xref: /linux/kernel/power/swap.c (revision f879306834818ebd1722a4372079610cdd466fec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <linux/cpumask.h>
28 #include <linux/atomic.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/ktime.h>
32 
33 #include "power.h"
34 
35 #define HIBERNATE_SIG	"S1SUSPEND"
36 
37 u32 swsusp_hardware_signature;
38 
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46 
47 /*
48  *	The swap map is a data structure used for keeping track of each page
49  *	written to a swap partition.  It consists of many swap_map_page
50  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *	These structures are stored on the swap and linked together with the
52  *	help of the .next_swap member.
53  *
54  *	The swap map is created during suspend.  The swap map pages are
55  *	allocated and populated one at a time, so we only need one memory
56  *	page to set up the entire structure.
57  *
58  *	During resume we pick up all swap_map_page structures into a list.
59  */
60 
61 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
62 
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68 	return nr_free_pages() - nr_free_highpages();
69 }
70 
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77 	return low_free_pages() / 2;
78 }
79 
80 struct swap_map_page {
81 	sector_t entries[MAP_PAGE_ENTRIES];
82 	sector_t next_swap;
83 };
84 
85 struct swap_map_page_list {
86 	struct swap_map_page *map;
87 	struct swap_map_page_list *next;
88 };
89 
90 /*
91  *	The swap_map_handle structure is used for handling swap in
92  *	a file-alike way
93  */
94 
95 struct swap_map_handle {
96 	struct swap_map_page *cur;
97 	struct swap_map_page_list *maps;
98 	sector_t cur_swap;
99 	sector_t first_sector;
100 	unsigned int k;
101 	unsigned long reqd_free_pages;
102 	u32 crc32;
103 };
104 
105 struct swsusp_header {
106 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107 	              sizeof(u32) - sizeof(u32)];
108 	u32	hw_sig;
109 	u32	crc32;
110 	sector_t image;
111 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
112 	char	orig_sig[10];
113 	char	sig[10];
114 } __packed;
115 
116 static struct swsusp_header *swsusp_header;
117 
118 /*
119  *	The following functions are used for tracing the allocated
120  *	swap pages, so that they can be freed in case of an error.
121  */
122 
123 struct swsusp_extent {
124 	struct rb_node node;
125 	unsigned long start;
126 	unsigned long end;
127 };
128 
129 static struct rb_root swsusp_extents = RB_ROOT;
130 
131 static int swsusp_extents_insert(unsigned long swap_offset)
132 {
133 	struct rb_node **new = &(swsusp_extents.rb_node);
134 	struct rb_node *parent = NULL;
135 	struct swsusp_extent *ext;
136 
137 	/* Figure out where to put the new node */
138 	while (*new) {
139 		ext = rb_entry(*new, struct swsusp_extent, node);
140 		parent = *new;
141 		if (swap_offset < ext->start) {
142 			/* Try to merge */
143 			if (swap_offset == ext->start - 1) {
144 				ext->start--;
145 				return 0;
146 			}
147 			new = &((*new)->rb_left);
148 		} else if (swap_offset > ext->end) {
149 			/* Try to merge */
150 			if (swap_offset == ext->end + 1) {
151 				ext->end++;
152 				return 0;
153 			}
154 			new = &((*new)->rb_right);
155 		} else {
156 			/* It already is in the tree */
157 			return -EINVAL;
158 		}
159 	}
160 	/* Add the new node and rebalance the tree. */
161 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
162 	if (!ext)
163 		return -ENOMEM;
164 
165 	ext->start = swap_offset;
166 	ext->end = swap_offset;
167 	rb_link_node(&ext->node, parent, new);
168 	rb_insert_color(&ext->node, &swsusp_extents);
169 	return 0;
170 }
171 
172 /*
173  *	alloc_swapdev_block - allocate a swap page and register that it has
174  *	been allocated, so that it can be freed in case of an error.
175  */
176 
177 sector_t alloc_swapdev_block(int swap)
178 {
179 	unsigned long offset;
180 
181 	offset = swp_offset(get_swap_page_of_type(swap));
182 	if (offset) {
183 		if (swsusp_extents_insert(offset))
184 			swap_free(swp_entry(swap, offset));
185 		else
186 			return swapdev_block(swap, offset);
187 	}
188 	return 0;
189 }
190 
191 /*
192  *	free_all_swap_pages - free swap pages allocated for saving image data.
193  *	It also frees the extents used to register which swap entries had been
194  *	allocated.
195  */
196 
197 void free_all_swap_pages(int swap)
198 {
199 	struct rb_node *node;
200 
201 	while ((node = swsusp_extents.rb_node)) {
202 		struct swsusp_extent *ext;
203 
204 		ext = rb_entry(node, struct swsusp_extent, node);
205 		rb_erase(node, &swsusp_extents);
206 		swap_free_nr(swp_entry(swap, ext->start),
207 			     ext->end - ext->start + 1);
208 
209 		kfree(ext);
210 	}
211 }
212 
213 int swsusp_swap_in_use(void)
214 {
215 	return (swsusp_extents.rb_node != NULL);
216 }
217 
218 /*
219  * General things
220  */
221 
222 static unsigned short root_swap = 0xffff;
223 static struct file *hib_resume_bdev_file;
224 
225 struct hib_bio_batch {
226 	atomic_t		count;
227 	wait_queue_head_t	wait;
228 	blk_status_t		error;
229 	struct blk_plug		plug;
230 };
231 
232 static void hib_init_batch(struct hib_bio_batch *hb)
233 {
234 	atomic_set(&hb->count, 0);
235 	init_waitqueue_head(&hb->wait);
236 	hb->error = BLK_STS_OK;
237 	blk_start_plug(&hb->plug);
238 }
239 
240 static void hib_finish_batch(struct hib_bio_batch *hb)
241 {
242 	blk_finish_plug(&hb->plug);
243 }
244 
245 static void hib_end_io(struct bio *bio)
246 {
247 	struct hib_bio_batch *hb = bio->bi_private;
248 	struct page *page = bio_first_page_all(bio);
249 
250 	if (bio->bi_status) {
251 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
252 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
253 			 (unsigned long long)bio->bi_iter.bi_sector);
254 	}
255 
256 	if (bio_data_dir(bio) == WRITE)
257 		put_page(page);
258 	else if (clean_pages_on_read)
259 		flush_icache_range((unsigned long)page_address(page),
260 				   (unsigned long)page_address(page) + PAGE_SIZE);
261 
262 	if (bio->bi_status && !hb->error)
263 		hb->error = bio->bi_status;
264 	if (atomic_dec_and_test(&hb->count))
265 		wake_up(&hb->wait);
266 
267 	bio_put(bio);
268 }
269 
270 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
271 			 struct hib_bio_batch *hb)
272 {
273 	struct page *page = virt_to_page(addr);
274 	struct bio *bio;
275 	int error = 0;
276 
277 	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
278 			GFP_NOIO | __GFP_HIGH);
279 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
280 
281 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
282 		pr_err("Adding page to bio failed at %llu\n",
283 		       (unsigned long long)bio->bi_iter.bi_sector);
284 		bio_put(bio);
285 		return -EFAULT;
286 	}
287 
288 	if (hb) {
289 		bio->bi_end_io = hib_end_io;
290 		bio->bi_private = hb;
291 		atomic_inc(&hb->count);
292 		submit_bio(bio);
293 	} else {
294 		error = submit_bio_wait(bio);
295 		bio_put(bio);
296 	}
297 
298 	return error;
299 }
300 
301 static int hib_wait_io(struct hib_bio_batch *hb)
302 {
303 	/*
304 	 * We are relying on the behavior of blk_plug that a thread with
305 	 * a plug will flush the plug list before sleeping.
306 	 */
307 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
308 	return blk_status_to_errno(hb->error);
309 }
310 
311 /*
312  * Saving part
313  */
314 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
315 {
316 	int error;
317 
318 	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
319 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
320 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
321 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
322 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
323 		swsusp_header->image = handle->first_sector;
324 		if (swsusp_hardware_signature) {
325 			swsusp_header->hw_sig = swsusp_hardware_signature;
326 			flags |= SF_HW_SIG;
327 		}
328 		swsusp_header->flags = flags;
329 		if (flags & SF_CRC32_MODE)
330 			swsusp_header->crc32 = handle->crc32;
331 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
332 				      swsusp_resume_block, swsusp_header, NULL);
333 	} else {
334 		pr_err("Swap header not found!\n");
335 		error = -ENODEV;
336 	}
337 	return error;
338 }
339 
340 /*
341  * Hold the swsusp_header flag. This is used in software_resume() in
342  * 'kernel/power/hibernate' to check if the image is compressed and query
343  * for the compression algorithm support(if so).
344  */
345 unsigned int swsusp_header_flags;
346 
347 /**
348  *	swsusp_swap_check - check if the resume device is a swap device
349  *	and get its index (if so)
350  *
351  *	This is called before saving image
352  */
353 static int swsusp_swap_check(void)
354 {
355 	int res;
356 
357 	if (swsusp_resume_device)
358 		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
359 	else
360 		res = find_first_swap(&swsusp_resume_device);
361 	if (res < 0)
362 		return res;
363 	root_swap = res;
364 
365 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
366 			BLK_OPEN_WRITE, NULL, NULL);
367 	if (IS_ERR(hib_resume_bdev_file))
368 		return PTR_ERR(hib_resume_bdev_file);
369 
370 	return 0;
371 }
372 
373 /**
374  *	write_page - Write one page to given swap location.
375  *	@buf:		Address we're writing.
376  *	@offset:	Offset of the swap page we're writing to.
377  *	@hb:		bio completion batch
378  */
379 
380 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
381 {
382 	void *src;
383 	int ret;
384 
385 	if (!offset)
386 		return -ENOSPC;
387 
388 	if (hb) {
389 		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
390 		                              __GFP_NORETRY);
391 		if (src) {
392 			copy_page(src, buf);
393 		} else {
394 			ret = hib_wait_io(hb); /* Free pages */
395 			if (ret)
396 				return ret;
397 			src = (void *)__get_free_page(GFP_NOIO |
398 			                              __GFP_NOWARN |
399 			                              __GFP_NORETRY);
400 			if (src) {
401 				copy_page(src, buf);
402 			} else {
403 				WARN_ON_ONCE(1);
404 				hb = NULL;	/* Go synchronous */
405 				src = buf;
406 			}
407 		}
408 	} else {
409 		src = buf;
410 	}
411 	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
412 }
413 
414 static void release_swap_writer(struct swap_map_handle *handle)
415 {
416 	if (handle->cur)
417 		free_page((unsigned long)handle->cur);
418 	handle->cur = NULL;
419 }
420 
421 static int get_swap_writer(struct swap_map_handle *handle)
422 {
423 	int ret;
424 
425 	ret = swsusp_swap_check();
426 	if (ret) {
427 		if (ret != -ENOSPC)
428 			pr_err("Cannot find swap device, try swapon -a\n");
429 		return ret;
430 	}
431 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
432 	if (!handle->cur) {
433 		ret = -ENOMEM;
434 		goto err_close;
435 	}
436 	handle->cur_swap = alloc_swapdev_block(root_swap);
437 	if (!handle->cur_swap) {
438 		ret = -ENOSPC;
439 		goto err_rel;
440 	}
441 	handle->k = 0;
442 	handle->reqd_free_pages = reqd_free_pages();
443 	handle->first_sector = handle->cur_swap;
444 	return 0;
445 err_rel:
446 	release_swap_writer(handle);
447 err_close:
448 	swsusp_close();
449 	return ret;
450 }
451 
452 static int swap_write_page(struct swap_map_handle *handle, void *buf,
453 		struct hib_bio_batch *hb)
454 {
455 	int error;
456 	sector_t offset;
457 
458 	if (!handle->cur)
459 		return -EINVAL;
460 	offset = alloc_swapdev_block(root_swap);
461 	error = write_page(buf, offset, hb);
462 	if (error)
463 		return error;
464 	handle->cur->entries[handle->k++] = offset;
465 	if (handle->k >= MAP_PAGE_ENTRIES) {
466 		offset = alloc_swapdev_block(root_swap);
467 		if (!offset)
468 			return -ENOSPC;
469 		handle->cur->next_swap = offset;
470 		error = write_page(handle->cur, handle->cur_swap, hb);
471 		if (error)
472 			goto out;
473 		clear_page(handle->cur);
474 		handle->cur_swap = offset;
475 		handle->k = 0;
476 
477 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
478 			error = hib_wait_io(hb);
479 			if (error)
480 				goto out;
481 			/*
482 			 * Recalculate the number of required free pages, to
483 			 * make sure we never take more than half.
484 			 */
485 			handle->reqd_free_pages = reqd_free_pages();
486 		}
487 	}
488  out:
489 	return error;
490 }
491 
492 static int flush_swap_writer(struct swap_map_handle *handle)
493 {
494 	if (handle->cur && handle->cur_swap)
495 		return write_page(handle->cur, handle->cur_swap, NULL);
496 	else
497 		return -EINVAL;
498 }
499 
500 static int swap_writer_finish(struct swap_map_handle *handle,
501 		unsigned int flags, int error)
502 {
503 	if (!error) {
504 		pr_info("S");
505 		error = mark_swapfiles(handle, flags);
506 		pr_cont("|\n");
507 		flush_swap_writer(handle);
508 	}
509 
510 	if (error)
511 		free_all_swap_pages(root_swap);
512 	release_swap_writer(handle);
513 	swsusp_close();
514 
515 	return error;
516 }
517 
518 /*
519  * Bytes we need for compressed data in worst case. We assume(limitation)
520  * this is the worst of all the compression algorithms.
521  */
522 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
523 
524 /* We need to remember how much compressed data we need to read. */
525 #define CMP_HEADER	sizeof(size_t)
526 
527 /* Number of pages/bytes we'll compress at one time. */
528 #define UNC_PAGES	32
529 #define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
530 
531 /* Number of pages we need for compressed data (worst case). */
532 #define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
533 				CMP_HEADER, PAGE_SIZE)
534 #define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
535 
536 /* Maximum number of threads for compression/decompression. */
537 #define CMP_THREADS	3
538 
539 /* Minimum/maximum number of pages for read buffering. */
540 #define CMP_MIN_RD_PAGES	1024
541 #define CMP_MAX_RD_PAGES	8192
542 
543 /**
544  *	save_image - save the suspend image data
545  */
546 
547 static int save_image(struct swap_map_handle *handle,
548                       struct snapshot_handle *snapshot,
549                       unsigned int nr_to_write)
550 {
551 	unsigned int m;
552 	int ret;
553 	int nr_pages;
554 	int err2;
555 	struct hib_bio_batch hb;
556 	ktime_t start;
557 	ktime_t stop;
558 
559 	hib_init_batch(&hb);
560 
561 	pr_info("Saving image data pages (%u pages)...\n",
562 		nr_to_write);
563 	m = nr_to_write / 10;
564 	if (!m)
565 		m = 1;
566 	nr_pages = 0;
567 	start = ktime_get();
568 	while (1) {
569 		ret = snapshot_read_next(snapshot);
570 		if (ret <= 0)
571 			break;
572 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
573 		if (ret)
574 			break;
575 		if (!(nr_pages % m))
576 			pr_info("Image saving progress: %3d%%\n",
577 				nr_pages / m * 10);
578 		nr_pages++;
579 	}
580 	err2 = hib_wait_io(&hb);
581 	hib_finish_batch(&hb);
582 	stop = ktime_get();
583 	if (!ret)
584 		ret = err2;
585 	if (!ret)
586 		pr_info("Image saving done\n");
587 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
588 	return ret;
589 }
590 
591 /*
592  * Structure used for CRC32.
593  */
594 struct crc_data {
595 	struct task_struct *thr;                  /* thread */
596 	atomic_t ready;                           /* ready to start flag */
597 	atomic_t stop;                            /* ready to stop flag */
598 	unsigned run_threads;                     /* nr current threads */
599 	wait_queue_head_t go;                     /* start crc update */
600 	wait_queue_head_t done;                   /* crc update done */
601 	u32 *crc32;                               /* points to handle's crc32 */
602 	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
603 	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
604 };
605 
606 /*
607  * CRC32 update function that runs in its own thread.
608  */
609 static int crc32_threadfn(void *data)
610 {
611 	struct crc_data *d = data;
612 	unsigned i;
613 
614 	while (1) {
615 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
616 		                  kthread_should_stop());
617 		if (kthread_should_stop()) {
618 			d->thr = NULL;
619 			atomic_set_release(&d->stop, 1);
620 			wake_up(&d->done);
621 			break;
622 		}
623 		atomic_set(&d->ready, 0);
624 
625 		for (i = 0; i < d->run_threads; i++)
626 			*d->crc32 = crc32_le(*d->crc32,
627 			                     d->unc[i], *d->unc_len[i]);
628 		atomic_set_release(&d->stop, 1);
629 		wake_up(&d->done);
630 	}
631 	return 0;
632 }
633 /*
634  * Structure used for data compression.
635  */
636 struct cmp_data {
637 	struct task_struct *thr;                  /* thread */
638 	struct crypto_comp *cc;                   /* crypto compressor stream */
639 	atomic_t ready;                           /* ready to start flag */
640 	atomic_t stop;                            /* ready to stop flag */
641 	int ret;                                  /* return code */
642 	wait_queue_head_t go;                     /* start compression */
643 	wait_queue_head_t done;                   /* compression done */
644 	size_t unc_len;                           /* uncompressed length */
645 	size_t cmp_len;                           /* compressed length */
646 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
647 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
648 };
649 
650 /* Indicates the image size after compression */
651 static atomic_t compressed_size = ATOMIC_INIT(0);
652 
653 /*
654  * Compression function that runs in its own thread.
655  */
656 static int compress_threadfn(void *data)
657 {
658 	struct cmp_data *d = data;
659 	unsigned int cmp_len = 0;
660 
661 	while (1) {
662 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
663 		                  kthread_should_stop());
664 		if (kthread_should_stop()) {
665 			d->thr = NULL;
666 			d->ret = -1;
667 			atomic_set_release(&d->stop, 1);
668 			wake_up(&d->done);
669 			break;
670 		}
671 		atomic_set(&d->ready, 0);
672 
673 		cmp_len = CMP_SIZE - CMP_HEADER;
674 		d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
675 					      d->cmp + CMP_HEADER,
676 					      &cmp_len);
677 		d->cmp_len = cmp_len;
678 
679 		atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
680 		atomic_set_release(&d->stop, 1);
681 		wake_up(&d->done);
682 	}
683 	return 0;
684 }
685 
686 /**
687  * save_compressed_image - Save the suspend image data after compression.
688  * @handle: Swap map handle to use for saving the image.
689  * @snapshot: Image to read data from.
690  * @nr_to_write: Number of pages to save.
691  */
692 static int save_compressed_image(struct swap_map_handle *handle,
693 				 struct snapshot_handle *snapshot,
694 				 unsigned int nr_to_write)
695 {
696 	unsigned int m;
697 	int ret = 0;
698 	int nr_pages;
699 	int err2;
700 	struct hib_bio_batch hb;
701 	ktime_t start;
702 	ktime_t stop;
703 	size_t off;
704 	unsigned thr, run_threads, nr_threads;
705 	unsigned char *page = NULL;
706 	struct cmp_data *data = NULL;
707 	struct crc_data *crc = NULL;
708 
709 	hib_init_batch(&hb);
710 
711 	atomic_set(&compressed_size, 0);
712 
713 	/*
714 	 * We'll limit the number of threads for compression to limit memory
715 	 * footprint.
716 	 */
717 	nr_threads = num_online_cpus() - 1;
718 	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
719 
720 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
721 	if (!page) {
722 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
723 		ret = -ENOMEM;
724 		goto out_clean;
725 	}
726 
727 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
728 	if (!data) {
729 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
730 		ret = -ENOMEM;
731 		goto out_clean;
732 	}
733 
734 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
735 	if (!crc) {
736 		pr_err("Failed to allocate crc\n");
737 		ret = -ENOMEM;
738 		goto out_clean;
739 	}
740 
741 	/*
742 	 * Start the compression threads.
743 	 */
744 	for (thr = 0; thr < nr_threads; thr++) {
745 		init_waitqueue_head(&data[thr].go);
746 		init_waitqueue_head(&data[thr].done);
747 
748 		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
749 		if (IS_ERR_OR_NULL(data[thr].cc)) {
750 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
751 			ret = -EFAULT;
752 			goto out_clean;
753 		}
754 
755 		data[thr].thr = kthread_run(compress_threadfn,
756 		                            &data[thr],
757 		                            "image_compress/%u", thr);
758 		if (IS_ERR(data[thr].thr)) {
759 			data[thr].thr = NULL;
760 			pr_err("Cannot start compression threads\n");
761 			ret = -ENOMEM;
762 			goto out_clean;
763 		}
764 	}
765 
766 	/*
767 	 * Start the CRC32 thread.
768 	 */
769 	init_waitqueue_head(&crc->go);
770 	init_waitqueue_head(&crc->done);
771 
772 	handle->crc32 = 0;
773 	crc->crc32 = &handle->crc32;
774 	for (thr = 0; thr < nr_threads; thr++) {
775 		crc->unc[thr] = data[thr].unc;
776 		crc->unc_len[thr] = &data[thr].unc_len;
777 	}
778 
779 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
780 	if (IS_ERR(crc->thr)) {
781 		crc->thr = NULL;
782 		pr_err("Cannot start CRC32 thread\n");
783 		ret = -ENOMEM;
784 		goto out_clean;
785 	}
786 
787 	/*
788 	 * Adjust the number of required free pages after all allocations have
789 	 * been done. We don't want to run out of pages when writing.
790 	 */
791 	handle->reqd_free_pages = reqd_free_pages();
792 
793 	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
794 	pr_info("Compressing and saving image data (%u pages)...\n",
795 		nr_to_write);
796 	m = nr_to_write / 10;
797 	if (!m)
798 		m = 1;
799 	nr_pages = 0;
800 	start = ktime_get();
801 	for (;;) {
802 		for (thr = 0; thr < nr_threads; thr++) {
803 			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
804 				ret = snapshot_read_next(snapshot);
805 				if (ret < 0)
806 					goto out_finish;
807 
808 				if (!ret)
809 					break;
810 
811 				memcpy(data[thr].unc + off,
812 				       data_of(*snapshot), PAGE_SIZE);
813 
814 				if (!(nr_pages % m))
815 					pr_info("Image saving progress: %3d%%\n",
816 						nr_pages / m * 10);
817 				nr_pages++;
818 			}
819 			if (!off)
820 				break;
821 
822 			data[thr].unc_len = off;
823 
824 			atomic_set_release(&data[thr].ready, 1);
825 			wake_up(&data[thr].go);
826 		}
827 
828 		if (!thr)
829 			break;
830 
831 		crc->run_threads = thr;
832 		atomic_set_release(&crc->ready, 1);
833 		wake_up(&crc->go);
834 
835 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
836 			wait_event(data[thr].done,
837 				atomic_read_acquire(&data[thr].stop));
838 			atomic_set(&data[thr].stop, 0);
839 
840 			ret = data[thr].ret;
841 
842 			if (ret < 0) {
843 				pr_err("%s compression failed\n", hib_comp_algo);
844 				goto out_finish;
845 			}
846 
847 			if (unlikely(!data[thr].cmp_len ||
848 			             data[thr].cmp_len >
849 				     bytes_worst_compress(data[thr].unc_len))) {
850 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
851 				ret = -1;
852 				goto out_finish;
853 			}
854 
855 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
856 
857 			/*
858 			 * Given we are writing one page at a time to disk, we
859 			 * copy that much from the buffer, although the last
860 			 * bit will likely be smaller than full page. This is
861 			 * OK - we saved the length of the compressed data, so
862 			 * any garbage at the end will be discarded when we
863 			 * read it.
864 			 */
865 			for (off = 0;
866 			     off < CMP_HEADER + data[thr].cmp_len;
867 			     off += PAGE_SIZE) {
868 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
869 
870 				ret = swap_write_page(handle, page, &hb);
871 				if (ret)
872 					goto out_finish;
873 			}
874 		}
875 
876 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
877 		atomic_set(&crc->stop, 0);
878 	}
879 
880 out_finish:
881 	err2 = hib_wait_io(&hb);
882 	stop = ktime_get();
883 	if (!ret)
884 		ret = err2;
885 	if (!ret)
886 		pr_info("Image saving done\n");
887 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
888 	pr_info("Image size after compression: %d kbytes\n",
889 		(atomic_read(&compressed_size) / 1024));
890 
891 out_clean:
892 	hib_finish_batch(&hb);
893 	if (crc) {
894 		if (crc->thr)
895 			kthread_stop(crc->thr);
896 		kfree(crc);
897 	}
898 	if (data) {
899 		for (thr = 0; thr < nr_threads; thr++) {
900 			if (data[thr].thr)
901 				kthread_stop(data[thr].thr);
902 			if (data[thr].cc)
903 				crypto_free_comp(data[thr].cc);
904 		}
905 		vfree(data);
906 	}
907 	if (page) free_page((unsigned long)page);
908 
909 	return ret;
910 }
911 
912 /**
913  *	enough_swap - Make sure we have enough swap to save the image.
914  *
915  *	Returns TRUE or FALSE after checking the total amount of swap
916  *	space available from the resume partition.
917  */
918 
919 static int enough_swap(unsigned int nr_pages)
920 {
921 	unsigned int free_swap = count_swap_pages(root_swap, 1);
922 	unsigned int required;
923 
924 	pr_debug("Free swap pages: %u\n", free_swap);
925 
926 	required = PAGES_FOR_IO + nr_pages;
927 	return free_swap > required;
928 }
929 
930 /**
931  *	swsusp_write - Write entire image and metadata.
932  *	@flags: flags to pass to the "boot" kernel in the image header
933  *
934  *	It is important _NOT_ to umount filesystems at this point. We want
935  *	them synced (in case something goes wrong) but we DO not want to mark
936  *	filesystem clean: it is not. (And it does not matter, if we resume
937  *	correctly, we'll mark system clean, anyway.)
938  */
939 
940 int swsusp_write(unsigned int flags)
941 {
942 	struct swap_map_handle handle;
943 	struct snapshot_handle snapshot;
944 	struct swsusp_info *header;
945 	unsigned long pages;
946 	int error;
947 
948 	pages = snapshot_get_image_size();
949 	error = get_swap_writer(&handle);
950 	if (error) {
951 		pr_err("Cannot get swap writer\n");
952 		return error;
953 	}
954 	if (flags & SF_NOCOMPRESS_MODE) {
955 		if (!enough_swap(pages)) {
956 			pr_err("Not enough free swap\n");
957 			error = -ENOSPC;
958 			goto out_finish;
959 		}
960 	}
961 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
962 	error = snapshot_read_next(&snapshot);
963 	if (error < (int)PAGE_SIZE) {
964 		if (error >= 0)
965 			error = -EFAULT;
966 
967 		goto out_finish;
968 	}
969 	header = (struct swsusp_info *)data_of(snapshot);
970 	error = swap_write_page(&handle, header, NULL);
971 	if (!error) {
972 		error = (flags & SF_NOCOMPRESS_MODE) ?
973 			save_image(&handle, &snapshot, pages - 1) :
974 			save_compressed_image(&handle, &snapshot, pages - 1);
975 	}
976 out_finish:
977 	error = swap_writer_finish(&handle, flags, error);
978 	return error;
979 }
980 
981 /*
982  *	The following functions allow us to read data using a swap map
983  *	in a file-like way.
984  */
985 
986 static void release_swap_reader(struct swap_map_handle *handle)
987 {
988 	struct swap_map_page_list *tmp;
989 
990 	while (handle->maps) {
991 		if (handle->maps->map)
992 			free_page((unsigned long)handle->maps->map);
993 		tmp = handle->maps;
994 		handle->maps = handle->maps->next;
995 		kfree(tmp);
996 	}
997 	handle->cur = NULL;
998 }
999 
1000 static int get_swap_reader(struct swap_map_handle *handle,
1001 		unsigned int *flags_p)
1002 {
1003 	int error;
1004 	struct swap_map_page_list *tmp, *last;
1005 	sector_t offset;
1006 
1007 	*flags_p = swsusp_header->flags;
1008 
1009 	if (!swsusp_header->image) /* how can this happen? */
1010 		return -EINVAL;
1011 
1012 	handle->cur = NULL;
1013 	last = handle->maps = NULL;
1014 	offset = swsusp_header->image;
1015 	while (offset) {
1016 		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1017 		if (!tmp) {
1018 			release_swap_reader(handle);
1019 			return -ENOMEM;
1020 		}
1021 		if (!handle->maps)
1022 			handle->maps = tmp;
1023 		if (last)
1024 			last->next = tmp;
1025 		last = tmp;
1026 
1027 		tmp->map = (struct swap_map_page *)
1028 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1029 		if (!tmp->map) {
1030 			release_swap_reader(handle);
1031 			return -ENOMEM;
1032 		}
1033 
1034 		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1035 		if (error) {
1036 			release_swap_reader(handle);
1037 			return error;
1038 		}
1039 		offset = tmp->map->next_swap;
1040 	}
1041 	handle->k = 0;
1042 	handle->cur = handle->maps->map;
1043 	return 0;
1044 }
1045 
1046 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1047 		struct hib_bio_batch *hb)
1048 {
1049 	sector_t offset;
1050 	int error;
1051 	struct swap_map_page_list *tmp;
1052 
1053 	if (!handle->cur)
1054 		return -EINVAL;
1055 	offset = handle->cur->entries[handle->k];
1056 	if (!offset)
1057 		return -EFAULT;
1058 	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1059 	if (error)
1060 		return error;
1061 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1062 		handle->k = 0;
1063 		free_page((unsigned long)handle->maps->map);
1064 		tmp = handle->maps;
1065 		handle->maps = handle->maps->next;
1066 		kfree(tmp);
1067 		if (!handle->maps)
1068 			release_swap_reader(handle);
1069 		else
1070 			handle->cur = handle->maps->map;
1071 	}
1072 	return error;
1073 }
1074 
1075 static int swap_reader_finish(struct swap_map_handle *handle)
1076 {
1077 	release_swap_reader(handle);
1078 
1079 	return 0;
1080 }
1081 
1082 /**
1083  *	load_image - load the image using the swap map handle
1084  *	@handle and the snapshot handle @snapshot
1085  *	(assume there are @nr_pages pages to load)
1086  */
1087 
1088 static int load_image(struct swap_map_handle *handle,
1089                       struct snapshot_handle *snapshot,
1090                       unsigned int nr_to_read)
1091 {
1092 	unsigned int m;
1093 	int ret = 0;
1094 	ktime_t start;
1095 	ktime_t stop;
1096 	struct hib_bio_batch hb;
1097 	int err2;
1098 	unsigned nr_pages;
1099 
1100 	hib_init_batch(&hb);
1101 
1102 	clean_pages_on_read = true;
1103 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1104 	m = nr_to_read / 10;
1105 	if (!m)
1106 		m = 1;
1107 	nr_pages = 0;
1108 	start = ktime_get();
1109 	for ( ; ; ) {
1110 		ret = snapshot_write_next(snapshot);
1111 		if (ret <= 0)
1112 			break;
1113 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1114 		if (ret)
1115 			break;
1116 		if (snapshot->sync_read)
1117 			ret = hib_wait_io(&hb);
1118 		if (ret)
1119 			break;
1120 		if (!(nr_pages % m))
1121 			pr_info("Image loading progress: %3d%%\n",
1122 				nr_pages / m * 10);
1123 		nr_pages++;
1124 	}
1125 	err2 = hib_wait_io(&hb);
1126 	hib_finish_batch(&hb);
1127 	stop = ktime_get();
1128 	if (!ret)
1129 		ret = err2;
1130 	if (!ret) {
1131 		pr_info("Image loading done\n");
1132 		ret = snapshot_write_finalize(snapshot);
1133 		if (!ret && !snapshot_image_loaded(snapshot))
1134 			ret = -ENODATA;
1135 	}
1136 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1137 	return ret;
1138 }
1139 
1140 /*
1141  * Structure used for data decompression.
1142  */
1143 struct dec_data {
1144 	struct task_struct *thr;                  /* thread */
1145 	struct crypto_comp *cc;                   /* crypto compressor stream */
1146 	atomic_t ready;                           /* ready to start flag */
1147 	atomic_t stop;                            /* ready to stop flag */
1148 	int ret;                                  /* return code */
1149 	wait_queue_head_t go;                     /* start decompression */
1150 	wait_queue_head_t done;                   /* decompression done */
1151 	size_t unc_len;                           /* uncompressed length */
1152 	size_t cmp_len;                           /* compressed length */
1153 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1154 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1155 };
1156 
1157 /*
1158  * Decompression function that runs in its own thread.
1159  */
1160 static int decompress_threadfn(void *data)
1161 {
1162 	struct dec_data *d = data;
1163 	unsigned int unc_len = 0;
1164 
1165 	while (1) {
1166 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1167 		                  kthread_should_stop());
1168 		if (kthread_should_stop()) {
1169 			d->thr = NULL;
1170 			d->ret = -1;
1171 			atomic_set_release(&d->stop, 1);
1172 			wake_up(&d->done);
1173 			break;
1174 		}
1175 		atomic_set(&d->ready, 0);
1176 
1177 		unc_len = UNC_SIZE;
1178 		d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1179 						d->unc, &unc_len);
1180 		d->unc_len = unc_len;
1181 
1182 		if (clean_pages_on_decompress)
1183 			flush_icache_range((unsigned long)d->unc,
1184 					   (unsigned long)d->unc + d->unc_len);
1185 
1186 		atomic_set_release(&d->stop, 1);
1187 		wake_up(&d->done);
1188 	}
1189 	return 0;
1190 }
1191 
1192 /**
1193  * load_compressed_image - Load compressed image data and decompress it.
1194  * @handle: Swap map handle to use for loading data.
1195  * @snapshot: Image to copy uncompressed data into.
1196  * @nr_to_read: Number of pages to load.
1197  */
1198 static int load_compressed_image(struct swap_map_handle *handle,
1199 				 struct snapshot_handle *snapshot,
1200 				 unsigned int nr_to_read)
1201 {
1202 	unsigned int m;
1203 	int ret = 0;
1204 	int eof = 0;
1205 	struct hib_bio_batch hb;
1206 	ktime_t start;
1207 	ktime_t stop;
1208 	unsigned nr_pages;
1209 	size_t off;
1210 	unsigned i, thr, run_threads, nr_threads;
1211 	unsigned ring = 0, pg = 0, ring_size = 0,
1212 	         have = 0, want, need, asked = 0;
1213 	unsigned long read_pages = 0;
1214 	unsigned char **page = NULL;
1215 	struct dec_data *data = NULL;
1216 	struct crc_data *crc = NULL;
1217 
1218 	hib_init_batch(&hb);
1219 
1220 	/*
1221 	 * We'll limit the number of threads for decompression to limit memory
1222 	 * footprint.
1223 	 */
1224 	nr_threads = num_online_cpus() - 1;
1225 	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1226 
1227 	page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1228 	if (!page) {
1229 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1230 		ret = -ENOMEM;
1231 		goto out_clean;
1232 	}
1233 
1234 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1235 	if (!data) {
1236 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1237 		ret = -ENOMEM;
1238 		goto out_clean;
1239 	}
1240 
1241 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1242 	if (!crc) {
1243 		pr_err("Failed to allocate crc\n");
1244 		ret = -ENOMEM;
1245 		goto out_clean;
1246 	}
1247 
1248 	clean_pages_on_decompress = true;
1249 
1250 	/*
1251 	 * Start the decompression threads.
1252 	 */
1253 	for (thr = 0; thr < nr_threads; thr++) {
1254 		init_waitqueue_head(&data[thr].go);
1255 		init_waitqueue_head(&data[thr].done);
1256 
1257 		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1258 		if (IS_ERR_OR_NULL(data[thr].cc)) {
1259 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1260 			ret = -EFAULT;
1261 			goto out_clean;
1262 		}
1263 
1264 		data[thr].thr = kthread_run(decompress_threadfn,
1265 		                            &data[thr],
1266 		                            "image_decompress/%u", thr);
1267 		if (IS_ERR(data[thr].thr)) {
1268 			data[thr].thr = NULL;
1269 			pr_err("Cannot start decompression threads\n");
1270 			ret = -ENOMEM;
1271 			goto out_clean;
1272 		}
1273 	}
1274 
1275 	/*
1276 	 * Start the CRC32 thread.
1277 	 */
1278 	init_waitqueue_head(&crc->go);
1279 	init_waitqueue_head(&crc->done);
1280 
1281 	handle->crc32 = 0;
1282 	crc->crc32 = &handle->crc32;
1283 	for (thr = 0; thr < nr_threads; thr++) {
1284 		crc->unc[thr] = data[thr].unc;
1285 		crc->unc_len[thr] = &data[thr].unc_len;
1286 	}
1287 
1288 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1289 	if (IS_ERR(crc->thr)) {
1290 		crc->thr = NULL;
1291 		pr_err("Cannot start CRC32 thread\n");
1292 		ret = -ENOMEM;
1293 		goto out_clean;
1294 	}
1295 
1296 	/*
1297 	 * Set the number of pages for read buffering.
1298 	 * This is complete guesswork, because we'll only know the real
1299 	 * picture once prepare_image() is called, which is much later on
1300 	 * during the image load phase. We'll assume the worst case and
1301 	 * say that none of the image pages are from high memory.
1302 	 */
1303 	if (low_free_pages() > snapshot_get_image_size())
1304 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1305 	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1306 
1307 	for (i = 0; i < read_pages; i++) {
1308 		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1309 						  GFP_NOIO | __GFP_HIGH :
1310 						  GFP_NOIO | __GFP_NOWARN |
1311 						  __GFP_NORETRY);
1312 
1313 		if (!page[i]) {
1314 			if (i < CMP_PAGES) {
1315 				ring_size = i;
1316 				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1317 				ret = -ENOMEM;
1318 				goto out_clean;
1319 			} else {
1320 				break;
1321 			}
1322 		}
1323 	}
1324 	want = ring_size = i;
1325 
1326 	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1327 	pr_info("Loading and decompressing image data (%u pages)...\n",
1328 		nr_to_read);
1329 	m = nr_to_read / 10;
1330 	if (!m)
1331 		m = 1;
1332 	nr_pages = 0;
1333 	start = ktime_get();
1334 
1335 	ret = snapshot_write_next(snapshot);
1336 	if (ret <= 0)
1337 		goto out_finish;
1338 
1339 	for(;;) {
1340 		for (i = 0; !eof && i < want; i++) {
1341 			ret = swap_read_page(handle, page[ring], &hb);
1342 			if (ret) {
1343 				/*
1344 				 * On real read error, finish. On end of data,
1345 				 * set EOF flag and just exit the read loop.
1346 				 */
1347 				if (handle->cur &&
1348 				    handle->cur->entries[handle->k]) {
1349 					goto out_finish;
1350 				} else {
1351 					eof = 1;
1352 					break;
1353 				}
1354 			}
1355 			if (++ring >= ring_size)
1356 				ring = 0;
1357 		}
1358 		asked += i;
1359 		want -= i;
1360 
1361 		/*
1362 		 * We are out of data, wait for some more.
1363 		 */
1364 		if (!have) {
1365 			if (!asked)
1366 				break;
1367 
1368 			ret = hib_wait_io(&hb);
1369 			if (ret)
1370 				goto out_finish;
1371 			have += asked;
1372 			asked = 0;
1373 			if (eof)
1374 				eof = 2;
1375 		}
1376 
1377 		if (crc->run_threads) {
1378 			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1379 			atomic_set(&crc->stop, 0);
1380 			crc->run_threads = 0;
1381 		}
1382 
1383 		for (thr = 0; have && thr < nr_threads; thr++) {
1384 			data[thr].cmp_len = *(size_t *)page[pg];
1385 			if (unlikely(!data[thr].cmp_len ||
1386 			             data[thr].cmp_len >
1387 					bytes_worst_compress(UNC_SIZE))) {
1388 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1389 				ret = -1;
1390 				goto out_finish;
1391 			}
1392 
1393 			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1394 			                    PAGE_SIZE);
1395 			if (need > have) {
1396 				if (eof > 1) {
1397 					ret = -1;
1398 					goto out_finish;
1399 				}
1400 				break;
1401 			}
1402 
1403 			for (off = 0;
1404 			     off < CMP_HEADER + data[thr].cmp_len;
1405 			     off += PAGE_SIZE) {
1406 				memcpy(data[thr].cmp + off,
1407 				       page[pg], PAGE_SIZE);
1408 				have--;
1409 				want++;
1410 				if (++pg >= ring_size)
1411 					pg = 0;
1412 			}
1413 
1414 			atomic_set_release(&data[thr].ready, 1);
1415 			wake_up(&data[thr].go);
1416 		}
1417 
1418 		/*
1419 		 * Wait for more data while we are decompressing.
1420 		 */
1421 		if (have < CMP_PAGES && asked) {
1422 			ret = hib_wait_io(&hb);
1423 			if (ret)
1424 				goto out_finish;
1425 			have += asked;
1426 			asked = 0;
1427 			if (eof)
1428 				eof = 2;
1429 		}
1430 
1431 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1432 			wait_event(data[thr].done,
1433 				atomic_read_acquire(&data[thr].stop));
1434 			atomic_set(&data[thr].stop, 0);
1435 
1436 			ret = data[thr].ret;
1437 
1438 			if (ret < 0) {
1439 				pr_err("%s decompression failed\n", hib_comp_algo);
1440 				goto out_finish;
1441 			}
1442 
1443 			if (unlikely(!data[thr].unc_len ||
1444 				data[thr].unc_len > UNC_SIZE ||
1445 				data[thr].unc_len & (PAGE_SIZE - 1))) {
1446 				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1447 				ret = -1;
1448 				goto out_finish;
1449 			}
1450 
1451 			for (off = 0;
1452 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1453 				memcpy(data_of(*snapshot),
1454 				       data[thr].unc + off, PAGE_SIZE);
1455 
1456 				if (!(nr_pages % m))
1457 					pr_info("Image loading progress: %3d%%\n",
1458 						nr_pages / m * 10);
1459 				nr_pages++;
1460 
1461 				ret = snapshot_write_next(snapshot);
1462 				if (ret <= 0) {
1463 					crc->run_threads = thr + 1;
1464 					atomic_set_release(&crc->ready, 1);
1465 					wake_up(&crc->go);
1466 					goto out_finish;
1467 				}
1468 			}
1469 		}
1470 
1471 		crc->run_threads = thr;
1472 		atomic_set_release(&crc->ready, 1);
1473 		wake_up(&crc->go);
1474 	}
1475 
1476 out_finish:
1477 	if (crc->run_threads) {
1478 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1479 		atomic_set(&crc->stop, 0);
1480 	}
1481 	stop = ktime_get();
1482 	if (!ret) {
1483 		pr_info("Image loading done\n");
1484 		ret = snapshot_write_finalize(snapshot);
1485 		if (!ret && !snapshot_image_loaded(snapshot))
1486 			ret = -ENODATA;
1487 		if (!ret) {
1488 			if (swsusp_header->flags & SF_CRC32_MODE) {
1489 				if(handle->crc32 != swsusp_header->crc32) {
1490 					pr_err("Invalid image CRC32!\n");
1491 					ret = -ENODATA;
1492 				}
1493 			}
1494 		}
1495 	}
1496 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1497 out_clean:
1498 	hib_finish_batch(&hb);
1499 	for (i = 0; i < ring_size; i++)
1500 		free_page((unsigned long)page[i]);
1501 	if (crc) {
1502 		if (crc->thr)
1503 			kthread_stop(crc->thr);
1504 		kfree(crc);
1505 	}
1506 	if (data) {
1507 		for (thr = 0; thr < nr_threads; thr++) {
1508 			if (data[thr].thr)
1509 				kthread_stop(data[thr].thr);
1510 			if (data[thr].cc)
1511 				crypto_free_comp(data[thr].cc);
1512 		}
1513 		vfree(data);
1514 	}
1515 	vfree(page);
1516 
1517 	return ret;
1518 }
1519 
1520 /**
1521  *	swsusp_read - read the hibernation image.
1522  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1523  *		  be written into this memory location
1524  */
1525 
1526 int swsusp_read(unsigned int *flags_p)
1527 {
1528 	int error;
1529 	struct swap_map_handle handle;
1530 	struct snapshot_handle snapshot;
1531 	struct swsusp_info *header;
1532 
1533 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1534 	error = snapshot_write_next(&snapshot);
1535 	if (error < (int)PAGE_SIZE)
1536 		return error < 0 ? error : -EFAULT;
1537 	header = (struct swsusp_info *)data_of(snapshot);
1538 	error = get_swap_reader(&handle, flags_p);
1539 	if (error)
1540 		goto end;
1541 	if (!error)
1542 		error = swap_read_page(&handle, header, NULL);
1543 	if (!error) {
1544 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1545 			load_image(&handle, &snapshot, header->pages - 1) :
1546 			load_compressed_image(&handle, &snapshot, header->pages - 1);
1547 	}
1548 	swap_reader_finish(&handle);
1549 end:
1550 	if (!error)
1551 		pr_debug("Image successfully loaded\n");
1552 	else
1553 		pr_debug("Error %d resuming\n", error);
1554 	return error;
1555 }
1556 
1557 static void *swsusp_holder;
1558 
1559 /**
1560  * swsusp_check - Open the resume device and check for the swsusp signature.
1561  * @exclusive: Open the resume device exclusively.
1562  */
1563 
1564 int swsusp_check(bool exclusive)
1565 {
1566 	void *holder = exclusive ? &swsusp_holder : NULL;
1567 	int error;
1568 
1569 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1570 				BLK_OPEN_READ, holder, NULL);
1571 	if (!IS_ERR(hib_resume_bdev_file)) {
1572 		clear_page(swsusp_header);
1573 		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1574 					swsusp_header, NULL);
1575 		if (error)
1576 			goto put;
1577 
1578 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1579 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1580 			swsusp_header_flags = swsusp_header->flags;
1581 			/* Reset swap signature now */
1582 			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1583 						swsusp_resume_block,
1584 						swsusp_header, NULL);
1585 		} else {
1586 			error = -EINVAL;
1587 		}
1588 		if (!error && swsusp_header->flags & SF_HW_SIG &&
1589 		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1590 			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1591 				swsusp_header->hw_sig, swsusp_hardware_signature);
1592 			error = -EINVAL;
1593 		}
1594 
1595 put:
1596 		if (error)
1597 			bdev_fput(hib_resume_bdev_file);
1598 		else
1599 			pr_debug("Image signature found, resuming\n");
1600 	} else {
1601 		error = PTR_ERR(hib_resume_bdev_file);
1602 	}
1603 
1604 	if (error)
1605 		pr_debug("Image not found (code %d)\n", error);
1606 
1607 	return error;
1608 }
1609 
1610 /**
1611  * swsusp_close - close resume device.
1612  */
1613 
1614 void swsusp_close(void)
1615 {
1616 	if (IS_ERR(hib_resume_bdev_file)) {
1617 		pr_debug("Image device not initialised\n");
1618 		return;
1619 	}
1620 
1621 	fput(hib_resume_bdev_file);
1622 }
1623 
1624 /**
1625  *      swsusp_unmark - Unmark swsusp signature in the resume device
1626  */
1627 
1628 #ifdef CONFIG_SUSPEND
1629 int swsusp_unmark(void)
1630 {
1631 	int error;
1632 
1633 	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1634 			swsusp_header, NULL);
1635 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1636 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1637 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1638 					swsusp_resume_block,
1639 					swsusp_header, NULL);
1640 	} else {
1641 		pr_err("Cannot find swsusp signature!\n");
1642 		error = -ENODEV;
1643 	}
1644 
1645 	/*
1646 	 * We just returned from suspend, we don't need the image any more.
1647 	 */
1648 	free_all_swap_pages(root_swap);
1649 
1650 	return error;
1651 }
1652 #endif
1653 
1654 static int __init swsusp_header_init(void)
1655 {
1656 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1657 	if (!swsusp_header)
1658 		panic("Could not allocate memory for swsusp_header\n");
1659 	return 0;
1660 }
1661 
1662 core_initcall(swsusp_header_init);
1663