1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/printk.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Modified to make sys_syslog() more flexible: added commands to 8 * return the last 4k of kernel messages, regardless of whether 9 * they've been read or not. Added option to suppress kernel printk's 10 * to the console. Added hook for sending the console messages 11 * elsewhere, in preparation for a serial line console (someday). 12 * Ted Ts'o, 2/11/93. 13 * Modified for sysctl support, 1/8/97, Chris Horn. 14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul 15 * manfred@colorfullife.com 16 * Rewrote bits to get rid of console_lock 17 * 01Mar01 Andrew Morton 18 */ 19 20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 21 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/tty.h> 25 #include <linux/tty_driver.h> 26 #include <linux/console.h> 27 #include <linux/init.h> 28 #include <linux/jiffies.h> 29 #include <linux/nmi.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/delay.h> 33 #include <linux/smp.h> 34 #include <linux/security.h> 35 #include <linux/memblock.h> 36 #include <linux/syscalls.h> 37 #include <linux/crash_core.h> 38 #include <linux/ratelimit.h> 39 #include <linux/kmsg_dump.h> 40 #include <linux/syslog.h> 41 #include <linux/cpu.h> 42 #include <linux/rculist.h> 43 #include <linux/poll.h> 44 #include <linux/irq_work.h> 45 #include <linux/ctype.h> 46 #include <linux/uio.h> 47 #include <linux/sched/clock.h> 48 #include <linux/sched/debug.h> 49 #include <linux/sched/task_stack.h> 50 51 #include <linux/uaccess.h> 52 #include <asm/sections.h> 53 54 #include <trace/events/initcall.h> 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/printk.h> 57 58 #include "printk_ringbuffer.h" 59 #include "console_cmdline.h" 60 #include "braille.h" 61 #include "internal.h" 62 63 int console_printk[4] = { 64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */ 65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */ 66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */ 67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */ 68 }; 69 EXPORT_SYMBOL_GPL(console_printk); 70 71 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0); 72 EXPORT_SYMBOL(ignore_console_lock_warning); 73 74 EXPORT_TRACEPOINT_SYMBOL_GPL(console); 75 76 /* 77 * Low level drivers may need that to know if they can schedule in 78 * their unblank() callback or not. So let's export it. 79 */ 80 int oops_in_progress; 81 EXPORT_SYMBOL(oops_in_progress); 82 83 /* 84 * console_mutex protects console_list updates and console->flags updates. 85 * The flags are synchronized only for consoles that are registered, i.e. 86 * accessible via the console list. 87 */ 88 static DEFINE_MUTEX(console_mutex); 89 90 /* 91 * console_sem protects updates to console->seq 92 * and also provides serialization for console printing. 93 */ 94 static DEFINE_SEMAPHORE(console_sem, 1); 95 HLIST_HEAD(console_list); 96 EXPORT_SYMBOL_GPL(console_list); 97 DEFINE_STATIC_SRCU(console_srcu); 98 99 /* 100 * System may need to suppress printk message under certain 101 * circumstances, like after kernel panic happens. 102 */ 103 int __read_mostly suppress_printk; 104 105 #ifdef CONFIG_LOCKDEP 106 static struct lockdep_map console_lock_dep_map = { 107 .name = "console_lock" 108 }; 109 110 void lockdep_assert_console_list_lock_held(void) 111 { 112 lockdep_assert_held(&console_mutex); 113 } 114 EXPORT_SYMBOL(lockdep_assert_console_list_lock_held); 115 #endif 116 117 #ifdef CONFIG_DEBUG_LOCK_ALLOC 118 bool console_srcu_read_lock_is_held(void) 119 { 120 return srcu_read_lock_held(&console_srcu); 121 } 122 EXPORT_SYMBOL(console_srcu_read_lock_is_held); 123 #endif 124 125 enum devkmsg_log_bits { 126 __DEVKMSG_LOG_BIT_ON = 0, 127 __DEVKMSG_LOG_BIT_OFF, 128 __DEVKMSG_LOG_BIT_LOCK, 129 }; 130 131 enum devkmsg_log_masks { 132 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON), 133 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF), 134 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK), 135 }; 136 137 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */ 138 #define DEVKMSG_LOG_MASK_DEFAULT 0 139 140 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 141 142 static int __control_devkmsg(char *str) 143 { 144 size_t len; 145 146 if (!str) 147 return -EINVAL; 148 149 len = str_has_prefix(str, "on"); 150 if (len) { 151 devkmsg_log = DEVKMSG_LOG_MASK_ON; 152 return len; 153 } 154 155 len = str_has_prefix(str, "off"); 156 if (len) { 157 devkmsg_log = DEVKMSG_LOG_MASK_OFF; 158 return len; 159 } 160 161 len = str_has_prefix(str, "ratelimit"); 162 if (len) { 163 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT; 164 return len; 165 } 166 167 return -EINVAL; 168 } 169 170 static int __init control_devkmsg(char *str) 171 { 172 if (__control_devkmsg(str) < 0) { 173 pr_warn("printk.devkmsg: bad option string '%s'\n", str); 174 return 1; 175 } 176 177 /* 178 * Set sysctl string accordingly: 179 */ 180 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) 181 strcpy(devkmsg_log_str, "on"); 182 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) 183 strcpy(devkmsg_log_str, "off"); 184 /* else "ratelimit" which is set by default. */ 185 186 /* 187 * Sysctl cannot change it anymore. The kernel command line setting of 188 * this parameter is to force the setting to be permanent throughout the 189 * runtime of the system. This is a precation measure against userspace 190 * trying to be a smarta** and attempting to change it up on us. 191 */ 192 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK; 193 194 return 1; 195 } 196 __setup("printk.devkmsg=", control_devkmsg); 197 198 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit"; 199 #if defined(CONFIG_PRINTK) && defined(CONFIG_SYSCTL) 200 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write, 201 void *buffer, size_t *lenp, loff_t *ppos) 202 { 203 char old_str[DEVKMSG_STR_MAX_SIZE]; 204 unsigned int old; 205 int err; 206 207 if (write) { 208 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK) 209 return -EINVAL; 210 211 old = devkmsg_log; 212 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE); 213 } 214 215 err = proc_dostring(table, write, buffer, lenp, ppos); 216 if (err) 217 return err; 218 219 if (write) { 220 err = __control_devkmsg(devkmsg_log_str); 221 222 /* 223 * Do not accept an unknown string OR a known string with 224 * trailing crap... 225 */ 226 if (err < 0 || (err + 1 != *lenp)) { 227 228 /* ... and restore old setting. */ 229 devkmsg_log = old; 230 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE); 231 232 return -EINVAL; 233 } 234 } 235 236 return 0; 237 } 238 #endif /* CONFIG_PRINTK && CONFIG_SYSCTL */ 239 240 /** 241 * console_list_lock - Lock the console list 242 * 243 * For console list or console->flags updates 244 */ 245 void console_list_lock(void) 246 { 247 /* 248 * In unregister_console() and console_force_preferred_locked(), 249 * synchronize_srcu() is called with the console_list_lock held. 250 * Therefore it is not allowed that the console_list_lock is taken 251 * with the srcu_lock held. 252 * 253 * Detecting if this context is really in the read-side critical 254 * section is only possible if the appropriate debug options are 255 * enabled. 256 */ 257 WARN_ON_ONCE(debug_lockdep_rcu_enabled() && 258 srcu_read_lock_held(&console_srcu)); 259 260 mutex_lock(&console_mutex); 261 } 262 EXPORT_SYMBOL(console_list_lock); 263 264 /** 265 * console_list_unlock - Unlock the console list 266 * 267 * Counterpart to console_list_lock() 268 */ 269 void console_list_unlock(void) 270 { 271 mutex_unlock(&console_mutex); 272 } 273 EXPORT_SYMBOL(console_list_unlock); 274 275 /** 276 * console_srcu_read_lock - Register a new reader for the 277 * SRCU-protected console list 278 * 279 * Use for_each_console_srcu() to iterate the console list 280 * 281 * Context: Any context. 282 * Return: A cookie to pass to console_srcu_read_unlock(). 283 */ 284 int console_srcu_read_lock(void) 285 { 286 return srcu_read_lock_nmisafe(&console_srcu); 287 } 288 EXPORT_SYMBOL(console_srcu_read_lock); 289 290 /** 291 * console_srcu_read_unlock - Unregister an old reader from 292 * the SRCU-protected console list 293 * @cookie: cookie returned from console_srcu_read_lock() 294 * 295 * Counterpart to console_srcu_read_lock() 296 */ 297 void console_srcu_read_unlock(int cookie) 298 { 299 srcu_read_unlock_nmisafe(&console_srcu, cookie); 300 } 301 EXPORT_SYMBOL(console_srcu_read_unlock); 302 303 /* 304 * Helper macros to handle lockdep when locking/unlocking console_sem. We use 305 * macros instead of functions so that _RET_IP_ contains useful information. 306 */ 307 #define down_console_sem() do { \ 308 down(&console_sem);\ 309 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\ 310 } while (0) 311 312 static int __down_trylock_console_sem(unsigned long ip) 313 { 314 int lock_failed; 315 unsigned long flags; 316 317 /* 318 * Here and in __up_console_sem() we need to be in safe mode, 319 * because spindump/WARN/etc from under console ->lock will 320 * deadlock in printk()->down_trylock_console_sem() otherwise. 321 */ 322 printk_safe_enter_irqsave(flags); 323 lock_failed = down_trylock(&console_sem); 324 printk_safe_exit_irqrestore(flags); 325 326 if (lock_failed) 327 return 1; 328 mutex_acquire(&console_lock_dep_map, 0, 1, ip); 329 return 0; 330 } 331 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_) 332 333 static void __up_console_sem(unsigned long ip) 334 { 335 unsigned long flags; 336 337 mutex_release(&console_lock_dep_map, ip); 338 339 printk_safe_enter_irqsave(flags); 340 up(&console_sem); 341 printk_safe_exit_irqrestore(flags); 342 } 343 #define up_console_sem() __up_console_sem(_RET_IP_) 344 345 static bool panic_in_progress(void) 346 { 347 return unlikely(atomic_read(&panic_cpu) != PANIC_CPU_INVALID); 348 } 349 350 /* 351 * This is used for debugging the mess that is the VT code by 352 * keeping track if we have the console semaphore held. It's 353 * definitely not the perfect debug tool (we don't know if _WE_ 354 * hold it and are racing, but it helps tracking those weird code 355 * paths in the console code where we end up in places I want 356 * locked without the console semaphore held). 357 */ 358 static int console_locked; 359 360 /* 361 * Array of consoles built from command line options (console=) 362 */ 363 364 #define MAX_CMDLINECONSOLES 8 365 366 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES]; 367 368 static int preferred_console = -1; 369 int console_set_on_cmdline; 370 EXPORT_SYMBOL(console_set_on_cmdline); 371 372 /* Flag: console code may call schedule() */ 373 static int console_may_schedule; 374 375 enum con_msg_format_flags { 376 MSG_FORMAT_DEFAULT = 0, 377 MSG_FORMAT_SYSLOG = (1 << 0), 378 }; 379 380 static int console_msg_format = MSG_FORMAT_DEFAULT; 381 382 /* 383 * The printk log buffer consists of a sequenced collection of records, each 384 * containing variable length message text. Every record also contains its 385 * own meta-data (@info). 386 * 387 * Every record meta-data carries the timestamp in microseconds, as well as 388 * the standard userspace syslog level and syslog facility. The usual kernel 389 * messages use LOG_KERN; userspace-injected messages always carry a matching 390 * syslog facility, by default LOG_USER. The origin of every message can be 391 * reliably determined that way. 392 * 393 * The human readable log message of a record is available in @text, the 394 * length of the message text in @text_len. The stored message is not 395 * terminated. 396 * 397 * Optionally, a record can carry a dictionary of properties (key/value 398 * pairs), to provide userspace with a machine-readable message context. 399 * 400 * Examples for well-defined, commonly used property names are: 401 * DEVICE=b12:8 device identifier 402 * b12:8 block dev_t 403 * c127:3 char dev_t 404 * n8 netdev ifindex 405 * +sound:card0 subsystem:devname 406 * SUBSYSTEM=pci driver-core subsystem name 407 * 408 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names 409 * and values are terminated by a '\0' character. 410 * 411 * Example of record values: 412 * record.text_buf = "it's a line" (unterminated) 413 * record.info.seq = 56 414 * record.info.ts_nsec = 36863 415 * record.info.text_len = 11 416 * record.info.facility = 0 (LOG_KERN) 417 * record.info.flags = 0 418 * record.info.level = 3 (LOG_ERR) 419 * record.info.caller_id = 299 (task 299) 420 * record.info.dev_info.subsystem = "pci" (terminated) 421 * record.info.dev_info.device = "+pci:0000:00:01.0" (terminated) 422 * 423 * The 'struct printk_info' buffer must never be directly exported to 424 * userspace, it is a kernel-private implementation detail that might 425 * need to be changed in the future, when the requirements change. 426 * 427 * /dev/kmsg exports the structured data in the following line format: 428 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n" 429 * 430 * Users of the export format should ignore possible additional values 431 * separated by ',', and find the message after the ';' character. 432 * 433 * The optional key/value pairs are attached as continuation lines starting 434 * with a space character and terminated by a newline. All possible 435 * non-prinatable characters are escaped in the "\xff" notation. 436 */ 437 438 /* syslog_lock protects syslog_* variables and write access to clear_seq. */ 439 static DEFINE_MUTEX(syslog_lock); 440 441 #ifdef CONFIG_PRINTK 442 /* 443 * During panic, heavy printk by other CPUs can delay the 444 * panic and risk deadlock on console resources. 445 */ 446 static int __read_mostly suppress_panic_printk; 447 448 DECLARE_WAIT_QUEUE_HEAD(log_wait); 449 /* All 3 protected by @syslog_lock. */ 450 /* the next printk record to read by syslog(READ) or /proc/kmsg */ 451 static u64 syslog_seq; 452 static size_t syslog_partial; 453 static bool syslog_time; 454 455 struct latched_seq { 456 seqcount_latch_t latch; 457 u64 val[2]; 458 }; 459 460 /* 461 * The next printk record to read after the last 'clear' command. There are 462 * two copies (updated with seqcount_latch) so that reads can locklessly 463 * access a valid value. Writers are synchronized by @syslog_lock. 464 */ 465 static struct latched_seq clear_seq = { 466 .latch = SEQCNT_LATCH_ZERO(clear_seq.latch), 467 .val[0] = 0, 468 .val[1] = 0, 469 }; 470 471 #define LOG_LEVEL(v) ((v) & 0x07) 472 #define LOG_FACILITY(v) ((v) >> 3 & 0xff) 473 474 /* record buffer */ 475 #define LOG_ALIGN __alignof__(unsigned long) 476 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT) 477 #define LOG_BUF_LEN_MAX (u32)(1 << 31) 478 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN); 479 static char *log_buf = __log_buf; 480 static u32 log_buf_len = __LOG_BUF_LEN; 481 482 /* 483 * Define the average message size. This only affects the number of 484 * descriptors that will be available. Underestimating is better than 485 * overestimating (too many available descriptors is better than not enough). 486 */ 487 #define PRB_AVGBITS 5 /* 32 character average length */ 488 489 #if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS 490 #error CONFIG_LOG_BUF_SHIFT value too small. 491 #endif 492 _DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS, 493 PRB_AVGBITS, &__log_buf[0]); 494 495 static struct printk_ringbuffer printk_rb_dynamic; 496 497 struct printk_ringbuffer *prb = &printk_rb_static; 498 499 /* 500 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before 501 * per_cpu_areas are initialised. This variable is set to true when 502 * it's safe to access per-CPU data. 503 */ 504 static bool __printk_percpu_data_ready __ro_after_init; 505 506 bool printk_percpu_data_ready(void) 507 { 508 return __printk_percpu_data_ready; 509 } 510 511 /* Must be called under syslog_lock. */ 512 static void latched_seq_write(struct latched_seq *ls, u64 val) 513 { 514 raw_write_seqcount_latch(&ls->latch); 515 ls->val[0] = val; 516 raw_write_seqcount_latch(&ls->latch); 517 ls->val[1] = val; 518 } 519 520 /* Can be called from any context. */ 521 static u64 latched_seq_read_nolock(struct latched_seq *ls) 522 { 523 unsigned int seq; 524 unsigned int idx; 525 u64 val; 526 527 do { 528 seq = raw_read_seqcount_latch(&ls->latch); 529 idx = seq & 0x1; 530 val = ls->val[idx]; 531 } while (raw_read_seqcount_latch_retry(&ls->latch, seq)); 532 533 return val; 534 } 535 536 /* Return log buffer address */ 537 char *log_buf_addr_get(void) 538 { 539 return log_buf; 540 } 541 542 /* Return log buffer size */ 543 u32 log_buf_len_get(void) 544 { 545 return log_buf_len; 546 } 547 548 /* 549 * Define how much of the log buffer we could take at maximum. The value 550 * must be greater than two. Note that only half of the buffer is available 551 * when the index points to the middle. 552 */ 553 #define MAX_LOG_TAKE_PART 4 554 static const char trunc_msg[] = "<truncated>"; 555 556 static void truncate_msg(u16 *text_len, u16 *trunc_msg_len) 557 { 558 /* 559 * The message should not take the whole buffer. Otherwise, it might 560 * get removed too soon. 561 */ 562 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART; 563 564 if (*text_len > max_text_len) 565 *text_len = max_text_len; 566 567 /* enable the warning message (if there is room) */ 568 *trunc_msg_len = strlen(trunc_msg); 569 if (*text_len >= *trunc_msg_len) 570 *text_len -= *trunc_msg_len; 571 else 572 *trunc_msg_len = 0; 573 } 574 575 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT); 576 577 static int syslog_action_restricted(int type) 578 { 579 if (dmesg_restrict) 580 return 1; 581 /* 582 * Unless restricted, we allow "read all" and "get buffer size" 583 * for everybody. 584 */ 585 return type != SYSLOG_ACTION_READ_ALL && 586 type != SYSLOG_ACTION_SIZE_BUFFER; 587 } 588 589 static int check_syslog_permissions(int type, int source) 590 { 591 /* 592 * If this is from /proc/kmsg and we've already opened it, then we've 593 * already done the capabilities checks at open time. 594 */ 595 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN) 596 goto ok; 597 598 if (syslog_action_restricted(type)) { 599 if (capable(CAP_SYSLOG)) 600 goto ok; 601 /* 602 * For historical reasons, accept CAP_SYS_ADMIN too, with 603 * a warning. 604 */ 605 if (capable(CAP_SYS_ADMIN)) { 606 pr_warn_once("%s (%d): Attempt to access syslog with " 607 "CAP_SYS_ADMIN but no CAP_SYSLOG " 608 "(deprecated).\n", 609 current->comm, task_pid_nr(current)); 610 goto ok; 611 } 612 return -EPERM; 613 } 614 ok: 615 return security_syslog(type); 616 } 617 618 static void append_char(char **pp, char *e, char c) 619 { 620 if (*pp < e) 621 *(*pp)++ = c; 622 } 623 624 static ssize_t info_print_ext_header(char *buf, size_t size, 625 struct printk_info *info) 626 { 627 u64 ts_usec = info->ts_nsec; 628 char caller[20]; 629 #ifdef CONFIG_PRINTK_CALLER 630 u32 id = info->caller_id; 631 632 snprintf(caller, sizeof(caller), ",caller=%c%u", 633 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 634 #else 635 caller[0] = '\0'; 636 #endif 637 638 do_div(ts_usec, 1000); 639 640 return scnprintf(buf, size, "%u,%llu,%llu,%c%s;", 641 (info->facility << 3) | info->level, info->seq, 642 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller); 643 } 644 645 static ssize_t msg_add_ext_text(char *buf, size_t size, 646 const char *text, size_t text_len, 647 unsigned char endc) 648 { 649 char *p = buf, *e = buf + size; 650 size_t i; 651 652 /* escape non-printable characters */ 653 for (i = 0; i < text_len; i++) { 654 unsigned char c = text[i]; 655 656 if (c < ' ' || c >= 127 || c == '\\') 657 p += scnprintf(p, e - p, "\\x%02x", c); 658 else 659 append_char(&p, e, c); 660 } 661 append_char(&p, e, endc); 662 663 return p - buf; 664 } 665 666 static ssize_t msg_add_dict_text(char *buf, size_t size, 667 const char *key, const char *val) 668 { 669 size_t val_len = strlen(val); 670 ssize_t len; 671 672 if (!val_len) 673 return 0; 674 675 len = msg_add_ext_text(buf, size, "", 0, ' '); /* dict prefix */ 676 len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '='); 677 len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n'); 678 679 return len; 680 } 681 682 static ssize_t msg_print_ext_body(char *buf, size_t size, 683 char *text, size_t text_len, 684 struct dev_printk_info *dev_info) 685 { 686 ssize_t len; 687 688 len = msg_add_ext_text(buf, size, text, text_len, '\n'); 689 690 if (!dev_info) 691 goto out; 692 693 len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM", 694 dev_info->subsystem); 695 len += msg_add_dict_text(buf + len, size - len, "DEVICE", 696 dev_info->device); 697 out: 698 return len; 699 } 700 701 /* /dev/kmsg - userspace message inject/listen interface */ 702 struct devkmsg_user { 703 atomic64_t seq; 704 struct ratelimit_state rs; 705 struct mutex lock; 706 struct printk_buffers pbufs; 707 }; 708 709 static __printf(3, 4) __cold 710 int devkmsg_emit(int facility, int level, const char *fmt, ...) 711 { 712 va_list args; 713 int r; 714 715 va_start(args, fmt); 716 r = vprintk_emit(facility, level, NULL, fmt, args); 717 va_end(args); 718 719 return r; 720 } 721 722 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from) 723 { 724 char *buf, *line; 725 int level = default_message_loglevel; 726 int facility = 1; /* LOG_USER */ 727 struct file *file = iocb->ki_filp; 728 struct devkmsg_user *user = file->private_data; 729 size_t len = iov_iter_count(from); 730 ssize_t ret = len; 731 732 if (len > PRINTKRB_RECORD_MAX) 733 return -EINVAL; 734 735 /* Ignore when user logging is disabled. */ 736 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 737 return len; 738 739 /* Ratelimit when not explicitly enabled. */ 740 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) { 741 if (!___ratelimit(&user->rs, current->comm)) 742 return ret; 743 } 744 745 buf = kmalloc(len+1, GFP_KERNEL); 746 if (buf == NULL) 747 return -ENOMEM; 748 749 buf[len] = '\0'; 750 if (!copy_from_iter_full(buf, len, from)) { 751 kfree(buf); 752 return -EFAULT; 753 } 754 755 /* 756 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace 757 * the decimal value represents 32bit, the lower 3 bit are the log 758 * level, the rest are the log facility. 759 * 760 * If no prefix or no userspace facility is specified, we 761 * enforce LOG_USER, to be able to reliably distinguish 762 * kernel-generated messages from userspace-injected ones. 763 */ 764 line = buf; 765 if (line[0] == '<') { 766 char *endp = NULL; 767 unsigned int u; 768 769 u = simple_strtoul(line + 1, &endp, 10); 770 if (endp && endp[0] == '>') { 771 level = LOG_LEVEL(u); 772 if (LOG_FACILITY(u) != 0) 773 facility = LOG_FACILITY(u); 774 endp++; 775 line = endp; 776 } 777 } 778 779 devkmsg_emit(facility, level, "%s", line); 780 kfree(buf); 781 return ret; 782 } 783 784 static ssize_t devkmsg_read(struct file *file, char __user *buf, 785 size_t count, loff_t *ppos) 786 { 787 struct devkmsg_user *user = file->private_data; 788 char *outbuf = &user->pbufs.outbuf[0]; 789 struct printk_message pmsg = { 790 .pbufs = &user->pbufs, 791 }; 792 ssize_t ret; 793 794 ret = mutex_lock_interruptible(&user->lock); 795 if (ret) 796 return ret; 797 798 if (!printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, false)) { 799 if (file->f_flags & O_NONBLOCK) { 800 ret = -EAGAIN; 801 goto out; 802 } 803 804 /* 805 * Guarantee this task is visible on the waitqueue before 806 * checking the wake condition. 807 * 808 * The full memory barrier within set_current_state() of 809 * prepare_to_wait_event() pairs with the full memory barrier 810 * within wq_has_sleeper(). 811 * 812 * This pairs with __wake_up_klogd:A. 813 */ 814 ret = wait_event_interruptible(log_wait, 815 printk_get_next_message(&pmsg, atomic64_read(&user->seq), true, 816 false)); /* LMM(devkmsg_read:A) */ 817 if (ret) 818 goto out; 819 } 820 821 if (pmsg.dropped) { 822 /* our last seen message is gone, return error and reset */ 823 atomic64_set(&user->seq, pmsg.seq); 824 ret = -EPIPE; 825 goto out; 826 } 827 828 atomic64_set(&user->seq, pmsg.seq + 1); 829 830 if (pmsg.outbuf_len > count) { 831 ret = -EINVAL; 832 goto out; 833 } 834 835 if (copy_to_user(buf, outbuf, pmsg.outbuf_len)) { 836 ret = -EFAULT; 837 goto out; 838 } 839 ret = pmsg.outbuf_len; 840 out: 841 mutex_unlock(&user->lock); 842 return ret; 843 } 844 845 /* 846 * Be careful when modifying this function!!! 847 * 848 * Only few operations are supported because the device works only with the 849 * entire variable length messages (records). Non-standard values are 850 * returned in the other cases and has been this way for quite some time. 851 * User space applications might depend on this behavior. 852 */ 853 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence) 854 { 855 struct devkmsg_user *user = file->private_data; 856 loff_t ret = 0; 857 858 if (offset) 859 return -ESPIPE; 860 861 switch (whence) { 862 case SEEK_SET: 863 /* the first record */ 864 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 865 break; 866 case SEEK_DATA: 867 /* 868 * The first record after the last SYSLOG_ACTION_CLEAR, 869 * like issued by 'dmesg -c'. Reading /dev/kmsg itself 870 * changes no global state, and does not clear anything. 871 */ 872 atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq)); 873 break; 874 case SEEK_END: 875 /* after the last record */ 876 atomic64_set(&user->seq, prb_next_seq(prb)); 877 break; 878 default: 879 ret = -EINVAL; 880 } 881 return ret; 882 } 883 884 static __poll_t devkmsg_poll(struct file *file, poll_table *wait) 885 { 886 struct devkmsg_user *user = file->private_data; 887 struct printk_info info; 888 __poll_t ret = 0; 889 890 poll_wait(file, &log_wait, wait); 891 892 if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) { 893 /* return error when data has vanished underneath us */ 894 if (info.seq != atomic64_read(&user->seq)) 895 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI; 896 else 897 ret = EPOLLIN|EPOLLRDNORM; 898 } 899 900 return ret; 901 } 902 903 static int devkmsg_open(struct inode *inode, struct file *file) 904 { 905 struct devkmsg_user *user; 906 int err; 907 908 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF) 909 return -EPERM; 910 911 /* write-only does not need any file context */ 912 if ((file->f_flags & O_ACCMODE) != O_WRONLY) { 913 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL, 914 SYSLOG_FROM_READER); 915 if (err) 916 return err; 917 } 918 919 user = kvmalloc(sizeof(struct devkmsg_user), GFP_KERNEL); 920 if (!user) 921 return -ENOMEM; 922 923 ratelimit_default_init(&user->rs); 924 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE); 925 926 mutex_init(&user->lock); 927 928 atomic64_set(&user->seq, prb_first_valid_seq(prb)); 929 930 file->private_data = user; 931 return 0; 932 } 933 934 static int devkmsg_release(struct inode *inode, struct file *file) 935 { 936 struct devkmsg_user *user = file->private_data; 937 938 ratelimit_state_exit(&user->rs); 939 940 mutex_destroy(&user->lock); 941 kvfree(user); 942 return 0; 943 } 944 945 const struct file_operations kmsg_fops = { 946 .open = devkmsg_open, 947 .read = devkmsg_read, 948 .write_iter = devkmsg_write, 949 .llseek = devkmsg_llseek, 950 .poll = devkmsg_poll, 951 .release = devkmsg_release, 952 }; 953 954 #ifdef CONFIG_CRASH_CORE 955 /* 956 * This appends the listed symbols to /proc/vmcore 957 * 958 * /proc/vmcore is used by various utilities, like crash and makedumpfile to 959 * obtain access to symbols that are otherwise very difficult to locate. These 960 * symbols are specifically used so that utilities can access and extract the 961 * dmesg log from a vmcore file after a crash. 962 */ 963 void log_buf_vmcoreinfo_setup(void) 964 { 965 struct dev_printk_info *dev_info = NULL; 966 967 VMCOREINFO_SYMBOL(prb); 968 VMCOREINFO_SYMBOL(printk_rb_static); 969 VMCOREINFO_SYMBOL(clear_seq); 970 971 /* 972 * Export struct size and field offsets. User space tools can 973 * parse it and detect any changes to structure down the line. 974 */ 975 976 VMCOREINFO_STRUCT_SIZE(printk_ringbuffer); 977 VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring); 978 VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring); 979 VMCOREINFO_OFFSET(printk_ringbuffer, fail); 980 981 VMCOREINFO_STRUCT_SIZE(prb_desc_ring); 982 VMCOREINFO_OFFSET(prb_desc_ring, count_bits); 983 VMCOREINFO_OFFSET(prb_desc_ring, descs); 984 VMCOREINFO_OFFSET(prb_desc_ring, infos); 985 VMCOREINFO_OFFSET(prb_desc_ring, head_id); 986 VMCOREINFO_OFFSET(prb_desc_ring, tail_id); 987 988 VMCOREINFO_STRUCT_SIZE(prb_desc); 989 VMCOREINFO_OFFSET(prb_desc, state_var); 990 VMCOREINFO_OFFSET(prb_desc, text_blk_lpos); 991 992 VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos); 993 VMCOREINFO_OFFSET(prb_data_blk_lpos, begin); 994 VMCOREINFO_OFFSET(prb_data_blk_lpos, next); 995 996 VMCOREINFO_STRUCT_SIZE(printk_info); 997 VMCOREINFO_OFFSET(printk_info, seq); 998 VMCOREINFO_OFFSET(printk_info, ts_nsec); 999 VMCOREINFO_OFFSET(printk_info, text_len); 1000 VMCOREINFO_OFFSET(printk_info, caller_id); 1001 VMCOREINFO_OFFSET(printk_info, dev_info); 1002 1003 VMCOREINFO_STRUCT_SIZE(dev_printk_info); 1004 VMCOREINFO_OFFSET(dev_printk_info, subsystem); 1005 VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem)); 1006 VMCOREINFO_OFFSET(dev_printk_info, device); 1007 VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device)); 1008 1009 VMCOREINFO_STRUCT_SIZE(prb_data_ring); 1010 VMCOREINFO_OFFSET(prb_data_ring, size_bits); 1011 VMCOREINFO_OFFSET(prb_data_ring, data); 1012 VMCOREINFO_OFFSET(prb_data_ring, head_lpos); 1013 VMCOREINFO_OFFSET(prb_data_ring, tail_lpos); 1014 1015 VMCOREINFO_SIZE(atomic_long_t); 1016 VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter); 1017 1018 VMCOREINFO_STRUCT_SIZE(latched_seq); 1019 VMCOREINFO_OFFSET(latched_seq, val); 1020 } 1021 #endif 1022 1023 /* requested log_buf_len from kernel cmdline */ 1024 static unsigned long __initdata new_log_buf_len; 1025 1026 /* we practice scaling the ring buffer by powers of 2 */ 1027 static void __init log_buf_len_update(u64 size) 1028 { 1029 if (size > (u64)LOG_BUF_LEN_MAX) { 1030 size = (u64)LOG_BUF_LEN_MAX; 1031 pr_err("log_buf over 2G is not supported.\n"); 1032 } 1033 1034 if (size) 1035 size = roundup_pow_of_two(size); 1036 if (size > log_buf_len) 1037 new_log_buf_len = (unsigned long)size; 1038 } 1039 1040 /* save requested log_buf_len since it's too early to process it */ 1041 static int __init log_buf_len_setup(char *str) 1042 { 1043 u64 size; 1044 1045 if (!str) 1046 return -EINVAL; 1047 1048 size = memparse(str, &str); 1049 1050 log_buf_len_update(size); 1051 1052 return 0; 1053 } 1054 early_param("log_buf_len", log_buf_len_setup); 1055 1056 #ifdef CONFIG_SMP 1057 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT) 1058 1059 static void __init log_buf_add_cpu(void) 1060 { 1061 unsigned int cpu_extra; 1062 1063 /* 1064 * archs should set up cpu_possible_bits properly with 1065 * set_cpu_possible() after setup_arch() but just in 1066 * case lets ensure this is valid. 1067 */ 1068 if (num_possible_cpus() == 1) 1069 return; 1070 1071 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN; 1072 1073 /* by default this will only continue through for large > 64 CPUs */ 1074 if (cpu_extra <= __LOG_BUF_LEN / 2) 1075 return; 1076 1077 pr_info("log_buf_len individual max cpu contribution: %d bytes\n", 1078 __LOG_CPU_MAX_BUF_LEN); 1079 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n", 1080 cpu_extra); 1081 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN); 1082 1083 log_buf_len_update(cpu_extra + __LOG_BUF_LEN); 1084 } 1085 #else /* !CONFIG_SMP */ 1086 static inline void log_buf_add_cpu(void) {} 1087 #endif /* CONFIG_SMP */ 1088 1089 static void __init set_percpu_data_ready(void) 1090 { 1091 __printk_percpu_data_ready = true; 1092 } 1093 1094 static unsigned int __init add_to_rb(struct printk_ringbuffer *rb, 1095 struct printk_record *r) 1096 { 1097 struct prb_reserved_entry e; 1098 struct printk_record dest_r; 1099 1100 prb_rec_init_wr(&dest_r, r->info->text_len); 1101 1102 if (!prb_reserve(&e, rb, &dest_r)) 1103 return 0; 1104 1105 memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len); 1106 dest_r.info->text_len = r->info->text_len; 1107 dest_r.info->facility = r->info->facility; 1108 dest_r.info->level = r->info->level; 1109 dest_r.info->flags = r->info->flags; 1110 dest_r.info->ts_nsec = r->info->ts_nsec; 1111 dest_r.info->caller_id = r->info->caller_id; 1112 memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info)); 1113 1114 prb_final_commit(&e); 1115 1116 return prb_record_text_space(&e); 1117 } 1118 1119 static char setup_text_buf[PRINTKRB_RECORD_MAX] __initdata; 1120 1121 void __init setup_log_buf(int early) 1122 { 1123 struct printk_info *new_infos; 1124 unsigned int new_descs_count; 1125 struct prb_desc *new_descs; 1126 struct printk_info info; 1127 struct printk_record r; 1128 unsigned int text_size; 1129 size_t new_descs_size; 1130 size_t new_infos_size; 1131 unsigned long flags; 1132 char *new_log_buf; 1133 unsigned int free; 1134 u64 seq; 1135 1136 /* 1137 * Some archs call setup_log_buf() multiple times - first is very 1138 * early, e.g. from setup_arch(), and second - when percpu_areas 1139 * are initialised. 1140 */ 1141 if (!early) 1142 set_percpu_data_ready(); 1143 1144 if (log_buf != __log_buf) 1145 return; 1146 1147 if (!early && !new_log_buf_len) 1148 log_buf_add_cpu(); 1149 1150 if (!new_log_buf_len) 1151 return; 1152 1153 new_descs_count = new_log_buf_len >> PRB_AVGBITS; 1154 if (new_descs_count == 0) { 1155 pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len); 1156 return; 1157 } 1158 1159 new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN); 1160 if (unlikely(!new_log_buf)) { 1161 pr_err("log_buf_len: %lu text bytes not available\n", 1162 new_log_buf_len); 1163 return; 1164 } 1165 1166 new_descs_size = new_descs_count * sizeof(struct prb_desc); 1167 new_descs = memblock_alloc(new_descs_size, LOG_ALIGN); 1168 if (unlikely(!new_descs)) { 1169 pr_err("log_buf_len: %zu desc bytes not available\n", 1170 new_descs_size); 1171 goto err_free_log_buf; 1172 } 1173 1174 new_infos_size = new_descs_count * sizeof(struct printk_info); 1175 new_infos = memblock_alloc(new_infos_size, LOG_ALIGN); 1176 if (unlikely(!new_infos)) { 1177 pr_err("log_buf_len: %zu info bytes not available\n", 1178 new_infos_size); 1179 goto err_free_descs; 1180 } 1181 1182 prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf)); 1183 1184 prb_init(&printk_rb_dynamic, 1185 new_log_buf, ilog2(new_log_buf_len), 1186 new_descs, ilog2(new_descs_count), 1187 new_infos); 1188 1189 local_irq_save(flags); 1190 1191 log_buf_len = new_log_buf_len; 1192 log_buf = new_log_buf; 1193 new_log_buf_len = 0; 1194 1195 free = __LOG_BUF_LEN; 1196 prb_for_each_record(0, &printk_rb_static, seq, &r) { 1197 text_size = add_to_rb(&printk_rb_dynamic, &r); 1198 if (text_size > free) 1199 free = 0; 1200 else 1201 free -= text_size; 1202 } 1203 1204 prb = &printk_rb_dynamic; 1205 1206 local_irq_restore(flags); 1207 1208 /* 1209 * Copy any remaining messages that might have appeared from 1210 * NMI context after copying but before switching to the 1211 * dynamic buffer. 1212 */ 1213 prb_for_each_record(seq, &printk_rb_static, seq, &r) { 1214 text_size = add_to_rb(&printk_rb_dynamic, &r); 1215 if (text_size > free) 1216 free = 0; 1217 else 1218 free -= text_size; 1219 } 1220 1221 if (seq != prb_next_seq(&printk_rb_static)) { 1222 pr_err("dropped %llu messages\n", 1223 prb_next_seq(&printk_rb_static) - seq); 1224 } 1225 1226 pr_info("log_buf_len: %u bytes\n", log_buf_len); 1227 pr_info("early log buf free: %u(%u%%)\n", 1228 free, (free * 100) / __LOG_BUF_LEN); 1229 return; 1230 1231 err_free_descs: 1232 memblock_free(new_descs, new_descs_size); 1233 err_free_log_buf: 1234 memblock_free(new_log_buf, new_log_buf_len); 1235 } 1236 1237 static bool __read_mostly ignore_loglevel; 1238 1239 static int __init ignore_loglevel_setup(char *str) 1240 { 1241 ignore_loglevel = true; 1242 pr_info("debug: ignoring loglevel setting.\n"); 1243 1244 return 0; 1245 } 1246 1247 early_param("ignore_loglevel", ignore_loglevel_setup); 1248 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR); 1249 MODULE_PARM_DESC(ignore_loglevel, 1250 "ignore loglevel setting (prints all kernel messages to the console)"); 1251 1252 static bool suppress_message_printing(int level) 1253 { 1254 return (level >= console_loglevel && !ignore_loglevel); 1255 } 1256 1257 #ifdef CONFIG_BOOT_PRINTK_DELAY 1258 1259 static int boot_delay; /* msecs delay after each printk during bootup */ 1260 static unsigned long long loops_per_msec; /* based on boot_delay */ 1261 1262 static int __init boot_delay_setup(char *str) 1263 { 1264 unsigned long lpj; 1265 1266 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */ 1267 loops_per_msec = (unsigned long long)lpj / 1000 * HZ; 1268 1269 get_option(&str, &boot_delay); 1270 if (boot_delay > 10 * 1000) 1271 boot_delay = 0; 1272 1273 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, " 1274 "HZ: %d, loops_per_msec: %llu\n", 1275 boot_delay, preset_lpj, lpj, HZ, loops_per_msec); 1276 return 0; 1277 } 1278 early_param("boot_delay", boot_delay_setup); 1279 1280 static void boot_delay_msec(int level) 1281 { 1282 unsigned long long k; 1283 unsigned long timeout; 1284 1285 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING) 1286 || suppress_message_printing(level)) { 1287 return; 1288 } 1289 1290 k = (unsigned long long)loops_per_msec * boot_delay; 1291 1292 timeout = jiffies + msecs_to_jiffies(boot_delay); 1293 while (k) { 1294 k--; 1295 cpu_relax(); 1296 /* 1297 * use (volatile) jiffies to prevent 1298 * compiler reduction; loop termination via jiffies 1299 * is secondary and may or may not happen. 1300 */ 1301 if (time_after(jiffies, timeout)) 1302 break; 1303 touch_nmi_watchdog(); 1304 } 1305 } 1306 #else 1307 static inline void boot_delay_msec(int level) 1308 { 1309 } 1310 #endif 1311 1312 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME); 1313 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR); 1314 1315 static size_t print_syslog(unsigned int level, char *buf) 1316 { 1317 return sprintf(buf, "<%u>", level); 1318 } 1319 1320 static size_t print_time(u64 ts, char *buf) 1321 { 1322 unsigned long rem_nsec = do_div(ts, 1000000000); 1323 1324 return sprintf(buf, "[%5lu.%06lu]", 1325 (unsigned long)ts, rem_nsec / 1000); 1326 } 1327 1328 #ifdef CONFIG_PRINTK_CALLER 1329 static size_t print_caller(u32 id, char *buf) 1330 { 1331 char caller[12]; 1332 1333 snprintf(caller, sizeof(caller), "%c%u", 1334 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000); 1335 return sprintf(buf, "[%6s]", caller); 1336 } 1337 #else 1338 #define print_caller(id, buf) 0 1339 #endif 1340 1341 static size_t info_print_prefix(const struct printk_info *info, bool syslog, 1342 bool time, char *buf) 1343 { 1344 size_t len = 0; 1345 1346 if (syslog) 1347 len = print_syslog((info->facility << 3) | info->level, buf); 1348 1349 if (time) 1350 len += print_time(info->ts_nsec, buf + len); 1351 1352 len += print_caller(info->caller_id, buf + len); 1353 1354 if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) { 1355 buf[len++] = ' '; 1356 buf[len] = '\0'; 1357 } 1358 1359 return len; 1360 } 1361 1362 /* 1363 * Prepare the record for printing. The text is shifted within the given 1364 * buffer to avoid a need for another one. The following operations are 1365 * done: 1366 * 1367 * - Add prefix for each line. 1368 * - Drop truncated lines that no longer fit into the buffer. 1369 * - Add the trailing newline that has been removed in vprintk_store(). 1370 * - Add a string terminator. 1371 * 1372 * Since the produced string is always terminated, the maximum possible 1373 * return value is @r->text_buf_size - 1; 1374 * 1375 * Return: The length of the updated/prepared text, including the added 1376 * prefixes and the newline. The terminator is not counted. The dropped 1377 * line(s) are not counted. 1378 */ 1379 static size_t record_print_text(struct printk_record *r, bool syslog, 1380 bool time) 1381 { 1382 size_t text_len = r->info->text_len; 1383 size_t buf_size = r->text_buf_size; 1384 char *text = r->text_buf; 1385 char prefix[PRINTK_PREFIX_MAX]; 1386 bool truncated = false; 1387 size_t prefix_len; 1388 size_t line_len; 1389 size_t len = 0; 1390 char *next; 1391 1392 /* 1393 * If the message was truncated because the buffer was not large 1394 * enough, treat the available text as if it were the full text. 1395 */ 1396 if (text_len > buf_size) 1397 text_len = buf_size; 1398 1399 prefix_len = info_print_prefix(r->info, syslog, time, prefix); 1400 1401 /* 1402 * @text_len: bytes of unprocessed text 1403 * @line_len: bytes of current line _without_ newline 1404 * @text: pointer to beginning of current line 1405 * @len: number of bytes prepared in r->text_buf 1406 */ 1407 for (;;) { 1408 next = memchr(text, '\n', text_len); 1409 if (next) { 1410 line_len = next - text; 1411 } else { 1412 /* Drop truncated line(s). */ 1413 if (truncated) 1414 break; 1415 line_len = text_len; 1416 } 1417 1418 /* 1419 * Truncate the text if there is not enough space to add the 1420 * prefix and a trailing newline and a terminator. 1421 */ 1422 if (len + prefix_len + text_len + 1 + 1 > buf_size) { 1423 /* Drop even the current line if no space. */ 1424 if (len + prefix_len + line_len + 1 + 1 > buf_size) 1425 break; 1426 1427 text_len = buf_size - len - prefix_len - 1 - 1; 1428 truncated = true; 1429 } 1430 1431 memmove(text + prefix_len, text, text_len); 1432 memcpy(text, prefix, prefix_len); 1433 1434 /* 1435 * Increment the prepared length to include the text and 1436 * prefix that were just moved+copied. Also increment for the 1437 * newline at the end of this line. If this is the last line, 1438 * there is no newline, but it will be added immediately below. 1439 */ 1440 len += prefix_len + line_len + 1; 1441 if (text_len == line_len) { 1442 /* 1443 * This is the last line. Add the trailing newline 1444 * removed in vprintk_store(). 1445 */ 1446 text[prefix_len + line_len] = '\n'; 1447 break; 1448 } 1449 1450 /* 1451 * Advance beyond the added prefix and the related line with 1452 * its newline. 1453 */ 1454 text += prefix_len + line_len + 1; 1455 1456 /* 1457 * The remaining text has only decreased by the line with its 1458 * newline. 1459 * 1460 * Note that @text_len can become zero. It happens when @text 1461 * ended with a newline (either due to truncation or the 1462 * original string ending with "\n\n"). The loop is correctly 1463 * repeated and (if not truncated) an empty line with a prefix 1464 * will be prepared. 1465 */ 1466 text_len -= line_len + 1; 1467 } 1468 1469 /* 1470 * If a buffer was provided, it will be terminated. Space for the 1471 * string terminator is guaranteed to be available. The terminator is 1472 * not counted in the return value. 1473 */ 1474 if (buf_size > 0) 1475 r->text_buf[len] = 0; 1476 1477 return len; 1478 } 1479 1480 static size_t get_record_print_text_size(struct printk_info *info, 1481 unsigned int line_count, 1482 bool syslog, bool time) 1483 { 1484 char prefix[PRINTK_PREFIX_MAX]; 1485 size_t prefix_len; 1486 1487 prefix_len = info_print_prefix(info, syslog, time, prefix); 1488 1489 /* 1490 * Each line will be preceded with a prefix. The intermediate 1491 * newlines are already within the text, but a final trailing 1492 * newline will be added. 1493 */ 1494 return ((prefix_len * line_count) + info->text_len + 1); 1495 } 1496 1497 /* 1498 * Beginning with @start_seq, find the first record where it and all following 1499 * records up to (but not including) @max_seq fit into @size. 1500 * 1501 * @max_seq is simply an upper bound and does not need to exist. If the caller 1502 * does not require an upper bound, -1 can be used for @max_seq. 1503 */ 1504 static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size, 1505 bool syslog, bool time) 1506 { 1507 struct printk_info info; 1508 unsigned int line_count; 1509 size_t len = 0; 1510 u64 seq; 1511 1512 /* Determine the size of the records up to @max_seq. */ 1513 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1514 if (info.seq >= max_seq) 1515 break; 1516 len += get_record_print_text_size(&info, line_count, syslog, time); 1517 } 1518 1519 /* 1520 * Adjust the upper bound for the next loop to avoid subtracting 1521 * lengths that were never added. 1522 */ 1523 if (seq < max_seq) 1524 max_seq = seq; 1525 1526 /* 1527 * Move first record forward until length fits into the buffer. Ignore 1528 * newest messages that were not counted in the above cycle. Messages 1529 * might appear and get lost in the meantime. This is a best effort 1530 * that prevents an infinite loop that could occur with a retry. 1531 */ 1532 prb_for_each_info(start_seq, prb, seq, &info, &line_count) { 1533 if (len <= size || info.seq >= max_seq) 1534 break; 1535 len -= get_record_print_text_size(&info, line_count, syslog, time); 1536 } 1537 1538 return seq; 1539 } 1540 1541 /* The caller is responsible for making sure @size is greater than 0. */ 1542 static int syslog_print(char __user *buf, int size) 1543 { 1544 struct printk_info info; 1545 struct printk_record r; 1546 char *text; 1547 int len = 0; 1548 u64 seq; 1549 1550 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1551 if (!text) 1552 return -ENOMEM; 1553 1554 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1555 1556 mutex_lock(&syslog_lock); 1557 1558 /* 1559 * Wait for the @syslog_seq record to be available. @syslog_seq may 1560 * change while waiting. 1561 */ 1562 do { 1563 seq = syslog_seq; 1564 1565 mutex_unlock(&syslog_lock); 1566 /* 1567 * Guarantee this task is visible on the waitqueue before 1568 * checking the wake condition. 1569 * 1570 * The full memory barrier within set_current_state() of 1571 * prepare_to_wait_event() pairs with the full memory barrier 1572 * within wq_has_sleeper(). 1573 * 1574 * This pairs with __wake_up_klogd:A. 1575 */ 1576 len = wait_event_interruptible(log_wait, 1577 prb_read_valid(prb, seq, NULL)); /* LMM(syslog_print:A) */ 1578 mutex_lock(&syslog_lock); 1579 1580 if (len) 1581 goto out; 1582 } while (syslog_seq != seq); 1583 1584 /* 1585 * Copy records that fit into the buffer. The above cycle makes sure 1586 * that the first record is always available. 1587 */ 1588 do { 1589 size_t n; 1590 size_t skip; 1591 int err; 1592 1593 if (!prb_read_valid(prb, syslog_seq, &r)) 1594 break; 1595 1596 if (r.info->seq != syslog_seq) { 1597 /* message is gone, move to next valid one */ 1598 syslog_seq = r.info->seq; 1599 syslog_partial = 0; 1600 } 1601 1602 /* 1603 * To keep reading/counting partial line consistent, 1604 * use printk_time value as of the beginning of a line. 1605 */ 1606 if (!syslog_partial) 1607 syslog_time = printk_time; 1608 1609 skip = syslog_partial; 1610 n = record_print_text(&r, true, syslog_time); 1611 if (n - syslog_partial <= size) { 1612 /* message fits into buffer, move forward */ 1613 syslog_seq = r.info->seq + 1; 1614 n -= syslog_partial; 1615 syslog_partial = 0; 1616 } else if (!len){ 1617 /* partial read(), remember position */ 1618 n = size; 1619 syslog_partial += n; 1620 } else 1621 n = 0; 1622 1623 if (!n) 1624 break; 1625 1626 mutex_unlock(&syslog_lock); 1627 err = copy_to_user(buf, text + skip, n); 1628 mutex_lock(&syslog_lock); 1629 1630 if (err) { 1631 if (!len) 1632 len = -EFAULT; 1633 break; 1634 } 1635 1636 len += n; 1637 size -= n; 1638 buf += n; 1639 } while (size); 1640 out: 1641 mutex_unlock(&syslog_lock); 1642 kfree(text); 1643 return len; 1644 } 1645 1646 static int syslog_print_all(char __user *buf, int size, bool clear) 1647 { 1648 struct printk_info info; 1649 struct printk_record r; 1650 char *text; 1651 int len = 0; 1652 u64 seq; 1653 bool time; 1654 1655 text = kmalloc(PRINTK_MESSAGE_MAX, GFP_KERNEL); 1656 if (!text) 1657 return -ENOMEM; 1658 1659 time = printk_time; 1660 /* 1661 * Find first record that fits, including all following records, 1662 * into the user-provided buffer for this dump. 1663 */ 1664 seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1, 1665 size, true, time); 1666 1667 prb_rec_init_rd(&r, &info, text, PRINTK_MESSAGE_MAX); 1668 1669 prb_for_each_record(seq, prb, seq, &r) { 1670 int textlen; 1671 1672 textlen = record_print_text(&r, true, time); 1673 1674 if (len + textlen > size) { 1675 seq--; 1676 break; 1677 } 1678 1679 if (copy_to_user(buf + len, text, textlen)) 1680 len = -EFAULT; 1681 else 1682 len += textlen; 1683 1684 if (len < 0) 1685 break; 1686 } 1687 1688 if (clear) { 1689 mutex_lock(&syslog_lock); 1690 latched_seq_write(&clear_seq, seq); 1691 mutex_unlock(&syslog_lock); 1692 } 1693 1694 kfree(text); 1695 return len; 1696 } 1697 1698 static void syslog_clear(void) 1699 { 1700 mutex_lock(&syslog_lock); 1701 latched_seq_write(&clear_seq, prb_next_seq(prb)); 1702 mutex_unlock(&syslog_lock); 1703 } 1704 1705 int do_syslog(int type, char __user *buf, int len, int source) 1706 { 1707 struct printk_info info; 1708 bool clear = false; 1709 static int saved_console_loglevel = LOGLEVEL_DEFAULT; 1710 int error; 1711 1712 error = check_syslog_permissions(type, source); 1713 if (error) 1714 return error; 1715 1716 switch (type) { 1717 case SYSLOG_ACTION_CLOSE: /* Close log */ 1718 break; 1719 case SYSLOG_ACTION_OPEN: /* Open log */ 1720 break; 1721 case SYSLOG_ACTION_READ: /* Read from log */ 1722 if (!buf || len < 0) 1723 return -EINVAL; 1724 if (!len) 1725 return 0; 1726 if (!access_ok(buf, len)) 1727 return -EFAULT; 1728 error = syslog_print(buf, len); 1729 break; 1730 /* Read/clear last kernel messages */ 1731 case SYSLOG_ACTION_READ_CLEAR: 1732 clear = true; 1733 fallthrough; 1734 /* Read last kernel messages */ 1735 case SYSLOG_ACTION_READ_ALL: 1736 if (!buf || len < 0) 1737 return -EINVAL; 1738 if (!len) 1739 return 0; 1740 if (!access_ok(buf, len)) 1741 return -EFAULT; 1742 error = syslog_print_all(buf, len, clear); 1743 break; 1744 /* Clear ring buffer */ 1745 case SYSLOG_ACTION_CLEAR: 1746 syslog_clear(); 1747 break; 1748 /* Disable logging to console */ 1749 case SYSLOG_ACTION_CONSOLE_OFF: 1750 if (saved_console_loglevel == LOGLEVEL_DEFAULT) 1751 saved_console_loglevel = console_loglevel; 1752 console_loglevel = minimum_console_loglevel; 1753 break; 1754 /* Enable logging to console */ 1755 case SYSLOG_ACTION_CONSOLE_ON: 1756 if (saved_console_loglevel != LOGLEVEL_DEFAULT) { 1757 console_loglevel = saved_console_loglevel; 1758 saved_console_loglevel = LOGLEVEL_DEFAULT; 1759 } 1760 break; 1761 /* Set level of messages printed to console */ 1762 case SYSLOG_ACTION_CONSOLE_LEVEL: 1763 if (len < 1 || len > 8) 1764 return -EINVAL; 1765 if (len < minimum_console_loglevel) 1766 len = minimum_console_loglevel; 1767 console_loglevel = len; 1768 /* Implicitly re-enable logging to console */ 1769 saved_console_loglevel = LOGLEVEL_DEFAULT; 1770 break; 1771 /* Number of chars in the log buffer */ 1772 case SYSLOG_ACTION_SIZE_UNREAD: 1773 mutex_lock(&syslog_lock); 1774 if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) { 1775 /* No unread messages. */ 1776 mutex_unlock(&syslog_lock); 1777 return 0; 1778 } 1779 if (info.seq != syslog_seq) { 1780 /* messages are gone, move to first one */ 1781 syslog_seq = info.seq; 1782 syslog_partial = 0; 1783 } 1784 if (source == SYSLOG_FROM_PROC) { 1785 /* 1786 * Short-cut for poll(/"proc/kmsg") which simply checks 1787 * for pending data, not the size; return the count of 1788 * records, not the length. 1789 */ 1790 error = prb_next_seq(prb) - syslog_seq; 1791 } else { 1792 bool time = syslog_partial ? syslog_time : printk_time; 1793 unsigned int line_count; 1794 u64 seq; 1795 1796 prb_for_each_info(syslog_seq, prb, seq, &info, 1797 &line_count) { 1798 error += get_record_print_text_size(&info, line_count, 1799 true, time); 1800 time = printk_time; 1801 } 1802 error -= syslog_partial; 1803 } 1804 mutex_unlock(&syslog_lock); 1805 break; 1806 /* Size of the log buffer */ 1807 case SYSLOG_ACTION_SIZE_BUFFER: 1808 error = log_buf_len; 1809 break; 1810 default: 1811 error = -EINVAL; 1812 break; 1813 } 1814 1815 return error; 1816 } 1817 1818 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len) 1819 { 1820 return do_syslog(type, buf, len, SYSLOG_FROM_READER); 1821 } 1822 1823 /* 1824 * Special console_lock variants that help to reduce the risk of soft-lockups. 1825 * They allow to pass console_lock to another printk() call using a busy wait. 1826 */ 1827 1828 #ifdef CONFIG_LOCKDEP 1829 static struct lockdep_map console_owner_dep_map = { 1830 .name = "console_owner" 1831 }; 1832 #endif 1833 1834 static DEFINE_RAW_SPINLOCK(console_owner_lock); 1835 static struct task_struct *console_owner; 1836 static bool console_waiter; 1837 1838 /** 1839 * console_lock_spinning_enable - mark beginning of code where another 1840 * thread might safely busy wait 1841 * 1842 * This basically converts console_lock into a spinlock. This marks 1843 * the section where the console_lock owner can not sleep, because 1844 * there may be a waiter spinning (like a spinlock). Also it must be 1845 * ready to hand over the lock at the end of the section. 1846 */ 1847 static void console_lock_spinning_enable(void) 1848 { 1849 raw_spin_lock(&console_owner_lock); 1850 console_owner = current; 1851 raw_spin_unlock(&console_owner_lock); 1852 1853 /* The waiter may spin on us after setting console_owner */ 1854 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1855 } 1856 1857 /** 1858 * console_lock_spinning_disable_and_check - mark end of code where another 1859 * thread was able to busy wait and check if there is a waiter 1860 * @cookie: cookie returned from console_srcu_read_lock() 1861 * 1862 * This is called at the end of the section where spinning is allowed. 1863 * It has two functions. First, it is a signal that it is no longer 1864 * safe to start busy waiting for the lock. Second, it checks if 1865 * there is a busy waiter and passes the lock rights to her. 1866 * 1867 * Important: Callers lose both the console_lock and the SRCU read lock if 1868 * there was a busy waiter. They must not touch items synchronized by 1869 * console_lock or SRCU read lock in this case. 1870 * 1871 * Return: 1 if the lock rights were passed, 0 otherwise. 1872 */ 1873 static int console_lock_spinning_disable_and_check(int cookie) 1874 { 1875 int waiter; 1876 1877 raw_spin_lock(&console_owner_lock); 1878 waiter = READ_ONCE(console_waiter); 1879 console_owner = NULL; 1880 raw_spin_unlock(&console_owner_lock); 1881 1882 if (!waiter) { 1883 spin_release(&console_owner_dep_map, _THIS_IP_); 1884 return 0; 1885 } 1886 1887 /* The waiter is now free to continue */ 1888 WRITE_ONCE(console_waiter, false); 1889 1890 spin_release(&console_owner_dep_map, _THIS_IP_); 1891 1892 /* 1893 * Preserve lockdep lock ordering. Release the SRCU read lock before 1894 * releasing the console_lock. 1895 */ 1896 console_srcu_read_unlock(cookie); 1897 1898 /* 1899 * Hand off console_lock to waiter. The waiter will perform 1900 * the up(). After this, the waiter is the console_lock owner. 1901 */ 1902 mutex_release(&console_lock_dep_map, _THIS_IP_); 1903 return 1; 1904 } 1905 1906 /** 1907 * console_trylock_spinning - try to get console_lock by busy waiting 1908 * 1909 * This allows to busy wait for the console_lock when the current 1910 * owner is running in specially marked sections. It means that 1911 * the current owner is running and cannot reschedule until it 1912 * is ready to lose the lock. 1913 * 1914 * Return: 1 if we got the lock, 0 othrewise 1915 */ 1916 static int console_trylock_spinning(void) 1917 { 1918 struct task_struct *owner = NULL; 1919 bool waiter; 1920 bool spin = false; 1921 unsigned long flags; 1922 1923 if (console_trylock()) 1924 return 1; 1925 1926 /* 1927 * It's unsafe to spin once a panic has begun. If we are the 1928 * panic CPU, we may have already halted the owner of the 1929 * console_sem. If we are not the panic CPU, then we should 1930 * avoid taking console_sem, so the panic CPU has a better 1931 * chance of cleanly acquiring it later. 1932 */ 1933 if (panic_in_progress()) 1934 return 0; 1935 1936 printk_safe_enter_irqsave(flags); 1937 1938 raw_spin_lock(&console_owner_lock); 1939 owner = READ_ONCE(console_owner); 1940 waiter = READ_ONCE(console_waiter); 1941 if (!waiter && owner && owner != current) { 1942 WRITE_ONCE(console_waiter, true); 1943 spin = true; 1944 } 1945 raw_spin_unlock(&console_owner_lock); 1946 1947 /* 1948 * If there is an active printk() writing to the 1949 * consoles, instead of having it write our data too, 1950 * see if we can offload that load from the active 1951 * printer, and do some printing ourselves. 1952 * Go into a spin only if there isn't already a waiter 1953 * spinning, and there is an active printer, and 1954 * that active printer isn't us (recursive printk?). 1955 */ 1956 if (!spin) { 1957 printk_safe_exit_irqrestore(flags); 1958 return 0; 1959 } 1960 1961 /* We spin waiting for the owner to release us */ 1962 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_); 1963 /* Owner will clear console_waiter on hand off */ 1964 while (READ_ONCE(console_waiter)) 1965 cpu_relax(); 1966 spin_release(&console_owner_dep_map, _THIS_IP_); 1967 1968 printk_safe_exit_irqrestore(flags); 1969 /* 1970 * The owner passed the console lock to us. 1971 * Since we did not spin on console lock, annotate 1972 * this as a trylock. Otherwise lockdep will 1973 * complain. 1974 */ 1975 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_); 1976 1977 return 1; 1978 } 1979 1980 /* 1981 * Recursion is tracked separately on each CPU. If NMIs are supported, an 1982 * additional NMI context per CPU is also separately tracked. Until per-CPU 1983 * is available, a separate "early tracking" is performed. 1984 */ 1985 static DEFINE_PER_CPU(u8, printk_count); 1986 static u8 printk_count_early; 1987 #ifdef CONFIG_HAVE_NMI 1988 static DEFINE_PER_CPU(u8, printk_count_nmi); 1989 static u8 printk_count_nmi_early; 1990 #endif 1991 1992 /* 1993 * Recursion is limited to keep the output sane. printk() should not require 1994 * more than 1 level of recursion (allowing, for example, printk() to trigger 1995 * a WARN), but a higher value is used in case some printk-internal errors 1996 * exist, such as the ringbuffer validation checks failing. 1997 */ 1998 #define PRINTK_MAX_RECURSION 3 1999 2000 /* 2001 * Return a pointer to the dedicated counter for the CPU+context of the 2002 * caller. 2003 */ 2004 static u8 *__printk_recursion_counter(void) 2005 { 2006 #ifdef CONFIG_HAVE_NMI 2007 if (in_nmi()) { 2008 if (printk_percpu_data_ready()) 2009 return this_cpu_ptr(&printk_count_nmi); 2010 return &printk_count_nmi_early; 2011 } 2012 #endif 2013 if (printk_percpu_data_ready()) 2014 return this_cpu_ptr(&printk_count); 2015 return &printk_count_early; 2016 } 2017 2018 /* 2019 * Enter recursion tracking. Interrupts are disabled to simplify tracking. 2020 * The caller must check the boolean return value to see if the recursion is 2021 * allowed. On failure, interrupts are not disabled. 2022 * 2023 * @recursion_ptr must be a variable of type (u8 *) and is the same variable 2024 * that is passed to printk_exit_irqrestore(). 2025 */ 2026 #define printk_enter_irqsave(recursion_ptr, flags) \ 2027 ({ \ 2028 bool success = true; \ 2029 \ 2030 typecheck(u8 *, recursion_ptr); \ 2031 local_irq_save(flags); \ 2032 (recursion_ptr) = __printk_recursion_counter(); \ 2033 if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \ 2034 local_irq_restore(flags); \ 2035 success = false; \ 2036 } else { \ 2037 (*(recursion_ptr))++; \ 2038 } \ 2039 success; \ 2040 }) 2041 2042 /* Exit recursion tracking, restoring interrupts. */ 2043 #define printk_exit_irqrestore(recursion_ptr, flags) \ 2044 do { \ 2045 typecheck(u8 *, recursion_ptr); \ 2046 (*(recursion_ptr))--; \ 2047 local_irq_restore(flags); \ 2048 } while (0) 2049 2050 int printk_delay_msec __read_mostly; 2051 2052 static inline void printk_delay(int level) 2053 { 2054 boot_delay_msec(level); 2055 2056 if (unlikely(printk_delay_msec)) { 2057 int m = printk_delay_msec; 2058 2059 while (m--) { 2060 mdelay(1); 2061 touch_nmi_watchdog(); 2062 } 2063 } 2064 } 2065 2066 static inline u32 printk_caller_id(void) 2067 { 2068 return in_task() ? task_pid_nr(current) : 2069 0x80000000 + smp_processor_id(); 2070 } 2071 2072 /** 2073 * printk_parse_prefix - Parse level and control flags. 2074 * 2075 * @text: The terminated text message. 2076 * @level: A pointer to the current level value, will be updated. 2077 * @flags: A pointer to the current printk_info flags, will be updated. 2078 * 2079 * @level may be NULL if the caller is not interested in the parsed value. 2080 * Otherwise the variable pointed to by @level must be set to 2081 * LOGLEVEL_DEFAULT in order to be updated with the parsed value. 2082 * 2083 * @flags may be NULL if the caller is not interested in the parsed value. 2084 * Otherwise the variable pointed to by @flags will be OR'd with the parsed 2085 * value. 2086 * 2087 * Return: The length of the parsed level and control flags. 2088 */ 2089 u16 printk_parse_prefix(const char *text, int *level, 2090 enum printk_info_flags *flags) 2091 { 2092 u16 prefix_len = 0; 2093 int kern_level; 2094 2095 while (*text) { 2096 kern_level = printk_get_level(text); 2097 if (!kern_level) 2098 break; 2099 2100 switch (kern_level) { 2101 case '0' ... '7': 2102 if (level && *level == LOGLEVEL_DEFAULT) 2103 *level = kern_level - '0'; 2104 break; 2105 case 'c': /* KERN_CONT */ 2106 if (flags) 2107 *flags |= LOG_CONT; 2108 } 2109 2110 prefix_len += 2; 2111 text += 2; 2112 } 2113 2114 return prefix_len; 2115 } 2116 2117 __printf(5, 0) 2118 static u16 printk_sprint(char *text, u16 size, int facility, 2119 enum printk_info_flags *flags, const char *fmt, 2120 va_list args) 2121 { 2122 u16 text_len; 2123 2124 text_len = vscnprintf(text, size, fmt, args); 2125 2126 /* Mark and strip a trailing newline. */ 2127 if (text_len && text[text_len - 1] == '\n') { 2128 text_len--; 2129 *flags |= LOG_NEWLINE; 2130 } 2131 2132 /* Strip log level and control flags. */ 2133 if (facility == 0) { 2134 u16 prefix_len; 2135 2136 prefix_len = printk_parse_prefix(text, NULL, NULL); 2137 if (prefix_len) { 2138 text_len -= prefix_len; 2139 memmove(text, text + prefix_len, text_len); 2140 } 2141 } 2142 2143 trace_console(text, text_len); 2144 2145 return text_len; 2146 } 2147 2148 __printf(4, 0) 2149 int vprintk_store(int facility, int level, 2150 const struct dev_printk_info *dev_info, 2151 const char *fmt, va_list args) 2152 { 2153 struct prb_reserved_entry e; 2154 enum printk_info_flags flags = 0; 2155 struct printk_record r; 2156 unsigned long irqflags; 2157 u16 trunc_msg_len = 0; 2158 char prefix_buf[8]; 2159 u8 *recursion_ptr; 2160 u16 reserve_size; 2161 va_list args2; 2162 u32 caller_id; 2163 u16 text_len; 2164 int ret = 0; 2165 u64 ts_nsec; 2166 2167 if (!printk_enter_irqsave(recursion_ptr, irqflags)) 2168 return 0; 2169 2170 /* 2171 * Since the duration of printk() can vary depending on the message 2172 * and state of the ringbuffer, grab the timestamp now so that it is 2173 * close to the call of printk(). This provides a more deterministic 2174 * timestamp with respect to the caller. 2175 */ 2176 ts_nsec = local_clock(); 2177 2178 caller_id = printk_caller_id(); 2179 2180 /* 2181 * The sprintf needs to come first since the syslog prefix might be 2182 * passed in as a parameter. An extra byte must be reserved so that 2183 * later the vscnprintf() into the reserved buffer has room for the 2184 * terminating '\0', which is not counted by vsnprintf(). 2185 */ 2186 va_copy(args2, args); 2187 reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1; 2188 va_end(args2); 2189 2190 if (reserve_size > PRINTKRB_RECORD_MAX) 2191 reserve_size = PRINTKRB_RECORD_MAX; 2192 2193 /* Extract log level or control flags. */ 2194 if (facility == 0) 2195 printk_parse_prefix(&prefix_buf[0], &level, &flags); 2196 2197 if (level == LOGLEVEL_DEFAULT) 2198 level = default_message_loglevel; 2199 2200 if (dev_info) 2201 flags |= LOG_NEWLINE; 2202 2203 if (flags & LOG_CONT) { 2204 prb_rec_init_wr(&r, reserve_size); 2205 if (prb_reserve_in_last(&e, prb, &r, caller_id, PRINTKRB_RECORD_MAX)) { 2206 text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size, 2207 facility, &flags, fmt, args); 2208 r.info->text_len += text_len; 2209 2210 if (flags & LOG_NEWLINE) { 2211 r.info->flags |= LOG_NEWLINE; 2212 prb_final_commit(&e); 2213 } else { 2214 prb_commit(&e); 2215 } 2216 2217 ret = text_len; 2218 goto out; 2219 } 2220 } 2221 2222 /* 2223 * Explicitly initialize the record before every prb_reserve() call. 2224 * prb_reserve_in_last() and prb_reserve() purposely invalidate the 2225 * structure when they fail. 2226 */ 2227 prb_rec_init_wr(&r, reserve_size); 2228 if (!prb_reserve(&e, prb, &r)) { 2229 /* truncate the message if it is too long for empty buffer */ 2230 truncate_msg(&reserve_size, &trunc_msg_len); 2231 2232 prb_rec_init_wr(&r, reserve_size + trunc_msg_len); 2233 if (!prb_reserve(&e, prb, &r)) 2234 goto out; 2235 } 2236 2237 /* fill message */ 2238 text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &flags, fmt, args); 2239 if (trunc_msg_len) 2240 memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len); 2241 r.info->text_len = text_len + trunc_msg_len; 2242 r.info->facility = facility; 2243 r.info->level = level & 7; 2244 r.info->flags = flags & 0x1f; 2245 r.info->ts_nsec = ts_nsec; 2246 r.info->caller_id = caller_id; 2247 if (dev_info) 2248 memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info)); 2249 2250 /* A message without a trailing newline can be continued. */ 2251 if (!(flags & LOG_NEWLINE)) 2252 prb_commit(&e); 2253 else 2254 prb_final_commit(&e); 2255 2256 ret = text_len + trunc_msg_len; 2257 out: 2258 printk_exit_irqrestore(recursion_ptr, irqflags); 2259 return ret; 2260 } 2261 2262 asmlinkage int vprintk_emit(int facility, int level, 2263 const struct dev_printk_info *dev_info, 2264 const char *fmt, va_list args) 2265 { 2266 int printed_len; 2267 bool in_sched = false; 2268 2269 /* Suppress unimportant messages after panic happens */ 2270 if (unlikely(suppress_printk)) 2271 return 0; 2272 2273 if (unlikely(suppress_panic_printk) && 2274 atomic_read(&panic_cpu) != raw_smp_processor_id()) 2275 return 0; 2276 2277 if (level == LOGLEVEL_SCHED) { 2278 level = LOGLEVEL_DEFAULT; 2279 in_sched = true; 2280 } 2281 2282 printk_delay(level); 2283 2284 printed_len = vprintk_store(facility, level, dev_info, fmt, args); 2285 2286 /* If called from the scheduler, we can not call up(). */ 2287 if (!in_sched) { 2288 /* 2289 * The caller may be holding system-critical or 2290 * timing-sensitive locks. Disable preemption during 2291 * printing of all remaining records to all consoles so that 2292 * this context can return as soon as possible. Hopefully 2293 * another printk() caller will take over the printing. 2294 */ 2295 preempt_disable(); 2296 /* 2297 * Try to acquire and then immediately release the console 2298 * semaphore. The release will print out buffers. With the 2299 * spinning variant, this context tries to take over the 2300 * printing from another printing context. 2301 */ 2302 if (console_trylock_spinning()) 2303 console_unlock(); 2304 preempt_enable(); 2305 } 2306 2307 if (in_sched) 2308 defer_console_output(); 2309 else 2310 wake_up_klogd(); 2311 2312 return printed_len; 2313 } 2314 EXPORT_SYMBOL(vprintk_emit); 2315 2316 int vprintk_default(const char *fmt, va_list args) 2317 { 2318 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args); 2319 } 2320 EXPORT_SYMBOL_GPL(vprintk_default); 2321 2322 asmlinkage __visible int _printk(const char *fmt, ...) 2323 { 2324 va_list args; 2325 int r; 2326 2327 va_start(args, fmt); 2328 r = vprintk(fmt, args); 2329 va_end(args); 2330 2331 return r; 2332 } 2333 EXPORT_SYMBOL(_printk); 2334 2335 static bool pr_flush(int timeout_ms, bool reset_on_progress); 2336 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress); 2337 2338 #else /* CONFIG_PRINTK */ 2339 2340 #define printk_time false 2341 2342 #define prb_read_valid(rb, seq, r) false 2343 #define prb_first_valid_seq(rb) 0 2344 #define prb_next_seq(rb) 0 2345 2346 static u64 syslog_seq; 2347 2348 static bool pr_flush(int timeout_ms, bool reset_on_progress) { return true; } 2349 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) { return true; } 2350 2351 #endif /* CONFIG_PRINTK */ 2352 2353 #ifdef CONFIG_EARLY_PRINTK 2354 struct console *early_console; 2355 2356 asmlinkage __visible void early_printk(const char *fmt, ...) 2357 { 2358 va_list ap; 2359 char buf[512]; 2360 int n; 2361 2362 if (!early_console) 2363 return; 2364 2365 va_start(ap, fmt); 2366 n = vscnprintf(buf, sizeof(buf), fmt, ap); 2367 va_end(ap); 2368 2369 early_console->write(early_console, buf, n); 2370 } 2371 #endif 2372 2373 static void set_user_specified(struct console_cmdline *c, bool user_specified) 2374 { 2375 if (!user_specified) 2376 return; 2377 2378 /* 2379 * @c console was defined by the user on the command line. 2380 * Do not clear when added twice also by SPCR or the device tree. 2381 */ 2382 c->user_specified = true; 2383 /* At least one console defined by the user on the command line. */ 2384 console_set_on_cmdline = 1; 2385 } 2386 2387 static int __add_preferred_console(const char *name, const short idx, char *options, 2388 char *brl_options, bool user_specified) 2389 { 2390 struct console_cmdline *c; 2391 int i; 2392 2393 /* 2394 * We use a signed short index for struct console for device drivers to 2395 * indicate a not yet assigned index or port. However, a negative index 2396 * value is not valid for preferred console. 2397 */ 2398 if (idx < 0) 2399 return -EINVAL; 2400 2401 /* 2402 * See if this tty is not yet registered, and 2403 * if we have a slot free. 2404 */ 2405 for (i = 0, c = console_cmdline; 2406 i < MAX_CMDLINECONSOLES && c->name[0]; 2407 i++, c++) { 2408 if (strcmp(c->name, name) == 0 && c->index == idx) { 2409 if (!brl_options) 2410 preferred_console = i; 2411 set_user_specified(c, user_specified); 2412 return 0; 2413 } 2414 } 2415 if (i == MAX_CMDLINECONSOLES) 2416 return -E2BIG; 2417 if (!brl_options) 2418 preferred_console = i; 2419 strscpy(c->name, name, sizeof(c->name)); 2420 c->options = options; 2421 set_user_specified(c, user_specified); 2422 braille_set_options(c, brl_options); 2423 2424 c->index = idx; 2425 return 0; 2426 } 2427 2428 static int __init console_msg_format_setup(char *str) 2429 { 2430 if (!strcmp(str, "syslog")) 2431 console_msg_format = MSG_FORMAT_SYSLOG; 2432 if (!strcmp(str, "default")) 2433 console_msg_format = MSG_FORMAT_DEFAULT; 2434 return 1; 2435 } 2436 __setup("console_msg_format=", console_msg_format_setup); 2437 2438 /* 2439 * Set up a console. Called via do_early_param() in init/main.c 2440 * for each "console=" parameter in the boot command line. 2441 */ 2442 static int __init console_setup(char *str) 2443 { 2444 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */ 2445 char *s, *options, *brl_options = NULL; 2446 int idx; 2447 2448 /* 2449 * console="" or console=null have been suggested as a way to 2450 * disable console output. Use ttynull that has been created 2451 * for exactly this purpose. 2452 */ 2453 if (str[0] == 0 || strcmp(str, "null") == 0) { 2454 __add_preferred_console("ttynull", 0, NULL, NULL, true); 2455 return 1; 2456 } 2457 2458 if (_braille_console_setup(&str, &brl_options)) 2459 return 1; 2460 2461 /* 2462 * Decode str into name, index, options. 2463 */ 2464 if (str[0] >= '0' && str[0] <= '9') { 2465 strcpy(buf, "ttyS"); 2466 strncpy(buf + 4, str, sizeof(buf) - 5); 2467 } else { 2468 strncpy(buf, str, sizeof(buf) - 1); 2469 } 2470 buf[sizeof(buf) - 1] = 0; 2471 options = strchr(str, ','); 2472 if (options) 2473 *(options++) = 0; 2474 #ifdef __sparc__ 2475 if (!strcmp(str, "ttya")) 2476 strcpy(buf, "ttyS0"); 2477 if (!strcmp(str, "ttyb")) 2478 strcpy(buf, "ttyS1"); 2479 #endif 2480 for (s = buf; *s; s++) 2481 if (isdigit(*s) || *s == ',') 2482 break; 2483 idx = simple_strtoul(s, NULL, 10); 2484 *s = 0; 2485 2486 __add_preferred_console(buf, idx, options, brl_options, true); 2487 return 1; 2488 } 2489 __setup("console=", console_setup); 2490 2491 /** 2492 * add_preferred_console - add a device to the list of preferred consoles. 2493 * @name: device name 2494 * @idx: device index 2495 * @options: options for this console 2496 * 2497 * The last preferred console added will be used for kernel messages 2498 * and stdin/out/err for init. Normally this is used by console_setup 2499 * above to handle user-supplied console arguments; however it can also 2500 * be used by arch-specific code either to override the user or more 2501 * commonly to provide a default console (ie from PROM variables) when 2502 * the user has not supplied one. 2503 */ 2504 int add_preferred_console(const char *name, const short idx, char *options) 2505 { 2506 return __add_preferred_console(name, idx, options, NULL, false); 2507 } 2508 2509 bool console_suspend_enabled = true; 2510 EXPORT_SYMBOL(console_suspend_enabled); 2511 2512 static int __init console_suspend_disable(char *str) 2513 { 2514 console_suspend_enabled = false; 2515 return 1; 2516 } 2517 __setup("no_console_suspend", console_suspend_disable); 2518 module_param_named(console_suspend, console_suspend_enabled, 2519 bool, S_IRUGO | S_IWUSR); 2520 MODULE_PARM_DESC(console_suspend, "suspend console during suspend" 2521 " and hibernate operations"); 2522 2523 static bool printk_console_no_auto_verbose; 2524 2525 void console_verbose(void) 2526 { 2527 if (console_loglevel && !printk_console_no_auto_verbose) 2528 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 2529 } 2530 EXPORT_SYMBOL_GPL(console_verbose); 2531 2532 module_param_named(console_no_auto_verbose, printk_console_no_auto_verbose, bool, 0644); 2533 MODULE_PARM_DESC(console_no_auto_verbose, "Disable console loglevel raise to highest on oops/panic/etc"); 2534 2535 /** 2536 * suspend_console - suspend the console subsystem 2537 * 2538 * This disables printk() while we go into suspend states 2539 */ 2540 void suspend_console(void) 2541 { 2542 struct console *con; 2543 2544 if (!console_suspend_enabled) 2545 return; 2546 pr_info("Suspending console(s) (use no_console_suspend to debug)\n"); 2547 pr_flush(1000, true); 2548 2549 console_list_lock(); 2550 for_each_console(con) 2551 console_srcu_write_flags(con, con->flags | CON_SUSPENDED); 2552 console_list_unlock(); 2553 2554 /* 2555 * Ensure that all SRCU list walks have completed. All printing 2556 * contexts must be able to see that they are suspended so that it 2557 * is guaranteed that all printing has stopped when this function 2558 * completes. 2559 */ 2560 synchronize_srcu(&console_srcu); 2561 } 2562 2563 void resume_console(void) 2564 { 2565 struct console *con; 2566 2567 if (!console_suspend_enabled) 2568 return; 2569 2570 console_list_lock(); 2571 for_each_console(con) 2572 console_srcu_write_flags(con, con->flags & ~CON_SUSPENDED); 2573 console_list_unlock(); 2574 2575 /* 2576 * Ensure that all SRCU list walks have completed. All printing 2577 * contexts must be able to see they are no longer suspended so 2578 * that they are guaranteed to wake up and resume printing. 2579 */ 2580 synchronize_srcu(&console_srcu); 2581 2582 pr_flush(1000, true); 2583 } 2584 2585 /** 2586 * console_cpu_notify - print deferred console messages after CPU hotplug 2587 * @cpu: unused 2588 * 2589 * If printk() is called from a CPU that is not online yet, the messages 2590 * will be printed on the console only if there are CON_ANYTIME consoles. 2591 * This function is called when a new CPU comes online (or fails to come 2592 * up) or goes offline. 2593 */ 2594 static int console_cpu_notify(unsigned int cpu) 2595 { 2596 if (!cpuhp_tasks_frozen) { 2597 /* If trylock fails, someone else is doing the printing */ 2598 if (console_trylock()) 2599 console_unlock(); 2600 } 2601 return 0; 2602 } 2603 2604 /* 2605 * Return true if a panic is in progress on a remote CPU. 2606 * 2607 * On true, the local CPU should immediately release any printing resources 2608 * that may be needed by the panic CPU. 2609 */ 2610 bool other_cpu_in_panic(void) 2611 { 2612 if (!panic_in_progress()) 2613 return false; 2614 2615 /* 2616 * We can use raw_smp_processor_id() here because it is impossible for 2617 * the task to be migrated to the panic_cpu, or away from it. If 2618 * panic_cpu has already been set, and we're not currently executing on 2619 * that CPU, then we never will be. 2620 */ 2621 return atomic_read(&panic_cpu) != raw_smp_processor_id(); 2622 } 2623 2624 /** 2625 * console_lock - block the console subsystem from printing 2626 * 2627 * Acquires a lock which guarantees that no consoles will 2628 * be in or enter their write() callback. 2629 * 2630 * Can sleep, returns nothing. 2631 */ 2632 void console_lock(void) 2633 { 2634 might_sleep(); 2635 2636 /* On panic, the console_lock must be left to the panic cpu. */ 2637 while (other_cpu_in_panic()) 2638 msleep(1000); 2639 2640 down_console_sem(); 2641 console_locked = 1; 2642 console_may_schedule = 1; 2643 } 2644 EXPORT_SYMBOL(console_lock); 2645 2646 /** 2647 * console_trylock - try to block the console subsystem from printing 2648 * 2649 * Try to acquire a lock which guarantees that no consoles will 2650 * be in or enter their write() callback. 2651 * 2652 * returns 1 on success, and 0 on failure to acquire the lock. 2653 */ 2654 int console_trylock(void) 2655 { 2656 /* On panic, the console_lock must be left to the panic cpu. */ 2657 if (other_cpu_in_panic()) 2658 return 0; 2659 if (down_trylock_console_sem()) 2660 return 0; 2661 console_locked = 1; 2662 console_may_schedule = 0; 2663 return 1; 2664 } 2665 EXPORT_SYMBOL(console_trylock); 2666 2667 int is_console_locked(void) 2668 { 2669 return console_locked; 2670 } 2671 EXPORT_SYMBOL(is_console_locked); 2672 2673 /* 2674 * Check if the given console is currently capable and allowed to print 2675 * records. 2676 * 2677 * Requires the console_srcu_read_lock. 2678 */ 2679 static inline bool console_is_usable(struct console *con) 2680 { 2681 short flags = console_srcu_read_flags(con); 2682 2683 if (!(flags & CON_ENABLED)) 2684 return false; 2685 2686 if ((flags & CON_SUSPENDED)) 2687 return false; 2688 2689 if (!con->write) 2690 return false; 2691 2692 /* 2693 * Console drivers may assume that per-cpu resources have been 2694 * allocated. So unless they're explicitly marked as being able to 2695 * cope (CON_ANYTIME) don't call them until this CPU is officially up. 2696 */ 2697 if (!cpu_online(raw_smp_processor_id()) && !(flags & CON_ANYTIME)) 2698 return false; 2699 2700 return true; 2701 } 2702 2703 static void __console_unlock(void) 2704 { 2705 console_locked = 0; 2706 up_console_sem(); 2707 } 2708 2709 #ifdef CONFIG_PRINTK 2710 2711 /* 2712 * Prepend the message in @pmsg->pbufs->outbuf with a "dropped message". This 2713 * is achieved by shifting the existing message over and inserting the dropped 2714 * message. 2715 * 2716 * @pmsg is the printk message to prepend. 2717 * 2718 * @dropped is the dropped count to report in the dropped message. 2719 * 2720 * If the message text in @pmsg->pbufs->outbuf does not have enough space for 2721 * the dropped message, the message text will be sufficiently truncated. 2722 * 2723 * If @pmsg->pbufs->outbuf is modified, @pmsg->outbuf_len is updated. 2724 */ 2725 void console_prepend_dropped(struct printk_message *pmsg, unsigned long dropped) 2726 { 2727 struct printk_buffers *pbufs = pmsg->pbufs; 2728 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2729 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2730 char *scratchbuf = &pbufs->scratchbuf[0]; 2731 char *outbuf = &pbufs->outbuf[0]; 2732 size_t len; 2733 2734 len = scnprintf(scratchbuf, scratchbuf_sz, 2735 "** %lu printk messages dropped **\n", dropped); 2736 2737 /* 2738 * Make sure outbuf is sufficiently large before prepending. 2739 * Keep at least the prefix when the message must be truncated. 2740 * It is a rather theoretical problem when someone tries to 2741 * use a minimalist buffer. 2742 */ 2743 if (WARN_ON_ONCE(len + PRINTK_PREFIX_MAX >= outbuf_sz)) 2744 return; 2745 2746 if (pmsg->outbuf_len + len >= outbuf_sz) { 2747 /* Truncate the message, but keep it terminated. */ 2748 pmsg->outbuf_len = outbuf_sz - (len + 1); 2749 outbuf[pmsg->outbuf_len] = 0; 2750 } 2751 2752 memmove(outbuf + len, outbuf, pmsg->outbuf_len + 1); 2753 memcpy(outbuf, scratchbuf, len); 2754 pmsg->outbuf_len += len; 2755 } 2756 2757 /* 2758 * Read and format the specified record (or a later record if the specified 2759 * record is not available). 2760 * 2761 * @pmsg will contain the formatted result. @pmsg->pbufs must point to a 2762 * struct printk_buffers. 2763 * 2764 * @seq is the record to read and format. If it is not available, the next 2765 * valid record is read. 2766 * 2767 * @is_extended specifies if the message should be formatted for extended 2768 * console output. 2769 * 2770 * @may_supress specifies if records may be skipped based on loglevel. 2771 * 2772 * Returns false if no record is available. Otherwise true and all fields 2773 * of @pmsg are valid. (See the documentation of struct printk_message 2774 * for information about the @pmsg fields.) 2775 */ 2776 bool printk_get_next_message(struct printk_message *pmsg, u64 seq, 2777 bool is_extended, bool may_suppress) 2778 { 2779 static int panic_console_dropped; 2780 2781 struct printk_buffers *pbufs = pmsg->pbufs; 2782 const size_t scratchbuf_sz = sizeof(pbufs->scratchbuf); 2783 const size_t outbuf_sz = sizeof(pbufs->outbuf); 2784 char *scratchbuf = &pbufs->scratchbuf[0]; 2785 char *outbuf = &pbufs->outbuf[0]; 2786 struct printk_info info; 2787 struct printk_record r; 2788 size_t len = 0; 2789 2790 /* 2791 * Formatting extended messages requires a separate buffer, so use the 2792 * scratch buffer to read in the ringbuffer text. 2793 * 2794 * Formatting normal messages is done in-place, so read the ringbuffer 2795 * text directly into the output buffer. 2796 */ 2797 if (is_extended) 2798 prb_rec_init_rd(&r, &info, scratchbuf, scratchbuf_sz); 2799 else 2800 prb_rec_init_rd(&r, &info, outbuf, outbuf_sz); 2801 2802 if (!prb_read_valid(prb, seq, &r)) 2803 return false; 2804 2805 pmsg->seq = r.info->seq; 2806 pmsg->dropped = r.info->seq - seq; 2807 2808 /* 2809 * Check for dropped messages in panic here so that printk 2810 * suppression can occur as early as possible if necessary. 2811 */ 2812 if (pmsg->dropped && 2813 panic_in_progress() && 2814 panic_console_dropped++ > 10) { 2815 suppress_panic_printk = 1; 2816 pr_warn_once("Too many dropped messages. Suppress messages on non-panic CPUs to prevent livelock.\n"); 2817 } 2818 2819 /* Skip record that has level above the console loglevel. */ 2820 if (may_suppress && suppress_message_printing(r.info->level)) 2821 goto out; 2822 2823 if (is_extended) { 2824 len = info_print_ext_header(outbuf, outbuf_sz, r.info); 2825 len += msg_print_ext_body(outbuf + len, outbuf_sz - len, 2826 &r.text_buf[0], r.info->text_len, &r.info->dev_info); 2827 } else { 2828 len = record_print_text(&r, console_msg_format & MSG_FORMAT_SYSLOG, printk_time); 2829 } 2830 out: 2831 pmsg->outbuf_len = len; 2832 return true; 2833 } 2834 2835 /* 2836 * Used as the printk buffers for non-panic, serialized console printing. 2837 * This is for legacy (!CON_NBCON) as well as all boot (CON_BOOT) consoles. 2838 * Its usage requires the console_lock held. 2839 */ 2840 struct printk_buffers printk_shared_pbufs; 2841 2842 /* 2843 * Print one record for the given console. The record printed is whatever 2844 * record is the next available record for the given console. 2845 * 2846 * @handover will be set to true if a printk waiter has taken over the 2847 * console_lock, in which case the caller is no longer holding both the 2848 * console_lock and the SRCU read lock. Otherwise it is set to false. 2849 * 2850 * @cookie is the cookie from the SRCU read lock. 2851 * 2852 * Returns false if the given console has no next record to print, otherwise 2853 * true. 2854 * 2855 * Requires the console_lock and the SRCU read lock. 2856 */ 2857 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2858 { 2859 bool is_extended = console_srcu_read_flags(con) & CON_EXTENDED; 2860 char *outbuf = &printk_shared_pbufs.outbuf[0]; 2861 struct printk_message pmsg = { 2862 .pbufs = &printk_shared_pbufs, 2863 }; 2864 unsigned long flags; 2865 2866 *handover = false; 2867 2868 if (!printk_get_next_message(&pmsg, con->seq, is_extended, true)) 2869 return false; 2870 2871 con->dropped += pmsg.dropped; 2872 2873 /* Skip messages of formatted length 0. */ 2874 if (pmsg.outbuf_len == 0) { 2875 con->seq = pmsg.seq + 1; 2876 goto skip; 2877 } 2878 2879 if (con->dropped && !is_extended) { 2880 console_prepend_dropped(&pmsg, con->dropped); 2881 con->dropped = 0; 2882 } 2883 2884 /* 2885 * While actively printing out messages, if another printk() 2886 * were to occur on another CPU, it may wait for this one to 2887 * finish. This task can not be preempted if there is a 2888 * waiter waiting to take over. 2889 * 2890 * Interrupts are disabled because the hand over to a waiter 2891 * must not be interrupted until the hand over is completed 2892 * (@console_waiter is cleared). 2893 */ 2894 printk_safe_enter_irqsave(flags); 2895 console_lock_spinning_enable(); 2896 2897 /* Do not trace print latency. */ 2898 stop_critical_timings(); 2899 2900 /* Write everything out to the hardware. */ 2901 con->write(con, outbuf, pmsg.outbuf_len); 2902 2903 start_critical_timings(); 2904 2905 con->seq = pmsg.seq + 1; 2906 2907 *handover = console_lock_spinning_disable_and_check(cookie); 2908 printk_safe_exit_irqrestore(flags); 2909 skip: 2910 return true; 2911 } 2912 2913 #else 2914 2915 static bool console_emit_next_record(struct console *con, bool *handover, int cookie) 2916 { 2917 *handover = false; 2918 return false; 2919 } 2920 2921 #endif /* CONFIG_PRINTK */ 2922 2923 /* 2924 * Print out all remaining records to all consoles. 2925 * 2926 * @do_cond_resched is set by the caller. It can be true only in schedulable 2927 * context. 2928 * 2929 * @next_seq is set to the sequence number after the last available record. 2930 * The value is valid only when this function returns true. It means that all 2931 * usable consoles are completely flushed. 2932 * 2933 * @handover will be set to true if a printk waiter has taken over the 2934 * console_lock, in which case the caller is no longer holding the 2935 * console_lock. Otherwise it is set to false. 2936 * 2937 * Returns true when there was at least one usable console and all messages 2938 * were flushed to all usable consoles. A returned false informs the caller 2939 * that everything was not flushed (either there were no usable consoles or 2940 * another context has taken over printing or it is a panic situation and this 2941 * is not the panic CPU). Regardless the reason, the caller should assume it 2942 * is not useful to immediately try again. 2943 * 2944 * Requires the console_lock. 2945 */ 2946 static bool console_flush_all(bool do_cond_resched, u64 *next_seq, bool *handover) 2947 { 2948 bool any_usable = false; 2949 struct console *con; 2950 bool any_progress; 2951 int cookie; 2952 2953 *next_seq = 0; 2954 *handover = false; 2955 2956 do { 2957 any_progress = false; 2958 2959 cookie = console_srcu_read_lock(); 2960 for_each_console_srcu(con) { 2961 bool progress; 2962 2963 if (!console_is_usable(con)) 2964 continue; 2965 any_usable = true; 2966 2967 progress = console_emit_next_record(con, handover, cookie); 2968 2969 /* 2970 * If a handover has occurred, the SRCU read lock 2971 * is already released. 2972 */ 2973 if (*handover) 2974 return false; 2975 2976 /* Track the next of the highest seq flushed. */ 2977 if (con->seq > *next_seq) 2978 *next_seq = con->seq; 2979 2980 if (!progress) 2981 continue; 2982 any_progress = true; 2983 2984 /* Allow panic_cpu to take over the consoles safely. */ 2985 if (other_cpu_in_panic()) 2986 goto abandon; 2987 2988 if (do_cond_resched) 2989 cond_resched(); 2990 } 2991 console_srcu_read_unlock(cookie); 2992 } while (any_progress); 2993 2994 return any_usable; 2995 2996 abandon: 2997 console_srcu_read_unlock(cookie); 2998 return false; 2999 } 3000 3001 /** 3002 * console_unlock - unblock the console subsystem from printing 3003 * 3004 * Releases the console_lock which the caller holds to block printing of 3005 * the console subsystem. 3006 * 3007 * While the console_lock was held, console output may have been buffered 3008 * by printk(). If this is the case, console_unlock(); emits 3009 * the output prior to releasing the lock. 3010 * 3011 * console_unlock(); may be called from any context. 3012 */ 3013 void console_unlock(void) 3014 { 3015 bool do_cond_resched; 3016 bool handover; 3017 bool flushed; 3018 u64 next_seq; 3019 3020 /* 3021 * Console drivers are called with interrupts disabled, so 3022 * @console_may_schedule should be cleared before; however, we may 3023 * end up dumping a lot of lines, for example, if called from 3024 * console registration path, and should invoke cond_resched() 3025 * between lines if allowable. Not doing so can cause a very long 3026 * scheduling stall on a slow console leading to RCU stall and 3027 * softlockup warnings which exacerbate the issue with more 3028 * messages practically incapacitating the system. Therefore, create 3029 * a local to use for the printing loop. 3030 */ 3031 do_cond_resched = console_may_schedule; 3032 3033 do { 3034 console_may_schedule = 0; 3035 3036 flushed = console_flush_all(do_cond_resched, &next_seq, &handover); 3037 if (!handover) 3038 __console_unlock(); 3039 3040 /* 3041 * Abort if there was a failure to flush all messages to all 3042 * usable consoles. Either it is not possible to flush (in 3043 * which case it would be an infinite loop of retrying) or 3044 * another context has taken over printing. 3045 */ 3046 if (!flushed) 3047 break; 3048 3049 /* 3050 * Some context may have added new records after 3051 * console_flush_all() but before unlocking the console. 3052 * Re-check if there is a new record to flush. If the trylock 3053 * fails, another context is already handling the printing. 3054 */ 3055 } while (prb_read_valid(prb, next_seq, NULL) && console_trylock()); 3056 } 3057 EXPORT_SYMBOL(console_unlock); 3058 3059 /** 3060 * console_conditional_schedule - yield the CPU if required 3061 * 3062 * If the console code is currently allowed to sleep, and 3063 * if this CPU should yield the CPU to another task, do 3064 * so here. 3065 * 3066 * Must be called within console_lock();. 3067 */ 3068 void __sched console_conditional_schedule(void) 3069 { 3070 if (console_may_schedule) 3071 cond_resched(); 3072 } 3073 EXPORT_SYMBOL(console_conditional_schedule); 3074 3075 void console_unblank(void) 3076 { 3077 bool found_unblank = false; 3078 struct console *c; 3079 int cookie; 3080 3081 /* 3082 * First check if there are any consoles implementing the unblank() 3083 * callback. If not, there is no reason to continue and take the 3084 * console lock, which in particular can be dangerous if 3085 * @oops_in_progress is set. 3086 */ 3087 cookie = console_srcu_read_lock(); 3088 for_each_console_srcu(c) { 3089 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) { 3090 found_unblank = true; 3091 break; 3092 } 3093 } 3094 console_srcu_read_unlock(cookie); 3095 if (!found_unblank) 3096 return; 3097 3098 /* 3099 * Stop console printing because the unblank() callback may 3100 * assume the console is not within its write() callback. 3101 * 3102 * If @oops_in_progress is set, this may be an atomic context. 3103 * In that case, attempt a trylock as best-effort. 3104 */ 3105 if (oops_in_progress) { 3106 /* Semaphores are not NMI-safe. */ 3107 if (in_nmi()) 3108 return; 3109 3110 /* 3111 * Attempting to trylock the console lock can deadlock 3112 * if another CPU was stopped while modifying the 3113 * semaphore. "Hope and pray" that this is not the 3114 * current situation. 3115 */ 3116 if (down_trylock_console_sem() != 0) 3117 return; 3118 } else 3119 console_lock(); 3120 3121 console_locked = 1; 3122 console_may_schedule = 0; 3123 3124 cookie = console_srcu_read_lock(); 3125 for_each_console_srcu(c) { 3126 if ((console_srcu_read_flags(c) & CON_ENABLED) && c->unblank) 3127 c->unblank(); 3128 } 3129 console_srcu_read_unlock(cookie); 3130 3131 console_unlock(); 3132 3133 if (!oops_in_progress) 3134 pr_flush(1000, true); 3135 } 3136 3137 /** 3138 * console_flush_on_panic - flush console content on panic 3139 * @mode: flush all messages in buffer or just the pending ones 3140 * 3141 * Immediately output all pending messages no matter what. 3142 */ 3143 void console_flush_on_panic(enum con_flush_mode mode) 3144 { 3145 bool handover; 3146 u64 next_seq; 3147 3148 /* 3149 * Ignore the console lock and flush out the messages. Attempting a 3150 * trylock would not be useful because: 3151 * 3152 * - if it is contended, it must be ignored anyway 3153 * - console_lock() and console_trylock() block and fail 3154 * respectively in panic for non-panic CPUs 3155 * - semaphores are not NMI-safe 3156 */ 3157 3158 /* 3159 * If another context is holding the console lock, 3160 * @console_may_schedule might be set. Clear it so that 3161 * this context does not call cond_resched() while flushing. 3162 */ 3163 console_may_schedule = 0; 3164 3165 if (mode == CONSOLE_REPLAY_ALL) { 3166 struct console *c; 3167 short flags; 3168 int cookie; 3169 u64 seq; 3170 3171 seq = prb_first_valid_seq(prb); 3172 3173 cookie = console_srcu_read_lock(); 3174 for_each_console_srcu(c) { 3175 flags = console_srcu_read_flags(c); 3176 3177 if (flags & CON_NBCON) { 3178 nbcon_seq_force(c, seq); 3179 } else { 3180 /* 3181 * This is an unsynchronized assignment. On 3182 * panic legacy consoles are only best effort. 3183 */ 3184 c->seq = seq; 3185 } 3186 } 3187 console_srcu_read_unlock(cookie); 3188 } 3189 3190 console_flush_all(false, &next_seq, &handover); 3191 } 3192 3193 /* 3194 * Return the console tty driver structure and its associated index 3195 */ 3196 struct tty_driver *console_device(int *index) 3197 { 3198 struct console *c; 3199 struct tty_driver *driver = NULL; 3200 int cookie; 3201 3202 /* 3203 * Take console_lock to serialize device() callback with 3204 * other console operations. For example, fg_console is 3205 * modified under console_lock when switching vt. 3206 */ 3207 console_lock(); 3208 3209 cookie = console_srcu_read_lock(); 3210 for_each_console_srcu(c) { 3211 if (!c->device) 3212 continue; 3213 driver = c->device(c, index); 3214 if (driver) 3215 break; 3216 } 3217 console_srcu_read_unlock(cookie); 3218 3219 console_unlock(); 3220 return driver; 3221 } 3222 3223 /* 3224 * Prevent further output on the passed console device so that (for example) 3225 * serial drivers can disable console output before suspending a port, and can 3226 * re-enable output afterwards. 3227 */ 3228 void console_stop(struct console *console) 3229 { 3230 __pr_flush(console, 1000, true); 3231 console_list_lock(); 3232 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3233 console_list_unlock(); 3234 3235 /* 3236 * Ensure that all SRCU list walks have completed. All contexts must 3237 * be able to see that this console is disabled so that (for example) 3238 * the caller can suspend the port without risk of another context 3239 * using the port. 3240 */ 3241 synchronize_srcu(&console_srcu); 3242 } 3243 EXPORT_SYMBOL(console_stop); 3244 3245 void console_start(struct console *console) 3246 { 3247 console_list_lock(); 3248 console_srcu_write_flags(console, console->flags | CON_ENABLED); 3249 console_list_unlock(); 3250 __pr_flush(console, 1000, true); 3251 } 3252 EXPORT_SYMBOL(console_start); 3253 3254 static int __read_mostly keep_bootcon; 3255 3256 static int __init keep_bootcon_setup(char *str) 3257 { 3258 keep_bootcon = 1; 3259 pr_info("debug: skip boot console de-registration.\n"); 3260 3261 return 0; 3262 } 3263 3264 early_param("keep_bootcon", keep_bootcon_setup); 3265 3266 /* 3267 * This is called by register_console() to try to match 3268 * the newly registered console with any of the ones selected 3269 * by either the command line or add_preferred_console() and 3270 * setup/enable it. 3271 * 3272 * Care need to be taken with consoles that are statically 3273 * enabled such as netconsole 3274 */ 3275 static int try_enable_preferred_console(struct console *newcon, 3276 bool user_specified) 3277 { 3278 struct console_cmdline *c; 3279 int i, err; 3280 3281 for (i = 0, c = console_cmdline; 3282 i < MAX_CMDLINECONSOLES && c->name[0]; 3283 i++, c++) { 3284 if (c->user_specified != user_specified) 3285 continue; 3286 if (!newcon->match || 3287 newcon->match(newcon, c->name, c->index, c->options) != 0) { 3288 /* default matching */ 3289 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name)); 3290 if (strcmp(c->name, newcon->name) != 0) 3291 continue; 3292 if (newcon->index >= 0 && 3293 newcon->index != c->index) 3294 continue; 3295 if (newcon->index < 0) 3296 newcon->index = c->index; 3297 3298 if (_braille_register_console(newcon, c)) 3299 return 0; 3300 3301 if (newcon->setup && 3302 (err = newcon->setup(newcon, c->options)) != 0) 3303 return err; 3304 } 3305 newcon->flags |= CON_ENABLED; 3306 if (i == preferred_console) 3307 newcon->flags |= CON_CONSDEV; 3308 return 0; 3309 } 3310 3311 /* 3312 * Some consoles, such as pstore and netconsole, can be enabled even 3313 * without matching. Accept the pre-enabled consoles only when match() 3314 * and setup() had a chance to be called. 3315 */ 3316 if (newcon->flags & CON_ENABLED && c->user_specified == user_specified) 3317 return 0; 3318 3319 return -ENOENT; 3320 } 3321 3322 /* Try to enable the console unconditionally */ 3323 static void try_enable_default_console(struct console *newcon) 3324 { 3325 if (newcon->index < 0) 3326 newcon->index = 0; 3327 3328 if (newcon->setup && newcon->setup(newcon, NULL) != 0) 3329 return; 3330 3331 newcon->flags |= CON_ENABLED; 3332 3333 if (newcon->device) 3334 newcon->flags |= CON_CONSDEV; 3335 } 3336 3337 static void console_init_seq(struct console *newcon, bool bootcon_registered) 3338 { 3339 struct console *con; 3340 bool handover; 3341 3342 if (newcon->flags & (CON_PRINTBUFFER | CON_BOOT)) { 3343 /* Get a consistent copy of @syslog_seq. */ 3344 mutex_lock(&syslog_lock); 3345 newcon->seq = syslog_seq; 3346 mutex_unlock(&syslog_lock); 3347 } else { 3348 /* Begin with next message added to ringbuffer. */ 3349 newcon->seq = prb_next_seq(prb); 3350 3351 /* 3352 * If any enabled boot consoles are due to be unregistered 3353 * shortly, some may not be caught up and may be the same 3354 * device as @newcon. Since it is not known which boot console 3355 * is the same device, flush all consoles and, if necessary, 3356 * start with the message of the enabled boot console that is 3357 * the furthest behind. 3358 */ 3359 if (bootcon_registered && !keep_bootcon) { 3360 /* 3361 * Hold the console_lock to stop console printing and 3362 * guarantee safe access to console->seq. 3363 */ 3364 console_lock(); 3365 3366 /* 3367 * Flush all consoles and set the console to start at 3368 * the next unprinted sequence number. 3369 */ 3370 if (!console_flush_all(true, &newcon->seq, &handover)) { 3371 /* 3372 * Flushing failed. Just choose the lowest 3373 * sequence of the enabled boot consoles. 3374 */ 3375 3376 /* 3377 * If there was a handover, this context no 3378 * longer holds the console_lock. 3379 */ 3380 if (handover) 3381 console_lock(); 3382 3383 newcon->seq = prb_next_seq(prb); 3384 for_each_console(con) { 3385 if ((con->flags & CON_BOOT) && 3386 (con->flags & CON_ENABLED) && 3387 con->seq < newcon->seq) { 3388 newcon->seq = con->seq; 3389 } 3390 } 3391 } 3392 3393 console_unlock(); 3394 } 3395 } 3396 } 3397 3398 #define console_first() \ 3399 hlist_entry(console_list.first, struct console, node) 3400 3401 static int unregister_console_locked(struct console *console); 3402 3403 /* 3404 * The console driver calls this routine during kernel initialization 3405 * to register the console printing procedure with printk() and to 3406 * print any messages that were printed by the kernel before the 3407 * console driver was initialized. 3408 * 3409 * This can happen pretty early during the boot process (because of 3410 * early_printk) - sometimes before setup_arch() completes - be careful 3411 * of what kernel features are used - they may not be initialised yet. 3412 * 3413 * There are two types of consoles - bootconsoles (early_printk) and 3414 * "real" consoles (everything which is not a bootconsole) which are 3415 * handled differently. 3416 * - Any number of bootconsoles can be registered at any time. 3417 * - As soon as a "real" console is registered, all bootconsoles 3418 * will be unregistered automatically. 3419 * - Once a "real" console is registered, any attempt to register a 3420 * bootconsoles will be rejected 3421 */ 3422 void register_console(struct console *newcon) 3423 { 3424 struct console *con; 3425 bool bootcon_registered = false; 3426 bool realcon_registered = false; 3427 int err; 3428 3429 console_list_lock(); 3430 3431 for_each_console(con) { 3432 if (WARN(con == newcon, "console '%s%d' already registered\n", 3433 con->name, con->index)) { 3434 goto unlock; 3435 } 3436 3437 if (con->flags & CON_BOOT) 3438 bootcon_registered = true; 3439 else 3440 realcon_registered = true; 3441 } 3442 3443 /* Do not register boot consoles when there already is a real one. */ 3444 if ((newcon->flags & CON_BOOT) && realcon_registered) { 3445 pr_info("Too late to register bootconsole %s%d\n", 3446 newcon->name, newcon->index); 3447 goto unlock; 3448 } 3449 3450 if (newcon->flags & CON_NBCON) { 3451 /* 3452 * Ensure the nbcon console buffers can be allocated 3453 * before modifying any global data. 3454 */ 3455 if (!nbcon_alloc(newcon)) 3456 goto unlock; 3457 } 3458 3459 /* 3460 * See if we want to enable this console driver by default. 3461 * 3462 * Nope when a console is preferred by the command line, device 3463 * tree, or SPCR. 3464 * 3465 * The first real console with tty binding (driver) wins. More 3466 * consoles might get enabled before the right one is found. 3467 * 3468 * Note that a console with tty binding will have CON_CONSDEV 3469 * flag set and will be first in the list. 3470 */ 3471 if (preferred_console < 0) { 3472 if (hlist_empty(&console_list) || !console_first()->device || 3473 console_first()->flags & CON_BOOT) { 3474 try_enable_default_console(newcon); 3475 } 3476 } 3477 3478 /* See if this console matches one we selected on the command line */ 3479 err = try_enable_preferred_console(newcon, true); 3480 3481 /* If not, try to match against the platform default(s) */ 3482 if (err == -ENOENT) 3483 err = try_enable_preferred_console(newcon, false); 3484 3485 /* printk() messages are not printed to the Braille console. */ 3486 if (err || newcon->flags & CON_BRL) { 3487 if (newcon->flags & CON_NBCON) 3488 nbcon_free(newcon); 3489 goto unlock; 3490 } 3491 3492 /* 3493 * If we have a bootconsole, and are switching to a real console, 3494 * don't print everything out again, since when the boot console, and 3495 * the real console are the same physical device, it's annoying to 3496 * see the beginning boot messages twice 3497 */ 3498 if (bootcon_registered && 3499 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV)) { 3500 newcon->flags &= ~CON_PRINTBUFFER; 3501 } 3502 3503 newcon->dropped = 0; 3504 console_init_seq(newcon, bootcon_registered); 3505 3506 if (newcon->flags & CON_NBCON) 3507 nbcon_init(newcon); 3508 3509 /* 3510 * Put this console in the list - keep the 3511 * preferred driver at the head of the list. 3512 */ 3513 if (hlist_empty(&console_list)) { 3514 /* Ensure CON_CONSDEV is always set for the head. */ 3515 newcon->flags |= CON_CONSDEV; 3516 hlist_add_head_rcu(&newcon->node, &console_list); 3517 3518 } else if (newcon->flags & CON_CONSDEV) { 3519 /* Only the new head can have CON_CONSDEV set. */ 3520 console_srcu_write_flags(console_first(), console_first()->flags & ~CON_CONSDEV); 3521 hlist_add_head_rcu(&newcon->node, &console_list); 3522 3523 } else { 3524 hlist_add_behind_rcu(&newcon->node, console_list.first); 3525 } 3526 3527 /* 3528 * No need to synchronize SRCU here! The caller does not rely 3529 * on all contexts being able to see the new console before 3530 * register_console() completes. 3531 */ 3532 3533 console_sysfs_notify(); 3534 3535 /* 3536 * By unregistering the bootconsoles after we enable the real console 3537 * we get the "console xxx enabled" message on all the consoles - 3538 * boot consoles, real consoles, etc - this is to ensure that end 3539 * users know there might be something in the kernel's log buffer that 3540 * went to the bootconsole (that they do not see on the real console) 3541 */ 3542 con_printk(KERN_INFO, newcon, "enabled\n"); 3543 if (bootcon_registered && 3544 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) && 3545 !keep_bootcon) { 3546 struct hlist_node *tmp; 3547 3548 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3549 if (con->flags & CON_BOOT) 3550 unregister_console_locked(con); 3551 } 3552 } 3553 unlock: 3554 console_list_unlock(); 3555 } 3556 EXPORT_SYMBOL(register_console); 3557 3558 /* Must be called under console_list_lock(). */ 3559 static int unregister_console_locked(struct console *console) 3560 { 3561 int res; 3562 3563 lockdep_assert_console_list_lock_held(); 3564 3565 con_printk(KERN_INFO, console, "disabled\n"); 3566 3567 res = _braille_unregister_console(console); 3568 if (res < 0) 3569 return res; 3570 if (res > 0) 3571 return 0; 3572 3573 /* Disable it unconditionally */ 3574 console_srcu_write_flags(console, console->flags & ~CON_ENABLED); 3575 3576 if (!console_is_registered_locked(console)) 3577 return -ENODEV; 3578 3579 hlist_del_init_rcu(&console->node); 3580 3581 /* 3582 * <HISTORICAL> 3583 * If this isn't the last console and it has CON_CONSDEV set, we 3584 * need to set it on the next preferred console. 3585 * </HISTORICAL> 3586 * 3587 * The above makes no sense as there is no guarantee that the next 3588 * console has any device attached. Oh well.... 3589 */ 3590 if (!hlist_empty(&console_list) && console->flags & CON_CONSDEV) 3591 console_srcu_write_flags(console_first(), console_first()->flags | CON_CONSDEV); 3592 3593 /* 3594 * Ensure that all SRCU list walks have completed. All contexts 3595 * must not be able to see this console in the list so that any 3596 * exit/cleanup routines can be performed safely. 3597 */ 3598 synchronize_srcu(&console_srcu); 3599 3600 if (console->flags & CON_NBCON) 3601 nbcon_free(console); 3602 3603 console_sysfs_notify(); 3604 3605 if (console->exit) 3606 res = console->exit(console); 3607 3608 return res; 3609 } 3610 3611 int unregister_console(struct console *console) 3612 { 3613 int res; 3614 3615 console_list_lock(); 3616 res = unregister_console_locked(console); 3617 console_list_unlock(); 3618 return res; 3619 } 3620 EXPORT_SYMBOL(unregister_console); 3621 3622 /** 3623 * console_force_preferred_locked - force a registered console preferred 3624 * @con: The registered console to force preferred. 3625 * 3626 * Must be called under console_list_lock(). 3627 */ 3628 void console_force_preferred_locked(struct console *con) 3629 { 3630 struct console *cur_pref_con; 3631 3632 if (!console_is_registered_locked(con)) 3633 return; 3634 3635 cur_pref_con = console_first(); 3636 3637 /* Already preferred? */ 3638 if (cur_pref_con == con) 3639 return; 3640 3641 /* 3642 * Delete, but do not re-initialize the entry. This allows the console 3643 * to continue to appear registered (via any hlist_unhashed_lockless() 3644 * checks), even though it was briefly removed from the console list. 3645 */ 3646 hlist_del_rcu(&con->node); 3647 3648 /* 3649 * Ensure that all SRCU list walks have completed so that the console 3650 * can be added to the beginning of the console list and its forward 3651 * list pointer can be re-initialized. 3652 */ 3653 synchronize_srcu(&console_srcu); 3654 3655 con->flags |= CON_CONSDEV; 3656 WARN_ON(!con->device); 3657 3658 /* Only the new head can have CON_CONSDEV set. */ 3659 console_srcu_write_flags(cur_pref_con, cur_pref_con->flags & ~CON_CONSDEV); 3660 hlist_add_head_rcu(&con->node, &console_list); 3661 } 3662 EXPORT_SYMBOL(console_force_preferred_locked); 3663 3664 /* 3665 * Initialize the console device. This is called *early*, so 3666 * we can't necessarily depend on lots of kernel help here. 3667 * Just do some early initializations, and do the complex setup 3668 * later. 3669 */ 3670 void __init console_init(void) 3671 { 3672 int ret; 3673 initcall_t call; 3674 initcall_entry_t *ce; 3675 3676 /* Setup the default TTY line discipline. */ 3677 n_tty_init(); 3678 3679 /* 3680 * set up the console device so that later boot sequences can 3681 * inform about problems etc.. 3682 */ 3683 ce = __con_initcall_start; 3684 trace_initcall_level("console"); 3685 while (ce < __con_initcall_end) { 3686 call = initcall_from_entry(ce); 3687 trace_initcall_start(call); 3688 ret = call(); 3689 trace_initcall_finish(call, ret); 3690 ce++; 3691 } 3692 } 3693 3694 /* 3695 * Some boot consoles access data that is in the init section and which will 3696 * be discarded after the initcalls have been run. To make sure that no code 3697 * will access this data, unregister the boot consoles in a late initcall. 3698 * 3699 * If for some reason, such as deferred probe or the driver being a loadable 3700 * module, the real console hasn't registered yet at this point, there will 3701 * be a brief interval in which no messages are logged to the console, which 3702 * makes it difficult to diagnose problems that occur during this time. 3703 * 3704 * To mitigate this problem somewhat, only unregister consoles whose memory 3705 * intersects with the init section. Note that all other boot consoles will 3706 * get unregistered when the real preferred console is registered. 3707 */ 3708 static int __init printk_late_init(void) 3709 { 3710 struct hlist_node *tmp; 3711 struct console *con; 3712 int ret; 3713 3714 console_list_lock(); 3715 hlist_for_each_entry_safe(con, tmp, &console_list, node) { 3716 if (!(con->flags & CON_BOOT)) 3717 continue; 3718 3719 /* Check addresses that might be used for enabled consoles. */ 3720 if (init_section_intersects(con, sizeof(*con)) || 3721 init_section_contains(con->write, 0) || 3722 init_section_contains(con->read, 0) || 3723 init_section_contains(con->device, 0) || 3724 init_section_contains(con->unblank, 0) || 3725 init_section_contains(con->data, 0)) { 3726 /* 3727 * Please, consider moving the reported consoles out 3728 * of the init section. 3729 */ 3730 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n", 3731 con->name, con->index); 3732 unregister_console_locked(con); 3733 } 3734 } 3735 console_list_unlock(); 3736 3737 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL, 3738 console_cpu_notify); 3739 WARN_ON(ret < 0); 3740 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online", 3741 console_cpu_notify, NULL); 3742 WARN_ON(ret < 0); 3743 printk_sysctl_init(); 3744 return 0; 3745 } 3746 late_initcall(printk_late_init); 3747 3748 #if defined CONFIG_PRINTK 3749 /* If @con is specified, only wait for that console. Otherwise wait for all. */ 3750 static bool __pr_flush(struct console *con, int timeout_ms, bool reset_on_progress) 3751 { 3752 unsigned long timeout_jiffies = msecs_to_jiffies(timeout_ms); 3753 unsigned long remaining_jiffies = timeout_jiffies; 3754 struct console *c; 3755 u64 last_diff = 0; 3756 u64 printk_seq; 3757 short flags; 3758 int cookie; 3759 u64 diff; 3760 u64 seq; 3761 3762 might_sleep(); 3763 3764 seq = prb_next_seq(prb); 3765 3766 /* Flush the consoles so that records up to @seq are printed. */ 3767 console_lock(); 3768 console_unlock(); 3769 3770 for (;;) { 3771 unsigned long begin_jiffies; 3772 unsigned long slept_jiffies; 3773 3774 diff = 0; 3775 3776 /* 3777 * Hold the console_lock to guarantee safe access to 3778 * console->seq. Releasing console_lock flushes more 3779 * records in case @seq is still not printed on all 3780 * usable consoles. 3781 */ 3782 console_lock(); 3783 3784 cookie = console_srcu_read_lock(); 3785 for_each_console_srcu(c) { 3786 if (con && con != c) 3787 continue; 3788 3789 flags = console_srcu_read_flags(c); 3790 3791 /* 3792 * If consoles are not usable, it cannot be expected 3793 * that they make forward progress, so only increment 3794 * @diff for usable consoles. 3795 */ 3796 if (!console_is_usable(c)) 3797 continue; 3798 3799 if (flags & CON_NBCON) { 3800 printk_seq = nbcon_seq_read(c); 3801 } else { 3802 printk_seq = c->seq; 3803 } 3804 3805 if (printk_seq < seq) 3806 diff += seq - printk_seq; 3807 } 3808 console_srcu_read_unlock(cookie); 3809 3810 if (diff != last_diff && reset_on_progress) 3811 remaining_jiffies = timeout_jiffies; 3812 3813 console_unlock(); 3814 3815 /* Note: @diff is 0 if there are no usable consoles. */ 3816 if (diff == 0 || remaining_jiffies == 0) 3817 break; 3818 3819 /* msleep(1) might sleep much longer. Check time by jiffies. */ 3820 begin_jiffies = jiffies; 3821 msleep(1); 3822 slept_jiffies = jiffies - begin_jiffies; 3823 3824 remaining_jiffies -= min(slept_jiffies, remaining_jiffies); 3825 3826 last_diff = diff; 3827 } 3828 3829 return (diff == 0); 3830 } 3831 3832 /** 3833 * pr_flush() - Wait for printing threads to catch up. 3834 * 3835 * @timeout_ms: The maximum time (in ms) to wait. 3836 * @reset_on_progress: Reset the timeout if forward progress is seen. 3837 * 3838 * A value of 0 for @timeout_ms means no waiting will occur. A value of -1 3839 * represents infinite waiting. 3840 * 3841 * If @reset_on_progress is true, the timeout will be reset whenever any 3842 * printer has been seen to make some forward progress. 3843 * 3844 * Context: Process context. May sleep while acquiring console lock. 3845 * Return: true if all usable printers are caught up. 3846 */ 3847 static bool pr_flush(int timeout_ms, bool reset_on_progress) 3848 { 3849 return __pr_flush(NULL, timeout_ms, reset_on_progress); 3850 } 3851 3852 /* 3853 * Delayed printk version, for scheduler-internal messages: 3854 */ 3855 #define PRINTK_PENDING_WAKEUP 0x01 3856 #define PRINTK_PENDING_OUTPUT 0x02 3857 3858 static DEFINE_PER_CPU(int, printk_pending); 3859 3860 static void wake_up_klogd_work_func(struct irq_work *irq_work) 3861 { 3862 int pending = this_cpu_xchg(printk_pending, 0); 3863 3864 if (pending & PRINTK_PENDING_OUTPUT) { 3865 /* If trylock fails, someone else is doing the printing */ 3866 if (console_trylock()) 3867 console_unlock(); 3868 } 3869 3870 if (pending & PRINTK_PENDING_WAKEUP) 3871 wake_up_interruptible(&log_wait); 3872 } 3873 3874 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = 3875 IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func); 3876 3877 static void __wake_up_klogd(int val) 3878 { 3879 if (!printk_percpu_data_ready()) 3880 return; 3881 3882 preempt_disable(); 3883 /* 3884 * Guarantee any new records can be seen by tasks preparing to wait 3885 * before this context checks if the wait queue is empty. 3886 * 3887 * The full memory barrier within wq_has_sleeper() pairs with the full 3888 * memory barrier within set_current_state() of 3889 * prepare_to_wait_event(), which is called after ___wait_event() adds 3890 * the waiter but before it has checked the wait condition. 3891 * 3892 * This pairs with devkmsg_read:A and syslog_print:A. 3893 */ 3894 if (wq_has_sleeper(&log_wait) || /* LMM(__wake_up_klogd:A) */ 3895 (val & PRINTK_PENDING_OUTPUT)) { 3896 this_cpu_or(printk_pending, val); 3897 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work)); 3898 } 3899 preempt_enable(); 3900 } 3901 3902 /** 3903 * wake_up_klogd - Wake kernel logging daemon 3904 * 3905 * Use this function when new records have been added to the ringbuffer 3906 * and the console printing of those records has already occurred or is 3907 * known to be handled by some other context. This function will only 3908 * wake the logging daemon. 3909 * 3910 * Context: Any context. 3911 */ 3912 void wake_up_klogd(void) 3913 { 3914 __wake_up_klogd(PRINTK_PENDING_WAKEUP); 3915 } 3916 3917 /** 3918 * defer_console_output - Wake kernel logging daemon and trigger 3919 * console printing in a deferred context 3920 * 3921 * Use this function when new records have been added to the ringbuffer, 3922 * this context is responsible for console printing those records, but 3923 * the current context is not allowed to perform the console printing. 3924 * Trigger an irq_work context to perform the console printing. This 3925 * function also wakes the logging daemon. 3926 * 3927 * Context: Any context. 3928 */ 3929 void defer_console_output(void) 3930 { 3931 /* 3932 * New messages may have been added directly to the ringbuffer 3933 * using vprintk_store(), so wake any waiters as well. 3934 */ 3935 __wake_up_klogd(PRINTK_PENDING_WAKEUP | PRINTK_PENDING_OUTPUT); 3936 } 3937 3938 void printk_trigger_flush(void) 3939 { 3940 defer_console_output(); 3941 } 3942 3943 int vprintk_deferred(const char *fmt, va_list args) 3944 { 3945 return vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args); 3946 } 3947 3948 int _printk_deferred(const char *fmt, ...) 3949 { 3950 va_list args; 3951 int r; 3952 3953 va_start(args, fmt); 3954 r = vprintk_deferred(fmt, args); 3955 va_end(args); 3956 3957 return r; 3958 } 3959 3960 /* 3961 * printk rate limiting, lifted from the networking subsystem. 3962 * 3963 * This enforces a rate limit: not more than 10 kernel messages 3964 * every 5s to make a denial-of-service attack impossible. 3965 */ 3966 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10); 3967 3968 int __printk_ratelimit(const char *func) 3969 { 3970 return ___ratelimit(&printk_ratelimit_state, func); 3971 } 3972 EXPORT_SYMBOL(__printk_ratelimit); 3973 3974 /** 3975 * printk_timed_ratelimit - caller-controlled printk ratelimiting 3976 * @caller_jiffies: pointer to caller's state 3977 * @interval_msecs: minimum interval between prints 3978 * 3979 * printk_timed_ratelimit() returns true if more than @interval_msecs 3980 * milliseconds have elapsed since the last time printk_timed_ratelimit() 3981 * returned true. 3982 */ 3983 bool printk_timed_ratelimit(unsigned long *caller_jiffies, 3984 unsigned int interval_msecs) 3985 { 3986 unsigned long elapsed = jiffies - *caller_jiffies; 3987 3988 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs)) 3989 return false; 3990 3991 *caller_jiffies = jiffies; 3992 return true; 3993 } 3994 EXPORT_SYMBOL(printk_timed_ratelimit); 3995 3996 static DEFINE_SPINLOCK(dump_list_lock); 3997 static LIST_HEAD(dump_list); 3998 3999 /** 4000 * kmsg_dump_register - register a kernel log dumper. 4001 * @dumper: pointer to the kmsg_dumper structure 4002 * 4003 * Adds a kernel log dumper to the system. The dump callback in the 4004 * structure will be called when the kernel oopses or panics and must be 4005 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise. 4006 */ 4007 int kmsg_dump_register(struct kmsg_dumper *dumper) 4008 { 4009 unsigned long flags; 4010 int err = -EBUSY; 4011 4012 /* The dump callback needs to be set */ 4013 if (!dumper->dump) 4014 return -EINVAL; 4015 4016 spin_lock_irqsave(&dump_list_lock, flags); 4017 /* Don't allow registering multiple times */ 4018 if (!dumper->registered) { 4019 dumper->registered = 1; 4020 list_add_tail_rcu(&dumper->list, &dump_list); 4021 err = 0; 4022 } 4023 spin_unlock_irqrestore(&dump_list_lock, flags); 4024 4025 return err; 4026 } 4027 EXPORT_SYMBOL_GPL(kmsg_dump_register); 4028 4029 /** 4030 * kmsg_dump_unregister - unregister a kmsg dumper. 4031 * @dumper: pointer to the kmsg_dumper structure 4032 * 4033 * Removes a dump device from the system. Returns zero on success and 4034 * %-EINVAL otherwise. 4035 */ 4036 int kmsg_dump_unregister(struct kmsg_dumper *dumper) 4037 { 4038 unsigned long flags; 4039 int err = -EINVAL; 4040 4041 spin_lock_irqsave(&dump_list_lock, flags); 4042 if (dumper->registered) { 4043 dumper->registered = 0; 4044 list_del_rcu(&dumper->list); 4045 err = 0; 4046 } 4047 spin_unlock_irqrestore(&dump_list_lock, flags); 4048 synchronize_rcu(); 4049 4050 return err; 4051 } 4052 EXPORT_SYMBOL_GPL(kmsg_dump_unregister); 4053 4054 static bool always_kmsg_dump; 4055 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR); 4056 4057 const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason) 4058 { 4059 switch (reason) { 4060 case KMSG_DUMP_PANIC: 4061 return "Panic"; 4062 case KMSG_DUMP_OOPS: 4063 return "Oops"; 4064 case KMSG_DUMP_EMERG: 4065 return "Emergency"; 4066 case KMSG_DUMP_SHUTDOWN: 4067 return "Shutdown"; 4068 default: 4069 return "Unknown"; 4070 } 4071 } 4072 EXPORT_SYMBOL_GPL(kmsg_dump_reason_str); 4073 4074 /** 4075 * kmsg_dump - dump kernel log to kernel message dumpers. 4076 * @reason: the reason (oops, panic etc) for dumping 4077 * 4078 * Call each of the registered dumper's dump() callback, which can 4079 * retrieve the kmsg records with kmsg_dump_get_line() or 4080 * kmsg_dump_get_buffer(). 4081 */ 4082 void kmsg_dump(enum kmsg_dump_reason reason) 4083 { 4084 struct kmsg_dumper *dumper; 4085 4086 rcu_read_lock(); 4087 list_for_each_entry_rcu(dumper, &dump_list, list) { 4088 enum kmsg_dump_reason max_reason = dumper->max_reason; 4089 4090 /* 4091 * If client has not provided a specific max_reason, default 4092 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set. 4093 */ 4094 if (max_reason == KMSG_DUMP_UNDEF) { 4095 max_reason = always_kmsg_dump ? KMSG_DUMP_MAX : 4096 KMSG_DUMP_OOPS; 4097 } 4098 if (reason > max_reason) 4099 continue; 4100 4101 /* invoke dumper which will iterate over records */ 4102 dumper->dump(dumper, reason); 4103 } 4104 rcu_read_unlock(); 4105 } 4106 4107 /** 4108 * kmsg_dump_get_line - retrieve one kmsg log line 4109 * @iter: kmsg dump iterator 4110 * @syslog: include the "<4>" prefixes 4111 * @line: buffer to copy the line to 4112 * @size: maximum size of the buffer 4113 * @len: length of line placed into buffer 4114 * 4115 * Start at the beginning of the kmsg buffer, with the oldest kmsg 4116 * record, and copy one record into the provided buffer. 4117 * 4118 * Consecutive calls will return the next available record moving 4119 * towards the end of the buffer with the youngest messages. 4120 * 4121 * A return value of FALSE indicates that there are no more records to 4122 * read. 4123 */ 4124 bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog, 4125 char *line, size_t size, size_t *len) 4126 { 4127 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4128 struct printk_info info; 4129 unsigned int line_count; 4130 struct printk_record r; 4131 size_t l = 0; 4132 bool ret = false; 4133 4134 if (iter->cur_seq < min_seq) 4135 iter->cur_seq = min_seq; 4136 4137 prb_rec_init_rd(&r, &info, line, size); 4138 4139 /* Read text or count text lines? */ 4140 if (line) { 4141 if (!prb_read_valid(prb, iter->cur_seq, &r)) 4142 goto out; 4143 l = record_print_text(&r, syslog, printk_time); 4144 } else { 4145 if (!prb_read_valid_info(prb, iter->cur_seq, 4146 &info, &line_count)) { 4147 goto out; 4148 } 4149 l = get_record_print_text_size(&info, line_count, syslog, 4150 printk_time); 4151 4152 } 4153 4154 iter->cur_seq = r.info->seq + 1; 4155 ret = true; 4156 out: 4157 if (len) 4158 *len = l; 4159 return ret; 4160 } 4161 EXPORT_SYMBOL_GPL(kmsg_dump_get_line); 4162 4163 /** 4164 * kmsg_dump_get_buffer - copy kmsg log lines 4165 * @iter: kmsg dump iterator 4166 * @syslog: include the "<4>" prefixes 4167 * @buf: buffer to copy the line to 4168 * @size: maximum size of the buffer 4169 * @len_out: length of line placed into buffer 4170 * 4171 * Start at the end of the kmsg buffer and fill the provided buffer 4172 * with as many of the *youngest* kmsg records that fit into it. 4173 * If the buffer is large enough, all available kmsg records will be 4174 * copied with a single call. 4175 * 4176 * Consecutive calls will fill the buffer with the next block of 4177 * available older records, not including the earlier retrieved ones. 4178 * 4179 * A return value of FALSE indicates that there are no more records to 4180 * read. 4181 */ 4182 bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog, 4183 char *buf, size_t size, size_t *len_out) 4184 { 4185 u64 min_seq = latched_seq_read_nolock(&clear_seq); 4186 struct printk_info info; 4187 struct printk_record r; 4188 u64 seq; 4189 u64 next_seq; 4190 size_t len = 0; 4191 bool ret = false; 4192 bool time = printk_time; 4193 4194 if (!buf || !size) 4195 goto out; 4196 4197 if (iter->cur_seq < min_seq) 4198 iter->cur_seq = min_seq; 4199 4200 if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) { 4201 if (info.seq != iter->cur_seq) { 4202 /* messages are gone, move to first available one */ 4203 iter->cur_seq = info.seq; 4204 } 4205 } 4206 4207 /* last entry */ 4208 if (iter->cur_seq >= iter->next_seq) 4209 goto out; 4210 4211 /* 4212 * Find first record that fits, including all following records, 4213 * into the user-provided buffer for this dump. Pass in size-1 4214 * because this function (by way of record_print_text()) will 4215 * not write more than size-1 bytes of text into @buf. 4216 */ 4217 seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq, 4218 size - 1, syslog, time); 4219 4220 /* 4221 * Next kmsg_dump_get_buffer() invocation will dump block of 4222 * older records stored right before this one. 4223 */ 4224 next_seq = seq; 4225 4226 prb_rec_init_rd(&r, &info, buf, size); 4227 4228 prb_for_each_record(seq, prb, seq, &r) { 4229 if (r.info->seq >= iter->next_seq) 4230 break; 4231 4232 len += record_print_text(&r, syslog, time); 4233 4234 /* Adjust record to store to remaining buffer space. */ 4235 prb_rec_init_rd(&r, &info, buf + len, size - len); 4236 } 4237 4238 iter->next_seq = next_seq; 4239 ret = true; 4240 out: 4241 if (len_out) 4242 *len_out = len; 4243 return ret; 4244 } 4245 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer); 4246 4247 /** 4248 * kmsg_dump_rewind - reset the iterator 4249 * @iter: kmsg dump iterator 4250 * 4251 * Reset the dumper's iterator so that kmsg_dump_get_line() and 4252 * kmsg_dump_get_buffer() can be called again and used multiple 4253 * times within the same dumper.dump() callback. 4254 */ 4255 void kmsg_dump_rewind(struct kmsg_dump_iter *iter) 4256 { 4257 iter->cur_seq = latched_seq_read_nolock(&clear_seq); 4258 iter->next_seq = prb_next_seq(prb); 4259 } 4260 EXPORT_SYMBOL_GPL(kmsg_dump_rewind); 4261 4262 #endif 4263 4264 #ifdef CONFIG_SMP 4265 static atomic_t printk_cpu_sync_owner = ATOMIC_INIT(-1); 4266 static atomic_t printk_cpu_sync_nested = ATOMIC_INIT(0); 4267 4268 /** 4269 * __printk_cpu_sync_wait() - Busy wait until the printk cpu-reentrant 4270 * spinning lock is not owned by any CPU. 4271 * 4272 * Context: Any context. 4273 */ 4274 void __printk_cpu_sync_wait(void) 4275 { 4276 do { 4277 cpu_relax(); 4278 } while (atomic_read(&printk_cpu_sync_owner) != -1); 4279 } 4280 EXPORT_SYMBOL(__printk_cpu_sync_wait); 4281 4282 /** 4283 * __printk_cpu_sync_try_get() - Try to acquire the printk cpu-reentrant 4284 * spinning lock. 4285 * 4286 * If no processor has the lock, the calling processor takes the lock and 4287 * becomes the owner. If the calling processor is already the owner of the 4288 * lock, this function succeeds immediately. 4289 * 4290 * Context: Any context. Expects interrupts to be disabled. 4291 * Return: 1 on success, otherwise 0. 4292 */ 4293 int __printk_cpu_sync_try_get(void) 4294 { 4295 int cpu; 4296 int old; 4297 4298 cpu = smp_processor_id(); 4299 4300 /* 4301 * Guarantee loads and stores from this CPU when it is the lock owner 4302 * are _not_ visible to the previous lock owner. This pairs with 4303 * __printk_cpu_sync_put:B. 4304 * 4305 * Memory barrier involvement: 4306 * 4307 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4308 * then __printk_cpu_sync_put:A can never read from 4309 * __printk_cpu_sync_try_get:B. 4310 * 4311 * Relies on: 4312 * 4313 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4314 * of the previous CPU 4315 * matching 4316 * ACQUIRE from __printk_cpu_sync_try_get:A to 4317 * __printk_cpu_sync_try_get:B of this CPU 4318 */ 4319 old = atomic_cmpxchg_acquire(&printk_cpu_sync_owner, -1, 4320 cpu); /* LMM(__printk_cpu_sync_try_get:A) */ 4321 if (old == -1) { 4322 /* 4323 * This CPU is now the owner and begins loading/storing 4324 * data: LMM(__printk_cpu_sync_try_get:B) 4325 */ 4326 return 1; 4327 4328 } else if (old == cpu) { 4329 /* This CPU is already the owner. */ 4330 atomic_inc(&printk_cpu_sync_nested); 4331 return 1; 4332 } 4333 4334 return 0; 4335 } 4336 EXPORT_SYMBOL(__printk_cpu_sync_try_get); 4337 4338 /** 4339 * __printk_cpu_sync_put() - Release the printk cpu-reentrant spinning lock. 4340 * 4341 * The calling processor must be the owner of the lock. 4342 * 4343 * Context: Any context. Expects interrupts to be disabled. 4344 */ 4345 void __printk_cpu_sync_put(void) 4346 { 4347 if (atomic_read(&printk_cpu_sync_nested)) { 4348 atomic_dec(&printk_cpu_sync_nested); 4349 return; 4350 } 4351 4352 /* 4353 * This CPU is finished loading/storing data: 4354 * LMM(__printk_cpu_sync_put:A) 4355 */ 4356 4357 /* 4358 * Guarantee loads and stores from this CPU when it was the 4359 * lock owner are visible to the next lock owner. This pairs 4360 * with __printk_cpu_sync_try_get:A. 4361 * 4362 * Memory barrier involvement: 4363 * 4364 * If __printk_cpu_sync_try_get:A reads from __printk_cpu_sync_put:B, 4365 * then __printk_cpu_sync_try_get:B reads from __printk_cpu_sync_put:A. 4366 * 4367 * Relies on: 4368 * 4369 * RELEASE from __printk_cpu_sync_put:A to __printk_cpu_sync_put:B 4370 * of this CPU 4371 * matching 4372 * ACQUIRE from __printk_cpu_sync_try_get:A to 4373 * __printk_cpu_sync_try_get:B of the next CPU 4374 */ 4375 atomic_set_release(&printk_cpu_sync_owner, 4376 -1); /* LMM(__printk_cpu_sync_put:B) */ 4377 } 4378 EXPORT_SYMBOL(__printk_cpu_sync_put); 4379 #endif /* CONFIG_SMP */ 4380