xref: /linux/kernel/power/swap.c (revision 68f715a820b02f965e2afc584a6cb542843cbc98)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/lzo.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 u32 swsusp_hardware_signature;
39 
40 /*
41  * When reading an {un,}compressed image, we may restore pages in place,
42  * in which case some architectures need these pages cleaning before they
43  * can be executed. We don't know which pages these may be, so clean the lot.
44  */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47 
48 /*
49  *	The swap map is a data structure used for keeping track of each page
50  *	written to a swap partition.  It consists of many swap_map_page
51  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52  *	These structures are stored on the swap and linked together with the
53  *	help of the .next_swap member.
54  *
55  *	The swap map is created during suspend.  The swap map pages are
56  *	allocated and populated one at a time, so we only need one memory
57  *	page to set up the entire structure.
58  *
59  *	During resume we pick up all swap_map_page structures into a list.
60  */
61 
62 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
63 
64 /*
65  * Number of free pages that are not high.
66  */
67 static inline unsigned long low_free_pages(void)
68 {
69 	return nr_free_pages() - nr_free_highpages();
70 }
71 
72 /*
73  * Number of pages required to be kept free while writing the image. Always
74  * half of all available low pages before the writing starts.
75  */
76 static inline unsigned long reqd_free_pages(void)
77 {
78 	return low_free_pages() / 2;
79 }
80 
81 struct swap_map_page {
82 	sector_t entries[MAP_PAGE_ENTRIES];
83 	sector_t next_swap;
84 };
85 
86 struct swap_map_page_list {
87 	struct swap_map_page *map;
88 	struct swap_map_page_list *next;
89 };
90 
91 /*
92  *	The swap_map_handle structure is used for handling swap in
93  *	a file-alike way
94  */
95 
96 struct swap_map_handle {
97 	struct swap_map_page *cur;
98 	struct swap_map_page_list *maps;
99 	sector_t cur_swap;
100 	sector_t first_sector;
101 	unsigned int k;
102 	unsigned long reqd_free_pages;
103 	u32 crc32;
104 };
105 
106 struct swsusp_header {
107 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108 	              sizeof(u32) - sizeof(u32)];
109 	u32	hw_sig;
110 	u32	crc32;
111 	sector_t image;
112 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
113 	char	orig_sig[10];
114 	char	sig[10];
115 } __packed;
116 
117 static struct swsusp_header *swsusp_header;
118 
119 /*
120  *	The following functions are used for tracing the allocated
121  *	swap pages, so that they can be freed in case of an error.
122  */
123 
124 struct swsusp_extent {
125 	struct rb_node node;
126 	unsigned long start;
127 	unsigned long end;
128 };
129 
130 static struct rb_root swsusp_extents = RB_ROOT;
131 
132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134 	struct rb_node **new = &(swsusp_extents.rb_node);
135 	struct rb_node *parent = NULL;
136 	struct swsusp_extent *ext;
137 
138 	/* Figure out where to put the new node */
139 	while (*new) {
140 		ext = rb_entry(*new, struct swsusp_extent, node);
141 		parent = *new;
142 		if (swap_offset < ext->start) {
143 			/* Try to merge */
144 			if (swap_offset == ext->start - 1) {
145 				ext->start--;
146 				return 0;
147 			}
148 			new = &((*new)->rb_left);
149 		} else if (swap_offset > ext->end) {
150 			/* Try to merge */
151 			if (swap_offset == ext->end + 1) {
152 				ext->end++;
153 				return 0;
154 			}
155 			new = &((*new)->rb_right);
156 		} else {
157 			/* It already is in the tree */
158 			return -EINVAL;
159 		}
160 	}
161 	/* Add the new node and rebalance the tree. */
162 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 	if (!ext)
164 		return -ENOMEM;
165 
166 	ext->start = swap_offset;
167 	ext->end = swap_offset;
168 	rb_link_node(&ext->node, parent, new);
169 	rb_insert_color(&ext->node, &swsusp_extents);
170 	return 0;
171 }
172 
173 /*
174  *	alloc_swapdev_block - allocate a swap page and register that it has
175  *	been allocated, so that it can be freed in case of an error.
176  */
177 
178 sector_t alloc_swapdev_block(int swap)
179 {
180 	unsigned long offset;
181 
182 	offset = swp_offset(get_swap_page_of_type(swap));
183 	if (offset) {
184 		if (swsusp_extents_insert(offset))
185 			swap_free(swp_entry(swap, offset));
186 		else
187 			return swapdev_block(swap, offset);
188 	}
189 	return 0;
190 }
191 
192 /*
193  *	free_all_swap_pages - free swap pages allocated for saving image data.
194  *	It also frees the extents used to register which swap entries had been
195  *	allocated.
196  */
197 
198 void free_all_swap_pages(int swap)
199 {
200 	struct rb_node *node;
201 
202 	while ((node = swsusp_extents.rb_node)) {
203 		struct swsusp_extent *ext;
204 		unsigned long offset;
205 
206 		ext = rb_entry(node, struct swsusp_extent, node);
207 		rb_erase(node, &swsusp_extents);
208 		for (offset = ext->start; offset <= ext->end; offset++)
209 			swap_free(swp_entry(swap, offset));
210 
211 		kfree(ext);
212 	}
213 }
214 
215 int swsusp_swap_in_use(void)
216 {
217 	return (swsusp_extents.rb_node != NULL);
218 }
219 
220 /*
221  * General things
222  */
223 
224 static unsigned short root_swap = 0xffff;
225 static struct bdev_handle *hib_resume_bdev_handle;
226 
227 struct hib_bio_batch {
228 	atomic_t		count;
229 	wait_queue_head_t	wait;
230 	blk_status_t		error;
231 	struct blk_plug		plug;
232 };
233 
234 static void hib_init_batch(struct hib_bio_batch *hb)
235 {
236 	atomic_set(&hb->count, 0);
237 	init_waitqueue_head(&hb->wait);
238 	hb->error = BLK_STS_OK;
239 	blk_start_plug(&hb->plug);
240 }
241 
242 static void hib_finish_batch(struct hib_bio_batch *hb)
243 {
244 	blk_finish_plug(&hb->plug);
245 }
246 
247 static void hib_end_io(struct bio *bio)
248 {
249 	struct hib_bio_batch *hb = bio->bi_private;
250 	struct page *page = bio_first_page_all(bio);
251 
252 	if (bio->bi_status) {
253 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
254 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
255 			 (unsigned long long)bio->bi_iter.bi_sector);
256 	}
257 
258 	if (bio_data_dir(bio) == WRITE)
259 		put_page(page);
260 	else if (clean_pages_on_read)
261 		flush_icache_range((unsigned long)page_address(page),
262 				   (unsigned long)page_address(page) + PAGE_SIZE);
263 
264 	if (bio->bi_status && !hb->error)
265 		hb->error = bio->bi_status;
266 	if (atomic_dec_and_test(&hb->count))
267 		wake_up(&hb->wait);
268 
269 	bio_put(bio);
270 }
271 
272 static int hib_submit_io(blk_opf_t opf, pgoff_t page_off, void *addr,
273 			 struct hib_bio_batch *hb)
274 {
275 	struct page *page = virt_to_page(addr);
276 	struct bio *bio;
277 	int error = 0;
278 
279 	bio = bio_alloc(hib_resume_bdev_handle->bdev, 1, opf,
280 			GFP_NOIO | __GFP_HIGH);
281 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
282 
283 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
284 		pr_err("Adding page to bio failed at %llu\n",
285 		       (unsigned long long)bio->bi_iter.bi_sector);
286 		bio_put(bio);
287 		return -EFAULT;
288 	}
289 
290 	if (hb) {
291 		bio->bi_end_io = hib_end_io;
292 		bio->bi_private = hb;
293 		atomic_inc(&hb->count);
294 		submit_bio(bio);
295 	} else {
296 		error = submit_bio_wait(bio);
297 		bio_put(bio);
298 	}
299 
300 	return error;
301 }
302 
303 static int hib_wait_io(struct hib_bio_batch *hb)
304 {
305 	/*
306 	 * We are relying on the behavior of blk_plug that a thread with
307 	 * a plug will flush the plug list before sleeping.
308 	 */
309 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
310 	return blk_status_to_errno(hb->error);
311 }
312 
313 /*
314  * Saving part
315  */
316 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
317 {
318 	int error;
319 
320 	hib_submit_io(REQ_OP_READ, swsusp_resume_block, swsusp_header, NULL);
321 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
322 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
323 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
324 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
325 		swsusp_header->image = handle->first_sector;
326 		if (swsusp_hardware_signature) {
327 			swsusp_header->hw_sig = swsusp_hardware_signature;
328 			flags |= SF_HW_SIG;
329 		}
330 		swsusp_header->flags = flags;
331 		if (flags & SF_CRC32_MODE)
332 			swsusp_header->crc32 = handle->crc32;
333 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
334 				      swsusp_resume_block, swsusp_header, NULL);
335 	} else {
336 		pr_err("Swap header not found!\n");
337 		error = -ENODEV;
338 	}
339 	return error;
340 }
341 
342 /**
343  *	swsusp_swap_check - check if the resume device is a swap device
344  *	and get its index (if so)
345  *
346  *	This is called before saving image
347  */
348 static int swsusp_swap_check(void)
349 {
350 	int res;
351 
352 	if (swsusp_resume_device)
353 		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
354 	else
355 		res = find_first_swap(&swsusp_resume_device);
356 	if (res < 0)
357 		return res;
358 	root_swap = res;
359 
360 	hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device,
361 			BLK_OPEN_WRITE, NULL, NULL);
362 	if (IS_ERR(hib_resume_bdev_handle))
363 		return PTR_ERR(hib_resume_bdev_handle);
364 
365 	res = set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE);
366 	if (res < 0)
367 		bdev_release(hib_resume_bdev_handle);
368 
369 	return res;
370 }
371 
372 /**
373  *	write_page - Write one page to given swap location.
374  *	@buf:		Address we're writing.
375  *	@offset:	Offset of the swap page we're writing to.
376  *	@hb:		bio completion batch
377  */
378 
379 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
380 {
381 	void *src;
382 	int ret;
383 
384 	if (!offset)
385 		return -ENOSPC;
386 
387 	if (hb) {
388 		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
389 		                              __GFP_NORETRY);
390 		if (src) {
391 			copy_page(src, buf);
392 		} else {
393 			ret = hib_wait_io(hb); /* Free pages */
394 			if (ret)
395 				return ret;
396 			src = (void *)__get_free_page(GFP_NOIO |
397 			                              __GFP_NOWARN |
398 			                              __GFP_NORETRY);
399 			if (src) {
400 				copy_page(src, buf);
401 			} else {
402 				WARN_ON_ONCE(1);
403 				hb = NULL;	/* Go synchronous */
404 				src = buf;
405 			}
406 		}
407 	} else {
408 		src = buf;
409 	}
410 	return hib_submit_io(REQ_OP_WRITE | REQ_SYNC, offset, src, hb);
411 }
412 
413 static void release_swap_writer(struct swap_map_handle *handle)
414 {
415 	if (handle->cur)
416 		free_page((unsigned long)handle->cur);
417 	handle->cur = NULL;
418 }
419 
420 static int get_swap_writer(struct swap_map_handle *handle)
421 {
422 	int ret;
423 
424 	ret = swsusp_swap_check();
425 	if (ret) {
426 		if (ret != -ENOSPC)
427 			pr_err("Cannot find swap device, try swapon -a\n");
428 		return ret;
429 	}
430 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
431 	if (!handle->cur) {
432 		ret = -ENOMEM;
433 		goto err_close;
434 	}
435 	handle->cur_swap = alloc_swapdev_block(root_swap);
436 	if (!handle->cur_swap) {
437 		ret = -ENOSPC;
438 		goto err_rel;
439 	}
440 	handle->k = 0;
441 	handle->reqd_free_pages = reqd_free_pages();
442 	handle->first_sector = handle->cur_swap;
443 	return 0;
444 err_rel:
445 	release_swap_writer(handle);
446 err_close:
447 	swsusp_close();
448 	return ret;
449 }
450 
451 static int swap_write_page(struct swap_map_handle *handle, void *buf,
452 		struct hib_bio_batch *hb)
453 {
454 	int error;
455 	sector_t offset;
456 
457 	if (!handle->cur)
458 		return -EINVAL;
459 	offset = alloc_swapdev_block(root_swap);
460 	error = write_page(buf, offset, hb);
461 	if (error)
462 		return error;
463 	handle->cur->entries[handle->k++] = offset;
464 	if (handle->k >= MAP_PAGE_ENTRIES) {
465 		offset = alloc_swapdev_block(root_swap);
466 		if (!offset)
467 			return -ENOSPC;
468 		handle->cur->next_swap = offset;
469 		error = write_page(handle->cur, handle->cur_swap, hb);
470 		if (error)
471 			goto out;
472 		clear_page(handle->cur);
473 		handle->cur_swap = offset;
474 		handle->k = 0;
475 
476 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
477 			error = hib_wait_io(hb);
478 			if (error)
479 				goto out;
480 			/*
481 			 * Recalculate the number of required free pages, to
482 			 * make sure we never take more than half.
483 			 */
484 			handle->reqd_free_pages = reqd_free_pages();
485 		}
486 	}
487  out:
488 	return error;
489 }
490 
491 static int flush_swap_writer(struct swap_map_handle *handle)
492 {
493 	if (handle->cur && handle->cur_swap)
494 		return write_page(handle->cur, handle->cur_swap, NULL);
495 	else
496 		return -EINVAL;
497 }
498 
499 static int swap_writer_finish(struct swap_map_handle *handle,
500 		unsigned int flags, int error)
501 {
502 	if (!error) {
503 		pr_info("S");
504 		error = mark_swapfiles(handle, flags);
505 		pr_cont("|\n");
506 		flush_swap_writer(handle);
507 	}
508 
509 	if (error)
510 		free_all_swap_pages(root_swap);
511 	release_swap_writer(handle);
512 	swsusp_close();
513 
514 	return error;
515 }
516 
517 /* We need to remember how much compressed data we need to read. */
518 #define LZO_HEADER	sizeof(size_t)
519 
520 /* Number of pages/bytes we'll compress at one time. */
521 #define LZO_UNC_PAGES	32
522 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
523 
524 /* Number of pages/bytes we need for compressed data (worst case). */
525 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
526 			             LZO_HEADER, PAGE_SIZE)
527 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
528 
529 /* Maximum number of threads for compression/decompression. */
530 #define LZO_THREADS	3
531 
532 /* Minimum/maximum number of pages for read buffering. */
533 #define LZO_MIN_RD_PAGES	1024
534 #define LZO_MAX_RD_PAGES	8192
535 
536 
537 /**
538  *	save_image - save the suspend image data
539  */
540 
541 static int save_image(struct swap_map_handle *handle,
542                       struct snapshot_handle *snapshot,
543                       unsigned int nr_to_write)
544 {
545 	unsigned int m;
546 	int ret;
547 	int nr_pages;
548 	int err2;
549 	struct hib_bio_batch hb;
550 	ktime_t start;
551 	ktime_t stop;
552 
553 	hib_init_batch(&hb);
554 
555 	pr_info("Saving image data pages (%u pages)...\n",
556 		nr_to_write);
557 	m = nr_to_write / 10;
558 	if (!m)
559 		m = 1;
560 	nr_pages = 0;
561 	start = ktime_get();
562 	while (1) {
563 		ret = snapshot_read_next(snapshot);
564 		if (ret <= 0)
565 			break;
566 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
567 		if (ret)
568 			break;
569 		if (!(nr_pages % m))
570 			pr_info("Image saving progress: %3d%%\n",
571 				nr_pages / m * 10);
572 		nr_pages++;
573 	}
574 	err2 = hib_wait_io(&hb);
575 	hib_finish_batch(&hb);
576 	stop = ktime_get();
577 	if (!ret)
578 		ret = err2;
579 	if (!ret)
580 		pr_info("Image saving done\n");
581 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
582 	return ret;
583 }
584 
585 /*
586  * Structure used for CRC32.
587  */
588 struct crc_data {
589 	struct task_struct *thr;                  /* thread */
590 	atomic_t ready;                           /* ready to start flag */
591 	atomic_t stop;                            /* ready to stop flag */
592 	unsigned run_threads;                     /* nr current threads */
593 	wait_queue_head_t go;                     /* start crc update */
594 	wait_queue_head_t done;                   /* crc update done */
595 	u32 *crc32;                               /* points to handle's crc32 */
596 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
597 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
598 };
599 
600 /*
601  * CRC32 update function that runs in its own thread.
602  */
603 static int crc32_threadfn(void *data)
604 {
605 	struct crc_data *d = data;
606 	unsigned i;
607 
608 	while (1) {
609 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
610 		                  kthread_should_stop());
611 		if (kthread_should_stop()) {
612 			d->thr = NULL;
613 			atomic_set_release(&d->stop, 1);
614 			wake_up(&d->done);
615 			break;
616 		}
617 		atomic_set(&d->ready, 0);
618 
619 		for (i = 0; i < d->run_threads; i++)
620 			*d->crc32 = crc32_le(*d->crc32,
621 			                     d->unc[i], *d->unc_len[i]);
622 		atomic_set_release(&d->stop, 1);
623 		wake_up(&d->done);
624 	}
625 	return 0;
626 }
627 /*
628  * Structure used for LZO data compression.
629  */
630 struct cmp_data {
631 	struct task_struct *thr;                  /* thread */
632 	atomic_t ready;                           /* ready to start flag */
633 	atomic_t stop;                            /* ready to stop flag */
634 	int ret;                                  /* return code */
635 	wait_queue_head_t go;                     /* start compression */
636 	wait_queue_head_t done;                   /* compression done */
637 	size_t unc_len;                           /* uncompressed length */
638 	size_t cmp_len;                           /* compressed length */
639 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
640 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
641 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
642 };
643 
644 /*
645  * Compression function that runs in its own thread.
646  */
647 static int lzo_compress_threadfn(void *data)
648 {
649 	struct cmp_data *d = data;
650 
651 	while (1) {
652 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
653 		                  kthread_should_stop());
654 		if (kthread_should_stop()) {
655 			d->thr = NULL;
656 			d->ret = -1;
657 			atomic_set_release(&d->stop, 1);
658 			wake_up(&d->done);
659 			break;
660 		}
661 		atomic_set(&d->ready, 0);
662 
663 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
664 		                          d->cmp + LZO_HEADER, &d->cmp_len,
665 		                          d->wrk);
666 		atomic_set_release(&d->stop, 1);
667 		wake_up(&d->done);
668 	}
669 	return 0;
670 }
671 
672 /**
673  * save_image_lzo - Save the suspend image data compressed with LZO.
674  * @handle: Swap map handle to use for saving the image.
675  * @snapshot: Image to read data from.
676  * @nr_to_write: Number of pages to save.
677  */
678 static int save_image_lzo(struct swap_map_handle *handle,
679                           struct snapshot_handle *snapshot,
680                           unsigned int nr_to_write)
681 {
682 	unsigned int m;
683 	int ret = 0;
684 	int nr_pages;
685 	int err2;
686 	struct hib_bio_batch hb;
687 	ktime_t start;
688 	ktime_t stop;
689 	size_t off;
690 	unsigned thr, run_threads, nr_threads;
691 	unsigned char *page = NULL;
692 	struct cmp_data *data = NULL;
693 	struct crc_data *crc = NULL;
694 
695 	hib_init_batch(&hb);
696 
697 	/*
698 	 * We'll limit the number of threads for compression to limit memory
699 	 * footprint.
700 	 */
701 	nr_threads = num_online_cpus() - 1;
702 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
703 
704 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
705 	if (!page) {
706 		pr_err("Failed to allocate LZO page\n");
707 		ret = -ENOMEM;
708 		goto out_clean;
709 	}
710 
711 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
712 	if (!data) {
713 		pr_err("Failed to allocate LZO data\n");
714 		ret = -ENOMEM;
715 		goto out_clean;
716 	}
717 
718 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
719 	if (!crc) {
720 		pr_err("Failed to allocate crc\n");
721 		ret = -ENOMEM;
722 		goto out_clean;
723 	}
724 
725 	/*
726 	 * Start the compression threads.
727 	 */
728 	for (thr = 0; thr < nr_threads; thr++) {
729 		init_waitqueue_head(&data[thr].go);
730 		init_waitqueue_head(&data[thr].done);
731 
732 		data[thr].thr = kthread_run(lzo_compress_threadfn,
733 		                            &data[thr],
734 		                            "image_compress/%u", thr);
735 		if (IS_ERR(data[thr].thr)) {
736 			data[thr].thr = NULL;
737 			pr_err("Cannot start compression threads\n");
738 			ret = -ENOMEM;
739 			goto out_clean;
740 		}
741 	}
742 
743 	/*
744 	 * Start the CRC32 thread.
745 	 */
746 	init_waitqueue_head(&crc->go);
747 	init_waitqueue_head(&crc->done);
748 
749 	handle->crc32 = 0;
750 	crc->crc32 = &handle->crc32;
751 	for (thr = 0; thr < nr_threads; thr++) {
752 		crc->unc[thr] = data[thr].unc;
753 		crc->unc_len[thr] = &data[thr].unc_len;
754 	}
755 
756 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
757 	if (IS_ERR(crc->thr)) {
758 		crc->thr = NULL;
759 		pr_err("Cannot start CRC32 thread\n");
760 		ret = -ENOMEM;
761 		goto out_clean;
762 	}
763 
764 	/*
765 	 * Adjust the number of required free pages after all allocations have
766 	 * been done. We don't want to run out of pages when writing.
767 	 */
768 	handle->reqd_free_pages = reqd_free_pages();
769 
770 	pr_info("Using %u thread(s) for compression\n", nr_threads);
771 	pr_info("Compressing and saving image data (%u pages)...\n",
772 		nr_to_write);
773 	m = nr_to_write / 10;
774 	if (!m)
775 		m = 1;
776 	nr_pages = 0;
777 	start = ktime_get();
778 	for (;;) {
779 		for (thr = 0; thr < nr_threads; thr++) {
780 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
781 				ret = snapshot_read_next(snapshot);
782 				if (ret < 0)
783 					goto out_finish;
784 
785 				if (!ret)
786 					break;
787 
788 				memcpy(data[thr].unc + off,
789 				       data_of(*snapshot), PAGE_SIZE);
790 
791 				if (!(nr_pages % m))
792 					pr_info("Image saving progress: %3d%%\n",
793 						nr_pages / m * 10);
794 				nr_pages++;
795 			}
796 			if (!off)
797 				break;
798 
799 			data[thr].unc_len = off;
800 
801 			atomic_set_release(&data[thr].ready, 1);
802 			wake_up(&data[thr].go);
803 		}
804 
805 		if (!thr)
806 			break;
807 
808 		crc->run_threads = thr;
809 		atomic_set_release(&crc->ready, 1);
810 		wake_up(&crc->go);
811 
812 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
813 			wait_event(data[thr].done,
814 				atomic_read_acquire(&data[thr].stop));
815 			atomic_set(&data[thr].stop, 0);
816 
817 			ret = data[thr].ret;
818 
819 			if (ret < 0) {
820 				pr_err("LZO compression failed\n");
821 				goto out_finish;
822 			}
823 
824 			if (unlikely(!data[thr].cmp_len ||
825 			             data[thr].cmp_len >
826 			             lzo1x_worst_compress(data[thr].unc_len))) {
827 				pr_err("Invalid LZO compressed length\n");
828 				ret = -1;
829 				goto out_finish;
830 			}
831 
832 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
833 
834 			/*
835 			 * Given we are writing one page at a time to disk, we
836 			 * copy that much from the buffer, although the last
837 			 * bit will likely be smaller than full page. This is
838 			 * OK - we saved the length of the compressed data, so
839 			 * any garbage at the end will be discarded when we
840 			 * read it.
841 			 */
842 			for (off = 0;
843 			     off < LZO_HEADER + data[thr].cmp_len;
844 			     off += PAGE_SIZE) {
845 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
846 
847 				ret = swap_write_page(handle, page, &hb);
848 				if (ret)
849 					goto out_finish;
850 			}
851 		}
852 
853 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
854 		atomic_set(&crc->stop, 0);
855 	}
856 
857 out_finish:
858 	err2 = hib_wait_io(&hb);
859 	stop = ktime_get();
860 	if (!ret)
861 		ret = err2;
862 	if (!ret)
863 		pr_info("Image saving done\n");
864 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
865 out_clean:
866 	hib_finish_batch(&hb);
867 	if (crc) {
868 		if (crc->thr)
869 			kthread_stop(crc->thr);
870 		kfree(crc);
871 	}
872 	if (data) {
873 		for (thr = 0; thr < nr_threads; thr++)
874 			if (data[thr].thr)
875 				kthread_stop(data[thr].thr);
876 		vfree(data);
877 	}
878 	if (page) free_page((unsigned long)page);
879 
880 	return ret;
881 }
882 
883 /**
884  *	enough_swap - Make sure we have enough swap to save the image.
885  *
886  *	Returns TRUE or FALSE after checking the total amount of swap
887  *	space available from the resume partition.
888  */
889 
890 static int enough_swap(unsigned int nr_pages)
891 {
892 	unsigned int free_swap = count_swap_pages(root_swap, 1);
893 	unsigned int required;
894 
895 	pr_debug("Free swap pages: %u\n", free_swap);
896 
897 	required = PAGES_FOR_IO + nr_pages;
898 	return free_swap > required;
899 }
900 
901 /**
902  *	swsusp_write - Write entire image and metadata.
903  *	@flags: flags to pass to the "boot" kernel in the image header
904  *
905  *	It is important _NOT_ to umount filesystems at this point. We want
906  *	them synced (in case something goes wrong) but we DO not want to mark
907  *	filesystem clean: it is not. (And it does not matter, if we resume
908  *	correctly, we'll mark system clean, anyway.)
909  */
910 
911 int swsusp_write(unsigned int flags)
912 {
913 	struct swap_map_handle handle;
914 	struct snapshot_handle snapshot;
915 	struct swsusp_info *header;
916 	unsigned long pages;
917 	int error;
918 
919 	pages = snapshot_get_image_size();
920 	error = get_swap_writer(&handle);
921 	if (error) {
922 		pr_err("Cannot get swap writer\n");
923 		return error;
924 	}
925 	if (flags & SF_NOCOMPRESS_MODE) {
926 		if (!enough_swap(pages)) {
927 			pr_err("Not enough free swap\n");
928 			error = -ENOSPC;
929 			goto out_finish;
930 		}
931 	}
932 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
933 	error = snapshot_read_next(&snapshot);
934 	if (error < (int)PAGE_SIZE) {
935 		if (error >= 0)
936 			error = -EFAULT;
937 
938 		goto out_finish;
939 	}
940 	header = (struct swsusp_info *)data_of(snapshot);
941 	error = swap_write_page(&handle, header, NULL);
942 	if (!error) {
943 		error = (flags & SF_NOCOMPRESS_MODE) ?
944 			save_image(&handle, &snapshot, pages - 1) :
945 			save_image_lzo(&handle, &snapshot, pages - 1);
946 	}
947 out_finish:
948 	error = swap_writer_finish(&handle, flags, error);
949 	return error;
950 }
951 
952 /*
953  *	The following functions allow us to read data using a swap map
954  *	in a file-like way.
955  */
956 
957 static void release_swap_reader(struct swap_map_handle *handle)
958 {
959 	struct swap_map_page_list *tmp;
960 
961 	while (handle->maps) {
962 		if (handle->maps->map)
963 			free_page((unsigned long)handle->maps->map);
964 		tmp = handle->maps;
965 		handle->maps = handle->maps->next;
966 		kfree(tmp);
967 	}
968 	handle->cur = NULL;
969 }
970 
971 static int get_swap_reader(struct swap_map_handle *handle,
972 		unsigned int *flags_p)
973 {
974 	int error;
975 	struct swap_map_page_list *tmp, *last;
976 	sector_t offset;
977 
978 	*flags_p = swsusp_header->flags;
979 
980 	if (!swsusp_header->image) /* how can this happen? */
981 		return -EINVAL;
982 
983 	handle->cur = NULL;
984 	last = handle->maps = NULL;
985 	offset = swsusp_header->image;
986 	while (offset) {
987 		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
988 		if (!tmp) {
989 			release_swap_reader(handle);
990 			return -ENOMEM;
991 		}
992 		if (!handle->maps)
993 			handle->maps = tmp;
994 		if (last)
995 			last->next = tmp;
996 		last = tmp;
997 
998 		tmp->map = (struct swap_map_page *)
999 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1000 		if (!tmp->map) {
1001 			release_swap_reader(handle);
1002 			return -ENOMEM;
1003 		}
1004 
1005 		error = hib_submit_io(REQ_OP_READ, offset, tmp->map, NULL);
1006 		if (error) {
1007 			release_swap_reader(handle);
1008 			return error;
1009 		}
1010 		offset = tmp->map->next_swap;
1011 	}
1012 	handle->k = 0;
1013 	handle->cur = handle->maps->map;
1014 	return 0;
1015 }
1016 
1017 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1018 		struct hib_bio_batch *hb)
1019 {
1020 	sector_t offset;
1021 	int error;
1022 	struct swap_map_page_list *tmp;
1023 
1024 	if (!handle->cur)
1025 		return -EINVAL;
1026 	offset = handle->cur->entries[handle->k];
1027 	if (!offset)
1028 		return -EFAULT;
1029 	error = hib_submit_io(REQ_OP_READ, offset, buf, hb);
1030 	if (error)
1031 		return error;
1032 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1033 		handle->k = 0;
1034 		free_page((unsigned long)handle->maps->map);
1035 		tmp = handle->maps;
1036 		handle->maps = handle->maps->next;
1037 		kfree(tmp);
1038 		if (!handle->maps)
1039 			release_swap_reader(handle);
1040 		else
1041 			handle->cur = handle->maps->map;
1042 	}
1043 	return error;
1044 }
1045 
1046 static int swap_reader_finish(struct swap_map_handle *handle)
1047 {
1048 	release_swap_reader(handle);
1049 
1050 	return 0;
1051 }
1052 
1053 /**
1054  *	load_image - load the image using the swap map handle
1055  *	@handle and the snapshot handle @snapshot
1056  *	(assume there are @nr_pages pages to load)
1057  */
1058 
1059 static int load_image(struct swap_map_handle *handle,
1060                       struct snapshot_handle *snapshot,
1061                       unsigned int nr_to_read)
1062 {
1063 	unsigned int m;
1064 	int ret = 0;
1065 	ktime_t start;
1066 	ktime_t stop;
1067 	struct hib_bio_batch hb;
1068 	int err2;
1069 	unsigned nr_pages;
1070 
1071 	hib_init_batch(&hb);
1072 
1073 	clean_pages_on_read = true;
1074 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1075 	m = nr_to_read / 10;
1076 	if (!m)
1077 		m = 1;
1078 	nr_pages = 0;
1079 	start = ktime_get();
1080 	for ( ; ; ) {
1081 		ret = snapshot_write_next(snapshot);
1082 		if (ret <= 0)
1083 			break;
1084 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1085 		if (ret)
1086 			break;
1087 		if (snapshot->sync_read)
1088 			ret = hib_wait_io(&hb);
1089 		if (ret)
1090 			break;
1091 		if (!(nr_pages % m))
1092 			pr_info("Image loading progress: %3d%%\n",
1093 				nr_pages / m * 10);
1094 		nr_pages++;
1095 	}
1096 	err2 = hib_wait_io(&hb);
1097 	hib_finish_batch(&hb);
1098 	stop = ktime_get();
1099 	if (!ret)
1100 		ret = err2;
1101 	if (!ret) {
1102 		pr_info("Image loading done\n");
1103 		snapshot_write_finalize(snapshot);
1104 		if (!snapshot_image_loaded(snapshot))
1105 			ret = -ENODATA;
1106 	}
1107 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1108 	return ret;
1109 }
1110 
1111 /*
1112  * Structure used for LZO data decompression.
1113  */
1114 struct dec_data {
1115 	struct task_struct *thr;                  /* thread */
1116 	atomic_t ready;                           /* ready to start flag */
1117 	atomic_t stop;                            /* ready to stop flag */
1118 	int ret;                                  /* return code */
1119 	wait_queue_head_t go;                     /* start decompression */
1120 	wait_queue_head_t done;                   /* decompression done */
1121 	size_t unc_len;                           /* uncompressed length */
1122 	size_t cmp_len;                           /* compressed length */
1123 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1124 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1125 };
1126 
1127 /*
1128  * Decompression function that runs in its own thread.
1129  */
1130 static int lzo_decompress_threadfn(void *data)
1131 {
1132 	struct dec_data *d = data;
1133 
1134 	while (1) {
1135 		wait_event(d->go, atomic_read_acquire(&d->ready) ||
1136 		                  kthread_should_stop());
1137 		if (kthread_should_stop()) {
1138 			d->thr = NULL;
1139 			d->ret = -1;
1140 			atomic_set_release(&d->stop, 1);
1141 			wake_up(&d->done);
1142 			break;
1143 		}
1144 		atomic_set(&d->ready, 0);
1145 
1146 		d->unc_len = LZO_UNC_SIZE;
1147 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1148 		                               d->unc, &d->unc_len);
1149 		if (clean_pages_on_decompress)
1150 			flush_icache_range((unsigned long)d->unc,
1151 					   (unsigned long)d->unc + d->unc_len);
1152 
1153 		atomic_set_release(&d->stop, 1);
1154 		wake_up(&d->done);
1155 	}
1156 	return 0;
1157 }
1158 
1159 /**
1160  * load_image_lzo - Load compressed image data and decompress them with LZO.
1161  * @handle: Swap map handle to use for loading data.
1162  * @snapshot: Image to copy uncompressed data into.
1163  * @nr_to_read: Number of pages to load.
1164  */
1165 static int load_image_lzo(struct swap_map_handle *handle,
1166                           struct snapshot_handle *snapshot,
1167                           unsigned int nr_to_read)
1168 {
1169 	unsigned int m;
1170 	int ret = 0;
1171 	int eof = 0;
1172 	struct hib_bio_batch hb;
1173 	ktime_t start;
1174 	ktime_t stop;
1175 	unsigned nr_pages;
1176 	size_t off;
1177 	unsigned i, thr, run_threads, nr_threads;
1178 	unsigned ring = 0, pg = 0, ring_size = 0,
1179 	         have = 0, want, need, asked = 0;
1180 	unsigned long read_pages = 0;
1181 	unsigned char **page = NULL;
1182 	struct dec_data *data = NULL;
1183 	struct crc_data *crc = NULL;
1184 
1185 	hib_init_batch(&hb);
1186 
1187 	/*
1188 	 * We'll limit the number of threads for decompression to limit memory
1189 	 * footprint.
1190 	 */
1191 	nr_threads = num_online_cpus() - 1;
1192 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1193 
1194 	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1195 	if (!page) {
1196 		pr_err("Failed to allocate LZO page\n");
1197 		ret = -ENOMEM;
1198 		goto out_clean;
1199 	}
1200 
1201 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1202 	if (!data) {
1203 		pr_err("Failed to allocate LZO data\n");
1204 		ret = -ENOMEM;
1205 		goto out_clean;
1206 	}
1207 
1208 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1209 	if (!crc) {
1210 		pr_err("Failed to allocate crc\n");
1211 		ret = -ENOMEM;
1212 		goto out_clean;
1213 	}
1214 
1215 	clean_pages_on_decompress = true;
1216 
1217 	/*
1218 	 * Start the decompression threads.
1219 	 */
1220 	for (thr = 0; thr < nr_threads; thr++) {
1221 		init_waitqueue_head(&data[thr].go);
1222 		init_waitqueue_head(&data[thr].done);
1223 
1224 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1225 		                            &data[thr],
1226 		                            "image_decompress/%u", thr);
1227 		if (IS_ERR(data[thr].thr)) {
1228 			data[thr].thr = NULL;
1229 			pr_err("Cannot start decompression threads\n");
1230 			ret = -ENOMEM;
1231 			goto out_clean;
1232 		}
1233 	}
1234 
1235 	/*
1236 	 * Start the CRC32 thread.
1237 	 */
1238 	init_waitqueue_head(&crc->go);
1239 	init_waitqueue_head(&crc->done);
1240 
1241 	handle->crc32 = 0;
1242 	crc->crc32 = &handle->crc32;
1243 	for (thr = 0; thr < nr_threads; thr++) {
1244 		crc->unc[thr] = data[thr].unc;
1245 		crc->unc_len[thr] = &data[thr].unc_len;
1246 	}
1247 
1248 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1249 	if (IS_ERR(crc->thr)) {
1250 		crc->thr = NULL;
1251 		pr_err("Cannot start CRC32 thread\n");
1252 		ret = -ENOMEM;
1253 		goto out_clean;
1254 	}
1255 
1256 	/*
1257 	 * Set the number of pages for read buffering.
1258 	 * This is complete guesswork, because we'll only know the real
1259 	 * picture once prepare_image() is called, which is much later on
1260 	 * during the image load phase. We'll assume the worst case and
1261 	 * say that none of the image pages are from high memory.
1262 	 */
1263 	if (low_free_pages() > snapshot_get_image_size())
1264 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1265 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1266 
1267 	for (i = 0; i < read_pages; i++) {
1268 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1269 						  GFP_NOIO | __GFP_HIGH :
1270 						  GFP_NOIO | __GFP_NOWARN |
1271 						  __GFP_NORETRY);
1272 
1273 		if (!page[i]) {
1274 			if (i < LZO_CMP_PAGES) {
1275 				ring_size = i;
1276 				pr_err("Failed to allocate LZO pages\n");
1277 				ret = -ENOMEM;
1278 				goto out_clean;
1279 			} else {
1280 				break;
1281 			}
1282 		}
1283 	}
1284 	want = ring_size = i;
1285 
1286 	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1287 	pr_info("Loading and decompressing image data (%u pages)...\n",
1288 		nr_to_read);
1289 	m = nr_to_read / 10;
1290 	if (!m)
1291 		m = 1;
1292 	nr_pages = 0;
1293 	start = ktime_get();
1294 
1295 	ret = snapshot_write_next(snapshot);
1296 	if (ret <= 0)
1297 		goto out_finish;
1298 
1299 	for(;;) {
1300 		for (i = 0; !eof && i < want; i++) {
1301 			ret = swap_read_page(handle, page[ring], &hb);
1302 			if (ret) {
1303 				/*
1304 				 * On real read error, finish. On end of data,
1305 				 * set EOF flag and just exit the read loop.
1306 				 */
1307 				if (handle->cur &&
1308 				    handle->cur->entries[handle->k]) {
1309 					goto out_finish;
1310 				} else {
1311 					eof = 1;
1312 					break;
1313 				}
1314 			}
1315 			if (++ring >= ring_size)
1316 				ring = 0;
1317 		}
1318 		asked += i;
1319 		want -= i;
1320 
1321 		/*
1322 		 * We are out of data, wait for some more.
1323 		 */
1324 		if (!have) {
1325 			if (!asked)
1326 				break;
1327 
1328 			ret = hib_wait_io(&hb);
1329 			if (ret)
1330 				goto out_finish;
1331 			have += asked;
1332 			asked = 0;
1333 			if (eof)
1334 				eof = 2;
1335 		}
1336 
1337 		if (crc->run_threads) {
1338 			wait_event(crc->done, atomic_read_acquire(&crc->stop));
1339 			atomic_set(&crc->stop, 0);
1340 			crc->run_threads = 0;
1341 		}
1342 
1343 		for (thr = 0; have && thr < nr_threads; thr++) {
1344 			data[thr].cmp_len = *(size_t *)page[pg];
1345 			if (unlikely(!data[thr].cmp_len ||
1346 			             data[thr].cmp_len >
1347 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1348 				pr_err("Invalid LZO compressed length\n");
1349 				ret = -1;
1350 				goto out_finish;
1351 			}
1352 
1353 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1354 			                    PAGE_SIZE);
1355 			if (need > have) {
1356 				if (eof > 1) {
1357 					ret = -1;
1358 					goto out_finish;
1359 				}
1360 				break;
1361 			}
1362 
1363 			for (off = 0;
1364 			     off < LZO_HEADER + data[thr].cmp_len;
1365 			     off += PAGE_SIZE) {
1366 				memcpy(data[thr].cmp + off,
1367 				       page[pg], PAGE_SIZE);
1368 				have--;
1369 				want++;
1370 				if (++pg >= ring_size)
1371 					pg = 0;
1372 			}
1373 
1374 			atomic_set_release(&data[thr].ready, 1);
1375 			wake_up(&data[thr].go);
1376 		}
1377 
1378 		/*
1379 		 * Wait for more data while we are decompressing.
1380 		 */
1381 		if (have < LZO_CMP_PAGES && asked) {
1382 			ret = hib_wait_io(&hb);
1383 			if (ret)
1384 				goto out_finish;
1385 			have += asked;
1386 			asked = 0;
1387 			if (eof)
1388 				eof = 2;
1389 		}
1390 
1391 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1392 			wait_event(data[thr].done,
1393 				atomic_read_acquire(&data[thr].stop));
1394 			atomic_set(&data[thr].stop, 0);
1395 
1396 			ret = data[thr].ret;
1397 
1398 			if (ret < 0) {
1399 				pr_err("LZO decompression failed\n");
1400 				goto out_finish;
1401 			}
1402 
1403 			if (unlikely(!data[thr].unc_len ||
1404 			             data[thr].unc_len > LZO_UNC_SIZE ||
1405 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1406 				pr_err("Invalid LZO uncompressed length\n");
1407 				ret = -1;
1408 				goto out_finish;
1409 			}
1410 
1411 			for (off = 0;
1412 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1413 				memcpy(data_of(*snapshot),
1414 				       data[thr].unc + off, PAGE_SIZE);
1415 
1416 				if (!(nr_pages % m))
1417 					pr_info("Image loading progress: %3d%%\n",
1418 						nr_pages / m * 10);
1419 				nr_pages++;
1420 
1421 				ret = snapshot_write_next(snapshot);
1422 				if (ret <= 0) {
1423 					crc->run_threads = thr + 1;
1424 					atomic_set_release(&crc->ready, 1);
1425 					wake_up(&crc->go);
1426 					goto out_finish;
1427 				}
1428 			}
1429 		}
1430 
1431 		crc->run_threads = thr;
1432 		atomic_set_release(&crc->ready, 1);
1433 		wake_up(&crc->go);
1434 	}
1435 
1436 out_finish:
1437 	if (crc->run_threads) {
1438 		wait_event(crc->done, atomic_read_acquire(&crc->stop));
1439 		atomic_set(&crc->stop, 0);
1440 	}
1441 	stop = ktime_get();
1442 	if (!ret) {
1443 		pr_info("Image loading done\n");
1444 		snapshot_write_finalize(snapshot);
1445 		if (!snapshot_image_loaded(snapshot))
1446 			ret = -ENODATA;
1447 		if (!ret) {
1448 			if (swsusp_header->flags & SF_CRC32_MODE) {
1449 				if(handle->crc32 != swsusp_header->crc32) {
1450 					pr_err("Invalid image CRC32!\n");
1451 					ret = -ENODATA;
1452 				}
1453 			}
1454 		}
1455 	}
1456 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1457 out_clean:
1458 	hib_finish_batch(&hb);
1459 	for (i = 0; i < ring_size; i++)
1460 		free_page((unsigned long)page[i]);
1461 	if (crc) {
1462 		if (crc->thr)
1463 			kthread_stop(crc->thr);
1464 		kfree(crc);
1465 	}
1466 	if (data) {
1467 		for (thr = 0; thr < nr_threads; thr++)
1468 			if (data[thr].thr)
1469 				kthread_stop(data[thr].thr);
1470 		vfree(data);
1471 	}
1472 	vfree(page);
1473 
1474 	return ret;
1475 }
1476 
1477 /**
1478  *	swsusp_read - read the hibernation image.
1479  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1480  *		  be written into this memory location
1481  */
1482 
1483 int swsusp_read(unsigned int *flags_p)
1484 {
1485 	int error;
1486 	struct swap_map_handle handle;
1487 	struct snapshot_handle snapshot;
1488 	struct swsusp_info *header;
1489 
1490 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1491 	error = snapshot_write_next(&snapshot);
1492 	if (error < (int)PAGE_SIZE)
1493 		return error < 0 ? error : -EFAULT;
1494 	header = (struct swsusp_info *)data_of(snapshot);
1495 	error = get_swap_reader(&handle, flags_p);
1496 	if (error)
1497 		goto end;
1498 	if (!error)
1499 		error = swap_read_page(&handle, header, NULL);
1500 	if (!error) {
1501 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1502 			load_image(&handle, &snapshot, header->pages - 1) :
1503 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1504 	}
1505 	swap_reader_finish(&handle);
1506 end:
1507 	if (!error)
1508 		pr_debug("Image successfully loaded\n");
1509 	else
1510 		pr_debug("Error %d resuming\n", error);
1511 	return error;
1512 }
1513 
1514 static void *swsusp_holder;
1515 
1516 /**
1517  * swsusp_check - Open the resume device and check for the swsusp signature.
1518  * @exclusive: Open the resume device exclusively.
1519  */
1520 
1521 int swsusp_check(bool exclusive)
1522 {
1523 	void *holder = exclusive ? &swsusp_holder : NULL;
1524 	int error;
1525 
1526 	hib_resume_bdev_handle = bdev_open_by_dev(swsusp_resume_device,
1527 				BLK_OPEN_READ, holder, NULL);
1528 	if (!IS_ERR(hib_resume_bdev_handle)) {
1529 		set_blocksize(hib_resume_bdev_handle->bdev, PAGE_SIZE);
1530 		clear_page(swsusp_header);
1531 		error = hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1532 					swsusp_header, NULL);
1533 		if (error)
1534 			goto put;
1535 
1536 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1537 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1538 			/* Reset swap signature now */
1539 			error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1540 						swsusp_resume_block,
1541 						swsusp_header, NULL);
1542 		} else {
1543 			error = -EINVAL;
1544 		}
1545 		if (!error && swsusp_header->flags & SF_HW_SIG &&
1546 		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1547 			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1548 				swsusp_header->hw_sig, swsusp_hardware_signature);
1549 			error = -EINVAL;
1550 		}
1551 
1552 put:
1553 		if (error)
1554 			bdev_release(hib_resume_bdev_handle);
1555 		else
1556 			pr_debug("Image signature found, resuming\n");
1557 	} else {
1558 		error = PTR_ERR(hib_resume_bdev_handle);
1559 	}
1560 
1561 	if (error)
1562 		pr_debug("Image not found (code %d)\n", error);
1563 
1564 	return error;
1565 }
1566 
1567 /**
1568  * swsusp_close - close resume device.
1569  */
1570 
1571 void swsusp_close(void)
1572 {
1573 	if (IS_ERR(hib_resume_bdev_handle)) {
1574 		pr_debug("Image device not initialised\n");
1575 		return;
1576 	}
1577 
1578 	bdev_release(hib_resume_bdev_handle);
1579 }
1580 
1581 /**
1582  *      swsusp_unmark - Unmark swsusp signature in the resume device
1583  */
1584 
1585 #ifdef CONFIG_SUSPEND
1586 int swsusp_unmark(void)
1587 {
1588 	int error;
1589 
1590 	hib_submit_io(REQ_OP_READ, swsusp_resume_block,
1591 			swsusp_header, NULL);
1592 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1593 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1594 		error = hib_submit_io(REQ_OP_WRITE | REQ_SYNC,
1595 					swsusp_resume_block,
1596 					swsusp_header, NULL);
1597 	} else {
1598 		pr_err("Cannot find swsusp signature!\n");
1599 		error = -ENODEV;
1600 	}
1601 
1602 	/*
1603 	 * We just returned from suspend, we don't need the image any more.
1604 	 */
1605 	free_all_swap_pages(root_swap);
1606 
1607 	return error;
1608 }
1609 #endif
1610 
1611 static int __init swsusp_header_init(void)
1612 {
1613 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1614 	if (!swsusp_header)
1615 		panic("Could not allocate memory for swsusp_header\n");
1616 	return 0;
1617 }
1618 
1619 core_initcall(swsusp_header_init);
1620