 		pr_warn("printk.devkmsg: bad option string '%s'\n", str);
174 		return 1;
175 	}
176 
177 	/*
178 	 * Set sysctl string accordingly:
179 	 */
180 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
181 		strscpy(devkmsg_log_str, "on");
182 	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
183 		strscpy(devkmsg_log_str, "off");
184 	/* else "ratelimit" which is set by default. */
185 
186 	/*
187 	 * Sysctl cannot change it anymore. The kernel command line setting of
188 	 * this parameter is to force the setting to be permanent throughout the
189 	 * runtime of the system. This is a precation measure against userspace
190 	 * trying to be a smarta** and attempting to change it up on us.
191 	 */
192 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
193 
194 	return 1;
195 }
196 __setup("printk.devkmsg=", control_devkmsg);
197 
198 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
199 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL)
200 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
201 			      void *buffer, size_t *lenp, loff_t *ppos)
202 {
203 	char old_str[DEVKMSG_STR_MAX_SIZE];
204 	unsigned int old;
205 	int err;
206 
207 	if (write) {
208 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
209 			return -EINVAL;
210 
211 		old = devkmsg_log;
212 		strscpy(old_str, devkmsg_log_str);
213 	}
214 
215 	err = proc_dostring(table, write, buffer, lenp, ppos);
216 	if (err)
217 		return err;
218 
219 	if (write) {
220 		err = __control_devkmsg(devkmsg_log_str);
221 
222 		/*
223 		 * Do not accept an unknown string OR a known string with
224 		 * trailing crap...
225 		 */
226 		if (err < 0 || (err + 1 != *lenp)) {
227 
228 			/* ... and restore old setting. */
229 			devkmsg_log = old;
230 			strscpy(devkmsg_log_str, old_str);
231 
232 			return -EINVAL;
233 		}
234 	}
235 
236 	return 0;
237 }
238 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */
239 
240 /**
241  * console_list_lock - Lock the console list
242  *
243  * For console list or console->flags updates
244  */
245 void console_list_lock(void)
246 {
247 	/*
248 	 * In unregister_console() and console_force_preferred_locked(),
249 	 * synchronize_srcu() is called with the console_list_lock held.
250 	 * Therefore it is not allowed that the console_list_lock is taken
251 	 * with the srcu_lock held.
252 	 *
253 	 * Detecting if this context is really in the read-side critical
254 	 * section is only possible if the appropriate debug options are
255 	 * enabled.
256 	 */
257 	WARN_ON_ONCE(debug_lockdep_rcu_enabled() &&
258 		     srcu_read_lock_held(&console_srcu));
259 
260 	mutex_lock(&console_mutex);
261 }
262 EXPORT_SYMBOL(console_list_lock);
263 
264 /**
265  * console_list_unlock - Unlock the console list
266  *
267  * Counterpart to console_list_lock()
268  */
269 void console_list_unlock(void)
270 {
271 	mutex_unlock(&console_mutex);
272 }
273 EXPORT_SYMBOL(console_list_unlock);
274 
275 /**
276  * console_srcu_read_lock - Register a new reader for the
277  *	SRCU-protected console list
278  *
279  * Use for_each_console_srcu() to iterate the console list
280  *
281  * Context: Any context.
282  * Return: A cookie to pass to console_srcu_read_unlock().
283  */
284 int console_srcu_read_lock(void)
285 {
286 	return srcu_read_lock_nmisafe(&console_srcu);
287 }
288 EXPORT_SYMBOL(console_srcu_read_lock);
289 
290 /**
291  * console_srcu_read_unlock - Unregister an old reader from
292  *	the SRCU-protected console list
293  * @cookie: cookie returned from console_srcu_read_lock()
294  *
295  * Counterpart to console_srcu_read_lock()
296  */
297 void console_srcu_read_unlock(int cookie)
298 {
299 	srcu_read_unlock_nmisafe(&console_srcu, cookie);
300 }
301 EXPORT_SYMBOL(console_srcu_read_unlock);
302 
303 /*
304  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
305  * macros instead of functions so that _RET_IP_ contains useful information.
306  */
307 #define down_console_sem() do { \
308 	down(&console_sem);\
309 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
310 } while (0)
311 
312 static int __down_trylock_console_sem(unsigned long ip)
313 {
314 	int lock_failed;
315 	unsigned long flags;
316 
317 	/*
318 	 * Here and in __up_console_sem() we need to be in safe mode,
319 	 * because spindump/WARN/etc from under console ->lock will
320 	 * deadlock in printk()->down_trylock_console_sem() otherwise.
321 	 */
322 	printk_safe_enter_irqsave(flags);
323 	lock_failed = down_trylock(&console_sem);
324 	printk_safe_exit_irqrestore(flags);
325 
326 	if (lock_failed)
327 		return 1;
328 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
329 	return 0;
330 }
331 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
332 
333 static void __up_console_sem(unsigned long ip)
334 {
335 	unsigned long flags;
336 
337 	mutex_release(&console_lock_dep_map, ip);
338 
339 	printk_safe_enter_irqsave(flags);
340 	up(&console_sem);
341 	printk_safe_exit_irqrestore(flags);
342 }
343 #define up_console_sem() __up_console_sem(_RET_IP_)
344 
345 static bool panic_in_progress(void)
346 {
347 	return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID);
348 }
349 
350 /* Return true if a panic is in progress on the current CPU. */
351 bool this_cpu_in_panic(void)
352 {
353 	/*
354 	 * We can use raw_smp_processor_id() here because it is impossible for
355 	 * the task to be migrated to the panic_cpu, or away from it. If
356 	 * panic_cpu has already been set, and we're not currently executing on
357 	 * that CPU, then we never will be.
358 	 */
359 	return unlikely(atomic_read(&panic_cpu) == raw_smp_processor_id());
360 }
361 
362 /*
363  * Return true if a panic is in progress on a remote CPU.
364  *
365  * On true, the local CPU should immediately release any printing resources
366  * that may be needed by the panic CPU.
367  */
368 bool other_cpu_in_panic(void)
369 {
370 	return (panic_in_progress() && !this_cpu_in_panic());
371 }
372 
373 /*
374  * This is used for debugging the mess that is the VT code by
375  * keeping track if we have the console semaphore held. It's
376  * definitely not the perfect debug tool (we don't know if _WE_
377  * hold it and are racing, but it helps tracking those weird code
378  * paths in the console code where we end up in places I want
379  * locked without the console semaphore held).
380  */
381 static int console_locked;
382 
383 /*
384  *	Array of consoles built from command line options (console=)
385  */
386 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
387 
388 static int preferred_console = -1;
389 int console_set_on_cmdline;
390 EXPORT_SYMBOL(console_set_on_cmdline);
391 
392 /* Flag: console code may call schedule() */
393 static int console_may_schedule;
394 
395 enum con_msg_format_flags {
396 	MSG_FORMAT_DEFAULT	= 0,
397 	MSG_FORMAT_SYSLOG	= (1 << 0),
398 };
399 
400 static int console_msg_format = MSG_FORMAT_DEFAULT;
401 
402 /*
403  * The printk log buffer consists of a sequenced collection of records, each
404  * containing variable length message text. Every record also contains its
405  * own meta-data (@info).
406  *
407  * Every record meta-data carries the timestamp in microseconds, as well as
408  * the standard userspace syslog level and syslog facility. The usual kernel
409  * messages use LOG_KERN; userspace-injected messages always carry a matching
410  * syslog facility, by default LOG_USER. The origin of every message can be
411  * reliably determined that way.
412  *
413  * The human readable log message of a record is available in @text, the
414  * length of the message text in @text_len. The stored message is not
415  * terminated.
416  *
417  * Optionally, a record can carry a dictionary of properties (key/value
418  * pairs), to provide userspace with a machine-readable message context.
419  *
420  * Examples for well-defined, commonly used property names are:
421  *   DEVICE=b12:8               device identifier
422  *                                b12:8         block dev_t
423  *                                c127:3        char dev_t
424  *                                n8            netdev ifindex
425  *                                +sound:card0  subsystem:devname
426  *   SUBSYSTEM=pci              driver-core subsystem name
427  *
428  * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
429  * and values are terminated by a '\0' character.
430  *
431  * Example of record values:
432  *   record.text_buf                = "it's a line" (unterminated)
433  *   record.info.seq                = 56
434  *   record.info.ts_nsec            = 36863
435  *   record.info.text_len           = 11
436  *   record.info.facility           = 0 (LOG_KERN)
437  *   record.info.flags              = 0
438  *   record.info.level              = 3 (LOG_ERR)
439  *   record.info.caller_id          = 299 (task 299)
440  *   record.info.dev_info.subsystem = "pci" (terminated)
441  *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
442  *
443  * The 'struct printk_info' buffer must never be directly exported to
444  * userspace, it is a kernel-private implementation detail that might
445  * need to be changed in the future, when the requirements change.
446  *
447  * /dev/kmsg exports the structured data in the following line format:
448  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
449  *
450  * Users of the export format should ignore possible additional values
451  * separated by ',', and find the message after the ';' character.
452  *
453  * The optional key/value pairs are attached as continuation lines starting
454  * with a space character and terminated by a newline. All possible
455  * non-prinatable characters are escaped in the "\xff" notation.
456  */
457 
458 /* syslog_lock protects syslog_* variables and write access to clear_seq. */
459 static DEFINE_MUTEX(syslog_lock);
460 
461 #ifdef CONFIG_PRINTK
462 DECLARE_WAIT_QUEUE_HEAD(log_wait);
463 /* All 3 protected by @syslog_lock. */
464 /* the next printk record to read by syslog(READ) or /proc/kmsg */
465 static u64 syslog_seq;
466 static size_t syslog_partial;
467 static bool syslog_time;
468 
469 struct latched_seq {
470 	seqcount_latch_t	latch;
471 	u64			val[2];
472 };
473 
474 /*
475  * The next printk record to read after the last 'clear' command. There are
476  * two copies (updated with seqcount_latch) so that reads can locklessly
477  * access a valid value. Writers are synchronized by @syslog_lock.
478  */
479 static struct latched_seq clear_seq = {
480 	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
481 	.val[0]		= 0,
482 	.val[1]		= 0,
483 };
484 
485 #define LOG_LEVEL(v)		((v) & 0x07)
486 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
487 
488 /* record buffer */
489 #define LOG_ALIGN __alignof__(unsigned long)
490 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
491 #define LOG_BUF_LEN_MAX (u32)(1 << 31)
492 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
493 static char *log_buf = __log_buf;
494 static u32 log_buf_len = __LOG_BUF_LEN;
495 
496 /*
497  * Define the average message size. This only affects the number of
498  * descriptors that will be available. Underestimating is better than
499  * overestimating (too many available descriptors is better than not enough).
500  */
501 #define PRB_AVGBITS 5	/* 32 character average length */
502 
503 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
504 #error CONFIG_LOG_BUF_SHIFT value too small.
505 #endif
506 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
507 		 PRB_AVGBITS, &__log_buf[0]);
508 
509 static struct printk_ringbuffer printk_rb_dynamic;
510 
511 struct printk_ringbuffer *prb = &printk_rb_static;
512 
513 /*
514  * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
515  * per_cpu_areas are initialised. This variable is set to true when
516  * it's safe to access per-CPU data.
517  */
518 static bool __printk_percpu_data_ready __ro_after_init;
519 
520 bool printk_percpu_data_ready(void)
521 {
522 	return __printk_percpu_data_ready;
523 }
524 
525 /* Must be called under syslog_lock. */
526 static void latched_seq_write(struct latched_seq *ls, u64 val)
527 {
528 	raw_write_seqcount_latch(&ls->latch);
529 	ls->val[0] = val;
530 	raw_write_seqcount_latch(&ls->latch);
531 	ls->val[1] = val;
532 }
533 
534 /* Can be called from any context. */
535 static u64 latched_seq_read_nolock(struct latched_seq *ls)
536 {
537 	unsigned int seq;
538 	unsigned int idx;
539 	u64 val;
540 
541 	do {
542 		seq = raw_read_seqcount_latch(&ls->latch);
543 		idx = seq & 0x1;
544 		val = ls->val[idx];
545 	} while (raw_read_seqcount_latch_retry(&ls->latch, seq));
546 
547 	return val;
548 }
549 
550 /* Return log buffer address */
551 char *log_buf_addr_get(void)
552 {
553 	return log_buf;
554 }
555 
556 /* Return log buffer size */
557 u32 log_buf_len_get(void)
558 {
559 	return log_buf_len;
560 }
561 
562 /*
563  * Define how much of the log buffer we could take at maximum. The value
564  * must be greater than two. Note that only half of the buffer is available
565  * when the index points to the middle.
566  */
567 #define MAX_LOG_TAKE_PART 4
568 static const char trunc_msg[] = "<truncated>";
569 
570 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
571 {
572 	/*
573 	 * The message should not take the whole buffer. Otherwise, it might
574 	 * get removed too soon.
575 	 */
576 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
577 
578 	if (*text_len > max_text_len)
579 		*text_len = max_text_len;
580 
581 	/* enable the warning message (if there is room) */
582 	*trunc_msg_len = strlen(trunc_msg);
583 	if (*text_len >= *trunc_msg_len)
584 		*text_len -= *trunc_msg_len;
585 	else
586 		*trunc_msg_len = 0;
587 }
588 
589 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
590 
591 static int syslog_action_restricted(int type)
592 {
593 	if (dmesg_restrict)
594 		return 1;
595 	/*
596 	 * Unless restricted, we allow "read all" and "get buffer size"
597 	 * for everybody.
598 	 */
599 	return type != SYSLOG_ACTION_READ_ALL &&
600 	       type != SYSLOG_ACTION_SIZE_BUFFER;
601 }
602 
603 static int check_syslog_permissions(int type, int source)
604 {
605 	/*
606 	 * If this is from /proc/kmsg and we've already opened it, then we've
607 	 * already done the capabilities checks at open time.
608 	 */
609 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
610 		goto ok;
611 
612 	if (syslog_action_restricted(type)) {
613 		if (capable(CAP_SYSLOG))
614 			goto ok;
615 		return -EPERM;
616 	}
617 ok:
618 	return security_syslog(type);
619 }
620 
621 static void append_char(char **pp, char *e, char c)
622 {
623 	if (*pp < e)
624 		*(*pp)++ = c;
625 }
626 
627 static ssize_t info_print_ext_header(char *buf, size_t size,
628 				     struct printk_info *info)
629 {
630 	u64 ts_usec = info->ts_nsec;
631 	char caller[20];
632 #ifdef CONFIG_PRINTK_CALLER
633 	u32 id = info->caller_id;
634 
635 	snprintf(caller, sizeof(caller), ",caller=%c%u",
636 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
637 #else
638 	caller[0] = '\0';
639 #endif
640 
641 	do_div(ts_usec, 1000);
642 
643 	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
644 			 (info->facility << 3) | info->level, info->seq,
645 			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
646 }
647 
648 static ssize_t msg_add_ext_text(char *buf, size_t size,
649 				const char *text, size_t text_len,
650 				unsigned char endc)
651 {
652 	char *p = buf, *e = buf + size;
653 	size_t i;
654 
655 	/* escape non-printable characters */
656 	for (i = 0; i < text_len; i++) {
657 		unsigned char c = text[i];
658 
659 		if (c < ' ' || c >= 127 || c == '\\')
660 			p += scnprintf(p, e - p, "\\x%02x", c);
661 		else
662 			append_char(&p, e, c);
663 	}
664 	append_char(&p, e, endc);
665 
666 	return p - buf;
667 }
668 
669 static ssize_t msg_add_dict_text(char *buf, size_t size,
670 				 const char *key, const char *val)
671 {
672 	size_t val_len = strlen(val);
673 	ssize_t len;
674 
675 	if (!val_len)
676 		return 0;
677 
678 	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
679 	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
680 	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
681 
682 	return len;
683 }
684 
685 static ssize_t msg_print_ext_body(char *buf, size_t size,
686 				  char *text, size_t text_len,
687 				  struct dev_printk_info *dev_info)
688 {
689 	ssize_t len;
690 
691 	len = msg_add_ext_text(buf, size, text, text_len, '\n');
692 
693 	if (!dev_info)
694 		goto out;
695 
696 	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
697 				 dev_info->subsystem);
698 	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
699 				 dev_info->device);
700 out:
701 	return len;
702 }
703 
704 /* /dev/kmsg - userspace message inject/listen interface */
705 struct devkmsg_user {
706 	atomic64_t seq;
707 	struct ratelimit_state rs;
708 	struct mutex lock;
709 	struct printk_buffers pbufs;
710 };
711 
712 static __printf(3, 4) __cold
713 int devkmsg_emit(int facility, int level, const char *fmt, ...)
714 {
715 	va_list args;
716 	int r;
717 
718 	va_start(args, fmt);
719 	r = vprintk_emit(facility, level, NULL, fmt, args);
720 	va_end(args);
721 
722 	return r;
723 }
724 
725 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
726 {
727 	char *buf, *line;
728 	int level = default_message_loglevel;
729 	int facility = 1;	/* LOG_USER */
730 	struct file *file = iocb->ki_filp;
731 	struct devkmsg_user *user = file->private_data;
732 	size_t len = iov_iter_count(from);
733 	ssize_t ret = len;
734 
735 	if (len > PRINTKRB_RECORD_MAX)
736 		return -EINVAL;
737 
738 	/* Ignore when user logging is disabled. */
739 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
740 		return len;
741 
742 	/* Ratelimit when not explicitly enabled. */
743 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
744 		if (!___ratelimit(&user->rs, current->comm))
745 			return ret;
746 	}
747 
748 	buf = kmalloc(len+1, GFP_KERNEL);
749 	if (buf == NULL)
750 		return -ENOMEM;
751 
752 	buf[len] = '\0';
753 	if (!copy_from_iter_full(buf, len, from)) {
754 		kfree(buf);
755 		return -EFAULT;
756 	}
757 
758 	/*
759 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
760 	 * the decimal value represents 32bit, the lower 3 bit are the log
761 	 * level, the rest are the log facility.
762 	 *
763 	 * If no prefix or no userspace facility is specified, we
764 	 * enforce LOG_USER, to be able to reliably distinguish
765 	 * kernel-generated messages from userspace-injected ones.
766 	 */
767 	line = buf;
768 	if (line[0] == '<') {
769 		char *endp = NULL;
770 		unsigned int u;
771 
772 		u = simple_strtoul(line + 1, &endp, 10);
773 		if (endp && endp[0] == '>') {
774 			level = LOG_LEVEL(u);
775 			if (LOG_FACILITY(u) != 0)
776 				facility = LOG_FACILITY(u);
777 			endp++;
778 			line = endp;
779 		}
780 	}
781 
782 	devkmsg_emit(facility, level, "%s", line);
783 	kfree(buf);
784 	return ret;
785 }
786 
787 static ssize_t devkmsg_read(struct file *file, char __user *buf,
788 			    size_t count, loff_t *ppos)
789 {
790 	struct devkmsg_user *user = file->private_data;
791 	char *outbuf = &user->pbufs.outbuf[0];
792 	struct printk_message pmsg = {
793 		.pbufs = &user->pbufs,
794 	};
795 	ssize_t ret;
796 
797 	ret = mutex_lock_interruptible(&user->lock);
798 	if (ret)
799 		return ret;
800 
801 	if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) {
802 		if (file->f_flags & O_NONBLOCK) {
803 			ret = -EAGAIN;
804 			goto out;
805 		}
806 
807 		/*
808 		 * Guarantee this task is visible on the waitqueue before
809 		 * checking the wake condition.
810 		 *
811 		 * The full memory barrier within set_current_state() of
812 		 * prepare_to_wait_event() pairs with the full memory barrier
813 		 * within wq_has_sleeper().
814 		 *
815 		 * This pairs with __wake_up_klogd:A.
816 		 */
817 		ret = wait_event_interruptible(log_wait,
818 				printk_get_next_message(&pmsg, atomic64_read(&user->seq), true,
819 							false)); /* LMM(devkmsg_read:A) */
820 		if (ret)
821 			goto out;
822 	}
823 
824 	if (pmsg.dropped) {
825 		/* our last seen message is gone, return error and reset */
826 		atomic64_set(&user->seq, pmsg.seq);
827 		ret = -EPIPE;
828 		goto out;
829 	}
830 
831 	atomic64_set(&user->seq, pmsg.seq + 1);
832 
833 	if (pmsg.outbuf_len > count) {
834 		ret = -EINVAL;
835 		goto out;
836 	}
837 
838 	if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) {
839 		ret = -EFAULT;
840 		goto out;
841 	}
842 	ret = pmsg.outbuf_len;
843 out:
844 	mutex_unlock(&user->lock);
845 	return ret;
846 }
847 
848 /*
849  * Be careful when modifying this function!!!
850  *
851  * Only few operations are supported because the device works only with the
852  * entire variable length messages (records). Non-standard values are
853  * returned in the other cases and has been this way for quite some time.
854  * User space applications might depend on this behavior.
855  */
856 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
857 {
858 	struct devkmsg_user *user = file->private_data;
859 	loff_t ret = 0;
860 
861 	if (offset)
862 		return -ESPIPE;
863 
864 	switch (whence) {
865 	case SEEK_SET:
866 		/* the first record */
867 		atomic64_set(&user->seq, prb_first_valid_seq(prb));
868 		break;
869 	case SEEK_DATA:
870 		/*
871 		 * The first record after the last SYSLOG_ACTION_CLEAR,
872 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
873 		 * changes no global state, and does not clear anything.
874 		 */
875 		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
876 		break;
877 	case SEEK_END:
878 		/* after the last record */
879 		atomic64_set(&user->seq, prb_next_seq(prb));
880 		break;
881 	default:
882 		ret = -EINVAL;
883 	}
884 	return ret;
885 }
886 
887 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
888 {
889 	struct devkmsg_user *user = file->private_data;
890 	struct printk_info info;
891 	__poll_t ret = 0;
892 
893 	poll_wait(file, &log_wait, wait);
894 
895 	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
896 		/* return error when data has vanished underneath us */
897 		if (info.seq != atomic64_read(&user->seq))
898 			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
899 		else
900 			ret = EPOLLIN|EPOLLRDNORM;
901 	}
902 
903 	return ret;
904 }
905 
906 static int devkmsg_open(struct inode *inode, struct file *file)
907 {
908 	struct devkmsg_user *user;
909 	int err;
910 
911 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
912 		return -EPERM;
913 
914 	/* write-only does not need any file context */
915 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
916 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
917 					       SYSLOG_FROM_READER);
918 		if (err)
919 			return err;
920 	}
921 
922 	user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
923 	if (!user)
924 		return -ENOMEM;
925 
926 	ratelimit_default_init(&user->rs);
927 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
928 
929 	mutex_init(&user->lock);
930 
931 	atomic64_set(&user->seq, prb_first_valid_seq(prb));
932 
933 	file->private_data = user;
934 	return 0;
935 }
936 
937 static int devkmsg_release(struct inode *inode, struct file *file)
938 {
939 	struct devkmsg_user *user = file->private_data;
940 
941 	ratelimit_state_exit(&user->rs);
942 
943 	mutex_destroy(&user->lock);
944 	kvfree(user);
945 	return 0;
946 }
947 
948 const struct file_operations kmsg_fops = {
949 	.open = devkmsg_open,
950 	.read = devkmsg_read,
951 	.write_iter = devkmsg_write,
952 	.llseek = devkmsg_llseek,
953 	.poll = devkmsg_poll,
954 	.release = devkmsg_release,
955 };
956 
957 #ifdef CONFIG_VMCORE_INFO
958 /*
959  * This appends the listed symbols to /proc/vmcore
960  *
961  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
962  * obtain access to symbols that are otherwise very difficult to locate.  These
963  * symbols are specifically used so that utilities can access and extract the
964  * dmesg log from a vmcore file after a crash.
965  */
966 void log_buf_vmcoreinfo_setup(void)
967 {
968 	struct dev_printk_info *dev_info = NULL;
969 
970 	VMCOREINFO_SYMBOL(prb);
971 	VMCOREINFO_SYMBOL(printk_rb_static);
972 	VMCOREINFO_SYMBOL(clear_seq);
973 
974 	/*
975 	 * Export struct size and field offsets. User space tools can
976 	 * parse it and detect any changes to structure down the line.
977 	 */
978 
979 	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
980 	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
981 	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
982 	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
983 
984 	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
985 	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
986 	VMCOREINFO_OFFSET(prb_desc_ring, descs);
987 	VMCOREINFO_OFFSET(prb_desc_ring, infos);
988 	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
989 	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
990 
991 	VMCOREINFO_STRUCT_SIZE(prb_desc);
992 	VMCOREINFO_OFFSET(prb_desc, state_var);
993 	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
994 
995 	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
996 	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
997 	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
998 
999 	VMCOREINFO_STRUCT_SIZE(printk_info);
1000 	VMCOREINFO_OFFSET(printk_info, seq);
1001 	VMCOREINFO_OFFSET(printk_info, ts_nsec);
1002 	VMCOREINFO_OFFSET(printk_info, text_len);
1003 	VMCOREINFO_OFFSET(printk_info, caller_id);
1004 	VMCOREINFO_OFFSET(printk_info, dev_info);
1005 
1006 	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
1007 	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
1008 	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
1009 	VMCOREINFO_OFFSET(dev_printk_info, device);
1010 	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
1011 
1012 	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
1013 	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
1014 	VMCOREINFO_OFFSET(prb_data_ring, data);
1015 	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
1016 	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
1017 
1018 	VMCOREINFO_SIZE(atomic_long_t);
1019 	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
1020 
1021 	VMCOREINFO_STRUCT_SIZE(latched_seq);
1022 	VMCOREINFO_OFFSET(latched_seq, val);
1023 }
1024 #endif
1025 
1026 /* requested log_buf_len from kernel cmdline */
1027 static unsigned long __initdata new_log_buf_len;
1028 
1029 /* we practice scaling the ring buffer by powers of 2 */
1030 static void __init log_buf_len_update(u64 size)
1031 {
1032 	if (size > (u64)LOG_BUF_LEN_MAX) {
1033 		size = (u64)LOG_BUF_LEN_MAX;
1034 		pr_err("log_buf over 2G is not supported.\n");
1035 	}
1036 
1037 	if (size)
1038 		size = roundup_pow_of_two(size);
1039 	if (size > log_buf_len)
1040 		new_log_buf_len = (unsigned long)size;
1041 }
1042 
1043 /* save requested log_buf_len since it's too early to process it */
1044 static int __init log_buf_len_setup(char *str)
1045 {
1046 	u64 size;
1047 
1048 	if (!str)
1049 		return -EINVAL;
1050 
1051 	size = memparse(str, &str);
1052 
1053 	log_buf_len_update(size);
1054 
1055 	return 0;
1056 }
1057 early_param("log_buf_len", log_buf_len_setup);
1058 
1059 #ifdef CONFIG_SMP
1060 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1061 
1062 static void __init log_buf_add_cpu(void)
1063 {
1064 	unsigned int cpu_extra;
1065 
1066 	/*
1067 	 * archs should set up cpu_possible_bits properly with
1068 	 * set_cpu_possible() after setup_arch() but just in
1069 	 * case lets ensure this is valid.
1070 	 */
1071 	if (num_possible_cpus() == 1)
1072 		return;
1073 
1074 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1075 
1076 	/* by default this will only continue through for large > 64 CPUs */
1077 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1078 		return;
1079 
1080 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1081 		__LOG_CPU_MAX_BUF_LEN);
1082 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1083 		cpu_extra);
1084 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1085 
1086 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1087 }
1088 #else /* !CONFIG_SMP */
1089 static inline void log_buf_add_cpu(void) {}
1090 #endif /* CONFIG_SMP */
1091 
1092 static void __init set_percpu_data_ready(void)
1093 {
1094 	__printk_percpu_data_ready = true;
1095 }
1096 
1097 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1098 				     struct printk_record *r)
1099 {
1100 	struct prb_reserved_entry e;
1101 	struct printk_record dest_r;
1102 
1103 	prb_rec_init_wr(&dest_r, r->info->text_len);
1104 
1105 	if (!prb_reserve(&e, rb, &dest_r))
1106 		return 0;
1107 
1108 	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1109 	dest_r.info->text_len = r->info->text_len;
1110 	dest_r.info->facility = r->info->facility;
1111 	dest_r.info->level = r->info->level;
1112 	dest_r.info->flags = r->info->flags;
1113 	dest_r.info->ts_nsec = r->info->ts_nsec;
1114 	dest_r.info->caller_id = r->info->caller_id;
1115 	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1116 
1117 	prb_final_commit(&e);
1118 
1119 	return prb_record_text_space(&e);
1120 }
1121 
1122 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata;
1123 
1124 void __init setup_log_buf(int early)
1125 {
1126 	struct printk_info *new_infos;
1127 	unsigned int new_descs_count;
1128 	struct prb_desc *new_descs;
1129 	struct printk_info info;
1130 	struct printk_record r;
1131 	unsigned int text_size;
1132 	size_t new_descs_size;
1133 	size_t new_infos_size;
1134 	unsigned long flags;
1135 	char *new_log_buf;
1136 	unsigned int free;
1137 	u64 seq;
1138 
1139 	/*
1140 	 * Some archs call setup_log_buf() multiple times - first is very
1141 	 * early, e.g. from setup_arch(), and second - when percpu_areas
1142 	 * are initialised.
1143 	 */
1144 	if (!early)
1145 		set_percpu_data_ready();
1146 
1147 	if (log_buf != __log_buf)
1148 		return;
1149 
1150 	if (!early && !new_log_buf_len)
1151 		log_buf_add_cpu();
1152 
1153 	if (!new_log_buf_len)
1154 		return;
1155 
1156 	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1157 	if (new_descs_count == 0) {
1158 		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1159 		return;
1160 	}
1161 
1162 	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1163 	if (unlikely(!new_log_buf)) {
1164 		pr_err("log_buf_len: %lu text bytes not available\n",
1165 		       new_log_buf_len);
1166 		return;
1167 	}
1168 
1169 	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1170 	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1171 	if (unlikely(!new_descs)) {
1172 		pr_err("log_buf_len: %zu desc bytes not available\n",
1173 		       new_descs_size);
1174 		goto err_free_log_buf;
1175 	}
1176 
1177 	new_infos_size = new_descs_count * sizeof(struct printk_info);
1178 	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1179 	if (unlikely(!new_infos)) {
1180 		pr_err("log_buf_len: %zu info bytes not available\n",
1181 		       new_infos_size);
1182 		goto err_free_descs;
1183 	}
1184 
1185 	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1186 
1187 	prb_init(&printk_rb_dynamic,
1188 		 new_log_buf, ilog2(new_log_buf_len),
1189 		 new_descs, ilog2(new_descs_count),
1190 		 new_infos);
1191 
1192 	local_irq_save(flags);
1193 
1194 	log_buf_len = new_log_buf_len;
1195 	log_buf = new_log_buf;
1196 	new_log_buf_len = 0;
1197 
1198 	free = __LOG_BUF_LEN;
1199 	prb_for_each_record(0, &printk_rb_static, seq, &r) {
1200 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1201 		if (text_size > free)
1202 			free = 0;
1203 		else
1204 			free -= text_size;
1205 	}
1206 
1207 	prb = &printk_rb_dynamic;
1208 
1209 	local_irq_restore(flags);
1210 
1211 	/*
1212 	 * Copy any remaining messages that might have appeared from
1213 	 * NMI context after copying but before switching to the
1214 	 * dynamic buffer.
1215 	 */
1216 	prb_for_each_record(seq, &printk_rb_static, seq, &r) {
1217 		text_size = add_to_rb(&printk_rb_dynamic, &r);
1218 		if (text_size > free)
1219 			free = 0;
1220 		else
1221 			free -= text_size;
1222 	}
1223 
1224 	if (seq != prb_next_seq(&printk_rb_static)) {
1225 		pr_err("dropped %llu messages\n",
1226 		       prb_next_seq(&printk_rb_static) - seq);
1227 	}
1228 
1229 	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1230 	pr_info("early log buf free: %u(%u%%)\n",
1231 		free, (free * 100) / __LOG_BUF_LEN);
1232 	return;
1233 
1234 err_free_descs:
1235 	memblock_free(new_descs, new_descs_size);
1236 err_free_log_buf:
1237 	memblock_free(new_log_buf, new_log_buf_len);
1238 }
1239 
1240 static bool __read_mostly ignore_loglevel;
1241 
1242 static int __init ignore_loglevel_setup(char *str)
1243 {
1244 	ignore_loglevel = true;
1245 	pr_info("debug: ignoring loglevel setting.\n");
1246 
1247 	return 0;
1248 }
1249 
1250 early_param("ignore_loglevel", ignore_loglevel_setup);
1251 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1252 MODULE_PARM_DESC(ignore_loglevel,
1253 		 "ignore loglevel setting (prints all kernel messages to the console)");
1254 
1255 static bool suppress_message_printing(int level)
1256 {
1257 	return (level >= console_loglevel && !ignore_loglevel);
1258 }
1259 
1260 #ifdef CONFIG_BOOT_PRINTK_DELAY
1261 
1262 static int boot_delay; /* msecs delay after each printk during bootup */
1263 static unsigned long long loops_per_msec;	/* based on boot_delay */
1264 
1265 static int __init boot_delay_setup(char *str)
1266 {
1267 	unsigned long lpj;
1268 
1269 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1270 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1271 
1272 	get_option(&str, &boot_delay);
1273 	if (boot_delay > 10 * 1000)
1274 		boot_delay = 0;
1275 
1276 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1277 		"HZ: %d, loops_per_msec: %llu\n",
1278 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1279 	return 0;
1280 }
1281 early_param("boot_delay", boot_delay_setup);
1282 
1283 static void boot_delay_msec(int level)
1284 {
1285 	unsigned long long k;
1286 	unsigned long timeout;
1287 
1288 	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1289 		|| suppress_message_printing(level)) {
1290 		return;
1291 	}
1292 
1293 	k = (unsigned long long)loops_per_msec * boot_delay;
1294 
1295 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1296 	while (k) {
1297 		k--;
1298 		cpu_relax();
1299 		/*
1300 		 * use (volatile) jiffies to prevent
1301 		 * compiler reduction; loop termination via jiffies
1302 		 * is secondary and may or may not happen.
1303 		 */
1304 		if (time_after(jiffies, timeout))
1305 			break;
1306 		touch_nmi_watchdog();
1307 	}
1308 }
1309 #else
1310 static inline void boot_delay_msec(int level)
1311 {
1312 }
1313 #endif
1314 
1315 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1316 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1317 
1318 static size_t print_syslog(unsigned int level, char *buf)
1319 {
1320 	return sprintf(buf, "<%u>", level);
1321 }
1322 
1323 static size_t print_time(u64 ts, char *buf)
1324 {
1325 	unsigned long rem_nsec = do_div(ts, 1000000000);
1326 
1327 	return sprintf(buf, "[%5lu.%06lu]",
1328 		       (unsigned long)ts, rem_nsec / 1000);
1329 }
1330 
1331 #ifdef CONFIG_PRINTK_CALLER
1332 static size_t print_caller(u32 id, char *buf)
1333 {
1334 	char caller[12];
1335 
1336 	snprintf(caller, sizeof(caller), "%c%u",
1337 		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1338 	return sprintf(buf, "[%6s]", caller);
1339 }
1340 #else
1341 #define print_caller(id, buf) 0
1342 #endif
1343 
1344 static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1345 				bool time, char *buf)
1346 {
1347 	size_t len = 0;
1348 
1349 	if (syslog)
1350 		len = print_syslog((info->facility << 3) | info->level, buf);
1351 
1352 	if (time)
1353 		len += print_time(info->ts_nsec, buf + len);
1354 
1355 	len += print_caller(info->caller_id, buf + len);
1356 
1357 	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1358 		buf[len++] = ' ';
1359 		buf[len] = '\0';
1360 	}
1361 
1362 	return len;
1363 }
1364 
1365 /*
1366  * Prepare the record for printing. The text is shifted within the given
1367  * buffer to avoid a need for another one. The following operations are
1368  * done:
1369  *
1370  *   - Add prefix for each line.
1371  *   - Drop truncated lines that no longer fit into the buffer.
1372  *   - Add the trailing newline that has been removed in vprintk_store().
1373  *   - Add a string terminator.
1374  *
1375  * Since the produced string is always terminated, the maximum possible
1376  * return value is @r->text_buf_size - 1;
1377  *
1378  * Return: The length of the updated/prepared text, including the added
1379  * prefixes and the newline. The terminator is not counted. The dropped
1380  * line(s) are not counted.
1381  */
1382 static size_t record_print_text(struct printk_record *r, bool syslog,
1383 				bool time)
1384 {
1385 	size_t text_len = r->info->text_len;
1386 	size_t buf_size = r->text_buf_size;
1387 	char *text = r->text_buf;
1388 	char prefix[PRINTK_PREFIX_MAX];
1389 	bool truncated = false;
1390 	size_t prefix_len;
1391 	size_t line_len;
1392 	size_t len = 0;
1393 	char *next;
1394 
1395 	/*
1396 	 * If the message was truncated because the buffer was not large
1397 	 * enough, treat the available text as if it were the full text.
1398 	 */
1399 	if (text_len > buf_size)
1400 		text_len = buf_size;
1401 
1402 	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1403 
1404 	/*
1405 	 * @text_len: bytes of unprocessed text
1406 	 * @line_len: bytes of current line _without_ newline
1407 	 * @text:     pointer to beginning of current line
1408 	 * @len:      number of bytes prepared in r->text_buf
1409 	 */
1410 	for (;;) {
1411 		next = memchr(text, '\n', text_len);
1412 		if (next) {
1413 			line_len = next - text;
1414 		} else {
1415 			/* Drop truncated line(s). */
1416 			if (truncated)
1417 				break;
1418 			line_len = text_len;
1419 		}
1420 
1421 		/*
1422 		 * Truncate the text if there is not enough space to add the
1423 		 * prefix and a trailing newline and a terminator.
1424 		 */
1425 		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1426 			/* Drop even the current line if no space. */
1427 			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1428 				break;
1429 
1430 			text_len = buf_size - len - prefix_len - 1 - 1;
1431 			truncated = true;
1432 		}
1433 
1434 		memmove(text + prefix_len, text, text_len);
1435 		memcpy(text, prefix, prefix_len);
1436 
1437 		/*
1438 		 * Increment the prepared length to include the text and
1439 		 * prefix that were just moved+copied. Also increment for the
1440 		 * newline at the end of this line. If this is the last line,
1441 		 * there is no newline, but it will be added immediately below.
1442 		 */
1443 		len += prefix_len + line_len + 1;
1444 		if (text_len == line_len) {
1445 			/*
1446 			 * This is the last line. Add the trailing newline
1447 			 * removed in vprintk_store().
1448 			 */
1449 			text[prefix_len + line_len] = '\n';
1450 			break;
1451 		}
1452 
1453 		/*
1454 		 * Advance beyond the added prefix and the related line with
1455 		 * its newline.
1456 		 */
1457 		text += prefix_len + line_len + 1;
1458 
1459 		/*
1460 		 * The remaining text has only decreased by the line with its
1461 		 * newline.
1462 		 *
1463 		 * Note that @text_len can become zero. It happens when @text
1464 		 * ended with a newline (either due to truncation or the
1465 		 * original string ending with "\n\n"). The loop is correctly
1466 		 * repeated and (if not truncated) an empty line with a prefix
1467 		 * will be prepared.
1468 		 */
1469 		text_len -= line_len + 1;
1470 	}
1471 
1472 	/*
1473 	 * If a buffer was provided, it will be terminated. Space for the
1474 	 * string terminator is guaranteed to be available. The terminator is
1475 	 * not counted in the return value.
1476 	 */
1477 	if (buf_size > 0)
1478 		r->text_buf[len] = 0;
1479 
1480 	return len;
1481 }
1482 
1483 static size_t get_record_print_text_size(struct printk_info *info,
1484 					 unsigned int line_count,
1485 					 bool syslog, bool time)
1486 {
1487 	char prefix[PRINTK_PREFIX_MAX];
1488 	size_t prefix_len;
1489 
1490 	prefix_len = info_print_prefix(info, syslog, time, prefix);
1491 
1492 	/*
1493 	 * Each line will be preceded with a prefix. The intermediate
1494 	 * newlines are already within the text, but a final trailing
1495 	 * newline will be added.
1496 	 */
1497 	return ((prefix_len * line_count) + info->text_len + 1);
1498 }
1499 
1500 /*
1501  * Beginning with @start_seq, find the first record where it and all following
1502  * records up to (but not including) @max_seq fit into @size.
1503  *
1504  * @max_seq is simply an upper bound and does not need to exist. If the caller
1505  * does not require an upper bound, -1 can be used for @max_seq.
1506  */
1507 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1508 				  bool syslog, bool time)
1509 {
1510 	struct printk_info info;
1511 	unsigned int line_count;
1512 	size_t len = 0;
1513 	u64 seq;
1514 
1515 	/* Determine the size of the records up to @max_seq. */
1516 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1517 		if (info.seq >= max_seq)
1518 			break;
1519 		len += get_record_print_text_size(&info, line_count, syslog, time);
1520 	}
1521 
1522 	/*
1523 	 * Adjust the upper bound for the next loop to avoid subtracting
1524 	 * lengths that were never added.
1525 	 */
1526 	if (seq < max_seq)
1527 		max_seq = seq;
1528 
1529 	/*
1530 	 * Move first record forward until length fits into the buffer. Ignore
1531 	 * newest messages that were not counted in the above cycle. Messages
1532 	 * might appear and get lost in the meantime. This is a best effort
1533 	 * that prevents an infinite loop that could occur with a retry.
1534 	 */
1535 	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1536 		if (len <= size || info.seq >= max_seq)
1537 			break;
1538 		len -= get_record_print_text_size(&info, line_count, syslog, time);
1539 	}
1540 
1541 	return seq;
1542 }
1543 
1544 /* The caller is responsible for making sure @size is greater than 0. */
1545 static int syslog_print(char __user *buf, int size)
1546 {
1547 	struct printk_info info;
1548 	struct printk_record r;
1549 	char *text;
1550 	int len = 0;
1551 	u64 seq;
1552 
1553 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1554 	if (!text)
1555 		return -ENOMEM;
1556 
1557 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1558 
1559 	mutex_lock(&syslog_lock);
1560 
1561 	/*
1562 	 * Wait for the @syslog_seq record to be available. @syslog_seq may
1563 	 * change while waiting.
1564 	 */
1565 	do {
1566 		seq = syslog_seq;
1567 
1568 		mutex_unlock(&syslog_lock);
1569 		/*
1570 		 * Guarantee this task is visible on the waitqueue before
1571 		 * checking the wake condition.
1572 		 *
1573 		 * The full memory barrier within set_current_state() of
1574 		 * prepare_to_wait_event() pairs with the full memory barrier
1575 		 * within wq_has_sleeper().
1576 		 *
1577 		 * This pairs with __wake_up_klogd:A.
1578 		 */
1579 		len = wait_event_interruptible(log_wait,
1580 				prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */
1581 		mutex_lock(&syslog_lock);
1582 
1583 		if (len)
1584 			goto out;
1585 	} while (syslog_seq != seq);
1586 
1587 	/*
1588 	 * Copy records that fit into the buffer. The above cycle makes sure
1589 	 * that the first record is always available.
1590 	 */
1591 	do {
1592 		size_t n;
1593 		size_t skip;
1594 		int err;
1595 
1596 		if (!prb_read_valid(prb, syslog_seq, &r))
1597 			break;
1598 
1599 		if (r.info->seq != syslog_seq) {
1600 			/* message is gone, move to next valid one */
1601 			syslog_seq = r.info->seq;
1602 			syslog_partial = 0;
1603 		}
1604 
1605 		/*
1606 		 * To keep reading/counting partial line consistent,
1607 		 * use printk_time value as of the beginning of a line.
1608 		 */
1609 		if (!syslog_partial)
1610 			syslog_time = printk_time;
1611 
1612 		skip = syslog_partial;
1613 		n = record_print_text(&r, true, syslog_time);
1614 		if (n - syslog_partial <= size) {
1615 			/* message fits into buffer, move forward */
1616 			syslog_seq = r.info->seq + 1;
1617 			n -= syslog_partial;
1618 			syslog_partial = 0;
1619 		} else if (!len){
1620 			/* partial read(), remember position */
1621 			n = size;
1622 			syslog_partial += n;
1623 		} else
1624 			n = 0;
1625 
1626 		if (!n)
1627 			break;
1628 
1629 		mutex_unlock(&syslog_lock);
1630 		err = copy_to_user(buf, text + skip, n);
1631 		mutex_lock(&syslog_lock);
1632 
1633 		if (err) {
1634 			if (!len)
1635 				len = -EFAULT;
1636 			break;
1637 		}
1638 
1639 		len += n;
1640 		size -= n;
1641 		buf += n;
1642 	} while (size);
1643 out:
1644 	mutex_unlock(&syslog_lock);
1645 	kfree(text);
1646 	return len;
1647 }
1648 
1649 static int syslog_print_all(char __user *buf, int size, bool clear)
1650 {
1651 	struct printk_info info;
1652 	struct printk_record r;
1653 	char *text;
1654 	int len = 0;
1655 	u64 seq;
1656 	bool time;
1657 
1658 	text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL);
1659 	if (!text)
1660 		return -ENOMEM;
1661 
1662 	time = printk_time;
1663 	/*
1664 	 * Find first record that fits, including all following records,
1665 	 * into the user-provided buffer for this dump.
1666 	 */
1667 	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1668 				     size, true, time);
1669 
1670 	prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX);
1671 
1672 	prb_for_each_record(seq, prb, seq, &r) {
1673 		int textlen;
1674 
1675 		textlen = record_print_text(&r, true, time);
1676 
1677 		if (len + textlen > size) {
1678 			seq--;
1679 			break;
1680 		}
1681 
1682 		if (copy_to_user(buf + len, text, textlen))
1683 			len = -EFAULT;
1684 		else
1685 			len += textlen;
1686 
1687 		if (len < 0)
1688 			break;
1689 	}
1690 
1691 	if (clear) {
1692 		mutex_lock(&syslog_lock);
1693 		latched_seq_write(&clear_seq, seq);
1694 		mutex_unlock(&syslog_lock);
1695 	}
1696 
1697 	kfree(text);
1698 	return len;
1699 }
1700 
1701 static void syslog_clear(void)
1702 {
1703 	mutex_lock(&syslog_lock);
1704 	latched_seq_write(&clear_seq, prb_next_seq(prb));
1705 	mutex_unlock(&syslog_lock);
1706 }
1707 
1708 int do_syslog(int type, char __user *buf, int len, int source)
1709 {
1710 	struct printk_info info;
1711 	bool clear = false;
1712 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1713 	int error;
1714 
1715 	error = check_syslog_permissions(type, source);
1716 	if (error)
1717 		return error;
1718 
1719 	switch (type) {
1720 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1721 		break;
1722 	case SYSLOG_ACTION_OPEN:	/* Open log */
1723 		break;
1724 	case SYSLOG_ACTION_READ:	/* Read from log */
1725 		if (!buf || len < 0)
1726 			return -EINVAL;
1727 		if (!len)
1728 			return 0;
1729 		if (!access_ok(buf, len))
1730 			return -EFAULT;
1731 		error = syslog_print(buf, len);
1732 		break;
1733 	/* Read/clear last kernel messages */
1734 	case SYSLOG_ACTION_READ_CLEAR:
1735 		clear = true;
1736 		fallthrough;
1737 	/* Read last kernel messages */
1738 	case SYSLOG_ACTION_READ_ALL:
1739 		if (!buf || len < 0)
1740 			return -EINVAL;
1741 		if (!len)
1742 			return 0;
1743 		if (!access_ok(buf, len))
1744 			return -EFAULT;
1745 		error = syslog_print_all(buf, len, clear);
1746 		break;
1747 	/* Clear ring buffer */
1748 	case SYSLOG_ACTION_CLEAR:
1749 		syslog_clear();
1750 		break;
1751 	/* Disable logging to console */
1752 	case SYSLOG_ACTION_CONSOLE_OFF:
1753 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1754 			saved_console_loglevel = console_loglevel;
1755 		console_loglevel = minimum_console_loglevel;
1756 		break;
1757 	/* Enable logging to console */
1758 	case SYSLOG_ACTION_CONSOLE_ON:
1759 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1760 			console_loglevel = saved_console_loglevel;
1761 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1762 		}
1763 		break;
1764 	/* Set level of messages printed to console */
1765 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1766 		if (len < 1 || len > 8)
1767 			return -EINVAL;
1768 		if (len < minimum_console_loglevel)
1769 			len = minimum_console_loglevel;
1770 		console_loglevel = len;
1771 		/* Implicitly re-enable logging to console */
1772 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1773 		break;
1774 	/* Number of chars in the log buffer */
1775 	case SYSLOG_ACTION_SIZE_UNREAD:
1776 		mutex_lock(&syslog_lock);
1777 		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1778 			/* No unread messages. */
1779 			mutex_unlock(&syslog_lock);
1780 			return 0;
1781 		}
1782 		if (info.seq != syslog_seq) {
1783 			/* messages are gone, move to first one */
1784 			syslog_seq = info.seq;
1785 			syslog_partial = 0;
1786 		}
1787 		if (source == SYSLOG_FROM_PROC) {
1788 			/*
1789 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1790 			 * for pending data, not the size; return the count of
1791 			 * records, not the length.
1792 			 */
1793 			error = prb_next_seq(prb) - syslog_seq;
1794 		} else {
1795 			bool time = syslog_partial ? syslog_time : printk_time;
1796 			unsigned int line_count;
1797 			u64 seq;
1798 
1799 			prb_for_each_info(syslog_seq, prb, seq, &info,
1800 					  &line_count) {
1801 				error += get_record_print_text_size(&info, line_count,
1802 								    true, time);
1803 				time = printk_time;
1804 			}
1805 			error -= syslog_partial;
1806 		}
1807 		mutex_unlock(&syslog_lock);
1808 		break;
1809 	/* Size of the log buffer */
1810 	case SYSLOG_ACTION_SIZE_BUFFER:
1811 		error = log_buf_len;
1812 		break;
1813 	default:
1814 		error = -EINVAL;
1815 		break;
1816 	}
1817 
1818 	return error;
1819 }
1820 
1821 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1822 {
1823 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1824 }
1825 
1826 /*
1827  * Special console_lock variants that help to reduce the risk of soft-lockups.
1828  * They allow to pass console_lock to another printk() call using a busy wait.
1829  */
1830 
1831 #ifdef CONFIG_LOCKDEP
1832 static struct lockdep_map console_owner_dep_map = {
1833 	.name = "console_owner"
1834 };
1835 #endif
1836 
1837 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1838 static struct task_struct *console_owner;
1839 static bool console_waiter;
1840 
1841 /**
1842  * console_lock_spinning_enable - mark beginning of code where another
1843  *	thread might safely busy wait
1844  *
1845  * This basically converts console_lock into a spinlock. This marks
1846  * the section where the console_lock owner can not sleep, because
1847  * there may be a waiter spinning (like a spinlock). Also it must be
1848  * ready to hand over the lock at the end of the section.
1849  */
1850 static void console_lock_spinning_enable(void)
1851 {
1852 	/*
1853 	 * Do not use spinning in panic(). The panic CPU wants to keep the lock.
1854 	 * Non-panic CPUs abandon the flush anyway.
1855 	 *
1856 	 * Just keep the lockdep annotation. The panic-CPU should avoid
1857 	 * taking console_owner_lock because it might cause a deadlock.
1858 	 * This looks like the easiest way how to prevent false lockdep
1859 	 * reports without handling races a lockless way.
1860 	 */
1861 	if (panic_in_progress())
1862 		goto lockdep;
1863 
1864 	raw_spin_lock(&console_owner_lock);
1865 	console_owner = current;
1866 	raw_spin_unlock(&console_owner_lock);
1867 
1868 lockdep:
1869 	/* The waiter may spin on us after setting console_owner */
1870 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1871 }
1872 
1873 /**
1874  * console_lock_spinning_disable_and_check - mark end of code where another
1875  *	thread was able to busy wait and check if there is a waiter
1876  * @cookie: cookie returned from console_srcu_read_lock()
1877  *
1878  * This is called at the end of the section where spinning is allowed.
1879  * It has two functions. First, it is a signal that it is no longer
1880  * safe to start busy waiting for the lock. Second, it checks if
1881  * there is a busy waiter and passes the lock rights to her.
1882  *
1883  * Important: Callers lose both the console_lock and the SRCU read lock if
1884  *	there was a busy waiter. They must not touch items synchronized by
1885  *	console_lock or SRCU read lock in this case.
1886  *
1887  * Return: 1 if the lock rights were passed, 0 otherwise.
1888  */
1889 static int console_lock_spinning_disable_and_check(int cookie)
1890 {
1891 	int waiter;
1892 
1893 	/*
1894 	 * Ignore spinning waiters during panic() because they might get stopped
1895 	 * or blocked at any time,
1896 	 *
1897 	 * It is safe because nobody is allowed to start spinning during panic
1898 	 * in the first place. If there has been a waiter then non panic CPUs
1899 	 * might stay spinning. They would get stopped anyway. The panic context
1900 	 * will never start spinning and an interrupted spin on panic CPU will
1901 	 * never continue.
1902 	 */
1903 	if (panic_in_progress()) {
1904 		/* Keep lockdep happy. */
1905 		spin_release(&console_owner_dep_map, _THIS_IP_);
1906 		return 0;
1907 	}
1908 
1909 	raw_spin_lock(&console_owner_lock);
1910 	waiter = READ_ONCE(console_waiter);
1911 	console_owner = NULL;
1912 	raw_spin_unlock(&console_owner_lock);
1913 
1914 	if (!waiter) {
1915 		spin_release(&console_owner_dep_map, _THIS_IP_);
1916 		return 0;
1917 	}
1918 
1919 	/* The waiter is now free to continue */
1920 	WRITE_ONCE(console_waiter, false);
1921 
1922 	spin_release(&console_owner_dep_map, _THIS_IP_);
1923 
1924 	/*
1925 	 * Preserve lockdep lock ordering. Release the SRCU read lock before
1926 	 * releasing the console_lock.
1927 	 */
1928 	console_srcu_read_unlock(cookie);
1929 
1930 	/*
1931 	 * Hand off console_lock to waiter. The waiter will perform
1932 	 * the up(). After this, the waiter is the console_lock owner.
1933 	 */
1934 	mutex_release(&console_lock_dep_map, _THIS_IP_);
1935 	return 1;
1936 }
1937 
1938 /**
1939  * console_trylock_spinning - try to get console_lock by busy waiting
1940  *
1941  * This allows to busy wait for the console_lock when the current
1942  * owner is running in specially marked sections. It means that
1943  * the current owner is running and cannot reschedule until it
1944  * is ready to lose the lock.
1945  *
1946  * Return: 1 if we got the lock, 0 othrewise
1947  */
1948 static int console_trylock_spinning(void)
1949 {
1950 	struct task_struct *owner = NULL;
1951 	bool waiter;
1952 	bool spin = false;
1953 	unsigned long flags;
1954 
1955 	if (console_trylock())
1956 		return 1;
1957 
1958 	/*
1959 	 * It's unsafe to spin once a panic has begun. If we are the
1960 	 * panic CPU, we may have already halted the owner of the
1961 	 * console_sem. If we are not the panic CPU, then we should
1962 	 * avoid taking console_sem, so the panic CPU has a better
1963 	 * chance of cleanly acquiring it later.
1964 	 */
1965 	if (panic_in_progress())
1966 		return 0;
1967 
1968 	printk_safe_enter_irqsave(flags);
1969 
1970 	raw_spin_lock(&console_owner_lock);
1971 	owner = READ_ONCE(console_owner);
1972 	waiter = READ_ONCE(console_waiter);
1973 	if (!waiter && owner && owner != current) {
1974 		WRITE_ONCE(console_waiter, true);
1975 		spin = true;
1976 	}
1977 	raw_spin_unlock(&console_owner_lock);
1978 
1979 	/*
1980 	 * If there is an active printk() writing to the
1981 	 * consoles, instead of having it write our data too,
1982 	 * see if we can offload that load from the active
1983 	 * printer, and do some printing ourselves.
1984 	 * Go into a spin only if there isn't already a waiter
1985 	 * spinning, and there is an active printer, and
1986 	 * that active printer isn't us (recursive printk?).
1987 	 */
1988 	if (!spin) {
1989 		printk_safe_exit_irqrestore(flags);
1990 		return 0;
1991 	}
1992 
1993 	/* We spin waiting for the owner to release us */
1994 	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1995 	/* Owner will clear console_waiter on hand off */
1996 	while (READ_ONCE(console_waiter))
1997 		cpu_relax();
1998 	spin_release(&console_owner_dep_map, _THIS_IP_);
1999 
2000 	printk_safe_exit_irqrestore(flags);
2001 	/*
2002 	 * The owner passed the console lock to us.
2003 	 * Since we did not spin on console lock, annotate
2004 	 * this as a trylock. Otherwise lockdep will
2005 	 * complain.
2006 	 */
2007 	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
2008 
2009 	/*
2010 	 * Update @console_may_schedule for trylock because the previous
2011 	 * owner may have been schedulable.
2012 	 */
2013 	console_may_schedule = 0;
2014 
2015 	return 1;
2016 }
2017 
2018 /*
2019  * Recursion is tracked separately on each CPU. If NMIs are supported, an
2020  * additional NMI context per CPU is also separately tracked. Until per-CPU
2021  * is available, a separate "early tracking" is performed.
2022  */
2023 static DEFINE_PER_CPU(u8, printk_count);
2024 static u8 printk_count_early;
2025 #ifdef CONFIG_HAVE_NMI
2026 static DEFINE_PER_CPU(u8, printk_count_nmi);
2027 static u8 printk_count_nmi_early;
2028 #endif
2029 
2030 /*
2031  * Recursion is limited to keep the output sane. printk() should not require
2032  * more than 1 level of recursion (allowing, for example, printk() to trigger
2033  * a WARN), but a higher value is used in case some printk-internal errors
2034  * exist, such as the ringbuffer validation checks failing.
2035  */
2036 #define PRINTK_MAX_RECURSION 3
2037 
2038 /*
2039  * Return a pointer to the dedicated counter for the CPU+context of the
2040  * caller.
2041  */
2042 static u8 *__printk_recursion_counter(void)
2043 {
2044 #ifdef CONFIG_HAVE_NMI
2045 	if (in_nmi()) {
2046 		if (printk_percpu_data_ready())
2047 			return this_cpu_ptr(&printk_count_nmi);
2048 		return &printk_count_nmi_early;
2049 	}
2050 #endif
2051 	if (printk_percpu_data_ready())
2052 		return this_cpu_ptr(&printk_count);
2053 	return &printk_count_early;
2054 }
2055 
2056 /*
2057  * Enter recursion tracking. Interrupts are disabled to simplify tracking.
2058  * The caller must check the boolean return value to see if the recursion is
2059  * allowed. On failure, interrupts are not disabled.
2060  *
2061  * @recursion_ptr must be a variable of type (u8 *) and is the same variable
2062  * that is passed to printk_exit_irqrestore().
2063  */
2064 #define printk_enter_irqsave(recursion_ptr, flags)	\
2065 ({							\
2066 	bool success = true;				\
2067 							\
2068 	typecheck(u8 *, recursion_ptr);			\
2069 	local_irq_save(flags);				\
2070 	(recursion_ptr) = __printk_recursion_counter();	\
2071 	if (*(recursion_ptr) > PRINTK_MAX_RECURSION) {	\
2072 		local_irq_restore(flags);		\
2073 		success = false;			\
2074 	} else {					\
2075 		(*(recursion_ptr))++;			\
2076 	}						\
2077 	success;					\
2078 })
2079 
2080 /* Exit recursion tracking, restoring interrupts. */
2081 #define printk_exit_irqrestore(recursion_ptr, flags)	\
2082 	do {						\
2083 		typecheck(u8 *, recursion_ptr);		\
2084 		(*(recursion_ptr))--;			\
2085 		local_irq_restore(flags);		\
2086 	} while (0)
2087 
2088 int printk_delay_msec __read_mostly;
2089 
2090 static inline void printk_delay(int level)
2091 {
2092 	boot_delay_msec(level);
2093 
2094 	if (unlikely(printk_delay_msec)) {
2095 		int m = printk_delay_msec;
2096 
2097 		while (m--) {
2098 			mdelay(1);
2099 			touch_nmi_watchdog();
2100 		}
2101 	}
2102 }
2103 
2104 static inline u32 printk_caller_id(void)
2105 {
2106 	return in_task() ? task_pid_nr(current) :
2107 		0x80000000 + smp_processor_id();
2108 }
2109 
2110 /**
2111  * printk_parse_prefix - Parse level and control flags.
2112  *
2113  * @text:     The terminated text message.
2114  * @level:    A pointer to the current level value, will be updated.
2115  * @flags:    A pointer to the current printk_info flags, will be updated.
2116  *
2117  * @level may be NULL if the caller is not interested in the parsed value.
2118  * Otherwise the variable pointed to by @level must be set to
2119  * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
2120  *
2121  * @flags may be NULL if the caller is not interested in the parsed value.
2122  * Otherwise the variable pointed to by @flags will be OR'd with the parsed
2123  * value.
2124  *
2125  * Return: The length of the parsed level and control flags.
2126  */
2127 u16 printk_parse_prefix(const char *text, int *level,
2128 			enum printk_info_flags *flags)
2129 {
2130 	u16 prefix_len = 0;
2131 	int kern_level;
2132 
2133 	while (*text) {
2134 		kern_level = printk_get_level(text);
2135 		if (!kern_level)
2136 			break;
2137 
2138 		switch (kern_level) {
2139 		case '0' ... '7':
2140 			if (level && *level == LOGLEVEL_DEFAULT)
2141 				*level = kern_level - '0';
2142 			break;
2143 		case 'c':	/* KERN_CONT */
2144 			if (flags)
2145 				*flags |= LOG_CONT;
2146 		}
2147 
2148 		prefix_len += 2;
2149 		text += 2;
2150 	}
2151 
2152 	return prefix_len;
2153 }
2154 
2155 __printf(5, 0)
2156 static u16 printk_sprint(char *text, u16 size, int facility,
2157 			 enum printk_info_flags *flags, const char *fmt,
2158 			 va_list args)
2159 {
2160 	u16 text_len;
2161 
2162 	text_len = vscnprintf(text, size, fmt, args);
2163 
2164 	/* Mark and strip a trailing newline. */
2165 	if (text_len && text[text_len - 1] == '\n') {
2166 		text_len--;
2167 		*flags |= LOG_NEWLINE;
2168 	}
2169 
2170 	/* Strip log level and control flags. */
2171 	if (facility == 0) {
2172 		u16 prefix_len;
2173 
2174 		prefix_len = printk_parse_prefix(text, NULL, NULL);
2175 		if (prefix_len) {
2176 			text_len -= prefix_len;
2177 			memmove(text, text + prefix_len, text_len);
2178 		}
2179 	}
2180 
2181 	trace_console(text, text_len);
2182 
2183 	return text_len;
2184 }
2185 
2186 __printf(4, 0)
2187 int vprintk_store(int facility, int level,
2188 		  const struct dev_printk_info *dev_info,
2189 		  const char *fmt, va_list args)
2190 {
2191 	struct prb_reserved_entry e;
2192 	enum printk_info_flags flags = 0;
2193 	struct printk_record r;
2194 	unsigned long irqflags;
2195 	u16 trunc_msg_len = 0;
2196 	char prefix_buf[8];
2197 	u8 *recursion_ptr;
2198 	u16 reserve_size;
2199 	va_list args2;
2200 	u32 caller_id;
2201 	u16 text_len;
2202 	int ret = 0;
2203 	u64 ts_nsec;
2204 
2205 	if (!printk_enter_irqsave(recursion_ptr, irqflags))
2206 		return 0;
2207 
2208 	/*
2209 	 * Since the duration of printk() can vary depending on the message
2210 	 * and state of the ringbuffer, grab the timestamp now so that it is
2211 	 * close to the call of printk(). This provides a more deterministic
2212 	 * timestamp with respect to the caller.
2213 	 */
2214 	ts_nsec = local_clock();
2215 
2216 	caller_id = printk_caller_id();
2217 
2218 	/*
2219 	 * The sprintf needs to come first since the syslog prefix might be
2220 	 * passed in as a parameter. An extra byte must be reserved so that
2221 	 * later the vscnprintf() into the reserved buffer has room for the
2222 	 * terminating '\0', which is not counted by vsnprintf().
2223 	 */
2224 	va_copy(args2, args);
2225 	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2226 	va_end(args2);
2227 
2228 	if (reserve_size > PRINTKRB_RECORD_MAX)
2229 		reserve_size = PRINTKRB_RECORD_MAX;
2230 
2231 	/* Extract log level or control flags. */
2232 	if (facility == 0)
2233 		printk_parse_prefix(&prefix_buf[0], &level, &flags);
2234 
2235 	if (level == LOGLEVEL_DEFAULT)
2236 		level = default_message_loglevel;
2237 
2238 	if (dev_info)
2239 		flags |= LOG_NEWLINE;
2240 
2241 	if (flags & LOG_CONT) {
2242 		prb_rec_init_wr(&r, reserve_size);
2243 		if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) {
2244 			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2245 						 facility, &flags, fmt, args);
2246 			r.info->text_len += text_len;
2247 
2248 			if (flags & LOG_NEWLINE) {
2249 				r.info->flags |= LOG_NEWLINE;
2250 				prb_final_commit(&e);
2251 			} else {
2252 				prb_commit(&e);
2253 			}
2254 
2255 			ret = text_len;
2256 			goto out;
2257 		}
2258 	}
2259 
2260 	/*
2261 	 * Explicitly initialize the record before every prb_reserve() call.
2262 	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2263 	 * structure when they fail.
2264 	 */
2265 	prb_rec_init_wr(&r, reserve_size);
2266 	if (!prb_reserve(&e, prb, &r)) {
2267 		/* truncate the message if it is too long for empty buffer */
2268 		truncate_msg(&reserve_size, &trunc_msg_len);
2269 
2270 		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2271 		if (!prb_reserve(&e, prb, &r))
2272 			goto out;
2273 	}
2274 
2275 	/* fill message */
2276 	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args);
2277 	if (trunc_msg_len)
2278 		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2279 	r.info->text_len = text_len + trunc_msg_len;
2280 	r.info->facility = facility;
2281 	r.info->level = level & 7;
2282 	r.info->flags = flags & 0x1f;
2283 	r.info->ts_nsec = ts_nsec;
2284 	r.info->caller_id = caller_id;
2285 	if (dev_info)
2286 		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2287 
2288 	/* A message without a trailing newline can be continued. */
2289 	if (!(flags & LOG_NEWLINE))
2290 		prb_commit(&e);
2291 	else
2292 		prb_final_commit(&e);
2293 
2294 	ret = text_len + trunc_msg_len;
2295 out:
2296 	printk_exit_irqrestore(recursion_ptr, irqflags);
2297 	return ret;
2298 }
2299 
2300 asmlinkage int vprintk_emit(int facility, int level,
2301 			    const struct dev_printk_info *dev_info,
2302 			    const char *fmt, va_list args)
2303 {
2304 	int printed_len;
2305 	bool in_sched = false;
2306 
2307 	/* Suppress unimportant messages after panic happens */
2308 	if (unlikely(suppress_printk))
2309 		return 0;
2310 
2311 	/*
2312 	 * The messages on the panic CPU are the most important. If
2313 	 * non-panic CPUs are generating any messages, they will be
2314 	 * silently dropped.
2315 	 */
2316 	if (other_cpu_in_panic())
2317 		return 0;
2318 
2319 	if (level == LOGLEVEL_SCHED) {
2320 		level = LOGLEVEL_DEFAULT;
2321 		in_sched = true;
2322 	}
2323 
2324 	printk_delay(level);
2325 
2326 	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2327 
2328 	/* If called from the scheduler, we can not call up(). */
2329 	if (!in_sched) {
2330 		/*
2331 		 * The caller may be holding system-critical or
2332 		 * timing-sensitive locks. Disable preemption during
2333 		 * printing of all remaining records to all consoles so that
2334 		 * this context can return as soon as possible. Hopefully
2335 		 * another printk() caller will take over the printing.
2336 		 */
2337 		preempt_disable();
2338 		/*
2339 		 * Try to acquire and then immediately release the console
2340 		 * semaphore. The release will print out buffers. With the
2341 		 * spinning variant, this context tries to take over the
2342 		 * printing from another printing context.
2343 		 */
2344 		if (console_trylock_spinning())
2345 			console_unlock();
2346 		preempt_enable();
2347 	}
2348 
2349 	if (in_sched)
2350 		defer_console_output();
2351 	else
2352 		wake_up_klogd();
2353 
2354 	return printed_len;
2355 }
2356 EXPORT_SYMBOL(vprintk_emit);
2357 
2358 int vprintk_default(const char *fmt, va_list args)
2359 {
2360 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
2361 }
2362 EXPORT_SYMBOL_GPL(vprintk_default);
2363 
2364 asmlinkage __visible int _printk(const char *fmt, ...)
2365 {
2366 	va_list args;
2367 	int r;
2368 
2369 	va_start(args, fmt);
2370 	r = vprintk(fmt, args);
2371 	va_end(args);
2372 
2373 	return r;
2374 }
2375 EXPORT_SYMBOL(_printk);
2376 
2377 static bool pr_flush(int timeout_ms, bool reset_on_progress);
2378 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress);
2379 
2380 #else /* CONFIG_PRINTK */
2381 
2382 #define printk_time		false
2383 
2384 #define prb_read_valid(rb, seq, r)	false
2385 #define prb_first_valid_seq(rb)		0
2386 #define prb_next_seq(rb)		0
2387 
2388 static u64 syslog_seq;
2389 
2390 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; }
2391 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; }
2392 
2393 #endif /* CONFIG_PRINTK */
2394 
2395 #ifdef CONFIG_EARLY_PRINTK
2396 struct console *early_console;
2397 
2398 asmlinkage __visible void early_printk(const char *fmt, ...)
2399 {
2400 	va_list ap;
2401 	char buf[512];
2402 	int n;
2403 
2404 	if (!early_console)
2405 		return;
2406 
2407 	va_start(ap, fmt);
2408 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2409 	va_end(ap);
2410 
2411 	early_console->write(early_console, buf, n);
2412 }
2413 #endif
2414 
2415 static void set_user_specified(struct console_cmdline *c, bool user_specified)
2416 {
2417 	if (!user_specified)
2418 		return;
2419 
2420 	/*
2421 	 * @c console was defined by the user on the command line.
2422 	 * Do not clear when added twice also by SPCR or the device tree.
2423 	 */
2424 	c->user_specified = true;
2425 	/* At least one console defined by the user on the command line. */
2426 	console_set_on_cmdline = 1;
2427 }
2428 
2429 static int __add_preferred_console(const char *name, const short idx, char *options,
2430 				   char *brl_options, bool user_specified)
2431 {
2432 	struct console_cmdline *c;
2433 	int i;
2434 
2435 	/*
2436 	 * We use a signed short index for struct console for device drivers to
2437 	 * indicate a not yet assigned index or port. However, a negative index
2438 	 * value is not valid for preferred console.
2439 	 */
2440 	if (idx < 0)
2441 		return -EINVAL;
2442 
2443 	/*
2444 	 *	See if this tty is not yet registered, and
2445 	 *	if we have a slot free.
2446 	 */
2447 	for (i = 0, c = console_cmdline;
2448 	     i < MAX_CMDLINECONSOLES && c->name[0];
2449 	     i++, c++) {
2450 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2451 			if (!brl_options)
2452 				preferred_console = i;
2453 			set_user_specified(c, user_specified);
2454 			return 0;
2455 		}
2456 	}
2457 	if (i == MAX_CMDLINECONSOLES)
2458 		return -E2BIG;
2459 	if (!brl_options)
2460 		preferred_console = i;
2461 	strscpy(c->name, name, sizeof(c->name));
2462 	c->options = options;
2463 	set_user_specified(c, user_specified);
2464 	braille_set_options(c, brl_options);
2465 
2466 	c->index = idx;
2467 	return 0;
2468 }
2469 
2470 static int __init console_msg_format_setup(char *str)
2471 {
2472 	if (!strcmp(str, "syslog"))
2473 		console_msg_format = MSG_FORMAT_SYSLOG;
2474 	if (!strcmp(str, "default"))
2475 		console_msg_format = MSG_FORMAT_DEFAULT;
2476 	return 1;
2477 }
2478 __setup("console_msg_format=", console_msg_format_setup);
2479 
2480 /*
2481  * Set up a console.  Called via do_early_param() in init/main.c
2482  * for each "console=" parameter in the boot command line.
2483  */
2484 static int __init console_setup(char *str)
2485 {
2486 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2487 	char *s, *options, *brl_options = NULL;
2488 	int idx;
2489 
2490 	/*
2491 	 * console="" or console=null have been suggested as a way to
2492 	 * disable console output. Use ttynull that has been created
2493 	 * for exactly this purpose.
2494 	 */
2495 	if (str[0] == 0 || strcmp(str, "null") == 0) {
2496 		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2497 		return 1;
2498 	}
2499 
2500 	if (_braille_console_setup(&str, &brl_options))
2501 		return 1;
2502 
2503 	/* Save the console for driver subsystem use */
2504 	if (console_opt_save(str, brl_options))
2505 		return 1;
2506 
2507 	/* Flag register_console() to not call try_enable_default_console() */
2508 	console_set_on_cmdline = 1;
2509 
2510 	/* Don't attempt to parse a DEVNAME:0.0 style console */
2511 	if (strchr(str, ':'))
2512 		return 1;
2513 
2514 	/*
2515 	 * Decode str into name, index, options.
2516 	 */
2517 	if (isdigit(str[0]))
2518 		scnprintf(buf, sizeof(buf), "ttyS%s", str);
2519 	else
2520 		strscpy(buf, str);
2521 
2522 	options = strchr(str, ',');
2523 	if (options)
2524 		*(options++) = 0;
2525 
2526 #ifdef __sparc__
2527 	if (!strcmp(str, "ttya"))
2528 		strscpy(buf, "ttyS0");
2529 	if (!strcmp(str, "ttyb"))
2530 		strscpy(buf, "ttyS1");
2531 #endif
2532 
2533 	for (s = buf; *s; s++)
2534 		if (isdigit(*s) || *s == ',')
2535 			break;
2536 	idx = simple_strtoul(s, NULL, 10);
2537 	*s = 0;
2538 
2539 	__add_preferred_console(buf, idx, options, brl_options, true);
2540 	return 1;
2541 }
2542 __setup("console=", console_setup);
2543 
2544 /* Only called from add_preferred_console_match() */
2545 int console_opt_add_preferred_console(const char *name, const short idx,
2546 				      char *options, char *brl_options)
2547 {
2548 	return __add_preferred_console(name, idx, options, brl_options, true);
2549 }
2550 
2551 /**
2552  * add_preferred_console - add a device to the list of preferred consoles.
2553  * @name: device name
2554  * @idx: device index
2555  * @options: options for this console
2556  *
2557  * The last preferred console added will be used for kernel messages
2558  * and stdin/out/err for init.  Normally this is used by console_setup
2559  * above to handle user-supplied console arguments; however it can also
2560  * be used by arch-specific code either to override the user or more
2561  * commonly to provide a default console (ie from PROM variables) when
2562  * the user has not supplied one.
2563  */
2564 int add_preferred_console(const char *name, const short idx, char *options)
2565 {
2566 	return __add_preferred_console(name, idx, options, NULL, false);
2567 }
2568 
2569 bool console_suspend_enabled = true;
2570 EXPORT_SYMBOL(console_suspend_enabled);
2571 
2572 static int __init console_suspend_disable(char *str)
2573 {
2574 	console_suspend_enabled = false;
2575 	return 1;
2576 }
2577 __setup("no_console_suspend", console_suspend_disable);
2578 module_param_named(console_suspend, console_suspend_enabled,
2579 		bool, S_IRUGO | S_IWUSR);
2580 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2581 	" and hibernate operations");
2582 
2583 static bool printk_console_no_auto_verbose;
2584 
2585 void console_verbose(void)
2586 {
2587 	if (console_loglevel && !printk_console_no_auto_verbose)
2588 		console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
2589 }
2590 EXPORT_SYMBOL_GPL(console_verbose);
2591 
2592 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644);
2593 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc");
2594 
2595 /**
2596  * suspend_console - suspend the console subsystem
2597  *
2598  * This disables printk() while we go into suspend states
2599  */
2600 void suspend_console(void)
2601 {
2602 	struct console *con;
2603 
2604 	if (!console_suspend_enabled)
2605 		return;
2606 	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2607 	pr_flush(1000, true);
2608 
2609 	console_list_lock();
2610 	for_each_console(con)
2611 		console_srcu_write_flags(con, con->flags | CON_SUSPENDED);
2612 	console_list_unlock();
2613 
2614 	/*
2615 	 * Ensure that all SRCU list walks have completed. All printing
2616 	 * contexts must be able to see that they are suspended so that it
2617 	 * is guaranteed that all printing has stopped when this function
2618 	 * completes.
2619 	 */
2620 	synchronize_srcu(&console_srcu);
2621 }
2622 
2623 void resume_console(void)
2624 {
2625 	struct console *con;
2626 
2627 	if (!console_suspend_enabled)
2628 		return;
2629 
2630 	console_list_lock();
2631 	for_each_console(con)
2632 		console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED);
2633 	console_list_unlock();
2634 
2635 	/*
2636 	 * Ensure that all SRCU list walks have completed. All printing
2637 	 * contexts must be able to see they are no longer suspended so
2638 	 * that they are guaranteed to wake up and resume printing.
2639 	 */
2640 	synchronize_srcu(&console_srcu);
2641 
2642 	pr_flush(1000, true);
2643 }
2644 
2645 /**
2646  * console_cpu_notify - print deferred console messages after CPU hotplug
2647  * @cpu: unused
2648  *
2649  * If printk() is called from a CPU that is not online yet, the messages
2650  * will be printed on the console only if there are CON_ANYTIME consoles.
2651  * This function is called when a new CPU comes online (or fails to come
2652  * up) or goes offline.
2653  */
2654 static int console_cpu_notify(unsigned int cpu)
2655 {
2656 	if (!cpuhp_tasks_frozen) {
2657 		/* If trylock fails, someone else is doing the printing */
2658 		if (console_trylock())
2659 			console_unlock();
2660 	}
2661 	return 0;
2662 }
2663 
2664 /**
2665  * console_lock - block the console subsystem from printing
2666  *
2667  * Acquires a lock which guarantees that no consoles will
2668  * be in or enter their write() callback.
2669  *
2670  * Can sleep, returns nothing.
2671  */
2672 void console_lock(void)
2673 {
2674 	might_sleep();
2675 
2676 	/* On panic, the console_lock must be left to the panic cpu. */
2677 	while (other_cpu_in_panic())
2678 		msleep(1000);
2679 
2680 	down_console_sem();
2681 	console_locked = 1;
2682 	console_may_schedule = 1;
2683 }
2684 EXPORT_SYMBOL(console_lock);
2685 
2686 /**
2687  * console_trylock - try to block the console subsystem from printing
2688  *
2689  * Try to acquire a lock which guarantees that no consoles will
2690  * be in or enter their write() callback.
2691  *
2692  * returns 1 on success, and 0 on failure to acquire the lock.
2693  */
2694 int console_trylock(void)
2695 {
2696 	/* On panic, the console_lock must be left to the panic cpu. */
2697 	if (other_cpu_in_panic())
2698 		return 0;
2699 	if (down_trylock_console_sem())
2700 		return 0;
2701 	console_locked = 1;
2702 	console_may_schedule = 0;
2703 	return 1;
2704 }
2705 EXPORT_SYMBOL(console_trylock);
2706 
2707 int is_console_locked(void)
2708 {
2709 	return console_locked;
2710 }
2711 EXPORT_SYMBOL(is_console_locked);
2712 
2713 /*
2714  * Check if the given console is currently capable and allowed to print
2715  * records.
2716  *
2717  * Requires the console_srcu_read_lock.
2718  */
2719 static inline bool console_is_usable(struct console *con)
2720 {
2721 	short flags = console_srcu_read_flags(con);
2722 
2723 	if (!(flags & CON_ENABLED))
2724 		return false;
2725 
2726 	if ((flags & CON_SUSPENDED))
2727 		return false;
2728 
2729 	if (!con->write)
2730 		return false;
2731 
2732 	/*
2733 	 * Console drivers may assume that per-cpu resources have been
2734 	 * allocated. So unless they're explicitly marked as being able to
2735 	 * cope (CON_ANYTIME) don't call them until this CPU is officially up.
2736 	 */
2737 	if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME))
2738 		return false;
2739 
2740 	return true;
2741 }
2742 
2743 static void __console_unlock(void)
2744 {
2745 	console_locked = 0;
2746 	up_console_sem();
2747 }
2748 
2749 #ifdef CONFIG_PRINTK
2750 
2751 /*
2752  * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This
2753  * is achieved by shifting the existing message over and inserting the dropped
2754  * message.
2755  *
2756  * @pmsg is the printk message to prepend.
2757  *
2758  * @dropped is the dropped count to report in the dropped message.
2759  *
2760  * If the message text in @pmsg->pbufs->outbuf does not have enough space for
2761  * the dropped message, the message text will be sufficiently truncated.
2762  *
2763  * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated.
2764  */
2765 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped)
2766 {
2767 	struct printk_buffers *pbufs = pmsg->pbufs;
2768 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2769 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2770 	char *scratchbuf = &pbufs->scratchbuf[0];
2771 	char *outbuf = &pbufs->outbuf[0];
2772 	size_t len;
2773 
2774 	len = scnprintf(scratchbuf, scratchbuf_sz,
2775 		       "** %lu printk messages dropped **\n", dropped);
2776 
2777 	/*
2778 	 * Make sure outbuf is sufficiently large before prepending.
2779 	 * Keep at least the prefix when the message must be truncated.
2780 	 * It is a rather theoretical problem when someone tries to
2781 	 * use a minimalist buffer.
2782 	 */
2783 	if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz))
2784 		return;
2785 
2786 	if (pmsg->outbuf_len + len >= outbuf_sz) {
2787 		/* Truncate the message, but keep it terminated. */
2788 		pmsg->outbuf_len = outbuf_sz - (len + 1);
2789 		outbuf[pmsg->outbuf_len] = 0;
2790 	}
2791 
2792 	memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1);
2793 	memcpy(outbuf, scratchbuf, len);
2794 	pmsg->outbuf_len += len;
2795 }
2796 
2797 /*
2798  * Read and format the specified record (or a later record if the specified
2799  * record is not available).
2800  *
2801  * @pmsg will contain the formatted result. @pmsg->pbufs must point to a
2802  * struct printk_buffers.
2803  *
2804  * @seq is the record to read and format. If it is not available, the next
2805  * valid record is read.
2806  *
2807  * @is_extended specifies if the message should be formatted for extended
2808  * console output.
2809  *
2810  * @may_supress specifies if records may be skipped based on loglevel.
2811  *
2812  * Returns false if no record is available. Otherwise true and all fields
2813  * of @pmsg are valid. (See the documentation of struct printk_message
2814  * for information about the @pmsg fields.)
2815  */
2816 bool printk_get_next_message(struct printk_message *pmsg, u64 seq,
2817 			     bool is_extended, bool may_suppress)
2818 {
2819 	struct printk_buffers *pbufs = pmsg->pbufs;
2820 	const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf);
2821 	const size_t outbuf_sz = sizeof(pbufs->outbuf);
2822 	char *scratchbuf = &pbufs->scratchbuf[0];
2823 	char *outbuf = &pbufs->outbuf[0];
2824 	struct printk_info info;
2825 	struct printk_record r;
2826 	size_t len = 0;
2827 
2828 	/*
2829 	 * Formatting extended messages requires a separate buffer, so use the
2830 	 * scratch buffer to read in the ringbuffer text.
2831 	 *
2832 	 * Formatting normal messages is done in-place, so read the ringbuffer
2833 	 * text directly into the output buffer.
2834 	 */
2835 	if (is_extended)
2836 		prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz);
2837 	else
2838 		prb_rec_init_rd(&r, &info, outbuf, outbuf_sz);
2839 
2840 	if (!prb_read_valid(prb, seq, &r))
2841 		return false;
2842 
2843 	pmsg->seq = r.info->seq;
2844 	pmsg->dropped = r.info->seq - seq;
2845 
2846 	/* Skip record that has level above the console loglevel. */
2847 	if (may_suppress && suppress_message_printing(r.info->level))
2848 		goto out;
2849 
2850 	if (is_extended) {
2851 		len = info_print_ext_header(outbuf, outbuf_sz, r.info);
2852 		len += msg_print_ext_body(outbuf + len, outbuf_sz - len,
2853 					  &r.text_buf[0], r.info->text_len, &r.info->dev_info);
2854 	} else {
2855 		len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time);
2856 	}
2857 out:
2858 	pmsg->outbuf_len = len;
2859 	return true;
2860 }
2861 
2862 /*
2863  * Used as the printk buffers for non-panic, serialized console printing.
2864  * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles.
2865  * Its usage requires the console_lock held.
2866  */
2867 struct printk_buffers printk_shared_pbufs;
2868 
2869 /*
2870  * Print one record for the given console. The record printed is whatever
2871  * record is the next available record for the given console.
2872  *
2873  * @handover will be set to true if a printk waiter has taken over the
2874  * console_lock, in which case the caller is no longer holding both the
2875  * console_lock and the SRCU read lock. Otherwise it is set to false.
2876  *
2877  * @cookie is the cookie from the SRCU read lock.
2878  *
2879  * Returns false if the given console has no next record to print, otherwise
2880  * true.
2881  *
2882  * Requires the console_lock and the SRCU read lock.
2883  */
2884 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2885 {
2886 	bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED;
2887 	char *outbuf = &printk_shared_pbufs.outbuf[0];
2888 	struct printk_message pmsg = {
2889 		.pbufs = &printk_shared_pbufs,
2890 	};
2891 	unsigned long flags;
2892 
2893 	*handover = false;
2894 
2895 	if (!printk_get_next_message(&pmsg, con->seq, is_extended, true))
2896 		return false;
2897 
2898 	con->dropped += pmsg.dropped;
2899 
2900 	/* Skip messages of formatted length 0. */
2901 	if (pmsg.outbuf_len == 0) {
2902 		con->seq = pmsg.seq + 1;
2903 		goto skip;
2904 	}
2905 
2906 	if (con->dropped && !is_extended) {
2907 		console_prepend_dropped(&pmsg, con->dropped);
2908 		con->dropped = 0;
2909 	}
2910 
2911 	/*
2912 	 * While actively printing out messages, if another printk()
2913 	 * were to occur on another CPU, it may wait for this one to
2914 	 * finish. This task can not be preempted if there is a
2915 	 * waiter waiting to take over.
2916 	 *
2917 	 * Interrupts are disabled because the hand over to a waiter
2918 	 * must not be interrupted until the hand over is completed
2919 	 * (@console_waiter is cleared).
2920 	 */
2921 	printk_safe_enter_irqsave(flags);
2922 	console_lock_spinning_enable();
2923 
2924 	/* Do not trace print latency. */
2925 	stop_critical_timings();
2926 
2927 	/* Write everything out to the hardware. */
2928 	con->write(con, outbuf, pmsg.outbuf_len);
2929 
2930 	start_critical_timings();
2931 
2932 	con->seq = pmsg.seq + 1;
2933 
2934 	*handover = console_lock_spinning_disable_and_check(cookie);
2935 	printk_safe_exit_irqrestore(flags);
2936 skip:
2937 	return true;
2938 }
2939 
2940 #else
2941 
2942 static bool console_emit_next_record(struct console *con, bool *handover, int cookie)
2943 {
2944 	*handover = false;
2945 	return false;
2946 }
2947 
2948 #endif /* CONFIG_PRINTK */
2949 
2950 /*
2951  * Print out all remaining records to all consoles.
2952  *
2953  * @do_cond_resched is set by the caller. It can be true only in schedulable
2954  * context.
2955  *
2956  * @next_seq is set to the sequence number after the last available record.
2957  * The value is valid only when this function returns true. It means that all
2958  * usable consoles are completely flushed.
2959  *
2960  * @handover will be set to true if a printk waiter has taken over the
2961  * console_lock, in which case the caller is no longer holding the
2962  * console_lock. Otherwise it is set to false.
2963  *
2964  * Returns true when there was at least one usable console and all messages
2965  * were flushed to all usable consoles. A returned false informs the caller
2966  * that everything was not flushed (either there were no usable consoles or
2967  * another context has taken over printing or it is a panic situation and this
2968  * is not the panic CPU). Regardless the reason, the caller should assume it
2969  * is not useful to immediately try again.
2970  *
2971  * Requires the console_lock.
2972  */
2973 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover)
2974 {
2975 	bool any_usable = false;
2976 	struct console *con;
2977 	bool any_progress;
2978 	int cookie;
2979 
2980 	*next_seq = 0;
2981 	*handover = false;
2982 
2983 	do {
2984 		any_progress = false;
2985 
2986 		cookie = console_srcu_read_lock();
2987 		for_each_console_srcu(con) {
2988 			bool progress;
2989 
2990 			if (!console_is_usable(con))
2991 				continue;
2992 			any_usable = true;
2993 
2994 			progress = console_emit_next_record(con, handover, cookie);
2995 
2996 			/*
2997 			 * If a handover has occurred, the SRCU read lock
2998 			 * is already released.
2999 			 */
3000 			if (*handover)
3001 				return false;
3002 
3003 			/* Track the next of the highest seq flushed. */
3004 			if (con->seq > *next_seq)
3005 				*next_seq = con->seq;
3006 
3007 			if (!progress)
3008 				continue;
3009 			any_progress = true;
3010 
3011 			/* Allow panic_cpu to take over the consoles safely. */
3012 			if (other_cpu_in_panic())
3013 				goto abandon;
3014 
3015 			if (do_cond_resched)
3016 				cond_resched();
3017 		}
3018 		console_srcu_read_unlock(cookie);
3019 	} while (any_progress);
3020 
3021 	return any_usable;
3022 
3023 abandon:
3024 	console_srcu_read_unlock(cookie);
3025 	return false;
3026 }
3027 
3028 /**
3029  * console_unlock - unblock the console subsystem from printing
3030  *
3031  * Releases the console_lock which the caller holds to block printing of
3032  * the console subsystem.
3033  *
3034  * While the console_lock was held, console output may have been buffered
3035  * by printk().  If this is the case, console_unlock(); emits
3036  * the output prior to releasing the lock.
3037  *
3038  * console_unlock(); may be called from any context.
3039  */
3040 void console_unlock(void)
3041 {
3042 	bool do_cond_resched;
3043 	bool handover;
3044 	bool flushed;
3045 	u64 next_seq;
3046 
3047 	/*
3048 	 * Console drivers are called with interrupts disabled, so
3049 	 * @console_may_schedule should be cleared before; however, we may
3050 	 * end up dumping a lot of lines, for example, if called from
3051 	 * console registration path, and should invoke cond_resched()
3052 	 * between lines if allowable.  Not doing so can cause a very long
3053 	 * scheduling stall on a slow console leading to RCU stall and
3054 	 * softlockup warnings which exacerbate the issue with more
3055 	 * messages practically incapacitating the system. Therefore, create
3056 	 * a local to use for the printing loop.
3057 	 */
3058 	do_cond_resched = console_may_schedule;
3059 
3060 	do {
3061 		console_may_schedule = 0;
3062 
3063 		flushed = console_flush_all(do_cond_resched, &next_seq, &handover);
3064 		if (!handover)
3065 			__console_unlock();
3066 
3067 		/*
3068 		 * Abort if there was a failure to flush all messages to all
3069 		 * usable consoles. Either it is not possible to flush (in
3070 		 * which case it would be an infinite loop of retrying) or
3071 		 * another context has taken over printing.
3072 		 */
3073 		if (!flushed)
3074 			break;
3075 
3076 		/*
3077 		 * Some context may have added new records after
3078 		 * console_flush_all() but before unlocking the console.
3079 		 * Re-check if there is a new record to flush. If the trylock
3080 		 * fails, another context is already handling the printing.
3081 		 */
3082 	} while (prb_read_valid(prb, next_seq, NULL) && console_trylock());
3083 }
3084 EXPORT_SYMBOL(console_unlock);
3085 
3086 /**
3087  * console_conditional_schedule - yield the CPU if required
3088  *
3089  * If the console code is currently allowed to sleep, and
3090  * if this CPU should yield the CPU to another task, do
3091  * so here.
3092  *
3093  * Must be called within console_lock();.
3094  */
3095 void __sched console_conditional_schedule(void)
3096 {
3097 	if (console_may_schedule)
3098 		cond_resched();
3099 }
3100 EXPORT_SYMBOL(console_conditional_schedule);
3101 
3102 void console_unblank(void)
3103 {
3104 	bool found_unblank = false;
3105 	struct console *c;
3106 	int cookie;
3107 
3108 	/*
3109 	 * First check if there are any consoles implementing the unblank()
3110 	 * callback. If not, there is no reason to continue and take the
3111 	 * console lock, which in particular can be dangerous if
3112 	 * @oops_in_progress is set.
3113 	 */
3114 	cookie = console_srcu_read_lock();
3115 	for_each_console_srcu(c) {
3116 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) {
3117 			found_unblank = true;
3118 			break;
3119 		}
3120 	}
3121 	console_srcu_read_unlock(cookie);
3122 	if (!found_unblank)
3123 		return;
3124 
3125 	/*
3126 	 * Stop console printing because the unblank() callback may
3127 	 * assume the console is not within its write() callback.
3128 	 *
3129 	 * If @oops_in_progress is set, this may be an atomic context.
3130 	 * In that case, attempt a trylock as best-effort.
3131 	 */
3132 	if (oops_in_progress) {
3133 		/* Semaphores are not NMI-safe. */
3134 		if (in_nmi())
3135 			return;
3136 
3137 		/*
3138 		 * Attempting to trylock the console lock can deadlock
3139 		 * if another CPU was stopped while modifying the
3140 		 * semaphore. "Hope and pray" that this is not the
3141 		 * current situation.
3142 		 */
3143 		if (down_trylock_console_sem() != 0)
3144 			return;
3145 	} else
3146 		console_lock();
3147 
3148 	console_locked = 1;
3149 	console_may_schedule = 0;
3150 
3151 	cookie = console_srcu_read_lock();
3152 	for_each_console_srcu(c) {
3153 		if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank)
3154 			c->unblank();
3155 	}
3156 	console_srcu_read_unlock(cookie);
3157 
3158 	console_unlock();
3159 
3160 	if (!oops_in_progress)
3161 		pr_flush(1000, true);
3162 }
3163 
3164 /*
3165  * Rewind all consoles to the oldest available record.
3166  *
3167  * IMPORTANT: The function is safe only when called under
3168  *            console_lock(). It is not enforced because
3169  *            it is used as a best effort in panic().
3170  */
3171 static void __console_rewind_all(void)
3172 {
3173 	struct console *c;
3174 	short flags;
3175 	int cookie;
3176 	u64 seq;
3177 
3178 	seq = prb_first_valid_seq(prb);
3179 
3180 	cookie = console_srcu_read_lock();
3181 	for_each_console_srcu(c) {
3182 		flags = console_srcu_read_flags(c);
3183 
3184 		if (flags & CON_NBCON) {
3185 			nbcon_seq_force(c, seq);
3186 		} else {
3187 			/*
3188 			 * This assignment is safe only when called under
3189 			 * console_lock(). On panic, legacy consoles are
3190 			 * only best effort.
3191 			 */
3192 			c->seq = seq;
3193 		}
3194 	}
3195 	console_srcu_read_unlock(cookie);
3196 }
3197 
3198 /**
3199  * console_flush_on_panic - flush console content on panic
3200  * @mode: flush all messages in buffer or just the pending ones
3201  *
3202  * Immediately output all pending messages no matter what.
3203  */
3204 void console_flush_on_panic(enum con_flush_mode mode)
3205 {
3206 	bool handover;
3207 	u64 next_seq;
3208 
3209 	/*
3210 	 * Ignore the console lock and flush out the messages. Attempting a
3211 	 * trylock would not be useful because:
3212 	 *
3213 	 *   - if it is contended, it must be ignored anyway
3214 	 *   - console_lock() and console_trylock() block and fail
3215 	 *     respectively in panic for non-panic CPUs
3216 	 *   - semaphores are not NMI-safe
3217 	 */
3218 
3219 	/*
3220 	 * If another context is holding the console lock,
3221 	 * @console_may_schedule might be set. Clear it so that
3222 	 * this context does not call cond_resched() while flushing.
3223 	 */
3224 	console_may_schedule = 0;
3225 
3226 	if (mode == CONSOLE_REPLAY_ALL)
3227 		__console_rewind_all();
3228 
3229 	console_flush_all(false, &next_seq, &handover);
3230 }
3231 
3232 /*
3233  * Return the console tty driver structure and its associated index
3234  */
3235 struct tty_driver *console_device(int *index)
3236 {
3237 	struct console *c;
3238 	struct tty_driver *driver = NULL;
3239 	int cookie;
3240 
3241 	/*
3242 	 * Take console_lock to serialize device() callback with
3243 	 * other console operations. For example, fg_console is
3244 	 * modified under console_lock when switching vt.
3245 	 */
3246 	console_lock();
3247 
3248 	cookie = console_srcu_read_lock();
3249 	for_each_console_srcu(c) {
3250 		if (!c->device)
3251 			continue;
3252 		driver = c->device(c, index);
3253 		if (driver)
3254 			break;
3255 	}
3256 	console_srcu_read_unlock(cookie);
3257 
3258 	console_unlock();
3259 	return driver;
3260 }
3261 
3262 /*
3263  * Prevent further output on the passed console device so that (for example)
3264  * serial drivers can disable console output before suspending a port, and can
3265  * re-enable output afterwards.
3266  */
3267 void console_stop(struct console *console)
3268 {
3269 	__pr_flush(console, 1000, true);
3270 	console_list_lock();
3271 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3272 	console_list_unlock();
3273 
3274 	/*
3275 	 * Ensure that all SRCU list walks have completed. All contexts must
3276 	 * be able to see that this console is disabled so that (for example)
3277 	 * the caller can suspend the port without risk of another context
3278 	 * using the port.
3279 	 */
3280 	synchronize_srcu(&console_srcu);
3281 }
3282 EXPORT_SYMBOL(console_stop);
3283 
3284 void console_start(struct console *console)
3285 {
3286 	console_list_lock();
3287 	console_srcu_write_flags(console, console->flags | CON_ENABLED);
3288 	console_list_unlock();
3289 	__pr_flush(console, 1000, true);
3290 }
3291 EXPORT_SYMBOL(console_start);
3292 
3293 static int __read_mostly keep_bootcon;
3294 
3295 static int __init keep_bootcon_setup(char *str)
3296 {
3297 	keep_bootcon = 1;
3298 	pr_info("debug: skip boot console de-registration.\n");
3299 
3300 	return 0;
3301 }
3302 
3303 early_param("keep_bootcon", keep_bootcon_setup);
3304 
3305 static int console_call_setup(struct console *newcon, char *options)
3306 {
3307 	int err;
3308 
3309 	if (!newcon->setup)
3310 		return 0;
3311 
3312 	/* Synchronize with possible boot console. */
3313 	console_lock();
3314 	err = newcon->setup(newcon, options);
3315 	console_unlock();
3316 
3317 	return err;
3318 }
3319 
3320 /*
3321  * This is called by register_console() to try to match
3322  * the newly registered console with any of the ones selected
3323  * by either the command line or add_preferred_console() and
3324  * setup/enable it.
3325  *
3326  * Care need to be taken with consoles that are statically
3327  * enabled such as netconsole
3328  */
3329 static int try_enable_preferred_console(struct console *newcon,
3330 					bool user_specified)
3331 {
3332 	struct console_cmdline *c;
3333 	int i, err;
3334 
3335 	for (i = 0, c = console_cmdline;
3336 	     i < MAX_CMDLINECONSOLES && c->name[0];
3337 	     i++, c++) {
3338 		if (c->user_specified != user_specified)
3339 			continue;
3340 		if (!newcon->match ||
3341 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
3342 			/* default matching */
3343 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
3344 			if (strcmp(c->name, newcon->name) != 0)
3345 				continue;
3346 			if (newcon->index >= 0 &&
3347 			    newcon->index != c->index)
3348 				continue;
3349 			if (newcon->index < 0)
3350 				newcon->index = c->index;
3351 
3352 			if (_braille_register_console(newcon, c))
3353 				return 0;
3354 
3355 			err = console_call_setup(newcon, c->options);
3356 			if (err)
3357 				return err;
3358 		}
3359 		newcon->flags |= CON_ENABLED;
3360 		if (i == preferred_console)
3361 			newcon->flags |= CON_CONSDEV;
3362 		return 0;
3363 	}
3364 
3365 	/*
3366 	 * Some consoles, such as pstore and netconsole, can be enabled even
3367 	 * without matching. Accept the pre-enabled consoles only when match()
3368 	 * and setup() had a chance to be called.
3369 	 */
3370 	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
3371 		return 0;
3372 
3373 	return -ENOENT;
3374 }
3375 
3376 /* Try to enable the console unconditionally */
3377 static void try_enable_default_console(struct console *newcon)
3378 {
3379 	if (newcon->index < 0)
3380 		newcon->index = 0;
3381 
3382 	if (console_call_setup(newcon, NULL) != 0)
3383 		return;
3384 
3385 	newcon->flags |= CON_ENABLED;
3386 
3387 	if (newcon->device)
3388 		newcon->flags |= CON_CONSDEV;
3389 }
3390 
3391 static void console_init_seq(struct console *newcon, bool bootcon_registered)
3392 {
3393 	struct console *con;
3394 	bool handover;
3395 
3396 	if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) {
3397 		/* Get a consistent copy of @syslog_seq. */
3398 		mutex_lock(&syslog_lock);
3399 		newcon->seq = syslog_seq;
3400 		mutex_unlock(&syslog_lock);
3401 	} else {
3402 		/* Begin with next message added to ringbuffer. */
3403 		newcon->seq = prb_next_seq(prb);
3404 
3405 		/*
3406 		 * If any enabled boot consoles are due to be unregistered
3407 		 * shortly, some may not be caught up and may be the same
3408 		 * device as @newcon. Since it is not known which boot console
3409 		 * is the same device, flush all consoles and, if necessary,
3410 		 * start with the message of the enabled boot console that is
3411 		 * the furthest behind.
3412 		 */
3413 		if (bootcon_registered && !keep_bootcon) {
3414 			/*
3415 			 * Hold the console_lock to stop console printing and
3416 			 * guarantee safe access to console->seq.
3417 			 */
3418 			console_lock();
3419 
3420 			/*
3421 			 * Flush all consoles and set the console to start at
3422 			 * the next unprinted sequence number.
3423 			 */
3424 			if (!console_flush_all(true, &newcon->seq, &handover)) {
3425 				/*
3426 				 * Flushing failed. Just choose the lowest
3427 				 * sequence of the enabled boot consoles.
3428 				 */
3429 
3430 				/*
3431 				 * If there was a handover, this context no
3432 				 * longer holds the console_lock.
3433 				 */
3434 				if (handover)
3435 					console_lock();
3436 
3437 				newcon->seq = prb_next_seq(prb);
3438 				for_each_console(con) {
3439 					if ((con->flags & CON_BOOT) &&
3440 					    (con->flags & CON_ENABLED) &&
3441 					    con->seq < newcon->seq) {
3442 						newcon->seq = con->seq;
3443 					}
3444 				}
3445 			}
3446 
3447 			console_unlock();
3448 		}
3449 	}
3450 }
3451 
3452 #define console_first()				\
3453 	hlist_entry(console_list.first, struct console, node)
3454 
3455 static int unregister_console_locked(struct console *console);
3456 
3457 /*
3458  * The console driver calls this routine during kernel initialization
3459  * to register the console printing procedure with printk() and to
3460  * print any messages that were printed by the kernel before the
3461  * console driver was initialized.
3462  *
3463  * This can happen pretty early during the boot process (because of
3464  * early_printk) - sometimes before setup_arch() completes - be careful
3465  * of what kernel features are used - they may not be initialised yet.
3466  *
3467  * There are two types of consoles - bootconsoles (early_printk) and
3468  * "real" consoles (everything which is not a bootconsole) which are
3469  * handled differently.
3470  *  - Any number of bootconsoles can be registered at any time.
3471  *  - As soon as a "real" console is registered, all bootconsoles
3472  *    will be unregistered automatically.
3473  *  - Once a "real" console is registered, any attempt to register a
3474  *    bootconsoles will be rejected
3475  */
3476 void register_console(struct console *newcon)
3477 {
3478 	struct console *con;
3479 	bool bootcon_registered = false;
3480 	bool realcon_registered = false;
3481 	int err;
3482 
3483 	console_list_lock();
3484 
3485 	for_each_console(con) {
3486 		if (WARN(con == newcon, "console '%s%d' already registered\n",
3487 					 con->name, con->index)) {
3488 			goto unlock;
3489 		}
3490 
3491 		if (con->flags & CON_BOOT)
3492 			bootcon_registered = true;
3493 		else
3494 			realcon_registered = true;
3495 	}
3496 
3497 	/* Do not register boot consoles when there already is a real one. */
3498 	if ((newcon->flags & CON_BOOT) && realcon_registered) {
3499 		pr_info("Too late to register bootconsole %s%d\n",
3500 			newcon->name, newcon->index);
3501 		goto unlock;
3502 	}
3503 
3504 	if (newcon->flags & CON_NBCON) {
3505 		/*
3506 		 * Ensure the nbcon console buffers can be allocated
3507 		 * before modifying any global data.
3508 		 */
3509 		if (!nbcon_alloc(newcon))
3510 			goto unlock;
3511 	}
3512 
3513 	/*
3514 	 * See if we want to enable this console driver by default.
3515 	 *
3516 	 * Nope when a console is preferred by the command line, device
3517 	 * tree, or SPCR.
3518 	 *
3519 	 * The first real console with tty binding (driver) wins. More
3520 	 * consoles might get enabled before the right one is found.
3521 	 *
3522 	 * Note that a console with tty binding will have CON_CONSDEV
3523 	 * flag set and will be first in the list.
3524 	 */
3525 	if (preferred_console < 0 && !console_set_on_cmdline) {
3526 		if (hlist_empty(&console_list) || !console_first()->device ||
3527 		    console_first()->flags & CON_BOOT) {
3528 			try_enable_default_console(newcon);
3529 		}
3530 	}
3531 
3532 	/* See if this console matches one we selected on the command line */
3533 	err = try_enable_preferred_console(newcon, true);
3534 
3535 	/* If not, try to match against the platform default(s) */
3536 	if (err == -ENOENT)
3537 		err = try_enable_preferred_console(newcon, false);
3538 
3539 	/* printk() messages are not printed to the Braille console. */
3540 	if (err || newcon->flags & CON_BRL) {
3541 		if (newcon->flags & CON_NBCON)
3542 			nbcon_free(newcon);
3543 		goto unlock;
3544 	}
3545 
3546 	/*
3547 	 * If we have a bootconsole, and are switching to a real console,
3548 	 * don't print everything out again, since when the boot console, and
3549 	 * the real console are the same physical device, it's annoying to
3550 	 * see the beginning boot messages twice
3551 	 */
3552 	if (bootcon_registered &&
3553 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) {
3554 		newcon->flags &= ~CON_PRINTBUFFER;
3555 	}
3556 
3557 	newcon->dropped = 0;
3558 	console_init_seq(newcon, bootcon_registered);
3559 
3560 	if (newcon->flags & CON_NBCON)
3561 		nbcon_init(newcon);
3562 
3563 	/*
3564 	 * Put this console in the list - keep the
3565 	 * preferred driver at the head of the list.
3566 	 */
3567 	if (hlist_empty(&console_list)) {
3568 		/* Ensure CON_CONSDEV is always set for the head. */
3569 		newcon->flags |= CON_CONSDEV;
3570 		hlist_add_head_rcu(&newcon->node, &console_list);
3571 
3572 	} else if (newcon->flags & CON_CONSDEV) {
3573 		/* Only the new head can have CON_CONSDEV set. */
3574 		console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV);
3575 		hlist_add_head_rcu(&newcon->node, &console_list);
3576 
3577 	} else {
3578 		hlist_add_behind_rcu(&newcon->node, console_list.first);
3579 	}
3580 
3581 	/*
3582 	 * No need to synchronize SRCU here! The caller does not rely
3583 	 * on all contexts being able to see the new console before
3584 	 * register_console() completes.
3585 	 */
3586 
3587 	console_sysfs_notify();
3588 
3589 	/*
3590 	 * By unregistering the bootconsoles after we enable the real console
3591 	 * we get the "console xxx enabled" message on all the consoles -
3592 	 * boot consoles, real consoles, etc - this is to ensure that end
3593 	 * users know there might be something in the kernel's log buffer that
3594 	 * went to the bootconsole (that they do not see on the real console)
3595 	 */
3596 	con_printk(KERN_INFO, newcon, "enabled\n");
3597 	if (bootcon_registered &&
3598 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
3599 	    !keep_bootcon) {
3600 		struct hlist_node *tmp;
3601 
3602 		hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3603 			if (con->flags & CON_BOOT)
3604 				unregister_console_locked(con);
3605 		}
3606 	}
3607 unlock:
3608 	console_list_unlock();
3609 }
3610 EXPORT_SYMBOL(register_console);
3611 
3612 /* Must be called under console_list_lock(). */
3613 static int unregister_console_locked(struct console *console)
3614 {
3615 	int res;
3616 
3617 	lockdep_assert_console_list_lock_held();
3618 
3619 	con_printk(KERN_INFO, console, "disabled\n");
3620 
3621 	res = _braille_unregister_console(console);
3622 	if (res < 0)
3623 		return res;
3624 	if (res > 0)
3625 		return 0;
3626 
3627 	/* Disable it unconditionally */
3628 	console_srcu_write_flags(console, console->flags & ~CON_ENABLED);
3629 
3630 	if (!console_is_registered_locked(console))
3631 		return -ENODEV;
3632 
3633 	hlist_del_init_rcu(&console->node);
3634 
3635 	/*
3636 	 * <HISTORICAL>
3637 	 * If this isn't the last console and it has CON_CONSDEV set, we
3638 	 * need to set it on the next preferred console.
3639 	 * </HISTORICAL>
3640 	 *
3641 	 * The above makes no sense as there is no guarantee that the next
3642 	 * console has any device attached. Oh well....
3643 	 */
3644 	if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV)
3645 		console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV);
3646 
3647 	/*
3648 	 * Ensure that all SRCU list walks have completed. All contexts
3649 	 * must not be able to see this console in the list so that any
3650 	 * exit/cleanup routines can be performed safely.
3651 	 */
3652 	synchronize_srcu(&console_srcu);
3653 
3654 	if (console->flags & CON_NBCON)
3655 		nbcon_free(console);
3656 
3657 	console_sysfs_notify();
3658 
3659 	if (console->exit)
3660 		res = console->exit(console);
3661 
3662 	return res;
3663 }
3664 
3665 int unregister_console(struct console *console)
3666 {
3667 	int res;
3668 
3669 	console_list_lock();
3670 	res = unregister_console_locked(console);
3671 	console_list_unlock();
3672 	return res;
3673 }
3674 EXPORT_SYMBOL(unregister_console);
3675 
3676 /**
3677  * console_force_preferred_locked - force a registered console preferred
3678  * @con: The registered console to force preferred.
3679  *
3680  * Must be called under console_list_lock().
3681  */
3682 void console_force_preferred_locked(struct console *con)
3683 {
3684 	struct console *cur_pref_con;
3685 
3686 	if (!console_is_registered_locked(con))
3687 		return;
3688 
3689 	cur_pref_con = console_first();
3690 
3691 	/* Already preferred? */
3692 	if (cur_pref_con == con)
3693 		return;
3694 
3695 	/*
3696 	 * Delete, but do not re-initialize the entry. This allows the console
3697 	 * to continue to appear registered (via any hlist_unhashed_lockless()
3698 	 * checks), even though it was briefly removed from the console list.
3699 	 */
3700 	hlist_del_rcu(&con->node);
3701 
3702 	/*
3703 	 * Ensure that all SRCU list walks have completed so that the console
3704 	 * can be added to the beginning of the console list and its forward
3705 	 * list pointer can be re-initialized.
3706 	 */
3707 	synchronize_srcu(&console_srcu);
3708 
3709 	con->flags |= CON_CONSDEV;
3710 	WARN_ON(!con->device);
3711 
3712 	/* Only the new head can have CON_CONSDEV set. */
3713 	console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV);
3714 	hlist_add_head_rcu(&con->node, &console_list);
3715 }
3716 EXPORT_SYMBOL(console_force_preferred_locked);
3717 
3718 /*
3719  * Initialize the console device. This is called *early*, so
3720  * we can't necessarily depend on lots of kernel help here.
3721  * Just do some early initializations, and do the complex setup
3722  * later.
3723  */
3724 void __init console_init(void)
3725 {
3726 	int ret;
3727 	initcall_t call;
3728 	initcall_entry_t *ce;
3729 
3730 	/* Setup the default TTY line discipline. */
3731 	n_tty_init();
3732 
3733 	/*
3734 	 * set up the console device so that later boot sequences can
3735 	 * inform about problems etc..
3736 	 */
3737 	ce = __con_initcall_start;
3738 	trace_initcall_level("console");
3739 	while (ce < __con_initcall_end) {
3740 		call = initcall_from_entry(ce);
3741 		trace_initcall_start(call);
3742 		ret = call();
3743 		trace_initcall_finish(call, ret);
3744 		ce++;
3745 	}
3746 }
3747 
3748 /*
3749  * Some boot consoles access data that is in the init section and which will
3750  * be discarded after the initcalls have been run. To make sure that no code
3751  * will access this data, unregister the boot consoles in a late initcall.
3752  *
3753  * If for some reason, such as deferred probe or the driver being a loadable
3754  * module, the real console hasn't registered yet at this point, there will
3755  * be a brief interval in which no messages are logged to the console, which
3756  * makes it difficult to diagnose problems that occur during this time.
3757  *
3758  * To mitigate this problem somewhat, only unregister consoles whose memory
3759  * intersects with the init section. Note that all other boot consoles will
3760  * get unregistered when the real preferred console is registered.
3761  */
3762 static int __init printk_late_init(void)
3763 {
3764 	struct hlist_node *tmp;
3765 	struct console *con;
3766 	int ret;
3767 
3768 	console_list_lock();
3769 	hlist_for_each_entry_safe(con, tmp, &console_list, node) {
3770 		if (!(con->flags & CON_BOOT))
3771 			continue;
3772 
3773 		/* Check addresses that might be used for enabled consoles. */
3774 		if (init_section_intersects(con, sizeof(*con)) ||
3775 		    init_section_contains(con->write, 0) ||
3776 		    init_section_contains(con->read, 0) ||
3777 		    init_section_contains(con->device, 0) ||
3778 		    init_section_contains(con->unblank, 0) ||
3779 		    init_section_contains(con->data, 0)) {
3780 			/*
3781 			 * Please, consider moving the reported consoles out
3782 			 * of the init section.
3783 			 */
3784 			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3785 				con->name, con->index);
3786 			unregister_console_locked(con);
3787 		}
3788 	}
3789 	console_list_unlock();
3790 
3791 	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3792 					console_cpu_notify);
3793 	WARN_ON(ret < 0);
3794 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3795 					console_cpu_notify, NULL);
3796 	WARN_ON(ret < 0);
3797 	printk_sysctl_init();
3798 	return 0;
3799 }
3800 late_initcall(printk_late_init);
3801 
3802 #if defined CONFIG_PRINTK
3803 /* If @con is specified, only wait for that console. Otherwise wait for all. */
3804 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress)
3805 {
3806 	unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms);
3807 	unsigned long remaining_jiffies = timeout_jiffies;
3808 	struct console *c;
3809 	u64 last_diff = 0;
3810 	u64 printk_seq;
3811 	short flags;
3812 	int cookie;
3813 	u64 diff;
3814 	u64 seq;
3815 
3816 	might_sleep();
3817 
3818 	seq = prb_next_reserve_seq(prb);
3819 
3820 	/* Flush the consoles so that records up to @seq are printed. */
3821 	console_lock();
3822 	console_unlock();
3823 
3824 	for (;;) {
3825 		unsigned long begin_jiffies;
3826 		unsigned long slept_jiffies;
3827 
3828 		diff = 0;
3829 
3830 		/*
3831 		 * Hold the console_lock to guarantee safe access to
3832 		 * console->seq. Releasing console_lock flushes more
3833 		 * records in case @seq is still not printed on all
3834 		 * usable consoles.
3835 		 */
3836 		console_lock();
3837 
3838 		cookie = console_srcu_read_lock();
3839 		for_each_console_srcu(c) {
3840 			if (con && con != c)
3841 				continue;
3842 
3843 			flags = console_srcu_read_flags(c);
3844 
3845 			/*
3846 			 * If consoles are not usable, it cannot be expected
3847 			 * that they make forward progress, so only increment
3848 			 * @diff for usable consoles.
3849 			 */
3850 			if (!console_is_usable(c))
3851 				continue;
3852 
3853 			if (flags & CON_NBCON) {
3854 				printk_seq = nbcon_seq_read(c);
3855 			} else {
3856 				printk_seq = c->seq;
3857 			}
3858 
3859 			if (printk_seq < seq)
3860 				diff += seq - printk_seq;
3861 		}
3862 		console_srcu_read_unlock(cookie);
3863 
3864 		if (diff != last_diff && reset_on_progress)
3865 			remaining_jiffies = timeout_jiffies;
3866 
3867 		console_unlock();
3868 
3869 		/* Note: @diff is 0 if there are no usable consoles. */
3870 		if (diff == 0 || remaining_jiffies == 0)
3871 			break;
3872 
3873 		/* msleep(1) might sleep much longer. Check time by jiffies. */
3874 		begin_jiffies = jiffies;
3875 		msleep(1);
3876 		slept_jiffies = jiffies - begin_jiffies;
3877 
3878 		remaining_jiffies -= min(slept_jiffies, remaining_jiffies);
3879 
3880 		last_diff = diff;
3881 	}
3882 
3883 	return (diff == 0);
3884 }
3885 
3886 /**
3887  * pr_flush() - Wait for printing threads to catch up.
3888  *
3889  * @timeout_ms:        The maximum time (in ms) to wait.
3890  * @reset_on_progress: Reset the timeout if forward progress is seen.
3891  *
3892  * A value of 0 for @timeout_ms means no waiting will occur. A value of -1
3893  * represents infinite waiting.
3894  *
3895  * If @reset_on_progress is true, the timeout will be reset whenever any
3896  * printer has been seen to make some forward progress.
3897  *
3898  * Context: Process context. May sleep while acquiring console lock.
3899  * Return: true if all usable printers are caught up.
3900  */
3901 static bool pr_flush(int timeout_ms, bool reset_on_progress)
3902 {
3903 	return __pr_flush(NULL, timeout_ms, reset_on_progress);
3904 }
3905 
3906 /*
3907  * Delayed printk version, for scheduler-internal messages:
3908  */
3909 #define PRINTK_PENDING_WAKEUP	0x01
3910 #define PRINTK_PENDING_OUTPUT	0x02
3911 
3912 static DEFINE_PER_CPU(int, printk_pending);
3913 
3914 static void wake_up_klogd_work_func(struct irq_work *irq_work)
3915 {
3916 	int pending = this_cpu_xchg(printk_pending, 0);
3917 
3918 	if (pending & PRINTK_PENDING_OUTPUT) {
3919 		/* If trylock fails, someone else is doing the printing */
3920 		if (console_trylock())
3921 			console_unlock();
3922 	}
3923 
3924 	if (pending & PRINTK_PENDING_WAKEUP)
3925 		wake_up_interruptible(&log_wait);
3926 }
3927 
3928 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3929 	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
3930 
3931 static void __wake_up_klogd(int val)
3932 {
3933 	if (!printk_percpu_data_ready())
3934 		return;
3935 
3936 	preempt_disable();
3937 	/*
3938 	 * Guarantee any new records can be seen by tasks preparing to wait
3939 	 * before this context checks if the wait queue is empty.
3940 	 *
3941 	 * The full memory barrier within wq_has_sleeper() pairs with the full
3942 	 * memory barrier within set_current_state() of
3943 	 * prepare_to_wait_event(), which is called after ___wait_event() adds
3944 	 * the waiter but before it has checked the wait condition.
3945 	 *
3946 	 * This pairs with devkmsg_read:A and syslog_print:A.
3947 	 */
3948 	if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */
3949 	    (val & PRINTK_PENDING_OUTPUT)) {
3950 		this_cpu_or(printk_pending, val);
3951 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3952 	}
3953 	preempt_enable();
3954 }
3955 
3956 /**
3957  * wake_up_klogd - Wake kernel logging daemon
3958  *
3959  * Use this function when new records have been added to the ringbuffer
3960  * and the console printing of those records has already occurred or is
3961  * known to be handled by some other context. This function will only
3962  * wake the logging daemon.
3963  *
3964  * Context: Any context.
3965  */
3966 void wake_up_klogd(void)
3967 {
3968 	__wake_up_klogd(PRINTK_PENDING_WAKEUP);
3969 }
3970 
3971 /**
3972  * defer_console_output - Wake kernel logging daemon and trigger
3973  *	console printing in a deferred context
3974  *
3975  * Use this function when new records have been added to the ringbuffer,
3976  * this context is responsible for console printing those records, but
3977  * the current context is not allowed to perform the console printing.
3978  * Trigger an irq_work context to perform the console printing. This
3979  * function also wakes the logging daemon.
3980  *
3981  * Context: Any context.
3982  */
3983 void defer_console_output(void)
3984 {
3985 	/*
3986 	 * New messages may have been added directly to the ringbuffer
3987 	 * using vprintk_store(), so wake any waiters as well.
3988 	 */
3989 	__wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT);
3990 }
3991 
3992 void printk_trigger_flush(void)
3993 {
3994 	defer_console_output();
3995 }
3996 
3997 int vprintk_deferred(const char *fmt, va_list args)
3998 {
3999 	return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
4000 }
4001 
4002 int _printk_deferred(const char *fmt, ...)
4003 {
4004 	va_list args;
4005 	int r;
4006 
4007 	va_start(args, fmt);
4008 	r = vprintk_deferred(fmt, args);
4009 	va_end(args);
4010 
4011 	return r;
4012 }
4013 
4014 /*
4015  * printk rate limiting, lifted from the networking subsystem.
4016  *
4017  * This enforces a rate limit: not more than 10 kernel messages
4018  * every 5s to make a denial-of-service attack impossible.
4019  */
4020 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
4021 
4022 int __printk_ratelimit(const char *func)
4023 {
4024 	return ___ratelimit(&printk_ratelimit_state, func);
4025 }
4026 EXPORT_SYMBOL(__printk_ratelimit);
4027 
4028 /**
4029  * printk_timed_ratelimit - caller-controlled printk ratelimiting
4030  * @caller_jiffies: pointer to caller's state
4031  * @interval_msecs: minimum interval between prints
4032  *
4033  * printk_timed_ratelimit() returns true if more than @interval_msecs
4034  * milliseconds have elapsed since the last time printk_timed_ratelimit()
4035  * returned true.
4036  */
4037 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
4038 			unsigned int interval_msecs)
4039 {
4040 	unsigned long elapsed = jiffies - *caller_jiffies;
4041 
4042 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
4043 		return false;
4044 
4045 	*caller_jiffies = jiffies;
4046 	return true;
4047 }
4048 EXPORT_SYMBOL(printk_timed_ratelimit);
4049 
4050 static DEFINE_SPINLOCK(dump_list_lock);
4051 static LIST_HEAD(dump_list);
4052 
4053 /**
4054  * kmsg_dump_register - register a kernel log dumper.
4055  * @dumper: pointer to the kmsg_dumper structure
4056  *
4057  * Adds a kernel log dumper to the system. The dump callback in the
4058  * structure will be called when the kernel oopses or panics and must be
4059  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
4060  */
4061 int kmsg_dump_register(struct kmsg_dumper *dumper)
4062 {
4063 	unsigned long flags;
4064 	int err = -EBUSY;
4065 
4066 	/* The dump callback needs to be set */
4067 	if (!dumper->dump)
4068 		return -EINVAL;
4069 
4070 	spin_lock_irqsave(&dump_list_lock, flags);
4071 	/* Don't allow registering multiple times */
4072 	if (!dumper->registered) {
4073 		dumper->registered = 1;
4074 		list_add_tail_rcu(&dumper->list, &dump_list);
4075 		err = 0;
4076 	}
4077 	spin_unlock_irqrestore(&dump_list_lock, flags);
4078 
4079 	return err;
4080 }
4081 EXPORT_SYMBOL_GPL(kmsg_dump_register);
4082 
4083 /**
4084  * kmsg_dump_unregister - unregister a kmsg dumper.
4085  * @dumper: pointer to the kmsg_dumper structure
4086  *
4087  * Removes a dump device from the system. Returns zero on success and
4088  * %-EINVAL otherwise.
4089  */
4090 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
4091 {
4092 	unsigned long flags;
4093 	int err = -EINVAL;
4094 
4095 	spin_lock_irqsave(&dump_list_lock, flags);
4096 	if (dumper->registered) {
4097 		dumper->registered = 0;
4098 		list_del_rcu(&dumper->list);
4099 		err = 0;
4100 	}
4101 	spin_unlock_irqrestore(&dump_list_lock, flags);
4102 	synchronize_rcu();
4103 
4104 	return err;
4105 }
4106 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
4107 
4108 static bool always_kmsg_dump;
4109 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
4110 
4111 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
4112 {
4113 	switch (reason) {
4114 	case KMSG_DUMP_PANIC:
4115 		return "Panic";
4116 	case KMSG_DUMP_OOPS:
4117 		return "Oops";
4118 	case KMSG_DUMP_EMERG:
4119 		return "Emergency";
4120 	case KMSG_DUMP_SHUTDOWN:
4121 		return "Shutdown";
4122 	default:
4123 		return "Unknown";
4124 	}
4125 }
4126 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
4127 
4128 /**
4129  * kmsg_dump - dump kernel log to kernel message dumpers.
4130  * @reason: the reason (oops, panic etc) for dumping
4131  *
4132  * Call each of the registered dumper's dump() callback, which can
4133  * retrieve the kmsg records with kmsg_dump_get_line() or
4134  * kmsg_dump_get_buffer().
4135  */
4136 void kmsg_dump(enum kmsg_dump_reason reason)
4137 {
4138 	struct kmsg_dumper *dumper;
4139 
4140 	rcu_read_lock();
4141 	list_for_each_entry_rcu(dumper, &dump_list, list) {
4142 		enum kmsg_dump_reason max_reason = dumper->max_reason;
4143 
4144 		/*
4145 		 * If client has not provided a specific max_reason, default
4146 		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
4147 		 */
4148 		if (max_reason == KMSG_DUMP_UNDEF) {
4149 			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
4150 							KMSG_DUMP_OOPS;
4151 		}
4152 		if (reason > max_reason)
4153 			continue;
4154 
4155 		/* invoke dumper which will iterate over records */
4156 		dumper->dump(dumper, reason);
4157 	}
4158 	rcu_read_unlock();
4159 }
4160 
4161 /**
4162  * kmsg_dump_get_line - retrieve one kmsg log line
4163  * @iter: kmsg dump iterator
4164  * @syslog: include the "<4>" prefixes
4165  * @line: buffer to copy the line to
4166  * @size: maximum size of the buffer
4167  * @len: length of line placed into buffer
4168  *
4169  * Start at the beginning of the kmsg buffer, with the oldest kmsg
4170  * record, and copy one record into the provided buffer.
4171  *
4172  * Consecutive calls will return the next available record moving
4173  * towards the end of the buffer with the youngest messages.
4174  *
4175  * A return value of FALSE indicates that there are no more records to
4176  * read.
4177  */
4178 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
4179 			char *line, size_t size, size_t *len)
4180 {
4181 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4182 	struct printk_info info;
4183 	unsigned int line_count;
4184 	struct printk_record r;
4185 	size_t l = 0;
4186 	bool ret = false;
4187 
4188 	if (iter->cur_seq < min_seq)
4189 		iter->cur_seq = min_seq;
4190 
4191 	prb_rec_init_rd(&r, &info, line, size);
4192 
4193 	/* Read text or count text lines? */
4194 	if (line) {
4195 		if (!prb_read_valid(prb, iter->cur_seq, &r))
4196 			goto out;
4197 		l = record_print_text(&r, syslog, printk_time);
4198 	} else {
4199 		if (!prb_read_valid_info(prb, iter->cur_seq,
4200 					 &info, &line_count)) {
4201 			goto out;
4202 		}
4203 		l = get_record_print_text_size(&info, line_count, syslog,
4204 					       printk_time);
4205 
4206 	}
4207 
4208 	iter->cur_seq = r.info->seq + 1;
4209 	ret = true;
4210 out:
4211 	if (len)
4212 		*len = l;
4213 	return ret;
4214 }
4215 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
4216 
4217 /**
4218  * kmsg_dump_get_buffer - copy kmsg log lines
4219  * @iter: kmsg dump iterator
4220  * @syslog: include the "<4>" prefixes
4221  * @buf: buffer to copy the line to
4222  * @size: maximum size of the buffer
4223  * @len_out: length of line placed into buffer
4224  *
4225  * Start at the end of the kmsg buffer and fill the provided buffer
4226  * with as many of the *youngest* kmsg records that fit into it.
4227  * If the buffer is large enough, all available kmsg records will be
4228  * copied with a single call.
4229  *
4230  * Consecutive calls will fill the buffer with the next block of
4231  * available older records, not including the earlier retrieved ones.
4232  *
4233  * A return value of FALSE indicates that there are no more records to
4234  * read.
4235  */
4236 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
4237 			  char *buf, size_t size, size_t *len_out)
4238 {
4239 	u64 min_seq = latched_seq_read_nolock(&clear_seq);
4240 	struct printk_info info;
4241 	struct printk_record r;
4242 	u64 seq;
4243 	u64 next_seq;
4244 	size_t len = 0;
4245 	bool ret = false;
4246 	bool time = printk_time;
4247 
4248 	if (!buf || !size)
4249 		goto out;
4250 
4251 	if (iter->cur_seq < min_seq)
4252 		iter->cur_seq = min_seq;
4253 
4254 	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
4255 		if (info.seq != iter->cur_seq) {
4256 			/* messages are gone, move to first available one */
4257 			iter->cur_seq = info.seq;
4258 		}
4259 	}
4260 
4261 	/* last entry */
4262 	if (iter->cur_seq >= iter->next_seq)
4263 		goto out;
4264 
4265 	/*
4266 	 * Find first record that fits, including all following records,
4267 	 * into the user-provided buffer for this dump. Pass in size-1
4268 	 * because this function (by way of record_print_text()) will
4269 	 * not write more than size-1 bytes of text into @buf.
4270 	 */
4271 	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
4272 				     size - 1, syslog, time);
4273 
4274 	/*
4275 	 * Next kmsg_dump_get_buffer() invocation will dump block of
4276 	 * older records stored right before this one.
4277 	 */
4278 	next_seq = seq;
4279 
4280 	prb_rec_init_rd(&r, &info, buf, size);
4281 
4282 	prb_for_each_record(seq, prb, seq, &r) {
4283 		if (r.info->seq >= iter->next_seq)
4284 			break;
4285 
4286 		len += record_print_text(&r, syslog, time);
4287 
4288 		/* Adjust record to store to remaining buffer space. */
4289 		prb_rec_init_rd(&r, &info, buf + len, size - len);
4290 	}
4291 
4292 	iter->next_seq = next_seq;
4293 	ret = true;
4294 out:
4295 	if (len_out)
4296 		*len_out = len;
4297 	return ret;
4298 }
4299 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
4300 
4301 /**
4302  * kmsg_dump_rewind - reset the iterator
4303  * @iter: kmsg dump iterator
4304  *
4305  * Reset the dumper's iterator so that kmsg_dump_get_line() and
4306  * kmsg_dump_get_buffer() can be called again and used multiple
4307  * times within the same dumper.dump() callback.
4308  */
4309 void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
4310 {
4311 	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
4312 	iter->next_seq = prb_next_seq(prb);
4313 }
4314 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
4315 
4316 /**
4317  * console_replay_all - replay kernel log on consoles
4318  *
4319  * Try to obtain lock on console subsystem and replay all
4320  * available records in printk buffer on the consoles.
4321  * Does nothing if lock is not obtained.
4322  *
4323  * Context: Any context.
4324  */
4325 void console_replay_all(void)
4326 {
4327 	if (console_trylock()) {
4328 		__console_rewind_all();
4329 		/* Consoles are flushed as part of console_unlock(). */
4330 		console_unlock();
4331 	}
4332 }
4333 #endif
4334 
4335 #ifdef CONFIG_SMP
4336 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1);
4337 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0);
4338 
4339 /**
4340  * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant
4341  *                            spinning lock is not owned by any CPU.
4342  *
4343  * Context: Any context.
4344  */
4345 void __printk_cpu_sync_wait(void)
4346 {
4347 	do {
4348 		cpu_relax();
4349 	} while (atomic_read(&printk_cpu_sync_owner) != -1);
4350 }
4351 EXPORT_SYMBOL(__printk_cpu_sync_wait);
4352 
4353 /**
4354  * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant
4355  *                               spinning lock.
4356  *
4357  * If no processor has the lock, the calling processor takes the lock and
4358  * becomes the owner. If the calling processor is already the owner of the
4359  * lock, this function succeeds immediately.
4360  *
4361  * Context: Any context. Expects interrupts to be disabled.
4362  * Return: 1 on success, otherwise 0.
4363  */
4364 int __printk_cpu_sync_try_get(void)
4365 {
4366 	int cpu;
4367 	int old;
4368 
4369 	cpu = smp_processor_id();
4370 
4371 	/*
4372 	 * Guarantee loads and stores from this CPU when it is the lock owner
4373 	 * are _not_ visible to the previous lock owner. This pairs with
4374 	 * __printk_cpu_sync_put:B.
4375 	 *
4376 	 * Memory barrier involvement:
4377 	 *
4378 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4379 	 * then __printk_cpu_sync_put:A can never read from
4380 	 * __printk_cpu_sync_try_get:B.
4381 	 *
4382 	 * Relies on:
4383 	 *
4384 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4385 	 * of the previous CPU
4386 	 *    matching
4387 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4388 	 * __printk_cpu_sync_try_get:B of this CPU
4389 	 */
4390 	old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1,
4391 				     cpu); /* LMM(__printk_cpu_sync_try_get:A) */
4392 	if (old == -1) {
4393 		/*
4394 		 * This CPU is now the owner and begins loading/storing
4395 		 * data: LMM(__printk_cpu_sync_try_get:B)
4396 		 */
4397 		return 1;
4398 
4399 	} else if (old == cpu) {
4400 		/* This CPU is already the owner. */
4401 		atomic_inc(&printk_cpu_sync_nested);
4402 		return 1;
4403 	}
4404 
4405 	return 0;
4406 }
4407 EXPORT_SYMBOL(__printk_cpu_sync_try_get);
4408 
4409 /**
4410  * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock.
4411  *
4412  * The calling processor must be the owner of the lock.
4413  *
4414  * Context: Any context. Expects interrupts to be disabled.
4415  */
4416 void __printk_cpu_sync_put(void)
4417 {
4418 	if (atomic_read(&printk_cpu_sync_nested)) {
4419 		atomic_dec(&printk_cpu_sync_nested);
4420 		return;
4421 	}
4422 
4423 	/*
4424 	 * This CPU is finished loading/storing data:
4425 	 * LMM(__printk_cpu_sync_put:A)
4426 	 */
4427 
4428 	/*
4429 	 * Guarantee loads and stores from this CPU when it was the
4430 	 * lock owner are visible to the next lock owner. This pairs
4431 	 * with __printk_cpu_sync_try_get:A.
4432 	 *
4433 	 * Memory barrier involvement:
4434 	 *
4435 	 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B,
4436 	 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A.
4437 	 *
4438 	 * Relies on:
4439 	 *
4440 	 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B
4441 	 * of this CPU
4442 	 *    matching
4443 	 * ACQUIRE from __printk_cpu_sync_try_get:A to
4444 	 * __printk_cpu_sync_try_get:B of the next CPU
4445 	 */
4446 	atomic_set_release(&printk_cpu_sync_owner,
4447 			   -1); /* LMM(__printk_cpu_sync_put:B) */
4448 }
4449 EXPORT_SYMBOL(__printk_cpu_sync_put);
4450 #endif /* CONFIG_SMP */
4451