1 /* 2 * linux/kernel/power/swap.c 3 * 4 * This file provides functions for reading the suspend image from 5 * and writing it to a swap partition. 6 * 7 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 9 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 10 * 11 * This file is released under the GPLv2. 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/genhd.h> 20 #include <linux/device.h> 21 #include <linux/bio.h> 22 #include <linux/blkdev.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/pm.h> 26 #include <linux/slab.h> 27 #include <linux/lzo.h> 28 #include <linux/vmalloc.h> 29 #include <linux/cpumask.h> 30 #include <linux/atomic.h> 31 #include <linux/kthread.h> 32 #include <linux/crc32.h> 33 #include <linux/ktime.h> 34 35 #include "power.h" 36 37 #define HIBERNATE_SIG "S1SUSPEND" 38 39 /* 40 * The swap map is a data structure used for keeping track of each page 41 * written to a swap partition. It consists of many swap_map_page 42 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 43 * These structures are stored on the swap and linked together with the 44 * help of the .next_swap member. 45 * 46 * The swap map is created during suspend. The swap map pages are 47 * allocated and populated one at a time, so we only need one memory 48 * page to set up the entire structure. 49 * 50 * During resume we pick up all swap_map_page structures into a list. 51 */ 52 53 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 54 55 /* 56 * Number of free pages that are not high. 57 */ 58 static inline unsigned long low_free_pages(void) 59 { 60 return nr_free_pages() - nr_free_highpages(); 61 } 62 63 /* 64 * Number of pages required to be kept free while writing the image. Always 65 * half of all available low pages before the writing starts. 66 */ 67 static inline unsigned long reqd_free_pages(void) 68 { 69 return low_free_pages() / 2; 70 } 71 72 struct swap_map_page { 73 sector_t entries[MAP_PAGE_ENTRIES]; 74 sector_t next_swap; 75 }; 76 77 struct swap_map_page_list { 78 struct swap_map_page *map; 79 struct swap_map_page_list *next; 80 }; 81 82 /** 83 * The swap_map_handle structure is used for handling swap in 84 * a file-alike way 85 */ 86 87 struct swap_map_handle { 88 struct swap_map_page *cur; 89 struct swap_map_page_list *maps; 90 sector_t cur_swap; 91 sector_t first_sector; 92 unsigned int k; 93 unsigned long reqd_free_pages; 94 u32 crc32; 95 }; 96 97 struct swsusp_header { 98 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 99 sizeof(u32)]; 100 u32 crc32; 101 sector_t image; 102 unsigned int flags; /* Flags to pass to the "boot" kernel */ 103 char orig_sig[10]; 104 char sig[10]; 105 } __packed; 106 107 static struct swsusp_header *swsusp_header; 108 109 /** 110 * The following functions are used for tracing the allocated 111 * swap pages, so that they can be freed in case of an error. 112 */ 113 114 struct swsusp_extent { 115 struct rb_node node; 116 unsigned long start; 117 unsigned long end; 118 }; 119 120 static struct rb_root swsusp_extents = RB_ROOT; 121 122 static int swsusp_extents_insert(unsigned long swap_offset) 123 { 124 struct rb_node **new = &(swsusp_extents.rb_node); 125 struct rb_node *parent = NULL; 126 struct swsusp_extent *ext; 127 128 /* Figure out where to put the new node */ 129 while (*new) { 130 ext = rb_entry(*new, struct swsusp_extent, node); 131 parent = *new; 132 if (swap_offset < ext->start) { 133 /* Try to merge */ 134 if (swap_offset == ext->start - 1) { 135 ext->start--; 136 return 0; 137 } 138 new = &((*new)->rb_left); 139 } else if (swap_offset > ext->end) { 140 /* Try to merge */ 141 if (swap_offset == ext->end + 1) { 142 ext->end++; 143 return 0; 144 } 145 new = &((*new)->rb_right); 146 } else { 147 /* It already is in the tree */ 148 return -EINVAL; 149 } 150 } 151 /* Add the new node and rebalance the tree. */ 152 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 153 if (!ext) 154 return -ENOMEM; 155 156 ext->start = swap_offset; 157 ext->end = swap_offset; 158 rb_link_node(&ext->node, parent, new); 159 rb_insert_color(&ext->node, &swsusp_extents); 160 return 0; 161 } 162 163 /** 164 * alloc_swapdev_block - allocate a swap page and register that it has 165 * been allocated, so that it can be freed in case of an error. 166 */ 167 168 sector_t alloc_swapdev_block(int swap) 169 { 170 unsigned long offset; 171 172 offset = swp_offset(get_swap_page_of_type(swap)); 173 if (offset) { 174 if (swsusp_extents_insert(offset)) 175 swap_free(swp_entry(swap, offset)); 176 else 177 return swapdev_block(swap, offset); 178 } 179 return 0; 180 } 181 182 /** 183 * free_all_swap_pages - free swap pages allocated for saving image data. 184 * It also frees the extents used to register which swap entries had been 185 * allocated. 186 */ 187 188 void free_all_swap_pages(int swap) 189 { 190 struct rb_node *node; 191 192 while ((node = swsusp_extents.rb_node)) { 193 struct swsusp_extent *ext; 194 unsigned long offset; 195 196 ext = container_of(node, struct swsusp_extent, node); 197 rb_erase(node, &swsusp_extents); 198 for (offset = ext->start; offset <= ext->end; offset++) 199 swap_free(swp_entry(swap, offset)); 200 201 kfree(ext); 202 } 203 } 204 205 int swsusp_swap_in_use(void) 206 { 207 return (swsusp_extents.rb_node != NULL); 208 } 209 210 /* 211 * General things 212 */ 213 214 static unsigned short root_swap = 0xffff; 215 static struct block_device *hib_resume_bdev; 216 217 struct hib_bio_batch { 218 atomic_t count; 219 wait_queue_head_t wait; 220 int error; 221 }; 222 223 static void hib_init_batch(struct hib_bio_batch *hb) 224 { 225 atomic_set(&hb->count, 0); 226 init_waitqueue_head(&hb->wait); 227 hb->error = 0; 228 } 229 230 static void hib_end_io(struct bio *bio) 231 { 232 struct hib_bio_batch *hb = bio->bi_private; 233 struct page *page = bio->bi_io_vec[0].bv_page; 234 235 if (bio->bi_error) { 236 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n", 237 imajor(bio->bi_bdev->bd_inode), 238 iminor(bio->bi_bdev->bd_inode), 239 (unsigned long long)bio->bi_iter.bi_sector); 240 } 241 242 if (bio_data_dir(bio) == WRITE) 243 put_page(page); 244 245 if (bio->bi_error && !hb->error) 246 hb->error = bio->bi_error; 247 if (atomic_dec_and_test(&hb->count)) 248 wake_up(&hb->wait); 249 250 bio_put(bio); 251 } 252 253 static int hib_submit_io(int rw, pgoff_t page_off, void *addr, 254 struct hib_bio_batch *hb) 255 { 256 struct page *page = virt_to_page(addr); 257 struct bio *bio; 258 int error = 0; 259 260 bio = bio_alloc(__GFP_WAIT | __GFP_HIGH, 1); 261 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 262 bio->bi_bdev = hib_resume_bdev; 263 264 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 265 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n", 266 (unsigned long long)bio->bi_iter.bi_sector); 267 bio_put(bio); 268 return -EFAULT; 269 } 270 271 if (hb) { 272 bio->bi_end_io = hib_end_io; 273 bio->bi_private = hb; 274 atomic_inc(&hb->count); 275 submit_bio(rw, bio); 276 } else { 277 error = submit_bio_wait(rw, bio); 278 bio_put(bio); 279 } 280 281 return error; 282 } 283 284 static int hib_wait_io(struct hib_bio_batch *hb) 285 { 286 wait_event(hb->wait, atomic_read(&hb->count) == 0); 287 return hb->error; 288 } 289 290 /* 291 * Saving part 292 */ 293 294 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 295 { 296 int error; 297 298 hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL); 299 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 300 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 301 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 302 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 303 swsusp_header->image = handle->first_sector; 304 swsusp_header->flags = flags; 305 if (flags & SF_CRC32_MODE) 306 swsusp_header->crc32 = handle->crc32; 307 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block, 308 swsusp_header, NULL); 309 } else { 310 printk(KERN_ERR "PM: Swap header not found!\n"); 311 error = -ENODEV; 312 } 313 return error; 314 } 315 316 /** 317 * swsusp_swap_check - check if the resume device is a swap device 318 * and get its index (if so) 319 * 320 * This is called before saving image 321 */ 322 static int swsusp_swap_check(void) 323 { 324 int res; 325 326 res = swap_type_of(swsusp_resume_device, swsusp_resume_block, 327 &hib_resume_bdev); 328 if (res < 0) 329 return res; 330 331 root_swap = res; 332 res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL); 333 if (res) 334 return res; 335 336 res = set_blocksize(hib_resume_bdev, PAGE_SIZE); 337 if (res < 0) 338 blkdev_put(hib_resume_bdev, FMODE_WRITE); 339 340 return res; 341 } 342 343 /** 344 * write_page - Write one page to given swap location. 345 * @buf: Address we're writing. 346 * @offset: Offset of the swap page we're writing to. 347 * @hb: bio completion batch 348 */ 349 350 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 351 { 352 void *src; 353 int ret; 354 355 if (!offset) 356 return -ENOSPC; 357 358 if (hb) { 359 src = (void *)__get_free_page(__GFP_WAIT | __GFP_NOWARN | 360 __GFP_NORETRY); 361 if (src) { 362 copy_page(src, buf); 363 } else { 364 ret = hib_wait_io(hb); /* Free pages */ 365 if (ret) 366 return ret; 367 src = (void *)__get_free_page(__GFP_WAIT | 368 __GFP_NOWARN | 369 __GFP_NORETRY); 370 if (src) { 371 copy_page(src, buf); 372 } else { 373 WARN_ON_ONCE(1); 374 hb = NULL; /* Go synchronous */ 375 src = buf; 376 } 377 } 378 } else { 379 src = buf; 380 } 381 return hib_submit_io(WRITE_SYNC, offset, src, hb); 382 } 383 384 static void release_swap_writer(struct swap_map_handle *handle) 385 { 386 if (handle->cur) 387 free_page((unsigned long)handle->cur); 388 handle->cur = NULL; 389 } 390 391 static int get_swap_writer(struct swap_map_handle *handle) 392 { 393 int ret; 394 395 ret = swsusp_swap_check(); 396 if (ret) { 397 if (ret != -ENOSPC) 398 printk(KERN_ERR "PM: Cannot find swap device, try " 399 "swapon -a.\n"); 400 return ret; 401 } 402 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 403 if (!handle->cur) { 404 ret = -ENOMEM; 405 goto err_close; 406 } 407 handle->cur_swap = alloc_swapdev_block(root_swap); 408 if (!handle->cur_swap) { 409 ret = -ENOSPC; 410 goto err_rel; 411 } 412 handle->k = 0; 413 handle->reqd_free_pages = reqd_free_pages(); 414 handle->first_sector = handle->cur_swap; 415 return 0; 416 err_rel: 417 release_swap_writer(handle); 418 err_close: 419 swsusp_close(FMODE_WRITE); 420 return ret; 421 } 422 423 static int swap_write_page(struct swap_map_handle *handle, void *buf, 424 struct hib_bio_batch *hb) 425 { 426 int error = 0; 427 sector_t offset; 428 429 if (!handle->cur) 430 return -EINVAL; 431 offset = alloc_swapdev_block(root_swap); 432 error = write_page(buf, offset, hb); 433 if (error) 434 return error; 435 handle->cur->entries[handle->k++] = offset; 436 if (handle->k >= MAP_PAGE_ENTRIES) { 437 offset = alloc_swapdev_block(root_swap); 438 if (!offset) 439 return -ENOSPC; 440 handle->cur->next_swap = offset; 441 error = write_page(handle->cur, handle->cur_swap, hb); 442 if (error) 443 goto out; 444 clear_page(handle->cur); 445 handle->cur_swap = offset; 446 handle->k = 0; 447 448 if (hb && low_free_pages() <= handle->reqd_free_pages) { 449 error = hib_wait_io(hb); 450 if (error) 451 goto out; 452 /* 453 * Recalculate the number of required free pages, to 454 * make sure we never take more than half. 455 */ 456 handle->reqd_free_pages = reqd_free_pages(); 457 } 458 } 459 out: 460 return error; 461 } 462 463 static int flush_swap_writer(struct swap_map_handle *handle) 464 { 465 if (handle->cur && handle->cur_swap) 466 return write_page(handle->cur, handle->cur_swap, NULL); 467 else 468 return -EINVAL; 469 } 470 471 static int swap_writer_finish(struct swap_map_handle *handle, 472 unsigned int flags, int error) 473 { 474 if (!error) { 475 flush_swap_writer(handle); 476 printk(KERN_INFO "PM: S"); 477 error = mark_swapfiles(handle, flags); 478 printk("|\n"); 479 } 480 481 if (error) 482 free_all_swap_pages(root_swap); 483 release_swap_writer(handle); 484 swsusp_close(FMODE_WRITE); 485 486 return error; 487 } 488 489 /* We need to remember how much compressed data we need to read. */ 490 #define LZO_HEADER sizeof(size_t) 491 492 /* Number of pages/bytes we'll compress at one time. */ 493 #define LZO_UNC_PAGES 32 494 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE) 495 496 /* Number of pages/bytes we need for compressed data (worst case). */ 497 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \ 498 LZO_HEADER, PAGE_SIZE) 499 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE) 500 501 /* Maximum number of threads for compression/decompression. */ 502 #define LZO_THREADS 3 503 504 /* Minimum/maximum number of pages for read buffering. */ 505 #define LZO_MIN_RD_PAGES 1024 506 #define LZO_MAX_RD_PAGES 8192 507 508 509 /** 510 * save_image - save the suspend image data 511 */ 512 513 static int save_image(struct swap_map_handle *handle, 514 struct snapshot_handle *snapshot, 515 unsigned int nr_to_write) 516 { 517 unsigned int m; 518 int ret; 519 int nr_pages; 520 int err2; 521 struct hib_bio_batch hb; 522 ktime_t start; 523 ktime_t stop; 524 525 hib_init_batch(&hb); 526 527 printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n", 528 nr_to_write); 529 m = nr_to_write / 10; 530 if (!m) 531 m = 1; 532 nr_pages = 0; 533 start = ktime_get(); 534 while (1) { 535 ret = snapshot_read_next(snapshot); 536 if (ret <= 0) 537 break; 538 ret = swap_write_page(handle, data_of(*snapshot), &hb); 539 if (ret) 540 break; 541 if (!(nr_pages % m)) 542 printk(KERN_INFO "PM: Image saving progress: %3d%%\n", 543 nr_pages / m * 10); 544 nr_pages++; 545 } 546 err2 = hib_wait_io(&hb); 547 stop = ktime_get(); 548 if (!ret) 549 ret = err2; 550 if (!ret) 551 printk(KERN_INFO "PM: Image saving done.\n"); 552 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 553 return ret; 554 } 555 556 /** 557 * Structure used for CRC32. 558 */ 559 struct crc_data { 560 struct task_struct *thr; /* thread */ 561 atomic_t ready; /* ready to start flag */ 562 atomic_t stop; /* ready to stop flag */ 563 unsigned run_threads; /* nr current threads */ 564 wait_queue_head_t go; /* start crc update */ 565 wait_queue_head_t done; /* crc update done */ 566 u32 *crc32; /* points to handle's crc32 */ 567 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */ 568 unsigned char *unc[LZO_THREADS]; /* uncompressed data */ 569 }; 570 571 /** 572 * CRC32 update function that runs in its own thread. 573 */ 574 static int crc32_threadfn(void *data) 575 { 576 struct crc_data *d = data; 577 unsigned i; 578 579 while (1) { 580 wait_event(d->go, atomic_read(&d->ready) || 581 kthread_should_stop()); 582 if (kthread_should_stop()) { 583 d->thr = NULL; 584 atomic_set(&d->stop, 1); 585 wake_up(&d->done); 586 break; 587 } 588 atomic_set(&d->ready, 0); 589 590 for (i = 0; i < d->run_threads; i++) 591 *d->crc32 = crc32_le(*d->crc32, 592 d->unc[i], *d->unc_len[i]); 593 atomic_set(&d->stop, 1); 594 wake_up(&d->done); 595 } 596 return 0; 597 } 598 /** 599 * Structure used for LZO data compression. 600 */ 601 struct cmp_data { 602 struct task_struct *thr; /* thread */ 603 atomic_t ready; /* ready to start flag */ 604 atomic_t stop; /* ready to stop flag */ 605 int ret; /* return code */ 606 wait_queue_head_t go; /* start compression */ 607 wait_queue_head_t done; /* compression done */ 608 size_t unc_len; /* uncompressed length */ 609 size_t cmp_len; /* compressed length */ 610 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 611 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 612 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */ 613 }; 614 615 /** 616 * Compression function that runs in its own thread. 617 */ 618 static int lzo_compress_threadfn(void *data) 619 { 620 struct cmp_data *d = data; 621 622 while (1) { 623 wait_event(d->go, atomic_read(&d->ready) || 624 kthread_should_stop()); 625 if (kthread_should_stop()) { 626 d->thr = NULL; 627 d->ret = -1; 628 atomic_set(&d->stop, 1); 629 wake_up(&d->done); 630 break; 631 } 632 atomic_set(&d->ready, 0); 633 634 d->ret = lzo1x_1_compress(d->unc, d->unc_len, 635 d->cmp + LZO_HEADER, &d->cmp_len, 636 d->wrk); 637 atomic_set(&d->stop, 1); 638 wake_up(&d->done); 639 } 640 return 0; 641 } 642 643 /** 644 * save_image_lzo - Save the suspend image data compressed with LZO. 645 * @handle: Swap map handle to use for saving the image. 646 * @snapshot: Image to read data from. 647 * @nr_to_write: Number of pages to save. 648 */ 649 static int save_image_lzo(struct swap_map_handle *handle, 650 struct snapshot_handle *snapshot, 651 unsigned int nr_to_write) 652 { 653 unsigned int m; 654 int ret = 0; 655 int nr_pages; 656 int err2; 657 struct hib_bio_batch hb; 658 ktime_t start; 659 ktime_t stop; 660 size_t off; 661 unsigned thr, run_threads, nr_threads; 662 unsigned char *page = NULL; 663 struct cmp_data *data = NULL; 664 struct crc_data *crc = NULL; 665 666 hib_init_batch(&hb); 667 668 /* 669 * We'll limit the number of threads for compression to limit memory 670 * footprint. 671 */ 672 nr_threads = num_online_cpus() - 1; 673 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 674 675 page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH); 676 if (!page) { 677 printk(KERN_ERR "PM: Failed to allocate LZO page\n"); 678 ret = -ENOMEM; 679 goto out_clean; 680 } 681 682 data = vmalloc(sizeof(*data) * nr_threads); 683 if (!data) { 684 printk(KERN_ERR "PM: Failed to allocate LZO data\n"); 685 ret = -ENOMEM; 686 goto out_clean; 687 } 688 for (thr = 0; thr < nr_threads; thr++) 689 memset(&data[thr], 0, offsetof(struct cmp_data, go)); 690 691 crc = kmalloc(sizeof(*crc), GFP_KERNEL); 692 if (!crc) { 693 printk(KERN_ERR "PM: Failed to allocate crc\n"); 694 ret = -ENOMEM; 695 goto out_clean; 696 } 697 memset(crc, 0, offsetof(struct crc_data, go)); 698 699 /* 700 * Start the compression threads. 701 */ 702 for (thr = 0; thr < nr_threads; thr++) { 703 init_waitqueue_head(&data[thr].go); 704 init_waitqueue_head(&data[thr].done); 705 706 data[thr].thr = kthread_run(lzo_compress_threadfn, 707 &data[thr], 708 "image_compress/%u", thr); 709 if (IS_ERR(data[thr].thr)) { 710 data[thr].thr = NULL; 711 printk(KERN_ERR 712 "PM: Cannot start compression threads\n"); 713 ret = -ENOMEM; 714 goto out_clean; 715 } 716 } 717 718 /* 719 * Start the CRC32 thread. 720 */ 721 init_waitqueue_head(&crc->go); 722 init_waitqueue_head(&crc->done); 723 724 handle->crc32 = 0; 725 crc->crc32 = &handle->crc32; 726 for (thr = 0; thr < nr_threads; thr++) { 727 crc->unc[thr] = data[thr].unc; 728 crc->unc_len[thr] = &data[thr].unc_len; 729 } 730 731 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 732 if (IS_ERR(crc->thr)) { 733 crc->thr = NULL; 734 printk(KERN_ERR "PM: Cannot start CRC32 thread\n"); 735 ret = -ENOMEM; 736 goto out_clean; 737 } 738 739 /* 740 * Adjust the number of required free pages after all allocations have 741 * been done. We don't want to run out of pages when writing. 742 */ 743 handle->reqd_free_pages = reqd_free_pages(); 744 745 printk(KERN_INFO 746 "PM: Using %u thread(s) for compression.\n" 747 "PM: Compressing and saving image data (%u pages)...\n", 748 nr_threads, nr_to_write); 749 m = nr_to_write / 10; 750 if (!m) 751 m = 1; 752 nr_pages = 0; 753 start = ktime_get(); 754 for (;;) { 755 for (thr = 0; thr < nr_threads; thr++) { 756 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) { 757 ret = snapshot_read_next(snapshot); 758 if (ret < 0) 759 goto out_finish; 760 761 if (!ret) 762 break; 763 764 memcpy(data[thr].unc + off, 765 data_of(*snapshot), PAGE_SIZE); 766 767 if (!(nr_pages % m)) 768 printk(KERN_INFO 769 "PM: Image saving progress: " 770 "%3d%%\n", 771 nr_pages / m * 10); 772 nr_pages++; 773 } 774 if (!off) 775 break; 776 777 data[thr].unc_len = off; 778 779 atomic_set(&data[thr].ready, 1); 780 wake_up(&data[thr].go); 781 } 782 783 if (!thr) 784 break; 785 786 crc->run_threads = thr; 787 atomic_set(&crc->ready, 1); 788 wake_up(&crc->go); 789 790 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 791 wait_event(data[thr].done, 792 atomic_read(&data[thr].stop)); 793 atomic_set(&data[thr].stop, 0); 794 795 ret = data[thr].ret; 796 797 if (ret < 0) { 798 printk(KERN_ERR "PM: LZO compression failed\n"); 799 goto out_finish; 800 } 801 802 if (unlikely(!data[thr].cmp_len || 803 data[thr].cmp_len > 804 lzo1x_worst_compress(data[thr].unc_len))) { 805 printk(KERN_ERR 806 "PM: Invalid LZO compressed length\n"); 807 ret = -1; 808 goto out_finish; 809 } 810 811 *(size_t *)data[thr].cmp = data[thr].cmp_len; 812 813 /* 814 * Given we are writing one page at a time to disk, we 815 * copy that much from the buffer, although the last 816 * bit will likely be smaller than full page. This is 817 * OK - we saved the length of the compressed data, so 818 * any garbage at the end will be discarded when we 819 * read it. 820 */ 821 for (off = 0; 822 off < LZO_HEADER + data[thr].cmp_len; 823 off += PAGE_SIZE) { 824 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 825 826 ret = swap_write_page(handle, page, &hb); 827 if (ret) 828 goto out_finish; 829 } 830 } 831 832 wait_event(crc->done, atomic_read(&crc->stop)); 833 atomic_set(&crc->stop, 0); 834 } 835 836 out_finish: 837 err2 = hib_wait_io(&hb); 838 stop = ktime_get(); 839 if (!ret) 840 ret = err2; 841 if (!ret) 842 printk(KERN_INFO "PM: Image saving done.\n"); 843 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 844 out_clean: 845 if (crc) { 846 if (crc->thr) 847 kthread_stop(crc->thr); 848 kfree(crc); 849 } 850 if (data) { 851 for (thr = 0; thr < nr_threads; thr++) 852 if (data[thr].thr) 853 kthread_stop(data[thr].thr); 854 vfree(data); 855 } 856 if (page) free_page((unsigned long)page); 857 858 return ret; 859 } 860 861 /** 862 * enough_swap - Make sure we have enough swap to save the image. 863 * 864 * Returns TRUE or FALSE after checking the total amount of swap 865 * space avaiable from the resume partition. 866 */ 867 868 static int enough_swap(unsigned int nr_pages, unsigned int flags) 869 { 870 unsigned int free_swap = count_swap_pages(root_swap, 1); 871 unsigned int required; 872 873 pr_debug("PM: Free swap pages: %u\n", free_swap); 874 875 required = PAGES_FOR_IO + nr_pages; 876 return free_swap > required; 877 } 878 879 /** 880 * swsusp_write - Write entire image and metadata. 881 * @flags: flags to pass to the "boot" kernel in the image header 882 * 883 * It is important _NOT_ to umount filesystems at this point. We want 884 * them synced (in case something goes wrong) but we DO not want to mark 885 * filesystem clean: it is not. (And it does not matter, if we resume 886 * correctly, we'll mark system clean, anyway.) 887 */ 888 889 int swsusp_write(unsigned int flags) 890 { 891 struct swap_map_handle handle; 892 struct snapshot_handle snapshot; 893 struct swsusp_info *header; 894 unsigned long pages; 895 int error; 896 897 pages = snapshot_get_image_size(); 898 error = get_swap_writer(&handle); 899 if (error) { 900 printk(KERN_ERR "PM: Cannot get swap writer\n"); 901 return error; 902 } 903 if (flags & SF_NOCOMPRESS_MODE) { 904 if (!enough_swap(pages, flags)) { 905 printk(KERN_ERR "PM: Not enough free swap\n"); 906 error = -ENOSPC; 907 goto out_finish; 908 } 909 } 910 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 911 error = snapshot_read_next(&snapshot); 912 if (error < PAGE_SIZE) { 913 if (error >= 0) 914 error = -EFAULT; 915 916 goto out_finish; 917 } 918 header = (struct swsusp_info *)data_of(snapshot); 919 error = swap_write_page(&handle, header, NULL); 920 if (!error) { 921 error = (flags & SF_NOCOMPRESS_MODE) ? 922 save_image(&handle, &snapshot, pages - 1) : 923 save_image_lzo(&handle, &snapshot, pages - 1); 924 } 925 out_finish: 926 error = swap_writer_finish(&handle, flags, error); 927 return error; 928 } 929 930 /** 931 * The following functions allow us to read data using a swap map 932 * in a file-alike way 933 */ 934 935 static void release_swap_reader(struct swap_map_handle *handle) 936 { 937 struct swap_map_page_list *tmp; 938 939 while (handle->maps) { 940 if (handle->maps->map) 941 free_page((unsigned long)handle->maps->map); 942 tmp = handle->maps; 943 handle->maps = handle->maps->next; 944 kfree(tmp); 945 } 946 handle->cur = NULL; 947 } 948 949 static int get_swap_reader(struct swap_map_handle *handle, 950 unsigned int *flags_p) 951 { 952 int error; 953 struct swap_map_page_list *tmp, *last; 954 sector_t offset; 955 956 *flags_p = swsusp_header->flags; 957 958 if (!swsusp_header->image) /* how can this happen? */ 959 return -EINVAL; 960 961 handle->cur = NULL; 962 last = handle->maps = NULL; 963 offset = swsusp_header->image; 964 while (offset) { 965 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL); 966 if (!tmp) { 967 release_swap_reader(handle); 968 return -ENOMEM; 969 } 970 memset(tmp, 0, sizeof(*tmp)); 971 if (!handle->maps) 972 handle->maps = tmp; 973 if (last) 974 last->next = tmp; 975 last = tmp; 976 977 tmp->map = (struct swap_map_page *) 978 __get_free_page(__GFP_WAIT | __GFP_HIGH); 979 if (!tmp->map) { 980 release_swap_reader(handle); 981 return -ENOMEM; 982 } 983 984 error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL); 985 if (error) { 986 release_swap_reader(handle); 987 return error; 988 } 989 offset = tmp->map->next_swap; 990 } 991 handle->k = 0; 992 handle->cur = handle->maps->map; 993 return 0; 994 } 995 996 static int swap_read_page(struct swap_map_handle *handle, void *buf, 997 struct hib_bio_batch *hb) 998 { 999 sector_t offset; 1000 int error; 1001 struct swap_map_page_list *tmp; 1002 1003 if (!handle->cur) 1004 return -EINVAL; 1005 offset = handle->cur->entries[handle->k]; 1006 if (!offset) 1007 return -EFAULT; 1008 error = hib_submit_io(READ_SYNC, offset, buf, hb); 1009 if (error) 1010 return error; 1011 if (++handle->k >= MAP_PAGE_ENTRIES) { 1012 handle->k = 0; 1013 free_page((unsigned long)handle->maps->map); 1014 tmp = handle->maps; 1015 handle->maps = handle->maps->next; 1016 kfree(tmp); 1017 if (!handle->maps) 1018 release_swap_reader(handle); 1019 else 1020 handle->cur = handle->maps->map; 1021 } 1022 return error; 1023 } 1024 1025 static int swap_reader_finish(struct swap_map_handle *handle) 1026 { 1027 release_swap_reader(handle); 1028 1029 return 0; 1030 } 1031 1032 /** 1033 * load_image - load the image using the swap map handle 1034 * @handle and the snapshot handle @snapshot 1035 * (assume there are @nr_pages pages to load) 1036 */ 1037 1038 static int load_image(struct swap_map_handle *handle, 1039 struct snapshot_handle *snapshot, 1040 unsigned int nr_to_read) 1041 { 1042 unsigned int m; 1043 int ret = 0; 1044 ktime_t start; 1045 ktime_t stop; 1046 struct hib_bio_batch hb; 1047 int err2; 1048 unsigned nr_pages; 1049 1050 hib_init_batch(&hb); 1051 1052 printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n", 1053 nr_to_read); 1054 m = nr_to_read / 10; 1055 if (!m) 1056 m = 1; 1057 nr_pages = 0; 1058 start = ktime_get(); 1059 for ( ; ; ) { 1060 ret = snapshot_write_next(snapshot); 1061 if (ret <= 0) 1062 break; 1063 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1064 if (ret) 1065 break; 1066 if (snapshot->sync_read) 1067 ret = hib_wait_io(&hb); 1068 if (ret) 1069 break; 1070 if (!(nr_pages % m)) 1071 printk(KERN_INFO "PM: Image loading progress: %3d%%\n", 1072 nr_pages / m * 10); 1073 nr_pages++; 1074 } 1075 err2 = hib_wait_io(&hb); 1076 stop = ktime_get(); 1077 if (!ret) 1078 ret = err2; 1079 if (!ret) { 1080 printk(KERN_INFO "PM: Image loading done.\n"); 1081 snapshot_write_finalize(snapshot); 1082 if (!snapshot_image_loaded(snapshot)) 1083 ret = -ENODATA; 1084 } 1085 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1086 return ret; 1087 } 1088 1089 /** 1090 * Structure used for LZO data decompression. 1091 */ 1092 struct dec_data { 1093 struct task_struct *thr; /* thread */ 1094 atomic_t ready; /* ready to start flag */ 1095 atomic_t stop; /* ready to stop flag */ 1096 int ret; /* return code */ 1097 wait_queue_head_t go; /* start decompression */ 1098 wait_queue_head_t done; /* decompression done */ 1099 size_t unc_len; /* uncompressed length */ 1100 size_t cmp_len; /* compressed length */ 1101 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 1102 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 1103 }; 1104 1105 /** 1106 * Deompression function that runs in its own thread. 1107 */ 1108 static int lzo_decompress_threadfn(void *data) 1109 { 1110 struct dec_data *d = data; 1111 1112 while (1) { 1113 wait_event(d->go, atomic_read(&d->ready) || 1114 kthread_should_stop()); 1115 if (kthread_should_stop()) { 1116 d->thr = NULL; 1117 d->ret = -1; 1118 atomic_set(&d->stop, 1); 1119 wake_up(&d->done); 1120 break; 1121 } 1122 atomic_set(&d->ready, 0); 1123 1124 d->unc_len = LZO_UNC_SIZE; 1125 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len, 1126 d->unc, &d->unc_len); 1127 atomic_set(&d->stop, 1); 1128 wake_up(&d->done); 1129 } 1130 return 0; 1131 } 1132 1133 /** 1134 * load_image_lzo - Load compressed image data and decompress them with LZO. 1135 * @handle: Swap map handle to use for loading data. 1136 * @snapshot: Image to copy uncompressed data into. 1137 * @nr_to_read: Number of pages to load. 1138 */ 1139 static int load_image_lzo(struct swap_map_handle *handle, 1140 struct snapshot_handle *snapshot, 1141 unsigned int nr_to_read) 1142 { 1143 unsigned int m; 1144 int ret = 0; 1145 int eof = 0; 1146 struct hib_bio_batch hb; 1147 ktime_t start; 1148 ktime_t stop; 1149 unsigned nr_pages; 1150 size_t off; 1151 unsigned i, thr, run_threads, nr_threads; 1152 unsigned ring = 0, pg = 0, ring_size = 0, 1153 have = 0, want, need, asked = 0; 1154 unsigned long read_pages = 0; 1155 unsigned char **page = NULL; 1156 struct dec_data *data = NULL; 1157 struct crc_data *crc = NULL; 1158 1159 hib_init_batch(&hb); 1160 1161 /* 1162 * We'll limit the number of threads for decompression to limit memory 1163 * footprint. 1164 */ 1165 nr_threads = num_online_cpus() - 1; 1166 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 1167 1168 page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES); 1169 if (!page) { 1170 printk(KERN_ERR "PM: Failed to allocate LZO page\n"); 1171 ret = -ENOMEM; 1172 goto out_clean; 1173 } 1174 1175 data = vmalloc(sizeof(*data) * nr_threads); 1176 if (!data) { 1177 printk(KERN_ERR "PM: Failed to allocate LZO data\n"); 1178 ret = -ENOMEM; 1179 goto out_clean; 1180 } 1181 for (thr = 0; thr < nr_threads; thr++) 1182 memset(&data[thr], 0, offsetof(struct dec_data, go)); 1183 1184 crc = kmalloc(sizeof(*crc), GFP_KERNEL); 1185 if (!crc) { 1186 printk(KERN_ERR "PM: Failed to allocate crc\n"); 1187 ret = -ENOMEM; 1188 goto out_clean; 1189 } 1190 memset(crc, 0, offsetof(struct crc_data, go)); 1191 1192 /* 1193 * Start the decompression threads. 1194 */ 1195 for (thr = 0; thr < nr_threads; thr++) { 1196 init_waitqueue_head(&data[thr].go); 1197 init_waitqueue_head(&data[thr].done); 1198 1199 data[thr].thr = kthread_run(lzo_decompress_threadfn, 1200 &data[thr], 1201 "image_decompress/%u", thr); 1202 if (IS_ERR(data[thr].thr)) { 1203 data[thr].thr = NULL; 1204 printk(KERN_ERR 1205 "PM: Cannot start decompression threads\n"); 1206 ret = -ENOMEM; 1207 goto out_clean; 1208 } 1209 } 1210 1211 /* 1212 * Start the CRC32 thread. 1213 */ 1214 init_waitqueue_head(&crc->go); 1215 init_waitqueue_head(&crc->done); 1216 1217 handle->crc32 = 0; 1218 crc->crc32 = &handle->crc32; 1219 for (thr = 0; thr < nr_threads; thr++) { 1220 crc->unc[thr] = data[thr].unc; 1221 crc->unc_len[thr] = &data[thr].unc_len; 1222 } 1223 1224 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1225 if (IS_ERR(crc->thr)) { 1226 crc->thr = NULL; 1227 printk(KERN_ERR "PM: Cannot start CRC32 thread\n"); 1228 ret = -ENOMEM; 1229 goto out_clean; 1230 } 1231 1232 /* 1233 * Set the number of pages for read buffering. 1234 * This is complete guesswork, because we'll only know the real 1235 * picture once prepare_image() is called, which is much later on 1236 * during the image load phase. We'll assume the worst case and 1237 * say that none of the image pages are from high memory. 1238 */ 1239 if (low_free_pages() > snapshot_get_image_size()) 1240 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1241 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES); 1242 1243 for (i = 0; i < read_pages; i++) { 1244 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ? 1245 __GFP_WAIT | __GFP_HIGH : 1246 __GFP_WAIT | __GFP_NOWARN | 1247 __GFP_NORETRY); 1248 1249 if (!page[i]) { 1250 if (i < LZO_CMP_PAGES) { 1251 ring_size = i; 1252 printk(KERN_ERR 1253 "PM: Failed to allocate LZO pages\n"); 1254 ret = -ENOMEM; 1255 goto out_clean; 1256 } else { 1257 break; 1258 } 1259 } 1260 } 1261 want = ring_size = i; 1262 1263 printk(KERN_INFO 1264 "PM: Using %u thread(s) for decompression.\n" 1265 "PM: Loading and decompressing image data (%u pages)...\n", 1266 nr_threads, nr_to_read); 1267 m = nr_to_read / 10; 1268 if (!m) 1269 m = 1; 1270 nr_pages = 0; 1271 start = ktime_get(); 1272 1273 ret = snapshot_write_next(snapshot); 1274 if (ret <= 0) 1275 goto out_finish; 1276 1277 for(;;) { 1278 for (i = 0; !eof && i < want; i++) { 1279 ret = swap_read_page(handle, page[ring], &hb); 1280 if (ret) { 1281 /* 1282 * On real read error, finish. On end of data, 1283 * set EOF flag and just exit the read loop. 1284 */ 1285 if (handle->cur && 1286 handle->cur->entries[handle->k]) { 1287 goto out_finish; 1288 } else { 1289 eof = 1; 1290 break; 1291 } 1292 } 1293 if (++ring >= ring_size) 1294 ring = 0; 1295 } 1296 asked += i; 1297 want -= i; 1298 1299 /* 1300 * We are out of data, wait for some more. 1301 */ 1302 if (!have) { 1303 if (!asked) 1304 break; 1305 1306 ret = hib_wait_io(&hb); 1307 if (ret) 1308 goto out_finish; 1309 have += asked; 1310 asked = 0; 1311 if (eof) 1312 eof = 2; 1313 } 1314 1315 if (crc->run_threads) { 1316 wait_event(crc->done, atomic_read(&crc->stop)); 1317 atomic_set(&crc->stop, 0); 1318 crc->run_threads = 0; 1319 } 1320 1321 for (thr = 0; have && thr < nr_threads; thr++) { 1322 data[thr].cmp_len = *(size_t *)page[pg]; 1323 if (unlikely(!data[thr].cmp_len || 1324 data[thr].cmp_len > 1325 lzo1x_worst_compress(LZO_UNC_SIZE))) { 1326 printk(KERN_ERR 1327 "PM: Invalid LZO compressed length\n"); 1328 ret = -1; 1329 goto out_finish; 1330 } 1331 1332 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER, 1333 PAGE_SIZE); 1334 if (need > have) { 1335 if (eof > 1) { 1336 ret = -1; 1337 goto out_finish; 1338 } 1339 break; 1340 } 1341 1342 for (off = 0; 1343 off < LZO_HEADER + data[thr].cmp_len; 1344 off += PAGE_SIZE) { 1345 memcpy(data[thr].cmp + off, 1346 page[pg], PAGE_SIZE); 1347 have--; 1348 want++; 1349 if (++pg >= ring_size) 1350 pg = 0; 1351 } 1352 1353 atomic_set(&data[thr].ready, 1); 1354 wake_up(&data[thr].go); 1355 } 1356 1357 /* 1358 * Wait for more data while we are decompressing. 1359 */ 1360 if (have < LZO_CMP_PAGES && asked) { 1361 ret = hib_wait_io(&hb); 1362 if (ret) 1363 goto out_finish; 1364 have += asked; 1365 asked = 0; 1366 if (eof) 1367 eof = 2; 1368 } 1369 1370 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1371 wait_event(data[thr].done, 1372 atomic_read(&data[thr].stop)); 1373 atomic_set(&data[thr].stop, 0); 1374 1375 ret = data[thr].ret; 1376 1377 if (ret < 0) { 1378 printk(KERN_ERR 1379 "PM: LZO decompression failed\n"); 1380 goto out_finish; 1381 } 1382 1383 if (unlikely(!data[thr].unc_len || 1384 data[thr].unc_len > LZO_UNC_SIZE || 1385 data[thr].unc_len & (PAGE_SIZE - 1))) { 1386 printk(KERN_ERR 1387 "PM: Invalid LZO uncompressed length\n"); 1388 ret = -1; 1389 goto out_finish; 1390 } 1391 1392 for (off = 0; 1393 off < data[thr].unc_len; off += PAGE_SIZE) { 1394 memcpy(data_of(*snapshot), 1395 data[thr].unc + off, PAGE_SIZE); 1396 1397 if (!(nr_pages % m)) 1398 printk(KERN_INFO 1399 "PM: Image loading progress: " 1400 "%3d%%\n", 1401 nr_pages / m * 10); 1402 nr_pages++; 1403 1404 ret = snapshot_write_next(snapshot); 1405 if (ret <= 0) { 1406 crc->run_threads = thr + 1; 1407 atomic_set(&crc->ready, 1); 1408 wake_up(&crc->go); 1409 goto out_finish; 1410 } 1411 } 1412 } 1413 1414 crc->run_threads = thr; 1415 atomic_set(&crc->ready, 1); 1416 wake_up(&crc->go); 1417 } 1418 1419 out_finish: 1420 if (crc->run_threads) { 1421 wait_event(crc->done, atomic_read(&crc->stop)); 1422 atomic_set(&crc->stop, 0); 1423 } 1424 stop = ktime_get(); 1425 if (!ret) { 1426 printk(KERN_INFO "PM: Image loading done.\n"); 1427 snapshot_write_finalize(snapshot); 1428 if (!snapshot_image_loaded(snapshot)) 1429 ret = -ENODATA; 1430 if (!ret) { 1431 if (swsusp_header->flags & SF_CRC32_MODE) { 1432 if(handle->crc32 != swsusp_header->crc32) { 1433 printk(KERN_ERR 1434 "PM: Invalid image CRC32!\n"); 1435 ret = -ENODATA; 1436 } 1437 } 1438 } 1439 } 1440 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1441 out_clean: 1442 for (i = 0; i < ring_size; i++) 1443 free_page((unsigned long)page[i]); 1444 if (crc) { 1445 if (crc->thr) 1446 kthread_stop(crc->thr); 1447 kfree(crc); 1448 } 1449 if (data) { 1450 for (thr = 0; thr < nr_threads; thr++) 1451 if (data[thr].thr) 1452 kthread_stop(data[thr].thr); 1453 vfree(data); 1454 } 1455 vfree(page); 1456 1457 return ret; 1458 } 1459 1460 /** 1461 * swsusp_read - read the hibernation image. 1462 * @flags_p: flags passed by the "frozen" kernel in the image header should 1463 * be written into this memory location 1464 */ 1465 1466 int swsusp_read(unsigned int *flags_p) 1467 { 1468 int error; 1469 struct swap_map_handle handle; 1470 struct snapshot_handle snapshot; 1471 struct swsusp_info *header; 1472 1473 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1474 error = snapshot_write_next(&snapshot); 1475 if (error < PAGE_SIZE) 1476 return error < 0 ? error : -EFAULT; 1477 header = (struct swsusp_info *)data_of(snapshot); 1478 error = get_swap_reader(&handle, flags_p); 1479 if (error) 1480 goto end; 1481 if (!error) 1482 error = swap_read_page(&handle, header, NULL); 1483 if (!error) { 1484 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1485 load_image(&handle, &snapshot, header->pages - 1) : 1486 load_image_lzo(&handle, &snapshot, header->pages - 1); 1487 } 1488 swap_reader_finish(&handle); 1489 end: 1490 if (!error) 1491 pr_debug("PM: Image successfully loaded\n"); 1492 else 1493 pr_debug("PM: Error %d resuming\n", error); 1494 return error; 1495 } 1496 1497 /** 1498 * swsusp_check - Check for swsusp signature in the resume device 1499 */ 1500 1501 int swsusp_check(void) 1502 { 1503 int error; 1504 1505 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, 1506 FMODE_READ, NULL); 1507 if (!IS_ERR(hib_resume_bdev)) { 1508 set_blocksize(hib_resume_bdev, PAGE_SIZE); 1509 clear_page(swsusp_header); 1510 error = hib_submit_io(READ_SYNC, swsusp_resume_block, 1511 swsusp_header, NULL); 1512 if (error) 1513 goto put; 1514 1515 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1516 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1517 /* Reset swap signature now */ 1518 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block, 1519 swsusp_header, NULL); 1520 } else { 1521 error = -EINVAL; 1522 } 1523 1524 put: 1525 if (error) 1526 blkdev_put(hib_resume_bdev, FMODE_READ); 1527 else 1528 pr_debug("PM: Image signature found, resuming\n"); 1529 } else { 1530 error = PTR_ERR(hib_resume_bdev); 1531 } 1532 1533 if (error) 1534 pr_debug("PM: Image not found (code %d)\n", error); 1535 1536 return error; 1537 } 1538 1539 /** 1540 * swsusp_close - close swap device. 1541 */ 1542 1543 void swsusp_close(fmode_t mode) 1544 { 1545 if (IS_ERR(hib_resume_bdev)) { 1546 pr_debug("PM: Image device not initialised\n"); 1547 return; 1548 } 1549 1550 blkdev_put(hib_resume_bdev, mode); 1551 } 1552 1553 /** 1554 * swsusp_unmark - Unmark swsusp signature in the resume device 1555 */ 1556 1557 #ifdef CONFIG_SUSPEND 1558 int swsusp_unmark(void) 1559 { 1560 int error; 1561 1562 hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL); 1563 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1564 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1565 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block, 1566 swsusp_header, NULL); 1567 } else { 1568 printk(KERN_ERR "PM: Cannot find swsusp signature!\n"); 1569 error = -ENODEV; 1570 } 1571 1572 /* 1573 * We just returned from suspend, we don't need the image any more. 1574 */ 1575 free_all_swap_pages(root_swap); 1576 1577 return error; 1578 } 1579 #endif 1580 1581 static int swsusp_header_init(void) 1582 { 1583 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1584 if (!swsusp_header) 1585 panic("Could not allocate memory for swsusp_header\n"); 1586 return 0; 1587 } 1588 1589 core_initcall(swsusp_header_init); 1590