1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/device.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/pm.h> 25 #include <linux/slab.h> 26 #include <linux/vmalloc.h> 27 #include <linux/cpumask.h> 28 #include <linux/atomic.h> 29 #include <linux/kthread.h> 30 #include <linux/crc32.h> 31 #include <linux/ktime.h> 32 33 #include "power.h" 34 35 #define HIBERNATE_SIG "S1SUSPEND" 36 37 u32 swsusp_hardware_signature; 38 39 /* 40 * When reading an {un,}compressed image, we may restore pages in place, 41 * in which case some architectures need these pages cleaning before they 42 * can be executed. We don't know which pages these may be, so clean the lot. 43 */ 44 static bool clean_pages_on_read; 45 static bool clean_pages_on_decompress; 46 47 /* 48 * The swap map is a data structure used for keeping track of each page 49 * written to a swap partition. It consists of many swap_map_page 50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 51 * These structures are stored on the swap and linked together with the 52 * help of the .next_swap member. 53 * 54 * The swap map is created during suspend. The swap map pages are 55 * allocated and populated one at a time, so we only need one memory 56 * page to set up the entire structure. 57 * 58 * During resume we pick up all swap_map_page structures into a list. 59 */ 60 61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 62 63 /* 64 * Number of free pages that are not high. 65 */ 66 static inline unsigned long low_free_pages(void) 67 { 68 return nr_free_pages() - nr_free_highpages(); 69 } 70 71 /* 72 * Number of pages required to be kept free while writing the image. Always 73 * half of all available low pages before the writing starts. 74 */ 75 static inline unsigned long reqd_free_pages(void) 76 { 77 return low_free_pages() / 2; 78 } 79 80 struct swap_map_page { 81 sector_t entries[MAP_PAGE_ENTRIES]; 82 sector_t next_swap; 83 }; 84 85 struct swap_map_page_list { 86 struct swap_map_page *map; 87 struct swap_map_page_list *next; 88 }; 89 90 /* 91 * The swap_map_handle structure is used for handling swap in 92 * a file-alike way 93 */ 94 95 struct swap_map_handle { 96 struct swap_map_page *cur; 97 struct swap_map_page_list *maps; 98 sector_t cur_swap; 99 sector_t first_sector; 100 unsigned int k; 101 unsigned long reqd_free_pages; 102 u32 crc32; 103 }; 104 105 struct swsusp_header { 106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 107 sizeof(u32) - sizeof(u32)]; 108 u32 hw_sig; 109 u32 crc32; 110 sector_t image; 111 unsigned int flags; /* Flags to pass to the "boot" kernel */ 112 char orig_sig[10]; 113 char sig[10]; 114 } __packed; 115 116 static struct swsusp_header *swsusp_header; 117 118 /* 119 * The following functions are used for tracing the allocated 120 * swap pages, so that they can be freed in case of an error. 121 */ 122 123 struct swsusp_extent { 124 struct rb_node node; 125 unsigned long start; 126 unsigned long end; 127 }; 128 129 static struct rb_root swsusp_extents = RB_ROOT; 130 131 static int swsusp_extents_insert(unsigned long swap_offset) 132 { 133 struct rb_node **new = &(swsusp_extents.rb_node); 134 struct rb_node *parent = NULL; 135 struct swsusp_extent *ext; 136 137 /* Figure out where to put the new node */ 138 while (*new) { 139 ext = rb_entry(*new, struct swsusp_extent, node); 140 parent = *new; 141 if (swap_offset < ext->start) { 142 /* Try to merge */ 143 if (swap_offset == ext->start - 1) { 144 ext->start--; 145 return 0; 146 } 147 new = &((*new)->rb_left); 148 } else if (swap_offset > ext->end) { 149 /* Try to merge */ 150 if (swap_offset == ext->end + 1) { 151 ext->end++; 152 return 0; 153 } 154 new = &((*new)->rb_right); 155 } else { 156 /* It already is in the tree */ 157 return -EINVAL; 158 } 159 } 160 /* Add the new node and rebalance the tree. */ 161 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 162 if (!ext) 163 return -ENOMEM; 164 165 ext->start = swap_offset; 166 ext->end = swap_offset; 167 rb_link_node(&ext->node, parent, new); 168 rb_insert_color(&ext->node, &swsusp_extents); 169 return 0; 170 } 171 172 /* 173 * alloc_swapdev_block - allocate a swap page and register that it has 174 * been allocated, so that it can be freed in case of an error. 175 */ 176 177 sector_t alloc_swapdev_block(int swap) 178 { 179 unsigned long offset; 180 181 offset = swp_offset(get_swap_page_of_type(swap)); 182 if (offset) { 183 if (swsusp_extents_insert(offset)) 184 swap_free(swp_entry(swap, offset)); 185 else 186 return swapdev_block(swap, offset); 187 } 188 return 0; 189 } 190 191 /* 192 * free_all_swap_pages - free swap pages allocated for saving image data. 193 * It also frees the extents used to register which swap entries had been 194 * allocated. 195 */ 196 197 void free_all_swap_pages(int swap) 198 { 199 struct rb_node *node; 200 201 while ((node = swsusp_extents.rb_node)) { 202 struct swsusp_extent *ext; 203 unsigned long offset; 204 205 ext = rb_entry(node, struct swsusp_extent, node); 206 rb_erase(node, &swsusp_extents); 207 for (offset = ext->start; offset <= ext->end; offset++) 208 swap_free(swp_entry(swap, offset)); 209 210 kfree(ext); 211 } 212 } 213 214 int swsusp_swap_in_use(void) 215 { 216 return (swsusp_extents.rb_node != NULL); 217 } 218 219 /* 220 * General things 221 */ 222 223 static unsigned short root_swap = 0xffff; 224 static struct file *hib_resume_bdev_file; 225 226 struct hib_bio_batch { 227 atomic_t count; 228 wait_queue_head_t wait; 229 blk_status_t error; 230 struct blk_plug plug; 231 }; 232 233 static void hib_init_batch(struct hib_bio_batch *hb) 234 { 235 atomic_set(&hb->count, 0); 236 init_waitqueue_head(&hb->wait); 237 hb->error = BLK_STS_OK; 238 blk_start_plug(&hb->plug); 239 } 240 241 static void hib_finish_batch(struct hib_bio_batch *hb) 242 { 243 blk_finish_plug(&hb->plug); 244 } 245 246 static void hib_end_io(struct bio *bio) 247 { 248 struct hib_bio_batch *hb = bio->bi_private; 249 struct page *page = bio_first_page_all(bio); 250 251 if (bio->bi_status) { 252 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 253 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 254 (unsigned long long)bio->bi_iter.bi_sector); 255 } 256 257 if (bio_data_dir(bio) == WRITE) 258 put_page(page); 259 else if (clean_pages_on_read) 260 flush_icache_range((unsigned long)page_address(page), 261 (unsigned long)page_address(page) + PAGE_SIZE); 262 263 if (bio->bi_status && !hb->error) 264 hb->error = bio->bi_status; 265 if (atomic_dec_and_test(&hb->count)) 266 wake_up(&hb->wait); 267 268 bio_put(bio); 269 } 270 271 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr, 272 struct hib_bio_batch *hb) 273 { 274 struct page *page = virt_to_page(addr); 275 struct bio *bio; 276 int error = 0; 277 278 bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf, 279 GFP_NOIO | __GFP_HIGH); 280 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 281 282 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 283 pr_err("Adding page to bio failed at %llu\n", 284 (unsigned long long)bio->bi_iter.bi_sector); 285 bio_put(bio); 286 return -EFAULT; 287 } 288 289 if (hb) { 290 bio->bi_end_io = hib_end_io; 291 bio->bi_private = hb; 292 atomic_inc(&hb->count); 293 submit_bio(bio); 294 } else { 295 error = submit_bio_wait(bio); 296 bio_put(bio); 297 } 298 299 return error; 300 } 301 302 static int hib_wait_io(struct hib_bio_batch *hb) 303 { 304 /* 305 * We are relying on the behavior of blk_plug that a thread with 306 * a plug will flush the plug list before sleeping. 307 */ 308 wait_event(hb->wait, atomic_read(&hb->count) == 0); 309 return blk_status_to_errno(hb->error); 310 } 311 312 /* 313 * Saving part 314 */ 315 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 316 { 317 int error; 318 319 hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL); 320 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 321 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 322 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 323 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 324 swsusp_header->image = handle->first_sector; 325 if (swsusp_hardware_signature) { 326 swsusp_header->hw_sig = swsusp_hardware_signature; 327 flags |= SF_HW_SIG; 328 } 329 swsusp_header->flags = flags; 330 if (flags & SF_CRC32_MODE) 331 swsusp_header->crc32 = handle->crc32; 332 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 333 swsusp_resume_block, swsusp_header, NULL); 334 } else { 335 pr_err("Swap header not found!\n"); 336 error = -ENODEV; 337 } 338 return error; 339 } 340 341 /* 342 * Hold the swsusp_header flag. This is used in software_resume() in 343 * 'kernel/power/hibernate' to check if the image is compressed and query 344 * for the compression algorithm support(if so). 345 */ 346 unsigned int swsusp_header_flags; 347 348 /** 349 * swsusp_swap_check - check if the resume device is a swap device 350 * and get its index (if so) 351 * 352 * This is called before saving image 353 */ 354 static int swsusp_swap_check(void) 355 { 356 int res; 357 358 if (swsusp_resume_device) 359 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 360 else 361 res = find_first_swap(&swsusp_resume_device); 362 if (res < 0) 363 return res; 364 root_swap = res; 365 366 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 367 BLK_OPEN_WRITE, NULL, NULL); 368 if (IS_ERR(hib_resume_bdev_file)) 369 return PTR_ERR(hib_resume_bdev_file); 370 371 res = set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE); 372 if (res < 0) 373 fput(hib_resume_bdev_file); 374 375 return res; 376 } 377 378 /** 379 * write_page - Write one page to given swap location. 380 * @buf: Address we're writing. 381 * @offset: Offset of the swap page we're writing to. 382 * @hb: bio completion batch 383 */ 384 385 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 386 { 387 void *src; 388 int ret; 389 390 if (!offset) 391 return -ENOSPC; 392 393 if (hb) { 394 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 395 __GFP_NORETRY); 396 if (src) { 397 copy_page(src, buf); 398 } else { 399 ret = hib_wait_io(hb); /* Free pages */ 400 if (ret) 401 return ret; 402 src = (void *)__get_free_page(GFP_NOIO | 403 __GFP_NOWARN | 404 __GFP_NORETRY); 405 if (src) { 406 copy_page(src, buf); 407 } else { 408 WARN_ON_ONCE(1); 409 hb = NULL; /* Go synchronous */ 410 src = buf; 411 } 412 } 413 } else { 414 src = buf; 415 } 416 return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb); 417 } 418 419 static void release_swap_writer(struct swap_map_handle *handle) 420 { 421 if (handle->cur) 422 free_page((unsigned long)handle->cur); 423 handle->cur = NULL; 424 } 425 426 static int get_swap_writer(struct swap_map_handle *handle) 427 { 428 int ret; 429 430 ret = swsusp_swap_check(); 431 if (ret) { 432 if (ret != -ENOSPC) 433 pr_err("Cannot find swap device, try swapon -a\n"); 434 return ret; 435 } 436 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 437 if (!handle->cur) { 438 ret = -ENOMEM; 439 goto err_close; 440 } 441 handle->cur_swap = alloc_swapdev_block(root_swap); 442 if (!handle->cur_swap) { 443 ret = -ENOSPC; 444 goto err_rel; 445 } 446 handle->k = 0; 447 handle->reqd_free_pages = reqd_free_pages(); 448 handle->first_sector = handle->cur_swap; 449 return 0; 450 err_rel: 451 release_swap_writer(handle); 452 err_close: 453 swsusp_close(); 454 return ret; 455 } 456 457 static int swap_write_page(struct swap_map_handle *handle, void *buf, 458 struct hib_bio_batch *hb) 459 { 460 int error; 461 sector_t offset; 462 463 if (!handle->cur) 464 return -EINVAL; 465 offset = alloc_swapdev_block(root_swap); 466 error = write_page(buf, offset, hb); 467 if (error) 468 return error; 469 handle->cur->entries[handle->k++] = offset; 470 if (handle->k >= MAP_PAGE_ENTRIES) { 471 offset = alloc_swapdev_block(root_swap); 472 if (!offset) 473 return -ENOSPC; 474 handle->cur->next_swap = offset; 475 error = write_page(handle->cur, handle->cur_swap, hb); 476 if (error) 477 goto out; 478 clear_page(handle->cur); 479 handle->cur_swap = offset; 480 handle->k = 0; 481 482 if (hb && low_free_pages() <= handle->reqd_free_pages) { 483 error = hib_wait_io(hb); 484 if (error) 485 goto out; 486 /* 487 * Recalculate the number of required free pages, to 488 * make sure we never take more than half. 489 */ 490 handle->reqd_free_pages = reqd_free_pages(); 491 } 492 } 493 out: 494 return error; 495 } 496 497 static int flush_swap_writer(struct swap_map_handle *handle) 498 { 499 if (handle->cur && handle->cur_swap) 500 return write_page(handle->cur, handle->cur_swap, NULL); 501 else 502 return -EINVAL; 503 } 504 505 static int swap_writer_finish(struct swap_map_handle *handle, 506 unsigned int flags, int error) 507 { 508 if (!error) { 509 pr_info("S"); 510 error = mark_swapfiles(handle, flags); 511 pr_cont("|\n"); 512 flush_swap_writer(handle); 513 } 514 515 if (error) 516 free_all_swap_pages(root_swap); 517 release_swap_writer(handle); 518 swsusp_close(); 519 520 return error; 521 } 522 523 /* 524 * Bytes we need for compressed data in worst case. We assume(limitation) 525 * this is the worst of all the compression algorithms. 526 */ 527 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2) 528 529 /* We need to remember how much compressed data we need to read. */ 530 #define CMP_HEADER sizeof(size_t) 531 532 /* Number of pages/bytes we'll compress at one time. */ 533 #define UNC_PAGES 32 534 #define UNC_SIZE (UNC_PAGES * PAGE_SIZE) 535 536 /* Number of pages we need for compressed data (worst case). */ 537 #define CMP_PAGES DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \ 538 CMP_HEADER, PAGE_SIZE) 539 #define CMP_SIZE (CMP_PAGES * PAGE_SIZE) 540 541 /* Maximum number of threads for compression/decompression. */ 542 #define CMP_THREADS 3 543 544 /* Minimum/maximum number of pages for read buffering. */ 545 #define CMP_MIN_RD_PAGES 1024 546 #define CMP_MAX_RD_PAGES 8192 547 548 /** 549 * save_image - save the suspend image data 550 */ 551 552 static int save_image(struct swap_map_handle *handle, 553 struct snapshot_handle *snapshot, 554 unsigned int nr_to_write) 555 { 556 unsigned int m; 557 int ret; 558 int nr_pages; 559 int err2; 560 struct hib_bio_batch hb; 561 ktime_t start; 562 ktime_t stop; 563 564 hib_init_batch(&hb); 565 566 pr_info("Saving image data pages (%u pages)...\n", 567 nr_to_write); 568 m = nr_to_write / 10; 569 if (!m) 570 m = 1; 571 nr_pages = 0; 572 start = ktime_get(); 573 while (1) { 574 ret = snapshot_read_next(snapshot); 575 if (ret <= 0) 576 break; 577 ret = swap_write_page(handle, data_of(*snapshot), &hb); 578 if (ret) 579 break; 580 if (!(nr_pages % m)) 581 pr_info("Image saving progress: %3d%%\n", 582 nr_pages / m * 10); 583 nr_pages++; 584 } 585 err2 = hib_wait_io(&hb); 586 hib_finish_batch(&hb); 587 stop = ktime_get(); 588 if (!ret) 589 ret = err2; 590 if (!ret) 591 pr_info("Image saving done\n"); 592 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 593 return ret; 594 } 595 596 /* 597 * Structure used for CRC32. 598 */ 599 struct crc_data { 600 struct task_struct *thr; /* thread */ 601 atomic_t ready; /* ready to start flag */ 602 atomic_t stop; /* ready to stop flag */ 603 unsigned run_threads; /* nr current threads */ 604 wait_queue_head_t go; /* start crc update */ 605 wait_queue_head_t done; /* crc update done */ 606 u32 *crc32; /* points to handle's crc32 */ 607 size_t *unc_len[CMP_THREADS]; /* uncompressed lengths */ 608 unsigned char *unc[CMP_THREADS]; /* uncompressed data */ 609 }; 610 611 /* 612 * CRC32 update function that runs in its own thread. 613 */ 614 static int crc32_threadfn(void *data) 615 { 616 struct crc_data *d = data; 617 unsigned i; 618 619 while (1) { 620 wait_event(d->go, atomic_read_acquire(&d->ready) || 621 kthread_should_stop()); 622 if (kthread_should_stop()) { 623 d->thr = NULL; 624 atomic_set_release(&d->stop, 1); 625 wake_up(&d->done); 626 break; 627 } 628 atomic_set(&d->ready, 0); 629 630 for (i = 0; i < d->run_threads; i++) 631 *d->crc32 = crc32_le(*d->crc32, 632 d->unc[i], *d->unc_len[i]); 633 atomic_set_release(&d->stop, 1); 634 wake_up(&d->done); 635 } 636 return 0; 637 } 638 /* 639 * Structure used for data compression. 640 */ 641 struct cmp_data { 642 struct task_struct *thr; /* thread */ 643 struct crypto_comp *cc; /* crypto compressor stream */ 644 atomic_t ready; /* ready to start flag */ 645 atomic_t stop; /* ready to stop flag */ 646 int ret; /* return code */ 647 wait_queue_head_t go; /* start compression */ 648 wait_queue_head_t done; /* compression done */ 649 size_t unc_len; /* uncompressed length */ 650 size_t cmp_len; /* compressed length */ 651 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 652 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 653 }; 654 655 /* Indicates the image size after compression */ 656 static atomic_t compressed_size = ATOMIC_INIT(0); 657 658 /* 659 * Compression function that runs in its own thread. 660 */ 661 static int compress_threadfn(void *data) 662 { 663 struct cmp_data *d = data; 664 unsigned int cmp_len = 0; 665 666 while (1) { 667 wait_event(d->go, atomic_read_acquire(&d->ready) || 668 kthread_should_stop()); 669 if (kthread_should_stop()) { 670 d->thr = NULL; 671 d->ret = -1; 672 atomic_set_release(&d->stop, 1); 673 wake_up(&d->done); 674 break; 675 } 676 atomic_set(&d->ready, 0); 677 678 cmp_len = CMP_SIZE - CMP_HEADER; 679 d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len, 680 d->cmp + CMP_HEADER, 681 &cmp_len); 682 d->cmp_len = cmp_len; 683 684 atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len); 685 atomic_set_release(&d->stop, 1); 686 wake_up(&d->done); 687 } 688 return 0; 689 } 690 691 /** 692 * save_compressed_image - Save the suspend image data after compression. 693 * @handle: Swap map handle to use for saving the image. 694 * @snapshot: Image to read data from. 695 * @nr_to_write: Number of pages to save. 696 */ 697 static int save_compressed_image(struct swap_map_handle *handle, 698 struct snapshot_handle *snapshot, 699 unsigned int nr_to_write) 700 { 701 unsigned int m; 702 int ret = 0; 703 int nr_pages; 704 int err2; 705 struct hib_bio_batch hb; 706 ktime_t start; 707 ktime_t stop; 708 size_t off; 709 unsigned thr, run_threads, nr_threads; 710 unsigned char *page = NULL; 711 struct cmp_data *data = NULL; 712 struct crc_data *crc = NULL; 713 714 hib_init_batch(&hb); 715 716 atomic_set(&compressed_size, 0); 717 718 /* 719 * We'll limit the number of threads for compression to limit memory 720 * footprint. 721 */ 722 nr_threads = num_online_cpus() - 1; 723 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS); 724 725 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 726 if (!page) { 727 pr_err("Failed to allocate %s page\n", hib_comp_algo); 728 ret = -ENOMEM; 729 goto out_clean; 730 } 731 732 data = vzalloc(array_size(nr_threads, sizeof(*data))); 733 if (!data) { 734 pr_err("Failed to allocate %s data\n", hib_comp_algo); 735 ret = -ENOMEM; 736 goto out_clean; 737 } 738 739 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 740 if (!crc) { 741 pr_err("Failed to allocate crc\n"); 742 ret = -ENOMEM; 743 goto out_clean; 744 } 745 746 /* 747 * Start the compression threads. 748 */ 749 for (thr = 0; thr < nr_threads; thr++) { 750 init_waitqueue_head(&data[thr].go); 751 init_waitqueue_head(&data[thr].done); 752 753 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0); 754 if (IS_ERR_OR_NULL(data[thr].cc)) { 755 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 756 ret = -EFAULT; 757 goto out_clean; 758 } 759 760 data[thr].thr = kthread_run(compress_threadfn, 761 &data[thr], 762 "image_compress/%u", thr); 763 if (IS_ERR(data[thr].thr)) { 764 data[thr].thr = NULL; 765 pr_err("Cannot start compression threads\n"); 766 ret = -ENOMEM; 767 goto out_clean; 768 } 769 } 770 771 /* 772 * Start the CRC32 thread. 773 */ 774 init_waitqueue_head(&crc->go); 775 init_waitqueue_head(&crc->done); 776 777 handle->crc32 = 0; 778 crc->crc32 = &handle->crc32; 779 for (thr = 0; thr < nr_threads; thr++) { 780 crc->unc[thr] = data[thr].unc; 781 crc->unc_len[thr] = &data[thr].unc_len; 782 } 783 784 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 785 if (IS_ERR(crc->thr)) { 786 crc->thr = NULL; 787 pr_err("Cannot start CRC32 thread\n"); 788 ret = -ENOMEM; 789 goto out_clean; 790 } 791 792 /* 793 * Adjust the number of required free pages after all allocations have 794 * been done. We don't want to run out of pages when writing. 795 */ 796 handle->reqd_free_pages = reqd_free_pages(); 797 798 pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo); 799 pr_info("Compressing and saving image data (%u pages)...\n", 800 nr_to_write); 801 m = nr_to_write / 10; 802 if (!m) 803 m = 1; 804 nr_pages = 0; 805 start = ktime_get(); 806 for (;;) { 807 for (thr = 0; thr < nr_threads; thr++) { 808 for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) { 809 ret = snapshot_read_next(snapshot); 810 if (ret < 0) 811 goto out_finish; 812 813 if (!ret) 814 break; 815 816 memcpy(data[thr].unc + off, 817 data_of(*snapshot), PAGE_SIZE); 818 819 if (!(nr_pages % m)) 820 pr_info("Image saving progress: %3d%%\n", 821 nr_pages / m * 10); 822 nr_pages++; 823 } 824 if (!off) 825 break; 826 827 data[thr].unc_len = off; 828 829 atomic_set_release(&data[thr].ready, 1); 830 wake_up(&data[thr].go); 831 } 832 833 if (!thr) 834 break; 835 836 crc->run_threads = thr; 837 atomic_set_release(&crc->ready, 1); 838 wake_up(&crc->go); 839 840 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 841 wait_event(data[thr].done, 842 atomic_read_acquire(&data[thr].stop)); 843 atomic_set(&data[thr].stop, 0); 844 845 ret = data[thr].ret; 846 847 if (ret < 0) { 848 pr_err("%s compression failed\n", hib_comp_algo); 849 goto out_finish; 850 } 851 852 if (unlikely(!data[thr].cmp_len || 853 data[thr].cmp_len > 854 bytes_worst_compress(data[thr].unc_len))) { 855 pr_err("Invalid %s compressed length\n", hib_comp_algo); 856 ret = -1; 857 goto out_finish; 858 } 859 860 *(size_t *)data[thr].cmp = data[thr].cmp_len; 861 862 /* 863 * Given we are writing one page at a time to disk, we 864 * copy that much from the buffer, although the last 865 * bit will likely be smaller than full page. This is 866 * OK - we saved the length of the compressed data, so 867 * any garbage at the end will be discarded when we 868 * read it. 869 */ 870 for (off = 0; 871 off < CMP_HEADER + data[thr].cmp_len; 872 off += PAGE_SIZE) { 873 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 874 875 ret = swap_write_page(handle, page, &hb); 876 if (ret) 877 goto out_finish; 878 } 879 } 880 881 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 882 atomic_set(&crc->stop, 0); 883 } 884 885 out_finish: 886 err2 = hib_wait_io(&hb); 887 stop = ktime_get(); 888 if (!ret) 889 ret = err2; 890 if (!ret) 891 pr_info("Image saving done\n"); 892 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 893 pr_info("Image size after compression: %d kbytes\n", 894 (atomic_read(&compressed_size) / 1024)); 895 896 out_clean: 897 hib_finish_batch(&hb); 898 if (crc) { 899 if (crc->thr) 900 kthread_stop(crc->thr); 901 kfree(crc); 902 } 903 if (data) { 904 for (thr = 0; thr < nr_threads; thr++) { 905 if (data[thr].thr) 906 kthread_stop(data[thr].thr); 907 if (data[thr].cc) 908 crypto_free_comp(data[thr].cc); 909 } 910 vfree(data); 911 } 912 if (page) free_page((unsigned long)page); 913 914 return ret; 915 } 916 917 /** 918 * enough_swap - Make sure we have enough swap to save the image. 919 * 920 * Returns TRUE or FALSE after checking the total amount of swap 921 * space available from the resume partition. 922 */ 923 924 static int enough_swap(unsigned int nr_pages) 925 { 926 unsigned int free_swap = count_swap_pages(root_swap, 1); 927 unsigned int required; 928 929 pr_debug("Free swap pages: %u\n", free_swap); 930 931 required = PAGES_FOR_IO + nr_pages; 932 return free_swap > required; 933 } 934 935 /** 936 * swsusp_write - Write entire image and metadata. 937 * @flags: flags to pass to the "boot" kernel in the image header 938 * 939 * It is important _NOT_ to umount filesystems at this point. We want 940 * them synced (in case something goes wrong) but we DO not want to mark 941 * filesystem clean: it is not. (And it does not matter, if we resume 942 * correctly, we'll mark system clean, anyway.) 943 */ 944 945 int swsusp_write(unsigned int flags) 946 { 947 struct swap_map_handle handle; 948 struct snapshot_handle snapshot; 949 struct swsusp_info *header; 950 unsigned long pages; 951 int error; 952 953 pages = snapshot_get_image_size(); 954 error = get_swap_writer(&handle); 955 if (error) { 956 pr_err("Cannot get swap writer\n"); 957 return error; 958 } 959 if (flags & SF_NOCOMPRESS_MODE) { 960 if (!enough_swap(pages)) { 961 pr_err("Not enough free swap\n"); 962 error = -ENOSPC; 963 goto out_finish; 964 } 965 } 966 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 967 error = snapshot_read_next(&snapshot); 968 if (error < (int)PAGE_SIZE) { 969 if (error >= 0) 970 error = -EFAULT; 971 972 goto out_finish; 973 } 974 header = (struct swsusp_info *)data_of(snapshot); 975 error = swap_write_page(&handle, header, NULL); 976 if (!error) { 977 error = (flags & SF_NOCOMPRESS_MODE) ? 978 save_image(&handle, &snapshot, pages - 1) : 979 save_compressed_image(&handle, &snapshot, pages - 1); 980 } 981 out_finish: 982 error = swap_writer_finish(&handle, flags, error); 983 return error; 984 } 985 986 /* 987 * The following functions allow us to read data using a swap map 988 * in a file-like way. 989 */ 990 991 static void release_swap_reader(struct swap_map_handle *handle) 992 { 993 struct swap_map_page_list *tmp; 994 995 while (handle->maps) { 996 if (handle->maps->map) 997 free_page((unsigned long)handle->maps->map); 998 tmp = handle->maps; 999 handle->maps = handle->maps->next; 1000 kfree(tmp); 1001 } 1002 handle->cur = NULL; 1003 } 1004 1005 static int get_swap_reader(struct swap_map_handle *handle, 1006 unsigned int *flags_p) 1007 { 1008 int error; 1009 struct swap_map_page_list *tmp, *last; 1010 sector_t offset; 1011 1012 *flags_p = swsusp_header->flags; 1013 1014 if (!swsusp_header->image) /* how can this happen? */ 1015 return -EINVAL; 1016 1017 handle->cur = NULL; 1018 last = handle->maps = NULL; 1019 offset = swsusp_header->image; 1020 while (offset) { 1021 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 1022 if (!tmp) { 1023 release_swap_reader(handle); 1024 return -ENOMEM; 1025 } 1026 if (!handle->maps) 1027 handle->maps = tmp; 1028 if (last) 1029 last->next = tmp; 1030 last = tmp; 1031 1032 tmp->map = (struct swap_map_page *) 1033 __get_free_page(GFP_NOIO | __GFP_HIGH); 1034 if (!tmp->map) { 1035 release_swap_reader(handle); 1036 return -ENOMEM; 1037 } 1038 1039 error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL); 1040 if (error) { 1041 release_swap_reader(handle); 1042 return error; 1043 } 1044 offset = tmp->map->next_swap; 1045 } 1046 handle->k = 0; 1047 handle->cur = handle->maps->map; 1048 return 0; 1049 } 1050 1051 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1052 struct hib_bio_batch *hb) 1053 { 1054 sector_t offset; 1055 int error; 1056 struct swap_map_page_list *tmp; 1057 1058 if (!handle->cur) 1059 return -EINVAL; 1060 offset = handle->cur->entries[handle->k]; 1061 if (!offset) 1062 return -EFAULT; 1063 error = hib_submit_io(REQ_OP_READ, offset, buf, hb); 1064 if (error) 1065 return error; 1066 if (++handle->k >= MAP_PAGE_ENTRIES) { 1067 handle->k = 0; 1068 free_page((unsigned long)handle->maps->map); 1069 tmp = handle->maps; 1070 handle->maps = handle->maps->next; 1071 kfree(tmp); 1072 if (!handle->maps) 1073 release_swap_reader(handle); 1074 else 1075 handle->cur = handle->maps->map; 1076 } 1077 return error; 1078 } 1079 1080 static int swap_reader_finish(struct swap_map_handle *handle) 1081 { 1082 release_swap_reader(handle); 1083 1084 return 0; 1085 } 1086 1087 /** 1088 * load_image - load the image using the swap map handle 1089 * @handle and the snapshot handle @snapshot 1090 * (assume there are @nr_pages pages to load) 1091 */ 1092 1093 static int load_image(struct swap_map_handle *handle, 1094 struct snapshot_handle *snapshot, 1095 unsigned int nr_to_read) 1096 { 1097 unsigned int m; 1098 int ret = 0; 1099 ktime_t start; 1100 ktime_t stop; 1101 struct hib_bio_batch hb; 1102 int err2; 1103 unsigned nr_pages; 1104 1105 hib_init_batch(&hb); 1106 1107 clean_pages_on_read = true; 1108 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1109 m = nr_to_read / 10; 1110 if (!m) 1111 m = 1; 1112 nr_pages = 0; 1113 start = ktime_get(); 1114 for ( ; ; ) { 1115 ret = snapshot_write_next(snapshot); 1116 if (ret <= 0) 1117 break; 1118 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1119 if (ret) 1120 break; 1121 if (snapshot->sync_read) 1122 ret = hib_wait_io(&hb); 1123 if (ret) 1124 break; 1125 if (!(nr_pages % m)) 1126 pr_info("Image loading progress: %3d%%\n", 1127 nr_pages / m * 10); 1128 nr_pages++; 1129 } 1130 err2 = hib_wait_io(&hb); 1131 hib_finish_batch(&hb); 1132 stop = ktime_get(); 1133 if (!ret) 1134 ret = err2; 1135 if (!ret) { 1136 pr_info("Image loading done\n"); 1137 ret = snapshot_write_finalize(snapshot); 1138 if (!ret && !snapshot_image_loaded(snapshot)) 1139 ret = -ENODATA; 1140 } 1141 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1142 return ret; 1143 } 1144 1145 /* 1146 * Structure used for data decompression. 1147 */ 1148 struct dec_data { 1149 struct task_struct *thr; /* thread */ 1150 struct crypto_comp *cc; /* crypto compressor stream */ 1151 atomic_t ready; /* ready to start flag */ 1152 atomic_t stop; /* ready to stop flag */ 1153 int ret; /* return code */ 1154 wait_queue_head_t go; /* start decompression */ 1155 wait_queue_head_t done; /* decompression done */ 1156 size_t unc_len; /* uncompressed length */ 1157 size_t cmp_len; /* compressed length */ 1158 unsigned char unc[UNC_SIZE]; /* uncompressed buffer */ 1159 unsigned char cmp[CMP_SIZE]; /* compressed buffer */ 1160 }; 1161 1162 /* 1163 * Decompression function that runs in its own thread. 1164 */ 1165 static int decompress_threadfn(void *data) 1166 { 1167 struct dec_data *d = data; 1168 unsigned int unc_len = 0; 1169 1170 while (1) { 1171 wait_event(d->go, atomic_read_acquire(&d->ready) || 1172 kthread_should_stop()); 1173 if (kthread_should_stop()) { 1174 d->thr = NULL; 1175 d->ret = -1; 1176 atomic_set_release(&d->stop, 1); 1177 wake_up(&d->done); 1178 break; 1179 } 1180 atomic_set(&d->ready, 0); 1181 1182 unc_len = UNC_SIZE; 1183 d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len, 1184 d->unc, &unc_len); 1185 d->unc_len = unc_len; 1186 1187 if (clean_pages_on_decompress) 1188 flush_icache_range((unsigned long)d->unc, 1189 (unsigned long)d->unc + d->unc_len); 1190 1191 atomic_set_release(&d->stop, 1); 1192 wake_up(&d->done); 1193 } 1194 return 0; 1195 } 1196 1197 /** 1198 * load_compressed_image - Load compressed image data and decompress it. 1199 * @handle: Swap map handle to use for loading data. 1200 * @snapshot: Image to copy uncompressed data into. 1201 * @nr_to_read: Number of pages to load. 1202 */ 1203 static int load_compressed_image(struct swap_map_handle *handle, 1204 struct snapshot_handle *snapshot, 1205 unsigned int nr_to_read) 1206 { 1207 unsigned int m; 1208 int ret = 0; 1209 int eof = 0; 1210 struct hib_bio_batch hb; 1211 ktime_t start; 1212 ktime_t stop; 1213 unsigned nr_pages; 1214 size_t off; 1215 unsigned i, thr, run_threads, nr_threads; 1216 unsigned ring = 0, pg = 0, ring_size = 0, 1217 have = 0, want, need, asked = 0; 1218 unsigned long read_pages = 0; 1219 unsigned char **page = NULL; 1220 struct dec_data *data = NULL; 1221 struct crc_data *crc = NULL; 1222 1223 hib_init_batch(&hb); 1224 1225 /* 1226 * We'll limit the number of threads for decompression to limit memory 1227 * footprint. 1228 */ 1229 nr_threads = num_online_cpus() - 1; 1230 nr_threads = clamp_val(nr_threads, 1, CMP_THREADS); 1231 1232 page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page))); 1233 if (!page) { 1234 pr_err("Failed to allocate %s page\n", hib_comp_algo); 1235 ret = -ENOMEM; 1236 goto out_clean; 1237 } 1238 1239 data = vzalloc(array_size(nr_threads, sizeof(*data))); 1240 if (!data) { 1241 pr_err("Failed to allocate %s data\n", hib_comp_algo); 1242 ret = -ENOMEM; 1243 goto out_clean; 1244 } 1245 1246 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 1247 if (!crc) { 1248 pr_err("Failed to allocate crc\n"); 1249 ret = -ENOMEM; 1250 goto out_clean; 1251 } 1252 1253 clean_pages_on_decompress = true; 1254 1255 /* 1256 * Start the decompression threads. 1257 */ 1258 for (thr = 0; thr < nr_threads; thr++) { 1259 init_waitqueue_head(&data[thr].go); 1260 init_waitqueue_head(&data[thr].done); 1261 1262 data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0); 1263 if (IS_ERR_OR_NULL(data[thr].cc)) { 1264 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc)); 1265 ret = -EFAULT; 1266 goto out_clean; 1267 } 1268 1269 data[thr].thr = kthread_run(decompress_threadfn, 1270 &data[thr], 1271 "image_decompress/%u", thr); 1272 if (IS_ERR(data[thr].thr)) { 1273 data[thr].thr = NULL; 1274 pr_err("Cannot start decompression threads\n"); 1275 ret = -ENOMEM; 1276 goto out_clean; 1277 } 1278 } 1279 1280 /* 1281 * Start the CRC32 thread. 1282 */ 1283 init_waitqueue_head(&crc->go); 1284 init_waitqueue_head(&crc->done); 1285 1286 handle->crc32 = 0; 1287 crc->crc32 = &handle->crc32; 1288 for (thr = 0; thr < nr_threads; thr++) { 1289 crc->unc[thr] = data[thr].unc; 1290 crc->unc_len[thr] = &data[thr].unc_len; 1291 } 1292 1293 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1294 if (IS_ERR(crc->thr)) { 1295 crc->thr = NULL; 1296 pr_err("Cannot start CRC32 thread\n"); 1297 ret = -ENOMEM; 1298 goto out_clean; 1299 } 1300 1301 /* 1302 * Set the number of pages for read buffering. 1303 * This is complete guesswork, because we'll only know the real 1304 * picture once prepare_image() is called, which is much later on 1305 * during the image load phase. We'll assume the worst case and 1306 * say that none of the image pages are from high memory. 1307 */ 1308 if (low_free_pages() > snapshot_get_image_size()) 1309 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1310 read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES); 1311 1312 for (i = 0; i < read_pages; i++) { 1313 page[i] = (void *)__get_free_page(i < CMP_PAGES ? 1314 GFP_NOIO | __GFP_HIGH : 1315 GFP_NOIO | __GFP_NOWARN | 1316 __GFP_NORETRY); 1317 1318 if (!page[i]) { 1319 if (i < CMP_PAGES) { 1320 ring_size = i; 1321 pr_err("Failed to allocate %s pages\n", hib_comp_algo); 1322 ret = -ENOMEM; 1323 goto out_clean; 1324 } else { 1325 break; 1326 } 1327 } 1328 } 1329 want = ring_size = i; 1330 1331 pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo); 1332 pr_info("Loading and decompressing image data (%u pages)...\n", 1333 nr_to_read); 1334 m = nr_to_read / 10; 1335 if (!m) 1336 m = 1; 1337 nr_pages = 0; 1338 start = ktime_get(); 1339 1340 ret = snapshot_write_next(snapshot); 1341 if (ret <= 0) 1342 goto out_finish; 1343 1344 for(;;) { 1345 for (i = 0; !eof && i < want; i++) { 1346 ret = swap_read_page(handle, page[ring], &hb); 1347 if (ret) { 1348 /* 1349 * On real read error, finish. On end of data, 1350 * set EOF flag and just exit the read loop. 1351 */ 1352 if (handle->cur && 1353 handle->cur->entries[handle->k]) { 1354 goto out_finish; 1355 } else { 1356 eof = 1; 1357 break; 1358 } 1359 } 1360 if (++ring >= ring_size) 1361 ring = 0; 1362 } 1363 asked += i; 1364 want -= i; 1365 1366 /* 1367 * We are out of data, wait for some more. 1368 */ 1369 if (!have) { 1370 if (!asked) 1371 break; 1372 1373 ret = hib_wait_io(&hb); 1374 if (ret) 1375 goto out_finish; 1376 have += asked; 1377 asked = 0; 1378 if (eof) 1379 eof = 2; 1380 } 1381 1382 if (crc->run_threads) { 1383 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1384 atomic_set(&crc->stop, 0); 1385 crc->run_threads = 0; 1386 } 1387 1388 for (thr = 0; have && thr < nr_threads; thr++) { 1389 data[thr].cmp_len = *(size_t *)page[pg]; 1390 if (unlikely(!data[thr].cmp_len || 1391 data[thr].cmp_len > 1392 bytes_worst_compress(UNC_SIZE))) { 1393 pr_err("Invalid %s compressed length\n", hib_comp_algo); 1394 ret = -1; 1395 goto out_finish; 1396 } 1397 1398 need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER, 1399 PAGE_SIZE); 1400 if (need > have) { 1401 if (eof > 1) { 1402 ret = -1; 1403 goto out_finish; 1404 } 1405 break; 1406 } 1407 1408 for (off = 0; 1409 off < CMP_HEADER + data[thr].cmp_len; 1410 off += PAGE_SIZE) { 1411 memcpy(data[thr].cmp + off, 1412 page[pg], PAGE_SIZE); 1413 have--; 1414 want++; 1415 if (++pg >= ring_size) 1416 pg = 0; 1417 } 1418 1419 atomic_set_release(&data[thr].ready, 1); 1420 wake_up(&data[thr].go); 1421 } 1422 1423 /* 1424 * Wait for more data while we are decompressing. 1425 */ 1426 if (have < CMP_PAGES && asked) { 1427 ret = hib_wait_io(&hb); 1428 if (ret) 1429 goto out_finish; 1430 have += asked; 1431 asked = 0; 1432 if (eof) 1433 eof = 2; 1434 } 1435 1436 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1437 wait_event(data[thr].done, 1438 atomic_read_acquire(&data[thr].stop)); 1439 atomic_set(&data[thr].stop, 0); 1440 1441 ret = data[thr].ret; 1442 1443 if (ret < 0) { 1444 pr_err("%s decompression failed\n", hib_comp_algo); 1445 goto out_finish; 1446 } 1447 1448 if (unlikely(!data[thr].unc_len || 1449 data[thr].unc_len > UNC_SIZE || 1450 data[thr].unc_len & (PAGE_SIZE - 1))) { 1451 pr_err("Invalid %s uncompressed length\n", hib_comp_algo); 1452 ret = -1; 1453 goto out_finish; 1454 } 1455 1456 for (off = 0; 1457 off < data[thr].unc_len; off += PAGE_SIZE) { 1458 memcpy(data_of(*snapshot), 1459 data[thr].unc + off, PAGE_SIZE); 1460 1461 if (!(nr_pages % m)) 1462 pr_info("Image loading progress: %3d%%\n", 1463 nr_pages / m * 10); 1464 nr_pages++; 1465 1466 ret = snapshot_write_next(snapshot); 1467 if (ret <= 0) { 1468 crc->run_threads = thr + 1; 1469 atomic_set_release(&crc->ready, 1); 1470 wake_up(&crc->go); 1471 goto out_finish; 1472 } 1473 } 1474 } 1475 1476 crc->run_threads = thr; 1477 atomic_set_release(&crc->ready, 1); 1478 wake_up(&crc->go); 1479 } 1480 1481 out_finish: 1482 if (crc->run_threads) { 1483 wait_event(crc->done, atomic_read_acquire(&crc->stop)); 1484 atomic_set(&crc->stop, 0); 1485 } 1486 stop = ktime_get(); 1487 if (!ret) { 1488 pr_info("Image loading done\n"); 1489 ret = snapshot_write_finalize(snapshot); 1490 if (!ret && !snapshot_image_loaded(snapshot)) 1491 ret = -ENODATA; 1492 if (!ret) { 1493 if (swsusp_header->flags & SF_CRC32_MODE) { 1494 if(handle->crc32 != swsusp_header->crc32) { 1495 pr_err("Invalid image CRC32!\n"); 1496 ret = -ENODATA; 1497 } 1498 } 1499 } 1500 } 1501 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1502 out_clean: 1503 hib_finish_batch(&hb); 1504 for (i = 0; i < ring_size; i++) 1505 free_page((unsigned long)page[i]); 1506 if (crc) { 1507 if (crc->thr) 1508 kthread_stop(crc->thr); 1509 kfree(crc); 1510 } 1511 if (data) { 1512 for (thr = 0; thr < nr_threads; thr++) { 1513 if (data[thr].thr) 1514 kthread_stop(data[thr].thr); 1515 if (data[thr].cc) 1516 crypto_free_comp(data[thr].cc); 1517 } 1518 vfree(data); 1519 } 1520 vfree(page); 1521 1522 return ret; 1523 } 1524 1525 /** 1526 * swsusp_read - read the hibernation image. 1527 * @flags_p: flags passed by the "frozen" kernel in the image header should 1528 * be written into this memory location 1529 */ 1530 1531 int swsusp_read(unsigned int *flags_p) 1532 { 1533 int error; 1534 struct swap_map_handle handle; 1535 struct snapshot_handle snapshot; 1536 struct swsusp_info *header; 1537 1538 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1539 error = snapshot_write_next(&snapshot); 1540 if (error < (int)PAGE_SIZE) 1541 return error < 0 ? error : -EFAULT; 1542 header = (struct swsusp_info *)data_of(snapshot); 1543 error = get_swap_reader(&handle, flags_p); 1544 if (error) 1545 goto end; 1546 if (!error) 1547 error = swap_read_page(&handle, header, NULL); 1548 if (!error) { 1549 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1550 load_image(&handle, &snapshot, header->pages - 1) : 1551 load_compressed_image(&handle, &snapshot, header->pages - 1); 1552 } 1553 swap_reader_finish(&handle); 1554 end: 1555 if (!error) 1556 pr_debug("Image successfully loaded\n"); 1557 else 1558 pr_debug("Error %d resuming\n", error); 1559 return error; 1560 } 1561 1562 static void *swsusp_holder; 1563 1564 /** 1565 * swsusp_check - Open the resume device and check for the swsusp signature. 1566 * @exclusive: Open the resume device exclusively. 1567 */ 1568 1569 int swsusp_check(bool exclusive) 1570 { 1571 void *holder = exclusive ? &swsusp_holder : NULL; 1572 int error; 1573 1574 hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device, 1575 BLK_OPEN_READ, holder, NULL); 1576 if (!IS_ERR(hib_resume_bdev_file)) { 1577 set_blocksize(file_bdev(hib_resume_bdev_file), PAGE_SIZE); 1578 clear_page(swsusp_header); 1579 error = hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1580 swsusp_header, NULL); 1581 if (error) 1582 goto put; 1583 1584 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1585 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1586 swsusp_header_flags = swsusp_header->flags; 1587 /* Reset swap signature now */ 1588 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1589 swsusp_resume_block, 1590 swsusp_header, NULL); 1591 } else { 1592 error = -EINVAL; 1593 } 1594 if (!error && swsusp_header->flags & SF_HW_SIG && 1595 swsusp_header->hw_sig != swsusp_hardware_signature) { 1596 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n", 1597 swsusp_header->hw_sig, swsusp_hardware_signature); 1598 error = -EINVAL; 1599 } 1600 1601 put: 1602 if (error) 1603 fput(hib_resume_bdev_file); 1604 else 1605 pr_debug("Image signature found, resuming\n"); 1606 } else { 1607 error = PTR_ERR(hib_resume_bdev_file); 1608 } 1609 1610 if (error) 1611 pr_debug("Image not found (code %d)\n", error); 1612 1613 return error; 1614 } 1615 1616 /** 1617 * swsusp_close - close resume device. 1618 */ 1619 1620 void swsusp_close(void) 1621 { 1622 if (IS_ERR(hib_resume_bdev_file)) { 1623 pr_debug("Image device not initialised\n"); 1624 return; 1625 } 1626 1627 fput(hib_resume_bdev_file); 1628 } 1629 1630 /** 1631 * swsusp_unmark - Unmark swsusp signature in the resume device 1632 */ 1633 1634 #ifdef CONFIG_SUSPEND 1635 int swsusp_unmark(void) 1636 { 1637 int error; 1638 1639 hib_submit_io(REQ_OP_READ, swsusp_resume_block, 1640 swsusp_header, NULL); 1641 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1642 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1643 error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC, 1644 swsusp_resume_block, 1645 swsusp_header, NULL); 1646 } else { 1647 pr_err("Cannot find swsusp signature!\n"); 1648 error = -ENODEV; 1649 } 1650 1651 /* 1652 * We just returned from suspend, we don't need the image any more. 1653 */ 1654 free_all_swap_pages(root_swap); 1655 1656 return error; 1657 } 1658 #endif 1659 1660 static int __init swsusp_header_init(void) 1661 { 1662 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1663 if (!swsusp_header) 1664 panic("Could not allocate memory for swsusp_header\n"); 1665 return 0; 1666 } 1667 1668 core_initcall(swsusp_header_init); 1669