1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/power/swap.c 4 * 5 * This file provides functions for reading the suspend image from 6 * and writing it to a swap partition. 7 * 8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz> 9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com> 11 */ 12 13 #define pr_fmt(fmt) "PM: " fmt 14 15 #include <linux/module.h> 16 #include <linux/file.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/device.h> 20 #include <linux/bio.h> 21 #include <linux/blkdev.h> 22 #include <linux/swap.h> 23 #include <linux/swapops.h> 24 #include <linux/pm.h> 25 #include <linux/slab.h> 26 #include <linux/lzo.h> 27 #include <linux/vmalloc.h> 28 #include <linux/cpumask.h> 29 #include <linux/atomic.h> 30 #include <linux/kthread.h> 31 #include <linux/crc32.h> 32 #include <linux/ktime.h> 33 34 #include "power.h" 35 36 #define HIBERNATE_SIG "S1SUSPEND" 37 38 u32 swsusp_hardware_signature; 39 40 /* 41 * When reading an {un,}compressed image, we may restore pages in place, 42 * in which case some architectures need these pages cleaning before they 43 * can be executed. We don't know which pages these may be, so clean the lot. 44 */ 45 static bool clean_pages_on_read; 46 static bool clean_pages_on_decompress; 47 48 /* 49 * The swap map is a data structure used for keeping track of each page 50 * written to a swap partition. It consists of many swap_map_page 51 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries. 52 * These structures are stored on the swap and linked together with the 53 * help of the .next_swap member. 54 * 55 * The swap map is created during suspend. The swap map pages are 56 * allocated and populated one at a time, so we only need one memory 57 * page to set up the entire structure. 58 * 59 * During resume we pick up all swap_map_page structures into a list. 60 */ 61 62 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1) 63 64 /* 65 * Number of free pages that are not high. 66 */ 67 static inline unsigned long low_free_pages(void) 68 { 69 return nr_free_pages() - nr_free_highpages(); 70 } 71 72 /* 73 * Number of pages required to be kept free while writing the image. Always 74 * half of all available low pages before the writing starts. 75 */ 76 static inline unsigned long reqd_free_pages(void) 77 { 78 return low_free_pages() / 2; 79 } 80 81 struct swap_map_page { 82 sector_t entries[MAP_PAGE_ENTRIES]; 83 sector_t next_swap; 84 }; 85 86 struct swap_map_page_list { 87 struct swap_map_page *map; 88 struct swap_map_page_list *next; 89 }; 90 91 /* 92 * The swap_map_handle structure is used for handling swap in 93 * a file-alike way 94 */ 95 96 struct swap_map_handle { 97 struct swap_map_page *cur; 98 struct swap_map_page_list *maps; 99 sector_t cur_swap; 100 sector_t first_sector; 101 unsigned int k; 102 unsigned long reqd_free_pages; 103 u32 crc32; 104 }; 105 106 struct swsusp_header { 107 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) - 108 sizeof(u32) - sizeof(u32)]; 109 u32 hw_sig; 110 u32 crc32; 111 sector_t image; 112 unsigned int flags; /* Flags to pass to the "boot" kernel */ 113 char orig_sig[10]; 114 char sig[10]; 115 } __packed; 116 117 static struct swsusp_header *swsusp_header; 118 119 /* 120 * The following functions are used for tracing the allocated 121 * swap pages, so that they can be freed in case of an error. 122 */ 123 124 struct swsusp_extent { 125 struct rb_node node; 126 unsigned long start; 127 unsigned long end; 128 }; 129 130 static struct rb_root swsusp_extents = RB_ROOT; 131 132 static int swsusp_extents_insert(unsigned long swap_offset) 133 { 134 struct rb_node **new = &(swsusp_extents.rb_node); 135 struct rb_node *parent = NULL; 136 struct swsusp_extent *ext; 137 138 /* Figure out where to put the new node */ 139 while (*new) { 140 ext = rb_entry(*new, struct swsusp_extent, node); 141 parent = *new; 142 if (swap_offset < ext->start) { 143 /* Try to merge */ 144 if (swap_offset == ext->start - 1) { 145 ext->start--; 146 return 0; 147 } 148 new = &((*new)->rb_left); 149 } else if (swap_offset > ext->end) { 150 /* Try to merge */ 151 if (swap_offset == ext->end + 1) { 152 ext->end++; 153 return 0; 154 } 155 new = &((*new)->rb_right); 156 } else { 157 /* It already is in the tree */ 158 return -EINVAL; 159 } 160 } 161 /* Add the new node and rebalance the tree. */ 162 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL); 163 if (!ext) 164 return -ENOMEM; 165 166 ext->start = swap_offset; 167 ext->end = swap_offset; 168 rb_link_node(&ext->node, parent, new); 169 rb_insert_color(&ext->node, &swsusp_extents); 170 return 0; 171 } 172 173 /* 174 * alloc_swapdev_block - allocate a swap page and register that it has 175 * been allocated, so that it can be freed in case of an error. 176 */ 177 178 sector_t alloc_swapdev_block(int swap) 179 { 180 unsigned long offset; 181 182 offset = swp_offset(get_swap_page_of_type(swap)); 183 if (offset) { 184 if (swsusp_extents_insert(offset)) 185 swap_free(swp_entry(swap, offset)); 186 else 187 return swapdev_block(swap, offset); 188 } 189 return 0; 190 } 191 192 /* 193 * free_all_swap_pages - free swap pages allocated for saving image data. 194 * It also frees the extents used to register which swap entries had been 195 * allocated. 196 */ 197 198 void free_all_swap_pages(int swap) 199 { 200 struct rb_node *node; 201 202 while ((node = swsusp_extents.rb_node)) { 203 struct swsusp_extent *ext; 204 unsigned long offset; 205 206 ext = rb_entry(node, struct swsusp_extent, node); 207 rb_erase(node, &swsusp_extents); 208 for (offset = ext->start; offset <= ext->end; offset++) 209 swap_free(swp_entry(swap, offset)); 210 211 kfree(ext); 212 } 213 } 214 215 int swsusp_swap_in_use(void) 216 { 217 return (swsusp_extents.rb_node != NULL); 218 } 219 220 /* 221 * General things 222 */ 223 224 static unsigned short root_swap = 0xffff; 225 static struct block_device *hib_resume_bdev; 226 227 struct hib_bio_batch { 228 atomic_t count; 229 wait_queue_head_t wait; 230 blk_status_t error; 231 struct blk_plug plug; 232 }; 233 234 static void hib_init_batch(struct hib_bio_batch *hb) 235 { 236 atomic_set(&hb->count, 0); 237 init_waitqueue_head(&hb->wait); 238 hb->error = BLK_STS_OK; 239 blk_start_plug(&hb->plug); 240 } 241 242 static void hib_finish_batch(struct hib_bio_batch *hb) 243 { 244 blk_finish_plug(&hb->plug); 245 } 246 247 static void hib_end_io(struct bio *bio) 248 { 249 struct hib_bio_batch *hb = bio->bi_private; 250 struct page *page = bio_first_page_all(bio); 251 252 if (bio->bi_status) { 253 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n", 254 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 255 (unsigned long long)bio->bi_iter.bi_sector); 256 } 257 258 if (bio_data_dir(bio) == WRITE) 259 put_page(page); 260 else if (clean_pages_on_read) 261 flush_icache_range((unsigned long)page_address(page), 262 (unsigned long)page_address(page) + PAGE_SIZE); 263 264 if (bio->bi_status && !hb->error) 265 hb->error = bio->bi_status; 266 if (atomic_dec_and_test(&hb->count)) 267 wake_up(&hb->wait); 268 269 bio_put(bio); 270 } 271 272 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr, 273 struct hib_bio_batch *hb) 274 { 275 struct page *page = virt_to_page(addr); 276 struct bio *bio; 277 int error = 0; 278 279 bio = bio_alloc(hib_resume_bdev, 1, op | op_flags, 280 GFP_NOIO | __GFP_HIGH); 281 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9); 282 283 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) { 284 pr_err("Adding page to bio failed at %llu\n", 285 (unsigned long long)bio->bi_iter.bi_sector); 286 bio_put(bio); 287 return -EFAULT; 288 } 289 290 if (hb) { 291 bio->bi_end_io = hib_end_io; 292 bio->bi_private = hb; 293 atomic_inc(&hb->count); 294 submit_bio(bio); 295 } else { 296 error = submit_bio_wait(bio); 297 bio_put(bio); 298 } 299 300 return error; 301 } 302 303 static int hib_wait_io(struct hib_bio_batch *hb) 304 { 305 /* 306 * We are relying on the behavior of blk_plug that a thread with 307 * a plug will flush the plug list before sleeping. 308 */ 309 wait_event(hb->wait, atomic_read(&hb->count) == 0); 310 return blk_status_to_errno(hb->error); 311 } 312 313 /* 314 * Saving part 315 */ 316 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags) 317 { 318 int error; 319 320 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 321 swsusp_header, NULL); 322 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) || 323 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) { 324 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10); 325 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10); 326 swsusp_header->image = handle->first_sector; 327 if (swsusp_hardware_signature) { 328 swsusp_header->hw_sig = swsusp_hardware_signature; 329 flags |= SF_HW_SIG; 330 } 331 swsusp_header->flags = flags; 332 if (flags & SF_CRC32_MODE) 333 swsusp_header->crc32 = handle->crc32; 334 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 335 swsusp_resume_block, swsusp_header, NULL); 336 } else { 337 pr_err("Swap header not found!\n"); 338 error = -ENODEV; 339 } 340 return error; 341 } 342 343 /** 344 * swsusp_swap_check - check if the resume device is a swap device 345 * and get its index (if so) 346 * 347 * This is called before saving image 348 */ 349 static int swsusp_swap_check(void) 350 { 351 int res; 352 353 if (swsusp_resume_device) 354 res = swap_type_of(swsusp_resume_device, swsusp_resume_block); 355 else 356 res = find_first_swap(&swsusp_resume_device); 357 if (res < 0) 358 return res; 359 root_swap = res; 360 361 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE, 362 NULL); 363 if (IS_ERR(hib_resume_bdev)) 364 return PTR_ERR(hib_resume_bdev); 365 366 res = set_blocksize(hib_resume_bdev, PAGE_SIZE); 367 if (res < 0) 368 blkdev_put(hib_resume_bdev, FMODE_WRITE); 369 370 return res; 371 } 372 373 /** 374 * write_page - Write one page to given swap location. 375 * @buf: Address we're writing. 376 * @offset: Offset of the swap page we're writing to. 377 * @hb: bio completion batch 378 */ 379 380 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb) 381 { 382 void *src; 383 int ret; 384 385 if (!offset) 386 return -ENOSPC; 387 388 if (hb) { 389 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN | 390 __GFP_NORETRY); 391 if (src) { 392 copy_page(src, buf); 393 } else { 394 ret = hib_wait_io(hb); /* Free pages */ 395 if (ret) 396 return ret; 397 src = (void *)__get_free_page(GFP_NOIO | 398 __GFP_NOWARN | 399 __GFP_NORETRY); 400 if (src) { 401 copy_page(src, buf); 402 } else { 403 WARN_ON_ONCE(1); 404 hb = NULL; /* Go synchronous */ 405 src = buf; 406 } 407 } 408 } else { 409 src = buf; 410 } 411 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb); 412 } 413 414 static void release_swap_writer(struct swap_map_handle *handle) 415 { 416 if (handle->cur) 417 free_page((unsigned long)handle->cur); 418 handle->cur = NULL; 419 } 420 421 static int get_swap_writer(struct swap_map_handle *handle) 422 { 423 int ret; 424 425 ret = swsusp_swap_check(); 426 if (ret) { 427 if (ret != -ENOSPC) 428 pr_err("Cannot find swap device, try swapon -a\n"); 429 return ret; 430 } 431 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL); 432 if (!handle->cur) { 433 ret = -ENOMEM; 434 goto err_close; 435 } 436 handle->cur_swap = alloc_swapdev_block(root_swap); 437 if (!handle->cur_swap) { 438 ret = -ENOSPC; 439 goto err_rel; 440 } 441 handle->k = 0; 442 handle->reqd_free_pages = reqd_free_pages(); 443 handle->first_sector = handle->cur_swap; 444 return 0; 445 err_rel: 446 release_swap_writer(handle); 447 err_close: 448 swsusp_close(FMODE_WRITE); 449 return ret; 450 } 451 452 static int swap_write_page(struct swap_map_handle *handle, void *buf, 453 struct hib_bio_batch *hb) 454 { 455 int error = 0; 456 sector_t offset; 457 458 if (!handle->cur) 459 return -EINVAL; 460 offset = alloc_swapdev_block(root_swap); 461 error = write_page(buf, offset, hb); 462 if (error) 463 return error; 464 handle->cur->entries[handle->k++] = offset; 465 if (handle->k >= MAP_PAGE_ENTRIES) { 466 offset = alloc_swapdev_block(root_swap); 467 if (!offset) 468 return -ENOSPC; 469 handle->cur->next_swap = offset; 470 error = write_page(handle->cur, handle->cur_swap, hb); 471 if (error) 472 goto out; 473 clear_page(handle->cur); 474 handle->cur_swap = offset; 475 handle->k = 0; 476 477 if (hb && low_free_pages() <= handle->reqd_free_pages) { 478 error = hib_wait_io(hb); 479 if (error) 480 goto out; 481 /* 482 * Recalculate the number of required free pages, to 483 * make sure we never take more than half. 484 */ 485 handle->reqd_free_pages = reqd_free_pages(); 486 } 487 } 488 out: 489 return error; 490 } 491 492 static int flush_swap_writer(struct swap_map_handle *handle) 493 { 494 if (handle->cur && handle->cur_swap) 495 return write_page(handle->cur, handle->cur_swap, NULL); 496 else 497 return -EINVAL; 498 } 499 500 static int swap_writer_finish(struct swap_map_handle *handle, 501 unsigned int flags, int error) 502 { 503 if (!error) { 504 pr_info("S"); 505 error = mark_swapfiles(handle, flags); 506 pr_cont("|\n"); 507 flush_swap_writer(handle); 508 } 509 510 if (error) 511 free_all_swap_pages(root_swap); 512 release_swap_writer(handle); 513 swsusp_close(FMODE_WRITE); 514 515 return error; 516 } 517 518 /* We need to remember how much compressed data we need to read. */ 519 #define LZO_HEADER sizeof(size_t) 520 521 /* Number of pages/bytes we'll compress at one time. */ 522 #define LZO_UNC_PAGES 32 523 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE) 524 525 /* Number of pages/bytes we need for compressed data (worst case). */ 526 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \ 527 LZO_HEADER, PAGE_SIZE) 528 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE) 529 530 /* Maximum number of threads for compression/decompression. */ 531 #define LZO_THREADS 3 532 533 /* Minimum/maximum number of pages for read buffering. */ 534 #define LZO_MIN_RD_PAGES 1024 535 #define LZO_MAX_RD_PAGES 8192 536 537 538 /** 539 * save_image - save the suspend image data 540 */ 541 542 static int save_image(struct swap_map_handle *handle, 543 struct snapshot_handle *snapshot, 544 unsigned int nr_to_write) 545 { 546 unsigned int m; 547 int ret; 548 int nr_pages; 549 int err2; 550 struct hib_bio_batch hb; 551 ktime_t start; 552 ktime_t stop; 553 554 hib_init_batch(&hb); 555 556 pr_info("Saving image data pages (%u pages)...\n", 557 nr_to_write); 558 m = nr_to_write / 10; 559 if (!m) 560 m = 1; 561 nr_pages = 0; 562 start = ktime_get(); 563 while (1) { 564 ret = snapshot_read_next(snapshot); 565 if (ret <= 0) 566 break; 567 ret = swap_write_page(handle, data_of(*snapshot), &hb); 568 if (ret) 569 break; 570 if (!(nr_pages % m)) 571 pr_info("Image saving progress: %3d%%\n", 572 nr_pages / m * 10); 573 nr_pages++; 574 } 575 err2 = hib_wait_io(&hb); 576 hib_finish_batch(&hb); 577 stop = ktime_get(); 578 if (!ret) 579 ret = err2; 580 if (!ret) 581 pr_info("Image saving done\n"); 582 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 583 return ret; 584 } 585 586 /** 587 * Structure used for CRC32. 588 */ 589 struct crc_data { 590 struct task_struct *thr; /* thread */ 591 atomic_t ready; /* ready to start flag */ 592 atomic_t stop; /* ready to stop flag */ 593 unsigned run_threads; /* nr current threads */ 594 wait_queue_head_t go; /* start crc update */ 595 wait_queue_head_t done; /* crc update done */ 596 u32 *crc32; /* points to handle's crc32 */ 597 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */ 598 unsigned char *unc[LZO_THREADS]; /* uncompressed data */ 599 }; 600 601 /** 602 * CRC32 update function that runs in its own thread. 603 */ 604 static int crc32_threadfn(void *data) 605 { 606 struct crc_data *d = data; 607 unsigned i; 608 609 while (1) { 610 wait_event(d->go, atomic_read(&d->ready) || 611 kthread_should_stop()); 612 if (kthread_should_stop()) { 613 d->thr = NULL; 614 atomic_set(&d->stop, 1); 615 wake_up(&d->done); 616 break; 617 } 618 atomic_set(&d->ready, 0); 619 620 for (i = 0; i < d->run_threads; i++) 621 *d->crc32 = crc32_le(*d->crc32, 622 d->unc[i], *d->unc_len[i]); 623 atomic_set(&d->stop, 1); 624 wake_up(&d->done); 625 } 626 return 0; 627 } 628 /** 629 * Structure used for LZO data compression. 630 */ 631 struct cmp_data { 632 struct task_struct *thr; /* thread */ 633 atomic_t ready; /* ready to start flag */ 634 atomic_t stop; /* ready to stop flag */ 635 int ret; /* return code */ 636 wait_queue_head_t go; /* start compression */ 637 wait_queue_head_t done; /* compression done */ 638 size_t unc_len; /* uncompressed length */ 639 size_t cmp_len; /* compressed length */ 640 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 641 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 642 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */ 643 }; 644 645 /** 646 * Compression function that runs in its own thread. 647 */ 648 static int lzo_compress_threadfn(void *data) 649 { 650 struct cmp_data *d = data; 651 652 while (1) { 653 wait_event(d->go, atomic_read(&d->ready) || 654 kthread_should_stop()); 655 if (kthread_should_stop()) { 656 d->thr = NULL; 657 d->ret = -1; 658 atomic_set(&d->stop, 1); 659 wake_up(&d->done); 660 break; 661 } 662 atomic_set(&d->ready, 0); 663 664 d->ret = lzo1x_1_compress(d->unc, d->unc_len, 665 d->cmp + LZO_HEADER, &d->cmp_len, 666 d->wrk); 667 atomic_set(&d->stop, 1); 668 wake_up(&d->done); 669 } 670 return 0; 671 } 672 673 /** 674 * save_image_lzo - Save the suspend image data compressed with LZO. 675 * @handle: Swap map handle to use for saving the image. 676 * @snapshot: Image to read data from. 677 * @nr_to_write: Number of pages to save. 678 */ 679 static int save_image_lzo(struct swap_map_handle *handle, 680 struct snapshot_handle *snapshot, 681 unsigned int nr_to_write) 682 { 683 unsigned int m; 684 int ret = 0; 685 int nr_pages; 686 int err2; 687 struct hib_bio_batch hb; 688 ktime_t start; 689 ktime_t stop; 690 size_t off; 691 unsigned thr, run_threads, nr_threads; 692 unsigned char *page = NULL; 693 struct cmp_data *data = NULL; 694 struct crc_data *crc = NULL; 695 696 hib_init_batch(&hb); 697 698 /* 699 * We'll limit the number of threads for compression to limit memory 700 * footprint. 701 */ 702 nr_threads = num_online_cpus() - 1; 703 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 704 705 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH); 706 if (!page) { 707 pr_err("Failed to allocate LZO page\n"); 708 ret = -ENOMEM; 709 goto out_clean; 710 } 711 712 data = vzalloc(array_size(nr_threads, sizeof(*data))); 713 if (!data) { 714 pr_err("Failed to allocate LZO data\n"); 715 ret = -ENOMEM; 716 goto out_clean; 717 } 718 719 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 720 if (!crc) { 721 pr_err("Failed to allocate crc\n"); 722 ret = -ENOMEM; 723 goto out_clean; 724 } 725 726 /* 727 * Start the compression threads. 728 */ 729 for (thr = 0; thr < nr_threads; thr++) { 730 init_waitqueue_head(&data[thr].go); 731 init_waitqueue_head(&data[thr].done); 732 733 data[thr].thr = kthread_run(lzo_compress_threadfn, 734 &data[thr], 735 "image_compress/%u", thr); 736 if (IS_ERR(data[thr].thr)) { 737 data[thr].thr = NULL; 738 pr_err("Cannot start compression threads\n"); 739 ret = -ENOMEM; 740 goto out_clean; 741 } 742 } 743 744 /* 745 * Start the CRC32 thread. 746 */ 747 init_waitqueue_head(&crc->go); 748 init_waitqueue_head(&crc->done); 749 750 handle->crc32 = 0; 751 crc->crc32 = &handle->crc32; 752 for (thr = 0; thr < nr_threads; thr++) { 753 crc->unc[thr] = data[thr].unc; 754 crc->unc_len[thr] = &data[thr].unc_len; 755 } 756 757 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 758 if (IS_ERR(crc->thr)) { 759 crc->thr = NULL; 760 pr_err("Cannot start CRC32 thread\n"); 761 ret = -ENOMEM; 762 goto out_clean; 763 } 764 765 /* 766 * Adjust the number of required free pages after all allocations have 767 * been done. We don't want to run out of pages when writing. 768 */ 769 handle->reqd_free_pages = reqd_free_pages(); 770 771 pr_info("Using %u thread(s) for compression\n", nr_threads); 772 pr_info("Compressing and saving image data (%u pages)...\n", 773 nr_to_write); 774 m = nr_to_write / 10; 775 if (!m) 776 m = 1; 777 nr_pages = 0; 778 start = ktime_get(); 779 for (;;) { 780 for (thr = 0; thr < nr_threads; thr++) { 781 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) { 782 ret = snapshot_read_next(snapshot); 783 if (ret < 0) 784 goto out_finish; 785 786 if (!ret) 787 break; 788 789 memcpy(data[thr].unc + off, 790 data_of(*snapshot), PAGE_SIZE); 791 792 if (!(nr_pages % m)) 793 pr_info("Image saving progress: %3d%%\n", 794 nr_pages / m * 10); 795 nr_pages++; 796 } 797 if (!off) 798 break; 799 800 data[thr].unc_len = off; 801 802 atomic_set(&data[thr].ready, 1); 803 wake_up(&data[thr].go); 804 } 805 806 if (!thr) 807 break; 808 809 crc->run_threads = thr; 810 atomic_set(&crc->ready, 1); 811 wake_up(&crc->go); 812 813 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 814 wait_event(data[thr].done, 815 atomic_read(&data[thr].stop)); 816 atomic_set(&data[thr].stop, 0); 817 818 ret = data[thr].ret; 819 820 if (ret < 0) { 821 pr_err("LZO compression failed\n"); 822 goto out_finish; 823 } 824 825 if (unlikely(!data[thr].cmp_len || 826 data[thr].cmp_len > 827 lzo1x_worst_compress(data[thr].unc_len))) { 828 pr_err("Invalid LZO compressed length\n"); 829 ret = -1; 830 goto out_finish; 831 } 832 833 *(size_t *)data[thr].cmp = data[thr].cmp_len; 834 835 /* 836 * Given we are writing one page at a time to disk, we 837 * copy that much from the buffer, although the last 838 * bit will likely be smaller than full page. This is 839 * OK - we saved the length of the compressed data, so 840 * any garbage at the end will be discarded when we 841 * read it. 842 */ 843 for (off = 0; 844 off < LZO_HEADER + data[thr].cmp_len; 845 off += PAGE_SIZE) { 846 memcpy(page, data[thr].cmp + off, PAGE_SIZE); 847 848 ret = swap_write_page(handle, page, &hb); 849 if (ret) 850 goto out_finish; 851 } 852 } 853 854 wait_event(crc->done, atomic_read(&crc->stop)); 855 atomic_set(&crc->stop, 0); 856 } 857 858 out_finish: 859 err2 = hib_wait_io(&hb); 860 stop = ktime_get(); 861 if (!ret) 862 ret = err2; 863 if (!ret) 864 pr_info("Image saving done\n"); 865 swsusp_show_speed(start, stop, nr_to_write, "Wrote"); 866 out_clean: 867 hib_finish_batch(&hb); 868 if (crc) { 869 if (crc->thr) 870 kthread_stop(crc->thr); 871 kfree(crc); 872 } 873 if (data) { 874 for (thr = 0; thr < nr_threads; thr++) 875 if (data[thr].thr) 876 kthread_stop(data[thr].thr); 877 vfree(data); 878 } 879 if (page) free_page((unsigned long)page); 880 881 return ret; 882 } 883 884 /** 885 * enough_swap - Make sure we have enough swap to save the image. 886 * 887 * Returns TRUE or FALSE after checking the total amount of swap 888 * space available from the resume partition. 889 */ 890 891 static int enough_swap(unsigned int nr_pages) 892 { 893 unsigned int free_swap = count_swap_pages(root_swap, 1); 894 unsigned int required; 895 896 pr_debug("Free swap pages: %u\n", free_swap); 897 898 required = PAGES_FOR_IO + nr_pages; 899 return free_swap > required; 900 } 901 902 /** 903 * swsusp_write - Write entire image and metadata. 904 * @flags: flags to pass to the "boot" kernel in the image header 905 * 906 * It is important _NOT_ to umount filesystems at this point. We want 907 * them synced (in case something goes wrong) but we DO not want to mark 908 * filesystem clean: it is not. (And it does not matter, if we resume 909 * correctly, we'll mark system clean, anyway.) 910 */ 911 912 int swsusp_write(unsigned int flags) 913 { 914 struct swap_map_handle handle; 915 struct snapshot_handle snapshot; 916 struct swsusp_info *header; 917 unsigned long pages; 918 int error; 919 920 pages = snapshot_get_image_size(); 921 error = get_swap_writer(&handle); 922 if (error) { 923 pr_err("Cannot get swap writer\n"); 924 return error; 925 } 926 if (flags & SF_NOCOMPRESS_MODE) { 927 if (!enough_swap(pages)) { 928 pr_err("Not enough free swap\n"); 929 error = -ENOSPC; 930 goto out_finish; 931 } 932 } 933 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 934 error = snapshot_read_next(&snapshot); 935 if (error < (int)PAGE_SIZE) { 936 if (error >= 0) 937 error = -EFAULT; 938 939 goto out_finish; 940 } 941 header = (struct swsusp_info *)data_of(snapshot); 942 error = swap_write_page(&handle, header, NULL); 943 if (!error) { 944 error = (flags & SF_NOCOMPRESS_MODE) ? 945 save_image(&handle, &snapshot, pages - 1) : 946 save_image_lzo(&handle, &snapshot, pages - 1); 947 } 948 out_finish: 949 error = swap_writer_finish(&handle, flags, error); 950 return error; 951 } 952 953 /** 954 * The following functions allow us to read data using a swap map 955 * in a file-alike way 956 */ 957 958 static void release_swap_reader(struct swap_map_handle *handle) 959 { 960 struct swap_map_page_list *tmp; 961 962 while (handle->maps) { 963 if (handle->maps->map) 964 free_page((unsigned long)handle->maps->map); 965 tmp = handle->maps; 966 handle->maps = handle->maps->next; 967 kfree(tmp); 968 } 969 handle->cur = NULL; 970 } 971 972 static int get_swap_reader(struct swap_map_handle *handle, 973 unsigned int *flags_p) 974 { 975 int error; 976 struct swap_map_page_list *tmp, *last; 977 sector_t offset; 978 979 *flags_p = swsusp_header->flags; 980 981 if (!swsusp_header->image) /* how can this happen? */ 982 return -EINVAL; 983 984 handle->cur = NULL; 985 last = handle->maps = NULL; 986 offset = swsusp_header->image; 987 while (offset) { 988 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL); 989 if (!tmp) { 990 release_swap_reader(handle); 991 return -ENOMEM; 992 } 993 if (!handle->maps) 994 handle->maps = tmp; 995 if (last) 996 last->next = tmp; 997 last = tmp; 998 999 tmp->map = (struct swap_map_page *) 1000 __get_free_page(GFP_NOIO | __GFP_HIGH); 1001 if (!tmp->map) { 1002 release_swap_reader(handle); 1003 return -ENOMEM; 1004 } 1005 1006 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL); 1007 if (error) { 1008 release_swap_reader(handle); 1009 return error; 1010 } 1011 offset = tmp->map->next_swap; 1012 } 1013 handle->k = 0; 1014 handle->cur = handle->maps->map; 1015 return 0; 1016 } 1017 1018 static int swap_read_page(struct swap_map_handle *handle, void *buf, 1019 struct hib_bio_batch *hb) 1020 { 1021 sector_t offset; 1022 int error; 1023 struct swap_map_page_list *tmp; 1024 1025 if (!handle->cur) 1026 return -EINVAL; 1027 offset = handle->cur->entries[handle->k]; 1028 if (!offset) 1029 return -EFAULT; 1030 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb); 1031 if (error) 1032 return error; 1033 if (++handle->k >= MAP_PAGE_ENTRIES) { 1034 handle->k = 0; 1035 free_page((unsigned long)handle->maps->map); 1036 tmp = handle->maps; 1037 handle->maps = handle->maps->next; 1038 kfree(tmp); 1039 if (!handle->maps) 1040 release_swap_reader(handle); 1041 else 1042 handle->cur = handle->maps->map; 1043 } 1044 return error; 1045 } 1046 1047 static int swap_reader_finish(struct swap_map_handle *handle) 1048 { 1049 release_swap_reader(handle); 1050 1051 return 0; 1052 } 1053 1054 /** 1055 * load_image - load the image using the swap map handle 1056 * @handle and the snapshot handle @snapshot 1057 * (assume there are @nr_pages pages to load) 1058 */ 1059 1060 static int load_image(struct swap_map_handle *handle, 1061 struct snapshot_handle *snapshot, 1062 unsigned int nr_to_read) 1063 { 1064 unsigned int m; 1065 int ret = 0; 1066 ktime_t start; 1067 ktime_t stop; 1068 struct hib_bio_batch hb; 1069 int err2; 1070 unsigned nr_pages; 1071 1072 hib_init_batch(&hb); 1073 1074 clean_pages_on_read = true; 1075 pr_info("Loading image data pages (%u pages)...\n", nr_to_read); 1076 m = nr_to_read / 10; 1077 if (!m) 1078 m = 1; 1079 nr_pages = 0; 1080 start = ktime_get(); 1081 for ( ; ; ) { 1082 ret = snapshot_write_next(snapshot); 1083 if (ret <= 0) 1084 break; 1085 ret = swap_read_page(handle, data_of(*snapshot), &hb); 1086 if (ret) 1087 break; 1088 if (snapshot->sync_read) 1089 ret = hib_wait_io(&hb); 1090 if (ret) 1091 break; 1092 if (!(nr_pages % m)) 1093 pr_info("Image loading progress: %3d%%\n", 1094 nr_pages / m * 10); 1095 nr_pages++; 1096 } 1097 err2 = hib_wait_io(&hb); 1098 hib_finish_batch(&hb); 1099 stop = ktime_get(); 1100 if (!ret) 1101 ret = err2; 1102 if (!ret) { 1103 pr_info("Image loading done\n"); 1104 snapshot_write_finalize(snapshot); 1105 if (!snapshot_image_loaded(snapshot)) 1106 ret = -ENODATA; 1107 } 1108 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1109 return ret; 1110 } 1111 1112 /** 1113 * Structure used for LZO data decompression. 1114 */ 1115 struct dec_data { 1116 struct task_struct *thr; /* thread */ 1117 atomic_t ready; /* ready to start flag */ 1118 atomic_t stop; /* ready to stop flag */ 1119 int ret; /* return code */ 1120 wait_queue_head_t go; /* start decompression */ 1121 wait_queue_head_t done; /* decompression done */ 1122 size_t unc_len; /* uncompressed length */ 1123 size_t cmp_len; /* compressed length */ 1124 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */ 1125 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */ 1126 }; 1127 1128 /** 1129 * Decompression function that runs in its own thread. 1130 */ 1131 static int lzo_decompress_threadfn(void *data) 1132 { 1133 struct dec_data *d = data; 1134 1135 while (1) { 1136 wait_event(d->go, atomic_read(&d->ready) || 1137 kthread_should_stop()); 1138 if (kthread_should_stop()) { 1139 d->thr = NULL; 1140 d->ret = -1; 1141 atomic_set(&d->stop, 1); 1142 wake_up(&d->done); 1143 break; 1144 } 1145 atomic_set(&d->ready, 0); 1146 1147 d->unc_len = LZO_UNC_SIZE; 1148 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len, 1149 d->unc, &d->unc_len); 1150 if (clean_pages_on_decompress) 1151 flush_icache_range((unsigned long)d->unc, 1152 (unsigned long)d->unc + d->unc_len); 1153 1154 atomic_set(&d->stop, 1); 1155 wake_up(&d->done); 1156 } 1157 return 0; 1158 } 1159 1160 /** 1161 * load_image_lzo - Load compressed image data and decompress them with LZO. 1162 * @handle: Swap map handle to use for loading data. 1163 * @snapshot: Image to copy uncompressed data into. 1164 * @nr_to_read: Number of pages to load. 1165 */ 1166 static int load_image_lzo(struct swap_map_handle *handle, 1167 struct snapshot_handle *snapshot, 1168 unsigned int nr_to_read) 1169 { 1170 unsigned int m; 1171 int ret = 0; 1172 int eof = 0; 1173 struct hib_bio_batch hb; 1174 ktime_t start; 1175 ktime_t stop; 1176 unsigned nr_pages; 1177 size_t off; 1178 unsigned i, thr, run_threads, nr_threads; 1179 unsigned ring = 0, pg = 0, ring_size = 0, 1180 have = 0, want, need, asked = 0; 1181 unsigned long read_pages = 0; 1182 unsigned char **page = NULL; 1183 struct dec_data *data = NULL; 1184 struct crc_data *crc = NULL; 1185 1186 hib_init_batch(&hb); 1187 1188 /* 1189 * We'll limit the number of threads for decompression to limit memory 1190 * footprint. 1191 */ 1192 nr_threads = num_online_cpus() - 1; 1193 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS); 1194 1195 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page))); 1196 if (!page) { 1197 pr_err("Failed to allocate LZO page\n"); 1198 ret = -ENOMEM; 1199 goto out_clean; 1200 } 1201 1202 data = vzalloc(array_size(nr_threads, sizeof(*data))); 1203 if (!data) { 1204 pr_err("Failed to allocate LZO data\n"); 1205 ret = -ENOMEM; 1206 goto out_clean; 1207 } 1208 1209 crc = kzalloc(sizeof(*crc), GFP_KERNEL); 1210 if (!crc) { 1211 pr_err("Failed to allocate crc\n"); 1212 ret = -ENOMEM; 1213 goto out_clean; 1214 } 1215 1216 clean_pages_on_decompress = true; 1217 1218 /* 1219 * Start the decompression threads. 1220 */ 1221 for (thr = 0; thr < nr_threads; thr++) { 1222 init_waitqueue_head(&data[thr].go); 1223 init_waitqueue_head(&data[thr].done); 1224 1225 data[thr].thr = kthread_run(lzo_decompress_threadfn, 1226 &data[thr], 1227 "image_decompress/%u", thr); 1228 if (IS_ERR(data[thr].thr)) { 1229 data[thr].thr = NULL; 1230 pr_err("Cannot start decompression threads\n"); 1231 ret = -ENOMEM; 1232 goto out_clean; 1233 } 1234 } 1235 1236 /* 1237 * Start the CRC32 thread. 1238 */ 1239 init_waitqueue_head(&crc->go); 1240 init_waitqueue_head(&crc->done); 1241 1242 handle->crc32 = 0; 1243 crc->crc32 = &handle->crc32; 1244 for (thr = 0; thr < nr_threads; thr++) { 1245 crc->unc[thr] = data[thr].unc; 1246 crc->unc_len[thr] = &data[thr].unc_len; 1247 } 1248 1249 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32"); 1250 if (IS_ERR(crc->thr)) { 1251 crc->thr = NULL; 1252 pr_err("Cannot start CRC32 thread\n"); 1253 ret = -ENOMEM; 1254 goto out_clean; 1255 } 1256 1257 /* 1258 * Set the number of pages for read buffering. 1259 * This is complete guesswork, because we'll only know the real 1260 * picture once prepare_image() is called, which is much later on 1261 * during the image load phase. We'll assume the worst case and 1262 * say that none of the image pages are from high memory. 1263 */ 1264 if (low_free_pages() > snapshot_get_image_size()) 1265 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2; 1266 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES); 1267 1268 for (i = 0; i < read_pages; i++) { 1269 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ? 1270 GFP_NOIO | __GFP_HIGH : 1271 GFP_NOIO | __GFP_NOWARN | 1272 __GFP_NORETRY); 1273 1274 if (!page[i]) { 1275 if (i < LZO_CMP_PAGES) { 1276 ring_size = i; 1277 pr_err("Failed to allocate LZO pages\n"); 1278 ret = -ENOMEM; 1279 goto out_clean; 1280 } else { 1281 break; 1282 } 1283 } 1284 } 1285 want = ring_size = i; 1286 1287 pr_info("Using %u thread(s) for decompression\n", nr_threads); 1288 pr_info("Loading and decompressing image data (%u pages)...\n", 1289 nr_to_read); 1290 m = nr_to_read / 10; 1291 if (!m) 1292 m = 1; 1293 nr_pages = 0; 1294 start = ktime_get(); 1295 1296 ret = snapshot_write_next(snapshot); 1297 if (ret <= 0) 1298 goto out_finish; 1299 1300 for(;;) { 1301 for (i = 0; !eof && i < want; i++) { 1302 ret = swap_read_page(handle, page[ring], &hb); 1303 if (ret) { 1304 /* 1305 * On real read error, finish. On end of data, 1306 * set EOF flag and just exit the read loop. 1307 */ 1308 if (handle->cur && 1309 handle->cur->entries[handle->k]) { 1310 goto out_finish; 1311 } else { 1312 eof = 1; 1313 break; 1314 } 1315 } 1316 if (++ring >= ring_size) 1317 ring = 0; 1318 } 1319 asked += i; 1320 want -= i; 1321 1322 /* 1323 * We are out of data, wait for some more. 1324 */ 1325 if (!have) { 1326 if (!asked) 1327 break; 1328 1329 ret = hib_wait_io(&hb); 1330 if (ret) 1331 goto out_finish; 1332 have += asked; 1333 asked = 0; 1334 if (eof) 1335 eof = 2; 1336 } 1337 1338 if (crc->run_threads) { 1339 wait_event(crc->done, atomic_read(&crc->stop)); 1340 atomic_set(&crc->stop, 0); 1341 crc->run_threads = 0; 1342 } 1343 1344 for (thr = 0; have && thr < nr_threads; thr++) { 1345 data[thr].cmp_len = *(size_t *)page[pg]; 1346 if (unlikely(!data[thr].cmp_len || 1347 data[thr].cmp_len > 1348 lzo1x_worst_compress(LZO_UNC_SIZE))) { 1349 pr_err("Invalid LZO compressed length\n"); 1350 ret = -1; 1351 goto out_finish; 1352 } 1353 1354 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER, 1355 PAGE_SIZE); 1356 if (need > have) { 1357 if (eof > 1) { 1358 ret = -1; 1359 goto out_finish; 1360 } 1361 break; 1362 } 1363 1364 for (off = 0; 1365 off < LZO_HEADER + data[thr].cmp_len; 1366 off += PAGE_SIZE) { 1367 memcpy(data[thr].cmp + off, 1368 page[pg], PAGE_SIZE); 1369 have--; 1370 want++; 1371 if (++pg >= ring_size) 1372 pg = 0; 1373 } 1374 1375 atomic_set(&data[thr].ready, 1); 1376 wake_up(&data[thr].go); 1377 } 1378 1379 /* 1380 * Wait for more data while we are decompressing. 1381 */ 1382 if (have < LZO_CMP_PAGES && asked) { 1383 ret = hib_wait_io(&hb); 1384 if (ret) 1385 goto out_finish; 1386 have += asked; 1387 asked = 0; 1388 if (eof) 1389 eof = 2; 1390 } 1391 1392 for (run_threads = thr, thr = 0; thr < run_threads; thr++) { 1393 wait_event(data[thr].done, 1394 atomic_read(&data[thr].stop)); 1395 atomic_set(&data[thr].stop, 0); 1396 1397 ret = data[thr].ret; 1398 1399 if (ret < 0) { 1400 pr_err("LZO decompression failed\n"); 1401 goto out_finish; 1402 } 1403 1404 if (unlikely(!data[thr].unc_len || 1405 data[thr].unc_len > LZO_UNC_SIZE || 1406 data[thr].unc_len & (PAGE_SIZE - 1))) { 1407 pr_err("Invalid LZO uncompressed length\n"); 1408 ret = -1; 1409 goto out_finish; 1410 } 1411 1412 for (off = 0; 1413 off < data[thr].unc_len; off += PAGE_SIZE) { 1414 memcpy(data_of(*snapshot), 1415 data[thr].unc + off, PAGE_SIZE); 1416 1417 if (!(nr_pages % m)) 1418 pr_info("Image loading progress: %3d%%\n", 1419 nr_pages / m * 10); 1420 nr_pages++; 1421 1422 ret = snapshot_write_next(snapshot); 1423 if (ret <= 0) { 1424 crc->run_threads = thr + 1; 1425 atomic_set(&crc->ready, 1); 1426 wake_up(&crc->go); 1427 goto out_finish; 1428 } 1429 } 1430 } 1431 1432 crc->run_threads = thr; 1433 atomic_set(&crc->ready, 1); 1434 wake_up(&crc->go); 1435 } 1436 1437 out_finish: 1438 if (crc->run_threads) { 1439 wait_event(crc->done, atomic_read(&crc->stop)); 1440 atomic_set(&crc->stop, 0); 1441 } 1442 stop = ktime_get(); 1443 if (!ret) { 1444 pr_info("Image loading done\n"); 1445 snapshot_write_finalize(snapshot); 1446 if (!snapshot_image_loaded(snapshot)) 1447 ret = -ENODATA; 1448 if (!ret) { 1449 if (swsusp_header->flags & SF_CRC32_MODE) { 1450 if(handle->crc32 != swsusp_header->crc32) { 1451 pr_err("Invalid image CRC32!\n"); 1452 ret = -ENODATA; 1453 } 1454 } 1455 } 1456 } 1457 swsusp_show_speed(start, stop, nr_to_read, "Read"); 1458 out_clean: 1459 hib_finish_batch(&hb); 1460 for (i = 0; i < ring_size; i++) 1461 free_page((unsigned long)page[i]); 1462 if (crc) { 1463 if (crc->thr) 1464 kthread_stop(crc->thr); 1465 kfree(crc); 1466 } 1467 if (data) { 1468 for (thr = 0; thr < nr_threads; thr++) 1469 if (data[thr].thr) 1470 kthread_stop(data[thr].thr); 1471 vfree(data); 1472 } 1473 vfree(page); 1474 1475 return ret; 1476 } 1477 1478 /** 1479 * swsusp_read - read the hibernation image. 1480 * @flags_p: flags passed by the "frozen" kernel in the image header should 1481 * be written into this memory location 1482 */ 1483 1484 int swsusp_read(unsigned int *flags_p) 1485 { 1486 int error; 1487 struct swap_map_handle handle; 1488 struct snapshot_handle snapshot; 1489 struct swsusp_info *header; 1490 1491 memset(&snapshot, 0, sizeof(struct snapshot_handle)); 1492 error = snapshot_write_next(&snapshot); 1493 if (error < (int)PAGE_SIZE) 1494 return error < 0 ? error : -EFAULT; 1495 header = (struct swsusp_info *)data_of(snapshot); 1496 error = get_swap_reader(&handle, flags_p); 1497 if (error) 1498 goto end; 1499 if (!error) 1500 error = swap_read_page(&handle, header, NULL); 1501 if (!error) { 1502 error = (*flags_p & SF_NOCOMPRESS_MODE) ? 1503 load_image(&handle, &snapshot, header->pages - 1) : 1504 load_image_lzo(&handle, &snapshot, header->pages - 1); 1505 } 1506 swap_reader_finish(&handle); 1507 end: 1508 if (!error) 1509 pr_debug("Image successfully loaded\n"); 1510 else 1511 pr_debug("Error %d resuming\n", error); 1512 return error; 1513 } 1514 1515 /** 1516 * swsusp_check - Check for swsusp signature in the resume device 1517 */ 1518 1519 int swsusp_check(void) 1520 { 1521 int error; 1522 void *holder; 1523 1524 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, 1525 FMODE_READ | FMODE_EXCL, &holder); 1526 if (!IS_ERR(hib_resume_bdev)) { 1527 set_blocksize(hib_resume_bdev, PAGE_SIZE); 1528 clear_page(swsusp_header); 1529 error = hib_submit_io(REQ_OP_READ, 0, 1530 swsusp_resume_block, 1531 swsusp_header, NULL); 1532 if (error) 1533 goto put; 1534 1535 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) { 1536 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10); 1537 /* Reset swap signature now */ 1538 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1539 swsusp_resume_block, 1540 swsusp_header, NULL); 1541 } else { 1542 error = -EINVAL; 1543 } 1544 if (!error && swsusp_header->flags & SF_HW_SIG && 1545 swsusp_header->hw_sig != swsusp_hardware_signature) { 1546 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n", 1547 swsusp_header->hw_sig, swsusp_hardware_signature); 1548 error = -EINVAL; 1549 } 1550 1551 put: 1552 if (error) 1553 blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL); 1554 else 1555 pr_debug("Image signature found, resuming\n"); 1556 } else { 1557 error = PTR_ERR(hib_resume_bdev); 1558 } 1559 1560 if (error) 1561 pr_debug("Image not found (code %d)\n", error); 1562 1563 return error; 1564 } 1565 1566 /** 1567 * swsusp_close - close swap device. 1568 */ 1569 1570 void swsusp_close(fmode_t mode) 1571 { 1572 if (IS_ERR(hib_resume_bdev)) { 1573 pr_debug("Image device not initialised\n"); 1574 return; 1575 } 1576 1577 blkdev_put(hib_resume_bdev, mode); 1578 } 1579 1580 /** 1581 * swsusp_unmark - Unmark swsusp signature in the resume device 1582 */ 1583 1584 #ifdef CONFIG_SUSPEND 1585 int swsusp_unmark(void) 1586 { 1587 int error; 1588 1589 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block, 1590 swsusp_header, NULL); 1591 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) { 1592 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10); 1593 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC, 1594 swsusp_resume_block, 1595 swsusp_header, NULL); 1596 } else { 1597 pr_err("Cannot find swsusp signature!\n"); 1598 error = -ENODEV; 1599 } 1600 1601 /* 1602 * We just returned from suspend, we don't need the image any more. 1603 */ 1604 free_all_swap_pages(root_swap); 1605 1606 return error; 1607 } 1608 #endif 1609 1610 static int __init swsusp_header_init(void) 1611 { 1612 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL); 1613 if (!swsusp_header) 1614 panic("Could not allocate memory for swsusp_header\n"); 1615 return 0; 1616 } 1617 1618 core_initcall(swsusp_header_init); 1619