xref: /linux/kernel/power/swap.c (revision 322cbb50de711814c42fb088f6d31901502c711a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12 
13 #define pr_fmt(fmt) "PM: " fmt
14 
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/pm.h>
25 #include <linux/slab.h>
26 #include <linux/lzo.h>
27 #include <linux/vmalloc.h>
28 #include <linux/cpumask.h>
29 #include <linux/atomic.h>
30 #include <linux/kthread.h>
31 #include <linux/crc32.h>
32 #include <linux/ktime.h>
33 
34 #include "power.h"
35 
36 #define HIBERNATE_SIG	"S1SUSPEND"
37 
38 u32 swsusp_hardware_signature;
39 
40 /*
41  * When reading an {un,}compressed image, we may restore pages in place,
42  * in which case some architectures need these pages cleaning before they
43  * can be executed. We don't know which pages these may be, so clean the lot.
44  */
45 static bool clean_pages_on_read;
46 static bool clean_pages_on_decompress;
47 
48 /*
49  *	The swap map is a data structure used for keeping track of each page
50  *	written to a swap partition.  It consists of many swap_map_page
51  *	structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
52  *	These structures are stored on the swap and linked together with the
53  *	help of the .next_swap member.
54  *
55  *	The swap map is created during suspend.  The swap map pages are
56  *	allocated and populated one at a time, so we only need one memory
57  *	page to set up the entire structure.
58  *
59  *	During resume we pick up all swap_map_page structures into a list.
60  */
61 
62 #define MAP_PAGE_ENTRIES	(PAGE_SIZE / sizeof(sector_t) - 1)
63 
64 /*
65  * Number of free pages that are not high.
66  */
67 static inline unsigned long low_free_pages(void)
68 {
69 	return nr_free_pages() - nr_free_highpages();
70 }
71 
72 /*
73  * Number of pages required to be kept free while writing the image. Always
74  * half of all available low pages before the writing starts.
75  */
76 static inline unsigned long reqd_free_pages(void)
77 {
78 	return low_free_pages() / 2;
79 }
80 
81 struct swap_map_page {
82 	sector_t entries[MAP_PAGE_ENTRIES];
83 	sector_t next_swap;
84 };
85 
86 struct swap_map_page_list {
87 	struct swap_map_page *map;
88 	struct swap_map_page_list *next;
89 };
90 
91 /**
92  *	The swap_map_handle structure is used for handling swap in
93  *	a file-alike way
94  */
95 
96 struct swap_map_handle {
97 	struct swap_map_page *cur;
98 	struct swap_map_page_list *maps;
99 	sector_t cur_swap;
100 	sector_t first_sector;
101 	unsigned int k;
102 	unsigned long reqd_free_pages;
103 	u32 crc32;
104 };
105 
106 struct swsusp_header {
107 	char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
108 	              sizeof(u32) - sizeof(u32)];
109 	u32	hw_sig;
110 	u32	crc32;
111 	sector_t image;
112 	unsigned int flags;	/* Flags to pass to the "boot" kernel */
113 	char	orig_sig[10];
114 	char	sig[10];
115 } __packed;
116 
117 static struct swsusp_header *swsusp_header;
118 
119 /**
120  *	The following functions are used for tracing the allocated
121  *	swap pages, so that they can be freed in case of an error.
122  */
123 
124 struct swsusp_extent {
125 	struct rb_node node;
126 	unsigned long start;
127 	unsigned long end;
128 };
129 
130 static struct rb_root swsusp_extents = RB_ROOT;
131 
132 static int swsusp_extents_insert(unsigned long swap_offset)
133 {
134 	struct rb_node **new = &(swsusp_extents.rb_node);
135 	struct rb_node *parent = NULL;
136 	struct swsusp_extent *ext;
137 
138 	/* Figure out where to put the new node */
139 	while (*new) {
140 		ext = rb_entry(*new, struct swsusp_extent, node);
141 		parent = *new;
142 		if (swap_offset < ext->start) {
143 			/* Try to merge */
144 			if (swap_offset == ext->start - 1) {
145 				ext->start--;
146 				return 0;
147 			}
148 			new = &((*new)->rb_left);
149 		} else if (swap_offset > ext->end) {
150 			/* Try to merge */
151 			if (swap_offset == ext->end + 1) {
152 				ext->end++;
153 				return 0;
154 			}
155 			new = &((*new)->rb_right);
156 		} else {
157 			/* It already is in the tree */
158 			return -EINVAL;
159 		}
160 	}
161 	/* Add the new node and rebalance the tree. */
162 	ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
163 	if (!ext)
164 		return -ENOMEM;
165 
166 	ext->start = swap_offset;
167 	ext->end = swap_offset;
168 	rb_link_node(&ext->node, parent, new);
169 	rb_insert_color(&ext->node, &swsusp_extents);
170 	return 0;
171 }
172 
173 /**
174  *	alloc_swapdev_block - allocate a swap page and register that it has
175  *	been allocated, so that it can be freed in case of an error.
176  */
177 
178 sector_t alloc_swapdev_block(int swap)
179 {
180 	unsigned long offset;
181 
182 	offset = swp_offset(get_swap_page_of_type(swap));
183 	if (offset) {
184 		if (swsusp_extents_insert(offset))
185 			swap_free(swp_entry(swap, offset));
186 		else
187 			return swapdev_block(swap, offset);
188 	}
189 	return 0;
190 }
191 
192 /**
193  *	free_all_swap_pages - free swap pages allocated for saving image data.
194  *	It also frees the extents used to register which swap entries had been
195  *	allocated.
196  */
197 
198 void free_all_swap_pages(int swap)
199 {
200 	struct rb_node *node;
201 
202 	while ((node = swsusp_extents.rb_node)) {
203 		struct swsusp_extent *ext;
204 		unsigned long offset;
205 
206 		ext = rb_entry(node, struct swsusp_extent, node);
207 		rb_erase(node, &swsusp_extents);
208 		for (offset = ext->start; offset <= ext->end; offset++)
209 			swap_free(swp_entry(swap, offset));
210 
211 		kfree(ext);
212 	}
213 }
214 
215 int swsusp_swap_in_use(void)
216 {
217 	return (swsusp_extents.rb_node != NULL);
218 }
219 
220 /*
221  * General things
222  */
223 
224 static unsigned short root_swap = 0xffff;
225 static struct block_device *hib_resume_bdev;
226 
227 struct hib_bio_batch {
228 	atomic_t		count;
229 	wait_queue_head_t	wait;
230 	blk_status_t		error;
231 	struct blk_plug		plug;
232 };
233 
234 static void hib_init_batch(struct hib_bio_batch *hb)
235 {
236 	atomic_set(&hb->count, 0);
237 	init_waitqueue_head(&hb->wait);
238 	hb->error = BLK_STS_OK;
239 	blk_start_plug(&hb->plug);
240 }
241 
242 static void hib_finish_batch(struct hib_bio_batch *hb)
243 {
244 	blk_finish_plug(&hb->plug);
245 }
246 
247 static void hib_end_io(struct bio *bio)
248 {
249 	struct hib_bio_batch *hb = bio->bi_private;
250 	struct page *page = bio_first_page_all(bio);
251 
252 	if (bio->bi_status) {
253 		pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
254 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
255 			 (unsigned long long)bio->bi_iter.bi_sector);
256 	}
257 
258 	if (bio_data_dir(bio) == WRITE)
259 		put_page(page);
260 	else if (clean_pages_on_read)
261 		flush_icache_range((unsigned long)page_address(page),
262 				   (unsigned long)page_address(page) + PAGE_SIZE);
263 
264 	if (bio->bi_status && !hb->error)
265 		hb->error = bio->bi_status;
266 	if (atomic_dec_and_test(&hb->count))
267 		wake_up(&hb->wait);
268 
269 	bio_put(bio);
270 }
271 
272 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
273 		struct hib_bio_batch *hb)
274 {
275 	struct page *page = virt_to_page(addr);
276 	struct bio *bio;
277 	int error = 0;
278 
279 	bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
280 	bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
281 	bio_set_dev(bio, hib_resume_bdev);
282 	bio_set_op_attrs(bio, op, op_flags);
283 
284 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
285 		pr_err("Adding page to bio failed at %llu\n",
286 		       (unsigned long long)bio->bi_iter.bi_sector);
287 		bio_put(bio);
288 		return -EFAULT;
289 	}
290 
291 	if (hb) {
292 		bio->bi_end_io = hib_end_io;
293 		bio->bi_private = hb;
294 		atomic_inc(&hb->count);
295 		submit_bio(bio);
296 	} else {
297 		error = submit_bio_wait(bio);
298 		bio_put(bio);
299 	}
300 
301 	return error;
302 }
303 
304 static int hib_wait_io(struct hib_bio_batch *hb)
305 {
306 	/*
307 	 * We are relying on the behavior of blk_plug that a thread with
308 	 * a plug will flush the plug list before sleeping.
309 	 */
310 	wait_event(hb->wait, atomic_read(&hb->count) == 0);
311 	return blk_status_to_errno(hb->error);
312 }
313 
314 /*
315  * Saving part
316  */
317 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
318 {
319 	int error;
320 
321 	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
322 		      swsusp_header, NULL);
323 	if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
324 	    !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
325 		memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
326 		memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
327 		swsusp_header->image = handle->first_sector;
328 		if (swsusp_hardware_signature) {
329 			swsusp_header->hw_sig = swsusp_hardware_signature;
330 			flags |= SF_HW_SIG;
331 		}
332 		swsusp_header->flags = flags;
333 		if (flags & SF_CRC32_MODE)
334 			swsusp_header->crc32 = handle->crc32;
335 		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
336 				      swsusp_resume_block, swsusp_header, NULL);
337 	} else {
338 		pr_err("Swap header not found!\n");
339 		error = -ENODEV;
340 	}
341 	return error;
342 }
343 
344 /**
345  *	swsusp_swap_check - check if the resume device is a swap device
346  *	and get its index (if so)
347  *
348  *	This is called before saving image
349  */
350 static int swsusp_swap_check(void)
351 {
352 	int res;
353 
354 	if (swsusp_resume_device)
355 		res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
356 	else
357 		res = find_first_swap(&swsusp_resume_device);
358 	if (res < 0)
359 		return res;
360 	root_swap = res;
361 
362 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
363 			NULL);
364 	if (IS_ERR(hib_resume_bdev))
365 		return PTR_ERR(hib_resume_bdev);
366 
367 	res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
368 	if (res < 0)
369 		blkdev_put(hib_resume_bdev, FMODE_WRITE);
370 
371 	return res;
372 }
373 
374 /**
375  *	write_page - Write one page to given swap location.
376  *	@buf:		Address we're writing.
377  *	@offset:	Offset of the swap page we're writing to.
378  *	@hb:		bio completion batch
379  */
380 
381 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
382 {
383 	void *src;
384 	int ret;
385 
386 	if (!offset)
387 		return -ENOSPC;
388 
389 	if (hb) {
390 		src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
391 		                              __GFP_NORETRY);
392 		if (src) {
393 			copy_page(src, buf);
394 		} else {
395 			ret = hib_wait_io(hb); /* Free pages */
396 			if (ret)
397 				return ret;
398 			src = (void *)__get_free_page(GFP_NOIO |
399 			                              __GFP_NOWARN |
400 			                              __GFP_NORETRY);
401 			if (src) {
402 				copy_page(src, buf);
403 			} else {
404 				WARN_ON_ONCE(1);
405 				hb = NULL;	/* Go synchronous */
406 				src = buf;
407 			}
408 		}
409 	} else {
410 		src = buf;
411 	}
412 	return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
413 }
414 
415 static void release_swap_writer(struct swap_map_handle *handle)
416 {
417 	if (handle->cur)
418 		free_page((unsigned long)handle->cur);
419 	handle->cur = NULL;
420 }
421 
422 static int get_swap_writer(struct swap_map_handle *handle)
423 {
424 	int ret;
425 
426 	ret = swsusp_swap_check();
427 	if (ret) {
428 		if (ret != -ENOSPC)
429 			pr_err("Cannot find swap device, try swapon -a\n");
430 		return ret;
431 	}
432 	handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
433 	if (!handle->cur) {
434 		ret = -ENOMEM;
435 		goto err_close;
436 	}
437 	handle->cur_swap = alloc_swapdev_block(root_swap);
438 	if (!handle->cur_swap) {
439 		ret = -ENOSPC;
440 		goto err_rel;
441 	}
442 	handle->k = 0;
443 	handle->reqd_free_pages = reqd_free_pages();
444 	handle->first_sector = handle->cur_swap;
445 	return 0;
446 err_rel:
447 	release_swap_writer(handle);
448 err_close:
449 	swsusp_close(FMODE_WRITE);
450 	return ret;
451 }
452 
453 static int swap_write_page(struct swap_map_handle *handle, void *buf,
454 		struct hib_bio_batch *hb)
455 {
456 	int error = 0;
457 	sector_t offset;
458 
459 	if (!handle->cur)
460 		return -EINVAL;
461 	offset = alloc_swapdev_block(root_swap);
462 	error = write_page(buf, offset, hb);
463 	if (error)
464 		return error;
465 	handle->cur->entries[handle->k++] = offset;
466 	if (handle->k >= MAP_PAGE_ENTRIES) {
467 		offset = alloc_swapdev_block(root_swap);
468 		if (!offset)
469 			return -ENOSPC;
470 		handle->cur->next_swap = offset;
471 		error = write_page(handle->cur, handle->cur_swap, hb);
472 		if (error)
473 			goto out;
474 		clear_page(handle->cur);
475 		handle->cur_swap = offset;
476 		handle->k = 0;
477 
478 		if (hb && low_free_pages() <= handle->reqd_free_pages) {
479 			error = hib_wait_io(hb);
480 			if (error)
481 				goto out;
482 			/*
483 			 * Recalculate the number of required free pages, to
484 			 * make sure we never take more than half.
485 			 */
486 			handle->reqd_free_pages = reqd_free_pages();
487 		}
488 	}
489  out:
490 	return error;
491 }
492 
493 static int flush_swap_writer(struct swap_map_handle *handle)
494 {
495 	if (handle->cur && handle->cur_swap)
496 		return write_page(handle->cur, handle->cur_swap, NULL);
497 	else
498 		return -EINVAL;
499 }
500 
501 static int swap_writer_finish(struct swap_map_handle *handle,
502 		unsigned int flags, int error)
503 {
504 	if (!error) {
505 		pr_info("S");
506 		error = mark_swapfiles(handle, flags);
507 		pr_cont("|\n");
508 		flush_swap_writer(handle);
509 	}
510 
511 	if (error)
512 		free_all_swap_pages(root_swap);
513 	release_swap_writer(handle);
514 	swsusp_close(FMODE_WRITE);
515 
516 	return error;
517 }
518 
519 /* We need to remember how much compressed data we need to read. */
520 #define LZO_HEADER	sizeof(size_t)
521 
522 /* Number of pages/bytes we'll compress at one time. */
523 #define LZO_UNC_PAGES	32
524 #define LZO_UNC_SIZE	(LZO_UNC_PAGES * PAGE_SIZE)
525 
526 /* Number of pages/bytes we need for compressed data (worst case). */
527 #define LZO_CMP_PAGES	DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
528 			             LZO_HEADER, PAGE_SIZE)
529 #define LZO_CMP_SIZE	(LZO_CMP_PAGES * PAGE_SIZE)
530 
531 /* Maximum number of threads for compression/decompression. */
532 #define LZO_THREADS	3
533 
534 /* Minimum/maximum number of pages for read buffering. */
535 #define LZO_MIN_RD_PAGES	1024
536 #define LZO_MAX_RD_PAGES	8192
537 
538 
539 /**
540  *	save_image - save the suspend image data
541  */
542 
543 static int save_image(struct swap_map_handle *handle,
544                       struct snapshot_handle *snapshot,
545                       unsigned int nr_to_write)
546 {
547 	unsigned int m;
548 	int ret;
549 	int nr_pages;
550 	int err2;
551 	struct hib_bio_batch hb;
552 	ktime_t start;
553 	ktime_t stop;
554 
555 	hib_init_batch(&hb);
556 
557 	pr_info("Saving image data pages (%u pages)...\n",
558 		nr_to_write);
559 	m = nr_to_write / 10;
560 	if (!m)
561 		m = 1;
562 	nr_pages = 0;
563 	start = ktime_get();
564 	while (1) {
565 		ret = snapshot_read_next(snapshot);
566 		if (ret <= 0)
567 			break;
568 		ret = swap_write_page(handle, data_of(*snapshot), &hb);
569 		if (ret)
570 			break;
571 		if (!(nr_pages % m))
572 			pr_info("Image saving progress: %3d%%\n",
573 				nr_pages / m * 10);
574 		nr_pages++;
575 	}
576 	err2 = hib_wait_io(&hb);
577 	hib_finish_batch(&hb);
578 	stop = ktime_get();
579 	if (!ret)
580 		ret = err2;
581 	if (!ret)
582 		pr_info("Image saving done\n");
583 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
584 	return ret;
585 }
586 
587 /**
588  * Structure used for CRC32.
589  */
590 struct crc_data {
591 	struct task_struct *thr;                  /* thread */
592 	atomic_t ready;                           /* ready to start flag */
593 	atomic_t stop;                            /* ready to stop flag */
594 	unsigned run_threads;                     /* nr current threads */
595 	wait_queue_head_t go;                     /* start crc update */
596 	wait_queue_head_t done;                   /* crc update done */
597 	u32 *crc32;                               /* points to handle's crc32 */
598 	size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
599 	unsigned char *unc[LZO_THREADS];          /* uncompressed data */
600 };
601 
602 /**
603  * CRC32 update function that runs in its own thread.
604  */
605 static int crc32_threadfn(void *data)
606 {
607 	struct crc_data *d = data;
608 	unsigned i;
609 
610 	while (1) {
611 		wait_event(d->go, atomic_read(&d->ready) ||
612 		                  kthread_should_stop());
613 		if (kthread_should_stop()) {
614 			d->thr = NULL;
615 			atomic_set(&d->stop, 1);
616 			wake_up(&d->done);
617 			break;
618 		}
619 		atomic_set(&d->ready, 0);
620 
621 		for (i = 0; i < d->run_threads; i++)
622 			*d->crc32 = crc32_le(*d->crc32,
623 			                     d->unc[i], *d->unc_len[i]);
624 		atomic_set(&d->stop, 1);
625 		wake_up(&d->done);
626 	}
627 	return 0;
628 }
629 /**
630  * Structure used for LZO data compression.
631  */
632 struct cmp_data {
633 	struct task_struct *thr;                  /* thread */
634 	atomic_t ready;                           /* ready to start flag */
635 	atomic_t stop;                            /* ready to stop flag */
636 	int ret;                                  /* return code */
637 	wait_queue_head_t go;                     /* start compression */
638 	wait_queue_head_t done;                   /* compression done */
639 	size_t unc_len;                           /* uncompressed length */
640 	size_t cmp_len;                           /* compressed length */
641 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
642 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
643 	unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
644 };
645 
646 /**
647  * Compression function that runs in its own thread.
648  */
649 static int lzo_compress_threadfn(void *data)
650 {
651 	struct cmp_data *d = data;
652 
653 	while (1) {
654 		wait_event(d->go, atomic_read(&d->ready) ||
655 		                  kthread_should_stop());
656 		if (kthread_should_stop()) {
657 			d->thr = NULL;
658 			d->ret = -1;
659 			atomic_set(&d->stop, 1);
660 			wake_up(&d->done);
661 			break;
662 		}
663 		atomic_set(&d->ready, 0);
664 
665 		d->ret = lzo1x_1_compress(d->unc, d->unc_len,
666 		                          d->cmp + LZO_HEADER, &d->cmp_len,
667 		                          d->wrk);
668 		atomic_set(&d->stop, 1);
669 		wake_up(&d->done);
670 	}
671 	return 0;
672 }
673 
674 /**
675  * save_image_lzo - Save the suspend image data compressed with LZO.
676  * @handle: Swap map handle to use for saving the image.
677  * @snapshot: Image to read data from.
678  * @nr_to_write: Number of pages to save.
679  */
680 static int save_image_lzo(struct swap_map_handle *handle,
681                           struct snapshot_handle *snapshot,
682                           unsigned int nr_to_write)
683 {
684 	unsigned int m;
685 	int ret = 0;
686 	int nr_pages;
687 	int err2;
688 	struct hib_bio_batch hb;
689 	ktime_t start;
690 	ktime_t stop;
691 	size_t off;
692 	unsigned thr, run_threads, nr_threads;
693 	unsigned char *page = NULL;
694 	struct cmp_data *data = NULL;
695 	struct crc_data *crc = NULL;
696 
697 	hib_init_batch(&hb);
698 
699 	/*
700 	 * We'll limit the number of threads for compression to limit memory
701 	 * footprint.
702 	 */
703 	nr_threads = num_online_cpus() - 1;
704 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
705 
706 	page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
707 	if (!page) {
708 		pr_err("Failed to allocate LZO page\n");
709 		ret = -ENOMEM;
710 		goto out_clean;
711 	}
712 
713 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
714 	if (!data) {
715 		pr_err("Failed to allocate LZO data\n");
716 		ret = -ENOMEM;
717 		goto out_clean;
718 	}
719 
720 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
721 	if (!crc) {
722 		pr_err("Failed to allocate crc\n");
723 		ret = -ENOMEM;
724 		goto out_clean;
725 	}
726 
727 	/*
728 	 * Start the compression threads.
729 	 */
730 	for (thr = 0; thr < nr_threads; thr++) {
731 		init_waitqueue_head(&data[thr].go);
732 		init_waitqueue_head(&data[thr].done);
733 
734 		data[thr].thr = kthread_run(lzo_compress_threadfn,
735 		                            &data[thr],
736 		                            "image_compress/%u", thr);
737 		if (IS_ERR(data[thr].thr)) {
738 			data[thr].thr = NULL;
739 			pr_err("Cannot start compression threads\n");
740 			ret = -ENOMEM;
741 			goto out_clean;
742 		}
743 	}
744 
745 	/*
746 	 * Start the CRC32 thread.
747 	 */
748 	init_waitqueue_head(&crc->go);
749 	init_waitqueue_head(&crc->done);
750 
751 	handle->crc32 = 0;
752 	crc->crc32 = &handle->crc32;
753 	for (thr = 0; thr < nr_threads; thr++) {
754 		crc->unc[thr] = data[thr].unc;
755 		crc->unc_len[thr] = &data[thr].unc_len;
756 	}
757 
758 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
759 	if (IS_ERR(crc->thr)) {
760 		crc->thr = NULL;
761 		pr_err("Cannot start CRC32 thread\n");
762 		ret = -ENOMEM;
763 		goto out_clean;
764 	}
765 
766 	/*
767 	 * Adjust the number of required free pages after all allocations have
768 	 * been done. We don't want to run out of pages when writing.
769 	 */
770 	handle->reqd_free_pages = reqd_free_pages();
771 
772 	pr_info("Using %u thread(s) for compression\n", nr_threads);
773 	pr_info("Compressing and saving image data (%u pages)...\n",
774 		nr_to_write);
775 	m = nr_to_write / 10;
776 	if (!m)
777 		m = 1;
778 	nr_pages = 0;
779 	start = ktime_get();
780 	for (;;) {
781 		for (thr = 0; thr < nr_threads; thr++) {
782 			for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
783 				ret = snapshot_read_next(snapshot);
784 				if (ret < 0)
785 					goto out_finish;
786 
787 				if (!ret)
788 					break;
789 
790 				memcpy(data[thr].unc + off,
791 				       data_of(*snapshot), PAGE_SIZE);
792 
793 				if (!(nr_pages % m))
794 					pr_info("Image saving progress: %3d%%\n",
795 						nr_pages / m * 10);
796 				nr_pages++;
797 			}
798 			if (!off)
799 				break;
800 
801 			data[thr].unc_len = off;
802 
803 			atomic_set(&data[thr].ready, 1);
804 			wake_up(&data[thr].go);
805 		}
806 
807 		if (!thr)
808 			break;
809 
810 		crc->run_threads = thr;
811 		atomic_set(&crc->ready, 1);
812 		wake_up(&crc->go);
813 
814 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
815 			wait_event(data[thr].done,
816 			           atomic_read(&data[thr].stop));
817 			atomic_set(&data[thr].stop, 0);
818 
819 			ret = data[thr].ret;
820 
821 			if (ret < 0) {
822 				pr_err("LZO compression failed\n");
823 				goto out_finish;
824 			}
825 
826 			if (unlikely(!data[thr].cmp_len ||
827 			             data[thr].cmp_len >
828 			             lzo1x_worst_compress(data[thr].unc_len))) {
829 				pr_err("Invalid LZO compressed length\n");
830 				ret = -1;
831 				goto out_finish;
832 			}
833 
834 			*(size_t *)data[thr].cmp = data[thr].cmp_len;
835 
836 			/*
837 			 * Given we are writing one page at a time to disk, we
838 			 * copy that much from the buffer, although the last
839 			 * bit will likely be smaller than full page. This is
840 			 * OK - we saved the length of the compressed data, so
841 			 * any garbage at the end will be discarded when we
842 			 * read it.
843 			 */
844 			for (off = 0;
845 			     off < LZO_HEADER + data[thr].cmp_len;
846 			     off += PAGE_SIZE) {
847 				memcpy(page, data[thr].cmp + off, PAGE_SIZE);
848 
849 				ret = swap_write_page(handle, page, &hb);
850 				if (ret)
851 					goto out_finish;
852 			}
853 		}
854 
855 		wait_event(crc->done, atomic_read(&crc->stop));
856 		atomic_set(&crc->stop, 0);
857 	}
858 
859 out_finish:
860 	err2 = hib_wait_io(&hb);
861 	stop = ktime_get();
862 	if (!ret)
863 		ret = err2;
864 	if (!ret)
865 		pr_info("Image saving done\n");
866 	swsusp_show_speed(start, stop, nr_to_write, "Wrote");
867 out_clean:
868 	hib_finish_batch(&hb);
869 	if (crc) {
870 		if (crc->thr)
871 			kthread_stop(crc->thr);
872 		kfree(crc);
873 	}
874 	if (data) {
875 		for (thr = 0; thr < nr_threads; thr++)
876 			if (data[thr].thr)
877 				kthread_stop(data[thr].thr);
878 		vfree(data);
879 	}
880 	if (page) free_page((unsigned long)page);
881 
882 	return ret;
883 }
884 
885 /**
886  *	enough_swap - Make sure we have enough swap to save the image.
887  *
888  *	Returns TRUE or FALSE after checking the total amount of swap
889  *	space available from the resume partition.
890  */
891 
892 static int enough_swap(unsigned int nr_pages)
893 {
894 	unsigned int free_swap = count_swap_pages(root_swap, 1);
895 	unsigned int required;
896 
897 	pr_debug("Free swap pages: %u\n", free_swap);
898 
899 	required = PAGES_FOR_IO + nr_pages;
900 	return free_swap > required;
901 }
902 
903 /**
904  *	swsusp_write - Write entire image and metadata.
905  *	@flags: flags to pass to the "boot" kernel in the image header
906  *
907  *	It is important _NOT_ to umount filesystems at this point. We want
908  *	them synced (in case something goes wrong) but we DO not want to mark
909  *	filesystem clean: it is not. (And it does not matter, if we resume
910  *	correctly, we'll mark system clean, anyway.)
911  */
912 
913 int swsusp_write(unsigned int flags)
914 {
915 	struct swap_map_handle handle;
916 	struct snapshot_handle snapshot;
917 	struct swsusp_info *header;
918 	unsigned long pages;
919 	int error;
920 
921 	pages = snapshot_get_image_size();
922 	error = get_swap_writer(&handle);
923 	if (error) {
924 		pr_err("Cannot get swap writer\n");
925 		return error;
926 	}
927 	if (flags & SF_NOCOMPRESS_MODE) {
928 		if (!enough_swap(pages)) {
929 			pr_err("Not enough free swap\n");
930 			error = -ENOSPC;
931 			goto out_finish;
932 		}
933 	}
934 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
935 	error = snapshot_read_next(&snapshot);
936 	if (error < (int)PAGE_SIZE) {
937 		if (error >= 0)
938 			error = -EFAULT;
939 
940 		goto out_finish;
941 	}
942 	header = (struct swsusp_info *)data_of(snapshot);
943 	error = swap_write_page(&handle, header, NULL);
944 	if (!error) {
945 		error = (flags & SF_NOCOMPRESS_MODE) ?
946 			save_image(&handle, &snapshot, pages - 1) :
947 			save_image_lzo(&handle, &snapshot, pages - 1);
948 	}
949 out_finish:
950 	error = swap_writer_finish(&handle, flags, error);
951 	return error;
952 }
953 
954 /**
955  *	The following functions allow us to read data using a swap map
956  *	in a file-alike way
957  */
958 
959 static void release_swap_reader(struct swap_map_handle *handle)
960 {
961 	struct swap_map_page_list *tmp;
962 
963 	while (handle->maps) {
964 		if (handle->maps->map)
965 			free_page((unsigned long)handle->maps->map);
966 		tmp = handle->maps;
967 		handle->maps = handle->maps->next;
968 		kfree(tmp);
969 	}
970 	handle->cur = NULL;
971 }
972 
973 static int get_swap_reader(struct swap_map_handle *handle,
974 		unsigned int *flags_p)
975 {
976 	int error;
977 	struct swap_map_page_list *tmp, *last;
978 	sector_t offset;
979 
980 	*flags_p = swsusp_header->flags;
981 
982 	if (!swsusp_header->image) /* how can this happen? */
983 		return -EINVAL;
984 
985 	handle->cur = NULL;
986 	last = handle->maps = NULL;
987 	offset = swsusp_header->image;
988 	while (offset) {
989 		tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
990 		if (!tmp) {
991 			release_swap_reader(handle);
992 			return -ENOMEM;
993 		}
994 		if (!handle->maps)
995 			handle->maps = tmp;
996 		if (last)
997 			last->next = tmp;
998 		last = tmp;
999 
1000 		tmp->map = (struct swap_map_page *)
1001 			   __get_free_page(GFP_NOIO | __GFP_HIGH);
1002 		if (!tmp->map) {
1003 			release_swap_reader(handle);
1004 			return -ENOMEM;
1005 		}
1006 
1007 		error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1008 		if (error) {
1009 			release_swap_reader(handle);
1010 			return error;
1011 		}
1012 		offset = tmp->map->next_swap;
1013 	}
1014 	handle->k = 0;
1015 	handle->cur = handle->maps->map;
1016 	return 0;
1017 }
1018 
1019 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1020 		struct hib_bio_batch *hb)
1021 {
1022 	sector_t offset;
1023 	int error;
1024 	struct swap_map_page_list *tmp;
1025 
1026 	if (!handle->cur)
1027 		return -EINVAL;
1028 	offset = handle->cur->entries[handle->k];
1029 	if (!offset)
1030 		return -EFAULT;
1031 	error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1032 	if (error)
1033 		return error;
1034 	if (++handle->k >= MAP_PAGE_ENTRIES) {
1035 		handle->k = 0;
1036 		free_page((unsigned long)handle->maps->map);
1037 		tmp = handle->maps;
1038 		handle->maps = handle->maps->next;
1039 		kfree(tmp);
1040 		if (!handle->maps)
1041 			release_swap_reader(handle);
1042 		else
1043 			handle->cur = handle->maps->map;
1044 	}
1045 	return error;
1046 }
1047 
1048 static int swap_reader_finish(struct swap_map_handle *handle)
1049 {
1050 	release_swap_reader(handle);
1051 
1052 	return 0;
1053 }
1054 
1055 /**
1056  *	load_image - load the image using the swap map handle
1057  *	@handle and the snapshot handle @snapshot
1058  *	(assume there are @nr_pages pages to load)
1059  */
1060 
1061 static int load_image(struct swap_map_handle *handle,
1062                       struct snapshot_handle *snapshot,
1063                       unsigned int nr_to_read)
1064 {
1065 	unsigned int m;
1066 	int ret = 0;
1067 	ktime_t start;
1068 	ktime_t stop;
1069 	struct hib_bio_batch hb;
1070 	int err2;
1071 	unsigned nr_pages;
1072 
1073 	hib_init_batch(&hb);
1074 
1075 	clean_pages_on_read = true;
1076 	pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1077 	m = nr_to_read / 10;
1078 	if (!m)
1079 		m = 1;
1080 	nr_pages = 0;
1081 	start = ktime_get();
1082 	for ( ; ; ) {
1083 		ret = snapshot_write_next(snapshot);
1084 		if (ret <= 0)
1085 			break;
1086 		ret = swap_read_page(handle, data_of(*snapshot), &hb);
1087 		if (ret)
1088 			break;
1089 		if (snapshot->sync_read)
1090 			ret = hib_wait_io(&hb);
1091 		if (ret)
1092 			break;
1093 		if (!(nr_pages % m))
1094 			pr_info("Image loading progress: %3d%%\n",
1095 				nr_pages / m * 10);
1096 		nr_pages++;
1097 	}
1098 	err2 = hib_wait_io(&hb);
1099 	hib_finish_batch(&hb);
1100 	stop = ktime_get();
1101 	if (!ret)
1102 		ret = err2;
1103 	if (!ret) {
1104 		pr_info("Image loading done\n");
1105 		snapshot_write_finalize(snapshot);
1106 		if (!snapshot_image_loaded(snapshot))
1107 			ret = -ENODATA;
1108 	}
1109 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1110 	return ret;
1111 }
1112 
1113 /**
1114  * Structure used for LZO data decompression.
1115  */
1116 struct dec_data {
1117 	struct task_struct *thr;                  /* thread */
1118 	atomic_t ready;                           /* ready to start flag */
1119 	atomic_t stop;                            /* ready to stop flag */
1120 	int ret;                                  /* return code */
1121 	wait_queue_head_t go;                     /* start decompression */
1122 	wait_queue_head_t done;                   /* decompression done */
1123 	size_t unc_len;                           /* uncompressed length */
1124 	size_t cmp_len;                           /* compressed length */
1125 	unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1126 	unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1127 };
1128 
1129 /**
1130  * Decompression function that runs in its own thread.
1131  */
1132 static int lzo_decompress_threadfn(void *data)
1133 {
1134 	struct dec_data *d = data;
1135 
1136 	while (1) {
1137 		wait_event(d->go, atomic_read(&d->ready) ||
1138 		                  kthread_should_stop());
1139 		if (kthread_should_stop()) {
1140 			d->thr = NULL;
1141 			d->ret = -1;
1142 			atomic_set(&d->stop, 1);
1143 			wake_up(&d->done);
1144 			break;
1145 		}
1146 		atomic_set(&d->ready, 0);
1147 
1148 		d->unc_len = LZO_UNC_SIZE;
1149 		d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1150 		                               d->unc, &d->unc_len);
1151 		if (clean_pages_on_decompress)
1152 			flush_icache_range((unsigned long)d->unc,
1153 					   (unsigned long)d->unc + d->unc_len);
1154 
1155 		atomic_set(&d->stop, 1);
1156 		wake_up(&d->done);
1157 	}
1158 	return 0;
1159 }
1160 
1161 /**
1162  * load_image_lzo - Load compressed image data and decompress them with LZO.
1163  * @handle: Swap map handle to use for loading data.
1164  * @snapshot: Image to copy uncompressed data into.
1165  * @nr_to_read: Number of pages to load.
1166  */
1167 static int load_image_lzo(struct swap_map_handle *handle,
1168                           struct snapshot_handle *snapshot,
1169                           unsigned int nr_to_read)
1170 {
1171 	unsigned int m;
1172 	int ret = 0;
1173 	int eof = 0;
1174 	struct hib_bio_batch hb;
1175 	ktime_t start;
1176 	ktime_t stop;
1177 	unsigned nr_pages;
1178 	size_t off;
1179 	unsigned i, thr, run_threads, nr_threads;
1180 	unsigned ring = 0, pg = 0, ring_size = 0,
1181 	         have = 0, want, need, asked = 0;
1182 	unsigned long read_pages = 0;
1183 	unsigned char **page = NULL;
1184 	struct dec_data *data = NULL;
1185 	struct crc_data *crc = NULL;
1186 
1187 	hib_init_batch(&hb);
1188 
1189 	/*
1190 	 * We'll limit the number of threads for decompression to limit memory
1191 	 * footprint.
1192 	 */
1193 	nr_threads = num_online_cpus() - 1;
1194 	nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1195 
1196 	page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1197 	if (!page) {
1198 		pr_err("Failed to allocate LZO page\n");
1199 		ret = -ENOMEM;
1200 		goto out_clean;
1201 	}
1202 
1203 	data = vzalloc(array_size(nr_threads, sizeof(*data)));
1204 	if (!data) {
1205 		pr_err("Failed to allocate LZO data\n");
1206 		ret = -ENOMEM;
1207 		goto out_clean;
1208 	}
1209 
1210 	crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1211 	if (!crc) {
1212 		pr_err("Failed to allocate crc\n");
1213 		ret = -ENOMEM;
1214 		goto out_clean;
1215 	}
1216 
1217 	clean_pages_on_decompress = true;
1218 
1219 	/*
1220 	 * Start the decompression threads.
1221 	 */
1222 	for (thr = 0; thr < nr_threads; thr++) {
1223 		init_waitqueue_head(&data[thr].go);
1224 		init_waitqueue_head(&data[thr].done);
1225 
1226 		data[thr].thr = kthread_run(lzo_decompress_threadfn,
1227 		                            &data[thr],
1228 		                            "image_decompress/%u", thr);
1229 		if (IS_ERR(data[thr].thr)) {
1230 			data[thr].thr = NULL;
1231 			pr_err("Cannot start decompression threads\n");
1232 			ret = -ENOMEM;
1233 			goto out_clean;
1234 		}
1235 	}
1236 
1237 	/*
1238 	 * Start the CRC32 thread.
1239 	 */
1240 	init_waitqueue_head(&crc->go);
1241 	init_waitqueue_head(&crc->done);
1242 
1243 	handle->crc32 = 0;
1244 	crc->crc32 = &handle->crc32;
1245 	for (thr = 0; thr < nr_threads; thr++) {
1246 		crc->unc[thr] = data[thr].unc;
1247 		crc->unc_len[thr] = &data[thr].unc_len;
1248 	}
1249 
1250 	crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1251 	if (IS_ERR(crc->thr)) {
1252 		crc->thr = NULL;
1253 		pr_err("Cannot start CRC32 thread\n");
1254 		ret = -ENOMEM;
1255 		goto out_clean;
1256 	}
1257 
1258 	/*
1259 	 * Set the number of pages for read buffering.
1260 	 * This is complete guesswork, because we'll only know the real
1261 	 * picture once prepare_image() is called, which is much later on
1262 	 * during the image load phase. We'll assume the worst case and
1263 	 * say that none of the image pages are from high memory.
1264 	 */
1265 	if (low_free_pages() > snapshot_get_image_size())
1266 		read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1267 	read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1268 
1269 	for (i = 0; i < read_pages; i++) {
1270 		page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1271 						  GFP_NOIO | __GFP_HIGH :
1272 						  GFP_NOIO | __GFP_NOWARN |
1273 						  __GFP_NORETRY);
1274 
1275 		if (!page[i]) {
1276 			if (i < LZO_CMP_PAGES) {
1277 				ring_size = i;
1278 				pr_err("Failed to allocate LZO pages\n");
1279 				ret = -ENOMEM;
1280 				goto out_clean;
1281 			} else {
1282 				break;
1283 			}
1284 		}
1285 	}
1286 	want = ring_size = i;
1287 
1288 	pr_info("Using %u thread(s) for decompression\n", nr_threads);
1289 	pr_info("Loading and decompressing image data (%u pages)...\n",
1290 		nr_to_read);
1291 	m = nr_to_read / 10;
1292 	if (!m)
1293 		m = 1;
1294 	nr_pages = 0;
1295 	start = ktime_get();
1296 
1297 	ret = snapshot_write_next(snapshot);
1298 	if (ret <= 0)
1299 		goto out_finish;
1300 
1301 	for(;;) {
1302 		for (i = 0; !eof && i < want; i++) {
1303 			ret = swap_read_page(handle, page[ring], &hb);
1304 			if (ret) {
1305 				/*
1306 				 * On real read error, finish. On end of data,
1307 				 * set EOF flag and just exit the read loop.
1308 				 */
1309 				if (handle->cur &&
1310 				    handle->cur->entries[handle->k]) {
1311 					goto out_finish;
1312 				} else {
1313 					eof = 1;
1314 					break;
1315 				}
1316 			}
1317 			if (++ring >= ring_size)
1318 				ring = 0;
1319 		}
1320 		asked += i;
1321 		want -= i;
1322 
1323 		/*
1324 		 * We are out of data, wait for some more.
1325 		 */
1326 		if (!have) {
1327 			if (!asked)
1328 				break;
1329 
1330 			ret = hib_wait_io(&hb);
1331 			if (ret)
1332 				goto out_finish;
1333 			have += asked;
1334 			asked = 0;
1335 			if (eof)
1336 				eof = 2;
1337 		}
1338 
1339 		if (crc->run_threads) {
1340 			wait_event(crc->done, atomic_read(&crc->stop));
1341 			atomic_set(&crc->stop, 0);
1342 			crc->run_threads = 0;
1343 		}
1344 
1345 		for (thr = 0; have && thr < nr_threads; thr++) {
1346 			data[thr].cmp_len = *(size_t *)page[pg];
1347 			if (unlikely(!data[thr].cmp_len ||
1348 			             data[thr].cmp_len >
1349 			             lzo1x_worst_compress(LZO_UNC_SIZE))) {
1350 				pr_err("Invalid LZO compressed length\n");
1351 				ret = -1;
1352 				goto out_finish;
1353 			}
1354 
1355 			need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1356 			                    PAGE_SIZE);
1357 			if (need > have) {
1358 				if (eof > 1) {
1359 					ret = -1;
1360 					goto out_finish;
1361 				}
1362 				break;
1363 			}
1364 
1365 			for (off = 0;
1366 			     off < LZO_HEADER + data[thr].cmp_len;
1367 			     off += PAGE_SIZE) {
1368 				memcpy(data[thr].cmp + off,
1369 				       page[pg], PAGE_SIZE);
1370 				have--;
1371 				want++;
1372 				if (++pg >= ring_size)
1373 					pg = 0;
1374 			}
1375 
1376 			atomic_set(&data[thr].ready, 1);
1377 			wake_up(&data[thr].go);
1378 		}
1379 
1380 		/*
1381 		 * Wait for more data while we are decompressing.
1382 		 */
1383 		if (have < LZO_CMP_PAGES && asked) {
1384 			ret = hib_wait_io(&hb);
1385 			if (ret)
1386 				goto out_finish;
1387 			have += asked;
1388 			asked = 0;
1389 			if (eof)
1390 				eof = 2;
1391 		}
1392 
1393 		for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1394 			wait_event(data[thr].done,
1395 			           atomic_read(&data[thr].stop));
1396 			atomic_set(&data[thr].stop, 0);
1397 
1398 			ret = data[thr].ret;
1399 
1400 			if (ret < 0) {
1401 				pr_err("LZO decompression failed\n");
1402 				goto out_finish;
1403 			}
1404 
1405 			if (unlikely(!data[thr].unc_len ||
1406 			             data[thr].unc_len > LZO_UNC_SIZE ||
1407 			             data[thr].unc_len & (PAGE_SIZE - 1))) {
1408 				pr_err("Invalid LZO uncompressed length\n");
1409 				ret = -1;
1410 				goto out_finish;
1411 			}
1412 
1413 			for (off = 0;
1414 			     off < data[thr].unc_len; off += PAGE_SIZE) {
1415 				memcpy(data_of(*snapshot),
1416 				       data[thr].unc + off, PAGE_SIZE);
1417 
1418 				if (!(nr_pages % m))
1419 					pr_info("Image loading progress: %3d%%\n",
1420 						nr_pages / m * 10);
1421 				nr_pages++;
1422 
1423 				ret = snapshot_write_next(snapshot);
1424 				if (ret <= 0) {
1425 					crc->run_threads = thr + 1;
1426 					atomic_set(&crc->ready, 1);
1427 					wake_up(&crc->go);
1428 					goto out_finish;
1429 				}
1430 			}
1431 		}
1432 
1433 		crc->run_threads = thr;
1434 		atomic_set(&crc->ready, 1);
1435 		wake_up(&crc->go);
1436 	}
1437 
1438 out_finish:
1439 	if (crc->run_threads) {
1440 		wait_event(crc->done, atomic_read(&crc->stop));
1441 		atomic_set(&crc->stop, 0);
1442 	}
1443 	stop = ktime_get();
1444 	if (!ret) {
1445 		pr_info("Image loading done\n");
1446 		snapshot_write_finalize(snapshot);
1447 		if (!snapshot_image_loaded(snapshot))
1448 			ret = -ENODATA;
1449 		if (!ret) {
1450 			if (swsusp_header->flags & SF_CRC32_MODE) {
1451 				if(handle->crc32 != swsusp_header->crc32) {
1452 					pr_err("Invalid image CRC32!\n");
1453 					ret = -ENODATA;
1454 				}
1455 			}
1456 		}
1457 	}
1458 	swsusp_show_speed(start, stop, nr_to_read, "Read");
1459 out_clean:
1460 	hib_finish_batch(&hb);
1461 	for (i = 0; i < ring_size; i++)
1462 		free_page((unsigned long)page[i]);
1463 	if (crc) {
1464 		if (crc->thr)
1465 			kthread_stop(crc->thr);
1466 		kfree(crc);
1467 	}
1468 	if (data) {
1469 		for (thr = 0; thr < nr_threads; thr++)
1470 			if (data[thr].thr)
1471 				kthread_stop(data[thr].thr);
1472 		vfree(data);
1473 	}
1474 	vfree(page);
1475 
1476 	return ret;
1477 }
1478 
1479 /**
1480  *	swsusp_read - read the hibernation image.
1481  *	@flags_p: flags passed by the "frozen" kernel in the image header should
1482  *		  be written into this memory location
1483  */
1484 
1485 int swsusp_read(unsigned int *flags_p)
1486 {
1487 	int error;
1488 	struct swap_map_handle handle;
1489 	struct snapshot_handle snapshot;
1490 	struct swsusp_info *header;
1491 
1492 	memset(&snapshot, 0, sizeof(struct snapshot_handle));
1493 	error = snapshot_write_next(&snapshot);
1494 	if (error < (int)PAGE_SIZE)
1495 		return error < 0 ? error : -EFAULT;
1496 	header = (struct swsusp_info *)data_of(snapshot);
1497 	error = get_swap_reader(&handle, flags_p);
1498 	if (error)
1499 		goto end;
1500 	if (!error)
1501 		error = swap_read_page(&handle, header, NULL);
1502 	if (!error) {
1503 		error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1504 			load_image(&handle, &snapshot, header->pages - 1) :
1505 			load_image_lzo(&handle, &snapshot, header->pages - 1);
1506 	}
1507 	swap_reader_finish(&handle);
1508 end:
1509 	if (!error)
1510 		pr_debug("Image successfully loaded\n");
1511 	else
1512 		pr_debug("Error %d resuming\n", error);
1513 	return error;
1514 }
1515 
1516 /**
1517  *      swsusp_check - Check for swsusp signature in the resume device
1518  */
1519 
1520 int swsusp_check(void)
1521 {
1522 	int error;
1523 	void *holder;
1524 
1525 	hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1526 					    FMODE_READ | FMODE_EXCL, &holder);
1527 	if (!IS_ERR(hib_resume_bdev)) {
1528 		set_blocksize(hib_resume_bdev, PAGE_SIZE);
1529 		clear_page(swsusp_header);
1530 		error = hib_submit_io(REQ_OP_READ, 0,
1531 					swsusp_resume_block,
1532 					swsusp_header, NULL);
1533 		if (error)
1534 			goto put;
1535 
1536 		if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1537 			memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1538 			/* Reset swap signature now */
1539 			error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1540 						swsusp_resume_block,
1541 						swsusp_header, NULL);
1542 		} else {
1543 			error = -EINVAL;
1544 		}
1545 		if (!error && swsusp_header->flags & SF_HW_SIG &&
1546 		    swsusp_header->hw_sig != swsusp_hardware_signature) {
1547 			pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1548 				swsusp_header->hw_sig, swsusp_hardware_signature);
1549 			error = -EINVAL;
1550 		}
1551 
1552 put:
1553 		if (error)
1554 			blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL);
1555 		else
1556 			pr_debug("Image signature found, resuming\n");
1557 	} else {
1558 		error = PTR_ERR(hib_resume_bdev);
1559 	}
1560 
1561 	if (error)
1562 		pr_debug("Image not found (code %d)\n", error);
1563 
1564 	return error;
1565 }
1566 
1567 /**
1568  *	swsusp_close - close swap device.
1569  */
1570 
1571 void swsusp_close(fmode_t mode)
1572 {
1573 	if (IS_ERR(hib_resume_bdev)) {
1574 		pr_debug("Image device not initialised\n");
1575 		return;
1576 	}
1577 
1578 	blkdev_put(hib_resume_bdev, mode);
1579 }
1580 
1581 /**
1582  *      swsusp_unmark - Unmark swsusp signature in the resume device
1583  */
1584 
1585 #ifdef CONFIG_SUSPEND
1586 int swsusp_unmark(void)
1587 {
1588 	int error;
1589 
1590 	hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1591 		      swsusp_header, NULL);
1592 	if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1593 		memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1594 		error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1595 					swsusp_resume_block,
1596 					swsusp_header, NULL);
1597 	} else {
1598 		pr_err("Cannot find swsusp signature!\n");
1599 		error = -ENODEV;
1600 	}
1601 
1602 	/*
1603 	 * We just returned from suspend, we don't need the image any more.
1604 	 */
1605 	free_all_swap_pages(root_swap);
1606 
1607 	return error;
1608 }
1609 #endif
1610 
1611 static int __init swsusp_header_init(void)
1612 {
1613 	swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1614 	if (!swsusp_header)
1615 		panic("Could not allocate memory for swsusp_header\n");
1616 	return 0;
1617 }
1618 
1619 core_initcall(swsusp_header_init);
1620