xref: /linux/kernel/power/swap.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 /*
39  *	The swap map is a data structure used for keeping track of each page
40  *	written to a swap partition.  It consists of many swap_map_page
41  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
42  *	These structures are stored on the swap and linked together with the
43  *	help of the .next_swap member.
44  *
45  *	The swap map is created during suspend.  The swap map pages are
46  *	allocated and populated one at a time, so we only need one memory
47  *	page to set up the entire structure.
48  *
49  *	During resume we pick up all swap_map_page structures into a list.
50  */
51 
52 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
53 
54 struct swap_map_page {
55 	sector_t entries[MAP_PAGE_ENTRIES];
56 	sector_t next_swap;
57 };
58 
59 struct swap_map_page_list {
60 	struct swap_map_page *map;
61 	struct swap_map_page_list *next;
62 };
63 
64 /**
65  *	The swap_map_handle structure is used for handling swap in
66  *	a file-alike way
67  */
68 
69 struct swap_map_handle {
70 	struct swap_map_page *cur;
71 	struct swap_map_page_list *maps;
72 	sector_t cur_swap;
73 	sector_t first_sector;
74 	unsigned int k;
75 	unsigned long nr_free_pages, written;
76 	u32 crc32;
77 };
78 
79 struct swsusp_header {
80 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
81 	              sizeof(u32)];
82 	u32	crc32;
83 	sector_t image;
84 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
85 	char	orig_sig[10];
86 	char	sig[10];
87 } __attribute__((packed));
88 
89 static struct swsusp_header *swsusp_header;
90 
91 /**
92  *	The following functions are used for tracing the allocated
93  *	swap pages, so that they can be freed in case of an error.
94  */
95 
96 struct swsusp_extent {
97 	struct rb_node node;
98 	unsigned long start;
99 	unsigned long end;
100 };
101 
102 static struct rb_root swsusp_extents = RB_ROOT;
103 
104 static int swsusp_extents_insert(unsigned long swap_offset)
105 {
106 	struct rb_node **new = &(swsusp_extents.rb_node);
107 	struct rb_node *parent = NULL;
108 	struct swsusp_extent *ext;
109 
110 	/* Figure out where to put the new node */
111 	while (*new) {
112 		ext = container_of(*new, struct swsusp_extent, node);
113 		parent = *new;
114 		if (swap_offset < ext->start) {
115 			/* Try to merge */
116 			if (swap_offset == ext->start - 1) {
117 				ext->start--;
118 				return 0;
119 			}
120 			new = &((*new)->rb_left);
121 		} else if (swap_offset > ext->end) {
122 			/* Try to merge */
123 			if (swap_offset == ext->end + 1) {
124 				ext->end++;
125 				return 0;
126 			}
127 			new = &((*new)->rb_right);
128 		} else {
129 			/* It already is in the tree */
130 			return -EINVAL;
131 		}
132 	}
133 	/* Add the new node and rebalance the tree. */
134 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
135 	if (!ext)
136 		return -ENOMEM;
137 
138 	ext->start = swap_offset;
139 	ext->end = swap_offset;
140 	rb_link_node(&ext->node, parent, new);
141 	rb_insert_color(&ext->node, &swsusp_extents);
142 	return 0;
143 }
144 
145 /**
146  *	alloc_swapdev_block - allocate a swap page and register that it has
147  *	been allocated, so that it can be freed in case of an error.
148  */
149 
150 sector_t alloc_swapdev_block(int swap)
151 {
152 	unsigned long offset;
153 
154 	offset = swp_offset(get_swap_page_of_type(swap));
155 	if (offset) {
156 		if (swsusp_extents_insert(offset))
157 			swap_free(swp_entry(swap, offset));
158 		else
159 			return swapdev_block(swap, offset);
160 	}
161 	return 0;
162 }
163 
164 /**
165  *	free_all_swap_pages - free swap pages allocated for saving image data.
166  *	It also frees the extents used to register which swap entries had been
167  *	allocated.
168  */
169 
170 void free_all_swap_pages(int swap)
171 {
172 	struct rb_node *node;
173 
174 	while ((node = swsusp_extents.rb_node)) {
175 		struct swsusp_extent *ext;
176 		unsigned long offset;
177 
178 		ext = container_of(node, struct swsusp_extent, node);
179 		rb_erase(node, &swsusp_extents);
180 		for (offset = ext->start; offset <= ext->end; offset++)
181 			swap_free(swp_entry(swap, offset));
182 
183 		kfree(ext);
184 	}
185 }
186 
187 int swsusp_swap_in_use(void)
188 {
189 	return (swsusp_extents.rb_node != NULL);
190 }
191 
192 /*
193  * General things
194  */
195 
196 static unsigned short root_swap = 0xffff;
197 struct block_device *hib_resume_bdev;
198 
199 /*
200  * Saving part
201  */
202 
203 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
204 {
205 	int error;
206 
207 	hib_bio_read_page(swsusp_resume_block, swsusp_header, NULL);
208 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
209 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
210 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
211 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
212 		swsusp_header->image = handle->first_sector;
213 		swsusp_header->flags = flags;
214 		if (flags & SF_CRC32_MODE)
215 			swsusp_header->crc32 = handle->crc32;
216 		error = hib_bio_write_page(swsusp_resume_block,
217 					swsusp_header, NULL);
218 	} else {
219 		printk(KERN_ERR "PM: Swap header not found!\n");
220 		error = -ENODEV;
221 	}
222 	return error;
223 }
224 
225 /**
226  *	swsusp_swap_check - check if the resume device is a swap device
227  *	and get its index (if so)
228  *
229  *	This is called before saving image
230  */
231 static int swsusp_swap_check(void)
232 {
233 	int res;
234 
235 	res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
236 			&hib_resume_bdev);
237 	if (res < 0)
238 		return res;
239 
240 	root_swap = res;
241 	res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
242 	if (res)
243 		return res;
244 
245 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
246 	if (res < 0)
247 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
248 
249 	return res;
250 }
251 
252 /**
253  *	write_page - Write one page to given swap location.
254  *	@buf:		Address we're writing.
255  *	@offset:	Offset of the swap page we're writing to.
256  *	@bio_chain:	Link the next write BIO here
257  */
258 
259 static int write_page(void *buf, sector_t offset, struct bio **bio_chain)
260 {
261 	void *src;
262 	int ret;
263 
264 	if (!offset)
265 		return -ENOSPC;
266 
267 	if (bio_chain) {
268 		src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
269 		if (src) {
270 			copy_page(src, buf);
271 		} else {
272 			ret = hib_wait_on_bio_chain(bio_chain); /* Free pages */
273 			if (ret)
274 				return ret;
275 			src = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
276 			if (src) {
277 				copy_page(src, buf);
278 			} else {
279 				WARN_ON_ONCE(1);
280 				bio_chain = NULL;	/* Go synchronous */
281 				src = buf;
282 			}
283 		}
284 	} else {
285 		src = buf;
286 	}
287 	return hib_bio_write_page(offset, src, bio_chain);
288 }
289 
290 static void release_swap_writer(struct swap_map_handle *handle)
291 {
292 	if (handle->cur)
293 		free_page((unsigned long)handle->cur);
294 	handle->cur = NULL;
295 }
296 
297 static int get_swap_writer(struct swap_map_handle *handle)
298 {
299 	int ret;
300 
301 	ret = swsusp_swap_check();
302 	if (ret) {
303 		if (ret != -ENOSPC)
304 			printk(KERN_ERR "PM: Cannot find swap device, try "
305 					"swapon -a.\n");
306 		return ret;
307 	}
308 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
309 	if (!handle->cur) {
310 		ret = -ENOMEM;
311 		goto err_close;
312 	}
313 	handle->cur_swap = alloc_swapdev_block(root_swap);
314 	if (!handle->cur_swap) {
315 		ret = -ENOSPC;
316 		goto err_rel;
317 	}
318 	handle->k = 0;
319 	handle->nr_free_pages = nr_free_pages() >> 1;
320 	handle->written = 0;
321 	handle->first_sector = handle->cur_swap;
322 	return 0;
323 err_rel:
324 	release_swap_writer(handle);
325 err_close:
326 	swsusp_close(FMODE_WRITE);
327 	return ret;
328 }
329 
330 static int swap_write_page(struct swap_map_handle *handle, void *buf,
331 				struct bio **bio_chain)
332 {
333 	int error = 0;
334 	sector_t offset;
335 
336 	if (!handle->cur)
337 		return -EINVAL;
338 	offset = alloc_swapdev_block(root_swap);
339 	error = write_page(buf, offset, bio_chain);
340 	if (error)
341 		return error;
342 	handle->cur->entries[handle->k++] = offset;
343 	if (handle->k >= MAP_PAGE_ENTRIES) {
344 		offset = alloc_swapdev_block(root_swap);
345 		if (!offset)
346 			return -ENOSPC;
347 		handle->cur->next_swap = offset;
348 		error = write_page(handle->cur, handle->cur_swap, bio_chain);
349 		if (error)
350 			goto out;
351 		clear_page(handle->cur);
352 		handle->cur_swap = offset;
353 		handle->k = 0;
354 	}
355 	if (bio_chain && ++handle->written > handle->nr_free_pages) {
356 		error = hib_wait_on_bio_chain(bio_chain);
357 		if (error)
358 			goto out;
359 		handle->written = 0;
360 	}
361  out:
362 	return error;
363 }
364 
365 static int flush_swap_writer(struct swap_map_handle *handle)
366 {
367 	if (handle->cur && handle->cur_swap)
368 		return write_page(handle->cur, handle->cur_swap, NULL);
369 	else
370 		return -EINVAL;
371 }
372 
373 static int swap_writer_finish(struct swap_map_handle *handle,
374 		unsigned int flags, int error)
375 {
376 	if (!error) {
377 		flush_swap_writer(handle);
378 		printk(KERN_INFO "PM: S");
379 		error = mark_swapfiles(handle, flags);
380 		printk("|\n");
381 	}
382 
383 	if (error)
384 		free_all_swap_pages(root_swap);
385 	release_swap_writer(handle);
386 	swsusp_close(FMODE_WRITE);
387 
388 	return error;
389 }
390 
391 /* We need to remember how much compressed data we need to read. */
392 #define LZO_HEADER	sizeof(size_t)
393 
394 /* Number of pages/bytes we'll compress at one time. */
395 #define LZO_UNC_PAGES	32
396 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
397 
398 /* Number of pages/bytes we need for compressed data (worst case). */
399 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
400 			             LZO_HEADER, PAGE_SIZE)
401 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
402 
403 /* Maximum number of threads for compression/decompression. */
404 #define LZO_THREADS	3
405 
406 /* Maximum number of pages for read buffering. */
407 #define LZO_READ_PAGES	(MAP_PAGE_ENTRIES * 8)
408 
409 
410 /**
411  *	save_image - save the suspend image data
412  */
413 
414 static int save_image(struct swap_map_handle *handle,
415                       struct snapshot_handle *snapshot,
416                       unsigned int nr_to_write)
417 {
418 	unsigned int m;
419 	int ret;
420 	int nr_pages;
421 	int err2;
422 	struct bio *bio;
423 	struct timeval start;
424 	struct timeval stop;
425 
426 	printk(KERN_INFO "PM: Saving image data pages (%u pages) ...     ",
427 		nr_to_write);
428 	m = nr_to_write / 100;
429 	if (!m)
430 		m = 1;
431 	nr_pages = 0;
432 	bio = NULL;
433 	do_gettimeofday(&start);
434 	while (1) {
435 		ret = snapshot_read_next(snapshot);
436 		if (ret <= 0)
437 			break;
438 		ret = swap_write_page(handle, data_of(*snapshot), &bio);
439 		if (ret)
440 			break;
441 		if (!(nr_pages % m))
442 			printk(KERN_CONT "\b\b\b\b%3d%%", nr_pages / m);
443 		nr_pages++;
444 	}
445 	err2 = hib_wait_on_bio_chain(&bio);
446 	do_gettimeofday(&stop);
447 	if (!ret)
448 		ret = err2;
449 	if (!ret)
450 		printk(KERN_CONT "\b\b\b\bdone\n");
451 	else
452 		printk(KERN_CONT "\n");
453 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
454 	return ret;
455 }
456 
457 /**
458  * Structure used for CRC32.
459  */
460 struct crc_data {
461 	struct task_struct *thr;                  /* thread */
462 	atomic_t ready;                           /* ready to start flag */
463 	atomic_t stop;                            /* ready to stop flag */
464 	unsigned run_threads;                     /* nr current threads */
465 	wait_queue_head_t go;                     /* start crc update */
466 	wait_queue_head_t done;                   /* crc update done */
467 	u32 *crc32;                               /* points to handle's crc32 */
468 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
469 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
470 };
471 
472 /**
473  * CRC32 update function that runs in its own thread.
474  */
475 static int crc32_threadfn(void *data)
476 {
477 	struct crc_data *d = data;
478 	unsigned i;
479 
480 	while (1) {
481 		wait_event(d->go, atomic_read(&d->ready) ||
482 		                  kthread_should_stop());
483 		if (kthread_should_stop()) {
484 			d->thr = NULL;
485 			atomic_set(&d->stop, 1);
486 			wake_up(&d->done);
487 			break;
488 		}
489 		atomic_set(&d->ready, 0);
490 
491 		for (i = 0; i < d->run_threads; i++)
492 			*d->crc32 = crc32_le(*d->crc32,
493 			                     d->unc[i], *d->unc_len[i]);
494 		atomic_set(&d->stop, 1);
495 		wake_up(&d->done);
496 	}
497 	return 0;
498 }
499 /**
500  * Structure used for LZO data compression.
501  */
502 struct cmp_data {
503 	struct task_struct *thr;                  /* thread */
504 	atomic_t ready;                           /* ready to start flag */
505 	atomic_t stop;                            /* ready to stop flag */
506 	int ret;                                  /* return code */
507 	wait_queue_head_t go;                     /* start compression */
508 	wait_queue_head_t done;                   /* compression done */
509 	size_t unc_len;                           /* uncompressed length */
510 	size_t cmp_len;                           /* compressed length */
511 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
512 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
513 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
514 };
515 
516 /**
517  * Compression function that runs in its own thread.
518  */
519 static int lzo_compress_threadfn(void *data)
520 {
521 	struct cmp_data *d = data;
522 
523 	while (1) {
524 		wait_event(d->go, atomic_read(&d->ready) ||
525 		                  kthread_should_stop());
526 		if (kthread_should_stop()) {
527 			d->thr = NULL;
528 			d->ret = -1;
529 			atomic_set(&d->stop, 1);
530 			wake_up(&d->done);
531 			break;
532 		}
533 		atomic_set(&d->ready, 0);
534 
535 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
536 		                          d->cmp + LZO_HEADER, &d->cmp_len,
537 		                          d->wrk);
538 		atomic_set(&d->stop, 1);
539 		wake_up(&d->done);
540 	}
541 	return 0;
542 }
543 
544 /**
545  * save_image_lzo - Save the suspend image data compressed with LZO.
546  * @handle: Swap mam handle to use for saving the image.
547  * @snapshot: Image to read data from.
548  * @nr_to_write: Number of pages to save.
549  */
550 static int save_image_lzo(struct swap_map_handle *handle,
551                           struct snapshot_handle *snapshot,
552                           unsigned int nr_to_write)
553 {
554 	unsigned int m;
555 	int ret = 0;
556 	int nr_pages;
557 	int err2;
558 	struct bio *bio;
559 	struct timeval start;
560 	struct timeval stop;
561 	size_t off;
562 	unsigned thr, run_threads, nr_threads;
563 	unsigned char *page = NULL;
564 	struct cmp_data *data = NULL;
565 	struct crc_data *crc = NULL;
566 
567 	/*
568 	 * We'll limit the number of threads for compression to limit memory
569 	 * footprint.
570 	 */
571 	nr_threads = num_online_cpus() - 1;
572 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
573 
574 	page = (void *)__get_free_page(__GFP_WAIT | __GFP_HIGH);
575 	if (!page) {
576 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
577 		ret = -ENOMEM;
578 		goto out_clean;
579 	}
580 
581 	data = vmalloc(sizeof(*data) * nr_threads);
582 	if (!data) {
583 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
584 		ret = -ENOMEM;
585 		goto out_clean;
586 	}
587 	for (thr = 0; thr < nr_threads; thr++)
588 		memset(&data[thr], 0, offsetof(struct cmp_data, go));
589 
590 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
591 	if (!crc) {
592 		printk(KERN_ERR "PM: Failed to allocate crc\n");
593 		ret = -ENOMEM;
594 		goto out_clean;
595 	}
596 	memset(crc, 0, offsetof(struct crc_data, go));
597 
598 	/*
599 	 * Start the compression threads.
600 	 */
601 	for (thr = 0; thr < nr_threads; thr++) {
602 		init_waitqueue_head(&data[thr].go);
603 		init_waitqueue_head(&data[thr].done);
604 
605 		data[thr].thr = kthread_run(lzo_compress_threadfn,
606 		                            &data[thr],
607 		                            "image_compress/%u", thr);
608 		if (IS_ERR(data[thr].thr)) {
609 			data[thr].thr = NULL;
610 			printk(KERN_ERR
611 			       "PM: Cannot start compression threads\n");
612 			ret = -ENOMEM;
613 			goto out_clean;
614 		}
615 	}
616 
617 	/*
618 	 * Adjust number of free pages after all allocations have been done.
619 	 * We don't want to run out of pages when writing.
620 	 */
621 	handle->nr_free_pages = nr_free_pages() >> 1;
622 
623 	/*
624 	 * Start the CRC32 thread.
625 	 */
626 	init_waitqueue_head(&crc->go);
627 	init_waitqueue_head(&crc->done);
628 
629 	handle->crc32 = 0;
630 	crc->crc32 = &handle->crc32;
631 	for (thr = 0; thr < nr_threads; thr++) {
632 		crc->unc[thr] = data[thr].unc;
633 		crc->unc_len[thr] = &data[thr].unc_len;
634 	}
635 
636 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
637 	if (IS_ERR(crc->thr)) {
638 		crc->thr = NULL;
639 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
640 		ret = -ENOMEM;
641 		goto out_clean;
642 	}
643 
644 	printk(KERN_INFO
645 		"PM: Using %u thread(s) for compression.\n"
646 		"PM: Compressing and saving image data (%u pages) ...     ",
647 		nr_threads, nr_to_write);
648 	m = nr_to_write / 100;
649 	if (!m)
650 		m = 1;
651 	nr_pages = 0;
652 	bio = NULL;
653 	do_gettimeofday(&start);
654 	for (;;) {
655 		for (thr = 0; thr < nr_threads; thr++) {
656 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
657 				ret = snapshot_read_next(snapshot);
658 				if (ret < 0)
659 					goto out_finish;
660 
661 				if (!ret)
662 					break;
663 
664 				memcpy(data[thr].unc + off,
665 				       data_of(*snapshot), PAGE_SIZE);
666 
667 				if (!(nr_pages % m))
668 					printk(KERN_CONT "\b\b\b\b%3d%%",
669 				               nr_pages / m);
670 				nr_pages++;
671 			}
672 			if (!off)
673 				break;
674 
675 			data[thr].unc_len = off;
676 
677 			atomic_set(&data[thr].ready, 1);
678 			wake_up(&data[thr].go);
679 		}
680 
681 		if (!thr)
682 			break;
683 
684 		crc->run_threads = thr;
685 		atomic_set(&crc->ready, 1);
686 		wake_up(&crc->go);
687 
688 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
689 			wait_event(data[thr].done,
690 			           atomic_read(&data[thr].stop));
691 			atomic_set(&data[thr].stop, 0);
692 
693 			ret = data[thr].ret;
694 
695 			if (ret < 0) {
696 				printk(KERN_ERR "PM: LZO compression failed\n");
697 				goto out_finish;
698 			}
699 
700 			if (unlikely(!data[thr].cmp_len ||
701 			             data[thr].cmp_len >
702 			             lzo1x_worst_compress(data[thr].unc_len))) {
703 				printk(KERN_ERR
704 				       "PM: Invalid LZO compressed length\n");
705 				ret = -1;
706 				goto out_finish;
707 			}
708 
709 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
710 
711 			/*
712 			 * Given we are writing one page at a time to disk, we
713 			 * copy that much from the buffer, although the last
714 			 * bit will likely be smaller than full page. This is
715 			 * OK - we saved the length of the compressed data, so
716 			 * any garbage at the end will be discarded when we
717 			 * read it.
718 			 */
719 			for (off = 0;
720 			     off < LZO_HEADER + data[thr].cmp_len;
721 			     off += PAGE_SIZE) {
722 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
723 
724 				ret = swap_write_page(handle, page, &bio);
725 				if (ret)
726 					goto out_finish;
727 			}
728 		}
729 
730 		wait_event(crc->done, atomic_read(&crc->stop));
731 		atomic_set(&crc->stop, 0);
732 	}
733 
734 out_finish:
735 	err2 = hib_wait_on_bio_chain(&bio);
736 	do_gettimeofday(&stop);
737 	if (!ret)
738 		ret = err2;
739 	if (!ret) {
740 		printk(KERN_CONT "\b\b\b\bdone\n");
741 	} else {
742 		printk(KERN_CONT "\n");
743 	}
744 	swsusp_show_speed(&start, &stop, nr_to_write, "Wrote");
745 out_clean:
746 	if (crc) {
747 		if (crc->thr)
748 			kthread_stop(crc->thr);
749 		kfree(crc);
750 	}
751 	if (data) {
752 		for (thr = 0; thr < nr_threads; thr++)
753 			if (data[thr].thr)
754 				kthread_stop(data[thr].thr);
755 		vfree(data);
756 	}
757 	if (page) free_page((unsigned long)page);
758 
759 	return ret;
760 }
761 
762 /**
763  *	enough_swap - Make sure we have enough swap to save the image.
764  *
765  *	Returns TRUE or FALSE after checking the total amount of swap
766  *	space avaiable from the resume partition.
767  */
768 
769 static int enough_swap(unsigned int nr_pages, unsigned int flags)
770 {
771 	unsigned int free_swap = count_swap_pages(root_swap, 1);
772 	unsigned int required;
773 
774 	pr_debug("PM: Free swap pages: %u\n", free_swap);
775 
776 	required = PAGES_FOR_IO + ((flags & SF_NOCOMPRESS_MODE) ?
777 		nr_pages : (nr_pages * LZO_CMP_PAGES) / LZO_UNC_PAGES + 1);
778 	return free_swap > required;
779 }
780 
781 /**
782  *	swsusp_write - Write entire image and metadata.
783  *	@flags: flags to pass to the "boot" kernel in the image header
784  *
785  *	It is important _NOT_ to umount filesystems at this point. We want
786  *	them synced (in case something goes wrong) but we DO not want to mark
787  *	filesystem clean: it is not. (And it does not matter, if we resume
788  *	correctly, we'll mark system clean, anyway.)
789  */
790 
791 int swsusp_write(unsigned int flags)
792 {
793 	struct swap_map_handle handle;
794 	struct snapshot_handle snapshot;
795 	struct swsusp_info *header;
796 	unsigned long pages;
797 	int error;
798 
799 	pages = snapshot_get_image_size();
800 	error = get_swap_writer(&handle);
801 	if (error) {
802 		printk(KERN_ERR "PM: Cannot get swap writer\n");
803 		return error;
804 	}
805 	if (!enough_swap(pages, flags)) {
806 		printk(KERN_ERR "PM: Not enough free swap\n");
807 		error = -ENOSPC;
808 		goto out_finish;
809 	}
810 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
811 	error = snapshot_read_next(&snapshot);
812 	if (error < PAGE_SIZE) {
813 		if (error >= 0)
814 			error = -EFAULT;
815 
816 		goto out_finish;
817 	}
818 	header = (struct swsusp_info *)data_of(snapshot);
819 	error = swap_write_page(&handle, header, NULL);
820 	if (!error) {
821 		error = (flags & SF_NOCOMPRESS_MODE) ?
822 			save_image(&handle, &snapshot, pages - 1) :
823 			save_image_lzo(&handle, &snapshot, pages - 1);
824 	}
825 out_finish:
826 	error = swap_writer_finish(&handle, flags, error);
827 	return error;
828 }
829 
830 /**
831  *	The following functions allow us to read data using a swap map
832  *	in a file-alike way
833  */
834 
835 static void release_swap_reader(struct swap_map_handle *handle)
836 {
837 	struct swap_map_page_list *tmp;
838 
839 	while (handle->maps) {
840 		if (handle->maps->map)
841 			free_page((unsigned long)handle->maps->map);
842 		tmp = handle->maps;
843 		handle->maps = handle->maps->next;
844 		kfree(tmp);
845 	}
846 	handle->cur = NULL;
847 }
848 
849 static int get_swap_reader(struct swap_map_handle *handle,
850 		unsigned int *flags_p)
851 {
852 	int error;
853 	struct swap_map_page_list *tmp, *last;
854 	sector_t offset;
855 
856 	*flags_p = swsusp_header->flags;
857 
858 	if (!swsusp_header->image) /* how can this happen? */
859 		return -EINVAL;
860 
861 	handle->cur = NULL;
862 	last = handle->maps = NULL;
863 	offset = swsusp_header->image;
864 	while (offset) {
865 		tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
866 		if (!tmp) {
867 			release_swap_reader(handle);
868 			return -ENOMEM;
869 		}
870 		memset(tmp, 0, sizeof(*tmp));
871 		if (!handle->maps)
872 			handle->maps = tmp;
873 		if (last)
874 			last->next = tmp;
875 		last = tmp;
876 
877 		tmp->map = (struct swap_map_page *)
878 		           __get_free_page(__GFP_WAIT | __GFP_HIGH);
879 		if (!tmp->map) {
880 			release_swap_reader(handle);
881 			return -ENOMEM;
882 		}
883 
884 		error = hib_bio_read_page(offset, tmp->map, NULL);
885 		if (error) {
886 			release_swap_reader(handle);
887 			return error;
888 		}
889 		offset = tmp->map->next_swap;
890 	}
891 	handle->k = 0;
892 	handle->cur = handle->maps->map;
893 	return 0;
894 }
895 
896 static int swap_read_page(struct swap_map_handle *handle, void *buf,
897 				struct bio **bio_chain)
898 {
899 	sector_t offset;
900 	int error;
901 	struct swap_map_page_list *tmp;
902 
903 	if (!handle->cur)
904 		return -EINVAL;
905 	offset = handle->cur->entries[handle->k];
906 	if (!offset)
907 		return -EFAULT;
908 	error = hib_bio_read_page(offset, buf, bio_chain);
909 	if (error)
910 		return error;
911 	if (++handle->k >= MAP_PAGE_ENTRIES) {
912 		handle->k = 0;
913 		free_page((unsigned long)handle->maps->map);
914 		tmp = handle->maps;
915 		handle->maps = handle->maps->next;
916 		kfree(tmp);
917 		if (!handle->maps)
918 			release_swap_reader(handle);
919 		else
920 			handle->cur = handle->maps->map;
921 	}
922 	return error;
923 }
924 
925 static int swap_reader_finish(struct swap_map_handle *handle)
926 {
927 	release_swap_reader(handle);
928 
929 	return 0;
930 }
931 
932 /**
933  *	load_image - load the image using the swap map handle
934  *	@handle and the snapshot handle @snapshot
935  *	(assume there are @nr_pages pages to load)
936  */
937 
938 static int load_image(struct swap_map_handle *handle,
939                       struct snapshot_handle *snapshot,
940                       unsigned int nr_to_read)
941 {
942 	unsigned int m;
943 	int ret = 0;
944 	struct timeval start;
945 	struct timeval stop;
946 	struct bio *bio;
947 	int err2;
948 	unsigned nr_pages;
949 
950 	printk(KERN_INFO "PM: Loading image data pages (%u pages) ...     ",
951 		nr_to_read);
952 	m = nr_to_read / 100;
953 	if (!m)
954 		m = 1;
955 	nr_pages = 0;
956 	bio = NULL;
957 	do_gettimeofday(&start);
958 	for ( ; ; ) {
959 		ret = snapshot_write_next(snapshot);
960 		if (ret <= 0)
961 			break;
962 		ret = swap_read_page(handle, data_of(*snapshot), &bio);
963 		if (ret)
964 			break;
965 		if (snapshot->sync_read)
966 			ret = hib_wait_on_bio_chain(&bio);
967 		if (ret)
968 			break;
969 		if (!(nr_pages % m))
970 			printk("\b\b\b\b%3d%%", nr_pages / m);
971 		nr_pages++;
972 	}
973 	err2 = hib_wait_on_bio_chain(&bio);
974 	do_gettimeofday(&stop);
975 	if (!ret)
976 		ret = err2;
977 	if (!ret) {
978 		printk("\b\b\b\bdone\n");
979 		snapshot_write_finalize(snapshot);
980 		if (!snapshot_image_loaded(snapshot))
981 			ret = -ENODATA;
982 	} else
983 		printk("\n");
984 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
985 	return ret;
986 }
987 
988 /**
989  * Structure used for LZO data decompression.
990  */
991 struct dec_data {
992 	struct task_struct *thr;                  /* thread */
993 	atomic_t ready;                           /* ready to start flag */
994 	atomic_t stop;                            /* ready to stop flag */
995 	int ret;                                  /* return code */
996 	wait_queue_head_t go;                     /* start decompression */
997 	wait_queue_head_t done;                   /* decompression done */
998 	size_t unc_len;                           /* uncompressed length */
999 	size_t cmp_len;                           /* compressed length */
1000 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1001 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1002 };
1003 
1004 /**
1005  * Deompression function that runs in its own thread.
1006  */
1007 static int lzo_decompress_threadfn(void *data)
1008 {
1009 	struct dec_data *d = data;
1010 
1011 	while (1) {
1012 		wait_event(d->go, atomic_read(&d->ready) ||
1013 		                  kthread_should_stop());
1014 		if (kthread_should_stop()) {
1015 			d->thr = NULL;
1016 			d->ret = -1;
1017 			atomic_set(&d->stop, 1);
1018 			wake_up(&d->done);
1019 			break;
1020 		}
1021 		atomic_set(&d->ready, 0);
1022 
1023 		d->unc_len = LZO_UNC_SIZE;
1024 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1025 		                               d->unc, &d->unc_len);
1026 		atomic_set(&d->stop, 1);
1027 		wake_up(&d->done);
1028 	}
1029 	return 0;
1030 }
1031 
1032 /**
1033  * load_image_lzo - Load compressed image data and decompress them with LZO.
1034  * @handle: Swap map handle to use for loading data.
1035  * @snapshot: Image to copy uncompressed data into.
1036  * @nr_to_read: Number of pages to load.
1037  */
1038 static int load_image_lzo(struct swap_map_handle *handle,
1039                           struct snapshot_handle *snapshot,
1040                           unsigned int nr_to_read)
1041 {
1042 	unsigned int m;
1043 	int ret = 0;
1044 	int eof = 0;
1045 	struct bio *bio;
1046 	struct timeval start;
1047 	struct timeval stop;
1048 	unsigned nr_pages;
1049 	size_t off;
1050 	unsigned i, thr, run_threads, nr_threads;
1051 	unsigned ring = 0, pg = 0, ring_size = 0,
1052 	         have = 0, want, need, asked = 0;
1053 	unsigned long read_pages;
1054 	unsigned char **page = NULL;
1055 	struct dec_data *data = NULL;
1056 	struct crc_data *crc = NULL;
1057 
1058 	/*
1059 	 * We'll limit the number of threads for decompression to limit memory
1060 	 * footprint.
1061 	 */
1062 	nr_threads = num_online_cpus() - 1;
1063 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1064 
1065 	page = vmalloc(sizeof(*page) * LZO_READ_PAGES);
1066 	if (!page) {
1067 		printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1068 		ret = -ENOMEM;
1069 		goto out_clean;
1070 	}
1071 
1072 	data = vmalloc(sizeof(*data) * nr_threads);
1073 	if (!data) {
1074 		printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1075 		ret = -ENOMEM;
1076 		goto out_clean;
1077 	}
1078 	for (thr = 0; thr < nr_threads; thr++)
1079 		memset(&data[thr], 0, offsetof(struct dec_data, go));
1080 
1081 	crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1082 	if (!crc) {
1083 		printk(KERN_ERR "PM: Failed to allocate crc\n");
1084 		ret = -ENOMEM;
1085 		goto out_clean;
1086 	}
1087 	memset(crc, 0, offsetof(struct crc_data, go));
1088 
1089 	/*
1090 	 * Start the decompression threads.
1091 	 */
1092 	for (thr = 0; thr < nr_threads; thr++) {
1093 		init_waitqueue_head(&data[thr].go);
1094 		init_waitqueue_head(&data[thr].done);
1095 
1096 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1097 		                            &data[thr],
1098 		                            "image_decompress/%u", thr);
1099 		if (IS_ERR(data[thr].thr)) {
1100 			data[thr].thr = NULL;
1101 			printk(KERN_ERR
1102 			       "PM: Cannot start decompression threads\n");
1103 			ret = -ENOMEM;
1104 			goto out_clean;
1105 		}
1106 	}
1107 
1108 	/*
1109 	 * Start the CRC32 thread.
1110 	 */
1111 	init_waitqueue_head(&crc->go);
1112 	init_waitqueue_head(&crc->done);
1113 
1114 	handle->crc32 = 0;
1115 	crc->crc32 = &handle->crc32;
1116 	for (thr = 0; thr < nr_threads; thr++) {
1117 		crc->unc[thr] = data[thr].unc;
1118 		crc->unc_len[thr] = &data[thr].unc_len;
1119 	}
1120 
1121 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1122 	if (IS_ERR(crc->thr)) {
1123 		crc->thr = NULL;
1124 		printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1125 		ret = -ENOMEM;
1126 		goto out_clean;
1127 	}
1128 
1129 	/*
1130 	 * Adjust number of pages for read buffering, in case we are short.
1131 	 */
1132 	read_pages = (nr_free_pages() - snapshot_get_image_size()) >> 1;
1133 	read_pages = clamp_val(read_pages, LZO_CMP_PAGES, LZO_READ_PAGES);
1134 
1135 	for (i = 0; i < read_pages; i++) {
1136 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1137 		                                  __GFP_WAIT | __GFP_HIGH :
1138 		                                  __GFP_WAIT);
1139 		if (!page[i]) {
1140 			if (i < LZO_CMP_PAGES) {
1141 				ring_size = i;
1142 				printk(KERN_ERR
1143 				       "PM: Failed to allocate LZO pages\n");
1144 				ret = -ENOMEM;
1145 				goto out_clean;
1146 			} else {
1147 				break;
1148 			}
1149 		}
1150 	}
1151 	want = ring_size = i;
1152 
1153 	printk(KERN_INFO
1154 		"PM: Using %u thread(s) for decompression.\n"
1155 		"PM: Loading and decompressing image data (%u pages) ...     ",
1156 		nr_threads, nr_to_read);
1157 	m = nr_to_read / 100;
1158 	if (!m)
1159 		m = 1;
1160 	nr_pages = 0;
1161 	bio = NULL;
1162 	do_gettimeofday(&start);
1163 
1164 	ret = snapshot_write_next(snapshot);
1165 	if (ret <= 0)
1166 		goto out_finish;
1167 
1168 	for(;;) {
1169 		for (i = 0; !eof && i < want; i++) {
1170 			ret = swap_read_page(handle, page[ring], &bio);
1171 			if (ret) {
1172 				/*
1173 				 * On real read error, finish. On end of data,
1174 				 * set EOF flag and just exit the read loop.
1175 				 */
1176 				if (handle->cur &&
1177 				    handle->cur->entries[handle->k]) {
1178 					goto out_finish;
1179 				} else {
1180 					eof = 1;
1181 					break;
1182 				}
1183 			}
1184 			if (++ring >= ring_size)
1185 				ring = 0;
1186 		}
1187 		asked += i;
1188 		want -= i;
1189 
1190 		/*
1191 		 * We are out of data, wait for some more.
1192 		 */
1193 		if (!have) {
1194 			if (!asked)
1195 				break;
1196 
1197 			ret = hib_wait_on_bio_chain(&bio);
1198 			if (ret)
1199 				goto out_finish;
1200 			have += asked;
1201 			asked = 0;
1202 			if (eof)
1203 				eof = 2;
1204 		}
1205 
1206 		if (crc->run_threads) {
1207 			wait_event(crc->done, atomic_read(&crc->stop));
1208 			atomic_set(&crc->stop, 0);
1209 			crc->run_threads = 0;
1210 		}
1211 
1212 		for (thr = 0; have && thr < nr_threads; thr++) {
1213 			data[thr].cmp_len = *(size_t *)page[pg];
1214 			if (unlikely(!data[thr].cmp_len ||
1215 			             data[thr].cmp_len >
1216 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1217 				printk(KERN_ERR
1218 				       "PM: Invalid LZO compressed length\n");
1219 				ret = -1;
1220 				goto out_finish;
1221 			}
1222 
1223 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1224 			                    PAGE_SIZE);
1225 			if (need > have) {
1226 				if (eof > 1) {
1227 					ret = -1;
1228 					goto out_finish;
1229 				}
1230 				break;
1231 			}
1232 
1233 			for (off = 0;
1234 			     off < LZO_HEADER + data[thr].cmp_len;
1235 			     off += PAGE_SIZE) {
1236 				memcpy(data[thr].cmp + off,
1237 				       page[pg], PAGE_SIZE);
1238 				have--;
1239 				want++;
1240 				if (++pg >= ring_size)
1241 					pg = 0;
1242 			}
1243 
1244 			atomic_set(&data[thr].ready, 1);
1245 			wake_up(&data[thr].go);
1246 		}
1247 
1248 		/*
1249 		 * Wait for more data while we are decompressing.
1250 		 */
1251 		if (have < LZO_CMP_PAGES && asked) {
1252 			ret = hib_wait_on_bio_chain(&bio);
1253 			if (ret)
1254 				goto out_finish;
1255 			have += asked;
1256 			asked = 0;
1257 			if (eof)
1258 				eof = 2;
1259 		}
1260 
1261 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1262 			wait_event(data[thr].done,
1263 			           atomic_read(&data[thr].stop));
1264 			atomic_set(&data[thr].stop, 0);
1265 
1266 			ret = data[thr].ret;
1267 
1268 			if (ret < 0) {
1269 				printk(KERN_ERR
1270 				       "PM: LZO decompression failed\n");
1271 				goto out_finish;
1272 			}
1273 
1274 			if (unlikely(!data[thr].unc_len ||
1275 			             data[thr].unc_len > LZO_UNC_SIZE ||
1276 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1277 				printk(KERN_ERR
1278 				       "PM: Invalid LZO uncompressed length\n");
1279 				ret = -1;
1280 				goto out_finish;
1281 			}
1282 
1283 			for (off = 0;
1284 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1285 				memcpy(data_of(*snapshot),
1286 				       data[thr].unc + off, PAGE_SIZE);
1287 
1288 				if (!(nr_pages % m))
1289 					printk("\b\b\b\b%3d%%", nr_pages / m);
1290 				nr_pages++;
1291 
1292 				ret = snapshot_write_next(snapshot);
1293 				if (ret <= 0) {
1294 					crc->run_threads = thr + 1;
1295 					atomic_set(&crc->ready, 1);
1296 					wake_up(&crc->go);
1297 					goto out_finish;
1298 				}
1299 			}
1300 		}
1301 
1302 		crc->run_threads = thr;
1303 		atomic_set(&crc->ready, 1);
1304 		wake_up(&crc->go);
1305 	}
1306 
1307 out_finish:
1308 	if (crc->run_threads) {
1309 		wait_event(crc->done, atomic_read(&crc->stop));
1310 		atomic_set(&crc->stop, 0);
1311 	}
1312 	do_gettimeofday(&stop);
1313 	if (!ret) {
1314 		printk("\b\b\b\bdone\n");
1315 		snapshot_write_finalize(snapshot);
1316 		if (!snapshot_image_loaded(snapshot))
1317 			ret = -ENODATA;
1318 		if (!ret) {
1319 			if (swsusp_header->flags & SF_CRC32_MODE) {
1320 				if(handle->crc32 != swsusp_header->crc32) {
1321 					printk(KERN_ERR
1322 					       "PM: Invalid image CRC32!\n");
1323 					ret = -ENODATA;
1324 				}
1325 			}
1326 		}
1327 	} else
1328 		printk("\n");
1329 	swsusp_show_speed(&start, &stop, nr_to_read, "Read");
1330 out_clean:
1331 	for (i = 0; i < ring_size; i++)
1332 		free_page((unsigned long)page[i]);
1333 	if (crc) {
1334 		if (crc->thr)
1335 			kthread_stop(crc->thr);
1336 		kfree(crc);
1337 	}
1338 	if (data) {
1339 		for (thr = 0; thr < nr_threads; thr++)
1340 			if (data[thr].thr)
1341 				kthread_stop(data[thr].thr);
1342 		vfree(data);
1343 	}
1344 	if (page) vfree(page);
1345 
1346 	return ret;
1347 }
1348 
1349 /**
1350  *	swsusp_read - read the hibernation image.
1351  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1352  *		  be written into this memory location
1353  */
1354 
1355 int swsusp_read(unsigned int *flags_p)
1356 {
1357 	int error;
1358 	struct swap_map_handle handle;
1359 	struct snapshot_handle snapshot;
1360 	struct swsusp_info *header;
1361 
1362 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1363 	error = snapshot_write_next(&snapshot);
1364 	if (error < PAGE_SIZE)
1365 		return error < 0 ? error : -EFAULT;
1366 	header = (struct swsusp_info *)data_of(snapshot);
1367 	error = get_swap_reader(&handle, flags_p);
1368 	if (error)
1369 		goto end;
1370 	if (!error)
1371 		error = swap_read_page(&handle, header, NULL);
1372 	if (!error) {
1373 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1374 			load_image(&handle, &snapshot, header->pages - 1) :
1375 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1376 	}
1377 	swap_reader_finish(&handle);
1378 end:
1379 	if (!error)
1380 		pr_debug("PM: Image successfully loaded\n");
1381 	else
1382 		pr_debug("PM: Error %d resuming\n", error);
1383 	return error;
1384 }
1385 
1386 /**
1387  *      swsusp_check - Check for swsusp signature in the resume device
1388  */
1389 
1390 int swsusp_check(void)
1391 {
1392 	int error;
1393 
1394 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1395 					    FMODE_READ, NULL);
1396 	if (!IS_ERR(hib_resume_bdev)) {
1397 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1398 		clear_page(swsusp_header);
1399 		error = hib_bio_read_page(swsusp_resume_block,
1400 					swsusp_header, NULL);
1401 		if (error)
1402 			goto put;
1403 
1404 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1405 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1406 			/* Reset swap signature now */
1407 			error = hib_bio_write_page(swsusp_resume_block,
1408 						swsusp_header, NULL);
1409 		} else {
1410 			error = -EINVAL;
1411 		}
1412 
1413 put:
1414 		if (error)
1415 			blkdev_put(hib_resume_bdev, FMODE_READ);
1416 		else
1417 			pr_debug("PM: Image signature found, resuming\n");
1418 	} else {
1419 		error = PTR_ERR(hib_resume_bdev);
1420 	}
1421 
1422 	if (error)
1423 		pr_debug("PM: Image not found (code %d)\n", error);
1424 
1425 	return error;
1426 }
1427 
1428 /**
1429  *	swsusp_close - close swap device.
1430  */
1431 
1432 void swsusp_close(fmode_t mode)
1433 {
1434 	if (IS_ERR(hib_resume_bdev)) {
1435 		pr_debug("PM: Image device not initialised\n");
1436 		return;
1437 	}
1438 
1439 	blkdev_put(hib_resume_bdev, mode);
1440 }
1441 
1442 static int swsusp_header_init(void)
1443 {
1444 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1445 	if (!swsusp_header)
1446 		panic("Could not allocate memory for swsusp_header\n");
1447 	return 0;
1448 }
1449 
1450 core_initcall(swsusp_header_init);
1451