1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/genhd.h> 20 #include <linux/device.h> 21 #include <linux/bio.h> 22 #include <linux/blkdev.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/pm.h> 26 #include <linux/slab.h> 27 #include <linux/lzo.h> 28 #include <linux/vmalloc.h> 29 #include <linux/cpumask.h> 30 #include <linux/atomic.h> 31 #include <linux/kthread.h> 32 #include <linux/crc32.h> 33 #include <linux/ktime.h> 34 35 #include "power.h" 36 37 #define HIBERNATE_SIG "S1SUSPEND" 38 39 /* 40 * When reading an {un,}compressed image, we may restore pages in place, 41 * in which case some architectures need these pages cleaning before they 42 * can be executed. We don't know which pages these may be, so clean the lot. 43 */ 44 static bool clean_pages_on_read; 45 static bool clean_pages_on_decompress; 46 47 /* 48 * The swap map is a data structure used for keeping track of each page 49 * written to a swap partition. It consists of many swap_map_page 50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 51 * These structures are stored on the swap and linked together with the 52 * help of the .next_swap member. 53 * 54 * The swap map is created during suspend. The swap map pages are 55 * allocated and populated one at a time, so we only need one memory 56 * page to set up the entire structure. 57 * 58 * During resume we pick up all swap_map_page structures into a list. 59 */ 60 61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 62 63 /* 64 * Number of free pages that are not high. 65 */ 66 static inline unsigned long low_free_pages(void) 67 { 68 return nr_free_pages() - nr_free_highpages(); 69 } 70 71 /* 72 * Number of pages required to be kept free while writing the image. Always 73 * half of all available low pages before the writing starts. 74 */ 75 static inline unsigned long reqd_free_pages(void) 76 { 77 return low_free_pages() / 2; 78 } 79 80 struct swap_map_page { 81 sector_t entries[MAP_PAGE_ENTRIES]; 82 sector_t next_swap; 83 }; 84 85 struct swap_map_page_list { 86 struct swap_map_page *map; 87 struct swap_map_page_list *next; 88 }; 89 90 /** 91 * The swap_map_handle structure is used for handling swap in 92 * a file-alike way 93 */ 94 95 struct swap_map_handle { 96 struct swap_map_page *cur; 97 struct swap_map_page_list *maps; 98 sector_t cur_swap; 99 sector_t first_sector; 100 unsigned int k; 101 unsigned long reqd_free_pages; 102 u32 crc32; 103 }; 104 105 struct swsusp_header { 106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 107 sizeof(u32)]; 108 u32 crc32; 109 sector_t image; 110 unsigned int flags; /* Flags to pass to the "boot" kernel */ 111 char orig_sig[10]; 112 char sig[10]; 113 } __packed; 114 115 static struct swsusp_header *swsusp_header; 116 117 /** 118 * The following functions are used for tracing the allocated 119 * swap pages, so that they can be freed in case of an error. 120 */ 121 122 struct swsusp_extent { 123 struct rb_node node; 124 unsigned long start; 125 unsigned long end; 126 }; 127 128 static struct rb_root swsusp_extents = RB_ROOT; 129 130 static int swsusp_extents_insert(unsigned long swap_offset) 131 { 132 struct rb_node **new = &(swsusp_extents.rb_node); 133 struct rb_node *parent = NULL; 134 struct swsusp_extent *ext; 135 136 /* Figure out where to put the new node */ 137 while (*new) { 138 ext = rb_entry(*new, struct swsusp_extent, node); 139 parent = *new; 140 if (swap_offset < ext->start) { 141 /* Try to merge */ 142 if (swap_offset == ext->start - 1) { 143 ext->start--; 144 return 0; 145 } 146 new = &((*new)->rb_left); 147 } else if (swap_offset > ext->end) { 148 /* Try to merge */ 149 if (swap_offset == ext->end + 1) { 150 ext->end++; 151 return 0; 152 } 153 new = &((*new)->rb_right); 154 } else { 155 /* It already is in the tree */ 156 return -EINVAL; 157 } 158 } 159 /* Add the new node and rebalance the tree. */ 160 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 161 if (!ext) 162 return -ENOMEM; 163 164 ext->start = swap_offset; 165 ext->end = swap_offset; 166 rb_link_node(&ext->node, parent, new); 167 rb_insert_color(&ext->node, &swsusp_extents); 168 return 0; 169 } 170 171 /** 172 * alloc_swapdev_block - allocate a swap page and register that it has 173 * been allocated, so that it can be freed in case of an error. 174 */ 175 176 sector_t alloc_swapdev_block(int swap) 177 { 178 unsigned long offset; 179 180 offset = swp_offset(get_swap_page_of_type(swap)); 181 if (offset) { 182 if (swsusp_extents_insert(offset)) 183 swap_free(swp_entry(swap, offset)); 184 else 185 return swapdev_block(swap, offset); 186 } 187 return 0; 188 } 189 190 /** 191 * free_all_swap_pages - free swap pages allocated for saving image data. 192 * It also frees the extents used to register which swap entries had been 193 * allocated. 194 */ 195 196 void free_all_swap_pages(int swap) 197 { 198 struct rb_node *node; 199 200 while ((node = swsusp_extents.rb_node)) { 201 struct swsusp_extent *ext; 202 unsigned long offset; 203 204 ext = rb_entry(node, struct swsusp_extent, node); 205 rb_erase(node, &swsusp_extents); 206 for (offset = ext->start; offset <= ext->end; offset++) 207 swap_free(swp_entry(swap, offset)); 208 209 kfree(ext); 210 } 211 } 212 213 int swsusp_swap_in_use(void) 214 { 215 return (swsusp_extents.rb_node != NULL); 216 } 217 218 /* 219 * General things 220 */ 221 222 static unsigned short root_swap = 0xffff; 223 static struct block_device *hib_resume_bdev; 224 225 struct hib_bio_batch { 226 atomic_t count; 227 wait_queue_head_t wait; 228 blk_status_t error; 229 struct blk_plug plug; 230 }; 231 232 static void hib_init_batch(struct hib_bio_batch *hb) 233 { 234 atomic_set(&hb->count, 0); 235 init_waitqueue_head(&hb->wait); 236 hb->error = BLK_STS_OK; 237 blk_start_plug(&hb->plug); 238 } 239 240 static void hib_finish_batch(struct hib_bio_batch *hb) 241 { 242 blk_finish_plug(&hb->plug); 243 } 244 245 static void hib_end_io(struct bio *bio) 246 { 247 struct hib_bio_batch *hb = bio->bi_private; 248 struct page *page = bio_first_page_all(bio); 249 250 if (bio->bi_status) { 251 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 252 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 253 (unsigned long long)bio->bi_iter.bi_sector); 254 } 255 256 if (bio_data_dir(bio) == WRITE) 257 put_page(page); 258 else if (clean_pages_on_read) 259 flush_icache_range((unsigned long)page_address(page), 260 (unsigned long)page_address(page) + PAGE_SIZE); 261 262 if (bio->bi_status && !hb->error) 263 hb->error = bio->bi_status; 264 if (atomic_dec_and_test(&hb->count)) 265 wake_up(&hb->wait); 266 267 bio_put(bio); 268 } 269 270 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr, 271 struct hib_bio_batch *hb) 272 { 273 struct page *page = virt_to_page(addr); 274 struct bio *bio; 275 int error = 0; 276 277 bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1); 278 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 279 bio_set_dev(bio, hib_resume_bdev); 280 bio_set_op_attrs(bio, op, op_flags); 281 282 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 283 pr_err("Adding page to bio failed at %llu\n", 284 (unsigned long long)bio->bi_iter.bi_sector); 285 bio_put(bio); 286 return -EFAULT; 287 } 288 289 if (hb) { 290 bio->bi_end_io = hib_end_io; 291 bio->bi_private = hb; 292 atomic_inc(&hb->count); 293 submit_bio(bio); 294 } else { 295 error = submit_bio_wait(bio); 296 bio_put(bio); 297 } 298 299 return error; 300 } 301 302 static blk_status_t hib_wait_io(struct hib_bio_batch *hb) 303 { 304 /* 305 * We are relying on the behavior of blk_plug that a thread with 306 * a plug will flush the plug list before sleeping. 307 */ 308 wait_event(hb->wait, atomic_read(&hb->count) == 0); 309 return blk_status_to_errno(hb->error); 310 } 311 312 /* 313 * Saving part 314 */ 315 316 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 317 { 318 int error; 319 320 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 321 swsusp_header, NULL); 322 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 323 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 324 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 325 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 326 swsusp_header->image = handle->first_sector; 327 swsusp_header->flags = flags; 328 if (flags & SF_CRC32_MODE) 329 swsusp_header->crc32 = handle->crc32; 330 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 331 swsusp_resume_block, swsusp_header, NULL); 332 } else { 333 pr_err("Swap header not found!\n"); 334 error = -ENODEV; 335 } 336 return error; 337 } 338 339 /** 340 * swsusp_swap_check - check if the resume device is a swap device 341 * and get its index (if so) 342 * 343 * This is called before saving image 344 */ 345 static int swsusp_swap_check(void) 346 { 347 int res; 348 349 if (swsusp_resume_device) 350 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 351 else 352 res = find_first_swap(&swsusp_resume_device); 353 if (res < 0) 354 return res; 355 root_swap = res; 356 357 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE, 358 NULL); 359 if (IS_ERR(hib_resume_bdev)) 360 return PTR_ERR(hib_resume_bdev); 361 362 res = set_blocksize(hib_resume_bdev, PAGE_SIZE); 363 if (res < 0) 364 blkdev_put(hib_resume_bdev, FMODE_WRITE); 365 366 return res; 367 } 368 369 /** 370 * write_page - Write one page to given swap location. 371 * @buf: Address we're writing. 372 * @offset: Offset of the swap page we're writing to. 373 * @hb: bio completion batch 374 */ 375 376 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 377 { 378 void *src; 379 int ret; 380 381 if (!offset) 382 return -ENOSPC; 383 384 if (hb) { 385 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 386 __GFP_NORETRY); 387 if (src) { 388 copy_page(src, buf); 389 } else { 390 ret = hib_wait_io(hb); /* Free pages */ 391 if (ret) 392 return ret; 393 src = (void *)__get_free_page(GFP_NOIO | 394 __GFP_NOWARN | 395 __GFP_NORETRY); 396 if (src) { 397 copy_page(src, buf); 398 } else { 399 WARN_ON_ONCE(1); 400 hb = NULL; /* Go synchronous */ 401 src = buf; 402 } 403 } 404 } else { 405 src = buf; 406 } 407 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb); 408 } 409 410 static void release_swap_writer(struct swap_map_handle *handle) 411 { 412 if (handle->cur) 413 free_page((unsigned long)handle->cur); 414 handle->cur = NULL; 415 } 416 417 static int get_swap_writer(struct swap_map_handle *handle) 418 { 419 int ret; 420 421 ret = swsusp_swap_check(); 422 if (ret) { 423 if (ret != -ENOSPC) 424 pr_err("Cannot find swap device, try swapon -a\n"); 425 return ret; 426 } 427 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 428 if (!handle->cur) { 429 ret = -ENOMEM; 430 goto err_close; 431 } 432 handle->cur_swap = alloc_swapdev_block(root_swap); 433 if (!handle->cur_swap) { 434 ret = -ENOSPC; 435 goto err_rel; 436 } 437 handle->k = 0; 438 handle->reqd_free_pages = reqd_free_pages(); 439 handle->first_sector = handle->cur_swap; 440 return 0; 441 err_rel: 442 release_swap_writer(handle); 443 err_close: 444 swsusp_close(FMODE_WRITE); 445 return ret; 446 } 447 448 static int swap_write_page(struct swap_map_handle *handle, void *buf, 449 struct hib_bio_batch *hb) 450 { 451 int error = 0; 452 sector_t offset; 453 454 if (!handle->cur) 455 return -EINVAL; 456 offset = alloc_swapdev_block(root_swap); 457 error = write_page(buf, offset, hb); 458 if (error) 459 return error; 460 handle->cur->entries[handle->k++] = offset; 461 if (handle->k >= MAP_PAGE_ENTRIES) { 462 offset = alloc_swapdev_block(root_swap); 463 if (!offset) 464 return -ENOSPC; 465 handle->cur->next_swap = offset; 466 error = write_page(handle->cur, handle->cur_swap, hb); 467 if (error) 468 goto out; 469 clear_page(handle->cur); 470 handle->cur_swap = offset; 471 handle->k = 0; 472 473 if (hb && low_free_pages() <= handle->reqd_free_pages) { 474 error = hib_wait_io(hb); 475 if (error) 476 goto out; 477 /* 478 * Recalculate the number of required free pages, to 479 * make sure we never take more than half. 480 */ 481 handle->reqd_free_pages = reqd_free_pages(); 482 } 483 } 484 out: 485 return error; 486 } 487 488 static int flush_swap_writer(struct swap_map_handle *handle) 489 { 490 if (handle->cur && handle->cur_swap) 491 return write_page(handle->cur, handle->cur_swap, NULL); 492 else 493 return -EINVAL; 494 } 495 496 static int swap_writer_finish(struct swap_map_handle *handle, 497 unsigned int flags, int error) 498 { 499 if (!error) { 500 pr_info("S"); 501 error = mark_swapfiles(handle, flags); 502 pr_cont("|\n"); 503 flush_swap_writer(handle); 504 } 505 506 if (error) 507 free_all_swap_pages(root_swap); 508 release_swap_writer(handle); 509 swsusp_close(FMODE_WRITE); 510 511 return error; 512 } 513 514 /* We need to remember how much compressed data we need to read. */ 515 #define LZO_HEADER sizeof(size_t) 516 517 /* Number of pages/bytes we'll compress at one time. */ 518 #define LZO_UNC_PAGES 32 519 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE) 520 521 /* Number of pages/bytes we need for compressed data (worst case). */ 522 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \ 523 LZO_HEADER, PAGE_SIZE) 524 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE) 525 526 /* Maximum number of threads for compression/decompression. */ 527 #define LZO_THREADS 3 528 529 /* Minimum/maximum number of pages for read buffering. */ 530 #define LZO_MIN_RD_PAGES 1024 531 #define LZO_MAX_RD_PAGES 8192 532 533 534 /** 535 * save_image - save the suspend image data 536 */ 537 538 static int save_image(struct swap_map_handle *handle, 539 struct snapshot_handle *snapshot, 540 unsigned int nr_to_write) 541 { 542 unsigned int m; 543 int ret; 544 int nr_pages; 545 int err2; 546 struct hib_bio_batch hb; 547 ktime_t start; 548 ktime_t stop; 549 550 hib_init_batch(&hb); 551 552 pr_info("Saving image data pages (%u pages)...\n", 553 nr_to_write); 554 m = nr_to_write / 10; 555 if (!m) 556 m = 1; 557 nr_pages = 0; 558 start = ktime_get(); 559 while (1) { 560 ret = snapshot_read_next(snapshot); 561 if (ret <= 0) 562 break; 563 ret = swap_write_page(handle, data_of(*snapshot), &hb); 564 if (ret) 565 break; 566 if (!(nr_pages % m)) 567 pr_info("Image saving progress: %3d%%\n", 568 nr_pages / m * 10); 569 nr_pages++; 570 } 571 err2 = hib_wait_io(&hb); 572 hib_finish_batch(&hb); 573 stop = ktime_get(); 574 if (!ret) 575 ret = err2; 576 if (!ret) 577 pr_info("Image saving done\n"); 578 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 579 return ret; 580 } 581 582 /** 583 * Structure used for CRC32. 584 */ 585 struct crc_data { 586 struct task_struct *thr; /* thread */ 587 atomic_t ready; /* ready to start flag */ 588 atomic_t stop; /* ready to stop flag */ 589 unsigned run_threads; /* nr current threads */ 590 wait_queue_head_t go; /* start crc update */ 591 wait_queue_head_t done; /* crc update done */ 592 u32 *crc32; /* points to handle's crc32 */ 593 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */ 594 unsigned char *unc[LZO_THREADS]; /* uncompressed data */ 595 }; 596 597 /** 598 * CRC32 update function that runs in its own thread. 599 */ 600 static int crc32_threadfn(void *data) 601 { 602 struct crc_data *d = data; 603 unsigned i; 604 605 while (1) { 606 wait_event(d->go, atomic_read(&d->ready) || 607 kthread_should_stop()); 608 if (kthread_should_stop()) { 609 d->thr = NULL; 610 atomic_set(&d->stop, 1); 611 wake_up(&d->done); 612 break; 613 } 614 atomic_set(&d->ready, 0); 615 616 for (i = 0; i < d->run_threads; i++) 617 *d->crc32 = crc32_le(*d->crc32, 618 d->unc[i], *d->unc_len[i]); 619 atomic_set(&d->stop, 1); 620 wake_up(&d->done); 621 } 622 return 0; 623 } 624 /** 625 * Structure used for LZO data compression. 626 */ 627 struct cmp_data { 628 struct task_struct *thr; /* thread */ 629 atomic_t ready; /* ready to start flag */ 630 atomic_t stop; /* ready to stop flag */ 631 int ret; /* return code */ 632 wait_queue_head_t go; /* start compression */ 633 wait_queue_head_t done; /* compression done */ 634 size_t unc_len; /* uncompressed length */ 635 size_t cmp_len; /* compressed length */ 636 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 637 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 638 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */ 639 }; 640 641 /** 642 * Compression function that runs in its own thread. 643 */ 644 static int lzo_compress_threadfn(void *data) 645 { 646 struct cmp_data *d = data; 647 648 while (1) { 649 wait_event(d->go, atomic_read(&d->ready) || 650 kthread_should_stop()); 651 if (kthread_should_stop()) { 652 d->thr = NULL; 653 d->ret = -1; 654 atomic_set(&d->stop, 1); 655 wake_up(&d->done); 656 break; 657 } 658 atomic_set(&d->ready, 0); 659 660 d->ret = lzo1x_1_compress(d->unc, d->unc_len, 661 d->cmp + LZO_HEADER, &d->cmp_len, 662 d->wrk); 663 atomic_set(&d->stop, 1); 664 wake_up(&d->done); 665 } 666 return 0; 667 } 668 669 /** 670 * save_image_lzo - Save the suspend image data compressed with LZO. 671 * @handle: Swap map handle to use for saving the image. 672 * @snapshot: Image to read data from. 673 * @nr_to_write: Number of pages to save. 674 */ 675 static int save_image_lzo(struct swap_map_handle *handle, 676 struct snapshot_handle *snapshot, 677 unsigned int nr_to_write) 678 { 679 unsigned int m; 680 int ret = 0; 681 int nr_pages; 682 int err2; 683 struct hib_bio_batch hb; 684 ktime_t start; 685 ktime_t stop; 686 size_t off; 687 unsigned thr, run_threads, nr_threads; 688 unsigned char *page = NULL; 689 struct cmp_data *data = NULL; 690 struct crc_data *crc = NULL; 691 692 hib_init_batch(&hb); 693 694 /* 695 * We'll limit the number of threads for compression to limit memory 696 * footprint. 697 */ 698 nr_threads = num_online_cpus() - 1; 699 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 700 701 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 702 if (!page) { 703 pr_err("Failed to allocate LZO page\n"); 704 ret = -ENOMEM; 705 goto out_clean; 706 } 707 708 data = vmalloc(array_size(nr_threads, sizeof(*data))); 709 if (!data) { 710 pr_err("Failed to allocate LZO data\n"); 711 ret = -ENOMEM; 712 goto out_clean; 713 } 714 for (thr = 0; thr < nr_threads; thr++) 715 memset(&data[thr], 0, offsetof(struct cmp_data, go)); 716 717 crc = kmalloc(sizeof(*crc), GFP_KERNEL); 718 if (!crc) { 719 pr_err("Failed to allocate crc\n"); 720 ret = -ENOMEM; 721 goto out_clean; 722 } 723 memset(crc, 0, offsetof(struct crc_data, go)); 724 725 /* 726 * Start the compression threads. 727 */ 728 for (thr = 0; thr < nr_threads; thr++) { 729 init_waitqueue_head(&data[thr].go); 730 init_waitqueue_head(&data[thr].done); 731 732 data[thr].thr = kthread_run(lzo_compress_threadfn, 733 &data[thr], 734 "image_compress/%u", thr); 735 if (IS_ERR(data[thr].thr)) { 736 data[thr].thr = NULL; 737 pr_err("Cannot start compression threads\n"); 738 ret = -ENOMEM; 739 goto out_clean; 740 } 741 } 742 743 /* 744 * Start the CRC32 thread. 745 */ 746 init_waitqueue_head(&crc->go); 747 init_waitqueue_head(&crc->done); 748 749 handle->crc32 = 0; 750 crc->crc32 = &handle->crc32; 751 for (thr = 0; thr < nr_threads; thr++) { 752 crc->unc[thr] = data[thr].unc; 753 crc->unc_len[thr] = &data[thr].unc_len; 754 } 755 756 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 757 if (IS_ERR(crc->thr)) { 758 crc->thr = NULL; 759 pr_err("Cannot start CRC32 thread\n"); 760 ret = -ENOMEM; 761 goto out_clean; 762 } 763 764 /* 765 * Adjust the number of required free pages after all allocations have 766 * been done. We don't want to run out of pages when writing. 767 */ 768 handle->reqd_free_pages = reqd_free_pages(); 769 770 pr_info("Using %u thread(s) for compression\n", nr_threads); 771 pr_info("Compressing and saving image data (%u pages)...\n", 772 nr_to_write); 773 m = nr_to_write / 10; 774 if (!m) 775 m = 1; 776 nr_pages = 0; 777 start = ktime_get(); 778 for (;;) { 779 for (thr = 0; thr < nr_threads; thr++) { 780 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) { 781 ret = snapshot_read_next(snapshot); 782 if (ret < 0) 783 goto out_finish; 784 785 if (!ret) 786 break; 787 788 memcpy(data[thr].unc + off, 789 data_of(*snapshot), PAGE_SIZE); 790 791 if (!(nr_pages % m)) 792 pr_info("Image saving progress: %3d%%\n", 793 nr_pages / m * 10); 794 nr_pages++; 795 } 796 if (!off) 797 break; 798 799 data[thr].unc_len = off; 800 801 atomic_set(&data[thr].ready, 1); 802 wake_up(&data[thr].go); 803 } 804 805 if (!thr) 806 break; 807 808 crc->run_threads = thr; 809 atomic_set(&crc->ready, 1); 810 wake_up(&crc->go); 811 812 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 813 wait_event(data[thr].done, 814 atomic_read(&data[thr].stop)); 815 atomic_set(&data[thr].stop, 0); 816 817 ret = data[thr].ret; 818 819 if (ret < 0) { 820 pr_err("LZO compression failed\n"); 821 goto out_finish; 822 } 823 824 if (unlikely(!data[thr].cmp_len || 825 data[thr].cmp_len > 826 lzo1x_worst_compress(data[thr].unc_len))) { 827 pr_err("Invalid LZO compressed length\n"); 828 ret = -1; 829 goto out_finish; 830 } 831 832 *(size_t *)data[thr].cmp = data[thr].cmp_len; 833 834 /* 835 * Given we are writing one page at a time to disk, we 836 * copy that much from the buffer, although the last 837 * bit will likely be smaller than full page. This is 838 * OK - we saved the length of the compressed data, so 839 * any garbage at the end will be discarded when we 840 * read it. 841 */ 842 for (off = 0; 843 off < LZO_HEADER + data[thr].cmp_len; 844 off += PAGE_SIZE) { 845 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 846 847 ret = swap_write_page(handle, page, &hb); 848 if (ret) 849 goto out_finish; 850 } 851 } 852 853 wait_event(crc->done, atomic_read(&crc->stop)); 854 atomic_set(&crc->stop, 0); 855 } 856 857 out_finish: 858 err2 = hib_wait_io(&hb); 859 stop = ktime_get(); 860 if (!ret) 861 ret = err2; 862 if (!ret) 863 pr_info("Image saving done\n"); 864 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 865 out_clean: 866 hib_finish_batch(&hb); 867 if (crc) { 868 if (crc->thr) 869 kthread_stop(crc->thr); 870 kfree(crc); 871 } 872 if (data) { 873 for (thr = 0; thr < nr_threads; thr++) 874 if (data[thr].thr) 875 kthread_stop(data[thr].thr); 876 vfree(data); 877 } 878 if (page) free_page((unsigned long)page); 879 880 return ret; 881 } 882 883 /** 884 * enough_swap - Make sure we have enough swap to save the image. 885 * 886 * Returns TRUE or FALSE after checking the total amount of swap 887 * space available from the resume partition. 888 */ 889 890 static int enough_swap(unsigned int nr_pages) 891 { 892 unsigned int free_swap = count_swap_pages(root_swap, 1); 893 unsigned int required; 894 895 pr_debug("Free swap pages: %u\n", free_swap); 896 897 required = PAGES_FOR_IO + nr_pages; 898 return free_swap > required; 899 } 900 901 /** 902 * swsusp_write - Write entire image and metadata. 903 * @flags: flags to pass to the "boot" kernel in the image header 904 * 905 * It is important _NOT_ to umount filesystems at this point. We want 906 * them synced (in case something goes wrong) but we DO not want to mark 907 * filesystem clean: it is not. (And it does not matter, if we resume 908 * correctly, we'll mark system clean, anyway.) 909 */ 910 911 int swsusp_write(unsigned int flags) 912 { 913 struct swap_map_handle handle; 914 struct snapshot_handle snapshot; 915 struct swsusp_info *header; 916 unsigned long pages; 917 int error; 918 919 pages = snapshot_get_image_size(); 920 error = get_swap_writer(&handle); 921 if (error) { 922 pr_err("Cannot get swap writer\n"); 923 return error; 924 } 925 if (flags & SF_NOCOMPRESS_MODE) { 926 if (!enough_swap(pages)) { 927 pr_err("Not enough free swap\n"); 928 error = -ENOSPC; 929 goto out_finish; 930 } 931 } 932 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 933 error = snapshot_read_next(&snapshot); 934 if (error < (int)PAGE_SIZE) { 935 if (error >= 0) 936 error = -EFAULT; 937 938 goto out_finish; 939 } 940 header = (struct swsusp_info *)data_of(snapshot); 941 error = swap_write_page(&handle, header, NULL); 942 if (!error) { 943 error = (flags & SF_NOCOMPRESS_MODE) ? 944 save_image(&handle, &snapshot, pages - 1) : 945 save_image_lzo(&handle, &snapshot, pages - 1); 946 } 947 out_finish: 948 error = swap_writer_finish(&handle, flags, error); 949 return error; 950 } 951 952 /** 953 * The following functions allow us to read data using a swap map 954 * in a file-alike way 955 */ 956 957 static void release_swap_reader(struct swap_map_handle *handle) 958 { 959 struct swap_map_page_list *tmp; 960 961 while (handle->maps) { 962 if (handle->maps->map) 963 free_page((unsigned long)handle->maps->map); 964 tmp = handle->maps; 965 handle->maps = handle->maps->next; 966 kfree(tmp); 967 } 968 handle->cur = NULL; 969 } 970 971 static int get_swap_reader(struct swap_map_handle *handle, 972 unsigned int *flags_p) 973 { 974 int error; 975 struct swap_map_page_list *tmp, *last; 976 sector_t offset; 977 978 *flags_p = swsusp_header->flags; 979 980 if (!swsusp_header->image) /* how can this happen? */ 981 return -EINVAL; 982 983 handle->cur = NULL; 984 last = handle->maps = NULL; 985 offset = swsusp_header->image; 986 while (offset) { 987 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 988 if (!tmp) { 989 release_swap_reader(handle); 990 return -ENOMEM; 991 } 992 if (!handle->maps) 993 handle->maps = tmp; 994 if (last) 995 last->next = tmp; 996 last = tmp; 997 998 tmp->map = (struct swap_map_page *) 999 __get_free_page(GFP_NOIO | __GFP_HIGH); 1000 if (!tmp->map) { 1001 release_swap_reader(handle); 1002 return -ENOMEM; 1003 } 1004 1005 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL); 1006 if (error) { 1007 release_swap_reader(handle); 1008 return error; 1009 } 1010 offset = tmp->map->next_swap; 1011 } 1012 handle->k = 0; 1013 handle->cur = handle->maps->map; 1014 return 0; 1015 } 1016 1017 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1018 struct hib_bio_batch *hb) 1019 { 1020 sector_t offset; 1021 int error; 1022 struct swap_map_page_list *tmp; 1023 1024 if (!handle->cur) 1025 return -EINVAL; 1026 offset = handle->cur->entries[handle->k]; 1027 if (!offset) 1028 return -EFAULT; 1029 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb); 1030 if (error) 1031 return error; 1032 if (++handle->k >= MAP_PAGE_ENTRIES) { 1033 handle->k = 0; 1034 free_page((unsigned long)handle->maps->map); 1035 tmp = handle->maps; 1036 handle->maps = handle->maps->next; 1037 kfree(tmp); 1038 if (!handle->maps) 1039 release_swap_reader(handle); 1040 else 1041 handle->cur = handle->maps->map; 1042 } 1043 return error; 1044 } 1045 1046 static int swap_reader_finish(struct swap_map_handle *handle) 1047 { 1048 release_swap_reader(handle); 1049 1050 return 0; 1051 } 1052 1053 /** 1054 * load_image - load the image using the swap map handle 1055 * @handle and the snapshot handle @snapshot 1056 * (assume there are @nr_pages pages to load) 1057 */ 1058 1059 static int load_image(struct swap_map_handle *handle, 1060 struct snapshot_handle *snapshot, 1061 unsigned int nr_to_read) 1062 { 1063 unsigned int m; 1064 int ret = 0; 1065 ktime_t start; 1066 ktime_t stop; 1067 struct hib_bio_batch hb; 1068 int err2; 1069 unsigned nr_pages; 1070 1071 hib_init_batch(&hb); 1072 1073 clean_pages_on_read = true; 1074 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1075 m = nr_to_read / 10; 1076 if (!m) 1077 m = 1; 1078 nr_pages = 0; 1079 start = ktime_get(); 1080 for ( ; ; ) { 1081 ret = snapshot_write_next(snapshot); 1082 if (ret <= 0) 1083 break; 1084 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1085 if (ret) 1086 break; 1087 if (snapshot->sync_read) 1088 ret = hib_wait_io(&hb); 1089 if (ret) 1090 break; 1091 if (!(nr_pages % m)) 1092 pr_info("Image loading progress: %3d%%\n", 1093 nr_pages / m * 10); 1094 nr_pages++; 1095 } 1096 err2 = hib_wait_io(&hb); 1097 hib_finish_batch(&hb); 1098 stop = ktime_get(); 1099 if (!ret) 1100 ret = err2; 1101 if (!ret) { 1102 pr_info("Image loading done\n"); 1103 snapshot_write_finalize(snapshot); 1104 if (!snapshot_image_loaded(snapshot)) 1105 ret = -ENODATA; 1106 } 1107 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1108 return ret; 1109 } 1110 1111 /** 1112 * Structure used for LZO data decompression. 1113 */ 1114 struct dec_data { 1115 struct task_struct *thr; /* thread */ 1116 atomic_t ready; /* ready to start flag */ 1117 atomic_t stop; /* ready to stop flag */ 1118 int ret; /* return code */ 1119 wait_queue_head_t go; /* start decompression */ 1120 wait_queue_head_t done; /* decompression done */ 1121 size_t unc_len; /* uncompressed length */ 1122 size_t cmp_len; /* compressed length */ 1123 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 1124 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 1125 }; 1126 1127 /** 1128 * Decompression function that runs in its own thread. 1129 */ 1130 static int lzo_decompress_threadfn(void *data) 1131 { 1132 struct dec_data *d = data; 1133 1134 while (1) { 1135 wait_event(d->go, atomic_read(&d->ready) || 1136 kthread_should_stop()); 1137 if (kthread_should_stop()) { 1138 d->thr = NULL; 1139 d->ret = -1; 1140 atomic_set(&d->stop, 1); 1141 wake_up(&d->done); 1142 break; 1143 } 1144 atomic_set(&d->ready, 0); 1145 1146 d->unc_len = LZO_UNC_SIZE; 1147 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len, 1148 d->unc, &d->unc_len); 1149 if (clean_pages_on_decompress) 1150 flush_icache_range((unsigned long)d->unc, 1151 (unsigned long)d->unc + d->unc_len); 1152 1153 atomic_set(&d->stop, 1); 1154 wake_up(&d->done); 1155 } 1156 return 0; 1157 } 1158 1159 /** 1160 * load_image_lzo - Load compressed image data and decompress them with LZO. 1161 * @handle: Swap map handle to use for loading data. 1162 * @snapshot: Image to copy uncompressed data into. 1163 * @nr_to_read: Number of pages to load. 1164 */ 1165 static int load_image_lzo(struct swap_map_handle *handle, 1166 struct snapshot_handle *snapshot, 1167 unsigned int nr_to_read) 1168 { 1169 unsigned int m; 1170 int ret = 0; 1171 int eof = 0; 1172 struct hib_bio_batch hb; 1173 ktime_t start; 1174 ktime_t stop; 1175 unsigned nr_pages; 1176 size_t off; 1177 unsigned i, thr, run_threads, nr_threads; 1178 unsigned ring = 0, pg = 0, ring_size = 0, 1179 have = 0, want, need, asked = 0; 1180 unsigned long read_pages = 0; 1181 unsigned char **page = NULL; 1182 struct dec_data *data = NULL; 1183 struct crc_data *crc = NULL; 1184 1185 hib_init_batch(&hb); 1186 1187 /* 1188 * We'll limit the number of threads for decompression to limit memory 1189 * footprint. 1190 */ 1191 nr_threads = num_online_cpus() - 1; 1192 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 1193 1194 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page))); 1195 if (!page) { 1196 pr_err("Failed to allocate LZO page\n"); 1197 ret = -ENOMEM; 1198 goto out_clean; 1199 } 1200 1201 data = vmalloc(array_size(nr_threads, sizeof(*data))); 1202 if (!data) { 1203 pr_err("Failed to allocate LZO data\n"); 1204 ret = -ENOMEM; 1205 goto out_clean; 1206 } 1207 for (thr = 0; thr < nr_threads; thr++) 1208 memset(&data[thr], 0, offsetof(struct dec_data, go)); 1209 1210 crc = kmalloc(sizeof(*crc), GFP_KERNEL); 1211 if (!crc) { 1212 pr_err("Failed to allocate crc\n"); 1213 ret = -ENOMEM; 1214 goto out_clean; 1215 } 1216 memset(crc, 0, offsetof(struct crc_data, go)); 1217 1218 clean_pages_on_decompress = true; 1219 1220 /* 1221 * Start the decompression threads. 1222 */ 1223 for (thr = 0; thr < nr_threads; thr++) { 1224 init_waitqueue_head(&data[thr].go); 1225 init_waitqueue_head(&data[thr].done); 1226 1227 data[thr].thr = kthread_run(lzo_decompress_threadfn, 1228 &data[thr], 1229 "image_decompress/%u", thr); 1230 if (IS_ERR(data[thr].thr)) { 1231 data[thr].thr = NULL; 1232 pr_err("Cannot start decompression threads\n"); 1233 ret = -ENOMEM; 1234 goto out_clean; 1235 } 1236 } 1237 1238 /* 1239 * Start the CRC32 thread. 1240 */ 1241 init_waitqueue_head(&crc->go); 1242 init_waitqueue_head(&crc->done); 1243 1244 handle->crc32 = 0; 1245 crc->crc32 = &handle->crc32; 1246 for (thr = 0; thr < nr_threads; thr++) { 1247 crc->unc[thr] = data[thr].unc; 1248 crc->unc_len[thr] = &data[thr].unc_len; 1249 } 1250 1251 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1252 if (IS_ERR(crc->thr)) { 1253 crc->thr = NULL; 1254 pr_err("Cannot start CRC32 thread\n"); 1255 ret = -ENOMEM; 1256 goto out_clean; 1257 } 1258 1259 /* 1260 * Set the number of pages for read buffering. 1261 * This is complete guesswork, because we'll only know the real 1262 * picture once prepare_image() is called, which is much later on 1263 * during the image load phase. We'll assume the worst case and 1264 * say that none of the image pages are from high memory. 1265 */ 1266 if (low_free_pages() > snapshot_get_image_size()) 1267 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1268 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES); 1269 1270 for (i = 0; i < read_pages; i++) { 1271 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ? 1272 GFP_NOIO | __GFP_HIGH : 1273 GFP_NOIO | __GFP_NOWARN | 1274 __GFP_NORETRY); 1275 1276 if (!page[i]) { 1277 if (i < LZO_CMP_PAGES) { 1278 ring_size = i; 1279 pr_err("Failed to allocate LZO pages\n"); 1280 ret = -ENOMEM; 1281 goto out_clean; 1282 } else { 1283 break; 1284 } 1285 } 1286 } 1287 want = ring_size = i; 1288 1289 pr_info("Using %u thread(s) for decompression\n", nr_threads); 1290 pr_info("Loading and decompressing image data (%u pages)...\n", 1291 nr_to_read); 1292 m = nr_to_read / 10; 1293 if (!m) 1294 m = 1; 1295 nr_pages = 0; 1296 start = ktime_get(); 1297 1298 ret = snapshot_write_next(snapshot); 1299 if (ret <= 0) 1300 goto out_finish; 1301 1302 for(;;) { 1303 for (i = 0; !eof && i < want; i++) { 1304 ret = swap_read_page(handle, page[ring], &hb); 1305 if (ret) { 1306 /* 1307 * On real read error, finish. On end of data, 1308 * set EOF flag and just exit the read loop. 1309 */ 1310 if (handle->cur && 1311 handle->cur->entries[handle->k]) { 1312 goto out_finish; 1313 } else { 1314 eof = 1; 1315 break; 1316 } 1317 } 1318 if (++ring >= ring_size) 1319 ring = 0; 1320 } 1321 asked += i; 1322 want -= i; 1323 1324 /* 1325 * We are out of data, wait for some more. 1326 */ 1327 if (!have) { 1328 if (!asked) 1329 break; 1330 1331 ret = hib_wait_io(&hb); 1332 if (ret) 1333 goto out_finish; 1334 have += asked; 1335 asked = 0; 1336 if (eof) 1337 eof = 2; 1338 } 1339 1340 if (crc->run_threads) { 1341 wait_event(crc->done, atomic_read(&crc->stop)); 1342 atomic_set(&crc->stop, 0); 1343 crc->run_threads = 0; 1344 } 1345 1346 for (thr = 0; have && thr < nr_threads; thr++) { 1347 data[thr].cmp_len = *(size_t *)page[pg]; 1348 if (unlikely(!data[thr].cmp_len || 1349 data[thr].cmp_len > 1350 lzo1x_worst_compress(LZO_UNC_SIZE))) { 1351 pr_err("Invalid LZO compressed length\n"); 1352 ret = -1; 1353 goto out_finish; 1354 } 1355 1356 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER, 1357 PAGE_SIZE); 1358 if (need > have) { 1359 if (eof > 1) { 1360 ret = -1; 1361 goto out_finish; 1362 } 1363 break; 1364 } 1365 1366 for (off = 0; 1367 off < LZO_HEADER + data[thr].cmp_len; 1368 off += PAGE_SIZE) { 1369 memcpy(data[thr].cmp + off, 1370 page[pg], PAGE_SIZE); 1371 have--; 1372 want++; 1373 if (++pg >= ring_size) 1374 pg = 0; 1375 } 1376 1377 atomic_set(&data[thr].ready, 1); 1378 wake_up(&data[thr].go); 1379 } 1380 1381 /* 1382 * Wait for more data while we are decompressing. 1383 */ 1384 if (have < LZO_CMP_PAGES && asked) { 1385 ret = hib_wait_io(&hb); 1386 if (ret) 1387 goto out_finish; 1388 have += asked; 1389 asked = 0; 1390 if (eof) 1391 eof = 2; 1392 } 1393 1394 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1395 wait_event(data[thr].done, 1396 atomic_read(&data[thr].stop)); 1397 atomic_set(&data[thr].stop, 0); 1398 1399 ret = data[thr].ret; 1400 1401 if (ret < 0) { 1402 pr_err("LZO decompression failed\n"); 1403 goto out_finish; 1404 } 1405 1406 if (unlikely(!data[thr].unc_len || 1407 data[thr].unc_len > LZO_UNC_SIZE || 1408 data[thr].unc_len & (PAGE_SIZE - 1))) { 1409 pr_err("Invalid LZO uncompressed length\n"); 1410 ret = -1; 1411 goto out_finish; 1412 } 1413 1414 for (off = 0; 1415 off < data[thr].unc_len; off += PAGE_SIZE) { 1416 memcpy(data_of(*snapshot), 1417 data[thr].unc + off, PAGE_SIZE); 1418 1419 if (!(nr_pages % m)) 1420 pr_info("Image loading progress: %3d%%\n", 1421 nr_pages / m * 10); 1422 nr_pages++; 1423 1424 ret = snapshot_write_next(snapshot); 1425 if (ret <= 0) { 1426 crc->run_threads = thr + 1; 1427 atomic_set(&crc->ready, 1); 1428 wake_up(&crc->go); 1429 goto out_finish; 1430 } 1431 } 1432 } 1433 1434 crc->run_threads = thr; 1435 atomic_set(&crc->ready, 1); 1436 wake_up(&crc->go); 1437 } 1438 1439 out_finish: 1440 if (crc->run_threads) { 1441 wait_event(crc->done, atomic_read(&crc->stop)); 1442 atomic_set(&crc->stop, 0); 1443 } 1444 stop = ktime_get(); 1445 if (!ret) { 1446 pr_info("Image loading done\n"); 1447 snapshot_write_finalize(snapshot); 1448 if (!snapshot_image_loaded(snapshot)) 1449 ret = -ENODATA; 1450 if (!ret) { 1451 if (swsusp_header->flags & SF_CRC32_MODE) { 1452 if(handle->crc32 != swsusp_header->crc32) { 1453 pr_err("Invalid image CRC32!\n"); 1454 ret = -ENODATA; 1455 } 1456 } 1457 } 1458 } 1459 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1460 out_clean: 1461 hib_finish_batch(&hb); 1462 for (i = 0; i < ring_size; i++) 1463 free_page((unsigned long)page[i]); 1464 if (crc) { 1465 if (crc->thr) 1466 kthread_stop(crc->thr); 1467 kfree(crc); 1468 } 1469 if (data) { 1470 for (thr = 0; thr < nr_threads; thr++) 1471 if (data[thr].thr) 1472 kthread_stop(data[thr].thr); 1473 vfree(data); 1474 } 1475 vfree(page); 1476 1477 return ret; 1478 } 1479 1480 /** 1481 * swsusp_read - read the hibernation image. 1482 * @flags_p: flags passed by the "frozen" kernel in the image header should 1483 * be written into this memory location 1484 */ 1485 1486 int swsusp_read(unsigned int *flags_p) 1487 { 1488 int error; 1489 struct swap_map_handle handle; 1490 struct snapshot_handle snapshot; 1491 struct swsusp_info *header; 1492 1493 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1494 error = snapshot_write_next(&snapshot); 1495 if (error < (int)PAGE_SIZE) 1496 return error < 0 ? error : -EFAULT; 1497 header = (struct swsusp_info *)data_of(snapshot); 1498 error = get_swap_reader(&handle, flags_p); 1499 if (error) 1500 goto end; 1501 if (!error) 1502 error = swap_read_page(&handle, header, NULL); 1503 if (!error) { 1504 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1505 load_image(&handle, &snapshot, header->pages - 1) : 1506 load_image_lzo(&handle, &snapshot, header->pages - 1); 1507 } 1508 swap_reader_finish(&handle); 1509 end: 1510 if (!error) 1511 pr_debug("Image successfully loaded\n"); 1512 else 1513 pr_debug("Error %d resuming\n", error); 1514 return error; 1515 } 1516 1517 /** 1518 * swsusp_check - Check for swsusp signature in the resume device 1519 */ 1520 1521 int swsusp_check(void) 1522 { 1523 int error; 1524 1525 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, 1526 FMODE_READ, NULL); 1527 if (!IS_ERR(hib_resume_bdev)) { 1528 set_blocksize(hib_resume_bdev, PAGE_SIZE); 1529 clear_page(swsusp_header); 1530 error = hib_submit_io(REQ_OP_READ, 0, 1531 swsusp_resume_block, 1532 swsusp_header, NULL); 1533 if (error) 1534 goto put; 1535 1536 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1537 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1538 /* Reset swap signature now */ 1539 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1540 swsusp_resume_block, 1541 swsusp_header, NULL); 1542 } else { 1543 error = -EINVAL; 1544 } 1545 1546 put: 1547 if (error) 1548 blkdev_put(hib_resume_bdev, FMODE_READ); 1549 else 1550 pr_debug("Image signature found, resuming\n"); 1551 } else { 1552 error = PTR_ERR(hib_resume_bdev); 1553 } 1554 1555 if (error) 1556 pr_debug("Image not found (code %d)\n", error); 1557 1558 return error; 1559 } 1560 1561 /** 1562 * swsusp_close - close swap device. 1563 */ 1564 1565 void swsusp_close(fmode_t mode) 1566 { 1567 if (IS_ERR(hib_resume_bdev)) { 1568 pr_debug("Image device not initialised\n"); 1569 return; 1570 } 1571 1572 blkdev_put(hib_resume_bdev, mode); 1573 } 1574 1575 /** 1576 * swsusp_unmark - Unmark swsusp signature in the resume device 1577 */ 1578 1579 #ifdef CONFIG_SUSPEND 1580 int swsusp_unmark(void) 1581 { 1582 int error; 1583 1584 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 1585 swsusp_header, NULL); 1586 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1587 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1588 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1589 swsusp_resume_block, 1590 swsusp_header, NULL); 1591 } else { 1592 pr_err("Cannot find swsusp signature!\n"); 1593 error = -ENODEV; 1594 } 1595 1596 /* 1597 * We just returned from suspend, we don't need the image any more. 1598 */ 1599 free_all_swap_pages(root_swap); 1600 1601 return error; 1602 } 1603 #endif 1604 1605 static int __init swsusp_header_init(void) 1606 { 1607 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1608 if (!swsusp_header) 1609 panic("Could not allocate memory for swsusp_header\n"); 1610 return 0; 1611 } 1612 1613 core_initcall(swsusp_header_init); 1614