1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/genhd.h> 20 #include <linux/device.h> 21 #include <linux/bio.h> 22 #include <linux/blkdev.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/pm.h> 26 #include <linux/slab.h> 27 #include <linux/lzo.h> 28 #include <linux/vmalloc.h> 29 #include <linux/cpumask.h> 30 #include <linux/atomic.h> 31 #include <linux/kthread.h> 32 #include <linux/crc32.h> 33 #include <linux/ktime.h> 34 35 #include "power.h" 36 37 #define HIBERNATE_SIG "S1SUSPEND" 38 39 /* 40 * When reading an {un,}compressed image, we may restore pages in place, 41 * in which case some architectures need these pages cleaning before they 42 * can be executed. We don't know which pages these may be, so clean the lot. 43 */ 44 static bool clean_pages_on_read; 45 static bool clean_pages_on_decompress; 46 47 /* 48 * The swap map is a data structure used for keeping track of each page 49 * written to a swap partition. It consists of many swap_map_page 50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 51 * These structures are stored on the swap and linked together with the 52 * help of the .next_swap member. 53 * 54 * The swap map is created during suspend. The swap map pages are 55 * allocated and populated one at a time, so we only need one memory 56 * page to set up the entire structure. 57 * 58 * During resume we pick up all swap_map_page structures into a list. 59 */ 60 61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 62 63 /* 64 * Number of free pages that are not high. 65 */ 66 static inline unsigned long low_free_pages(void) 67 { 68 return nr_free_pages() - nr_free_highpages(); 69 } 70 71 /* 72 * Number of pages required to be kept free while writing the image. Always 73 * half of all available low pages before the writing starts. 74 */ 75 static inline unsigned long reqd_free_pages(void) 76 { 77 return low_free_pages() / 2; 78 } 79 80 struct swap_map_page { 81 sector_t entries[MAP_PAGE_ENTRIES]; 82 sector_t next_swap; 83 }; 84 85 struct swap_map_page_list { 86 struct swap_map_page *map; 87 struct swap_map_page_list *next; 88 }; 89 90 /** 91 * The swap_map_handle structure is used for handling swap in 92 * a file-alike way 93 */ 94 95 struct swap_map_handle { 96 struct swap_map_page *cur; 97 struct swap_map_page_list *maps; 98 sector_t cur_swap; 99 sector_t first_sector; 100 unsigned int k; 101 unsigned long reqd_free_pages; 102 u32 crc32; 103 }; 104 105 struct swsusp_header { 106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 107 sizeof(u32)]; 108 u32 crc32; 109 sector_t image; 110 unsigned int flags; /* Flags to pass to the "boot" kernel */ 111 char orig_sig[10]; 112 char sig[10]; 113 } __packed; 114 115 static struct swsusp_header *swsusp_header; 116 117 /** 118 * The following functions are used for tracing the allocated 119 * swap pages, so that they can be freed in case of an error. 120 */ 121 122 struct swsusp_extent { 123 struct rb_node node; 124 unsigned long start; 125 unsigned long end; 126 }; 127 128 static struct rb_root swsusp_extents = RB_ROOT; 129 130 static int swsusp_extents_insert(unsigned long swap_offset) 131 { 132 struct rb_node **new = &(swsusp_extents.rb_node); 133 struct rb_node *parent = NULL; 134 struct swsusp_extent *ext; 135 136 /* Figure out where to put the new node */ 137 while (*new) { 138 ext = rb_entry(*new, struct swsusp_extent, node); 139 parent = *new; 140 if (swap_offset < ext->start) { 141 /* Try to merge */ 142 if (swap_offset == ext->start - 1) { 143 ext->start--; 144 return 0; 145 } 146 new = &((*new)->rb_left); 147 } else if (swap_offset > ext->end) { 148 /* Try to merge */ 149 if (swap_offset == ext->end + 1) { 150 ext->end++; 151 return 0; 152 } 153 new = &((*new)->rb_right); 154 } else { 155 /* It already is in the tree */ 156 return -EINVAL; 157 } 158 } 159 /* Add the new node and rebalance the tree. */ 160 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 161 if (!ext) 162 return -ENOMEM; 163 164 ext->start = swap_offset; 165 ext->end = swap_offset; 166 rb_link_node(&ext->node, parent, new); 167 rb_insert_color(&ext->node, &swsusp_extents); 168 return 0; 169 } 170 171 /** 172 * alloc_swapdev_block - allocate a swap page and register that it has 173 * been allocated, so that it can be freed in case of an error. 174 */ 175 176 sector_t alloc_swapdev_block(int swap) 177 { 178 unsigned long offset; 179 180 offset = swp_offset(get_swap_page_of_type(swap)); 181 if (offset) { 182 if (swsusp_extents_insert(offset)) 183 swap_free(swp_entry(swap, offset)); 184 else 185 return swapdev_block(swap, offset); 186 } 187 return 0; 188 } 189 190 /** 191 * free_all_swap_pages - free swap pages allocated for saving image data. 192 * It also frees the extents used to register which swap entries had been 193 * allocated. 194 */ 195 196 void free_all_swap_pages(int swap) 197 { 198 struct rb_node *node; 199 200 while ((node = swsusp_extents.rb_node)) { 201 struct swsusp_extent *ext; 202 unsigned long offset; 203 204 ext = rb_entry(node, struct swsusp_extent, node); 205 rb_erase(node, &swsusp_extents); 206 for (offset = ext->start; offset <= ext->end; offset++) 207 swap_free(swp_entry(swap, offset)); 208 209 kfree(ext); 210 } 211 } 212 213 int swsusp_swap_in_use(void) 214 { 215 return (swsusp_extents.rb_node != NULL); 216 } 217 218 /* 219 * General things 220 */ 221 222 static unsigned short root_swap = 0xffff; 223 static struct block_device *hib_resume_bdev; 224 225 struct hib_bio_batch { 226 atomic_t count; 227 wait_queue_head_t wait; 228 blk_status_t error; 229 }; 230 231 static void hib_init_batch(struct hib_bio_batch *hb) 232 { 233 atomic_set(&hb->count, 0); 234 init_waitqueue_head(&hb->wait); 235 hb->error = BLK_STS_OK; 236 } 237 238 static void hib_end_io(struct bio *bio) 239 { 240 struct hib_bio_batch *hb = bio->bi_private; 241 struct page *page = bio_first_page_all(bio); 242 243 if (bio->bi_status) { 244 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 245 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 246 (unsigned long long)bio->bi_iter.bi_sector); 247 } 248 249 if (bio_data_dir(bio) == WRITE) 250 put_page(page); 251 else if (clean_pages_on_read) 252 flush_icache_range((unsigned long)page_address(page), 253 (unsigned long)page_address(page) + PAGE_SIZE); 254 255 if (bio->bi_status && !hb->error) 256 hb->error = bio->bi_status; 257 if (atomic_dec_and_test(&hb->count)) 258 wake_up(&hb->wait); 259 260 bio_put(bio); 261 } 262 263 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr, 264 struct hib_bio_batch *hb) 265 { 266 struct page *page = virt_to_page(addr); 267 struct bio *bio; 268 int error = 0; 269 270 bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1); 271 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 272 bio_set_dev(bio, hib_resume_bdev); 273 bio_set_op_attrs(bio, op, op_flags); 274 275 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 276 pr_err("Adding page to bio failed at %llu\n", 277 (unsigned long long)bio->bi_iter.bi_sector); 278 bio_put(bio); 279 return -EFAULT; 280 } 281 282 if (hb) { 283 bio->bi_end_io = hib_end_io; 284 bio->bi_private = hb; 285 atomic_inc(&hb->count); 286 submit_bio(bio); 287 } else { 288 error = submit_bio_wait(bio); 289 bio_put(bio); 290 } 291 292 return error; 293 } 294 295 static blk_status_t hib_wait_io(struct hib_bio_batch *hb) 296 { 297 wait_event(hb->wait, atomic_read(&hb->count) == 0); 298 return blk_status_to_errno(hb->error); 299 } 300 301 /* 302 * Saving part 303 */ 304 305 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 306 { 307 int error; 308 309 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 310 swsusp_header, NULL); 311 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 312 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 313 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 314 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 315 swsusp_header->image = handle->first_sector; 316 swsusp_header->flags = flags; 317 if (flags & SF_CRC32_MODE) 318 swsusp_header->crc32 = handle->crc32; 319 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 320 swsusp_resume_block, swsusp_header, NULL); 321 } else { 322 pr_err("Swap header not found!\n"); 323 error = -ENODEV; 324 } 325 return error; 326 } 327 328 /** 329 * swsusp_swap_check - check if the resume device is a swap device 330 * and get its index (if so) 331 * 332 * This is called before saving image 333 */ 334 static int swsusp_swap_check(void) 335 { 336 int res; 337 338 if (swsusp_resume_device) 339 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 340 else 341 res = find_first_swap(&swsusp_resume_device); 342 if (res < 0) 343 return res; 344 root_swap = res; 345 346 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE, 347 NULL); 348 if (IS_ERR(hib_resume_bdev)) 349 return PTR_ERR(hib_resume_bdev); 350 351 res = set_blocksize(hib_resume_bdev, PAGE_SIZE); 352 if (res < 0) 353 blkdev_put(hib_resume_bdev, FMODE_WRITE); 354 355 return res; 356 } 357 358 /** 359 * write_page - Write one page to given swap location. 360 * @buf: Address we're writing. 361 * @offset: Offset of the swap page we're writing to. 362 * @hb: bio completion batch 363 */ 364 365 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 366 { 367 void *src; 368 int ret; 369 370 if (!offset) 371 return -ENOSPC; 372 373 if (hb) { 374 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 375 __GFP_NORETRY); 376 if (src) { 377 copy_page(src, buf); 378 } else { 379 ret = hib_wait_io(hb); /* Free pages */ 380 if (ret) 381 return ret; 382 src = (void *)__get_free_page(GFP_NOIO | 383 __GFP_NOWARN | 384 __GFP_NORETRY); 385 if (src) { 386 copy_page(src, buf); 387 } else { 388 WARN_ON_ONCE(1); 389 hb = NULL; /* Go synchronous */ 390 src = buf; 391 } 392 } 393 } else { 394 src = buf; 395 } 396 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb); 397 } 398 399 static void release_swap_writer(struct swap_map_handle *handle) 400 { 401 if (handle->cur) 402 free_page((unsigned long)handle->cur); 403 handle->cur = NULL; 404 } 405 406 static int get_swap_writer(struct swap_map_handle *handle) 407 { 408 int ret; 409 410 ret = swsusp_swap_check(); 411 if (ret) { 412 if (ret != -ENOSPC) 413 pr_err("Cannot find swap device, try swapon -a\n"); 414 return ret; 415 } 416 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 417 if (!handle->cur) { 418 ret = -ENOMEM; 419 goto err_close; 420 } 421 handle->cur_swap = alloc_swapdev_block(root_swap); 422 if (!handle->cur_swap) { 423 ret = -ENOSPC; 424 goto err_rel; 425 } 426 handle->k = 0; 427 handle->reqd_free_pages = reqd_free_pages(); 428 handle->first_sector = handle->cur_swap; 429 return 0; 430 err_rel: 431 release_swap_writer(handle); 432 err_close: 433 swsusp_close(FMODE_WRITE); 434 return ret; 435 } 436 437 static int swap_write_page(struct swap_map_handle *handle, void *buf, 438 struct hib_bio_batch *hb) 439 { 440 int error = 0; 441 sector_t offset; 442 443 if (!handle->cur) 444 return -EINVAL; 445 offset = alloc_swapdev_block(root_swap); 446 error = write_page(buf, offset, hb); 447 if (error) 448 return error; 449 handle->cur->entries[handle->k++] = offset; 450 if (handle->k >= MAP_PAGE_ENTRIES) { 451 offset = alloc_swapdev_block(root_swap); 452 if (!offset) 453 return -ENOSPC; 454 handle->cur->next_swap = offset; 455 error = write_page(handle->cur, handle->cur_swap, hb); 456 if (error) 457 goto out; 458 clear_page(handle->cur); 459 handle->cur_swap = offset; 460 handle->k = 0; 461 462 if (hb && low_free_pages() <= handle->reqd_free_pages) { 463 error = hib_wait_io(hb); 464 if (error) 465 goto out; 466 /* 467 * Recalculate the number of required free pages, to 468 * make sure we never take more than half. 469 */ 470 handle->reqd_free_pages = reqd_free_pages(); 471 } 472 } 473 out: 474 return error; 475 } 476 477 static int flush_swap_writer(struct swap_map_handle *handle) 478 { 479 if (handle->cur && handle->cur_swap) 480 return write_page(handle->cur, handle->cur_swap, NULL); 481 else 482 return -EINVAL; 483 } 484 485 static int swap_writer_finish(struct swap_map_handle *handle, 486 unsigned int flags, int error) 487 { 488 if (!error) { 489 flush_swap_writer(handle); 490 pr_info("S"); 491 error = mark_swapfiles(handle, flags); 492 pr_cont("|\n"); 493 } 494 495 if (error) 496 free_all_swap_pages(root_swap); 497 release_swap_writer(handle); 498 swsusp_close(FMODE_WRITE); 499 500 return error; 501 } 502 503 /* We need to remember how much compressed data we need to read. */ 504 #define LZO_HEADER sizeof(size_t) 505 506 /* Number of pages/bytes we'll compress at one time. */ 507 #define LZO_UNC_PAGES 32 508 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE) 509 510 /* Number of pages/bytes we need for compressed data (worst case). */ 511 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \ 512 LZO_HEADER, PAGE_SIZE) 513 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE) 514 515 /* Maximum number of threads for compression/decompression. */ 516 #define LZO_THREADS 3 517 518 /* Minimum/maximum number of pages for read buffering. */ 519 #define LZO_MIN_RD_PAGES 1024 520 #define LZO_MAX_RD_PAGES 8192 521 522 523 /** 524 * save_image - save the suspend image data 525 */ 526 527 static int save_image(struct swap_map_handle *handle, 528 struct snapshot_handle *snapshot, 529 unsigned int nr_to_write) 530 { 531 unsigned int m; 532 int ret; 533 int nr_pages; 534 int err2; 535 struct hib_bio_batch hb; 536 ktime_t start; 537 ktime_t stop; 538 539 hib_init_batch(&hb); 540 541 pr_info("Saving image data pages (%u pages)...\n", 542 nr_to_write); 543 m = nr_to_write / 10; 544 if (!m) 545 m = 1; 546 nr_pages = 0; 547 start = ktime_get(); 548 while (1) { 549 ret = snapshot_read_next(snapshot); 550 if (ret <= 0) 551 break; 552 ret = swap_write_page(handle, data_of(*snapshot), &hb); 553 if (ret) 554 break; 555 if (!(nr_pages % m)) 556 pr_info("Image saving progress: %3d%%\n", 557 nr_pages / m * 10); 558 nr_pages++; 559 } 560 err2 = hib_wait_io(&hb); 561 stop = ktime_get(); 562 if (!ret) 563 ret = err2; 564 if (!ret) 565 pr_info("Image saving done\n"); 566 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 567 return ret; 568 } 569 570 /** 571 * Structure used for CRC32. 572 */ 573 struct crc_data { 574 struct task_struct *thr; /* thread */ 575 atomic_t ready; /* ready to start flag */ 576 atomic_t stop; /* ready to stop flag */ 577 unsigned run_threads; /* nr current threads */ 578 wait_queue_head_t go; /* start crc update */ 579 wait_queue_head_t done; /* crc update done */ 580 u32 *crc32; /* points to handle's crc32 */ 581 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */ 582 unsigned char *unc[LZO_THREADS]; /* uncompressed data */ 583 }; 584 585 /** 586 * CRC32 update function that runs in its own thread. 587 */ 588 static int crc32_threadfn(void *data) 589 { 590 struct crc_data *d = data; 591 unsigned i; 592 593 while (1) { 594 wait_event(d->go, atomic_read(&d->ready) || 595 kthread_should_stop()); 596 if (kthread_should_stop()) { 597 d->thr = NULL; 598 atomic_set(&d->stop, 1); 599 wake_up(&d->done); 600 break; 601 } 602 atomic_set(&d->ready, 0); 603 604 for (i = 0; i < d->run_threads; i++) 605 *d->crc32 = crc32_le(*d->crc32, 606 d->unc[i], *d->unc_len[i]); 607 atomic_set(&d->stop, 1); 608 wake_up(&d->done); 609 } 610 return 0; 611 } 612 /** 613 * Structure used for LZO data compression. 614 */ 615 struct cmp_data { 616 struct task_struct *thr; /* thread */ 617 atomic_t ready; /* ready to start flag */ 618 atomic_t stop; /* ready to stop flag */ 619 int ret; /* return code */ 620 wait_queue_head_t go; /* start compression */ 621 wait_queue_head_t done; /* compression done */ 622 size_t unc_len; /* uncompressed length */ 623 size_t cmp_len; /* compressed length */ 624 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 625 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 626 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */ 627 }; 628 629 /** 630 * Compression function that runs in its own thread. 631 */ 632 static int lzo_compress_threadfn(void *data) 633 { 634 struct cmp_data *d = data; 635 636 while (1) { 637 wait_event(d->go, atomic_read(&d->ready) || 638 kthread_should_stop()); 639 if (kthread_should_stop()) { 640 d->thr = NULL; 641 d->ret = -1; 642 atomic_set(&d->stop, 1); 643 wake_up(&d->done); 644 break; 645 } 646 atomic_set(&d->ready, 0); 647 648 d->ret = lzo1x_1_compress(d->unc, d->unc_len, 649 d->cmp + LZO_HEADER, &d->cmp_len, 650 d->wrk); 651 atomic_set(&d->stop, 1); 652 wake_up(&d->done); 653 } 654 return 0; 655 } 656 657 /** 658 * save_image_lzo - Save the suspend image data compressed with LZO. 659 * @handle: Swap map handle to use for saving the image. 660 * @snapshot: Image to read data from. 661 * @nr_to_write: Number of pages to save. 662 */ 663 static int save_image_lzo(struct swap_map_handle *handle, 664 struct snapshot_handle *snapshot, 665 unsigned int nr_to_write) 666 { 667 unsigned int m; 668 int ret = 0; 669 int nr_pages; 670 int err2; 671 struct hib_bio_batch hb; 672 ktime_t start; 673 ktime_t stop; 674 size_t off; 675 unsigned thr, run_threads, nr_threads; 676 unsigned char *page = NULL; 677 struct cmp_data *data = NULL; 678 struct crc_data *crc = NULL; 679 680 hib_init_batch(&hb); 681 682 /* 683 * We'll limit the number of threads for compression to limit memory 684 * footprint. 685 */ 686 nr_threads = num_online_cpus() - 1; 687 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 688 689 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 690 if (!page) { 691 pr_err("Failed to allocate LZO page\n"); 692 ret = -ENOMEM; 693 goto out_clean; 694 } 695 696 data = vmalloc(array_size(nr_threads, sizeof(*data))); 697 if (!data) { 698 pr_err("Failed to allocate LZO data\n"); 699 ret = -ENOMEM; 700 goto out_clean; 701 } 702 for (thr = 0; thr < nr_threads; thr++) 703 memset(&data[thr], 0, offsetof(struct cmp_data, go)); 704 705 crc = kmalloc(sizeof(*crc), GFP_KERNEL); 706 if (!crc) { 707 pr_err("Failed to allocate crc\n"); 708 ret = -ENOMEM; 709 goto out_clean; 710 } 711 memset(crc, 0, offsetof(struct crc_data, go)); 712 713 /* 714 * Start the compression threads. 715 */ 716 for (thr = 0; thr < nr_threads; thr++) { 717 init_waitqueue_head(&data[thr].go); 718 init_waitqueue_head(&data[thr].done); 719 720 data[thr].thr = kthread_run(lzo_compress_threadfn, 721 &data[thr], 722 "image_compress/%u", thr); 723 if (IS_ERR(data[thr].thr)) { 724 data[thr].thr = NULL; 725 pr_err("Cannot start compression threads\n"); 726 ret = -ENOMEM; 727 goto out_clean; 728 } 729 } 730 731 /* 732 * Start the CRC32 thread. 733 */ 734 init_waitqueue_head(&crc->go); 735 init_waitqueue_head(&crc->done); 736 737 handle->crc32 = 0; 738 crc->crc32 = &handle->crc32; 739 for (thr = 0; thr < nr_threads; thr++) { 740 crc->unc[thr] = data[thr].unc; 741 crc->unc_len[thr] = &data[thr].unc_len; 742 } 743 744 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 745 if (IS_ERR(crc->thr)) { 746 crc->thr = NULL; 747 pr_err("Cannot start CRC32 thread\n"); 748 ret = -ENOMEM; 749 goto out_clean; 750 } 751 752 /* 753 * Adjust the number of required free pages after all allocations have 754 * been done. We don't want to run out of pages when writing. 755 */ 756 handle->reqd_free_pages = reqd_free_pages(); 757 758 pr_info("Using %u thread(s) for compression\n", nr_threads); 759 pr_info("Compressing and saving image data (%u pages)...\n", 760 nr_to_write); 761 m = nr_to_write / 10; 762 if (!m) 763 m = 1; 764 nr_pages = 0; 765 start = ktime_get(); 766 for (;;) { 767 for (thr = 0; thr < nr_threads; thr++) { 768 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) { 769 ret = snapshot_read_next(snapshot); 770 if (ret < 0) 771 goto out_finish; 772 773 if (!ret) 774 break; 775 776 memcpy(data[thr].unc + off, 777 data_of(*snapshot), PAGE_SIZE); 778 779 if (!(nr_pages % m)) 780 pr_info("Image saving progress: %3d%%\n", 781 nr_pages / m * 10); 782 nr_pages++; 783 } 784 if (!off) 785 break; 786 787 data[thr].unc_len = off; 788 789 atomic_set(&data[thr].ready, 1); 790 wake_up(&data[thr].go); 791 } 792 793 if (!thr) 794 break; 795 796 crc->run_threads = thr; 797 atomic_set(&crc->ready, 1); 798 wake_up(&crc->go); 799 800 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 801 wait_event(data[thr].done, 802 atomic_read(&data[thr].stop)); 803 atomic_set(&data[thr].stop, 0); 804 805 ret = data[thr].ret; 806 807 if (ret < 0) { 808 pr_err("LZO compression failed\n"); 809 goto out_finish; 810 } 811 812 if (unlikely(!data[thr].cmp_len || 813 data[thr].cmp_len > 814 lzo1x_worst_compress(data[thr].unc_len))) { 815 pr_err("Invalid LZO compressed length\n"); 816 ret = -1; 817 goto out_finish; 818 } 819 820 *(size_t *)data[thr].cmp = data[thr].cmp_len; 821 822 /* 823 * Given we are writing one page at a time to disk, we 824 * copy that much from the buffer, although the last 825 * bit will likely be smaller than full page. This is 826 * OK - we saved the length of the compressed data, so 827 * any garbage at the end will be discarded when we 828 * read it. 829 */ 830 for (off = 0; 831 off < LZO_HEADER + data[thr].cmp_len; 832 off += PAGE_SIZE) { 833 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 834 835 ret = swap_write_page(handle, page, &hb); 836 if (ret) 837 goto out_finish; 838 } 839 } 840 841 wait_event(crc->done, atomic_read(&crc->stop)); 842 atomic_set(&crc->stop, 0); 843 } 844 845 out_finish: 846 err2 = hib_wait_io(&hb); 847 stop = ktime_get(); 848 if (!ret) 849 ret = err2; 850 if (!ret) 851 pr_info("Image saving done\n"); 852 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 853 out_clean: 854 if (crc) { 855 if (crc->thr) 856 kthread_stop(crc->thr); 857 kfree(crc); 858 } 859 if (data) { 860 for (thr = 0; thr < nr_threads; thr++) 861 if (data[thr].thr) 862 kthread_stop(data[thr].thr); 863 vfree(data); 864 } 865 if (page) free_page((unsigned long)page); 866 867 return ret; 868 } 869 870 /** 871 * enough_swap - Make sure we have enough swap to save the image. 872 * 873 * Returns TRUE or FALSE after checking the total amount of swap 874 * space avaiable from the resume partition. 875 */ 876 877 static int enough_swap(unsigned int nr_pages) 878 { 879 unsigned int free_swap = count_swap_pages(root_swap, 1); 880 unsigned int required; 881 882 pr_debug("Free swap pages: %u\n", free_swap); 883 884 required = PAGES_FOR_IO + nr_pages; 885 return free_swap > required; 886 } 887 888 /** 889 * swsusp_write - Write entire image and metadata. 890 * @flags: flags to pass to the "boot" kernel in the image header 891 * 892 * It is important _NOT_ to umount filesystems at this point. We want 893 * them synced (in case something goes wrong) but we DO not want to mark 894 * filesystem clean: it is not. (And it does not matter, if we resume 895 * correctly, we'll mark system clean, anyway.) 896 */ 897 898 int swsusp_write(unsigned int flags) 899 { 900 struct swap_map_handle handle; 901 struct snapshot_handle snapshot; 902 struct swsusp_info *header; 903 unsigned long pages; 904 int error; 905 906 pages = snapshot_get_image_size(); 907 error = get_swap_writer(&handle); 908 if (error) { 909 pr_err("Cannot get swap writer\n"); 910 return error; 911 } 912 if (flags & SF_NOCOMPRESS_MODE) { 913 if (!enough_swap(pages)) { 914 pr_err("Not enough free swap\n"); 915 error = -ENOSPC; 916 goto out_finish; 917 } 918 } 919 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 920 error = snapshot_read_next(&snapshot); 921 if (error < (int)PAGE_SIZE) { 922 if (error >= 0) 923 error = -EFAULT; 924 925 goto out_finish; 926 } 927 header = (struct swsusp_info *)data_of(snapshot); 928 error = swap_write_page(&handle, header, NULL); 929 if (!error) { 930 error = (flags & SF_NOCOMPRESS_MODE) ? 931 save_image(&handle, &snapshot, pages - 1) : 932 save_image_lzo(&handle, &snapshot, pages - 1); 933 } 934 out_finish: 935 error = swap_writer_finish(&handle, flags, error); 936 return error; 937 } 938 939 /** 940 * The following functions allow us to read data using a swap map 941 * in a file-alike way 942 */ 943 944 static void release_swap_reader(struct swap_map_handle *handle) 945 { 946 struct swap_map_page_list *tmp; 947 948 while (handle->maps) { 949 if (handle->maps->map) 950 free_page((unsigned long)handle->maps->map); 951 tmp = handle->maps; 952 handle->maps = handle->maps->next; 953 kfree(tmp); 954 } 955 handle->cur = NULL; 956 } 957 958 static int get_swap_reader(struct swap_map_handle *handle, 959 unsigned int *flags_p) 960 { 961 int error; 962 struct swap_map_page_list *tmp, *last; 963 sector_t offset; 964 965 *flags_p = swsusp_header->flags; 966 967 if (!swsusp_header->image) /* how can this happen? */ 968 return -EINVAL; 969 970 handle->cur = NULL; 971 last = handle->maps = NULL; 972 offset = swsusp_header->image; 973 while (offset) { 974 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 975 if (!tmp) { 976 release_swap_reader(handle); 977 return -ENOMEM; 978 } 979 if (!handle->maps) 980 handle->maps = tmp; 981 if (last) 982 last->next = tmp; 983 last = tmp; 984 985 tmp->map = (struct swap_map_page *) 986 __get_free_page(GFP_NOIO | __GFP_HIGH); 987 if (!tmp->map) { 988 release_swap_reader(handle); 989 return -ENOMEM; 990 } 991 992 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL); 993 if (error) { 994 release_swap_reader(handle); 995 return error; 996 } 997 offset = tmp->map->next_swap; 998 } 999 handle->k = 0; 1000 handle->cur = handle->maps->map; 1001 return 0; 1002 } 1003 1004 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1005 struct hib_bio_batch *hb) 1006 { 1007 sector_t offset; 1008 int error; 1009 struct swap_map_page_list *tmp; 1010 1011 if (!handle->cur) 1012 return -EINVAL; 1013 offset = handle->cur->entries[handle->k]; 1014 if (!offset) 1015 return -EFAULT; 1016 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb); 1017 if (error) 1018 return error; 1019 if (++handle->k >= MAP_PAGE_ENTRIES) { 1020 handle->k = 0; 1021 free_page((unsigned long)handle->maps->map); 1022 tmp = handle->maps; 1023 handle->maps = handle->maps->next; 1024 kfree(tmp); 1025 if (!handle->maps) 1026 release_swap_reader(handle); 1027 else 1028 handle->cur = handle->maps->map; 1029 } 1030 return error; 1031 } 1032 1033 static int swap_reader_finish(struct swap_map_handle *handle) 1034 { 1035 release_swap_reader(handle); 1036 1037 return 0; 1038 } 1039 1040 /** 1041 * load_image - load the image using the swap map handle 1042 * @handle and the snapshot handle @snapshot 1043 * (assume there are @nr_pages pages to load) 1044 */ 1045 1046 static int load_image(struct swap_map_handle *handle, 1047 struct snapshot_handle *snapshot, 1048 unsigned int nr_to_read) 1049 { 1050 unsigned int m; 1051 int ret = 0; 1052 ktime_t start; 1053 ktime_t stop; 1054 struct hib_bio_batch hb; 1055 int err2; 1056 unsigned nr_pages; 1057 1058 hib_init_batch(&hb); 1059 1060 clean_pages_on_read = true; 1061 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1062 m = nr_to_read / 10; 1063 if (!m) 1064 m = 1; 1065 nr_pages = 0; 1066 start = ktime_get(); 1067 for ( ; ; ) { 1068 ret = snapshot_write_next(snapshot); 1069 if (ret <= 0) 1070 break; 1071 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1072 if (ret) 1073 break; 1074 if (snapshot->sync_read) 1075 ret = hib_wait_io(&hb); 1076 if (ret) 1077 break; 1078 if (!(nr_pages % m)) 1079 pr_info("Image loading progress: %3d%%\n", 1080 nr_pages / m * 10); 1081 nr_pages++; 1082 } 1083 err2 = hib_wait_io(&hb); 1084 stop = ktime_get(); 1085 if (!ret) 1086 ret = err2; 1087 if (!ret) { 1088 pr_info("Image loading done\n"); 1089 snapshot_write_finalize(snapshot); 1090 if (!snapshot_image_loaded(snapshot)) 1091 ret = -ENODATA; 1092 } 1093 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1094 return ret; 1095 } 1096 1097 /** 1098 * Structure used for LZO data decompression. 1099 */ 1100 struct dec_data { 1101 struct task_struct *thr; /* thread */ 1102 atomic_t ready; /* ready to start flag */ 1103 atomic_t stop; /* ready to stop flag */ 1104 int ret; /* return code */ 1105 wait_queue_head_t go; /* start decompression */ 1106 wait_queue_head_t done; /* decompression done */ 1107 size_t unc_len; /* uncompressed length */ 1108 size_t cmp_len; /* compressed length */ 1109 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 1110 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 1111 }; 1112 1113 /** 1114 * Deompression function that runs in its own thread. 1115 */ 1116 static int lzo_decompress_threadfn(void *data) 1117 { 1118 struct dec_data *d = data; 1119 1120 while (1) { 1121 wait_event(d->go, atomic_read(&d->ready) || 1122 kthread_should_stop()); 1123 if (kthread_should_stop()) { 1124 d->thr = NULL; 1125 d->ret = -1; 1126 atomic_set(&d->stop, 1); 1127 wake_up(&d->done); 1128 break; 1129 } 1130 atomic_set(&d->ready, 0); 1131 1132 d->unc_len = LZO_UNC_SIZE; 1133 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len, 1134 d->unc, &d->unc_len); 1135 if (clean_pages_on_decompress) 1136 flush_icache_range((unsigned long)d->unc, 1137 (unsigned long)d->unc + d->unc_len); 1138 1139 atomic_set(&d->stop, 1); 1140 wake_up(&d->done); 1141 } 1142 return 0; 1143 } 1144 1145 /** 1146 * load_image_lzo - Load compressed image data and decompress them with LZO. 1147 * @handle: Swap map handle to use for loading data. 1148 * @snapshot: Image to copy uncompressed data into. 1149 * @nr_to_read: Number of pages to load. 1150 */ 1151 static int load_image_lzo(struct swap_map_handle *handle, 1152 struct snapshot_handle *snapshot, 1153 unsigned int nr_to_read) 1154 { 1155 unsigned int m; 1156 int ret = 0; 1157 int eof = 0; 1158 struct hib_bio_batch hb; 1159 ktime_t start; 1160 ktime_t stop; 1161 unsigned nr_pages; 1162 size_t off; 1163 unsigned i, thr, run_threads, nr_threads; 1164 unsigned ring = 0, pg = 0, ring_size = 0, 1165 have = 0, want, need, asked = 0; 1166 unsigned long read_pages = 0; 1167 unsigned char **page = NULL; 1168 struct dec_data *data = NULL; 1169 struct crc_data *crc = NULL; 1170 1171 hib_init_batch(&hb); 1172 1173 /* 1174 * We'll limit the number of threads for decompression to limit memory 1175 * footprint. 1176 */ 1177 nr_threads = num_online_cpus() - 1; 1178 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 1179 1180 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page))); 1181 if (!page) { 1182 pr_err("Failed to allocate LZO page\n"); 1183 ret = -ENOMEM; 1184 goto out_clean; 1185 } 1186 1187 data = vmalloc(array_size(nr_threads, sizeof(*data))); 1188 if (!data) { 1189 pr_err("Failed to allocate LZO data\n"); 1190 ret = -ENOMEM; 1191 goto out_clean; 1192 } 1193 for (thr = 0; thr < nr_threads; thr++) 1194 memset(&data[thr], 0, offsetof(struct dec_data, go)); 1195 1196 crc = kmalloc(sizeof(*crc), GFP_KERNEL); 1197 if (!crc) { 1198 pr_err("Failed to allocate crc\n"); 1199 ret = -ENOMEM; 1200 goto out_clean; 1201 } 1202 memset(crc, 0, offsetof(struct crc_data, go)); 1203 1204 clean_pages_on_decompress = true; 1205 1206 /* 1207 * Start the decompression threads. 1208 */ 1209 for (thr = 0; thr < nr_threads; thr++) { 1210 init_waitqueue_head(&data[thr].go); 1211 init_waitqueue_head(&data[thr].done); 1212 1213 data[thr].thr = kthread_run(lzo_decompress_threadfn, 1214 &data[thr], 1215 "image_decompress/%u", thr); 1216 if (IS_ERR(data[thr].thr)) { 1217 data[thr].thr = NULL; 1218 pr_err("Cannot start decompression threads\n"); 1219 ret = -ENOMEM; 1220 goto out_clean; 1221 } 1222 } 1223 1224 /* 1225 * Start the CRC32 thread. 1226 */ 1227 init_waitqueue_head(&crc->go); 1228 init_waitqueue_head(&crc->done); 1229 1230 handle->crc32 = 0; 1231 crc->crc32 = &handle->crc32; 1232 for (thr = 0; thr < nr_threads; thr++) { 1233 crc->unc[thr] = data[thr].unc; 1234 crc->unc_len[thr] = &data[thr].unc_len; 1235 } 1236 1237 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1238 if (IS_ERR(crc->thr)) { 1239 crc->thr = NULL; 1240 pr_err("Cannot start CRC32 thread\n"); 1241 ret = -ENOMEM; 1242 goto out_clean; 1243 } 1244 1245 /* 1246 * Set the number of pages for read buffering. 1247 * This is complete guesswork, because we'll only know the real 1248 * picture once prepare_image() is called, which is much later on 1249 * during the image load phase. We'll assume the worst case and 1250 * say that none of the image pages are from high memory. 1251 */ 1252 if (low_free_pages() > snapshot_get_image_size()) 1253 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1254 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES); 1255 1256 for (i = 0; i < read_pages; i++) { 1257 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ? 1258 GFP_NOIO | __GFP_HIGH : 1259 GFP_NOIO | __GFP_NOWARN | 1260 __GFP_NORETRY); 1261 1262 if (!page[i]) { 1263 if (i < LZO_CMP_PAGES) { 1264 ring_size = i; 1265 pr_err("Failed to allocate LZO pages\n"); 1266 ret = -ENOMEM; 1267 goto out_clean; 1268 } else { 1269 break; 1270 } 1271 } 1272 } 1273 want = ring_size = i; 1274 1275 pr_info("Using %u thread(s) for decompression\n", nr_threads); 1276 pr_info("Loading and decompressing image data (%u pages)...\n", 1277 nr_to_read); 1278 m = nr_to_read / 10; 1279 if (!m) 1280 m = 1; 1281 nr_pages = 0; 1282 start = ktime_get(); 1283 1284 ret = snapshot_write_next(snapshot); 1285 if (ret <= 0) 1286 goto out_finish; 1287 1288 for(;;) { 1289 for (i = 0; !eof && i < want; i++) { 1290 ret = swap_read_page(handle, page[ring], &hb); 1291 if (ret) { 1292 /* 1293 * On real read error, finish. On end of data, 1294 * set EOF flag and just exit the read loop. 1295 */ 1296 if (handle->cur && 1297 handle->cur->entries[handle->k]) { 1298 goto out_finish; 1299 } else { 1300 eof = 1; 1301 break; 1302 } 1303 } 1304 if (++ring >= ring_size) 1305 ring = 0; 1306 } 1307 asked += i; 1308 want -= i; 1309 1310 /* 1311 * We are out of data, wait for some more. 1312 */ 1313 if (!have) { 1314 if (!asked) 1315 break; 1316 1317 ret = hib_wait_io(&hb); 1318 if (ret) 1319 goto out_finish; 1320 have += asked; 1321 asked = 0; 1322 if (eof) 1323 eof = 2; 1324 } 1325 1326 if (crc->run_threads) { 1327 wait_event(crc->done, atomic_read(&crc->stop)); 1328 atomic_set(&crc->stop, 0); 1329 crc->run_threads = 0; 1330 } 1331 1332 for (thr = 0; have && thr < nr_threads; thr++) { 1333 data[thr].cmp_len = *(size_t *)page[pg]; 1334 if (unlikely(!data[thr].cmp_len || 1335 data[thr].cmp_len > 1336 lzo1x_worst_compress(LZO_UNC_SIZE))) { 1337 pr_err("Invalid LZO compressed length\n"); 1338 ret = -1; 1339 goto out_finish; 1340 } 1341 1342 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER, 1343 PAGE_SIZE); 1344 if (need > have) { 1345 if (eof > 1) { 1346 ret = -1; 1347 goto out_finish; 1348 } 1349 break; 1350 } 1351 1352 for (off = 0; 1353 off < LZO_HEADER + data[thr].cmp_len; 1354 off += PAGE_SIZE) { 1355 memcpy(data[thr].cmp + off, 1356 page[pg], PAGE_SIZE); 1357 have--; 1358 want++; 1359 if (++pg >= ring_size) 1360 pg = 0; 1361 } 1362 1363 atomic_set(&data[thr].ready, 1); 1364 wake_up(&data[thr].go); 1365 } 1366 1367 /* 1368 * Wait for more data while we are decompressing. 1369 */ 1370 if (have < LZO_CMP_PAGES && asked) { 1371 ret = hib_wait_io(&hb); 1372 if (ret) 1373 goto out_finish; 1374 have += asked; 1375 asked = 0; 1376 if (eof) 1377 eof = 2; 1378 } 1379 1380 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1381 wait_event(data[thr].done, 1382 atomic_read(&data[thr].stop)); 1383 atomic_set(&data[thr].stop, 0); 1384 1385 ret = data[thr].ret; 1386 1387 if (ret < 0) { 1388 pr_err("LZO decompression failed\n"); 1389 goto out_finish; 1390 } 1391 1392 if (unlikely(!data[thr].unc_len || 1393 data[thr].unc_len > LZO_UNC_SIZE || 1394 data[thr].unc_len & (PAGE_SIZE - 1))) { 1395 pr_err("Invalid LZO uncompressed length\n"); 1396 ret = -1; 1397 goto out_finish; 1398 } 1399 1400 for (off = 0; 1401 off < data[thr].unc_len; off += PAGE_SIZE) { 1402 memcpy(data_of(*snapshot), 1403 data[thr].unc + off, PAGE_SIZE); 1404 1405 if (!(nr_pages % m)) 1406 pr_info("Image loading progress: %3d%%\n", 1407 nr_pages / m * 10); 1408 nr_pages++; 1409 1410 ret = snapshot_write_next(snapshot); 1411 if (ret <= 0) { 1412 crc->run_threads = thr + 1; 1413 atomic_set(&crc->ready, 1); 1414 wake_up(&crc->go); 1415 goto out_finish; 1416 } 1417 } 1418 } 1419 1420 crc->run_threads = thr; 1421 atomic_set(&crc->ready, 1); 1422 wake_up(&crc->go); 1423 } 1424 1425 out_finish: 1426 if (crc->run_threads) { 1427 wait_event(crc->done, atomic_read(&crc->stop)); 1428 atomic_set(&crc->stop, 0); 1429 } 1430 stop = ktime_get(); 1431 if (!ret) { 1432 pr_info("Image loading done\n"); 1433 snapshot_write_finalize(snapshot); 1434 if (!snapshot_image_loaded(snapshot)) 1435 ret = -ENODATA; 1436 if (!ret) { 1437 if (swsusp_header->flags & SF_CRC32_MODE) { 1438 if(handle->crc32 != swsusp_header->crc32) { 1439 pr_err("Invalid image CRC32!\n"); 1440 ret = -ENODATA; 1441 } 1442 } 1443 } 1444 } 1445 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1446 out_clean: 1447 for (i = 0; i < ring_size; i++) 1448 free_page((unsigned long)page[i]); 1449 if (crc) { 1450 if (crc->thr) 1451 kthread_stop(crc->thr); 1452 kfree(crc); 1453 } 1454 if (data) { 1455 for (thr = 0; thr < nr_threads; thr++) 1456 if (data[thr].thr) 1457 kthread_stop(data[thr].thr); 1458 vfree(data); 1459 } 1460 vfree(page); 1461 1462 return ret; 1463 } 1464 1465 /** 1466 * swsusp_read - read the hibernation image. 1467 * @flags_p: flags passed by the "frozen" kernel in the image header should 1468 * be written into this memory location 1469 */ 1470 1471 int swsusp_read(unsigned int *flags_p) 1472 { 1473 int error; 1474 struct swap_map_handle handle; 1475 struct snapshot_handle snapshot; 1476 struct swsusp_info *header; 1477 1478 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1479 error = snapshot_write_next(&snapshot); 1480 if (error < (int)PAGE_SIZE) 1481 return error < 0 ? error : -EFAULT; 1482 header = (struct swsusp_info *)data_of(snapshot); 1483 error = get_swap_reader(&handle, flags_p); 1484 if (error) 1485 goto end; 1486 if (!error) 1487 error = swap_read_page(&handle, header, NULL); 1488 if (!error) { 1489 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1490 load_image(&handle, &snapshot, header->pages - 1) : 1491 load_image_lzo(&handle, &snapshot, header->pages - 1); 1492 } 1493 swap_reader_finish(&handle); 1494 end: 1495 if (!error) 1496 pr_debug("Image successfully loaded\n"); 1497 else 1498 pr_debug("Error %d resuming\n", error); 1499 return error; 1500 } 1501 1502 /** 1503 * swsusp_check - Check for swsusp signature in the resume device 1504 */ 1505 1506 int swsusp_check(void) 1507 { 1508 int error; 1509 1510 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, 1511 FMODE_READ, NULL); 1512 if (!IS_ERR(hib_resume_bdev)) { 1513 set_blocksize(hib_resume_bdev, PAGE_SIZE); 1514 clear_page(swsusp_header); 1515 error = hib_submit_io(REQ_OP_READ, 0, 1516 swsusp_resume_block, 1517 swsusp_header, NULL); 1518 if (error) 1519 goto put; 1520 1521 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1522 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1523 /* Reset swap signature now */ 1524 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1525 swsusp_resume_block, 1526 swsusp_header, NULL); 1527 } else { 1528 error = -EINVAL; 1529 } 1530 1531 put: 1532 if (error) 1533 blkdev_put(hib_resume_bdev, FMODE_READ); 1534 else 1535 pr_debug("Image signature found, resuming\n"); 1536 } else { 1537 error = PTR_ERR(hib_resume_bdev); 1538 } 1539 1540 if (error) 1541 pr_debug("Image not found (code %d)\n", error); 1542 1543 return error; 1544 } 1545 1546 /** 1547 * swsusp_close - close swap device. 1548 */ 1549 1550 void swsusp_close(fmode_t mode) 1551 { 1552 if (IS_ERR(hib_resume_bdev)) { 1553 pr_debug("Image device not initialised\n"); 1554 return; 1555 } 1556 1557 blkdev_put(hib_resume_bdev, mode); 1558 } 1559 1560 /** 1561 * swsusp_unmark - Unmark swsusp signature in the resume device 1562 */ 1563 1564 #ifdef CONFIG_SUSPEND 1565 int swsusp_unmark(void) 1566 { 1567 int error; 1568 1569 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 1570 swsusp_header, NULL); 1571 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1572 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1573 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1574 swsusp_resume_block, 1575 swsusp_header, NULL); 1576 } else { 1577 pr_err("Cannot find swsusp signature!\n"); 1578 error = -ENODEV; 1579 } 1580 1581 /* 1582 * We just returned from suspend, we don't need the image any more. 1583 */ 1584 free_all_swap_pages(root_swap); 1585 1586 return error; 1587 } 1588 #endif 1589 1590 static int __init swsusp_header_init(void) 1591 { 1592 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1593 if (!swsusp_header) 1594 panic("Could not allocate memory for swsusp_header\n"); 1595 return 0; 1596 } 1597 1598 core_initcall(swsusp_header_init); 1599