1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/device.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/pm.h> 25 #include <linux/slab.h> 26 #include <linux/lzo.h> 27 #include <linux/vmalloc.h> 28 #include <linux/cpumask.h> 29 #include <linux/atomic.h> 30 #include <linux/kthread.h> 31 #include <linux/crc32.h> 32 #include <linux/ktime.h> 33 34 #include "power.h" 35 36 #define HIBERNATE_SIG "S1SUSPEND" 37 38 u32 swsusp_hardware_signature; 39 40 /* 41 * When reading an {un,}compressed image, we may restore pages in place, 42 * in which case some architectures need these pages cleaning before they 43 * can be executed. We don't know which pages these may be, so clean the lot. 44 */ 45 static bool clean_pages_on_read; 46 static bool clean_pages_on_decompress; 47 48 /* 49 * The swap map is a data structure used for keeping track of each page 50 * written to a swap partition. It consists of many swap_map_page 51 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 52 * These structures are stored on the swap and linked together with the 53 * help of the .next_swap member. 54 * 55 * The swap map is created during suspend. The swap map pages are 56 * allocated and populated one at a time, so we only need one memory 57 * page to set up the entire structure. 58 * 59 * During resume we pick up all swap_map_page structures into a list. 60 */ 61 62 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 63 64 /* 65 * Number of free pages that are not high. 66 */ 67 static inline unsigned long low_free_pages(void) 68 { 69 return nr_free_pages() - nr_free_highpages(); 70 } 71 72 /* 73 * Number of pages required to be kept free while writing the image. Always 74 * half of all available low pages before the writing starts. 75 */ 76 static inline unsigned long reqd_free_pages(void) 77 { 78 return low_free_pages() / 2; 79 } 80 81 struct swap_map_page { 82 sector_t entries[MAP_PAGE_ENTRIES]; 83 sector_t next_swap; 84 }; 85 86 struct swap_map_page_list { 87 struct swap_map_page *map; 88 struct swap_map_page_list *next; 89 }; 90 91 /* 92 * The swap_map_handle structure is used for handling swap in 93 * a file-alike way 94 */ 95 96 struct swap_map_handle { 97 struct swap_map_page *cur; 98 struct swap_map_page_list *maps; 99 sector_t cur_swap; 100 sector_t first_sector; 101 unsigned int k; 102 unsigned long reqd_free_pages; 103 u32 crc32; 104 }; 105 106 struct swsusp_header { 107 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 108 sizeof(u32) - sizeof(u32)]; 109 u32 hw_sig; 110 u32 crc32; 111 sector_t image; 112 unsigned int flags; /* Flags to pass to the "boot" kernel */ 113 char orig_sig[10]; 114 char sig[10]; 115 } __packed; 116 117 static struct swsusp_header *swsusp_header; 118 119 /* 120 * The following functions are used for tracing the allocated 121 * swap pages, so that they can be freed in case of an error. 122 */ 123 124 struct swsusp_extent { 125 struct rb_node node; 126 unsigned long start; 127 unsigned long end; 128 }; 129 130 static struct rb_root swsusp_extents = RB_ROOT; 131 132 static int swsusp_extents_insert(unsigned long swap_offset) 133 { 134 struct rb_node **new = &(swsusp_extents.rb_node); 135 struct rb_node *parent = NULL; 136 struct swsusp_extent *ext; 137 138 /* Figure out where to put the new node */ 139 while (*new) { 140 ext = rb_entry(*new, struct swsusp_extent, node); 141 parent = *new; 142 if (swap_offset < ext->start) { 143 /* Try to merge */ 144 if (swap_offset == ext->start - 1) { 145 ext->start--; 146 return 0; 147 } 148 new = &((*new)->rb_left); 149 } else if (swap_offset > ext->end) { 150 /* Try to merge */ 151 if (swap_offset == ext->end + 1) { 152 ext->end++; 153 return 0; 154 } 155 new = &((*new)->rb_right); 156 } else { 157 /* It already is in the tree */ 158 return -EINVAL; 159 } 160 } 161 /* Add the new node and rebalance the tree. */ 162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 163 if (!ext) 164 return -ENOMEM; 165 166 ext->start = swap_offset; 167 ext->end = swap_offset; 168 rb_link_node(&ext->node, parent, new); 169 rb_insert_color(&ext->node, &swsusp_extents); 170 return 0; 171 } 172 173 /* 174 * alloc_swapdev_block - allocate a swap page and register that it has 175 * been allocated, so that it can be freed in case of an error. 176 */ 177 178 sector_t alloc_swapdev_block(int swap) 179 { 180 unsigned long offset; 181 182 offset = swp_offset(get_swap_page_of_type(swap)); 183 if (offset) { 184 if (swsusp_extents_insert(offset)) 185 swap_free(swp_entry(swap, offset)); 186 else 187 return swapdev_block(swap, offset); 188 } 189 return 0; 190 } 191 192 /* 193 * free_all_swap_pages - free swap pages allocated for saving image data. 194 * It also frees the extents used to register which swap entries had been 195 * allocated. 196 */ 197 198 void free_all_swap_pages(int swap) 199 { 200 struct rb_node *node; 201 202 while ((node = swsusp_extents.rb_node)) { 203 struct swsusp_extent *ext; 204 unsigned long offset; 205 206 ext = rb_entry(node, struct swsusp_extent, node); 207 rb_erase(node, &swsusp_extents); 208 for (offset = ext->start; offset <= ext->end; offset++) 209 swap_free(swp_entry(swap, offset)); 210 211 kfree(ext); 212 } 213 } 214 215 int swsusp_swap_in_use(void) 216 { 217 return (swsusp_extents.rb_node != NULL); 218 } 219 220 /* 221 * General things 222 */ 223 224 static unsigned short root_swap = 0xffff; 225 static struct bdev_handle *hib_resume_bdev_handle; 226 227 struct hib_bio_batch { 228 atomic_t count; 229 wait_queue_head_t wait; 230 blk_status_t error; 231 struct blk_plug plug; 232 }; 233 234 static void hib_init_batch(struct hib_bio_batch *hb) 235 { 236 atomic_set(&hb->count, 0); 237 init_waitqueue_head(&hb->wait); 238 hb->error = BLK_STS_OK; 239 blk_start_plug(&hb->plug); 240 } 241 242 static void hib_finish_batch(struct hib_bio_batch *hb) 243 { 244 blk_finish_plug(&hb->plug); 245 } 246 247 static void hib_end_io(struct bio *bio) 248 { 249 struct hib_bio_batch *hb = bio->bi_private; 250 struct page *page = bio_first_page_all(bio); 251 252 if (bio->bi_status) { 253 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 254 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 255 (unsigned long long)bio->bi_iter.bi_sector); 256 } 257 258 if (bio_data_dir(bio) == WRITE) 259 put_page(page); 260 else if (clean_pages_on_read) 261 flush_icache_range((unsigned long)page_address(page), 262 (unsigned long)page_address(page) + PAGE_SIZE); 263 264 if (bio->bi_status && !hb->error) 265 hb->error = bio->bi_status; 266 if (atomic_dec_and_test(&hb->count)) 267 wake_up(&hb->wait); 268 269 bio_put(bio); 270 } 271 272 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr, 273 struct hib_bio_batch *hb) 274 { 275 struct page *page = virt_to_page(addr); 276 struct bio *bio; 277 int error = 0; 278 279 bio = bio_alloc(hib_resume_bdev_handle->bdev, 1, opf, 280 GFP_NOIO | __GFP_HIGH); 281 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 282 283 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 284 pr_err("Adding page to bio failed at %llu\n", 285 (unsigned long long)bio->bi_iter.bi_sector); 286 bio_put(bio); 287 return -EFAULT; 288 } 289 290 if (hb) { 291 bio->bi_end_io = hib_end_io; 292 bio->bi_private = hb; 293 atomic_inc(&hb->count); 294 submit_bio(bio); 295 } else { 296 error = submit_bio_wait(bio); 297 bio_put(bio); 298 } 299 300 return error; 301 } 302 303 static int hib_wait_io(struct hib_bio_batch *hb) 304 { 305 /* 306 * We are relying on the behavior of blk_plug that a thread with 307 * a plug will flush the plug list before sleeping. 308 */ 309 wait_event(hb->wait, atomic_read(&hb->count) == 0); 310 return blk_status_to_errno(hb->error); 311 } 312 313 /* 314 * Saving part 315 */ 316 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 317 { 318 int error; 319 320 hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL); 321 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 322 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 323 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 324 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 325 swsusp_header->image = handle->first_sector; 326 if (swsusp_hardware_signature) { 327 swsusp_header->hw_sig = swsusp_hardware_signature; 328 flags |= SF_HW_SIG; 329 } 330 swsusp_header->flags = flags; 331 if (flags & SF_CRC32_MODE) 332 swsusp_header->crc32 = handle->crc32; 333 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 334 swsusp_resume_block, swsusp_header, NULL); 335 } else { 336 pr_err("Swap header not found!\n"); 337 error = -ENODEV; 338 } 339 return error; 340 } 341 342 /** 343 * swsusp_swap_check - check if the resume device is a swap device 344 * and get its index (if so) 345 * 346 * This is called before saving image 347 */ 348 static int swsusp_swap_check(void) 349 { 350 int res; 351 352 if (swsusp_resume_device) 353 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 354 else 355 res = find_first_swap(&swsusp_resume_device); 356 if (res < 0) 357 return res; 358 root_swap = res; 359 360 hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device, 361 BLK_OPEN_WRITE, NULL, NULL); 362 if (IS_ERR(hib_resume_bdev_handle)) 363 return PTR_ERR(hib_resume_bdev_handle); 364 365 res = set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE); 366 if (res < 0) 367 bdev_release(hib_resume_bdev_handle); 368 369 return res; 370 } 371 372 /** 373 * write_page - Write one page to given swap location. 374 * @buf: Address we're writing. 375 * @offset: Offset of the swap page we're writing to. 376 * @hb: bio completion batch 377 */ 378 379 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 380 { 381 void *src; 382 int ret; 383 384 if (!offset) 385 return -ENOSPC; 386 387 if (hb) { 388 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 389 __GFP_NORETRY); 390 if (src) { 391 copy_page(src, buf); 392 } else { 393 ret = hib_wait_io(hb); /* Free pages */ 394 if (ret) 395 return ret; 396 src = (void *)__get_free_page(GFP_NOIO | 397 __GFP_NOWARN | 398 __GFP_NORETRY); 399 if (src) { 400 copy_page(src, buf); 401 } else { 402 WARN_ON_ONCE(1); 403 hb = NULL; /* Go synchronous */ 404 src = buf; 405 } 406 } 407 } else { 408 src = buf; 409 } 410 return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb); 411 } 412 413 static void release_swap_writer(struct swap_map_handle *handle) 414 { 415 if (handle->cur) 416 free_page((unsigned long)handle->cur); 417 handle->cur = NULL; 418 } 419 420 static int get_swap_writer(struct swap_map_handle *handle) 421 { 422 int ret; 423 424 ret = swsusp_swap_check(); 425 if (ret) { 426 if (ret != -ENOSPC) 427 pr_err("Cannot find swap device, try swapon -a\n"); 428 return ret; 429 } 430 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 431 if (!handle->cur) { 432 ret = -ENOMEM; 433 goto err_close; 434 } 435 handle->cur_swap = alloc_swapdev_block(root_swap); 436 if (!handle->cur_swap) { 437 ret = -ENOSPC; 438 goto err_rel; 439 } 440 handle->k = 0; 441 handle->reqd_free_pages = reqd_free_pages(); 442 handle->first_sector = handle->cur_swap; 443 return 0; 444 err_rel: 445 release_swap_writer(handle); 446 err_close: 447 swsusp_close(false); 448 return ret; 449 } 450 451 static int swap_write_page(struct swap_map_handle *handle, void *buf, 452 struct hib_bio_batch *hb) 453 { 454 int error = 0; 455 sector_t offset; 456 457 if (!handle->cur) 458 return -EINVAL; 459 offset = alloc_swapdev_block(root_swap); 460 error = write_page(buf, offset, hb); 461 if (error) 462 return error; 463 handle->cur->entries[handle->k++] = offset; 464 if (handle->k >= MAP_PAGE_ENTRIES) { 465 offset = alloc_swapdev_block(root_swap); 466 if (!offset) 467 return -ENOSPC; 468 handle->cur->next_swap = offset; 469 error = write_page(handle->cur, handle->cur_swap, hb); 470 if (error) 471 goto out; 472 clear_page(handle->cur); 473 handle->cur_swap = offset; 474 handle->k = 0; 475 476 if (hb && low_free_pages() <= handle->reqd_free_pages) { 477 error = hib_wait_io(hb); 478 if (error) 479 goto out; 480 /* 481 * Recalculate the number of required free pages, to 482 * make sure we never take more than half. 483 */ 484 handle->reqd_free_pages = reqd_free_pages(); 485 } 486 } 487 out: 488 return error; 489 } 490 491 static int flush_swap_writer(struct swap_map_handle *handle) 492 { 493 if (handle->cur && handle->cur_swap) 494 return write_page(handle->cur, handle->cur_swap, NULL); 495 else 496 return -EINVAL; 497 } 498 499 static int swap_writer_finish(struct swap_map_handle *handle, 500 unsigned int flags, int error) 501 { 502 if (!error) { 503 pr_info("S"); 504 error = mark_swapfiles(handle, flags); 505 pr_cont("|\n"); 506 flush_swap_writer(handle); 507 } 508 509 if (error) 510 free_all_swap_pages(root_swap); 511 release_swap_writer(handle); 512 swsusp_close(false); 513 514 return error; 515 } 516 517 /* We need to remember how much compressed data we need to read. */ 518 #define LZO_HEADER sizeof(size_t) 519 520 /* Number of pages/bytes we'll compress at one time. */ 521 #define LZO_UNC_PAGES 32 522 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE) 523 524 /* Number of pages/bytes we need for compressed data (worst case). */ 525 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \ 526 LZO_HEADER, PAGE_SIZE) 527 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE) 528 529 /* Maximum number of threads for compression/decompression. */ 530 #define LZO_THREADS 3 531 532 /* Minimum/maximum number of pages for read buffering. */ 533 #define LZO_MIN_RD_PAGES 1024 534 #define LZO_MAX_RD_PAGES 8192 535 536 537 /** 538 * save_image - save the suspend image data 539 */ 540 541 static int save_image(struct swap_map_handle *handle, 542 struct snapshot_handle *snapshot, 543 unsigned int nr_to_write) 544 { 545 unsigned int m; 546 int ret; 547 int nr_pages; 548 int err2; 549 struct hib_bio_batch hb; 550 ktime_t start; 551 ktime_t stop; 552 553 hib_init_batch(&hb); 554 555 pr_info("Saving image data pages (%u pages)...\n", 556 nr_to_write); 557 m = nr_to_write / 10; 558 if (!m) 559 m = 1; 560 nr_pages = 0; 561 start = ktime_get(); 562 while (1) { 563 ret = snapshot_read_next(snapshot); 564 if (ret <= 0) 565 break; 566 ret = swap_write_page(handle, data_of(*snapshot), &hb); 567 if (ret) 568 break; 569 if (!(nr_pages % m)) 570 pr_info("Image saving progress: %3d%%\n", 571 nr_pages / m * 10); 572 nr_pages++; 573 } 574 err2 = hib_wait_io(&hb); 575 hib_finish_batch(&hb); 576 stop = ktime_get(); 577 if (!ret) 578 ret = err2; 579 if (!ret) 580 pr_info("Image saving done\n"); 581 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 582 return ret; 583 } 584 585 /* 586 * Structure used for CRC32. 587 */ 588 struct crc_data { 589 struct task_struct *thr; /* thread */ 590 atomic_t ready; /* ready to start flag */ 591 atomic_t stop; /* ready to stop flag */ 592 unsigned run_threads; /* nr current threads */ 593 wait_queue_head_t go; /* start crc update */ 594 wait_queue_head_t done; /* crc update done */ 595 u32 *crc32; /* points to handle's crc32 */ 596 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */ 597 unsigned char *unc[LZO_THREADS]; /* uncompressed data */ 598 }; 599 600 /* 601 * CRC32 update function that runs in its own thread. 602 */ 603 static int crc32_threadfn(void *data) 604 { 605 struct crc_data *d = data; 606 unsigned i; 607 608 while (1) { 609 wait_event(d->go, atomic_read(&d->ready) || 610 kthread_should_stop()); 611 if (kthread_should_stop()) { 612 d->thr = NULL; 613 atomic_set(&d->stop, 1); 614 wake_up(&d->done); 615 break; 616 } 617 atomic_set(&d->ready, 0); 618 619 for (i = 0; i < d->run_threads; i++) 620 *d->crc32 = crc32_le(*d->crc32, 621 d->unc[i], *d->unc_len[i]); 622 atomic_set(&d->stop, 1); 623 wake_up(&d->done); 624 } 625 return 0; 626 } 627 /* 628 * Structure used for LZO data compression. 629 */ 630 struct cmp_data { 631 struct task_struct *thr; /* thread */ 632 atomic_t ready; /* ready to start flag */ 633 atomic_t stop; /* ready to stop flag */ 634 int ret; /* return code */ 635 wait_queue_head_t go; /* start compression */ 636 wait_queue_head_t done; /* compression done */ 637 size_t unc_len; /* uncompressed length */ 638 size_t cmp_len; /* compressed length */ 639 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 640 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 641 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */ 642 }; 643 644 /* 645 * Compression function that runs in its own thread. 646 */ 647 static int lzo_compress_threadfn(void *data) 648 { 649 struct cmp_data *d = data; 650 651 while (1) { 652 wait_event(d->go, atomic_read(&d->ready) || 653 kthread_should_stop()); 654 if (kthread_should_stop()) { 655 d->thr = NULL; 656 d->ret = -1; 657 atomic_set(&d->stop, 1); 658 wake_up(&d->done); 659 break; 660 } 661 atomic_set(&d->ready, 0); 662 663 d->ret = lzo1x_1_compress(d->unc, d->unc_len, 664 d->cmp + LZO_HEADER, &d->cmp_len, 665 d->wrk); 666 atomic_set(&d->stop, 1); 667 wake_up(&d->done); 668 } 669 return 0; 670 } 671 672 /** 673 * save_image_lzo - Save the suspend image data compressed with LZO. 674 * @handle: Swap map handle to use for saving the image. 675 * @snapshot: Image to read data from. 676 * @nr_to_write: Number of pages to save. 677 */ 678 static int save_image_lzo(struct swap_map_handle *handle, 679 struct snapshot_handle *snapshot, 680 unsigned int nr_to_write) 681 { 682 unsigned int m; 683 int ret = 0; 684 int nr_pages; 685 int err2; 686 struct hib_bio_batch hb; 687 ktime_t start; 688 ktime_t stop; 689 size_t off; 690 unsigned thr, run_threads, nr_threads; 691 unsigned char *page = NULL; 692 struct cmp_data *data = NULL; 693 struct crc_data *crc = NULL; 694 695 hib_init_batch(&hb); 696 697 /* 698 * We'll limit the number of threads for compression to limit memory 699 * footprint. 700 */ 701 nr_threads = num_online_cpus() - 1; 702 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 703 704 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 705 if (!page) { 706 pr_err("Failed to allocate LZO page\n"); 707 ret = -ENOMEM; 708 goto out_clean; 709 } 710 711 data = vzalloc(array_size(nr_threads, sizeof(*data))); 712 if (!data) { 713 pr_err("Failed to allocate LZO data\n"); 714 ret = -ENOMEM; 715 goto out_clean; 716 } 717 718 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 719 if (!crc) { 720 pr_err("Failed to allocate crc\n"); 721 ret = -ENOMEM; 722 goto out_clean; 723 } 724 725 /* 726 * Start the compression threads. 727 */ 728 for (thr = 0; thr < nr_threads; thr++) { 729 init_waitqueue_head(&data[thr].go); 730 init_waitqueue_head(&data[thr].done); 731 732 data[thr].thr = kthread_run(lzo_compress_threadfn, 733 &data[thr], 734 "image_compress/%u", thr); 735 if (IS_ERR(data[thr].thr)) { 736 data[thr].thr = NULL; 737 pr_err("Cannot start compression threads\n"); 738 ret = -ENOMEM; 739 goto out_clean; 740 } 741 } 742 743 /* 744 * Start the CRC32 thread. 745 */ 746 init_waitqueue_head(&crc->go); 747 init_waitqueue_head(&crc->done); 748 749 handle->crc32 = 0; 750 crc->crc32 = &handle->crc32; 751 for (thr = 0; thr < nr_threads; thr++) { 752 crc->unc[thr] = data[thr].unc; 753 crc->unc_len[thr] = &data[thr].unc_len; 754 } 755 756 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 757 if (IS_ERR(crc->thr)) { 758 crc->thr = NULL; 759 pr_err("Cannot start CRC32 thread\n"); 760 ret = -ENOMEM; 761 goto out_clean; 762 } 763 764 /* 765 * Adjust the number of required free pages after all allocations have 766 * been done. We don't want to run out of pages when writing. 767 */ 768 handle->reqd_free_pages = reqd_free_pages(); 769 770 pr_info("Using %u thread(s) for compression\n", nr_threads); 771 pr_info("Compressing and saving image data (%u pages)...\n", 772 nr_to_write); 773 m = nr_to_write / 10; 774 if (!m) 775 m = 1; 776 nr_pages = 0; 777 start = ktime_get(); 778 for (;;) { 779 for (thr = 0; thr < nr_threads; thr++) { 780 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) { 781 ret = snapshot_read_next(snapshot); 782 if (ret < 0) 783 goto out_finish; 784 785 if (!ret) 786 break; 787 788 memcpy(data[thr].unc + off, 789 data_of(*snapshot), PAGE_SIZE); 790 791 if (!(nr_pages % m)) 792 pr_info("Image saving progress: %3d%%\n", 793 nr_pages / m * 10); 794 nr_pages++; 795 } 796 if (!off) 797 break; 798 799 data[thr].unc_len = off; 800 801 atomic_set(&data[thr].ready, 1); 802 wake_up(&data[thr].go); 803 } 804 805 if (!thr) 806 break; 807 808 crc->run_threads = thr; 809 atomic_set(&crc->ready, 1); 810 wake_up(&crc->go); 811 812 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 813 wait_event(data[thr].done, 814 atomic_read(&data[thr].stop)); 815 atomic_set(&data[thr].stop, 0); 816 817 ret = data[thr].ret; 818 819 if (ret < 0) { 820 pr_err("LZO compression failed\n"); 821 goto out_finish; 822 } 823 824 if (unlikely(!data[thr].cmp_len || 825 data[thr].cmp_len > 826 lzo1x_worst_compress(data[thr].unc_len))) { 827 pr_err("Invalid LZO compressed length\n"); 828 ret = -1; 829 goto out_finish; 830 } 831 832 *(size_t *)data[thr].cmp = data[thr].cmp_len; 833 834 /* 835 * Given we are writing one page at a time to disk, we 836 * copy that much from the buffer, although the last 837 * bit will likely be smaller than full page. This is 838 * OK - we saved the length of the compressed data, so 839 * any garbage at the end will be discarded when we 840 * read it. 841 */ 842 for (off = 0; 843 off < LZO_HEADER + data[thr].cmp_len; 844 off += PAGE_SIZE) { 845 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 846 847 ret = swap_write_page(handle, page, &hb); 848 if (ret) 849 goto out_finish; 850 } 851 } 852 853 wait_event(crc->done, atomic_read(&crc->stop)); 854 atomic_set(&crc->stop, 0); 855 } 856 857 out_finish: 858 err2 = hib_wait_io(&hb); 859 stop = ktime_get(); 860 if (!ret) 861 ret = err2; 862 if (!ret) 863 pr_info("Image saving done\n"); 864 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 865 out_clean: 866 hib_finish_batch(&hb); 867 if (crc) { 868 if (crc->thr) 869 kthread_stop(crc->thr); 870 kfree(crc); 871 } 872 if (data) { 873 for (thr = 0; thr < nr_threads; thr++) 874 if (data[thr].thr) 875 kthread_stop(data[thr].thr); 876 vfree(data); 877 } 878 if (page) free_page((unsigned long)page); 879 880 return ret; 881 } 882 883 /** 884 * enough_swap - Make sure we have enough swap to save the image. 885 * 886 * Returns TRUE or FALSE after checking the total amount of swap 887 * space available from the resume partition. 888 */ 889 890 static int enough_swap(unsigned int nr_pages) 891 { 892 unsigned int free_swap = count_swap_pages(root_swap, 1); 893 unsigned int required; 894 895 pr_debug("Free swap pages: %u\n", free_swap); 896 897 required = PAGES_FOR_IO + nr_pages; 898 return free_swap > required; 899 } 900 901 /** 902 * swsusp_write - Write entire image and metadata. 903 * @flags: flags to pass to the "boot" kernel in the image header 904 * 905 * It is important _NOT_ to umount filesystems at this point. We want 906 * them synced (in case something goes wrong) but we DO not want to mark 907 * filesystem clean: it is not. (And it does not matter, if we resume 908 * correctly, we'll mark system clean, anyway.) 909 */ 910 911 int swsusp_write(unsigned int flags) 912 { 913 struct swap_map_handle handle; 914 struct snapshot_handle snapshot; 915 struct swsusp_info *header; 916 unsigned long pages; 917 int error; 918 919 pages = snapshot_get_image_size(); 920 error = get_swap_writer(&handle); 921 if (error) { 922 pr_err("Cannot get swap writer\n"); 923 return error; 924 } 925 if (flags & SF_NOCOMPRESS_MODE) { 926 if (!enough_swap(pages)) { 927 pr_err("Not enough free swap\n"); 928 error = -ENOSPC; 929 goto out_finish; 930 } 931 } 932 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 933 error = snapshot_read_next(&snapshot); 934 if (error < (int)PAGE_SIZE) { 935 if (error >= 0) 936 error = -EFAULT; 937 938 goto out_finish; 939 } 940 header = (struct swsusp_info *)data_of(snapshot); 941 error = swap_write_page(&handle, header, NULL); 942 if (!error) { 943 error = (flags & SF_NOCOMPRESS_MODE) ? 944 save_image(&handle, &snapshot, pages - 1) : 945 save_image_lzo(&handle, &snapshot, pages - 1); 946 } 947 out_finish: 948 error = swap_writer_finish(&handle, flags, error); 949 return error; 950 } 951 952 /* 953 * The following functions allow us to read data using a swap map 954 * in a file-like way. 955 */ 956 957 static void release_swap_reader(struct swap_map_handle *handle) 958 { 959 struct swap_map_page_list *tmp; 960 961 while (handle->maps) { 962 if (handle->maps->map) 963 free_page((unsigned long)handle->maps->map); 964 tmp = handle->maps; 965 handle->maps = handle->maps->next; 966 kfree(tmp); 967 } 968 handle->cur = NULL; 969 } 970 971 static int get_swap_reader(struct swap_map_handle *handle, 972 unsigned int *flags_p) 973 { 974 int error; 975 struct swap_map_page_list *tmp, *last; 976 sector_t offset; 977 978 *flags_p = swsusp_header->flags; 979 980 if (!swsusp_header->image) /* how can this happen? */ 981 return -EINVAL; 982 983 handle->cur = NULL; 984 last = handle->maps = NULL; 985 offset = swsusp_header->image; 986 while (offset) { 987 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 988 if (!tmp) { 989 release_swap_reader(handle); 990 return -ENOMEM; 991 } 992 if (!handle->maps) 993 handle->maps = tmp; 994 if (last) 995 last->next = tmp; 996 last = tmp; 997 998 tmp->map = (struct swap_map_page *) 999 __get_free_page(GFP_NOIO | __GFP_HIGH); 1000 if (!tmp->map) { 1001 release_swap_reader(handle); 1002 return -ENOMEM; 1003 } 1004 1005 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL); 1006 if (error) { 1007 release_swap_reader(handle); 1008 return error; 1009 } 1010 offset = tmp->map->next_swap; 1011 } 1012 handle->k = 0; 1013 handle->cur = handle->maps->map; 1014 return 0; 1015 } 1016 1017 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1018 struct hib_bio_batch *hb) 1019 { 1020 sector_t offset; 1021 int error; 1022 struct swap_map_page_list *tmp; 1023 1024 if (!handle->cur) 1025 return -EINVAL; 1026 offset = handle->cur->entries[handle->k]; 1027 if (!offset) 1028 return -EFAULT; 1029 error = hib_submit_io(REQ_OP_READ, offset, buf, hb); 1030 if (error) 1031 return error; 1032 if (++handle->k >= MAP_PAGE_ENTRIES) { 1033 handle->k = 0; 1034 free_page((unsigned long)handle->maps->map); 1035 tmp = handle->maps; 1036 handle->maps = handle->maps->next; 1037 kfree(tmp); 1038 if (!handle->maps) 1039 release_swap_reader(handle); 1040 else 1041 handle->cur = handle->maps->map; 1042 } 1043 return error; 1044 } 1045 1046 static int swap_reader_finish(struct swap_map_handle *handle) 1047 { 1048 release_swap_reader(handle); 1049 1050 return 0; 1051 } 1052 1053 /** 1054 * load_image - load the image using the swap map handle 1055 * @handle and the snapshot handle @snapshot 1056 * (assume there are @nr_pages pages to load) 1057 */ 1058 1059 static int load_image(struct swap_map_handle *handle, 1060 struct snapshot_handle *snapshot, 1061 unsigned int nr_to_read) 1062 { 1063 unsigned int m; 1064 int ret = 0; 1065 ktime_t start; 1066 ktime_t stop; 1067 struct hib_bio_batch hb; 1068 int err2; 1069 unsigned nr_pages; 1070 1071 hib_init_batch(&hb); 1072 1073 clean_pages_on_read = true; 1074 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1075 m = nr_to_read / 10; 1076 if (!m) 1077 m = 1; 1078 nr_pages = 0; 1079 start = ktime_get(); 1080 for ( ; ; ) { 1081 ret = snapshot_write_next(snapshot); 1082 if (ret <= 0) 1083 break; 1084 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1085 if (ret) 1086 break; 1087 if (snapshot->sync_read) 1088 ret = hib_wait_io(&hb); 1089 if (ret) 1090 break; 1091 if (!(nr_pages % m)) 1092 pr_info("Image loading progress: %3d%%\n", 1093 nr_pages / m * 10); 1094 nr_pages++; 1095 } 1096 err2 = hib_wait_io(&hb); 1097 hib_finish_batch(&hb); 1098 stop = ktime_get(); 1099 if (!ret) 1100 ret = err2; 1101 if (!ret) { 1102 pr_info("Image loading done\n"); 1103 snapshot_write_finalize(snapshot); 1104 if (!snapshot_image_loaded(snapshot)) 1105 ret = -ENODATA; 1106 } 1107 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1108 return ret; 1109 } 1110 1111 /* 1112 * Structure used for LZO data decompression. 1113 */ 1114 struct dec_data { 1115 struct task_struct *thr; /* thread */ 1116 atomic_t ready; /* ready to start flag */ 1117 atomic_t stop; /* ready to stop flag */ 1118 int ret; /* return code */ 1119 wait_queue_head_t go; /* start decompression */ 1120 wait_queue_head_t done; /* decompression done */ 1121 size_t unc_len; /* uncompressed length */ 1122 size_t cmp_len; /* compressed length */ 1123 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 1124 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 1125 }; 1126 1127 /* 1128 * Decompression function that runs in its own thread. 1129 */ 1130 static int lzo_decompress_threadfn(void *data) 1131 { 1132 struct dec_data *d = data; 1133 1134 while (1) { 1135 wait_event(d->go, atomic_read(&d->ready) || 1136 kthread_should_stop()); 1137 if (kthread_should_stop()) { 1138 d->thr = NULL; 1139 d->ret = -1; 1140 atomic_set(&d->stop, 1); 1141 wake_up(&d->done); 1142 break; 1143 } 1144 atomic_set(&d->ready, 0); 1145 1146 d->unc_len = LZO_UNC_SIZE; 1147 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len, 1148 d->unc, &d->unc_len); 1149 if (clean_pages_on_decompress) 1150 flush_icache_range((unsigned long)d->unc, 1151 (unsigned long)d->unc + d->unc_len); 1152 1153 atomic_set(&d->stop, 1); 1154 wake_up(&d->done); 1155 } 1156 return 0; 1157 } 1158 1159 /** 1160 * load_image_lzo - Load compressed image data and decompress them with LZO. 1161 * @handle: Swap map handle to use for loading data. 1162 * @snapshot: Image to copy uncompressed data into. 1163 * @nr_to_read: Number of pages to load. 1164 */ 1165 static int load_image_lzo(struct swap_map_handle *handle, 1166 struct snapshot_handle *snapshot, 1167 unsigned int nr_to_read) 1168 { 1169 unsigned int m; 1170 int ret = 0; 1171 int eof = 0; 1172 struct hib_bio_batch hb; 1173 ktime_t start; 1174 ktime_t stop; 1175 unsigned nr_pages; 1176 size_t off; 1177 unsigned i, thr, run_threads, nr_threads; 1178 unsigned ring = 0, pg = 0, ring_size = 0, 1179 have = 0, want, need, asked = 0; 1180 unsigned long read_pages = 0; 1181 unsigned char **page = NULL; 1182 struct dec_data *data = NULL; 1183 struct crc_data *crc = NULL; 1184 1185 hib_init_batch(&hb); 1186 1187 /* 1188 * We'll limit the number of threads for decompression to limit memory 1189 * footprint. 1190 */ 1191 nr_threads = num_online_cpus() - 1; 1192 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 1193 1194 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page))); 1195 if (!page) { 1196 pr_err("Failed to allocate LZO page\n"); 1197 ret = -ENOMEM; 1198 goto out_clean; 1199 } 1200 1201 data = vzalloc(array_size(nr_threads, sizeof(*data))); 1202 if (!data) { 1203 pr_err("Failed to allocate LZO data\n"); 1204 ret = -ENOMEM; 1205 goto out_clean; 1206 } 1207 1208 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 1209 if (!crc) { 1210 pr_err("Failed to allocate crc\n"); 1211 ret = -ENOMEM; 1212 goto out_clean; 1213 } 1214 1215 clean_pages_on_decompress = true; 1216 1217 /* 1218 * Start the decompression threads. 1219 */ 1220 for (thr = 0; thr < nr_threads; thr++) { 1221 init_waitqueue_head(&data[thr].go); 1222 init_waitqueue_head(&data[thr].done); 1223 1224 data[thr].thr = kthread_run(lzo_decompress_threadfn, 1225 &data[thr], 1226 "image_decompress/%u", thr); 1227 if (IS_ERR(data[thr].thr)) { 1228 data[thr].thr = NULL; 1229 pr_err("Cannot start decompression threads\n"); 1230 ret = -ENOMEM; 1231 goto out_clean; 1232 } 1233 } 1234 1235 /* 1236 * Start the CRC32 thread. 1237 */ 1238 init_waitqueue_head(&crc->go); 1239 init_waitqueue_head(&crc->done); 1240 1241 handle->crc32 = 0; 1242 crc->crc32 = &handle->crc32; 1243 for (thr = 0; thr < nr_threads; thr++) { 1244 crc->unc[thr] = data[thr].unc; 1245 crc->unc_len[thr] = &data[thr].unc_len; 1246 } 1247 1248 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1249 if (IS_ERR(crc->thr)) { 1250 crc->thr = NULL; 1251 pr_err("Cannot start CRC32 thread\n"); 1252 ret = -ENOMEM; 1253 goto out_clean; 1254 } 1255 1256 /* 1257 * Set the number of pages for read buffering. 1258 * This is complete guesswork, because we'll only know the real 1259 * picture once prepare_image() is called, which is much later on 1260 * during the image load phase. We'll assume the worst case and 1261 * say that none of the image pages are from high memory. 1262 */ 1263 if (low_free_pages() > snapshot_get_image_size()) 1264 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1265 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES); 1266 1267 for (i = 0; i < read_pages; i++) { 1268 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ? 1269 GFP_NOIO | __GFP_HIGH : 1270 GFP_NOIO | __GFP_NOWARN | 1271 __GFP_NORETRY); 1272 1273 if (!page[i]) { 1274 if (i < LZO_CMP_PAGES) { 1275 ring_size = i; 1276 pr_err("Failed to allocate LZO pages\n"); 1277 ret = -ENOMEM; 1278 goto out_clean; 1279 } else { 1280 break; 1281 } 1282 } 1283 } 1284 want = ring_size = i; 1285 1286 pr_info("Using %u thread(s) for decompression\n", nr_threads); 1287 pr_info("Loading and decompressing image data (%u pages)...\n", 1288 nr_to_read); 1289 m = nr_to_read / 10; 1290 if (!m) 1291 m = 1; 1292 nr_pages = 0; 1293 start = ktime_get(); 1294 1295 ret = snapshot_write_next(snapshot); 1296 if (ret <= 0) 1297 goto out_finish; 1298 1299 for(;;) { 1300 for (i = 0; !eof && i < want; i++) { 1301 ret = swap_read_page(handle, page[ring], &hb); 1302 if (ret) { 1303 /* 1304 * On real read error, finish. On end of data, 1305 * set EOF flag and just exit the read loop. 1306 */ 1307 if (handle->cur && 1308 handle->cur->entries[handle->k]) { 1309 goto out_finish; 1310 } else { 1311 eof = 1; 1312 break; 1313 } 1314 } 1315 if (++ring >= ring_size) 1316 ring = 0; 1317 } 1318 asked += i; 1319 want -= i; 1320 1321 /* 1322 * We are out of data, wait for some more. 1323 */ 1324 if (!have) { 1325 if (!asked) 1326 break; 1327 1328 ret = hib_wait_io(&hb); 1329 if (ret) 1330 goto out_finish; 1331 have += asked; 1332 asked = 0; 1333 if (eof) 1334 eof = 2; 1335 } 1336 1337 if (crc->run_threads) { 1338 wait_event(crc->done, atomic_read(&crc->stop)); 1339 atomic_set(&crc->stop, 0); 1340 crc->run_threads = 0; 1341 } 1342 1343 for (thr = 0; have && thr < nr_threads; thr++) { 1344 data[thr].cmp_len = *(size_t *)page[pg]; 1345 if (unlikely(!data[thr].cmp_len || 1346 data[thr].cmp_len > 1347 lzo1x_worst_compress(LZO_UNC_SIZE))) { 1348 pr_err("Invalid LZO compressed length\n"); 1349 ret = -1; 1350 goto out_finish; 1351 } 1352 1353 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER, 1354 PAGE_SIZE); 1355 if (need > have) { 1356 if (eof > 1) { 1357 ret = -1; 1358 goto out_finish; 1359 } 1360 break; 1361 } 1362 1363 for (off = 0; 1364 off < LZO_HEADER + data[thr].cmp_len; 1365 off += PAGE_SIZE) { 1366 memcpy(data[thr].cmp + off, 1367 page[pg], PAGE_SIZE); 1368 have--; 1369 want++; 1370 if (++pg >= ring_size) 1371 pg = 0; 1372 } 1373 1374 atomic_set(&data[thr].ready, 1); 1375 wake_up(&data[thr].go); 1376 } 1377 1378 /* 1379 * Wait for more data while we are decompressing. 1380 */ 1381 if (have < LZO_CMP_PAGES && asked) { 1382 ret = hib_wait_io(&hb); 1383 if (ret) 1384 goto out_finish; 1385 have += asked; 1386 asked = 0; 1387 if (eof) 1388 eof = 2; 1389 } 1390 1391 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1392 wait_event(data[thr].done, 1393 atomic_read(&data[thr].stop)); 1394 atomic_set(&data[thr].stop, 0); 1395 1396 ret = data[thr].ret; 1397 1398 if (ret < 0) { 1399 pr_err("LZO decompression failed\n"); 1400 goto out_finish; 1401 } 1402 1403 if (unlikely(!data[thr].unc_len || 1404 data[thr].unc_len > LZO_UNC_SIZE || 1405 data[thr].unc_len & (PAGE_SIZE - 1))) { 1406 pr_err("Invalid LZO uncompressed length\n"); 1407 ret = -1; 1408 goto out_finish; 1409 } 1410 1411 for (off = 0; 1412 off < data[thr].unc_len; off += PAGE_SIZE) { 1413 memcpy(data_of(*snapshot), 1414 data[thr].unc + off, PAGE_SIZE); 1415 1416 if (!(nr_pages % m)) 1417 pr_info("Image loading progress: %3d%%\n", 1418 nr_pages / m * 10); 1419 nr_pages++; 1420 1421 ret = snapshot_write_next(snapshot); 1422 if (ret <= 0) { 1423 crc->run_threads = thr + 1; 1424 atomic_set(&crc->ready, 1); 1425 wake_up(&crc->go); 1426 goto out_finish; 1427 } 1428 } 1429 } 1430 1431 crc->run_threads = thr; 1432 atomic_set(&crc->ready, 1); 1433 wake_up(&crc->go); 1434 } 1435 1436 out_finish: 1437 if (crc->run_threads) { 1438 wait_event(crc->done, atomic_read(&crc->stop)); 1439 atomic_set(&crc->stop, 0); 1440 } 1441 stop = ktime_get(); 1442 if (!ret) { 1443 pr_info("Image loading done\n"); 1444 snapshot_write_finalize(snapshot); 1445 if (!snapshot_image_loaded(snapshot)) 1446 ret = -ENODATA; 1447 if (!ret) { 1448 if (swsusp_header->flags & SF_CRC32_MODE) { 1449 if(handle->crc32 != swsusp_header->crc32) { 1450 pr_err("Invalid image CRC32!\n"); 1451 ret = -ENODATA; 1452 } 1453 } 1454 } 1455 } 1456 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1457 out_clean: 1458 hib_finish_batch(&hb); 1459 for (i = 0; i < ring_size; i++) 1460 free_page((unsigned long)page[i]); 1461 if (crc) { 1462 if (crc->thr) 1463 kthread_stop(crc->thr); 1464 kfree(crc); 1465 } 1466 if (data) { 1467 for (thr = 0; thr < nr_threads; thr++) 1468 if (data[thr].thr) 1469 kthread_stop(data[thr].thr); 1470 vfree(data); 1471 } 1472 vfree(page); 1473 1474 return ret; 1475 } 1476 1477 /** 1478 * swsusp_read - read the hibernation image. 1479 * @flags_p: flags passed by the "frozen" kernel in the image header should 1480 * be written into this memory location 1481 */ 1482 1483 int swsusp_read(unsigned int *flags_p) 1484 { 1485 int error; 1486 struct swap_map_handle handle; 1487 struct snapshot_handle snapshot; 1488 struct swsusp_info *header; 1489 1490 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1491 error = snapshot_write_next(&snapshot); 1492 if (error < (int)PAGE_SIZE) 1493 return error < 0 ? error : -EFAULT; 1494 header = (struct swsusp_info *)data_of(snapshot); 1495 error = get_swap_reader(&handle, flags_p); 1496 if (error) 1497 goto end; 1498 if (!error) 1499 error = swap_read_page(&handle, header, NULL); 1500 if (!error) { 1501 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1502 load_image(&handle, &snapshot, header->pages - 1) : 1503 load_image_lzo(&handle, &snapshot, header->pages - 1); 1504 } 1505 swap_reader_finish(&handle); 1506 end: 1507 if (!error) 1508 pr_debug("Image successfully loaded\n"); 1509 else 1510 pr_debug("Error %d resuming\n", error); 1511 return error; 1512 } 1513 1514 static void *swsusp_holder; 1515 1516 /** 1517 * swsusp_check - Check for swsusp signature in the resume device 1518 * @exclusive: Open the resume device exclusively. 1519 */ 1520 1521 int swsusp_check(bool exclusive) 1522 { 1523 void *holder = exclusive ? &swsusp_holder : NULL; 1524 int error; 1525 1526 hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device, 1527 BLK_OPEN_READ, holder, NULL); 1528 if (!IS_ERR(hib_resume_bdev_handle)) { 1529 set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE); 1530 clear_page(swsusp_header); 1531 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1532 swsusp_header, NULL); 1533 if (error) 1534 goto put; 1535 1536 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1537 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1538 /* Reset swap signature now */ 1539 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1540 swsusp_resume_block, 1541 swsusp_header, NULL); 1542 } else { 1543 error = -EINVAL; 1544 } 1545 if (!error && swsusp_header->flags & SF_HW_SIG && 1546 swsusp_header->hw_sig != swsusp_hardware_signature) { 1547 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n", 1548 swsusp_header->hw_sig, swsusp_hardware_signature); 1549 error = -EINVAL; 1550 } 1551 1552 put: 1553 if (error) 1554 bdev_release(hib_resume_bdev_handle); 1555 else 1556 pr_debug("Image signature found, resuming\n"); 1557 } else { 1558 error = PTR_ERR(hib_resume_bdev_handle); 1559 } 1560 1561 if (error) 1562 pr_debug("Image not found (code %d)\n", error); 1563 1564 return error; 1565 } 1566 1567 /** 1568 * swsusp_close - close swap device. 1569 * @exclusive: Close the resume device which is exclusively opened. 1570 */ 1571 1572 void swsusp_close(bool exclusive) 1573 { 1574 if (IS_ERR(hib_resume_bdev_handle)) { 1575 pr_debug("Image device not initialised\n"); 1576 return; 1577 } 1578 1579 bdev_release(hib_resume_bdev_handle); 1580 } 1581 1582 /** 1583 * swsusp_unmark - Unmark swsusp signature in the resume device 1584 */ 1585 1586 #ifdef CONFIG_SUSPEND 1587 int swsusp_unmark(void) 1588 { 1589 int error; 1590 1591 hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1592 swsusp_header, NULL); 1593 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1594 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1595 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1596 swsusp_resume_block, 1597 swsusp_header, NULL); 1598 } else { 1599 pr_err("Cannot find swsusp signature!\n"); 1600 error = -ENODEV; 1601 } 1602 1603 /* 1604 * We just returned from suspend, we don't need the image any more. 1605 */ 1606 free_all_swap_pages(root_swap); 1607 1608 return error; 1609 } 1610 #endif 1611 1612 static int __init swsusp_header_init(void) 1613 { 1614 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1615 if (!swsusp_header) 1616 panic("Could not allocate memory for swsusp_header\n"); 1617 return 0; 1618 } 1619 1620 core_initcall(swsusp_header_init); 1621