1 /* 2 * linux/kernel/printk.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Modified to make sys_syslog() more flexible: added commands to 7 * return the last 4k of kernel messages, regardless of whether 8 * they've been read or not. Added option to suppress kernel printk's 9 * to the console. Added hook for sending the console messages 10 * elsewhere, in preparation for a serial line console (someday). 11 * Ted Ts'o, 2/11/93. 12 * Modified for sysctl support, 1/8/97, Chris Horn. 13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 14 * manfred@colorfullife.com 15 * Rewrote bits to get rid of console_lock 16 * 01Mar01 Andrew Morton 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/mm.h> 23 #include <linux/tty.h> 24 #include <linux/tty_driver.h> 25 #include <linux/console.h> 26 #include <linux/init.h> 27 #include <linux/jiffies.h> 28 #include <linux/nmi.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/delay.h> 32 #include <linux/smp.h> 33 #include <linux/security.h> 34 #include <linux/memblock.h> 35 #include <linux/syscalls.h> 36 #include <linux/crash_core.h> 37 #include <linux/kdb.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "console_cmdline.h" 59 #include "braille.h" 60 #include "internal.h" 61 62 int console_printk[4] = { 63 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 64 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 65 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 66 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 67 }; 68 EXPORT_SYMBOL_GPL(console_printk); 69 70 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 71 EXPORT_SYMBOL(ignore_console_lock_warning); 72 73 /* 74 * Low level drivers may need that to know if they can schedule in 75 * their unblank() callback or not. So let's export it. 76 */ 77 int oops_in_progress; 78 EXPORT_SYMBOL(oops_in_progress); 79 80 /* 81 * console_sem protects the console_drivers list, and also 82 * provides serialisation for access to the entire console 83 * driver system. 84 */ 85 static DEFINE_SEMAPHORE(console_sem); 86 struct console *console_drivers; 87 EXPORT_SYMBOL_GPL(console_drivers); 88 89 /* 90 * System may need to suppress printk message under certain 91 * circumstances, like after kernel panic happens. 92 */ 93 int __read_mostly suppress_printk; 94 95 #ifdef CONFIG_LOCKDEP 96 static struct lockdep_map console_lock_dep_map = { 97 .name = "console_lock" 98 }; 99 #endif 100 101 enum devkmsg_log_bits { 102 __DEVKMSG_LOG_BIT_ON = 0, 103 __DEVKMSG_LOG_BIT_OFF, 104 __DEVKMSG_LOG_BIT_LOCK, 105 }; 106 107 enum devkmsg_log_masks { 108 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 109 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 110 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 111 }; 112 113 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 114 #define DEVKMSG_LOG_MASK_DEFAULT 0 115 116 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 117 118 static int __control_devkmsg(char *str) 119 { 120 if (!str) 121 return -EINVAL; 122 123 if (!strncmp(str, "on", 2)) { 124 devkmsg_log = DEVKMSG_LOG_MASK_ON; 125 return 2; 126 } else if (!strncmp(str, "off", 3)) { 127 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 128 return 3; 129 } else if (!strncmp(str, "ratelimit", 9)) { 130 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 131 return 9; 132 } 133 return -EINVAL; 134 } 135 136 static int __init control_devkmsg(char *str) 137 { 138 if (__control_devkmsg(str) < 0) 139 return 1; 140 141 /* 142 * Set sysctl string accordingly: 143 */ 144 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 145 strcpy(devkmsg_log_str, "on"); 146 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 147 strcpy(devkmsg_log_str, "off"); 148 /* else "ratelimit" which is set by default. */ 149 150 /* 151 * Sysctl cannot change it anymore. The kernel command line setting of 152 * this parameter is to force the setting to be permanent throughout the 153 * runtime of the system. This is a precation measure against userspace 154 * trying to be a smarta** and attempting to change it up on us. 155 */ 156 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 157 158 return 0; 159 } 160 __setup("printk.devkmsg=", control_devkmsg); 161 162 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 163 164 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 165 void __user *buffer, size_t *lenp, loff_t *ppos) 166 { 167 char old_str[DEVKMSG_STR_MAX_SIZE]; 168 unsigned int old; 169 int err; 170 171 if (write) { 172 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 173 return -EINVAL; 174 175 old = devkmsg_log; 176 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 177 } 178 179 err = proc_dostring(table, write, buffer, lenp, ppos); 180 if (err) 181 return err; 182 183 if (write) { 184 err = __control_devkmsg(devkmsg_log_str); 185 186 /* 187 * Do not accept an unknown string OR a known string with 188 * trailing crap... 189 */ 190 if (err < 0 || (err + 1 != *lenp)) { 191 192 /* ... and restore old setting. */ 193 devkmsg_log = old; 194 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 195 196 return -EINVAL; 197 } 198 } 199 200 return 0; 201 } 202 203 /* Number of registered extended console drivers. */ 204 static int nr_ext_console_drivers; 205 206 /* 207 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 208 * macros instead of functions so that _RET_IP_ contains useful information. 209 */ 210 #define down_console_sem() do { \ 211 down(&console_sem);\ 212 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 213 } while (0) 214 215 static int __down_trylock_console_sem(unsigned long ip) 216 { 217 int lock_failed; 218 unsigned long flags; 219 220 /* 221 * Here and in __up_console_sem() we need to be in safe mode, 222 * because spindump/WARN/etc from under console ->lock will 223 * deadlock in printk()->down_trylock_console_sem() otherwise. 224 */ 225 printk_safe_enter_irqsave(flags); 226 lock_failed = down_trylock(&console_sem); 227 printk_safe_exit_irqrestore(flags); 228 229 if (lock_failed) 230 return 1; 231 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 232 return 0; 233 } 234 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 235 236 static void __up_console_sem(unsigned long ip) 237 { 238 unsigned long flags; 239 240 mutex_release(&console_lock_dep_map, 1, ip); 241 242 printk_safe_enter_irqsave(flags); 243 up(&console_sem); 244 printk_safe_exit_irqrestore(flags); 245 } 246 #define up_console_sem() __up_console_sem(_RET_IP_) 247 248 /* 249 * This is used for debugging the mess that is the VT code by 250 * keeping track if we have the console semaphore held. It's 251 * definitely not the perfect debug tool (we don't know if _WE_ 252 * hold it and are racing, but it helps tracking those weird code 253 * paths in the console code where we end up in places I want 254 * locked without the console sempahore held). 255 */ 256 static int console_locked, console_suspended; 257 258 /* 259 * If exclusive_console is non-NULL then only this console is to be printed to. 260 */ 261 static struct console *exclusive_console; 262 263 /* 264 * Array of consoles built from command line options (console=) 265 */ 266 267 #define MAX_CMDLINECONSOLES 8 268 269 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 270 271 static int preferred_console = -1; 272 int console_set_on_cmdline; 273 EXPORT_SYMBOL(console_set_on_cmdline); 274 275 /* Flag: console code may call schedule() */ 276 static int console_may_schedule; 277 278 enum con_msg_format_flags { 279 MSG_FORMAT_DEFAULT = 0, 280 MSG_FORMAT_SYSLOG = (1 << 0), 281 }; 282 283 static int console_msg_format = MSG_FORMAT_DEFAULT; 284 285 /* 286 * The printk log buffer consists of a chain of concatenated variable 287 * length records. Every record starts with a record header, containing 288 * the overall length of the record. 289 * 290 * The heads to the first and last entry in the buffer, as well as the 291 * sequence numbers of these entries are maintained when messages are 292 * stored. 293 * 294 * If the heads indicate available messages, the length in the header 295 * tells the start next message. A length == 0 for the next message 296 * indicates a wrap-around to the beginning of the buffer. 297 * 298 * Every record carries the monotonic timestamp in microseconds, as well as 299 * the standard userspace syslog level and syslog facility. The usual 300 * kernel messages use LOG_KERN; userspace-injected messages always carry 301 * a matching syslog facility, by default LOG_USER. The origin of every 302 * message can be reliably determined that way. 303 * 304 * The human readable log message directly follows the message header. The 305 * length of the message text is stored in the header, the stored message 306 * is not terminated. 307 * 308 * Optionally, a message can carry a dictionary of properties (key/value pairs), 309 * to provide userspace with a machine-readable message context. 310 * 311 * Examples for well-defined, commonly used property names are: 312 * DEVICE=b12:8 device identifier 313 * b12:8 block dev_t 314 * c127:3 char dev_t 315 * n8 netdev ifindex 316 * +sound:card0 subsystem:devname 317 * SUBSYSTEM=pci driver-core subsystem name 318 * 319 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value 320 * follows directly after a '=' character. Every property is terminated by 321 * a '\0' character. The last property is not terminated. 322 * 323 * Example of a message structure: 324 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec 325 * 0008 34 00 record is 52 bytes long 326 * 000a 0b 00 text is 11 bytes long 327 * 000c 1f 00 dictionary is 23 bytes long 328 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level) 329 * 0010 69 74 27 73 20 61 20 6c "it's a l" 330 * 69 6e 65 "ine" 331 * 001b 44 45 56 49 43 "DEVIC" 332 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D" 333 * 52 49 56 45 52 3d 62 75 "RIVER=bu" 334 * 67 "g" 335 * 0032 00 00 00 padding to next message header 336 * 337 * The 'struct printk_log' buffer header must never be directly exported to 338 * userspace, it is a kernel-private implementation detail that might 339 * need to be changed in the future, when the requirements change. 340 * 341 * /dev/kmsg exports the structured data in the following line format: 342 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 343 * 344 * Users of the export format should ignore possible additional values 345 * separated by ',', and find the message after the ';' character. 346 * 347 * The optional key/value pairs are attached as continuation lines starting 348 * with a space character and terminated by a newline. All possible 349 * non-prinatable characters are escaped in the "\xff" notation. 350 */ 351 352 enum log_flags { 353 LOG_NEWLINE = 2, /* text ended with a newline */ 354 LOG_CONT = 8, /* text is a fragment of a continuation line */ 355 }; 356 357 struct printk_log { 358 u64 ts_nsec; /* timestamp in nanoseconds */ 359 u16 len; /* length of entire record */ 360 u16 text_len; /* length of text buffer */ 361 u16 dict_len; /* length of dictionary buffer */ 362 u8 facility; /* syslog facility */ 363 u8 flags:5; /* internal record flags */ 364 u8 level:3; /* syslog level */ 365 #ifdef CONFIG_PRINTK_CALLER 366 u32 caller_id; /* thread id or processor id */ 367 #endif 368 } 369 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 370 __packed __aligned(4) 371 #endif 372 ; 373 374 /* 375 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken 376 * within the scheduler's rq lock. It must be released before calling 377 * console_unlock() or anything else that might wake up a process. 378 */ 379 DEFINE_RAW_SPINLOCK(logbuf_lock); 380 381 /* 382 * Helper macros to lock/unlock logbuf_lock and switch between 383 * printk-safe/unsafe modes. 384 */ 385 #define logbuf_lock_irq() \ 386 do { \ 387 printk_safe_enter_irq(); \ 388 raw_spin_lock(&logbuf_lock); \ 389 } while (0) 390 391 #define logbuf_unlock_irq() \ 392 do { \ 393 raw_spin_unlock(&logbuf_lock); \ 394 printk_safe_exit_irq(); \ 395 } while (0) 396 397 #define logbuf_lock_irqsave(flags) \ 398 do { \ 399 printk_safe_enter_irqsave(flags); \ 400 raw_spin_lock(&logbuf_lock); \ 401 } while (0) 402 403 #define logbuf_unlock_irqrestore(flags) \ 404 do { \ 405 raw_spin_unlock(&logbuf_lock); \ 406 printk_safe_exit_irqrestore(flags); \ 407 } while (0) 408 409 #ifdef CONFIG_PRINTK 410 DECLARE_WAIT_QUEUE_HEAD(log_wait); 411 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 412 static u64 syslog_seq; 413 static u32 syslog_idx; 414 static size_t syslog_partial; 415 static bool syslog_time; 416 417 /* index and sequence number of the first record stored in the buffer */ 418 static u64 log_first_seq; 419 static u32 log_first_idx; 420 421 /* index and sequence number of the next record to store in the buffer */ 422 static u64 log_next_seq; 423 static u32 log_next_idx; 424 425 /* the next printk record to write to the console */ 426 static u64 console_seq; 427 static u32 console_idx; 428 static u64 exclusive_console_stop_seq; 429 430 /* the next printk record to read after the last 'clear' command */ 431 static u64 clear_seq; 432 static u32 clear_idx; 433 434 #ifdef CONFIG_PRINTK_CALLER 435 #define PREFIX_MAX 48 436 #else 437 #define PREFIX_MAX 32 438 #endif 439 #define LOG_LINE_MAX (1024 - PREFIX_MAX) 440 441 #define LOG_LEVEL(v) ((v) & 0x07) 442 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 443 444 /* record buffer */ 445 #define LOG_ALIGN __alignof__(struct printk_log) 446 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 447 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 448 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 449 static char *log_buf = __log_buf; 450 static u32 log_buf_len = __LOG_BUF_LEN; 451 452 /* Return log buffer address */ 453 char *log_buf_addr_get(void) 454 { 455 return log_buf; 456 } 457 458 /* Return log buffer size */ 459 u32 log_buf_len_get(void) 460 { 461 return log_buf_len; 462 } 463 464 /* human readable text of the record */ 465 static char *log_text(const struct printk_log *msg) 466 { 467 return (char *)msg + sizeof(struct printk_log); 468 } 469 470 /* optional key/value pair dictionary attached to the record */ 471 static char *log_dict(const struct printk_log *msg) 472 { 473 return (char *)msg + sizeof(struct printk_log) + msg->text_len; 474 } 475 476 /* get record by index; idx must point to valid msg */ 477 static struct printk_log *log_from_idx(u32 idx) 478 { 479 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 480 481 /* 482 * A length == 0 record is the end of buffer marker. Wrap around and 483 * read the message at the start of the buffer. 484 */ 485 if (!msg->len) 486 return (struct printk_log *)log_buf; 487 return msg; 488 } 489 490 /* get next record; idx must point to valid msg */ 491 static u32 log_next(u32 idx) 492 { 493 struct printk_log *msg = (struct printk_log *)(log_buf + idx); 494 495 /* length == 0 indicates the end of the buffer; wrap */ 496 /* 497 * A length == 0 record is the end of buffer marker. Wrap around and 498 * read the message at the start of the buffer as *this* one, and 499 * return the one after that. 500 */ 501 if (!msg->len) { 502 msg = (struct printk_log *)log_buf; 503 return msg->len; 504 } 505 return idx + msg->len; 506 } 507 508 /* 509 * Check whether there is enough free space for the given message. 510 * 511 * The same values of first_idx and next_idx mean that the buffer 512 * is either empty or full. 513 * 514 * If the buffer is empty, we must respect the position of the indexes. 515 * They cannot be reset to the beginning of the buffer. 516 */ 517 static int logbuf_has_space(u32 msg_size, bool empty) 518 { 519 u32 free; 520 521 if (log_next_idx > log_first_idx || empty) 522 free = max(log_buf_len - log_next_idx, log_first_idx); 523 else 524 free = log_first_idx - log_next_idx; 525 526 /* 527 * We need space also for an empty header that signalizes wrapping 528 * of the buffer. 529 */ 530 return free >= msg_size + sizeof(struct printk_log); 531 } 532 533 static int log_make_free_space(u32 msg_size) 534 { 535 while (log_first_seq < log_next_seq && 536 !logbuf_has_space(msg_size, false)) { 537 /* drop old messages until we have enough contiguous space */ 538 log_first_idx = log_next(log_first_idx); 539 log_first_seq++; 540 } 541 542 if (clear_seq < log_first_seq) { 543 clear_seq = log_first_seq; 544 clear_idx = log_first_idx; 545 } 546 547 /* sequence numbers are equal, so the log buffer is empty */ 548 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq)) 549 return 0; 550 551 return -ENOMEM; 552 } 553 554 /* compute the message size including the padding bytes */ 555 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len) 556 { 557 u32 size; 558 559 size = sizeof(struct printk_log) + text_len + dict_len; 560 *pad_len = (-size) & (LOG_ALIGN - 1); 561 size += *pad_len; 562 563 return size; 564 } 565 566 /* 567 * Define how much of the log buffer we could take at maximum. The value 568 * must be greater than two. Note that only half of the buffer is available 569 * when the index points to the middle. 570 */ 571 #define MAX_LOG_TAKE_PART 4 572 static const char trunc_msg[] = "<truncated>"; 573 574 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len, 575 u16 *dict_len, u32 *pad_len) 576 { 577 /* 578 * The message should not take the whole buffer. Otherwise, it might 579 * get removed too soon. 580 */ 581 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 582 if (*text_len > max_text_len) 583 *text_len = max_text_len; 584 /* enable the warning message */ 585 *trunc_msg_len = strlen(trunc_msg); 586 /* disable the "dict" completely */ 587 *dict_len = 0; 588 /* compute the size again, count also the warning message */ 589 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len); 590 } 591 592 /* insert record into the buffer, discard old ones, update heads */ 593 static int log_store(u32 caller_id, int facility, int level, 594 enum log_flags flags, u64 ts_nsec, 595 const char *dict, u16 dict_len, 596 const char *text, u16 text_len) 597 { 598 struct printk_log *msg; 599 u32 size, pad_len; 600 u16 trunc_msg_len = 0; 601 602 /* number of '\0' padding bytes to next message */ 603 size = msg_used_size(text_len, dict_len, &pad_len); 604 605 if (log_make_free_space(size)) { 606 /* truncate the message if it is too long for empty buffer */ 607 size = truncate_msg(&text_len, &trunc_msg_len, 608 &dict_len, &pad_len); 609 /* survive when the log buffer is too small for trunc_msg */ 610 if (log_make_free_space(size)) 611 return 0; 612 } 613 614 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) { 615 /* 616 * This message + an additional empty header does not fit 617 * at the end of the buffer. Add an empty header with len == 0 618 * to signify a wrap around. 619 */ 620 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log)); 621 log_next_idx = 0; 622 } 623 624 /* fill message */ 625 msg = (struct printk_log *)(log_buf + log_next_idx); 626 memcpy(log_text(msg), text, text_len); 627 msg->text_len = text_len; 628 if (trunc_msg_len) { 629 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len); 630 msg->text_len += trunc_msg_len; 631 } 632 memcpy(log_dict(msg), dict, dict_len); 633 msg->dict_len = dict_len; 634 msg->facility = facility; 635 msg->level = level & 7; 636 msg->flags = flags & 0x1f; 637 if (ts_nsec > 0) 638 msg->ts_nsec = ts_nsec; 639 else 640 msg->ts_nsec = local_clock(); 641 #ifdef CONFIG_PRINTK_CALLER 642 msg->caller_id = caller_id; 643 #endif 644 memset(log_dict(msg) + dict_len, 0, pad_len); 645 msg->len = size; 646 647 /* insert message */ 648 log_next_idx += msg->len; 649 log_next_seq++; 650 651 return msg->text_len; 652 } 653 654 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 655 656 static int syslog_action_restricted(int type) 657 { 658 if (dmesg_restrict) 659 return 1; 660 /* 661 * Unless restricted, we allow "read all" and "get buffer size" 662 * for everybody. 663 */ 664 return type != SYSLOG_ACTION_READ_ALL && 665 type != SYSLOG_ACTION_SIZE_BUFFER; 666 } 667 668 static int check_syslog_permissions(int type, int source) 669 { 670 /* 671 * If this is from /proc/kmsg and we've already opened it, then we've 672 * already done the capabilities checks at open time. 673 */ 674 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 675 goto ok; 676 677 if (syslog_action_restricted(type)) { 678 if (capable(CAP_SYSLOG)) 679 goto ok; 680 /* 681 * For historical reasons, accept CAP_SYS_ADMIN too, with 682 * a warning. 683 */ 684 if (capable(CAP_SYS_ADMIN)) { 685 pr_warn_once("%s (%d): Attempt to access syslog with " 686 "CAP_SYS_ADMIN but no CAP_SYSLOG " 687 "(deprecated).\n", 688 current->comm, task_pid_nr(current)); 689 goto ok; 690 } 691 return -EPERM; 692 } 693 ok: 694 return security_syslog(type); 695 } 696 697 static void append_char(char **pp, char *e, char c) 698 { 699 if (*pp < e) 700 *(*pp)++ = c; 701 } 702 703 static ssize_t msg_print_ext_header(char *buf, size_t size, 704 struct printk_log *msg, u64 seq) 705 { 706 u64 ts_usec = msg->ts_nsec; 707 char caller[20]; 708 #ifdef CONFIG_PRINTK_CALLER 709 u32 id = msg->caller_id; 710 711 snprintf(caller, sizeof(caller), ",caller=%c%u", 712 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 713 #else 714 caller[0] = '\0'; 715 #endif 716 717 do_div(ts_usec, 1000); 718 719 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 720 (msg->facility << 3) | msg->level, seq, ts_usec, 721 msg->flags & LOG_CONT ? 'c' : '-', caller); 722 } 723 724 static ssize_t msg_print_ext_body(char *buf, size_t size, 725 char *dict, size_t dict_len, 726 char *text, size_t text_len) 727 { 728 char *p = buf, *e = buf + size; 729 size_t i; 730 731 /* escape non-printable characters */ 732 for (i = 0; i < text_len; i++) { 733 unsigned char c = text[i]; 734 735 if (c < ' ' || c >= 127 || c == '\\') 736 p += scnprintf(p, e - p, "\\x%02x", c); 737 else 738 append_char(&p, e, c); 739 } 740 append_char(&p, e, '\n'); 741 742 if (dict_len) { 743 bool line = true; 744 745 for (i = 0; i < dict_len; i++) { 746 unsigned char c = dict[i]; 747 748 if (line) { 749 append_char(&p, e, ' '); 750 line = false; 751 } 752 753 if (c == '\0') { 754 append_char(&p, e, '\n'); 755 line = true; 756 continue; 757 } 758 759 if (c < ' ' || c >= 127 || c == '\\') { 760 p += scnprintf(p, e - p, "\\x%02x", c); 761 continue; 762 } 763 764 append_char(&p, e, c); 765 } 766 append_char(&p, e, '\n'); 767 } 768 769 return p - buf; 770 } 771 772 /* /dev/kmsg - userspace message inject/listen interface */ 773 struct devkmsg_user { 774 u64 seq; 775 u32 idx; 776 struct ratelimit_state rs; 777 struct mutex lock; 778 char buf[CONSOLE_EXT_LOG_MAX]; 779 }; 780 781 static __printf(3, 4) __cold 782 int devkmsg_emit(int facility, int level, const char *fmt, ...) 783 { 784 va_list args; 785 int r; 786 787 va_start(args, fmt); 788 r = vprintk_emit(facility, level, NULL, 0, fmt, args); 789 va_end(args); 790 791 return r; 792 } 793 794 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 795 { 796 char *buf, *line; 797 int level = default_message_loglevel; 798 int facility = 1; /* LOG_USER */ 799 struct file *file = iocb->ki_filp; 800 struct devkmsg_user *user = file->private_data; 801 size_t len = iov_iter_count(from); 802 ssize_t ret = len; 803 804 if (!user || len > LOG_LINE_MAX) 805 return -EINVAL; 806 807 /* Ignore when user logging is disabled. */ 808 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 809 return len; 810 811 /* Ratelimit when not explicitly enabled. */ 812 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 813 if (!___ratelimit(&user->rs, current->comm)) 814 return ret; 815 } 816 817 buf = kmalloc(len+1, GFP_KERNEL); 818 if (buf == NULL) 819 return -ENOMEM; 820 821 buf[len] = '\0'; 822 if (!copy_from_iter_full(buf, len, from)) { 823 kfree(buf); 824 return -EFAULT; 825 } 826 827 /* 828 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 829 * the decimal value represents 32bit, the lower 3 bit are the log 830 * level, the rest are the log facility. 831 * 832 * If no prefix or no userspace facility is specified, we 833 * enforce LOG_USER, to be able to reliably distinguish 834 * kernel-generated messages from userspace-injected ones. 835 */ 836 line = buf; 837 if (line[0] == '<') { 838 char *endp = NULL; 839 unsigned int u; 840 841 u = simple_strtoul(line + 1, &endp, 10); 842 if (endp && endp[0] == '>') { 843 level = LOG_LEVEL(u); 844 if (LOG_FACILITY(u) != 0) 845 facility = LOG_FACILITY(u); 846 endp++; 847 len -= endp - line; 848 line = endp; 849 } 850 } 851 852 devkmsg_emit(facility, level, "%s", line); 853 kfree(buf); 854 return ret; 855 } 856 857 static ssize_t devkmsg_read(struct file *file, char __user *buf, 858 size_t count, loff_t *ppos) 859 { 860 struct devkmsg_user *user = file->private_data; 861 struct printk_log *msg; 862 size_t len; 863 ssize_t ret; 864 865 if (!user) 866 return -EBADF; 867 868 ret = mutex_lock_interruptible(&user->lock); 869 if (ret) 870 return ret; 871 872 logbuf_lock_irq(); 873 while (user->seq == log_next_seq) { 874 if (file->f_flags & O_NONBLOCK) { 875 ret = -EAGAIN; 876 logbuf_unlock_irq(); 877 goto out; 878 } 879 880 logbuf_unlock_irq(); 881 ret = wait_event_interruptible(log_wait, 882 user->seq != log_next_seq); 883 if (ret) 884 goto out; 885 logbuf_lock_irq(); 886 } 887 888 if (user->seq < log_first_seq) { 889 /* our last seen message is gone, return error and reset */ 890 user->idx = log_first_idx; 891 user->seq = log_first_seq; 892 ret = -EPIPE; 893 logbuf_unlock_irq(); 894 goto out; 895 } 896 897 msg = log_from_idx(user->idx); 898 len = msg_print_ext_header(user->buf, sizeof(user->buf), 899 msg, user->seq); 900 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len, 901 log_dict(msg), msg->dict_len, 902 log_text(msg), msg->text_len); 903 904 user->idx = log_next(user->idx); 905 user->seq++; 906 logbuf_unlock_irq(); 907 908 if (len > count) { 909 ret = -EINVAL; 910 goto out; 911 } 912 913 if (copy_to_user(buf, user->buf, len)) { 914 ret = -EFAULT; 915 goto out; 916 } 917 ret = len; 918 out: 919 mutex_unlock(&user->lock); 920 return ret; 921 } 922 923 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 924 { 925 struct devkmsg_user *user = file->private_data; 926 loff_t ret = 0; 927 928 if (!user) 929 return -EBADF; 930 if (offset) 931 return -ESPIPE; 932 933 logbuf_lock_irq(); 934 switch (whence) { 935 case SEEK_SET: 936 /* the first record */ 937 user->idx = log_first_idx; 938 user->seq = log_first_seq; 939 break; 940 case SEEK_DATA: 941 /* 942 * The first record after the last SYSLOG_ACTION_CLEAR, 943 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 944 * changes no global state, and does not clear anything. 945 */ 946 user->idx = clear_idx; 947 user->seq = clear_seq; 948 break; 949 case SEEK_END: 950 /* after the last record */ 951 user->idx = log_next_idx; 952 user->seq = log_next_seq; 953 break; 954 default: 955 ret = -EINVAL; 956 } 957 logbuf_unlock_irq(); 958 return ret; 959 } 960 961 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 962 { 963 struct devkmsg_user *user = file->private_data; 964 __poll_t ret = 0; 965 966 if (!user) 967 return EPOLLERR|EPOLLNVAL; 968 969 poll_wait(file, &log_wait, wait); 970 971 logbuf_lock_irq(); 972 if (user->seq < log_next_seq) { 973 /* return error when data has vanished underneath us */ 974 if (user->seq < log_first_seq) 975 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 976 else 977 ret = EPOLLIN|EPOLLRDNORM; 978 } 979 logbuf_unlock_irq(); 980 981 return ret; 982 } 983 984 static int devkmsg_open(struct inode *inode, struct file *file) 985 { 986 struct devkmsg_user *user; 987 int err; 988 989 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 990 return -EPERM; 991 992 /* write-only does not need any file context */ 993 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 994 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 995 SYSLOG_FROM_READER); 996 if (err) 997 return err; 998 } 999 1000 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 1001 if (!user) 1002 return -ENOMEM; 1003 1004 ratelimit_default_init(&user->rs); 1005 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 1006 1007 mutex_init(&user->lock); 1008 1009 logbuf_lock_irq(); 1010 user->idx = log_first_idx; 1011 user->seq = log_first_seq; 1012 logbuf_unlock_irq(); 1013 1014 file->private_data = user; 1015 return 0; 1016 } 1017 1018 static int devkmsg_release(struct inode *inode, struct file *file) 1019 { 1020 struct devkmsg_user *user = file->private_data; 1021 1022 if (!user) 1023 return 0; 1024 1025 ratelimit_state_exit(&user->rs); 1026 1027 mutex_destroy(&user->lock); 1028 kfree(user); 1029 return 0; 1030 } 1031 1032 const struct file_operations kmsg_fops = { 1033 .open = devkmsg_open, 1034 .read = devkmsg_read, 1035 .write_iter = devkmsg_write, 1036 .llseek = devkmsg_llseek, 1037 .poll = devkmsg_poll, 1038 .release = devkmsg_release, 1039 }; 1040 1041 #ifdef CONFIG_CRASH_CORE 1042 /* 1043 * This appends the listed symbols to /proc/vmcore 1044 * 1045 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 1046 * obtain access to symbols that are otherwise very difficult to locate. These 1047 * symbols are specifically used so that utilities can access and extract the 1048 * dmesg log from a vmcore file after a crash. 1049 */ 1050 void log_buf_vmcoreinfo_setup(void) 1051 { 1052 VMCOREINFO_SYMBOL(log_buf); 1053 VMCOREINFO_SYMBOL(log_buf_len); 1054 VMCOREINFO_SYMBOL(log_first_idx); 1055 VMCOREINFO_SYMBOL(clear_idx); 1056 VMCOREINFO_SYMBOL(log_next_idx); 1057 /* 1058 * Export struct printk_log size and field offsets. User space tools can 1059 * parse it and detect any changes to structure down the line. 1060 */ 1061 VMCOREINFO_STRUCT_SIZE(printk_log); 1062 VMCOREINFO_OFFSET(printk_log, ts_nsec); 1063 VMCOREINFO_OFFSET(printk_log, len); 1064 VMCOREINFO_OFFSET(printk_log, text_len); 1065 VMCOREINFO_OFFSET(printk_log, dict_len); 1066 #ifdef CONFIG_PRINTK_CALLER 1067 VMCOREINFO_OFFSET(printk_log, caller_id); 1068 #endif 1069 } 1070 #endif 1071 1072 /* requested log_buf_len from kernel cmdline */ 1073 static unsigned long __initdata new_log_buf_len; 1074 1075 /* we practice scaling the ring buffer by powers of 2 */ 1076 static void __init log_buf_len_update(u64 size) 1077 { 1078 if (size > (u64)LOG_BUF_LEN_MAX) { 1079 size = (u64)LOG_BUF_LEN_MAX; 1080 pr_err("log_buf over 2G is not supported.\n"); 1081 } 1082 1083 if (size) 1084 size = roundup_pow_of_two(size); 1085 if (size > log_buf_len) 1086 new_log_buf_len = (unsigned long)size; 1087 } 1088 1089 /* save requested log_buf_len since it's too early to process it */ 1090 static int __init log_buf_len_setup(char *str) 1091 { 1092 u64 size; 1093 1094 if (!str) 1095 return -EINVAL; 1096 1097 size = memparse(str, &str); 1098 1099 log_buf_len_update(size); 1100 1101 return 0; 1102 } 1103 early_param("log_buf_len", log_buf_len_setup); 1104 1105 #ifdef CONFIG_SMP 1106 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1107 1108 static void __init log_buf_add_cpu(void) 1109 { 1110 unsigned int cpu_extra; 1111 1112 /* 1113 * archs should set up cpu_possible_bits properly with 1114 * set_cpu_possible() after setup_arch() but just in 1115 * case lets ensure this is valid. 1116 */ 1117 if (num_possible_cpus() == 1) 1118 return; 1119 1120 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1121 1122 /* by default this will only continue through for large > 64 CPUs */ 1123 if (cpu_extra <= __LOG_BUF_LEN / 2) 1124 return; 1125 1126 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1127 __LOG_CPU_MAX_BUF_LEN); 1128 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1129 cpu_extra); 1130 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1131 1132 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1133 } 1134 #else /* !CONFIG_SMP */ 1135 static inline void log_buf_add_cpu(void) {} 1136 #endif /* CONFIG_SMP */ 1137 1138 void __init setup_log_buf(int early) 1139 { 1140 unsigned long flags; 1141 char *new_log_buf; 1142 unsigned int free; 1143 1144 if (log_buf != __log_buf) 1145 return; 1146 1147 if (!early && !new_log_buf_len) 1148 log_buf_add_cpu(); 1149 1150 if (!new_log_buf_len) 1151 return; 1152 1153 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1154 if (unlikely(!new_log_buf)) { 1155 pr_err("log_buf_len: %lu bytes not available\n", 1156 new_log_buf_len); 1157 return; 1158 } 1159 1160 logbuf_lock_irqsave(flags); 1161 log_buf_len = new_log_buf_len; 1162 log_buf = new_log_buf; 1163 new_log_buf_len = 0; 1164 free = __LOG_BUF_LEN - log_next_idx; 1165 memcpy(log_buf, __log_buf, __LOG_BUF_LEN); 1166 logbuf_unlock_irqrestore(flags); 1167 1168 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1169 pr_info("early log buf free: %u(%u%%)\n", 1170 free, (free * 100) / __LOG_BUF_LEN); 1171 } 1172 1173 static bool __read_mostly ignore_loglevel; 1174 1175 static int __init ignore_loglevel_setup(char *str) 1176 { 1177 ignore_loglevel = true; 1178 pr_info("debug: ignoring loglevel setting.\n"); 1179 1180 return 0; 1181 } 1182 1183 early_param("ignore_loglevel", ignore_loglevel_setup); 1184 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1185 MODULE_PARM_DESC(ignore_loglevel, 1186 "ignore loglevel setting (prints all kernel messages to the console)"); 1187 1188 static bool suppress_message_printing(int level) 1189 { 1190 return (level >= console_loglevel && !ignore_loglevel); 1191 } 1192 1193 #ifdef CONFIG_BOOT_PRINTK_DELAY 1194 1195 static int boot_delay; /* msecs delay after each printk during bootup */ 1196 static unsigned long long loops_per_msec; /* based on boot_delay */ 1197 1198 static int __init boot_delay_setup(char *str) 1199 { 1200 unsigned long lpj; 1201 1202 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1203 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1204 1205 get_option(&str, &boot_delay); 1206 if (boot_delay > 10 * 1000) 1207 boot_delay = 0; 1208 1209 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1210 "HZ: %d, loops_per_msec: %llu\n", 1211 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1212 return 0; 1213 } 1214 early_param("boot_delay", boot_delay_setup); 1215 1216 static void boot_delay_msec(int level) 1217 { 1218 unsigned long long k; 1219 unsigned long timeout; 1220 1221 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1222 || suppress_message_printing(level)) { 1223 return; 1224 } 1225 1226 k = (unsigned long long)loops_per_msec * boot_delay; 1227 1228 timeout = jiffies + msecs_to_jiffies(boot_delay); 1229 while (k) { 1230 k--; 1231 cpu_relax(); 1232 /* 1233 * use (volatile) jiffies to prevent 1234 * compiler reduction; loop termination via jiffies 1235 * is secondary and may or may not happen. 1236 */ 1237 if (time_after(jiffies, timeout)) 1238 break; 1239 touch_nmi_watchdog(); 1240 } 1241 } 1242 #else 1243 static inline void boot_delay_msec(int level) 1244 { 1245 } 1246 #endif 1247 1248 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1249 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1250 1251 static size_t print_syslog(unsigned int level, char *buf) 1252 { 1253 return sprintf(buf, "<%u>", level); 1254 } 1255 1256 static size_t print_time(u64 ts, char *buf) 1257 { 1258 unsigned long rem_nsec = do_div(ts, 1000000000); 1259 1260 return sprintf(buf, "[%5lu.%06lu]", 1261 (unsigned long)ts, rem_nsec / 1000); 1262 } 1263 1264 #ifdef CONFIG_PRINTK_CALLER 1265 static size_t print_caller(u32 id, char *buf) 1266 { 1267 char caller[12]; 1268 1269 snprintf(caller, sizeof(caller), "%c%u", 1270 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1271 return sprintf(buf, "[%6s]", caller); 1272 } 1273 #else 1274 #define print_caller(id, buf) 0 1275 #endif 1276 1277 static size_t print_prefix(const struct printk_log *msg, bool syslog, 1278 bool time, char *buf) 1279 { 1280 size_t len = 0; 1281 1282 if (syslog) 1283 len = print_syslog((msg->facility << 3) | msg->level, buf); 1284 1285 if (time) 1286 len += print_time(msg->ts_nsec, buf + len); 1287 1288 len += print_caller(msg->caller_id, buf + len); 1289 1290 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1291 buf[len++] = ' '; 1292 buf[len] = '\0'; 1293 } 1294 1295 return len; 1296 } 1297 1298 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 1299 bool time, char *buf, size_t size) 1300 { 1301 const char *text = log_text(msg); 1302 size_t text_size = msg->text_len; 1303 size_t len = 0; 1304 char prefix[PREFIX_MAX]; 1305 const size_t prefix_len = print_prefix(msg, syslog, time, prefix); 1306 1307 do { 1308 const char *next = memchr(text, '\n', text_size); 1309 size_t text_len; 1310 1311 if (next) { 1312 text_len = next - text; 1313 next++; 1314 text_size -= next - text; 1315 } else { 1316 text_len = text_size; 1317 } 1318 1319 if (buf) { 1320 if (prefix_len + text_len + 1 >= size - len) 1321 break; 1322 1323 memcpy(buf + len, prefix, prefix_len); 1324 len += prefix_len; 1325 memcpy(buf + len, text, text_len); 1326 len += text_len; 1327 buf[len++] = '\n'; 1328 } else { 1329 /* SYSLOG_ACTION_* buffer size only calculation */ 1330 len += prefix_len + text_len + 1; 1331 } 1332 1333 text = next; 1334 } while (text); 1335 1336 return len; 1337 } 1338 1339 static int syslog_print(char __user *buf, int size) 1340 { 1341 char *text; 1342 struct printk_log *msg; 1343 int len = 0; 1344 1345 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1346 if (!text) 1347 return -ENOMEM; 1348 1349 while (size > 0) { 1350 size_t n; 1351 size_t skip; 1352 1353 logbuf_lock_irq(); 1354 if (syslog_seq < log_first_seq) { 1355 /* messages are gone, move to first one */ 1356 syslog_seq = log_first_seq; 1357 syslog_idx = log_first_idx; 1358 syslog_partial = 0; 1359 } 1360 if (syslog_seq == log_next_seq) { 1361 logbuf_unlock_irq(); 1362 break; 1363 } 1364 1365 /* 1366 * To keep reading/counting partial line consistent, 1367 * use printk_time value as of the beginning of a line. 1368 */ 1369 if (!syslog_partial) 1370 syslog_time = printk_time; 1371 1372 skip = syslog_partial; 1373 msg = log_from_idx(syslog_idx); 1374 n = msg_print_text(msg, true, syslog_time, text, 1375 LOG_LINE_MAX + PREFIX_MAX); 1376 if (n - syslog_partial <= size) { 1377 /* message fits into buffer, move forward */ 1378 syslog_idx = log_next(syslog_idx); 1379 syslog_seq++; 1380 n -= syslog_partial; 1381 syslog_partial = 0; 1382 } else if (!len){ 1383 /* partial read(), remember position */ 1384 n = size; 1385 syslog_partial += n; 1386 } else 1387 n = 0; 1388 logbuf_unlock_irq(); 1389 1390 if (!n) 1391 break; 1392 1393 if (copy_to_user(buf, text + skip, n)) { 1394 if (!len) 1395 len = -EFAULT; 1396 break; 1397 } 1398 1399 len += n; 1400 size -= n; 1401 buf += n; 1402 } 1403 1404 kfree(text); 1405 return len; 1406 } 1407 1408 static int syslog_print_all(char __user *buf, int size, bool clear) 1409 { 1410 char *text; 1411 int len = 0; 1412 u64 next_seq; 1413 u64 seq; 1414 u32 idx; 1415 bool time; 1416 1417 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL); 1418 if (!text) 1419 return -ENOMEM; 1420 1421 time = printk_time; 1422 logbuf_lock_irq(); 1423 /* 1424 * Find first record that fits, including all following records, 1425 * into the user-provided buffer for this dump. 1426 */ 1427 seq = clear_seq; 1428 idx = clear_idx; 1429 while (seq < log_next_seq) { 1430 struct printk_log *msg = log_from_idx(idx); 1431 1432 len += msg_print_text(msg, true, time, NULL, 0); 1433 idx = log_next(idx); 1434 seq++; 1435 } 1436 1437 /* move first record forward until length fits into the buffer */ 1438 seq = clear_seq; 1439 idx = clear_idx; 1440 while (len > size && seq < log_next_seq) { 1441 struct printk_log *msg = log_from_idx(idx); 1442 1443 len -= msg_print_text(msg, true, time, NULL, 0); 1444 idx = log_next(idx); 1445 seq++; 1446 } 1447 1448 /* last message fitting into this dump */ 1449 next_seq = log_next_seq; 1450 1451 len = 0; 1452 while (len >= 0 && seq < next_seq) { 1453 struct printk_log *msg = log_from_idx(idx); 1454 int textlen = msg_print_text(msg, true, time, text, 1455 LOG_LINE_MAX + PREFIX_MAX); 1456 1457 idx = log_next(idx); 1458 seq++; 1459 1460 logbuf_unlock_irq(); 1461 if (copy_to_user(buf + len, text, textlen)) 1462 len = -EFAULT; 1463 else 1464 len += textlen; 1465 logbuf_lock_irq(); 1466 1467 if (seq < log_first_seq) { 1468 /* messages are gone, move to next one */ 1469 seq = log_first_seq; 1470 idx = log_first_idx; 1471 } 1472 } 1473 1474 if (clear) { 1475 clear_seq = log_next_seq; 1476 clear_idx = log_next_idx; 1477 } 1478 logbuf_unlock_irq(); 1479 1480 kfree(text); 1481 return len; 1482 } 1483 1484 static void syslog_clear(void) 1485 { 1486 logbuf_lock_irq(); 1487 clear_seq = log_next_seq; 1488 clear_idx = log_next_idx; 1489 logbuf_unlock_irq(); 1490 } 1491 1492 int do_syslog(int type, char __user *buf, int len, int source) 1493 { 1494 bool clear = false; 1495 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1496 int error; 1497 1498 error = check_syslog_permissions(type, source); 1499 if (error) 1500 return error; 1501 1502 switch (type) { 1503 case SYSLOG_ACTION_CLOSE: /* Close log */ 1504 break; 1505 case SYSLOG_ACTION_OPEN: /* Open log */ 1506 break; 1507 case SYSLOG_ACTION_READ: /* Read from log */ 1508 if (!buf || len < 0) 1509 return -EINVAL; 1510 if (!len) 1511 return 0; 1512 if (!access_ok(buf, len)) 1513 return -EFAULT; 1514 error = wait_event_interruptible(log_wait, 1515 syslog_seq != log_next_seq); 1516 if (error) 1517 return error; 1518 error = syslog_print(buf, len); 1519 break; 1520 /* Read/clear last kernel messages */ 1521 case SYSLOG_ACTION_READ_CLEAR: 1522 clear = true; 1523 /* FALL THRU */ 1524 /* Read last kernel messages */ 1525 case SYSLOG_ACTION_READ_ALL: 1526 if (!buf || len < 0) 1527 return -EINVAL; 1528 if (!len) 1529 return 0; 1530 if (!access_ok(buf, len)) 1531 return -EFAULT; 1532 error = syslog_print_all(buf, len, clear); 1533 break; 1534 /* Clear ring buffer */ 1535 case SYSLOG_ACTION_CLEAR: 1536 syslog_clear(); 1537 break; 1538 /* Disable logging to console */ 1539 case SYSLOG_ACTION_CONSOLE_OFF: 1540 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1541 saved_console_loglevel = console_loglevel; 1542 console_loglevel = minimum_console_loglevel; 1543 break; 1544 /* Enable logging to console */ 1545 case SYSLOG_ACTION_CONSOLE_ON: 1546 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1547 console_loglevel = saved_console_loglevel; 1548 saved_console_loglevel = LOGLEVEL_DEFAULT; 1549 } 1550 break; 1551 /* Set level of messages printed to console */ 1552 case SYSLOG_ACTION_CONSOLE_LEVEL: 1553 if (len < 1 || len > 8) 1554 return -EINVAL; 1555 if (len < minimum_console_loglevel) 1556 len = minimum_console_loglevel; 1557 console_loglevel = len; 1558 /* Implicitly re-enable logging to console */ 1559 saved_console_loglevel = LOGLEVEL_DEFAULT; 1560 break; 1561 /* Number of chars in the log buffer */ 1562 case SYSLOG_ACTION_SIZE_UNREAD: 1563 logbuf_lock_irq(); 1564 if (syslog_seq < log_first_seq) { 1565 /* messages are gone, move to first one */ 1566 syslog_seq = log_first_seq; 1567 syslog_idx = log_first_idx; 1568 syslog_partial = 0; 1569 } 1570 if (source == SYSLOG_FROM_PROC) { 1571 /* 1572 * Short-cut for poll(/"proc/kmsg") which simply checks 1573 * for pending data, not the size; return the count of 1574 * records, not the length. 1575 */ 1576 error = log_next_seq - syslog_seq; 1577 } else { 1578 u64 seq = syslog_seq; 1579 u32 idx = syslog_idx; 1580 bool time = syslog_partial ? syslog_time : printk_time; 1581 1582 while (seq < log_next_seq) { 1583 struct printk_log *msg = log_from_idx(idx); 1584 1585 error += msg_print_text(msg, true, time, NULL, 1586 0); 1587 time = printk_time; 1588 idx = log_next(idx); 1589 seq++; 1590 } 1591 error -= syslog_partial; 1592 } 1593 logbuf_unlock_irq(); 1594 break; 1595 /* Size of the log buffer */ 1596 case SYSLOG_ACTION_SIZE_BUFFER: 1597 error = log_buf_len; 1598 break; 1599 default: 1600 error = -EINVAL; 1601 break; 1602 } 1603 1604 return error; 1605 } 1606 1607 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1608 { 1609 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1610 } 1611 1612 /* 1613 * Special console_lock variants that help to reduce the risk of soft-lockups. 1614 * They allow to pass console_lock to another printk() call using a busy wait. 1615 */ 1616 1617 #ifdef CONFIG_LOCKDEP 1618 static struct lockdep_map console_owner_dep_map = { 1619 .name = "console_owner" 1620 }; 1621 #endif 1622 1623 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1624 static struct task_struct *console_owner; 1625 static bool console_waiter; 1626 1627 /** 1628 * console_lock_spinning_enable - mark beginning of code where another 1629 * thread might safely busy wait 1630 * 1631 * This basically converts console_lock into a spinlock. This marks 1632 * the section where the console_lock owner can not sleep, because 1633 * there may be a waiter spinning (like a spinlock). Also it must be 1634 * ready to hand over the lock at the end of the section. 1635 */ 1636 static void console_lock_spinning_enable(void) 1637 { 1638 raw_spin_lock(&console_owner_lock); 1639 console_owner = current; 1640 raw_spin_unlock(&console_owner_lock); 1641 1642 /* The waiter may spin on us after setting console_owner */ 1643 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1644 } 1645 1646 /** 1647 * console_lock_spinning_disable_and_check - mark end of code where another 1648 * thread was able to busy wait and check if there is a waiter 1649 * 1650 * This is called at the end of the section where spinning is allowed. 1651 * It has two functions. First, it is a signal that it is no longer 1652 * safe to start busy waiting for the lock. Second, it checks if 1653 * there is a busy waiter and passes the lock rights to her. 1654 * 1655 * Important: Callers lose the lock if there was a busy waiter. 1656 * They must not touch items synchronized by console_lock 1657 * in this case. 1658 * 1659 * Return: 1 if the lock rights were passed, 0 otherwise. 1660 */ 1661 static int console_lock_spinning_disable_and_check(void) 1662 { 1663 int waiter; 1664 1665 raw_spin_lock(&console_owner_lock); 1666 waiter = READ_ONCE(console_waiter); 1667 console_owner = NULL; 1668 raw_spin_unlock(&console_owner_lock); 1669 1670 if (!waiter) { 1671 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1672 return 0; 1673 } 1674 1675 /* The waiter is now free to continue */ 1676 WRITE_ONCE(console_waiter, false); 1677 1678 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1679 1680 /* 1681 * Hand off console_lock to waiter. The waiter will perform 1682 * the up(). After this, the waiter is the console_lock owner. 1683 */ 1684 mutex_release(&console_lock_dep_map, 1, _THIS_IP_); 1685 return 1; 1686 } 1687 1688 /** 1689 * console_trylock_spinning - try to get console_lock by busy waiting 1690 * 1691 * This allows to busy wait for the console_lock when the current 1692 * owner is running in specially marked sections. It means that 1693 * the current owner is running and cannot reschedule until it 1694 * is ready to lose the lock. 1695 * 1696 * Return: 1 if we got the lock, 0 othrewise 1697 */ 1698 static int console_trylock_spinning(void) 1699 { 1700 struct task_struct *owner = NULL; 1701 bool waiter; 1702 bool spin = false; 1703 unsigned long flags; 1704 1705 if (console_trylock()) 1706 return 1; 1707 1708 printk_safe_enter_irqsave(flags); 1709 1710 raw_spin_lock(&console_owner_lock); 1711 owner = READ_ONCE(console_owner); 1712 waiter = READ_ONCE(console_waiter); 1713 if (!waiter && owner && owner != current) { 1714 WRITE_ONCE(console_waiter, true); 1715 spin = true; 1716 } 1717 raw_spin_unlock(&console_owner_lock); 1718 1719 /* 1720 * If there is an active printk() writing to the 1721 * consoles, instead of having it write our data too, 1722 * see if we can offload that load from the active 1723 * printer, and do some printing ourselves. 1724 * Go into a spin only if there isn't already a waiter 1725 * spinning, and there is an active printer, and 1726 * that active printer isn't us (recursive printk?). 1727 */ 1728 if (!spin) { 1729 printk_safe_exit_irqrestore(flags); 1730 return 0; 1731 } 1732 1733 /* We spin waiting for the owner to release us */ 1734 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1735 /* Owner will clear console_waiter on hand off */ 1736 while (READ_ONCE(console_waiter)) 1737 cpu_relax(); 1738 spin_release(&console_owner_dep_map, 1, _THIS_IP_); 1739 1740 printk_safe_exit_irqrestore(flags); 1741 /* 1742 * The owner passed the console lock to us. 1743 * Since we did not spin on console lock, annotate 1744 * this as a trylock. Otherwise lockdep will 1745 * complain. 1746 */ 1747 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1748 1749 return 1; 1750 } 1751 1752 /* 1753 * Call the console drivers, asking them to write out 1754 * log_buf[start] to log_buf[end - 1]. 1755 * The console_lock must be held. 1756 */ 1757 static void call_console_drivers(const char *ext_text, size_t ext_len, 1758 const char *text, size_t len) 1759 { 1760 struct console *con; 1761 1762 trace_console_rcuidle(text, len); 1763 1764 if (!console_drivers) 1765 return; 1766 1767 for_each_console(con) { 1768 if (exclusive_console && con != exclusive_console) 1769 continue; 1770 if (!(con->flags & CON_ENABLED)) 1771 continue; 1772 if (!con->write) 1773 continue; 1774 if (!cpu_online(smp_processor_id()) && 1775 !(con->flags & CON_ANYTIME)) 1776 continue; 1777 if (con->flags & CON_EXTENDED) 1778 con->write(con, ext_text, ext_len); 1779 else 1780 con->write(con, text, len); 1781 } 1782 } 1783 1784 int printk_delay_msec __read_mostly; 1785 1786 static inline void printk_delay(void) 1787 { 1788 if (unlikely(printk_delay_msec)) { 1789 int m = printk_delay_msec; 1790 1791 while (m--) { 1792 mdelay(1); 1793 touch_nmi_watchdog(); 1794 } 1795 } 1796 } 1797 1798 static inline u32 printk_caller_id(void) 1799 { 1800 return in_task() ? task_pid_nr(current) : 1801 0x80000000 + raw_smp_processor_id(); 1802 } 1803 1804 /* 1805 * Continuation lines are buffered, and not committed to the record buffer 1806 * until the line is complete, or a race forces it. The line fragments 1807 * though, are printed immediately to the consoles to ensure everything has 1808 * reached the console in case of a kernel crash. 1809 */ 1810 static struct cont { 1811 char buf[LOG_LINE_MAX]; 1812 size_t len; /* length == 0 means unused buffer */ 1813 u32 caller_id; /* printk_caller_id() of first print */ 1814 u64 ts_nsec; /* time of first print */ 1815 u8 level; /* log level of first message */ 1816 u8 facility; /* log facility of first message */ 1817 enum log_flags flags; /* prefix, newline flags */ 1818 } cont; 1819 1820 static void cont_flush(void) 1821 { 1822 if (cont.len == 0) 1823 return; 1824 1825 log_store(cont.caller_id, cont.facility, cont.level, cont.flags, 1826 cont.ts_nsec, NULL, 0, cont.buf, cont.len); 1827 cont.len = 0; 1828 } 1829 1830 static bool cont_add(u32 caller_id, int facility, int level, 1831 enum log_flags flags, const char *text, size_t len) 1832 { 1833 /* If the line gets too long, split it up in separate records. */ 1834 if (cont.len + len > sizeof(cont.buf)) { 1835 cont_flush(); 1836 return false; 1837 } 1838 1839 if (!cont.len) { 1840 cont.facility = facility; 1841 cont.level = level; 1842 cont.caller_id = caller_id; 1843 cont.ts_nsec = local_clock(); 1844 cont.flags = flags; 1845 } 1846 1847 memcpy(cont.buf + cont.len, text, len); 1848 cont.len += len; 1849 1850 // The original flags come from the first line, 1851 // but later continuations can add a newline. 1852 if (flags & LOG_NEWLINE) { 1853 cont.flags |= LOG_NEWLINE; 1854 cont_flush(); 1855 } 1856 1857 return true; 1858 } 1859 1860 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len) 1861 { 1862 const u32 caller_id = printk_caller_id(); 1863 1864 /* 1865 * If an earlier line was buffered, and we're a continuation 1866 * write from the same context, try to add it to the buffer. 1867 */ 1868 if (cont.len) { 1869 if (cont.caller_id == caller_id && (lflags & LOG_CONT)) { 1870 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1871 return text_len; 1872 } 1873 /* Otherwise, make sure it's flushed */ 1874 cont_flush(); 1875 } 1876 1877 /* Skip empty continuation lines that couldn't be added - they just flush */ 1878 if (!text_len && (lflags & LOG_CONT)) 1879 return 0; 1880 1881 /* If it doesn't end in a newline, try to buffer the current line */ 1882 if (!(lflags & LOG_NEWLINE)) { 1883 if (cont_add(caller_id, facility, level, lflags, text, text_len)) 1884 return text_len; 1885 } 1886 1887 /* Store it in the record log */ 1888 return log_store(caller_id, facility, level, lflags, 0, 1889 dict, dictlen, text, text_len); 1890 } 1891 1892 /* Must be called under logbuf_lock. */ 1893 int vprintk_store(int facility, int level, 1894 const char *dict, size_t dictlen, 1895 const char *fmt, va_list args) 1896 { 1897 static char textbuf[LOG_LINE_MAX]; 1898 char *text = textbuf; 1899 size_t text_len; 1900 enum log_flags lflags = 0; 1901 1902 /* 1903 * The printf needs to come first; we need the syslog 1904 * prefix which might be passed-in as a parameter. 1905 */ 1906 text_len = vscnprintf(text, sizeof(textbuf), fmt, args); 1907 1908 /* mark and strip a trailing newline */ 1909 if (text_len && text[text_len-1] == '\n') { 1910 text_len--; 1911 lflags |= LOG_NEWLINE; 1912 } 1913 1914 /* strip kernel syslog prefix and extract log level or control flags */ 1915 if (facility == 0) { 1916 int kern_level; 1917 1918 while ((kern_level = printk_get_level(text)) != 0) { 1919 switch (kern_level) { 1920 case '0' ... '7': 1921 if (level == LOGLEVEL_DEFAULT) 1922 level = kern_level - '0'; 1923 break; 1924 case 'c': /* KERN_CONT */ 1925 lflags |= LOG_CONT; 1926 } 1927 1928 text_len -= 2; 1929 text += 2; 1930 } 1931 } 1932 1933 if (level == LOGLEVEL_DEFAULT) 1934 level = default_message_loglevel; 1935 1936 if (dict) 1937 lflags |= LOG_NEWLINE; 1938 1939 return log_output(facility, level, lflags, 1940 dict, dictlen, text, text_len); 1941 } 1942 1943 asmlinkage int vprintk_emit(int facility, int level, 1944 const char *dict, size_t dictlen, 1945 const char *fmt, va_list args) 1946 { 1947 int printed_len; 1948 bool in_sched = false, pending_output; 1949 unsigned long flags; 1950 u64 curr_log_seq; 1951 1952 /* Suppress unimportant messages after panic happens */ 1953 if (unlikely(suppress_printk)) 1954 return 0; 1955 1956 if (level == LOGLEVEL_SCHED) { 1957 level = LOGLEVEL_DEFAULT; 1958 in_sched = true; 1959 } 1960 1961 boot_delay_msec(level); 1962 printk_delay(); 1963 1964 /* This stops the holder of console_sem just where we want him */ 1965 logbuf_lock_irqsave(flags); 1966 curr_log_seq = log_next_seq; 1967 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args); 1968 pending_output = (curr_log_seq != log_next_seq); 1969 logbuf_unlock_irqrestore(flags); 1970 1971 /* If called from the scheduler, we can not call up(). */ 1972 if (!in_sched && pending_output) { 1973 /* 1974 * Disable preemption to avoid being preempted while holding 1975 * console_sem which would prevent anyone from printing to 1976 * console 1977 */ 1978 preempt_disable(); 1979 /* 1980 * Try to acquire and then immediately release the console 1981 * semaphore. The release will print out buffers and wake up 1982 * /dev/kmsg and syslog() users. 1983 */ 1984 if (console_trylock_spinning()) 1985 console_unlock(); 1986 preempt_enable(); 1987 } 1988 1989 if (pending_output) 1990 wake_up_klogd(); 1991 return printed_len; 1992 } 1993 EXPORT_SYMBOL(vprintk_emit); 1994 1995 asmlinkage int vprintk(const char *fmt, va_list args) 1996 { 1997 return vprintk_func(fmt, args); 1998 } 1999 EXPORT_SYMBOL(vprintk); 2000 2001 int vprintk_default(const char *fmt, va_list args) 2002 { 2003 int r; 2004 2005 #ifdef CONFIG_KGDB_KDB 2006 /* Allow to pass printk() to kdb but avoid a recursion. */ 2007 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) { 2008 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args); 2009 return r; 2010 } 2011 #endif 2012 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); 2013 2014 return r; 2015 } 2016 EXPORT_SYMBOL_GPL(vprintk_default); 2017 2018 /** 2019 * printk - print a kernel message 2020 * @fmt: format string 2021 * 2022 * This is printk(). It can be called from any context. We want it to work. 2023 * 2024 * We try to grab the console_lock. If we succeed, it's easy - we log the 2025 * output and call the console drivers. If we fail to get the semaphore, we 2026 * place the output into the log buffer and return. The current holder of 2027 * the console_sem will notice the new output in console_unlock(); and will 2028 * send it to the consoles before releasing the lock. 2029 * 2030 * One effect of this deferred printing is that code which calls printk() and 2031 * then changes console_loglevel may break. This is because console_loglevel 2032 * is inspected when the actual printing occurs. 2033 * 2034 * See also: 2035 * printf(3) 2036 * 2037 * See the vsnprintf() documentation for format string extensions over C99. 2038 */ 2039 asmlinkage __visible int printk(const char *fmt, ...) 2040 { 2041 va_list args; 2042 int r; 2043 2044 va_start(args, fmt); 2045 r = vprintk_func(fmt, args); 2046 va_end(args); 2047 2048 return r; 2049 } 2050 EXPORT_SYMBOL(printk); 2051 2052 #else /* CONFIG_PRINTK */ 2053 2054 #define LOG_LINE_MAX 0 2055 #define PREFIX_MAX 0 2056 #define printk_time false 2057 2058 static u64 syslog_seq; 2059 static u32 syslog_idx; 2060 static u64 console_seq; 2061 static u32 console_idx; 2062 static u64 exclusive_console_stop_seq; 2063 static u64 log_first_seq; 2064 static u32 log_first_idx; 2065 static u64 log_next_seq; 2066 static char *log_text(const struct printk_log *msg) { return NULL; } 2067 static char *log_dict(const struct printk_log *msg) { return NULL; } 2068 static struct printk_log *log_from_idx(u32 idx) { return NULL; } 2069 static u32 log_next(u32 idx) { return 0; } 2070 static ssize_t msg_print_ext_header(char *buf, size_t size, 2071 struct printk_log *msg, 2072 u64 seq) { return 0; } 2073 static ssize_t msg_print_ext_body(char *buf, size_t size, 2074 char *dict, size_t dict_len, 2075 char *text, size_t text_len) { return 0; } 2076 static void console_lock_spinning_enable(void) { } 2077 static int console_lock_spinning_disable_and_check(void) { return 0; } 2078 static void call_console_drivers(const char *ext_text, size_t ext_len, 2079 const char *text, size_t len) {} 2080 static size_t msg_print_text(const struct printk_log *msg, bool syslog, 2081 bool time, char *buf, size_t size) { return 0; } 2082 static bool suppress_message_printing(int level) { return false; } 2083 2084 #endif /* CONFIG_PRINTK */ 2085 2086 #ifdef CONFIG_EARLY_PRINTK 2087 struct console *early_console; 2088 2089 asmlinkage __visible void early_printk(const char *fmt, ...) 2090 { 2091 va_list ap; 2092 char buf[512]; 2093 int n; 2094 2095 if (!early_console) 2096 return; 2097 2098 va_start(ap, fmt); 2099 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2100 va_end(ap); 2101 2102 early_console->write(early_console, buf, n); 2103 } 2104 #endif 2105 2106 static int __add_preferred_console(char *name, int idx, char *options, 2107 char *brl_options) 2108 { 2109 struct console_cmdline *c; 2110 int i; 2111 2112 /* 2113 * See if this tty is not yet registered, and 2114 * if we have a slot free. 2115 */ 2116 for (i = 0, c = console_cmdline; 2117 i < MAX_CMDLINECONSOLES && c->name[0]; 2118 i++, c++) { 2119 if (strcmp(c->name, name) == 0 && c->index == idx) { 2120 if (!brl_options) 2121 preferred_console = i; 2122 return 0; 2123 } 2124 } 2125 if (i == MAX_CMDLINECONSOLES) 2126 return -E2BIG; 2127 if (!brl_options) 2128 preferred_console = i; 2129 strlcpy(c->name, name, sizeof(c->name)); 2130 c->options = options; 2131 braille_set_options(c, brl_options); 2132 2133 c->index = idx; 2134 return 0; 2135 } 2136 2137 static int __init console_msg_format_setup(char *str) 2138 { 2139 if (!strcmp(str, "syslog")) 2140 console_msg_format = MSG_FORMAT_SYSLOG; 2141 if (!strcmp(str, "default")) 2142 console_msg_format = MSG_FORMAT_DEFAULT; 2143 return 1; 2144 } 2145 __setup("console_msg_format=", console_msg_format_setup); 2146 2147 /* 2148 * Set up a console. Called via do_early_param() in init/main.c 2149 * for each "console=" parameter in the boot command line. 2150 */ 2151 static int __init console_setup(char *str) 2152 { 2153 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2154 char *s, *options, *brl_options = NULL; 2155 int idx; 2156 2157 if (_braille_console_setup(&str, &brl_options)) 2158 return 1; 2159 2160 /* 2161 * Decode str into name, index, options. 2162 */ 2163 if (str[0] >= '0' && str[0] <= '9') { 2164 strcpy(buf, "ttyS"); 2165 strncpy(buf + 4, str, sizeof(buf) - 5); 2166 } else { 2167 strncpy(buf, str, sizeof(buf) - 1); 2168 } 2169 buf[sizeof(buf) - 1] = 0; 2170 options = strchr(str, ','); 2171 if (options) 2172 *(options++) = 0; 2173 #ifdef __sparc__ 2174 if (!strcmp(str, "ttya")) 2175 strcpy(buf, "ttyS0"); 2176 if (!strcmp(str, "ttyb")) 2177 strcpy(buf, "ttyS1"); 2178 #endif 2179 for (s = buf; *s; s++) 2180 if (isdigit(*s) || *s == ',') 2181 break; 2182 idx = simple_strtoul(s, NULL, 10); 2183 *s = 0; 2184 2185 __add_preferred_console(buf, idx, options, brl_options); 2186 console_set_on_cmdline = 1; 2187 return 1; 2188 } 2189 __setup("console=", console_setup); 2190 2191 /** 2192 * add_preferred_console - add a device to the list of preferred consoles. 2193 * @name: device name 2194 * @idx: device index 2195 * @options: options for this console 2196 * 2197 * The last preferred console added will be used for kernel messages 2198 * and stdin/out/err for init. Normally this is used by console_setup 2199 * above to handle user-supplied console arguments; however it can also 2200 * be used by arch-specific code either to override the user or more 2201 * commonly to provide a default console (ie from PROM variables) when 2202 * the user has not supplied one. 2203 */ 2204 int add_preferred_console(char *name, int idx, char *options) 2205 { 2206 return __add_preferred_console(name, idx, options, NULL); 2207 } 2208 2209 bool console_suspend_enabled = true; 2210 EXPORT_SYMBOL(console_suspend_enabled); 2211 2212 static int __init console_suspend_disable(char *str) 2213 { 2214 console_suspend_enabled = false; 2215 return 1; 2216 } 2217 __setup("no_console_suspend", console_suspend_disable); 2218 module_param_named(console_suspend, console_suspend_enabled, 2219 bool, S_IRUGO | S_IWUSR); 2220 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2221 " and hibernate operations"); 2222 2223 /** 2224 * suspend_console - suspend the console subsystem 2225 * 2226 * This disables printk() while we go into suspend states 2227 */ 2228 void suspend_console(void) 2229 { 2230 if (!console_suspend_enabled) 2231 return; 2232 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2233 console_lock(); 2234 console_suspended = 1; 2235 up_console_sem(); 2236 } 2237 2238 void resume_console(void) 2239 { 2240 if (!console_suspend_enabled) 2241 return; 2242 down_console_sem(); 2243 console_suspended = 0; 2244 console_unlock(); 2245 } 2246 2247 /** 2248 * console_cpu_notify - print deferred console messages after CPU hotplug 2249 * @cpu: unused 2250 * 2251 * If printk() is called from a CPU that is not online yet, the messages 2252 * will be printed on the console only if there are CON_ANYTIME consoles. 2253 * This function is called when a new CPU comes online (or fails to come 2254 * up) or goes offline. 2255 */ 2256 static int console_cpu_notify(unsigned int cpu) 2257 { 2258 if (!cpuhp_tasks_frozen) { 2259 /* If trylock fails, someone else is doing the printing */ 2260 if (console_trylock()) 2261 console_unlock(); 2262 } 2263 return 0; 2264 } 2265 2266 /** 2267 * console_lock - lock the console system for exclusive use. 2268 * 2269 * Acquires a lock which guarantees that the caller has 2270 * exclusive access to the console system and the console_drivers list. 2271 * 2272 * Can sleep, returns nothing. 2273 */ 2274 void console_lock(void) 2275 { 2276 might_sleep(); 2277 2278 down_console_sem(); 2279 if (console_suspended) 2280 return; 2281 console_locked = 1; 2282 console_may_schedule = 1; 2283 } 2284 EXPORT_SYMBOL(console_lock); 2285 2286 /** 2287 * console_trylock - try to lock the console system for exclusive use. 2288 * 2289 * Try to acquire a lock which guarantees that the caller has exclusive 2290 * access to the console system and the console_drivers list. 2291 * 2292 * returns 1 on success, and 0 on failure to acquire the lock. 2293 */ 2294 int console_trylock(void) 2295 { 2296 if (down_trylock_console_sem()) 2297 return 0; 2298 if (console_suspended) { 2299 up_console_sem(); 2300 return 0; 2301 } 2302 console_locked = 1; 2303 console_may_schedule = 0; 2304 return 1; 2305 } 2306 EXPORT_SYMBOL(console_trylock); 2307 2308 int is_console_locked(void) 2309 { 2310 return console_locked; 2311 } 2312 EXPORT_SYMBOL(is_console_locked); 2313 2314 /* 2315 * Check if we have any console that is capable of printing while cpu is 2316 * booting or shutting down. Requires console_sem. 2317 */ 2318 static int have_callable_console(void) 2319 { 2320 struct console *con; 2321 2322 for_each_console(con) 2323 if ((con->flags & CON_ENABLED) && 2324 (con->flags & CON_ANYTIME)) 2325 return 1; 2326 2327 return 0; 2328 } 2329 2330 /* 2331 * Can we actually use the console at this time on this cpu? 2332 * 2333 * Console drivers may assume that per-cpu resources have been allocated. So 2334 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't 2335 * call them until this CPU is officially up. 2336 */ 2337 static inline int can_use_console(void) 2338 { 2339 return cpu_online(raw_smp_processor_id()) || have_callable_console(); 2340 } 2341 2342 /** 2343 * console_unlock - unlock the console system 2344 * 2345 * Releases the console_lock which the caller holds on the console system 2346 * and the console driver list. 2347 * 2348 * While the console_lock was held, console output may have been buffered 2349 * by printk(). If this is the case, console_unlock(); emits 2350 * the output prior to releasing the lock. 2351 * 2352 * If there is output waiting, we wake /dev/kmsg and syslog() users. 2353 * 2354 * console_unlock(); may be called from any context. 2355 */ 2356 void console_unlock(void) 2357 { 2358 static char ext_text[CONSOLE_EXT_LOG_MAX]; 2359 static char text[LOG_LINE_MAX + PREFIX_MAX]; 2360 unsigned long flags; 2361 bool do_cond_resched, retry; 2362 2363 if (console_suspended) { 2364 up_console_sem(); 2365 return; 2366 } 2367 2368 /* 2369 * Console drivers are called with interrupts disabled, so 2370 * @console_may_schedule should be cleared before; however, we may 2371 * end up dumping a lot of lines, for example, if called from 2372 * console registration path, and should invoke cond_resched() 2373 * between lines if allowable. Not doing so can cause a very long 2374 * scheduling stall on a slow console leading to RCU stall and 2375 * softlockup warnings which exacerbate the issue with more 2376 * messages practically incapacitating the system. 2377 * 2378 * console_trylock() is not able to detect the preemptive 2379 * context reliably. Therefore the value must be stored before 2380 * and cleared after the the "again" goto label. 2381 */ 2382 do_cond_resched = console_may_schedule; 2383 again: 2384 console_may_schedule = 0; 2385 2386 /* 2387 * We released the console_sem lock, so we need to recheck if 2388 * cpu is online and (if not) is there at least one CON_ANYTIME 2389 * console. 2390 */ 2391 if (!can_use_console()) { 2392 console_locked = 0; 2393 up_console_sem(); 2394 return; 2395 } 2396 2397 for (;;) { 2398 struct printk_log *msg; 2399 size_t ext_len = 0; 2400 size_t len; 2401 2402 printk_safe_enter_irqsave(flags); 2403 raw_spin_lock(&logbuf_lock); 2404 if (console_seq < log_first_seq) { 2405 len = sprintf(text, 2406 "** %llu printk messages dropped **\n", 2407 log_first_seq - console_seq); 2408 2409 /* messages are gone, move to first one */ 2410 console_seq = log_first_seq; 2411 console_idx = log_first_idx; 2412 } else { 2413 len = 0; 2414 } 2415 skip: 2416 if (console_seq == log_next_seq) 2417 break; 2418 2419 msg = log_from_idx(console_idx); 2420 if (suppress_message_printing(msg->level)) { 2421 /* 2422 * Skip record we have buffered and already printed 2423 * directly to the console when we received it, and 2424 * record that has level above the console loglevel. 2425 */ 2426 console_idx = log_next(console_idx); 2427 console_seq++; 2428 goto skip; 2429 } 2430 2431 /* Output to all consoles once old messages replayed. */ 2432 if (unlikely(exclusive_console && 2433 console_seq >= exclusive_console_stop_seq)) { 2434 exclusive_console = NULL; 2435 } 2436 2437 len += msg_print_text(msg, 2438 console_msg_format & MSG_FORMAT_SYSLOG, 2439 printk_time, text + len, sizeof(text) - len); 2440 if (nr_ext_console_drivers) { 2441 ext_len = msg_print_ext_header(ext_text, 2442 sizeof(ext_text), 2443 msg, console_seq); 2444 ext_len += msg_print_ext_body(ext_text + ext_len, 2445 sizeof(ext_text) - ext_len, 2446 log_dict(msg), msg->dict_len, 2447 log_text(msg), msg->text_len); 2448 } 2449 console_idx = log_next(console_idx); 2450 console_seq++; 2451 raw_spin_unlock(&logbuf_lock); 2452 2453 /* 2454 * While actively printing out messages, if another printk() 2455 * were to occur on another CPU, it may wait for this one to 2456 * finish. This task can not be preempted if there is a 2457 * waiter waiting to take over. 2458 */ 2459 console_lock_spinning_enable(); 2460 2461 stop_critical_timings(); /* don't trace print latency */ 2462 call_console_drivers(ext_text, ext_len, text, len); 2463 start_critical_timings(); 2464 2465 if (console_lock_spinning_disable_and_check()) { 2466 printk_safe_exit_irqrestore(flags); 2467 return; 2468 } 2469 2470 printk_safe_exit_irqrestore(flags); 2471 2472 if (do_cond_resched) 2473 cond_resched(); 2474 } 2475 2476 console_locked = 0; 2477 2478 raw_spin_unlock(&logbuf_lock); 2479 2480 up_console_sem(); 2481 2482 /* 2483 * Someone could have filled up the buffer again, so re-check if there's 2484 * something to flush. In case we cannot trylock the console_sem again, 2485 * there's a new owner and the console_unlock() from them will do the 2486 * flush, no worries. 2487 */ 2488 raw_spin_lock(&logbuf_lock); 2489 retry = console_seq != log_next_seq; 2490 raw_spin_unlock(&logbuf_lock); 2491 printk_safe_exit_irqrestore(flags); 2492 2493 if (retry && console_trylock()) 2494 goto again; 2495 } 2496 EXPORT_SYMBOL(console_unlock); 2497 2498 /** 2499 * console_conditional_schedule - yield the CPU if required 2500 * 2501 * If the console code is currently allowed to sleep, and 2502 * if this CPU should yield the CPU to another task, do 2503 * so here. 2504 * 2505 * Must be called within console_lock();. 2506 */ 2507 void __sched console_conditional_schedule(void) 2508 { 2509 if (console_may_schedule) 2510 cond_resched(); 2511 } 2512 EXPORT_SYMBOL(console_conditional_schedule); 2513 2514 void console_unblank(void) 2515 { 2516 struct console *c; 2517 2518 /* 2519 * console_unblank can no longer be called in interrupt context unless 2520 * oops_in_progress is set to 1.. 2521 */ 2522 if (oops_in_progress) { 2523 if (down_trylock_console_sem() != 0) 2524 return; 2525 } else 2526 console_lock(); 2527 2528 console_locked = 1; 2529 console_may_schedule = 0; 2530 for_each_console(c) 2531 if ((c->flags & CON_ENABLED) && c->unblank) 2532 c->unblank(); 2533 console_unlock(); 2534 } 2535 2536 /** 2537 * console_flush_on_panic - flush console content on panic 2538 * 2539 * Immediately output all pending messages no matter what. 2540 */ 2541 void console_flush_on_panic(void) 2542 { 2543 /* 2544 * If someone else is holding the console lock, trylock will fail 2545 * and may_schedule may be set. Ignore and proceed to unlock so 2546 * that messages are flushed out. As this can be called from any 2547 * context and we don't want to get preempted while flushing, 2548 * ensure may_schedule is cleared. 2549 */ 2550 console_trylock(); 2551 console_may_schedule = 0; 2552 console_unlock(); 2553 } 2554 2555 /* 2556 * Return the console tty driver structure and its associated index 2557 */ 2558 struct tty_driver *console_device(int *index) 2559 { 2560 struct console *c; 2561 struct tty_driver *driver = NULL; 2562 2563 console_lock(); 2564 for_each_console(c) { 2565 if (!c->device) 2566 continue; 2567 driver = c->device(c, index); 2568 if (driver) 2569 break; 2570 } 2571 console_unlock(); 2572 return driver; 2573 } 2574 2575 /* 2576 * Prevent further output on the passed console device so that (for example) 2577 * serial drivers can disable console output before suspending a port, and can 2578 * re-enable output afterwards. 2579 */ 2580 void console_stop(struct console *console) 2581 { 2582 console_lock(); 2583 console->flags &= ~CON_ENABLED; 2584 console_unlock(); 2585 } 2586 EXPORT_SYMBOL(console_stop); 2587 2588 void console_start(struct console *console) 2589 { 2590 console_lock(); 2591 console->flags |= CON_ENABLED; 2592 console_unlock(); 2593 } 2594 EXPORT_SYMBOL(console_start); 2595 2596 static int __read_mostly keep_bootcon; 2597 2598 static int __init keep_bootcon_setup(char *str) 2599 { 2600 keep_bootcon = 1; 2601 pr_info("debug: skip boot console de-registration.\n"); 2602 2603 return 0; 2604 } 2605 2606 early_param("keep_bootcon", keep_bootcon_setup); 2607 2608 /* 2609 * The console driver calls this routine during kernel initialization 2610 * to register the console printing procedure with printk() and to 2611 * print any messages that were printed by the kernel before the 2612 * console driver was initialized. 2613 * 2614 * This can happen pretty early during the boot process (because of 2615 * early_printk) - sometimes before setup_arch() completes - be careful 2616 * of what kernel features are used - they may not be initialised yet. 2617 * 2618 * There are two types of consoles - bootconsoles (early_printk) and 2619 * "real" consoles (everything which is not a bootconsole) which are 2620 * handled differently. 2621 * - Any number of bootconsoles can be registered at any time. 2622 * - As soon as a "real" console is registered, all bootconsoles 2623 * will be unregistered automatically. 2624 * - Once a "real" console is registered, any attempt to register a 2625 * bootconsoles will be rejected 2626 */ 2627 void register_console(struct console *newcon) 2628 { 2629 int i; 2630 unsigned long flags; 2631 struct console *bcon = NULL; 2632 struct console_cmdline *c; 2633 static bool has_preferred; 2634 2635 if (console_drivers) 2636 for_each_console(bcon) 2637 if (WARN(bcon == newcon, 2638 "console '%s%d' already registered\n", 2639 bcon->name, bcon->index)) 2640 return; 2641 2642 /* 2643 * before we register a new CON_BOOT console, make sure we don't 2644 * already have a valid console 2645 */ 2646 if (console_drivers && newcon->flags & CON_BOOT) { 2647 /* find the last or real console */ 2648 for_each_console(bcon) { 2649 if (!(bcon->flags & CON_BOOT)) { 2650 pr_info("Too late to register bootconsole %s%d\n", 2651 newcon->name, newcon->index); 2652 return; 2653 } 2654 } 2655 } 2656 2657 if (console_drivers && console_drivers->flags & CON_BOOT) 2658 bcon = console_drivers; 2659 2660 if (!has_preferred || bcon || !console_drivers) 2661 has_preferred = preferred_console >= 0; 2662 2663 /* 2664 * See if we want to use this console driver. If we 2665 * didn't select a console we take the first one 2666 * that registers here. 2667 */ 2668 if (!has_preferred) { 2669 if (newcon->index < 0) 2670 newcon->index = 0; 2671 if (newcon->setup == NULL || 2672 newcon->setup(newcon, NULL) == 0) { 2673 newcon->flags |= CON_ENABLED; 2674 if (newcon->device) { 2675 newcon->flags |= CON_CONSDEV; 2676 has_preferred = true; 2677 } 2678 } 2679 } 2680 2681 /* 2682 * See if this console matches one we selected on 2683 * the command line. 2684 */ 2685 for (i = 0, c = console_cmdline; 2686 i < MAX_CMDLINECONSOLES && c->name[0]; 2687 i++, c++) { 2688 if (!newcon->match || 2689 newcon->match(newcon, c->name, c->index, c->options) != 0) { 2690 /* default matching */ 2691 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 2692 if (strcmp(c->name, newcon->name) != 0) 2693 continue; 2694 if (newcon->index >= 0 && 2695 newcon->index != c->index) 2696 continue; 2697 if (newcon->index < 0) 2698 newcon->index = c->index; 2699 2700 if (_braille_register_console(newcon, c)) 2701 return; 2702 2703 if (newcon->setup && 2704 newcon->setup(newcon, c->options) != 0) 2705 break; 2706 } 2707 2708 newcon->flags |= CON_ENABLED; 2709 if (i == preferred_console) { 2710 newcon->flags |= CON_CONSDEV; 2711 has_preferred = true; 2712 } 2713 break; 2714 } 2715 2716 if (!(newcon->flags & CON_ENABLED)) 2717 return; 2718 2719 /* 2720 * If we have a bootconsole, and are switching to a real console, 2721 * don't print everything out again, since when the boot console, and 2722 * the real console are the same physical device, it's annoying to 2723 * see the beginning boot messages twice 2724 */ 2725 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) 2726 newcon->flags &= ~CON_PRINTBUFFER; 2727 2728 /* 2729 * Put this console in the list - keep the 2730 * preferred driver at the head of the list. 2731 */ 2732 console_lock(); 2733 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) { 2734 newcon->next = console_drivers; 2735 console_drivers = newcon; 2736 if (newcon->next) 2737 newcon->next->flags &= ~CON_CONSDEV; 2738 } else { 2739 newcon->next = console_drivers->next; 2740 console_drivers->next = newcon; 2741 } 2742 2743 if (newcon->flags & CON_EXTENDED) 2744 nr_ext_console_drivers++; 2745 2746 if (newcon->flags & CON_PRINTBUFFER) { 2747 /* 2748 * console_unlock(); will print out the buffered messages 2749 * for us. 2750 */ 2751 logbuf_lock_irqsave(flags); 2752 console_seq = syslog_seq; 2753 console_idx = syslog_idx; 2754 /* 2755 * We're about to replay the log buffer. Only do this to the 2756 * just-registered console to avoid excessive message spam to 2757 * the already-registered consoles. 2758 * 2759 * Set exclusive_console with disabled interrupts to reduce 2760 * race window with eventual console_flush_on_panic() that 2761 * ignores console_lock. 2762 */ 2763 exclusive_console = newcon; 2764 exclusive_console_stop_seq = console_seq; 2765 logbuf_unlock_irqrestore(flags); 2766 } 2767 console_unlock(); 2768 console_sysfs_notify(); 2769 2770 /* 2771 * By unregistering the bootconsoles after we enable the real console 2772 * we get the "console xxx enabled" message on all the consoles - 2773 * boot consoles, real consoles, etc - this is to ensure that end 2774 * users know there might be something in the kernel's log buffer that 2775 * went to the bootconsole (that they do not see on the real console) 2776 */ 2777 pr_info("%sconsole [%s%d] enabled\n", 2778 (newcon->flags & CON_BOOT) ? "boot" : "" , 2779 newcon->name, newcon->index); 2780 if (bcon && 2781 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 2782 !keep_bootcon) { 2783 /* We need to iterate through all boot consoles, to make 2784 * sure we print everything out, before we unregister them. 2785 */ 2786 for_each_console(bcon) 2787 if (bcon->flags & CON_BOOT) 2788 unregister_console(bcon); 2789 } 2790 } 2791 EXPORT_SYMBOL(register_console); 2792 2793 int unregister_console(struct console *console) 2794 { 2795 struct console *a, *b; 2796 int res; 2797 2798 pr_info("%sconsole [%s%d] disabled\n", 2799 (console->flags & CON_BOOT) ? "boot" : "" , 2800 console->name, console->index); 2801 2802 res = _braille_unregister_console(console); 2803 if (res) 2804 return res; 2805 2806 res = 1; 2807 console_lock(); 2808 if (console_drivers == console) { 2809 console_drivers=console->next; 2810 res = 0; 2811 } else if (console_drivers) { 2812 for (a=console_drivers->next, b=console_drivers ; 2813 a; b=a, a=b->next) { 2814 if (a == console) { 2815 b->next = a->next; 2816 res = 0; 2817 break; 2818 } 2819 } 2820 } 2821 2822 if (!res && (console->flags & CON_EXTENDED)) 2823 nr_ext_console_drivers--; 2824 2825 /* 2826 * If this isn't the last console and it has CON_CONSDEV set, we 2827 * need to set it on the next preferred console. 2828 */ 2829 if (console_drivers != NULL && console->flags & CON_CONSDEV) 2830 console_drivers->flags |= CON_CONSDEV; 2831 2832 console->flags &= ~CON_ENABLED; 2833 console_unlock(); 2834 console_sysfs_notify(); 2835 return res; 2836 } 2837 EXPORT_SYMBOL(unregister_console); 2838 2839 /* 2840 * Initialize the console device. This is called *early*, so 2841 * we can't necessarily depend on lots of kernel help here. 2842 * Just do some early initializations, and do the complex setup 2843 * later. 2844 */ 2845 void __init console_init(void) 2846 { 2847 int ret; 2848 initcall_t call; 2849 initcall_entry_t *ce; 2850 2851 /* Setup the default TTY line discipline. */ 2852 n_tty_init(); 2853 2854 /* 2855 * set up the console device so that later boot sequences can 2856 * inform about problems etc.. 2857 */ 2858 ce = __con_initcall_start; 2859 trace_initcall_level("console"); 2860 while (ce < __con_initcall_end) { 2861 call = initcall_from_entry(ce); 2862 trace_initcall_start(call); 2863 ret = call(); 2864 trace_initcall_finish(call, ret); 2865 ce++; 2866 } 2867 } 2868 2869 /* 2870 * Some boot consoles access data that is in the init section and which will 2871 * be discarded after the initcalls have been run. To make sure that no code 2872 * will access this data, unregister the boot consoles in a late initcall. 2873 * 2874 * If for some reason, such as deferred probe or the driver being a loadable 2875 * module, the real console hasn't registered yet at this point, there will 2876 * be a brief interval in which no messages are logged to the console, which 2877 * makes it difficult to diagnose problems that occur during this time. 2878 * 2879 * To mitigate this problem somewhat, only unregister consoles whose memory 2880 * intersects with the init section. Note that all other boot consoles will 2881 * get unregistred when the real preferred console is registered. 2882 */ 2883 static int __init printk_late_init(void) 2884 { 2885 struct console *con; 2886 int ret; 2887 2888 for_each_console(con) { 2889 if (!(con->flags & CON_BOOT)) 2890 continue; 2891 2892 /* Check addresses that might be used for enabled consoles. */ 2893 if (init_section_intersects(con, sizeof(*con)) || 2894 init_section_contains(con->write, 0) || 2895 init_section_contains(con->read, 0) || 2896 init_section_contains(con->device, 0) || 2897 init_section_contains(con->unblank, 0) || 2898 init_section_contains(con->data, 0)) { 2899 /* 2900 * Please, consider moving the reported consoles out 2901 * of the init section. 2902 */ 2903 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 2904 con->name, con->index); 2905 unregister_console(con); 2906 } 2907 } 2908 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 2909 console_cpu_notify); 2910 WARN_ON(ret < 0); 2911 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 2912 console_cpu_notify, NULL); 2913 WARN_ON(ret < 0); 2914 return 0; 2915 } 2916 late_initcall(printk_late_init); 2917 2918 #if defined CONFIG_PRINTK 2919 /* 2920 * Delayed printk version, for scheduler-internal messages: 2921 */ 2922 #define PRINTK_PENDING_WAKEUP 0x01 2923 #define PRINTK_PENDING_OUTPUT 0x02 2924 2925 static DEFINE_PER_CPU(int, printk_pending); 2926 2927 static void wake_up_klogd_work_func(struct irq_work *irq_work) 2928 { 2929 int pending = __this_cpu_xchg(printk_pending, 0); 2930 2931 if (pending & PRINTK_PENDING_OUTPUT) { 2932 /* If trylock fails, someone else is doing the printing */ 2933 if (console_trylock()) 2934 console_unlock(); 2935 } 2936 2937 if (pending & PRINTK_PENDING_WAKEUP) 2938 wake_up_interruptible(&log_wait); 2939 } 2940 2941 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = { 2942 .func = wake_up_klogd_work_func, 2943 .flags = IRQ_WORK_LAZY, 2944 }; 2945 2946 void wake_up_klogd(void) 2947 { 2948 preempt_disable(); 2949 if (waitqueue_active(&log_wait)) { 2950 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP); 2951 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2952 } 2953 preempt_enable(); 2954 } 2955 2956 void defer_console_output(void) 2957 { 2958 preempt_disable(); 2959 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT); 2960 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 2961 preempt_enable(); 2962 } 2963 2964 int vprintk_deferred(const char *fmt, va_list args) 2965 { 2966 int r; 2967 2968 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args); 2969 defer_console_output(); 2970 2971 return r; 2972 } 2973 2974 int printk_deferred(const char *fmt, ...) 2975 { 2976 va_list args; 2977 int r; 2978 2979 va_start(args, fmt); 2980 r = vprintk_deferred(fmt, args); 2981 va_end(args); 2982 2983 return r; 2984 } 2985 2986 /* 2987 * printk rate limiting, lifted from the networking subsystem. 2988 * 2989 * This enforces a rate limit: not more than 10 kernel messages 2990 * every 5s to make a denial-of-service attack impossible. 2991 */ 2992 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 2993 2994 int __printk_ratelimit(const char *func) 2995 { 2996 return ___ratelimit(&printk_ratelimit_state, func); 2997 } 2998 EXPORT_SYMBOL(__printk_ratelimit); 2999 3000 /** 3001 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3002 * @caller_jiffies: pointer to caller's state 3003 * @interval_msecs: minimum interval between prints 3004 * 3005 * printk_timed_ratelimit() returns true if more than @interval_msecs 3006 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3007 * returned true. 3008 */ 3009 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3010 unsigned int interval_msecs) 3011 { 3012 unsigned long elapsed = jiffies - *caller_jiffies; 3013 3014 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3015 return false; 3016 3017 *caller_jiffies = jiffies; 3018 return true; 3019 } 3020 EXPORT_SYMBOL(printk_timed_ratelimit); 3021 3022 static DEFINE_SPINLOCK(dump_list_lock); 3023 static LIST_HEAD(dump_list); 3024 3025 /** 3026 * kmsg_dump_register - register a kernel log dumper. 3027 * @dumper: pointer to the kmsg_dumper structure 3028 * 3029 * Adds a kernel log dumper to the system. The dump callback in the 3030 * structure will be called when the kernel oopses or panics and must be 3031 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 3032 */ 3033 int kmsg_dump_register(struct kmsg_dumper *dumper) 3034 { 3035 unsigned long flags; 3036 int err = -EBUSY; 3037 3038 /* The dump callback needs to be set */ 3039 if (!dumper->dump) 3040 return -EINVAL; 3041 3042 spin_lock_irqsave(&dump_list_lock, flags); 3043 /* Don't allow registering multiple times */ 3044 if (!dumper->registered) { 3045 dumper->registered = 1; 3046 list_add_tail_rcu(&dumper->list, &dump_list); 3047 err = 0; 3048 } 3049 spin_unlock_irqrestore(&dump_list_lock, flags); 3050 3051 return err; 3052 } 3053 EXPORT_SYMBOL_GPL(kmsg_dump_register); 3054 3055 /** 3056 * kmsg_dump_unregister - unregister a kmsg dumper. 3057 * @dumper: pointer to the kmsg_dumper structure 3058 * 3059 * Removes a dump device from the system. Returns zero on success and 3060 * %-EINVAL otherwise. 3061 */ 3062 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 3063 { 3064 unsigned long flags; 3065 int err = -EINVAL; 3066 3067 spin_lock_irqsave(&dump_list_lock, flags); 3068 if (dumper->registered) { 3069 dumper->registered = 0; 3070 list_del_rcu(&dumper->list); 3071 err = 0; 3072 } 3073 spin_unlock_irqrestore(&dump_list_lock, flags); 3074 synchronize_rcu(); 3075 3076 return err; 3077 } 3078 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 3079 3080 static bool always_kmsg_dump; 3081 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 3082 3083 /** 3084 * kmsg_dump - dump kernel log to kernel message dumpers. 3085 * @reason: the reason (oops, panic etc) for dumping 3086 * 3087 * Call each of the registered dumper's dump() callback, which can 3088 * retrieve the kmsg records with kmsg_dump_get_line() or 3089 * kmsg_dump_get_buffer(). 3090 */ 3091 void kmsg_dump(enum kmsg_dump_reason reason) 3092 { 3093 struct kmsg_dumper *dumper; 3094 unsigned long flags; 3095 3096 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump) 3097 return; 3098 3099 rcu_read_lock(); 3100 list_for_each_entry_rcu(dumper, &dump_list, list) { 3101 if (dumper->max_reason && reason > dumper->max_reason) 3102 continue; 3103 3104 /* initialize iterator with data about the stored records */ 3105 dumper->active = true; 3106 3107 logbuf_lock_irqsave(flags); 3108 dumper->cur_seq = clear_seq; 3109 dumper->cur_idx = clear_idx; 3110 dumper->next_seq = log_next_seq; 3111 dumper->next_idx = log_next_idx; 3112 logbuf_unlock_irqrestore(flags); 3113 3114 /* invoke dumper which will iterate over records */ 3115 dumper->dump(dumper, reason); 3116 3117 /* reset iterator */ 3118 dumper->active = false; 3119 } 3120 rcu_read_unlock(); 3121 } 3122 3123 /** 3124 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version) 3125 * @dumper: registered kmsg dumper 3126 * @syslog: include the "<4>" prefixes 3127 * @line: buffer to copy the line to 3128 * @size: maximum size of the buffer 3129 * @len: length of line placed into buffer 3130 * 3131 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3132 * record, and copy one record into the provided buffer. 3133 * 3134 * Consecutive calls will return the next available record moving 3135 * towards the end of the buffer with the youngest messages. 3136 * 3137 * A return value of FALSE indicates that there are no more records to 3138 * read. 3139 * 3140 * The function is similar to kmsg_dump_get_line(), but grabs no locks. 3141 */ 3142 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog, 3143 char *line, size_t size, size_t *len) 3144 { 3145 struct printk_log *msg; 3146 size_t l = 0; 3147 bool ret = false; 3148 3149 if (!dumper->active) 3150 goto out; 3151 3152 if (dumper->cur_seq < log_first_seq) { 3153 /* messages are gone, move to first available one */ 3154 dumper->cur_seq = log_first_seq; 3155 dumper->cur_idx = log_first_idx; 3156 } 3157 3158 /* last entry */ 3159 if (dumper->cur_seq >= log_next_seq) 3160 goto out; 3161 3162 msg = log_from_idx(dumper->cur_idx); 3163 l = msg_print_text(msg, syslog, printk_time, line, size); 3164 3165 dumper->cur_idx = log_next(dumper->cur_idx); 3166 dumper->cur_seq++; 3167 ret = true; 3168 out: 3169 if (len) 3170 *len = l; 3171 return ret; 3172 } 3173 3174 /** 3175 * kmsg_dump_get_line - retrieve one kmsg log line 3176 * @dumper: registered kmsg dumper 3177 * @syslog: include the "<4>" prefixes 3178 * @line: buffer to copy the line to 3179 * @size: maximum size of the buffer 3180 * @len: length of line placed into buffer 3181 * 3182 * Start at the beginning of the kmsg buffer, with the oldest kmsg 3183 * record, and copy one record into the provided buffer. 3184 * 3185 * Consecutive calls will return the next available record moving 3186 * towards the end of the buffer with the youngest messages. 3187 * 3188 * A return value of FALSE indicates that there are no more records to 3189 * read. 3190 */ 3191 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, 3192 char *line, size_t size, size_t *len) 3193 { 3194 unsigned long flags; 3195 bool ret; 3196 3197 logbuf_lock_irqsave(flags); 3198 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len); 3199 logbuf_unlock_irqrestore(flags); 3200 3201 return ret; 3202 } 3203 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 3204 3205 /** 3206 * kmsg_dump_get_buffer - copy kmsg log lines 3207 * @dumper: registered kmsg dumper 3208 * @syslog: include the "<4>" prefixes 3209 * @buf: buffer to copy the line to 3210 * @size: maximum size of the buffer 3211 * @len: length of line placed into buffer 3212 * 3213 * Start at the end of the kmsg buffer and fill the provided buffer 3214 * with as many of the the *youngest* kmsg records that fit into it. 3215 * If the buffer is large enough, all available kmsg records will be 3216 * copied with a single call. 3217 * 3218 * Consecutive calls will fill the buffer with the next block of 3219 * available older records, not including the earlier retrieved ones. 3220 * 3221 * A return value of FALSE indicates that there are no more records to 3222 * read. 3223 */ 3224 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, 3225 char *buf, size_t size, size_t *len) 3226 { 3227 unsigned long flags; 3228 u64 seq; 3229 u32 idx; 3230 u64 next_seq; 3231 u32 next_idx; 3232 size_t l = 0; 3233 bool ret = false; 3234 bool time = printk_time; 3235 3236 if (!dumper->active) 3237 goto out; 3238 3239 logbuf_lock_irqsave(flags); 3240 if (dumper->cur_seq < log_first_seq) { 3241 /* messages are gone, move to first available one */ 3242 dumper->cur_seq = log_first_seq; 3243 dumper->cur_idx = log_first_idx; 3244 } 3245 3246 /* last entry */ 3247 if (dumper->cur_seq >= dumper->next_seq) { 3248 logbuf_unlock_irqrestore(flags); 3249 goto out; 3250 } 3251 3252 /* calculate length of entire buffer */ 3253 seq = dumper->cur_seq; 3254 idx = dumper->cur_idx; 3255 while (seq < dumper->next_seq) { 3256 struct printk_log *msg = log_from_idx(idx); 3257 3258 l += msg_print_text(msg, true, time, NULL, 0); 3259 idx = log_next(idx); 3260 seq++; 3261 } 3262 3263 /* move first record forward until length fits into the buffer */ 3264 seq = dumper->cur_seq; 3265 idx = dumper->cur_idx; 3266 while (l > size && seq < dumper->next_seq) { 3267 struct printk_log *msg = log_from_idx(idx); 3268 3269 l -= msg_print_text(msg, true, time, NULL, 0); 3270 idx = log_next(idx); 3271 seq++; 3272 } 3273 3274 /* last message in next interation */ 3275 next_seq = seq; 3276 next_idx = idx; 3277 3278 l = 0; 3279 while (seq < dumper->next_seq) { 3280 struct printk_log *msg = log_from_idx(idx); 3281 3282 l += msg_print_text(msg, syslog, time, buf + l, size - l); 3283 idx = log_next(idx); 3284 seq++; 3285 } 3286 3287 dumper->next_seq = next_seq; 3288 dumper->next_idx = next_idx; 3289 ret = true; 3290 logbuf_unlock_irqrestore(flags); 3291 out: 3292 if (len) 3293 *len = l; 3294 return ret; 3295 } 3296 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 3297 3298 /** 3299 * kmsg_dump_rewind_nolock - reset the interator (unlocked version) 3300 * @dumper: registered kmsg dumper 3301 * 3302 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3303 * kmsg_dump_get_buffer() can be called again and used multiple 3304 * times within the same dumper.dump() callback. 3305 * 3306 * The function is similar to kmsg_dump_rewind(), but grabs no locks. 3307 */ 3308 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper) 3309 { 3310 dumper->cur_seq = clear_seq; 3311 dumper->cur_idx = clear_idx; 3312 dumper->next_seq = log_next_seq; 3313 dumper->next_idx = log_next_idx; 3314 } 3315 3316 /** 3317 * kmsg_dump_rewind - reset the interator 3318 * @dumper: registered kmsg dumper 3319 * 3320 * Reset the dumper's iterator so that kmsg_dump_get_line() and 3321 * kmsg_dump_get_buffer() can be called again and used multiple 3322 * times within the same dumper.dump() callback. 3323 */ 3324 void kmsg_dump_rewind(struct kmsg_dumper *dumper) 3325 { 3326 unsigned long flags; 3327 3328 logbuf_lock_irqsave(flags); 3329 kmsg_dump_rewind_nolock(dumper); 3330 logbuf_unlock_irqrestore(flags); 3331 } 3332 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 3333 3334 #endif 3335