xref: /linux/kernel/power/swap.c (revision a1944676767e855869b6af8e1c7e185372feaf31)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <linux/cpumask.h>
28 #include <linux/atomic.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/ktime.h>
32 
33 #include "power.h"
34 
35 #define HIBERNATE_SIG	"S1SUSPEND"
36 
37 u32 swsusp_hardware_signature;
38 
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46 
47 /*
48  *	The swap map is a data structure used for keeping track of each page
49  *	written to a swap partition.  It consists of many swap_map_page
50  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *	These structures are stored on the swap and linked together with the
52  *	help of the .next_swap member.
53  *
54  *	The swap map is created during suspend.  The swap map pages are
55  *	allocated and populated one at a time, so we only need one memory
56  *	page to set up the entire structure.
57  *
58  *	During resume we pick up all swap_map_page structures into a list.
59  */
60 
61 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
62 
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68 	return nr_free_pages() - nr_free_highpages();
69 }
70 
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77 	return low_free_pages() / 2;
78 }
79 
80 struct swap_map_page {
81 	sector_t entries[MAP_PAGE_ENTRIES];
82 	sector_t next_swap;
83 };
84 
85 struct swap_map_page_list {
86 	struct swap_map_page *map;
87 	struct swap_map_page_list *next;
88 };
89 
90 /*
91  *	The swap_map_handle structure is used for handling swap in
92  *	a file-alike way
93  */
94 
95 struct swap_map_handle {
96 	struct swap_map_page *cur;
97 	struct swap_map_page_list *maps;
98 	sector_t cur_swap;
99 	sector_t first_sector;
100 	unsigned int k;
101 	unsigned long reqd_free_pages;
102 	u32 crc32;
103 };
104 
105 struct swsusp_header {
106 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107 	              sizeof(u32) - sizeof(u32)];
108 	u32	hw_sig;
109 	u32	crc32;
110 	sector_t image;
111 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
112 	char	orig_sig[10];
113 	char	sig[10];
114 } __packed;
115 
116 static struct swsusp_header *swsusp_header;
117 
118 /*
119  *	The following functions are used for tracing the allocated
120  *	swap pages, so that they can be freed in case of an error.
121  */
122 
123 struct swsusp_extent {
124 	struct rb_node node;
125 	unsigned long start;
126 	unsigned long end;
127 };
128 
129 static struct rb_root swsusp_extents = RB_ROOT;
130 
131 static int swsusp_extents_insert(unsigned long swap_offset)
132 {
133 	struct rb_node **new = &(swsusp_extents.rb_node);
134 	struct rb_node *parent = NULL;
135 	struct swsusp_extent *ext;
136 
137 	/* Figure out where to put the new node */
138 	while (*new) {
139 		ext = rb_entry(*new, struct swsusp_extent, node);
140 		parent = *new;
141 		if (swap_offset < ext->start) {
142 			/* Try to merge */
143 			if (swap_offset == ext->start - 1) {
144 				ext->start--;
145 				return 0;
146 			}
147 			new = &((*new)->rb_left);
148 		} else if (swap_offset > ext->end) {
149 			/* Try to merge */
150 			if (swap_offset == ext->end + 1) {
151 				ext->end++;
152 				return 0;
153 			}
154 			new = &((*new)->rb_right);
155 		} else {
156 			/* It already is in the tree */
157 			return -EINVAL;
158 		}
159 	}
160 	/* Add the new node and rebalance the tree. */
161 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
162 	if (!ext)
163 		return -ENOMEM;
164 
165 	ext->start = swap_offset;
166 	ext->end = swap_offset;
167 	rb_link_node(&ext->node, parent, new);
168 	rb_insert_color(&ext->node, &swsusp_extents);
169 	return 0;
170 }
171 
172 /*
173  *	alloc_swapdev_block - allocate a swap page and register that it has
174  *	been allocated, so that it can be freed in case of an error.
175  */
176 
177 sector_t alloc_swapdev_block(int swap)
178 {
179 	unsigned long offset;
180 
181 	offset = swp_offset(get_swap_page_of_type(swap));
182 	if (offset) {
183 		if (swsusp_extents_insert(offset))
184 			swap_free(swp_entry(swap, offset));
185 		else
186 			return swapdev_block(swap, offset);
187 	}
188 	return 0;
189 }
190 
191 /*
192  *	free_all_swap_pages - free swap pages allocated for saving image data.
193  *	It also frees the extents used to register which swap entries had been
194  *	allocated.
195  */
196 
197 void free_all_swap_pages(int swap)
198 {
199 	struct rb_node *node;
200 
201 	while ((node = swsusp_extents.rb_node)) {
202 		struct swsusp_extent *ext;
203 		unsigned long offset;
204 
205 		ext = rb_entry(node, struct swsusp_extent, node);
206 		rb_erase(node, &swsusp_extents);
207 		for (offset = ext->start; offset <= ext->end; offset++)
208 			swap_free(swp_entry(swap, offset));
209 
210 		kfree(ext);
211 	}
212 }
213 
214 int swsusp_swap_in_use(void)
215 {
216 	return (swsusp_extents.rb_node != NULL);
217 }
218 
219 /*
220  * General things
221  */
222 
223 static unsigned short root_swap = 0xffff;
224 static struct file *hib_resume_bdev_file;
225 
226 struct hib_bio_batch {
227 	atomic_t		count;
228 	wait_queue_head_t	wait;
229 	blk_status_t		error;
230 	struct blk_plug		plug;
231 };
232 
233 static void hib_init_batch(struct hib_bio_batch *hb)
234 {
235 	atomic_set(&hb->count, 0);
236 	init_waitqueue_head(&hb->wait);
237 	hb->error = BLK_STS_OK;
238 	blk_start_plug(&hb->plug);
239 }
240 
241 static void hib_finish_batch(struct hib_bio_batch *hb)
242 {
243 	blk_finish_plug(&hb->plug);
244 }
245 
246 static void hib_end_io(struct bio *bio)
247 {
248 	struct hib_bio_batch *hb = bio->bi_private;
249 	struct page *page = bio_first_page_all(bio);
250 
251 	if (bio->bi_status) {
252 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
253 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
254 			 (unsigned long long)bio->bi_iter.bi_sector);
255 	}
256 
257 	if (bio_data_dir(bio) == WRITE)
258 		put_page(page);
259 	else if (clean_pages_on_read)
260 		flush_icache_range((unsigned long)page_address(page),
261 				   (unsigned long)page_address(page) + PAGE_SIZE);
262 
263 	if (bio->bi_status && !hb->error)
264 		hb->error = bio->bi_status;
265 	if (atomic_dec_and_test(&hb->count))
266 		wake_up(&hb->wait);
267 
268 	bio_put(bio);
269 }
270 
271 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
272 			 struct hib_bio_batch *hb)
273 {
274 	struct page *page = virt_to_page(addr);
275 	struct bio *bio;
276 	int error = 0;
277 
278 	bio = bio_alloc(file_bdev(hib_resume_bdev_file), 1, opf,
279 			GFP_NOIO | __GFP_HIGH);
280 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
281 
282 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
283 		pr_err("Adding page to bio failed at %llu\n",
284 		       (unsigned long long)bio->bi_iter.bi_sector);
285 		bio_put(bio);
286 		return -EFAULT;
287 	}
288 
289 	if (hb) {
290 		bio->bi_end_io = hib_end_io;
291 		bio->bi_private = hb;
292 		atomic_inc(&hb->count);
293 		submit_bio(bio);
294 	} else {
295 		error = submit_bio_wait(bio);
296 		bio_put(bio);
297 	}
298 
299 	return error;
300 }
301 
302 static int hib_wait_io(struct hib_bio_batch *hb)
303 {
304 	/*
305 	 * We are relying on the behavior of blk_plug that a thread with
306 	 * a plug will flush the plug list before sleeping.
307 	 */
308 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
309 	return blk_status_to_errno(hb->error);
310 }
311 
312 /*
313  * Saving part
314  */
315 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
316 {
317 	int error;
318 
319 	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
320 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
321 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
322 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
323 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
324 		swsusp_header->image = handle->first_sector;
325 		if (swsusp_hardware_signature) {
326 			swsusp_header->hw_sig = swsusp_hardware_signature;
327 			flags |= SF_HW_SIG;
328 		}
329 		swsusp_header->flags = flags;
330 		if (flags & SF_CRC32_MODE)
331 			swsusp_header->crc32 = handle->crc32;
332 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
333 				      swsusp_resume_block, swsusp_header, NULL);
334 	} else {
335 		pr_err("Swap header not found!\n");
336 		error = -ENODEV;
337 	}
338 	return error;
339 }
340 
341 /*
342  * Hold the swsusp_header flag. This is used in software_resume() in
343  * 'kernel/power/hibernate' to check if the image is compressed and query
344  * for the compression algorithm support(if so).
345  */
346 unsigned int swsusp_header_flags;
347 
348 /**
349  *	swsusp_swap_check - check if the resume device is a swap device
350  *	and get its index (if so)
351  *
352  *	This is called before saving image
353  */
354 static int swsusp_swap_check(void)
355 {
356 	int res;
357 
358 	if (swsusp_resume_device)
359 		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
360 	else
361 		res = find_first_swap(&swsusp_resume_device);
362 	if (res < 0)
363 		return res;
364 	root_swap = res;
365 
366 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
367 			BLK_OPEN_WRITE, NULL, NULL);
368 	if (IS_ERR(hib_resume_bdev_file))
369 		return PTR_ERR(hib_resume_bdev_file);
370 
371 	return 0;
372 }
373 
374 /**
375  *	write_page - Write one page to given swap location.
376  *	@buf:		Address we're writing.
377  *	@offset:	Offset of the swap page we're writing to.
378  *	@hb:		bio completion batch
379  */
380 
381 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
382 {
383 	void *src;
384 	int ret;
385 
386 	if (!offset)
387 		return -ENOSPC;
388 
389 	if (hb) {
390 		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
391 		                              __GFP_NORETRY);
392 		if (src) {
393 			copy_page(src, buf);
394 		} else {
395 			ret = hib_wait_io(hb); /* Free pages */
396 			if (ret)
397 				return ret;
398 			src = (void *)__get_free_page(GFP_NOIO |
399 			                              __GFP_NOWARN |
400 			                              __GFP_NORETRY);
401 			if (src) {
402 				copy_page(src, buf);
403 			} else {
404 				WARN_ON_ONCE(1);
405 				hb = NULL;	/* Go synchronous */
406 				src = buf;
407 			}
408 		}
409 	} else {
410 		src = buf;
411 	}
412 	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
413 }
414 
415 static void release_swap_writer(struct swap_map_handle *handle)
416 {
417 	if (handle->cur)
418 		free_page((unsigned long)handle->cur);
419 	handle->cur = NULL;
420 }
421 
422 static int get_swap_writer(struct swap_map_handle *handle)
423 {
424 	int ret;
425 
426 	ret = swsusp_swap_check();
427 	if (ret) {
428 		if (ret != -ENOSPC)
429 			pr_err("Cannot find swap device, try swapon -a\n");
430 		return ret;
431 	}
432 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
433 	if (!handle->cur) {
434 		ret = -ENOMEM;
435 		goto err_close;
436 	}
437 	handle->cur_swap = alloc_swapdev_block(root_swap);
438 	if (!handle->cur_swap) {
439 		ret = -ENOSPC;
440 		goto err_rel;
441 	}
442 	handle->k = 0;
443 	handle->reqd_free_pages = reqd_free_pages();
444 	handle->first_sector = handle->cur_swap;
445 	return 0;
446 err_rel:
447 	release_swap_writer(handle);
448 err_close:
449 	swsusp_close();
450 	return ret;
451 }
452 
453 static int swap_write_page(struct swap_map_handle *handle, void *buf,
454 		struct hib_bio_batch *hb)
455 {
456 	int error;
457 	sector_t offset;
458 
459 	if (!handle->cur)
460 		return -EINVAL;
461 	offset = alloc_swapdev_block(root_swap);
462 	error = write_page(buf, offset, hb);
463 	if (error)
464 		return error;
465 	handle->cur->entries[handle->k++] = offset;
466 	if (handle->k >= MAP_PAGE_ENTRIES) {
467 		offset = alloc_swapdev_block(root_swap);
468 		if (!offset)
469 			return -ENOSPC;
470 		handle->cur->next_swap = offset;
471 		error = write_page(handle->cur, handle->cur_swap, hb);
472 		if (error)
473 			goto out;
474 		clear_page(handle->cur);
475 		handle->cur_swap = offset;
476 		handle->k = 0;
477 
478 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
479 			error = hib_wait_io(hb);
480 			if (error)
481 				goto out;
482 			/*
483 			 * Recalculate the number of required free pages, to
484 			 * make sure we never take more than half.
485 			 */
486 			handle->reqd_free_pages = reqd_free_pages();
487 		}
488 	}
489  out:
490 	return error;
491 }
492 
493 static int flush_swap_writer(struct swap_map_handle *handle)
494 {
495 	if (handle->cur && handle->cur_swap)
496 		return write_page(handle->cur, handle->cur_swap, NULL);
497 	else
498 		return -EINVAL;
499 }
500 
501 static int swap_writer_finish(struct swap_map_handle *handle,
502 		unsigned int flags, int error)
503 {
504 	if (!error) {
505 		pr_info("S");
506 		error = mark_swapfiles(handle, flags);
507 		pr_cont("|\n");
508 		flush_swap_writer(handle);
509 	}
510 
511 	if (error)
512 		free_all_swap_pages(root_swap);
513 	release_swap_writer(handle);
514 	swsusp_close();
515 
516 	return error;
517 }
518 
519 /*
520  * Bytes we need for compressed data in worst case. We assume(limitation)
521  * this is the worst of all the compression algorithms.
522  */
523 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
524 
525 /* We need to remember how much compressed data we need to read. */
526 #define CMP_HEADER	sizeof(size_t)
527 
528 /* Number of pages/bytes we'll compress at one time. */
529 #define UNC_PAGES	32
530 #define UNC_SIZE	(UNC_PAGES * PAGE_SIZE)
531 
532 /* Number of pages we need for compressed data (worst case). */
533 #define CMP_PAGES	DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
534 				CMP_HEADER, PAGE_SIZE)
535 #define CMP_SIZE	(CMP_PAGES * PAGE_SIZE)
536 
537 /* Maximum number of threads for compression/decompression. */
538 #define CMP_THREADS	3
539 
540 /* Minimum/maximum number of pages for read buffering. */
541 #define CMP_MIN_RD_PAGES	1024
542 #define CMP_MAX_RD_PAGES	8192
543 
544 /**
545  *	save_image - save the suspend image data
546  */
547 
548 static int save_image(struct swap_map_handle *handle,
549                       struct snapshot_handle *snapshot,
550                       unsigned int nr_to_write)
551 {
552 	unsigned int m;
553 	int ret;
554 	int nr_pages;
555 	int err2;
556 	struct hib_bio_batch hb;
557 	ktime_t start;
558 	ktime_t stop;
559 
560 	hib_init_batch(&hb);
561 
562 	pr_info("Saving image data pages (%u pages)...\n",
563 		nr_to_write);
564 	m = nr_to_write / 10;
565 	if (!m)
566 		m = 1;
567 	nr_pages = 0;
568 	start = ktime_get();
569 	while (1) {
570 		ret = snapshot_read_next(snapshot);
571 		if (ret <= 0)
572 			break;
573 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
574 		if (ret)
575 			break;
576 		if (!(nr_pages % m))
577 			pr_info("Image saving progress: %3d%%\n",
578 				nr_pages / m * 10);
579 		nr_pages++;
580 	}
581 	err2 = hib_wait_io(&hb);
582 	hib_finish_batch(&hb);
583 	stop = ktime_get();
584 	if (!ret)
585 		ret = err2;
586 	if (!ret)
587 		pr_info("Image saving done\n");
588 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
589 	return ret;
590 }
591 
592 /*
593  * Structure used for CRC32.
594  */
595 struct crc_data {
596 	struct task_struct *thr;                  /* thread */
597 	atomic_t ready;                           /* ready to start flag */
598 	atomic_t stop;                            /* ready to stop flag */
599 	unsigned run_threads;                     /* nr current threads */
600 	wait_queue_head_t go;                     /* start crc update */
601 	wait_queue_head_t done;                   /* crc update done */
602 	u32 *crc32;                               /* points to handle's crc32 */
603 	size_t *unc_len[CMP_THREADS];             /* uncompressed lengths */
604 	unsigned char *unc[CMP_THREADS];          /* uncompressed data */
605 };
606 
607 /*
608  * CRC32 update function that runs in its own thread.
609  */
610 static int crc32_threadfn(void *data)
611 {
612 	struct crc_data *d = data;
613 	unsigned i;
614 
615 	while (1) {
616 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
617 		                  kthread_should_stop());
618 		if (kthread_should_stop()) {
619 			d->thr = NULL;
620 			atomic_set_release(&d->stop, 1);
621 			wake_up(&d->done);
622 			break;
623 		}
624 		atomic_set(&d->ready, 0);
625 
626 		for (i = 0; i < d->run_threads; i++)
627 			*d->crc32 = crc32_le(*d->crc32,
628 			                     d->unc[i], *d->unc_len[i]);
629 		atomic_set_release(&d->stop, 1);
630 		wake_up(&d->done);
631 	}
632 	return 0;
633 }
634 /*
635  * Structure used for data compression.
636  */
637 struct cmp_data {
638 	struct task_struct *thr;                  /* thread */
639 	struct crypto_comp *cc;                   /* crypto compressor stream */
640 	atomic_t ready;                           /* ready to start flag */
641 	atomic_t stop;                            /* ready to stop flag */
642 	int ret;                                  /* return code */
643 	wait_queue_head_t go;                     /* start compression */
644 	wait_queue_head_t done;                   /* compression done */
645 	size_t unc_len;                           /* uncompressed length */
646 	size_t cmp_len;                           /* compressed length */
647 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
648 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
649 };
650 
651 /* Indicates the image size after compression */
652 static atomic_t compressed_size = ATOMIC_INIT(0);
653 
654 /*
655  * Compression function that runs in its own thread.
656  */
657 static int compress_threadfn(void *data)
658 {
659 	struct cmp_data *d = data;
660 	unsigned int cmp_len = 0;
661 
662 	while (1) {
663 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
664 		                  kthread_should_stop());
665 		if (kthread_should_stop()) {
666 			d->thr = NULL;
667 			d->ret = -1;
668 			atomic_set_release(&d->stop, 1);
669 			wake_up(&d->done);
670 			break;
671 		}
672 		atomic_set(&d->ready, 0);
673 
674 		cmp_len = CMP_SIZE - CMP_HEADER;
675 		d->ret = crypto_comp_compress(d->cc, d->unc, d->unc_len,
676 					      d->cmp + CMP_HEADER,
677 					      &cmp_len);
678 		d->cmp_len = cmp_len;
679 
680 		atomic_set(&compressed_size, atomic_read(&compressed_size) + d->cmp_len);
681 		atomic_set_release(&d->stop, 1);
682 		wake_up(&d->done);
683 	}
684 	return 0;
685 }
686 
687 /**
688  * save_compressed_image - Save the suspend image data after compression.
689  * @handle: Swap map handle to use for saving the image.
690  * @snapshot: Image to read data from.
691  * @nr_to_write: Number of pages to save.
692  */
693 static int save_compressed_image(struct swap_map_handle *handle,
694 				 struct snapshot_handle *snapshot,
695 				 unsigned int nr_to_write)
696 {
697 	unsigned int m;
698 	int ret = 0;
699 	int nr_pages;
700 	int err2;
701 	struct hib_bio_batch hb;
702 	ktime_t start;
703 	ktime_t stop;
704 	size_t off;
705 	unsigned thr, run_threads, nr_threads;
706 	unsigned char *page = NULL;
707 	struct cmp_data *data = NULL;
708 	struct crc_data *crc = NULL;
709 
710 	hib_init_batch(&hb);
711 
712 	atomic_set(&compressed_size, 0);
713 
714 	/*
715 	 * We'll limit the number of threads for compression to limit memory
716 	 * footprint.
717 	 */
718 	nr_threads = num_online_cpus() - 1;
719 	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
720 
721 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
722 	if (!page) {
723 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
724 		ret = -ENOMEM;
725 		goto out_clean;
726 	}
727 
728 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
729 	if (!data) {
730 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
731 		ret = -ENOMEM;
732 		goto out_clean;
733 	}
734 
735 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
736 	if (!crc) {
737 		pr_err("Failed to allocate crc\n");
738 		ret = -ENOMEM;
739 		goto out_clean;
740 	}
741 
742 	/*
743 	 * Start the compression threads.
744 	 */
745 	for (thr = 0; thr < nr_threads; thr++) {
746 		init_waitqueue_head(&data[thr].go);
747 		init_waitqueue_head(&data[thr].done);
748 
749 		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
750 		if (IS_ERR_OR_NULL(data[thr].cc)) {
751 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
752 			ret = -EFAULT;
753 			goto out_clean;
754 		}
755 
756 		data[thr].thr = kthread_run(compress_threadfn,
757 		                            &data[thr],
758 		                            "image_compress/%u", thr);
759 		if (IS_ERR(data[thr].thr)) {
760 			data[thr].thr = NULL;
761 			pr_err("Cannot start compression threads\n");
762 			ret = -ENOMEM;
763 			goto out_clean;
764 		}
765 	}
766 
767 	/*
768 	 * Start the CRC32 thread.
769 	 */
770 	init_waitqueue_head(&crc->go);
771 	init_waitqueue_head(&crc->done);
772 
773 	handle->crc32 = 0;
774 	crc->crc32 = &handle->crc32;
775 	for (thr = 0; thr < nr_threads; thr++) {
776 		crc->unc[thr] = data[thr].unc;
777 		crc->unc_len[thr] = &data[thr].unc_len;
778 	}
779 
780 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
781 	if (IS_ERR(crc->thr)) {
782 		crc->thr = NULL;
783 		pr_err("Cannot start CRC32 thread\n");
784 		ret = -ENOMEM;
785 		goto out_clean;
786 	}
787 
788 	/*
789 	 * Adjust the number of required free pages after all allocations have
790 	 * been done. We don't want to run out of pages when writing.
791 	 */
792 	handle->reqd_free_pages = reqd_free_pages();
793 
794 	pr_info("Using %u thread(s) for %s compression\n", nr_threads, hib_comp_algo);
795 	pr_info("Compressing and saving image data (%u pages)...\n",
796 		nr_to_write);
797 	m = nr_to_write / 10;
798 	if (!m)
799 		m = 1;
800 	nr_pages = 0;
801 	start = ktime_get();
802 	for (;;) {
803 		for (thr = 0; thr < nr_threads; thr++) {
804 			for (off = 0; off < UNC_SIZE; off += PAGE_SIZE) {
805 				ret = snapshot_read_next(snapshot);
806 				if (ret < 0)
807 					goto out_finish;
808 
809 				if (!ret)
810 					break;
811 
812 				memcpy(data[thr].unc + off,
813 				       data_of(*snapshot), PAGE_SIZE);
814 
815 				if (!(nr_pages % m))
816 					pr_info("Image saving progress: %3d%%\n",
817 						nr_pages / m * 10);
818 				nr_pages++;
819 			}
820 			if (!off)
821 				break;
822 
823 			data[thr].unc_len = off;
824 
825 			atomic_set_release(&data[thr].ready, 1);
826 			wake_up(&data[thr].go);
827 		}
828 
829 		if (!thr)
830 			break;
831 
832 		crc->run_threads = thr;
833 		atomic_set_release(&crc->ready, 1);
834 		wake_up(&crc->go);
835 
836 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
837 			wait_event(data[thr].done,
838 				atomic_read_acquire(&data[thr].stop));
839 			atomic_set(&data[thr].stop, 0);
840 
841 			ret = data[thr].ret;
842 
843 			if (ret < 0) {
844 				pr_err("%s compression failed\n", hib_comp_algo);
845 				goto out_finish;
846 			}
847 
848 			if (unlikely(!data[thr].cmp_len ||
849 			             data[thr].cmp_len >
850 				     bytes_worst_compress(data[thr].unc_len))) {
851 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
852 				ret = -1;
853 				goto out_finish;
854 			}
855 
856 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
857 
858 			/*
859 			 * Given we are writing one page at a time to disk, we
860 			 * copy that much from the buffer, although the last
861 			 * bit will likely be smaller than full page. This is
862 			 * OK - we saved the length of the compressed data, so
863 			 * any garbage at the end will be discarded when we
864 			 * read it.
865 			 */
866 			for (off = 0;
867 			     off < CMP_HEADER + data[thr].cmp_len;
868 			     off += PAGE_SIZE) {
869 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
870 
871 				ret = swap_write_page(handle, page, &hb);
872 				if (ret)
873 					goto out_finish;
874 			}
875 		}
876 
877 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
878 		atomic_set(&crc->stop, 0);
879 	}
880 
881 out_finish:
882 	err2 = hib_wait_io(&hb);
883 	stop = ktime_get();
884 	if (!ret)
885 		ret = err2;
886 	if (!ret)
887 		pr_info("Image saving done\n");
888 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
889 	pr_info("Image size after compression: %d kbytes\n",
890 		(atomic_read(&compressed_size) / 1024));
891 
892 out_clean:
893 	hib_finish_batch(&hb);
894 	if (crc) {
895 		if (crc->thr)
896 			kthread_stop(crc->thr);
897 		kfree(crc);
898 	}
899 	if (data) {
900 		for (thr = 0; thr < nr_threads; thr++) {
901 			if (data[thr].thr)
902 				kthread_stop(data[thr].thr);
903 			if (data[thr].cc)
904 				crypto_free_comp(data[thr].cc);
905 		}
906 		vfree(data);
907 	}
908 	if (page) free_page((unsigned long)page);
909 
910 	return ret;
911 }
912 
913 /**
914  *	enough_swap - Make sure we have enough swap to save the image.
915  *
916  *	Returns TRUE or FALSE after checking the total amount of swap
917  *	space available from the resume partition.
918  */
919 
920 static int enough_swap(unsigned int nr_pages)
921 {
922 	unsigned int free_swap = count_swap_pages(root_swap, 1);
923 	unsigned int required;
924 
925 	pr_debug("Free swap pages: %u\n", free_swap);
926 
927 	required = PAGES_FOR_IO + nr_pages;
928 	return free_swap > required;
929 }
930 
931 /**
932  *	swsusp_write - Write entire image and metadata.
933  *	@flags: flags to pass to the "boot" kernel in the image header
934  *
935  *	It is important _NOT_ to umount filesystems at this point. We want
936  *	them synced (in case something goes wrong) but we DO not want to mark
937  *	filesystem clean: it is not. (And it does not matter, if we resume
938  *	correctly, we'll mark system clean, anyway.)
939  */
940 
941 int swsusp_write(unsigned int flags)
942 {
943 	struct swap_map_handle handle;
944 	struct snapshot_handle snapshot;
945 	struct swsusp_info *header;
946 	unsigned long pages;
947 	int error;
948 
949 	pages = snapshot_get_image_size();
950 	error = get_swap_writer(&handle);
951 	if (error) {
952 		pr_err("Cannot get swap writer\n");
953 		return error;
954 	}
955 	if (flags & SF_NOCOMPRESS_MODE) {
956 		if (!enough_swap(pages)) {
957 			pr_err("Not enough free swap\n");
958 			error = -ENOSPC;
959 			goto out_finish;
960 		}
961 	}
962 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
963 	error = snapshot_read_next(&snapshot);
964 	if (error < (int)PAGE_SIZE) {
965 		if (error >= 0)
966 			error = -EFAULT;
967 
968 		goto out_finish;
969 	}
970 	header = (struct swsusp_info *)data_of(snapshot);
971 	error = swap_write_page(&handle, header, NULL);
972 	if (!error) {
973 		error = (flags & SF_NOCOMPRESS_MODE) ?
974 			save_image(&handle, &snapshot, pages - 1) :
975 			save_compressed_image(&handle, &snapshot, pages - 1);
976 	}
977 out_finish:
978 	error = swap_writer_finish(&handle, flags, error);
979 	return error;
980 }
981 
982 /*
983  *	The following functions allow us to read data using a swap map
984  *	in a file-like way.
985  */
986 
987 static void release_swap_reader(struct swap_map_handle *handle)
988 {
989 	struct swap_map_page_list *tmp;
990 
991 	while (handle->maps) {
992 		if (handle->maps->map)
993 			free_page((unsigned long)handle->maps->map);
994 		tmp = handle->maps;
995 		handle->maps = handle->maps->next;
996 		kfree(tmp);
997 	}
998 	handle->cur = NULL;
999 }
1000 
1001 static int get_swap_reader(struct swap_map_handle *handle,
1002 		unsigned int *flags_p)
1003 {
1004 	int error;
1005 	struct swap_map_page_list *tmp, *last;
1006 	sector_t offset;
1007 
1008 	*flags_p = swsusp_header->flags;
1009 
1010 	if (!swsusp_header->image) /* how can this happen? */
1011 		return -EINVAL;
1012 
1013 	handle->cur = NULL;
1014 	last = handle->maps = NULL;
1015 	offset = swsusp_header->image;
1016 	while (offset) {
1017 		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
1018 		if (!tmp) {
1019 			release_swap_reader(handle);
1020 			return -ENOMEM;
1021 		}
1022 		if (!handle->maps)
1023 			handle->maps = tmp;
1024 		if (last)
1025 			last->next = tmp;
1026 		last = tmp;
1027 
1028 		tmp->map = (struct swap_map_page *)
1029 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1030 		if (!tmp->map) {
1031 			release_swap_reader(handle);
1032 			return -ENOMEM;
1033 		}
1034 
1035 		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1036 		if (error) {
1037 			release_swap_reader(handle);
1038 			return error;
1039 		}
1040 		offset = tmp->map->next_swap;
1041 	}
1042 	handle->k = 0;
1043 	handle->cur = handle->maps->map;
1044 	return 0;
1045 }
1046 
1047 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1048 		struct hib_bio_batch *hb)
1049 {
1050 	sector_t offset;
1051 	int error;
1052 	struct swap_map_page_list *tmp;
1053 
1054 	if (!handle->cur)
1055 		return -EINVAL;
1056 	offset = handle->cur->entries[handle->k];
1057 	if (!offset)
1058 		return -EFAULT;
1059 	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1060 	if (error)
1061 		return error;
1062 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1063 		handle->k = 0;
1064 		free_page((unsigned long)handle->maps->map);
1065 		tmp = handle->maps;
1066 		handle->maps = handle->maps->next;
1067 		kfree(tmp);
1068 		if (!handle->maps)
1069 			release_swap_reader(handle);
1070 		else
1071 			handle->cur = handle->maps->map;
1072 	}
1073 	return error;
1074 }
1075 
1076 static int swap_reader_finish(struct swap_map_handle *handle)
1077 {
1078 	release_swap_reader(handle);
1079 
1080 	return 0;
1081 }
1082 
1083 /**
1084  *	load_image - load the image using the swap map handle
1085  *	@handle and the snapshot handle @snapshot
1086  *	(assume there are @nr_pages pages to load)
1087  */
1088 
1089 static int load_image(struct swap_map_handle *handle,
1090                       struct snapshot_handle *snapshot,
1091                       unsigned int nr_to_read)
1092 {
1093 	unsigned int m;
1094 	int ret = 0;
1095 	ktime_t start;
1096 	ktime_t stop;
1097 	struct hib_bio_batch hb;
1098 	int err2;
1099 	unsigned nr_pages;
1100 
1101 	hib_init_batch(&hb);
1102 
1103 	clean_pages_on_read = true;
1104 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1105 	m = nr_to_read / 10;
1106 	if (!m)
1107 		m = 1;
1108 	nr_pages = 0;
1109 	start = ktime_get();
1110 	for ( ; ; ) {
1111 		ret = snapshot_write_next(snapshot);
1112 		if (ret <= 0)
1113 			break;
1114 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1115 		if (ret)
1116 			break;
1117 		if (snapshot->sync_read)
1118 			ret = hib_wait_io(&hb);
1119 		if (ret)
1120 			break;
1121 		if (!(nr_pages % m))
1122 			pr_info("Image loading progress: %3d%%\n",
1123 				nr_pages / m * 10);
1124 		nr_pages++;
1125 	}
1126 	err2 = hib_wait_io(&hb);
1127 	hib_finish_batch(&hb);
1128 	stop = ktime_get();
1129 	if (!ret)
1130 		ret = err2;
1131 	if (!ret) {
1132 		pr_info("Image loading done\n");
1133 		ret = snapshot_write_finalize(snapshot);
1134 		if (!ret && !snapshot_image_loaded(snapshot))
1135 			ret = -ENODATA;
1136 	}
1137 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1138 	return ret;
1139 }
1140 
1141 /*
1142  * Structure used for data decompression.
1143  */
1144 struct dec_data {
1145 	struct task_struct *thr;                  /* thread */
1146 	struct crypto_comp *cc;                   /* crypto compressor stream */
1147 	atomic_t ready;                           /* ready to start flag */
1148 	atomic_t stop;                            /* ready to stop flag */
1149 	int ret;                                  /* return code */
1150 	wait_queue_head_t go;                     /* start decompression */
1151 	wait_queue_head_t done;                   /* decompression done */
1152 	size_t unc_len;                           /* uncompressed length */
1153 	size_t cmp_len;                           /* compressed length */
1154 	unsigned char unc[UNC_SIZE];              /* uncompressed buffer */
1155 	unsigned char cmp[CMP_SIZE];              /* compressed buffer */
1156 };
1157 
1158 /*
1159  * Decompression function that runs in its own thread.
1160  */
1161 static int decompress_threadfn(void *data)
1162 {
1163 	struct dec_data *d = data;
1164 	unsigned int unc_len = 0;
1165 
1166 	while (1) {
1167 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1168 		                  kthread_should_stop());
1169 		if (kthread_should_stop()) {
1170 			d->thr = NULL;
1171 			d->ret = -1;
1172 			atomic_set_release(&d->stop, 1);
1173 			wake_up(&d->done);
1174 			break;
1175 		}
1176 		atomic_set(&d->ready, 0);
1177 
1178 		unc_len = UNC_SIZE;
1179 		d->ret = crypto_comp_decompress(d->cc, d->cmp + CMP_HEADER, d->cmp_len,
1180 						d->unc, &unc_len);
1181 		d->unc_len = unc_len;
1182 
1183 		if (clean_pages_on_decompress)
1184 			flush_icache_range((unsigned long)d->unc,
1185 					   (unsigned long)d->unc + d->unc_len);
1186 
1187 		atomic_set_release(&d->stop, 1);
1188 		wake_up(&d->done);
1189 	}
1190 	return 0;
1191 }
1192 
1193 /**
1194  * load_compressed_image - Load compressed image data and decompress it.
1195  * @handle: Swap map handle to use for loading data.
1196  * @snapshot: Image to copy uncompressed data into.
1197  * @nr_to_read: Number of pages to load.
1198  */
1199 static int load_compressed_image(struct swap_map_handle *handle,
1200 				 struct snapshot_handle *snapshot,
1201 				 unsigned int nr_to_read)
1202 {
1203 	unsigned int m;
1204 	int ret = 0;
1205 	int eof = 0;
1206 	struct hib_bio_batch hb;
1207 	ktime_t start;
1208 	ktime_t stop;
1209 	unsigned nr_pages;
1210 	size_t off;
1211 	unsigned i, thr, run_threads, nr_threads;
1212 	unsigned ring = 0, pg = 0, ring_size = 0,
1213 	         have = 0, want, need, asked = 0;
1214 	unsigned long read_pages = 0;
1215 	unsigned char **page = NULL;
1216 	struct dec_data *data = NULL;
1217 	struct crc_data *crc = NULL;
1218 
1219 	hib_init_batch(&hb);
1220 
1221 	/*
1222 	 * We'll limit the number of threads for decompression to limit memory
1223 	 * footprint.
1224 	 */
1225 	nr_threads = num_online_cpus() - 1;
1226 	nr_threads = clamp_val(nr_threads, 1, CMP_THREADS);
1227 
1228 	page = vmalloc(array_size(CMP_MAX_RD_PAGES, sizeof(*page)));
1229 	if (!page) {
1230 		pr_err("Failed to allocate %s page\n", hib_comp_algo);
1231 		ret = -ENOMEM;
1232 		goto out_clean;
1233 	}
1234 
1235 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1236 	if (!data) {
1237 		pr_err("Failed to allocate %s data\n", hib_comp_algo);
1238 		ret = -ENOMEM;
1239 		goto out_clean;
1240 	}
1241 
1242 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1243 	if (!crc) {
1244 		pr_err("Failed to allocate crc\n");
1245 		ret = -ENOMEM;
1246 		goto out_clean;
1247 	}
1248 
1249 	clean_pages_on_decompress = true;
1250 
1251 	/*
1252 	 * Start the decompression threads.
1253 	 */
1254 	for (thr = 0; thr < nr_threads; thr++) {
1255 		init_waitqueue_head(&data[thr].go);
1256 		init_waitqueue_head(&data[thr].done);
1257 
1258 		data[thr].cc = crypto_alloc_comp(hib_comp_algo, 0, 0);
1259 		if (IS_ERR_OR_NULL(data[thr].cc)) {
1260 			pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data[thr].cc));
1261 			ret = -EFAULT;
1262 			goto out_clean;
1263 		}
1264 
1265 		data[thr].thr = kthread_run(decompress_threadfn,
1266 		                            &data[thr],
1267 		                            "image_decompress/%u", thr);
1268 		if (IS_ERR(data[thr].thr)) {
1269 			data[thr].thr = NULL;
1270 			pr_err("Cannot start decompression threads\n");
1271 			ret = -ENOMEM;
1272 			goto out_clean;
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * Start the CRC32 thread.
1278 	 */
1279 	init_waitqueue_head(&crc->go);
1280 	init_waitqueue_head(&crc->done);
1281 
1282 	handle->crc32 = 0;
1283 	crc->crc32 = &handle->crc32;
1284 	for (thr = 0; thr < nr_threads; thr++) {
1285 		crc->unc[thr] = data[thr].unc;
1286 		crc->unc_len[thr] = &data[thr].unc_len;
1287 	}
1288 
1289 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1290 	if (IS_ERR(crc->thr)) {
1291 		crc->thr = NULL;
1292 		pr_err("Cannot start CRC32 thread\n");
1293 		ret = -ENOMEM;
1294 		goto out_clean;
1295 	}
1296 
1297 	/*
1298 	 * Set the number of pages for read buffering.
1299 	 * This is complete guesswork, because we'll only know the real
1300 	 * picture once prepare_image() is called, which is much later on
1301 	 * during the image load phase. We'll assume the worst case and
1302 	 * say that none of the image pages are from high memory.
1303 	 */
1304 	if (low_free_pages() > snapshot_get_image_size())
1305 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1306 	read_pages = clamp_val(read_pages, CMP_MIN_RD_PAGES, CMP_MAX_RD_PAGES);
1307 
1308 	for (i = 0; i < read_pages; i++) {
1309 		page[i] = (void *)__get_free_page(i < CMP_PAGES ?
1310 						  GFP_NOIO | __GFP_HIGH :
1311 						  GFP_NOIO | __GFP_NOWARN |
1312 						  __GFP_NORETRY);
1313 
1314 		if (!page[i]) {
1315 			if (i < CMP_PAGES) {
1316 				ring_size = i;
1317 				pr_err("Failed to allocate %s pages\n", hib_comp_algo);
1318 				ret = -ENOMEM;
1319 				goto out_clean;
1320 			} else {
1321 				break;
1322 			}
1323 		}
1324 	}
1325 	want = ring_size = i;
1326 
1327 	pr_info("Using %u thread(s) for %s decompression\n", nr_threads, hib_comp_algo);
1328 	pr_info("Loading and decompressing image data (%u pages)...\n",
1329 		nr_to_read);
1330 	m = nr_to_read / 10;
1331 	if (!m)
1332 		m = 1;
1333 	nr_pages = 0;
1334 	start = ktime_get();
1335 
1336 	ret = snapshot_write_next(snapshot);
1337 	if (ret <= 0)
1338 		goto out_finish;
1339 
1340 	for(;;) {
1341 		for (i = 0; !eof && i < want; i++) {
1342 			ret = swap_read_page(handle, page[ring], &hb);
1343 			if (ret) {
1344 				/*
1345 				 * On real read error, finish. On end of data,
1346 				 * set EOF flag and just exit the read loop.
1347 				 */
1348 				if (handle->cur &&
1349 				    handle->cur->entries[handle->k]) {
1350 					goto out_finish;
1351 				} else {
1352 					eof = 1;
1353 					break;
1354 				}
1355 			}
1356 			if (++ring >= ring_size)
1357 				ring = 0;
1358 		}
1359 		asked += i;
1360 		want -= i;
1361 
1362 		/*
1363 		 * We are out of data, wait for some more.
1364 		 */
1365 		if (!have) {
1366 			if (!asked)
1367 				break;
1368 
1369 			ret = hib_wait_io(&hb);
1370 			if (ret)
1371 				goto out_finish;
1372 			have += asked;
1373 			asked = 0;
1374 			if (eof)
1375 				eof = 2;
1376 		}
1377 
1378 		if (crc->run_threads) {
1379 			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1380 			atomic_set(&crc->stop, 0);
1381 			crc->run_threads = 0;
1382 		}
1383 
1384 		for (thr = 0; have && thr < nr_threads; thr++) {
1385 			data[thr].cmp_len = *(size_t *)page[pg];
1386 			if (unlikely(!data[thr].cmp_len ||
1387 			             data[thr].cmp_len >
1388 					bytes_worst_compress(UNC_SIZE))) {
1389 				pr_err("Invalid %s compressed length\n", hib_comp_algo);
1390 				ret = -1;
1391 				goto out_finish;
1392 			}
1393 
1394 			need = DIV_ROUND_UP(data[thr].cmp_len + CMP_HEADER,
1395 			                    PAGE_SIZE);
1396 			if (need > have) {
1397 				if (eof > 1) {
1398 					ret = -1;
1399 					goto out_finish;
1400 				}
1401 				break;
1402 			}
1403 
1404 			for (off = 0;
1405 			     off < CMP_HEADER + data[thr].cmp_len;
1406 			     off += PAGE_SIZE) {
1407 				memcpy(data[thr].cmp + off,
1408 				       page[pg], PAGE_SIZE);
1409 				have--;
1410 				want++;
1411 				if (++pg >= ring_size)
1412 					pg = 0;
1413 			}
1414 
1415 			atomic_set_release(&data[thr].ready, 1);
1416 			wake_up(&data[thr].go);
1417 		}
1418 
1419 		/*
1420 		 * Wait for more data while we are decompressing.
1421 		 */
1422 		if (have < CMP_PAGES && asked) {
1423 			ret = hib_wait_io(&hb);
1424 			if (ret)
1425 				goto out_finish;
1426 			have += asked;
1427 			asked = 0;
1428 			if (eof)
1429 				eof = 2;
1430 		}
1431 
1432 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1433 			wait_event(data[thr].done,
1434 				atomic_read_acquire(&data[thr].stop));
1435 			atomic_set(&data[thr].stop, 0);
1436 
1437 			ret = data[thr].ret;
1438 
1439 			if (ret < 0) {
1440 				pr_err("%s decompression failed\n", hib_comp_algo);
1441 				goto out_finish;
1442 			}
1443 
1444 			if (unlikely(!data[thr].unc_len ||
1445 				data[thr].unc_len > UNC_SIZE ||
1446 				data[thr].unc_len & (PAGE_SIZE - 1))) {
1447 				pr_err("Invalid %s uncompressed length\n", hib_comp_algo);
1448 				ret = -1;
1449 				goto out_finish;
1450 			}
1451 
1452 			for (off = 0;
1453 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1454 				memcpy(data_of(*snapshot),
1455 				       data[thr].unc + off, PAGE_SIZE);
1456 
1457 				if (!(nr_pages % m))
1458 					pr_info("Image loading progress: %3d%%\n",
1459 						nr_pages / m * 10);
1460 				nr_pages++;
1461 
1462 				ret = snapshot_write_next(snapshot);
1463 				if (ret <= 0) {
1464 					crc->run_threads = thr + 1;
1465 					atomic_set_release(&crc->ready, 1);
1466 					wake_up(&crc->go);
1467 					goto out_finish;
1468 				}
1469 			}
1470 		}
1471 
1472 		crc->run_threads = thr;
1473 		atomic_set_release(&crc->ready, 1);
1474 		wake_up(&crc->go);
1475 	}
1476 
1477 out_finish:
1478 	if (crc->run_threads) {
1479 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1480 		atomic_set(&crc->stop, 0);
1481 	}
1482 	stop = ktime_get();
1483 	if (!ret) {
1484 		pr_info("Image loading done\n");
1485 		ret = snapshot_write_finalize(snapshot);
1486 		if (!ret && !snapshot_image_loaded(snapshot))
1487 			ret = -ENODATA;
1488 		if (!ret) {
1489 			if (swsusp_header->flags & SF_CRC32_MODE) {
1490 				if(handle->crc32 != swsusp_header->crc32) {
1491 					pr_err("Invalid image CRC32!\n");
1492 					ret = -ENODATA;
1493 				}
1494 			}
1495 		}
1496 	}
1497 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1498 out_clean:
1499 	hib_finish_batch(&hb);
1500 	for (i = 0; i < ring_size; i++)
1501 		free_page((unsigned long)page[i]);
1502 	if (crc) {
1503 		if (crc->thr)
1504 			kthread_stop(crc->thr);
1505 		kfree(crc);
1506 	}
1507 	if (data) {
1508 		for (thr = 0; thr < nr_threads; thr++) {
1509 			if (data[thr].thr)
1510 				kthread_stop(data[thr].thr);
1511 			if (data[thr].cc)
1512 				crypto_free_comp(data[thr].cc);
1513 		}
1514 		vfree(data);
1515 	}
1516 	vfree(page);
1517 
1518 	return ret;
1519 }
1520 
1521 /**
1522  *	swsusp_read - read the hibernation image.
1523  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1524  *		  be written into this memory location
1525  */
1526 
1527 int swsusp_read(unsigned int *flags_p)
1528 {
1529 	int error;
1530 	struct swap_map_handle handle;
1531 	struct snapshot_handle snapshot;
1532 	struct swsusp_info *header;
1533 
1534 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1535 	error = snapshot_write_next(&snapshot);
1536 	if (error < (int)PAGE_SIZE)
1537 		return error < 0 ? error : -EFAULT;
1538 	header = (struct swsusp_info *)data_of(snapshot);
1539 	error = get_swap_reader(&handle, flags_p);
1540 	if (error)
1541 		goto end;
1542 	if (!error)
1543 		error = swap_read_page(&handle, header, NULL);
1544 	if (!error) {
1545 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1546 			load_image(&handle, &snapshot, header->pages - 1) :
1547 			load_compressed_image(&handle, &snapshot, header->pages - 1);
1548 	}
1549 	swap_reader_finish(&handle);
1550 end:
1551 	if (!error)
1552 		pr_debug("Image successfully loaded\n");
1553 	else
1554 		pr_debug("Error %d resuming\n", error);
1555 	return error;
1556 }
1557 
1558 static void *swsusp_holder;
1559 
1560 /**
1561  * swsusp_check - Open the resume device and check for the swsusp signature.
1562  * @exclusive: Open the resume device exclusively.
1563  */
1564 
1565 int swsusp_check(bool exclusive)
1566 {
1567 	void *holder = exclusive ? &swsusp_holder : NULL;
1568 	int error;
1569 
1570 	hib_resume_bdev_file = bdev_file_open_by_dev(swsusp_resume_device,
1571 				BLK_OPEN_READ, holder, NULL);
1572 	if (!IS_ERR(hib_resume_bdev_file)) {
1573 		clear_page(swsusp_header);
1574 		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1575 					swsusp_header, NULL);
1576 		if (error)
1577 			goto put;
1578 
1579 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1580 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1581 			swsusp_header_flags = swsusp_header->flags;
1582 			/* Reset swap signature now */
1583 			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1584 						swsusp_resume_block,
1585 						swsusp_header, NULL);
1586 		} else {
1587 			error = -EINVAL;
1588 		}
1589 		if (!error && swsusp_header->flags & SF_HW_SIG &&
1590 		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1591 			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1592 				swsusp_header->hw_sig, swsusp_hardware_signature);
1593 			error = -EINVAL;
1594 		}
1595 
1596 put:
1597 		if (error)
1598 			bdev_fput(hib_resume_bdev_file);
1599 		else
1600 			pr_debug("Image signature found, resuming\n");
1601 	} else {
1602 		error = PTR_ERR(hib_resume_bdev_file);
1603 	}
1604 
1605 	if (error)
1606 		pr_debug("Image not found (code %d)\n", error);
1607 
1608 	return error;
1609 }
1610 
1611 /**
1612  * swsusp_close - close resume device.
1613  */
1614 
1615 void swsusp_close(void)
1616 {
1617 	if (IS_ERR(hib_resume_bdev_file)) {
1618 		pr_debug("Image device not initialised\n");
1619 		return;
1620 	}
1621 
1622 	fput(hib_resume_bdev_file);
1623 }
1624 
1625 /**
1626  *      swsusp_unmark - Unmark swsusp signature in the resume device
1627  */
1628 
1629 #ifdef CONFIG_SUSPEND
1630 int swsusp_unmark(void)
1631 {
1632 	int error;
1633 
1634 	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1635 			swsusp_header, NULL);
1636 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1637 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1638 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1639 					swsusp_resume_block,
1640 					swsusp_header, NULL);
1641 	} else {
1642 		pr_err("Cannot find swsusp signature!\n");
1643 		error = -ENODEV;
1644 	}
1645 
1646 	/*
1647 	 * We just returned from suspend, we don't need the image any more.
1648 	 */
1649 	free_all_swap_pages(root_swap);
1650 
1651 	return error;
1652 }
1653 #endif
1654 
1655 static int __init swsusp_header_init(void)
1656 {
1657 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1658 	if (!swsusp_header)
1659 		panic("Could not allocate memory for swsusp_header\n");
1660 	return 0;
1661 }
1662 
1663 core_initcall(swsusp_header_init);
1664