1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/genhd.h> 20 #include <linux/device.h> 21 #include <linux/bio.h> 22 #include <linux/blkdev.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/pm.h> 26 #include <linux/slab.h> 27 #include <linux/lzo.h> 28 #include <linux/vmalloc.h> 29 #include <linux/cpumask.h> 30 #include <linux/atomic.h> 31 #include <linux/kthread.h> 32 #include <linux/crc32.h> 33 #include <linux/ktime.h> 34 35 #include "power.h" 36 37 #define HIBERNATE_SIG "S1SUSPEND" 38 39 /* 40 * When reading an {un,}compressed image, we may restore pages in place, 41 * in which case some architectures need these pages cleaning before they 42 * can be executed. We don't know which pages these may be, so clean the lot. 43 */ 44 static bool clean_pages_on_read; 45 static bool clean_pages_on_decompress; 46 47 /* 48 * The swap map is a data structure used for keeping track of each page 49 * written to a swap partition. It consists of many swap_map_page 50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 51 * These structures are stored on the swap and linked together with the 52 * help of the .next_swap member. 53 * 54 * The swap map is created during suspend. The swap map pages are 55 * allocated and populated one at a time, so we only need one memory 56 * page to set up the entire structure. 57 * 58 * During resume we pick up all swap_map_page structures into a list. 59 */ 60 61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 62 63 /* 64 * Number of free pages that are not high. 65 */ 66 static inline unsigned long low_free_pages(void) 67 { 68 return nr_free_pages() - nr_free_highpages(); 69 } 70 71 /* 72 * Number of pages required to be kept free while writing the image. Always 73 * half of all available low pages before the writing starts. 74 */ 75 static inline unsigned long reqd_free_pages(void) 76 { 77 return low_free_pages() / 2; 78 } 79 80 struct swap_map_page { 81 sector_t entries[MAP_PAGE_ENTRIES]; 82 sector_t next_swap; 83 }; 84 85 struct swap_map_page_list { 86 struct swap_map_page *map; 87 struct swap_map_page_list *next; 88 }; 89 90 /** 91 * The swap_map_handle structure is used for handling swap in 92 * a file-alike way 93 */ 94 95 struct swap_map_handle { 96 struct swap_map_page *cur; 97 struct swap_map_page_list *maps; 98 sector_t cur_swap; 99 sector_t first_sector; 100 unsigned int k; 101 unsigned long reqd_free_pages; 102 u32 crc32; 103 }; 104 105 struct swsusp_header { 106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 107 sizeof(u32)]; 108 u32 crc32; 109 sector_t image; 110 unsigned int flags; /* Flags to pass to the "boot" kernel */ 111 char orig_sig[10]; 112 char sig[10]; 113 } __packed; 114 115 static struct swsusp_header *swsusp_header; 116 117 /** 118 * The following functions are used for tracing the allocated 119 * swap pages, so that they can be freed in case of an error. 120 */ 121 122 struct swsusp_extent { 123 struct rb_node node; 124 unsigned long start; 125 unsigned long end; 126 }; 127 128 static struct rb_root swsusp_extents = RB_ROOT; 129 130 static int swsusp_extents_insert(unsigned long swap_offset) 131 { 132 struct rb_node **new = &(swsusp_extents.rb_node); 133 struct rb_node *parent = NULL; 134 struct swsusp_extent *ext; 135 136 /* Figure out where to put the new node */ 137 while (*new) { 138 ext = rb_entry(*new, struct swsusp_extent, node); 139 parent = *new; 140 if (swap_offset < ext->start) { 141 /* Try to merge */ 142 if (swap_offset == ext->start - 1) { 143 ext->start--; 144 return 0; 145 } 146 new = &((*new)->rb_left); 147 } else if (swap_offset > ext->end) { 148 /* Try to merge */ 149 if (swap_offset == ext->end + 1) { 150 ext->end++; 151 return 0; 152 } 153 new = &((*new)->rb_right); 154 } else { 155 /* It already is in the tree */ 156 return -EINVAL; 157 } 158 } 159 /* Add the new node and rebalance the tree. */ 160 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 161 if (!ext) 162 return -ENOMEM; 163 164 ext->start = swap_offset; 165 ext->end = swap_offset; 166 rb_link_node(&ext->node, parent, new); 167 rb_insert_color(&ext->node, &swsusp_extents); 168 return 0; 169 } 170 171 /** 172 * alloc_swapdev_block - allocate a swap page and register that it has 173 * been allocated, so that it can be freed in case of an error. 174 */ 175 176 sector_t alloc_swapdev_block(int swap) 177 { 178 unsigned long offset; 179 180 offset = swp_offset(get_swap_page_of_type(swap)); 181 if (offset) { 182 if (swsusp_extents_insert(offset)) 183 swap_free(swp_entry(swap, offset)); 184 else 185 return swapdev_block(swap, offset); 186 } 187 return 0; 188 } 189 190 /** 191 * free_all_swap_pages - free swap pages allocated for saving image data. 192 * It also frees the extents used to register which swap entries had been 193 * allocated. 194 */ 195 196 void free_all_swap_pages(int swap) 197 { 198 struct rb_node *node; 199 200 while ((node = swsusp_extents.rb_node)) { 201 struct swsusp_extent *ext; 202 unsigned long offset; 203 204 ext = rb_entry(node, struct swsusp_extent, node); 205 rb_erase(node, &swsusp_extents); 206 for (offset = ext->start; offset <= ext->end; offset++) 207 swap_free(swp_entry(swap, offset)); 208 209 kfree(ext); 210 } 211 } 212 213 int swsusp_swap_in_use(void) 214 { 215 return (swsusp_extents.rb_node != NULL); 216 } 217 218 /* 219 * General things 220 */ 221 222 static unsigned short root_swap = 0xffff; 223 static struct block_device *hib_resume_bdev; 224 225 struct hib_bio_batch { 226 atomic_t count; 227 wait_queue_head_t wait; 228 blk_status_t error; 229 struct blk_plug plug; 230 }; 231 232 static void hib_init_batch(struct hib_bio_batch *hb) 233 { 234 atomic_set(&hb->count, 0); 235 init_waitqueue_head(&hb->wait); 236 hb->error = BLK_STS_OK; 237 blk_start_plug(&hb->plug); 238 } 239 240 static void hib_finish_batch(struct hib_bio_batch *hb) 241 { 242 blk_finish_plug(&hb->plug); 243 } 244 245 static void hib_end_io(struct bio *bio) 246 { 247 struct hib_bio_batch *hb = bio->bi_private; 248 struct page *page = bio_first_page_all(bio); 249 250 if (bio->bi_status) { 251 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 252 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 253 (unsigned long long)bio->bi_iter.bi_sector); 254 } 255 256 if (bio_data_dir(bio) == WRITE) 257 put_page(page); 258 else if (clean_pages_on_read) 259 flush_icache_range((unsigned long)page_address(page), 260 (unsigned long)page_address(page) + PAGE_SIZE); 261 262 if (bio->bi_status && !hb->error) 263 hb->error = bio->bi_status; 264 if (atomic_dec_and_test(&hb->count)) 265 wake_up(&hb->wait); 266 267 bio_put(bio); 268 } 269 270 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr, 271 struct hib_bio_batch *hb) 272 { 273 struct page *page = virt_to_page(addr); 274 struct bio *bio; 275 int error = 0; 276 277 bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1); 278 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 279 bio_set_dev(bio, hib_resume_bdev); 280 bio_set_op_attrs(bio, op, op_flags); 281 282 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 283 pr_err("Adding page to bio failed at %llu\n", 284 (unsigned long long)bio->bi_iter.bi_sector); 285 bio_put(bio); 286 return -EFAULT; 287 } 288 289 if (hb) { 290 bio->bi_end_io = hib_end_io; 291 bio->bi_private = hb; 292 atomic_inc(&hb->count); 293 submit_bio(bio); 294 } else { 295 error = submit_bio_wait(bio); 296 bio_put(bio); 297 } 298 299 return error; 300 } 301 302 static int hib_wait_io(struct hib_bio_batch *hb) 303 { 304 /* 305 * We are relying on the behavior of blk_plug that a thread with 306 * a plug will flush the plug list before sleeping. 307 */ 308 wait_event(hb->wait, atomic_read(&hb->count) == 0); 309 return blk_status_to_errno(hb->error); 310 } 311 312 /* 313 * Saving part 314 */ 315 316 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 317 { 318 int error; 319 320 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 321 swsusp_header, NULL); 322 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 323 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 324 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 325 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 326 swsusp_header->image = handle->first_sector; 327 swsusp_header->flags = flags; 328 if (flags & SF_CRC32_MODE) 329 swsusp_header->crc32 = handle->crc32; 330 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 331 swsusp_resume_block, swsusp_header, NULL); 332 } else { 333 pr_err("Swap header not found!\n"); 334 error = -ENODEV; 335 } 336 return error; 337 } 338 339 /** 340 * swsusp_swap_check - check if the resume device is a swap device 341 * and get its index (if so) 342 * 343 * This is called before saving image 344 */ 345 static int swsusp_swap_check(void) 346 { 347 int res; 348 349 if (swsusp_resume_device) 350 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 351 else 352 res = find_first_swap(&swsusp_resume_device); 353 if (res < 0) 354 return res; 355 root_swap = res; 356 357 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE, 358 NULL); 359 if (IS_ERR(hib_resume_bdev)) 360 return PTR_ERR(hib_resume_bdev); 361 362 res = set_blocksize(hib_resume_bdev, PAGE_SIZE); 363 if (res < 0) 364 blkdev_put(hib_resume_bdev, FMODE_WRITE); 365 366 return res; 367 } 368 369 /** 370 * write_page - Write one page to given swap location. 371 * @buf: Address we're writing. 372 * @offset: Offset of the swap page we're writing to. 373 * @hb: bio completion batch 374 */ 375 376 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 377 { 378 void *src; 379 int ret; 380 381 if (!offset) 382 return -ENOSPC; 383 384 if (hb) { 385 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 386 __GFP_NORETRY); 387 if (src) { 388 copy_page(src, buf); 389 } else { 390 ret = hib_wait_io(hb); /* Free pages */ 391 if (ret) 392 return ret; 393 src = (void *)__get_free_page(GFP_NOIO | 394 __GFP_NOWARN | 395 __GFP_NORETRY); 396 if (src) { 397 copy_page(src, buf); 398 } else { 399 WARN_ON_ONCE(1); 400 hb = NULL; /* Go synchronous */ 401 src = buf; 402 } 403 } 404 } else { 405 src = buf; 406 } 407 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb); 408 } 409 410 static void release_swap_writer(struct swap_map_handle *handle) 411 { 412 if (handle->cur) 413 free_page((unsigned long)handle->cur); 414 handle->cur = NULL; 415 } 416 417 static int get_swap_writer(struct swap_map_handle *handle) 418 { 419 int ret; 420 421 ret = swsusp_swap_check(); 422 if (ret) { 423 if (ret != -ENOSPC) 424 pr_err("Cannot find swap device, try swapon -a\n"); 425 return ret; 426 } 427 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 428 if (!handle->cur) { 429 ret = -ENOMEM; 430 goto err_close; 431 } 432 handle->cur_swap = alloc_swapdev_block(root_swap); 433 if (!handle->cur_swap) { 434 ret = -ENOSPC; 435 goto err_rel; 436 } 437 handle->k = 0; 438 handle->reqd_free_pages = reqd_free_pages(); 439 handle->first_sector = handle->cur_swap; 440 return 0; 441 err_rel: 442 release_swap_writer(handle); 443 err_close: 444 swsusp_close(FMODE_WRITE); 445 return ret; 446 } 447 448 static int swap_write_page(struct swap_map_handle *handle, void *buf, 449 struct hib_bio_batch *hb) 450 { 451 int error = 0; 452 sector_t offset; 453 454 if (!handle->cur) 455 return -EINVAL; 456 offset = alloc_swapdev_block(root_swap); 457 error = write_page(buf, offset, hb); 458 if (error) 459 return error; 460 handle->cur->entries[handle->k++] = offset; 461 if (handle->k >= MAP_PAGE_ENTRIES) { 462 offset = alloc_swapdev_block(root_swap); 463 if (!offset) 464 return -ENOSPC; 465 handle->cur->next_swap = offset; 466 error = write_page(handle->cur, handle->cur_swap, hb); 467 if (error) 468 goto out; 469 clear_page(handle->cur); 470 handle->cur_swap = offset; 471 handle->k = 0; 472 473 if (hb && low_free_pages() <= handle->reqd_free_pages) { 474 error = hib_wait_io(hb); 475 if (error) 476 goto out; 477 /* 478 * Recalculate the number of required free pages, to 479 * make sure we never take more than half. 480 */ 481 handle->reqd_free_pages = reqd_free_pages(); 482 } 483 } 484 out: 485 return error; 486 } 487 488 static int flush_swap_writer(struct swap_map_handle *handle) 489 { 490 if (handle->cur && handle->cur_swap) 491 return write_page(handle->cur, handle->cur_swap, NULL); 492 else 493 return -EINVAL; 494 } 495 496 static int swap_writer_finish(struct swap_map_handle *handle, 497 unsigned int flags, int error) 498 { 499 if (!error) { 500 pr_info("S"); 501 error = mark_swapfiles(handle, flags); 502 pr_cont("|\n"); 503 flush_swap_writer(handle); 504 } 505 506 if (error) 507 free_all_swap_pages(root_swap); 508 release_swap_writer(handle); 509 swsusp_close(FMODE_WRITE); 510 511 return error; 512 } 513 514 /* We need to remember how much compressed data we need to read. */ 515 #define LZO_HEADER sizeof(size_t) 516 517 /* Number of pages/bytes we'll compress at one time. */ 518 #define LZO_UNC_PAGES 32 519 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE) 520 521 /* Number of pages/bytes we need for compressed data (worst case). */ 522 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \ 523 LZO_HEADER, PAGE_SIZE) 524 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE) 525 526 /* Maximum number of threads for compression/decompression. */ 527 #define LZO_THREADS 3 528 529 /* Minimum/maximum number of pages for read buffering. */ 530 #define LZO_MIN_RD_PAGES 1024 531 #define LZO_MAX_RD_PAGES 8192 532 533 534 /** 535 * save_image - save the suspend image data 536 */ 537 538 static int save_image(struct swap_map_handle *handle, 539 struct snapshot_handle *snapshot, 540 unsigned int nr_to_write) 541 { 542 unsigned int m; 543 int ret; 544 int nr_pages; 545 int err2; 546 struct hib_bio_batch hb; 547 ktime_t start; 548 ktime_t stop; 549 550 hib_init_batch(&hb); 551 552 pr_info("Saving image data pages (%u pages)...\n", 553 nr_to_write); 554 m = nr_to_write / 10; 555 if (!m) 556 m = 1; 557 nr_pages = 0; 558 start = ktime_get(); 559 while (1) { 560 ret = snapshot_read_next(snapshot); 561 if (ret <= 0) 562 break; 563 ret = swap_write_page(handle, data_of(*snapshot), &hb); 564 if (ret) 565 break; 566 if (!(nr_pages % m)) 567 pr_info("Image saving progress: %3d%%\n", 568 nr_pages / m * 10); 569 nr_pages++; 570 } 571 err2 = hib_wait_io(&hb); 572 hib_finish_batch(&hb); 573 stop = ktime_get(); 574 if (!ret) 575 ret = err2; 576 if (!ret) 577 pr_info("Image saving done\n"); 578 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 579 return ret; 580 } 581 582 /** 583 * Structure used for CRC32. 584 */ 585 struct crc_data { 586 struct task_struct *thr; /* thread */ 587 atomic_t ready; /* ready to start flag */ 588 atomic_t stop; /* ready to stop flag */ 589 unsigned run_threads; /* nr current threads */ 590 wait_queue_head_t go; /* start crc update */ 591 wait_queue_head_t done; /* crc update done */ 592 u32 *crc32; /* points to handle's crc32 */ 593 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */ 594 unsigned char *unc[LZO_THREADS]; /* uncompressed data */ 595 }; 596 597 /** 598 * CRC32 update function that runs in its own thread. 599 */ 600 static int crc32_threadfn(void *data) 601 { 602 struct crc_data *d = data; 603 unsigned i; 604 605 while (1) { 606 wait_event(d->go, atomic_read(&d->ready) || 607 kthread_should_stop()); 608 if (kthread_should_stop()) { 609 d->thr = NULL; 610 atomic_set(&d->stop, 1); 611 wake_up(&d->done); 612 break; 613 } 614 atomic_set(&d->ready, 0); 615 616 for (i = 0; i < d->run_threads; i++) 617 *d->crc32 = crc32_le(*d->crc32, 618 d->unc[i], *d->unc_len[i]); 619 atomic_set(&d->stop, 1); 620 wake_up(&d->done); 621 } 622 return 0; 623 } 624 /** 625 * Structure used for LZO data compression. 626 */ 627 struct cmp_data { 628 struct task_struct *thr; /* thread */ 629 atomic_t ready; /* ready to start flag */ 630 atomic_t stop; /* ready to stop flag */ 631 int ret; /* return code */ 632 wait_queue_head_t go; /* start compression */ 633 wait_queue_head_t done; /* compression done */ 634 size_t unc_len; /* uncompressed length */ 635 size_t cmp_len; /* compressed length */ 636 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 637 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 638 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */ 639 }; 640 641 /** 642 * Compression function that runs in its own thread. 643 */ 644 static int lzo_compress_threadfn(void *data) 645 { 646 struct cmp_data *d = data; 647 648 while (1) { 649 wait_event(d->go, atomic_read(&d->ready) || 650 kthread_should_stop()); 651 if (kthread_should_stop()) { 652 d->thr = NULL; 653 d->ret = -1; 654 atomic_set(&d->stop, 1); 655 wake_up(&d->done); 656 break; 657 } 658 atomic_set(&d->ready, 0); 659 660 d->ret = lzo1x_1_compress(d->unc, d->unc_len, 661 d->cmp + LZO_HEADER, &d->cmp_len, 662 d->wrk); 663 atomic_set(&d->stop, 1); 664 wake_up(&d->done); 665 } 666 return 0; 667 } 668 669 /** 670 * save_image_lzo - Save the suspend image data compressed with LZO. 671 * @handle: Swap map handle to use for saving the image. 672 * @snapshot: Image to read data from. 673 * @nr_to_write: Number of pages to save. 674 */ 675 static int save_image_lzo(struct swap_map_handle *handle, 676 struct snapshot_handle *snapshot, 677 unsigned int nr_to_write) 678 { 679 unsigned int m; 680 int ret = 0; 681 int nr_pages; 682 int err2; 683 struct hib_bio_batch hb; 684 ktime_t start; 685 ktime_t stop; 686 size_t off; 687 unsigned thr, run_threads, nr_threads; 688 unsigned char *page = NULL; 689 struct cmp_data *data = NULL; 690 struct crc_data *crc = NULL; 691 692 hib_init_batch(&hb); 693 694 /* 695 * We'll limit the number of threads for compression to limit memory 696 * footprint. 697 */ 698 nr_threads = num_online_cpus() - 1; 699 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 700 701 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 702 if (!page) { 703 pr_err("Failed to allocate LZO page\n"); 704 ret = -ENOMEM; 705 goto out_clean; 706 } 707 708 data = vzalloc(array_size(nr_threads, sizeof(*data))); 709 if (!data) { 710 pr_err("Failed to allocate LZO data\n"); 711 ret = -ENOMEM; 712 goto out_clean; 713 } 714 715 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 716 if (!crc) { 717 pr_err("Failed to allocate crc\n"); 718 ret = -ENOMEM; 719 goto out_clean; 720 } 721 722 /* 723 * Start the compression threads. 724 */ 725 for (thr = 0; thr < nr_threads; thr++) { 726 init_waitqueue_head(&data[thr].go); 727 init_waitqueue_head(&data[thr].done); 728 729 data[thr].thr = kthread_run(lzo_compress_threadfn, 730 &data[thr], 731 "image_compress/%u", thr); 732 if (IS_ERR(data[thr].thr)) { 733 data[thr].thr = NULL; 734 pr_err("Cannot start compression threads\n"); 735 ret = -ENOMEM; 736 goto out_clean; 737 } 738 } 739 740 /* 741 * Start the CRC32 thread. 742 */ 743 init_waitqueue_head(&crc->go); 744 init_waitqueue_head(&crc->done); 745 746 handle->crc32 = 0; 747 crc->crc32 = &handle->crc32; 748 for (thr = 0; thr < nr_threads; thr++) { 749 crc->unc[thr] = data[thr].unc; 750 crc->unc_len[thr] = &data[thr].unc_len; 751 } 752 753 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 754 if (IS_ERR(crc->thr)) { 755 crc->thr = NULL; 756 pr_err("Cannot start CRC32 thread\n"); 757 ret = -ENOMEM; 758 goto out_clean; 759 } 760 761 /* 762 * Adjust the number of required free pages after all allocations have 763 * been done. We don't want to run out of pages when writing. 764 */ 765 handle->reqd_free_pages = reqd_free_pages(); 766 767 pr_info("Using %u thread(s) for compression\n", nr_threads); 768 pr_info("Compressing and saving image data (%u pages)...\n", 769 nr_to_write); 770 m = nr_to_write / 10; 771 if (!m) 772 m = 1; 773 nr_pages = 0; 774 start = ktime_get(); 775 for (;;) { 776 for (thr = 0; thr < nr_threads; thr++) { 777 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) { 778 ret = snapshot_read_next(snapshot); 779 if (ret < 0) 780 goto out_finish; 781 782 if (!ret) 783 break; 784 785 memcpy(data[thr].unc + off, 786 data_of(*snapshot), PAGE_SIZE); 787 788 if (!(nr_pages % m)) 789 pr_info("Image saving progress: %3d%%\n", 790 nr_pages / m * 10); 791 nr_pages++; 792 } 793 if (!off) 794 break; 795 796 data[thr].unc_len = off; 797 798 atomic_set(&data[thr].ready, 1); 799 wake_up(&data[thr].go); 800 } 801 802 if (!thr) 803 break; 804 805 crc->run_threads = thr; 806 atomic_set(&crc->ready, 1); 807 wake_up(&crc->go); 808 809 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 810 wait_event(data[thr].done, 811 atomic_read(&data[thr].stop)); 812 atomic_set(&data[thr].stop, 0); 813 814 ret = data[thr].ret; 815 816 if (ret < 0) { 817 pr_err("LZO compression failed\n"); 818 goto out_finish; 819 } 820 821 if (unlikely(!data[thr].cmp_len || 822 data[thr].cmp_len > 823 lzo1x_worst_compress(data[thr].unc_len))) { 824 pr_err("Invalid LZO compressed length\n"); 825 ret = -1; 826 goto out_finish; 827 } 828 829 *(size_t *)data[thr].cmp = data[thr].cmp_len; 830 831 /* 832 * Given we are writing one page at a time to disk, we 833 * copy that much from the buffer, although the last 834 * bit will likely be smaller than full page. This is 835 * OK - we saved the length of the compressed data, so 836 * any garbage at the end will be discarded when we 837 * read it. 838 */ 839 for (off = 0; 840 off < LZO_HEADER + data[thr].cmp_len; 841 off += PAGE_SIZE) { 842 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 843 844 ret = swap_write_page(handle, page, &hb); 845 if (ret) 846 goto out_finish; 847 } 848 } 849 850 wait_event(crc->done, atomic_read(&crc->stop)); 851 atomic_set(&crc->stop, 0); 852 } 853 854 out_finish: 855 err2 = hib_wait_io(&hb); 856 stop = ktime_get(); 857 if (!ret) 858 ret = err2; 859 if (!ret) 860 pr_info("Image saving done\n"); 861 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 862 out_clean: 863 hib_finish_batch(&hb); 864 if (crc) { 865 if (crc->thr) 866 kthread_stop(crc->thr); 867 kfree(crc); 868 } 869 if (data) { 870 for (thr = 0; thr < nr_threads; thr++) 871 if (data[thr].thr) 872 kthread_stop(data[thr].thr); 873 vfree(data); 874 } 875 if (page) free_page((unsigned long)page); 876 877 return ret; 878 } 879 880 /** 881 * enough_swap - Make sure we have enough swap to save the image. 882 * 883 * Returns TRUE or FALSE after checking the total amount of swap 884 * space available from the resume partition. 885 */ 886 887 static int enough_swap(unsigned int nr_pages) 888 { 889 unsigned int free_swap = count_swap_pages(root_swap, 1); 890 unsigned int required; 891 892 pr_debug("Free swap pages: %u\n", free_swap); 893 894 required = PAGES_FOR_IO + nr_pages; 895 return free_swap > required; 896 } 897 898 /** 899 * swsusp_write - Write entire image and metadata. 900 * @flags: flags to pass to the "boot" kernel in the image header 901 * 902 * It is important _NOT_ to umount filesystems at this point. We want 903 * them synced (in case something goes wrong) but we DO not want to mark 904 * filesystem clean: it is not. (And it does not matter, if we resume 905 * correctly, we'll mark system clean, anyway.) 906 */ 907 908 int swsusp_write(unsigned int flags) 909 { 910 struct swap_map_handle handle; 911 struct snapshot_handle snapshot; 912 struct swsusp_info *header; 913 unsigned long pages; 914 int error; 915 916 pages = snapshot_get_image_size(); 917 error = get_swap_writer(&handle); 918 if (error) { 919 pr_err("Cannot get swap writer\n"); 920 return error; 921 } 922 if (flags & SF_NOCOMPRESS_MODE) { 923 if (!enough_swap(pages)) { 924 pr_err("Not enough free swap\n"); 925 error = -ENOSPC; 926 goto out_finish; 927 } 928 } 929 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 930 error = snapshot_read_next(&snapshot); 931 if (error < (int)PAGE_SIZE) { 932 if (error >= 0) 933 error = -EFAULT; 934 935 goto out_finish; 936 } 937 header = (struct swsusp_info *)data_of(snapshot); 938 error = swap_write_page(&handle, header, NULL); 939 if (!error) { 940 error = (flags & SF_NOCOMPRESS_MODE) ? 941 save_image(&handle, &snapshot, pages - 1) : 942 save_image_lzo(&handle, &snapshot, pages - 1); 943 } 944 out_finish: 945 error = swap_writer_finish(&handle, flags, error); 946 return error; 947 } 948 949 /** 950 * The following functions allow us to read data using a swap map 951 * in a file-alike way 952 */ 953 954 static void release_swap_reader(struct swap_map_handle *handle) 955 { 956 struct swap_map_page_list *tmp; 957 958 while (handle->maps) { 959 if (handle->maps->map) 960 free_page((unsigned long)handle->maps->map); 961 tmp = handle->maps; 962 handle->maps = handle->maps->next; 963 kfree(tmp); 964 } 965 handle->cur = NULL; 966 } 967 968 static int get_swap_reader(struct swap_map_handle *handle, 969 unsigned int *flags_p) 970 { 971 int error; 972 struct swap_map_page_list *tmp, *last; 973 sector_t offset; 974 975 *flags_p = swsusp_header->flags; 976 977 if (!swsusp_header->image) /* how can this happen? */ 978 return -EINVAL; 979 980 handle->cur = NULL; 981 last = handle->maps = NULL; 982 offset = swsusp_header->image; 983 while (offset) { 984 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 985 if (!tmp) { 986 release_swap_reader(handle); 987 return -ENOMEM; 988 } 989 if (!handle->maps) 990 handle->maps = tmp; 991 if (last) 992 last->next = tmp; 993 last = tmp; 994 995 tmp->map = (struct swap_map_page *) 996 __get_free_page(GFP_NOIO | __GFP_HIGH); 997 if (!tmp->map) { 998 release_swap_reader(handle); 999 return -ENOMEM; 1000 } 1001 1002 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL); 1003 if (error) { 1004 release_swap_reader(handle); 1005 return error; 1006 } 1007 offset = tmp->map->next_swap; 1008 } 1009 handle->k = 0; 1010 handle->cur = handle->maps->map; 1011 return 0; 1012 } 1013 1014 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1015 struct hib_bio_batch *hb) 1016 { 1017 sector_t offset; 1018 int error; 1019 struct swap_map_page_list *tmp; 1020 1021 if (!handle->cur) 1022 return -EINVAL; 1023 offset = handle->cur->entries[handle->k]; 1024 if (!offset) 1025 return -EFAULT; 1026 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb); 1027 if (error) 1028 return error; 1029 if (++handle->k >= MAP_PAGE_ENTRIES) { 1030 handle->k = 0; 1031 free_page((unsigned long)handle->maps->map); 1032 tmp = handle->maps; 1033 handle->maps = handle->maps->next; 1034 kfree(tmp); 1035 if (!handle->maps) 1036 release_swap_reader(handle); 1037 else 1038 handle->cur = handle->maps->map; 1039 } 1040 return error; 1041 } 1042 1043 static int swap_reader_finish(struct swap_map_handle *handle) 1044 { 1045 release_swap_reader(handle); 1046 1047 return 0; 1048 } 1049 1050 /** 1051 * load_image - load the image using the swap map handle 1052 * @handle and the snapshot handle @snapshot 1053 * (assume there are @nr_pages pages to load) 1054 */ 1055 1056 static int load_image(struct swap_map_handle *handle, 1057 struct snapshot_handle *snapshot, 1058 unsigned int nr_to_read) 1059 { 1060 unsigned int m; 1061 int ret = 0; 1062 ktime_t start; 1063 ktime_t stop; 1064 struct hib_bio_batch hb; 1065 int err2; 1066 unsigned nr_pages; 1067 1068 hib_init_batch(&hb); 1069 1070 clean_pages_on_read = true; 1071 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1072 m = nr_to_read / 10; 1073 if (!m) 1074 m = 1; 1075 nr_pages = 0; 1076 start = ktime_get(); 1077 for ( ; ; ) { 1078 ret = snapshot_write_next(snapshot); 1079 if (ret <= 0) 1080 break; 1081 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1082 if (ret) 1083 break; 1084 if (snapshot->sync_read) 1085 ret = hib_wait_io(&hb); 1086 if (ret) 1087 break; 1088 if (!(nr_pages % m)) 1089 pr_info("Image loading progress: %3d%%\n", 1090 nr_pages / m * 10); 1091 nr_pages++; 1092 } 1093 err2 = hib_wait_io(&hb); 1094 hib_finish_batch(&hb); 1095 stop = ktime_get(); 1096 if (!ret) 1097 ret = err2; 1098 if (!ret) { 1099 pr_info("Image loading done\n"); 1100 snapshot_write_finalize(snapshot); 1101 if (!snapshot_image_loaded(snapshot)) 1102 ret = -ENODATA; 1103 } 1104 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1105 return ret; 1106 } 1107 1108 /** 1109 * Structure used for LZO data decompression. 1110 */ 1111 struct dec_data { 1112 struct task_struct *thr; /* thread */ 1113 atomic_t ready; /* ready to start flag */ 1114 atomic_t stop; /* ready to stop flag */ 1115 int ret; /* return code */ 1116 wait_queue_head_t go; /* start decompression */ 1117 wait_queue_head_t done; /* decompression done */ 1118 size_t unc_len; /* uncompressed length */ 1119 size_t cmp_len; /* compressed length */ 1120 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 1121 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 1122 }; 1123 1124 /** 1125 * Decompression function that runs in its own thread. 1126 */ 1127 static int lzo_decompress_threadfn(void *data) 1128 { 1129 struct dec_data *d = data; 1130 1131 while (1) { 1132 wait_event(d->go, atomic_read(&d->ready) || 1133 kthread_should_stop()); 1134 if (kthread_should_stop()) { 1135 d->thr = NULL; 1136 d->ret = -1; 1137 atomic_set(&d->stop, 1); 1138 wake_up(&d->done); 1139 break; 1140 } 1141 atomic_set(&d->ready, 0); 1142 1143 d->unc_len = LZO_UNC_SIZE; 1144 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len, 1145 d->unc, &d->unc_len); 1146 if (clean_pages_on_decompress) 1147 flush_icache_range((unsigned long)d->unc, 1148 (unsigned long)d->unc + d->unc_len); 1149 1150 atomic_set(&d->stop, 1); 1151 wake_up(&d->done); 1152 } 1153 return 0; 1154 } 1155 1156 /** 1157 * load_image_lzo - Load compressed image data and decompress them with LZO. 1158 * @handle: Swap map handle to use for loading data. 1159 * @snapshot: Image to copy uncompressed data into. 1160 * @nr_to_read: Number of pages to load. 1161 */ 1162 static int load_image_lzo(struct swap_map_handle *handle, 1163 struct snapshot_handle *snapshot, 1164 unsigned int nr_to_read) 1165 { 1166 unsigned int m; 1167 int ret = 0; 1168 int eof = 0; 1169 struct hib_bio_batch hb; 1170 ktime_t start; 1171 ktime_t stop; 1172 unsigned nr_pages; 1173 size_t off; 1174 unsigned i, thr, run_threads, nr_threads; 1175 unsigned ring = 0, pg = 0, ring_size = 0, 1176 have = 0, want, need, asked = 0; 1177 unsigned long read_pages = 0; 1178 unsigned char **page = NULL; 1179 struct dec_data *data = NULL; 1180 struct crc_data *crc = NULL; 1181 1182 hib_init_batch(&hb); 1183 1184 /* 1185 * We'll limit the number of threads for decompression to limit memory 1186 * footprint. 1187 */ 1188 nr_threads = num_online_cpus() - 1; 1189 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 1190 1191 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page))); 1192 if (!page) { 1193 pr_err("Failed to allocate LZO page\n"); 1194 ret = -ENOMEM; 1195 goto out_clean; 1196 } 1197 1198 data = vzalloc(array_size(nr_threads, sizeof(*data))); 1199 if (!data) { 1200 pr_err("Failed to allocate LZO data\n"); 1201 ret = -ENOMEM; 1202 goto out_clean; 1203 } 1204 1205 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 1206 if (!crc) { 1207 pr_err("Failed to allocate crc\n"); 1208 ret = -ENOMEM; 1209 goto out_clean; 1210 } 1211 1212 clean_pages_on_decompress = true; 1213 1214 /* 1215 * Start the decompression threads. 1216 */ 1217 for (thr = 0; thr < nr_threads; thr++) { 1218 init_waitqueue_head(&data[thr].go); 1219 init_waitqueue_head(&data[thr].done); 1220 1221 data[thr].thr = kthread_run(lzo_decompress_threadfn, 1222 &data[thr], 1223 "image_decompress/%u", thr); 1224 if (IS_ERR(data[thr].thr)) { 1225 data[thr].thr = NULL; 1226 pr_err("Cannot start decompression threads\n"); 1227 ret = -ENOMEM; 1228 goto out_clean; 1229 } 1230 } 1231 1232 /* 1233 * Start the CRC32 thread. 1234 */ 1235 init_waitqueue_head(&crc->go); 1236 init_waitqueue_head(&crc->done); 1237 1238 handle->crc32 = 0; 1239 crc->crc32 = &handle->crc32; 1240 for (thr = 0; thr < nr_threads; thr++) { 1241 crc->unc[thr] = data[thr].unc; 1242 crc->unc_len[thr] = &data[thr].unc_len; 1243 } 1244 1245 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1246 if (IS_ERR(crc->thr)) { 1247 crc->thr = NULL; 1248 pr_err("Cannot start CRC32 thread\n"); 1249 ret = -ENOMEM; 1250 goto out_clean; 1251 } 1252 1253 /* 1254 * Set the number of pages for read buffering. 1255 * This is complete guesswork, because we'll only know the real 1256 * picture once prepare_image() is called, which is much later on 1257 * during the image load phase. We'll assume the worst case and 1258 * say that none of the image pages are from high memory. 1259 */ 1260 if (low_free_pages() > snapshot_get_image_size()) 1261 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1262 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES); 1263 1264 for (i = 0; i < read_pages; i++) { 1265 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ? 1266 GFP_NOIO | __GFP_HIGH : 1267 GFP_NOIO | __GFP_NOWARN | 1268 __GFP_NORETRY); 1269 1270 if (!page[i]) { 1271 if (i < LZO_CMP_PAGES) { 1272 ring_size = i; 1273 pr_err("Failed to allocate LZO pages\n"); 1274 ret = -ENOMEM; 1275 goto out_clean; 1276 } else { 1277 break; 1278 } 1279 } 1280 } 1281 want = ring_size = i; 1282 1283 pr_info("Using %u thread(s) for decompression\n", nr_threads); 1284 pr_info("Loading and decompressing image data (%u pages)...\n", 1285 nr_to_read); 1286 m = nr_to_read / 10; 1287 if (!m) 1288 m = 1; 1289 nr_pages = 0; 1290 start = ktime_get(); 1291 1292 ret = snapshot_write_next(snapshot); 1293 if (ret <= 0) 1294 goto out_finish; 1295 1296 for(;;) { 1297 for (i = 0; !eof && i < want; i++) { 1298 ret = swap_read_page(handle, page[ring], &hb); 1299 if (ret) { 1300 /* 1301 * On real read error, finish. On end of data, 1302 * set EOF flag and just exit the read loop. 1303 */ 1304 if (handle->cur && 1305 handle->cur->entries[handle->k]) { 1306 goto out_finish; 1307 } else { 1308 eof = 1; 1309 break; 1310 } 1311 } 1312 if (++ring >= ring_size) 1313 ring = 0; 1314 } 1315 asked += i; 1316 want -= i; 1317 1318 /* 1319 * We are out of data, wait for some more. 1320 */ 1321 if (!have) { 1322 if (!asked) 1323 break; 1324 1325 ret = hib_wait_io(&hb); 1326 if (ret) 1327 goto out_finish; 1328 have += asked; 1329 asked = 0; 1330 if (eof) 1331 eof = 2; 1332 } 1333 1334 if (crc->run_threads) { 1335 wait_event(crc->done, atomic_read(&crc->stop)); 1336 atomic_set(&crc->stop, 0); 1337 crc->run_threads = 0; 1338 } 1339 1340 for (thr = 0; have && thr < nr_threads; thr++) { 1341 data[thr].cmp_len = *(size_t *)page[pg]; 1342 if (unlikely(!data[thr].cmp_len || 1343 data[thr].cmp_len > 1344 lzo1x_worst_compress(LZO_UNC_SIZE))) { 1345 pr_err("Invalid LZO compressed length\n"); 1346 ret = -1; 1347 goto out_finish; 1348 } 1349 1350 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER, 1351 PAGE_SIZE); 1352 if (need > have) { 1353 if (eof > 1) { 1354 ret = -1; 1355 goto out_finish; 1356 } 1357 break; 1358 } 1359 1360 for (off = 0; 1361 off < LZO_HEADER + data[thr].cmp_len; 1362 off += PAGE_SIZE) { 1363 memcpy(data[thr].cmp + off, 1364 page[pg], PAGE_SIZE); 1365 have--; 1366 want++; 1367 if (++pg >= ring_size) 1368 pg = 0; 1369 } 1370 1371 atomic_set(&data[thr].ready, 1); 1372 wake_up(&data[thr].go); 1373 } 1374 1375 /* 1376 * Wait for more data while we are decompressing. 1377 */ 1378 if (have < LZO_CMP_PAGES && asked) { 1379 ret = hib_wait_io(&hb); 1380 if (ret) 1381 goto out_finish; 1382 have += asked; 1383 asked = 0; 1384 if (eof) 1385 eof = 2; 1386 } 1387 1388 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1389 wait_event(data[thr].done, 1390 atomic_read(&data[thr].stop)); 1391 atomic_set(&data[thr].stop, 0); 1392 1393 ret = data[thr].ret; 1394 1395 if (ret < 0) { 1396 pr_err("LZO decompression failed\n"); 1397 goto out_finish; 1398 } 1399 1400 if (unlikely(!data[thr].unc_len || 1401 data[thr].unc_len > LZO_UNC_SIZE || 1402 data[thr].unc_len & (PAGE_SIZE - 1))) { 1403 pr_err("Invalid LZO uncompressed length\n"); 1404 ret = -1; 1405 goto out_finish; 1406 } 1407 1408 for (off = 0; 1409 off < data[thr].unc_len; off += PAGE_SIZE) { 1410 memcpy(data_of(*snapshot), 1411 data[thr].unc + off, PAGE_SIZE); 1412 1413 if (!(nr_pages % m)) 1414 pr_info("Image loading progress: %3d%%\n", 1415 nr_pages / m * 10); 1416 nr_pages++; 1417 1418 ret = snapshot_write_next(snapshot); 1419 if (ret <= 0) { 1420 crc->run_threads = thr + 1; 1421 atomic_set(&crc->ready, 1); 1422 wake_up(&crc->go); 1423 goto out_finish; 1424 } 1425 } 1426 } 1427 1428 crc->run_threads = thr; 1429 atomic_set(&crc->ready, 1); 1430 wake_up(&crc->go); 1431 } 1432 1433 out_finish: 1434 if (crc->run_threads) { 1435 wait_event(crc->done, atomic_read(&crc->stop)); 1436 atomic_set(&crc->stop, 0); 1437 } 1438 stop = ktime_get(); 1439 if (!ret) { 1440 pr_info("Image loading done\n"); 1441 snapshot_write_finalize(snapshot); 1442 if (!snapshot_image_loaded(snapshot)) 1443 ret = -ENODATA; 1444 if (!ret) { 1445 if (swsusp_header->flags & SF_CRC32_MODE) { 1446 if(handle->crc32 != swsusp_header->crc32) { 1447 pr_err("Invalid image CRC32!\n"); 1448 ret = -ENODATA; 1449 } 1450 } 1451 } 1452 } 1453 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1454 out_clean: 1455 hib_finish_batch(&hb); 1456 for (i = 0; i < ring_size; i++) 1457 free_page((unsigned long)page[i]); 1458 if (crc) { 1459 if (crc->thr) 1460 kthread_stop(crc->thr); 1461 kfree(crc); 1462 } 1463 if (data) { 1464 for (thr = 0; thr < nr_threads; thr++) 1465 if (data[thr].thr) 1466 kthread_stop(data[thr].thr); 1467 vfree(data); 1468 } 1469 vfree(page); 1470 1471 return ret; 1472 } 1473 1474 /** 1475 * swsusp_read - read the hibernation image. 1476 * @flags_p: flags passed by the "frozen" kernel in the image header should 1477 * be written into this memory location 1478 */ 1479 1480 int swsusp_read(unsigned int *flags_p) 1481 { 1482 int error; 1483 struct swap_map_handle handle; 1484 struct snapshot_handle snapshot; 1485 struct swsusp_info *header; 1486 1487 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1488 error = snapshot_write_next(&snapshot); 1489 if (error < (int)PAGE_SIZE) 1490 return error < 0 ? error : -EFAULT; 1491 header = (struct swsusp_info *)data_of(snapshot); 1492 error = get_swap_reader(&handle, flags_p); 1493 if (error) 1494 goto end; 1495 if (!error) 1496 error = swap_read_page(&handle, header, NULL); 1497 if (!error) { 1498 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1499 load_image(&handle, &snapshot, header->pages - 1) : 1500 load_image_lzo(&handle, &snapshot, header->pages - 1); 1501 } 1502 swap_reader_finish(&handle); 1503 end: 1504 if (!error) 1505 pr_debug("Image successfully loaded\n"); 1506 else 1507 pr_debug("Error %d resuming\n", error); 1508 return error; 1509 } 1510 1511 /** 1512 * swsusp_check - Check for swsusp signature in the resume device 1513 */ 1514 1515 int swsusp_check(void) 1516 { 1517 int error; 1518 void *holder; 1519 1520 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, 1521 FMODE_READ | FMODE_EXCL, &holder); 1522 if (!IS_ERR(hib_resume_bdev)) { 1523 set_blocksize(hib_resume_bdev, PAGE_SIZE); 1524 clear_page(swsusp_header); 1525 error = hib_submit_io(REQ_OP_READ, 0, 1526 swsusp_resume_block, 1527 swsusp_header, NULL); 1528 if (error) 1529 goto put; 1530 1531 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1532 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1533 /* Reset swap signature now */ 1534 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1535 swsusp_resume_block, 1536 swsusp_header, NULL); 1537 } else { 1538 error = -EINVAL; 1539 } 1540 1541 put: 1542 if (error) 1543 blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL); 1544 else 1545 pr_debug("Image signature found, resuming\n"); 1546 } else { 1547 error = PTR_ERR(hib_resume_bdev); 1548 } 1549 1550 if (error) 1551 pr_debug("Image not found (code %d)\n", error); 1552 1553 return error; 1554 } 1555 1556 /** 1557 * swsusp_close - close swap device. 1558 */ 1559 1560 void swsusp_close(fmode_t mode) 1561 { 1562 if (IS_ERR(hib_resume_bdev)) { 1563 pr_debug("Image device not initialised\n"); 1564 return; 1565 } 1566 1567 blkdev_put(hib_resume_bdev, mode); 1568 } 1569 1570 /** 1571 * swsusp_unmark - Unmark swsusp signature in the resume device 1572 */ 1573 1574 #ifdef CONFIG_SUSPEND 1575 int swsusp_unmark(void) 1576 { 1577 int error; 1578 1579 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 1580 swsusp_header, NULL); 1581 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1582 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1583 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1584 swsusp_resume_block, 1585 swsusp_header, NULL); 1586 } else { 1587 pr_err("Cannot find swsusp signature!\n"); 1588 error = -ENODEV; 1589 } 1590 1591 /* 1592 * We just returned from suspend, we don't need the image any more. 1593 */ 1594 free_all_swap_pages(root_swap); 1595 1596 return error; 1597 } 1598 #endif 1599 1600 static int __init swsusp_header_init(void) 1601 { 1602 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1603 if (!swsusp_header) 1604 panic("Could not allocate memory for swsusp_header\n"); 1605 return 0; 1606 } 1607 1608 core_initcall(swsusp_header_init); 1609