1 /* 2 * linux/kernel/power/snapshot.c 3 * 4 * This file provides system snapshot/restore functionality for swsusp. 5 * 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@suse.cz> 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> 8 * 9 * This file is released under the GPLv2. 10 * 11 */ 12 13 #include <linux/version.h> 14 #include <linux/module.h> 15 #include <linux/mm.h> 16 #include <linux/suspend.h> 17 #include <linux/delay.h> 18 #include <linux/bitops.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/pm.h> 22 #include <linux/device.h> 23 #include <linux/init.h> 24 #include <linux/bootmem.h> 25 #include <linux/syscalls.h> 26 #include <linux/console.h> 27 #include <linux/highmem.h> 28 #include <linux/list.h> 29 #include <linux/slab.h> 30 31 #include <asm/uaccess.h> 32 #include <asm/mmu_context.h> 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <asm/io.h> 36 37 #include "power.h" 38 39 static int swsusp_page_is_free(struct page *); 40 static void swsusp_set_page_forbidden(struct page *); 41 static void swsusp_unset_page_forbidden(struct page *); 42 43 /* 44 * Preferred image size in bytes (tunable via /sys/power/image_size). 45 * When it is set to N, swsusp will do its best to ensure the image 46 * size will not exceed N bytes, but if that is impossible, it will 47 * try to create the smallest image possible. 48 */ 49 unsigned long image_size = 500 * 1024 * 1024; 50 51 /* List of PBEs needed for restoring the pages that were allocated before 52 * the suspend and included in the suspend image, but have also been 53 * allocated by the "resume" kernel, so their contents cannot be written 54 * directly to their "original" page frames. 55 */ 56 struct pbe *restore_pblist; 57 58 /* Pointer to an auxiliary buffer (1 page) */ 59 static void *buffer; 60 61 /** 62 * @safe_needed - on resume, for storing the PBE list and the image, 63 * we can only use memory pages that do not conflict with the pages 64 * used before suspend. The unsafe pages have PageNosaveFree set 65 * and we count them using unsafe_pages. 66 * 67 * Each allocated image page is marked as PageNosave and PageNosaveFree 68 * so that swsusp_free() can release it. 69 */ 70 71 #define PG_ANY 0 72 #define PG_SAFE 1 73 #define PG_UNSAFE_CLEAR 1 74 #define PG_UNSAFE_KEEP 0 75 76 static unsigned int allocated_unsafe_pages; 77 78 static void *get_image_page(gfp_t gfp_mask, int safe_needed) 79 { 80 void *res; 81 82 res = (void *)get_zeroed_page(gfp_mask); 83 if (safe_needed) 84 while (res && swsusp_page_is_free(virt_to_page(res))) { 85 /* The page is unsafe, mark it for swsusp_free() */ 86 swsusp_set_page_forbidden(virt_to_page(res)); 87 allocated_unsafe_pages++; 88 res = (void *)get_zeroed_page(gfp_mask); 89 } 90 if (res) { 91 swsusp_set_page_forbidden(virt_to_page(res)); 92 swsusp_set_page_free(virt_to_page(res)); 93 } 94 return res; 95 } 96 97 unsigned long get_safe_page(gfp_t gfp_mask) 98 { 99 return (unsigned long)get_image_page(gfp_mask, PG_SAFE); 100 } 101 102 static struct page *alloc_image_page(gfp_t gfp_mask) 103 { 104 struct page *page; 105 106 page = alloc_page(gfp_mask); 107 if (page) { 108 swsusp_set_page_forbidden(page); 109 swsusp_set_page_free(page); 110 } 111 return page; 112 } 113 114 /** 115 * free_image_page - free page represented by @addr, allocated with 116 * get_image_page (page flags set by it must be cleared) 117 */ 118 119 static inline void free_image_page(void *addr, int clear_nosave_free) 120 { 121 struct page *page; 122 123 BUG_ON(!virt_addr_valid(addr)); 124 125 page = virt_to_page(addr); 126 127 swsusp_unset_page_forbidden(page); 128 if (clear_nosave_free) 129 swsusp_unset_page_free(page); 130 131 __free_page(page); 132 } 133 134 /* struct linked_page is used to build chains of pages */ 135 136 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *)) 137 138 struct linked_page { 139 struct linked_page *next; 140 char data[LINKED_PAGE_DATA_SIZE]; 141 } __attribute__((packed)); 142 143 static inline void 144 free_list_of_pages(struct linked_page *list, int clear_page_nosave) 145 { 146 while (list) { 147 struct linked_page *lp = list->next; 148 149 free_image_page(list, clear_page_nosave); 150 list = lp; 151 } 152 } 153 154 /** 155 * struct chain_allocator is used for allocating small objects out of 156 * a linked list of pages called 'the chain'. 157 * 158 * The chain grows each time when there is no room for a new object in 159 * the current page. The allocated objects cannot be freed individually. 160 * It is only possible to free them all at once, by freeing the entire 161 * chain. 162 * 163 * NOTE: The chain allocator may be inefficient if the allocated objects 164 * are not much smaller than PAGE_SIZE. 165 */ 166 167 struct chain_allocator { 168 struct linked_page *chain; /* the chain */ 169 unsigned int used_space; /* total size of objects allocated out 170 * of the current page 171 */ 172 gfp_t gfp_mask; /* mask for allocating pages */ 173 int safe_needed; /* if set, only "safe" pages are allocated */ 174 }; 175 176 static void 177 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed) 178 { 179 ca->chain = NULL; 180 ca->used_space = LINKED_PAGE_DATA_SIZE; 181 ca->gfp_mask = gfp_mask; 182 ca->safe_needed = safe_needed; 183 } 184 185 static void *chain_alloc(struct chain_allocator *ca, unsigned int size) 186 { 187 void *ret; 188 189 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) { 190 struct linked_page *lp; 191 192 lp = get_image_page(ca->gfp_mask, ca->safe_needed); 193 if (!lp) 194 return NULL; 195 196 lp->next = ca->chain; 197 ca->chain = lp; 198 ca->used_space = 0; 199 } 200 ret = ca->chain->data + ca->used_space; 201 ca->used_space += size; 202 return ret; 203 } 204 205 /** 206 * Data types related to memory bitmaps. 207 * 208 * Memory bitmap is a structure consiting of many linked lists of 209 * objects. The main list's elements are of type struct zone_bitmap 210 * and each of them corresonds to one zone. For each zone bitmap 211 * object there is a list of objects of type struct bm_block that 212 * represent each blocks of bitmap in which information is stored. 213 * 214 * struct memory_bitmap contains a pointer to the main list of zone 215 * bitmap objects, a struct bm_position used for browsing the bitmap, 216 * and a pointer to the list of pages used for allocating all of the 217 * zone bitmap objects and bitmap block objects. 218 * 219 * NOTE: It has to be possible to lay out the bitmap in memory 220 * using only allocations of order 0. Additionally, the bitmap is 221 * designed to work with arbitrary number of zones (this is over the 222 * top for now, but let's avoid making unnecessary assumptions ;-). 223 * 224 * struct zone_bitmap contains a pointer to a list of bitmap block 225 * objects and a pointer to the bitmap block object that has been 226 * most recently used for setting bits. Additionally, it contains the 227 * pfns that correspond to the start and end of the represented zone. 228 * 229 * struct bm_block contains a pointer to the memory page in which 230 * information is stored (in the form of a block of bitmap) 231 * It also contains the pfns that correspond to the start and end of 232 * the represented memory area. 233 */ 234 235 #define BM_END_OF_MAP (~0UL) 236 237 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE) 238 239 struct bm_block { 240 struct list_head hook; /* hook into a list of bitmap blocks */ 241 unsigned long start_pfn; /* pfn represented by the first bit */ 242 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */ 243 unsigned long *data; /* bitmap representing pages */ 244 }; 245 246 static inline unsigned long bm_block_bits(struct bm_block *bb) 247 { 248 return bb->end_pfn - bb->start_pfn; 249 } 250 251 /* strcut bm_position is used for browsing memory bitmaps */ 252 253 struct bm_position { 254 struct bm_block *block; 255 int bit; 256 }; 257 258 struct memory_bitmap { 259 struct list_head blocks; /* list of bitmap blocks */ 260 struct linked_page *p_list; /* list of pages used to store zone 261 * bitmap objects and bitmap block 262 * objects 263 */ 264 struct bm_position cur; /* most recently used bit position */ 265 }; 266 267 /* Functions that operate on memory bitmaps */ 268 269 static void memory_bm_position_reset(struct memory_bitmap *bm) 270 { 271 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook); 272 bm->cur.bit = 0; 273 } 274 275 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free); 276 277 /** 278 * create_bm_block_list - create a list of block bitmap objects 279 * @pages - number of pages to track 280 * @list - list to put the allocated blocks into 281 * @ca - chain allocator to be used for allocating memory 282 */ 283 static int create_bm_block_list(unsigned long pages, 284 struct list_head *list, 285 struct chain_allocator *ca) 286 { 287 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK); 288 289 while (nr_blocks-- > 0) { 290 struct bm_block *bb; 291 292 bb = chain_alloc(ca, sizeof(struct bm_block)); 293 if (!bb) 294 return -ENOMEM; 295 list_add(&bb->hook, list); 296 } 297 298 return 0; 299 } 300 301 struct mem_extent { 302 struct list_head hook; 303 unsigned long start; 304 unsigned long end; 305 }; 306 307 /** 308 * free_mem_extents - free a list of memory extents 309 * @list - list of extents to empty 310 */ 311 static void free_mem_extents(struct list_head *list) 312 { 313 struct mem_extent *ext, *aux; 314 315 list_for_each_entry_safe(ext, aux, list, hook) { 316 list_del(&ext->hook); 317 kfree(ext); 318 } 319 } 320 321 /** 322 * create_mem_extents - create a list of memory extents representing 323 * contiguous ranges of PFNs 324 * @list - list to put the extents into 325 * @gfp_mask - mask to use for memory allocations 326 */ 327 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask) 328 { 329 struct zone *zone; 330 331 INIT_LIST_HEAD(list); 332 333 for_each_populated_zone(zone) { 334 unsigned long zone_start, zone_end; 335 struct mem_extent *ext, *cur, *aux; 336 337 zone_start = zone->zone_start_pfn; 338 zone_end = zone->zone_start_pfn + zone->spanned_pages; 339 340 list_for_each_entry(ext, list, hook) 341 if (zone_start <= ext->end) 342 break; 343 344 if (&ext->hook == list || zone_end < ext->start) { 345 /* New extent is necessary */ 346 struct mem_extent *new_ext; 347 348 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask); 349 if (!new_ext) { 350 free_mem_extents(list); 351 return -ENOMEM; 352 } 353 new_ext->start = zone_start; 354 new_ext->end = zone_end; 355 list_add_tail(&new_ext->hook, &ext->hook); 356 continue; 357 } 358 359 /* Merge this zone's range of PFNs with the existing one */ 360 if (zone_start < ext->start) 361 ext->start = zone_start; 362 if (zone_end > ext->end) 363 ext->end = zone_end; 364 365 /* More merging may be possible */ 366 cur = ext; 367 list_for_each_entry_safe_continue(cur, aux, list, hook) { 368 if (zone_end < cur->start) 369 break; 370 if (zone_end < cur->end) 371 ext->end = cur->end; 372 list_del(&cur->hook); 373 kfree(cur); 374 } 375 } 376 377 return 0; 378 } 379 380 /** 381 * memory_bm_create - allocate memory for a memory bitmap 382 */ 383 static int 384 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed) 385 { 386 struct chain_allocator ca; 387 struct list_head mem_extents; 388 struct mem_extent *ext; 389 int error; 390 391 chain_init(&ca, gfp_mask, safe_needed); 392 INIT_LIST_HEAD(&bm->blocks); 393 394 error = create_mem_extents(&mem_extents, gfp_mask); 395 if (error) 396 return error; 397 398 list_for_each_entry(ext, &mem_extents, hook) { 399 struct bm_block *bb; 400 unsigned long pfn = ext->start; 401 unsigned long pages = ext->end - ext->start; 402 403 bb = list_entry(bm->blocks.prev, struct bm_block, hook); 404 405 error = create_bm_block_list(pages, bm->blocks.prev, &ca); 406 if (error) 407 goto Error; 408 409 list_for_each_entry_continue(bb, &bm->blocks, hook) { 410 bb->data = get_image_page(gfp_mask, safe_needed); 411 if (!bb->data) { 412 error = -ENOMEM; 413 goto Error; 414 } 415 416 bb->start_pfn = pfn; 417 if (pages >= BM_BITS_PER_BLOCK) { 418 pfn += BM_BITS_PER_BLOCK; 419 pages -= BM_BITS_PER_BLOCK; 420 } else { 421 /* This is executed only once in the loop */ 422 pfn += pages; 423 } 424 bb->end_pfn = pfn; 425 } 426 } 427 428 bm->p_list = ca.chain; 429 memory_bm_position_reset(bm); 430 Exit: 431 free_mem_extents(&mem_extents); 432 return error; 433 434 Error: 435 bm->p_list = ca.chain; 436 memory_bm_free(bm, PG_UNSAFE_CLEAR); 437 goto Exit; 438 } 439 440 /** 441 * memory_bm_free - free memory occupied by the memory bitmap @bm 442 */ 443 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free) 444 { 445 struct bm_block *bb; 446 447 list_for_each_entry(bb, &bm->blocks, hook) 448 if (bb->data) 449 free_image_page(bb->data, clear_nosave_free); 450 451 free_list_of_pages(bm->p_list, clear_nosave_free); 452 453 INIT_LIST_HEAD(&bm->blocks); 454 } 455 456 /** 457 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds 458 * to given pfn. The cur_zone_bm member of @bm and the cur_block member 459 * of @bm->cur_zone_bm are updated. 460 */ 461 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn, 462 void **addr, unsigned int *bit_nr) 463 { 464 struct bm_block *bb; 465 466 /* 467 * Check if the pfn corresponds to the current bitmap block and find 468 * the block where it fits if this is not the case. 469 */ 470 bb = bm->cur.block; 471 if (pfn < bb->start_pfn) 472 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook) 473 if (pfn >= bb->start_pfn) 474 break; 475 476 if (pfn >= bb->end_pfn) 477 list_for_each_entry_continue(bb, &bm->blocks, hook) 478 if (pfn >= bb->start_pfn && pfn < bb->end_pfn) 479 break; 480 481 if (&bb->hook == &bm->blocks) 482 return -EFAULT; 483 484 /* The block has been found */ 485 bm->cur.block = bb; 486 pfn -= bb->start_pfn; 487 bm->cur.bit = pfn + 1; 488 *bit_nr = pfn; 489 *addr = bb->data; 490 return 0; 491 } 492 493 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn) 494 { 495 void *addr; 496 unsigned int bit; 497 int error; 498 499 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 500 BUG_ON(error); 501 set_bit(bit, addr); 502 } 503 504 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn) 505 { 506 void *addr; 507 unsigned int bit; 508 int error; 509 510 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 511 if (!error) 512 set_bit(bit, addr); 513 return error; 514 } 515 516 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn) 517 { 518 void *addr; 519 unsigned int bit; 520 int error; 521 522 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 523 BUG_ON(error); 524 clear_bit(bit, addr); 525 } 526 527 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn) 528 { 529 void *addr; 530 unsigned int bit; 531 int error; 532 533 error = memory_bm_find_bit(bm, pfn, &addr, &bit); 534 BUG_ON(error); 535 return test_bit(bit, addr); 536 } 537 538 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn) 539 { 540 void *addr; 541 unsigned int bit; 542 543 return !memory_bm_find_bit(bm, pfn, &addr, &bit); 544 } 545 546 /** 547 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit 548 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is 549 * returned. 550 * 551 * It is required to run memory_bm_position_reset() before the first call to 552 * this function. 553 */ 554 555 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm) 556 { 557 struct bm_block *bb; 558 int bit; 559 560 bb = bm->cur.block; 561 do { 562 bit = bm->cur.bit; 563 bit = find_next_bit(bb->data, bm_block_bits(bb), bit); 564 if (bit < bm_block_bits(bb)) 565 goto Return_pfn; 566 567 bb = list_entry(bb->hook.next, struct bm_block, hook); 568 bm->cur.block = bb; 569 bm->cur.bit = 0; 570 } while (&bb->hook != &bm->blocks); 571 572 memory_bm_position_reset(bm); 573 return BM_END_OF_MAP; 574 575 Return_pfn: 576 bm->cur.bit = bit + 1; 577 return bb->start_pfn + bit; 578 } 579 580 /** 581 * This structure represents a range of page frames the contents of which 582 * should not be saved during the suspend. 583 */ 584 585 struct nosave_region { 586 struct list_head list; 587 unsigned long start_pfn; 588 unsigned long end_pfn; 589 }; 590 591 static LIST_HEAD(nosave_regions); 592 593 /** 594 * register_nosave_region - register a range of page frames the contents 595 * of which should not be saved during the suspend (to be used in the early 596 * initialization code) 597 */ 598 599 void __init 600 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn, 601 int use_kmalloc) 602 { 603 struct nosave_region *region; 604 605 if (start_pfn >= end_pfn) 606 return; 607 608 if (!list_empty(&nosave_regions)) { 609 /* Try to extend the previous region (they should be sorted) */ 610 region = list_entry(nosave_regions.prev, 611 struct nosave_region, list); 612 if (region->end_pfn == start_pfn) { 613 region->end_pfn = end_pfn; 614 goto Report; 615 } 616 } 617 if (use_kmalloc) { 618 /* during init, this shouldn't fail */ 619 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL); 620 BUG_ON(!region); 621 } else 622 /* This allocation cannot fail */ 623 region = alloc_bootmem(sizeof(struct nosave_region)); 624 region->start_pfn = start_pfn; 625 region->end_pfn = end_pfn; 626 list_add_tail(®ion->list, &nosave_regions); 627 Report: 628 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n", 629 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT); 630 } 631 632 /* 633 * Set bits in this map correspond to the page frames the contents of which 634 * should not be saved during the suspend. 635 */ 636 static struct memory_bitmap *forbidden_pages_map; 637 638 /* Set bits in this map correspond to free page frames. */ 639 static struct memory_bitmap *free_pages_map; 640 641 /* 642 * Each page frame allocated for creating the image is marked by setting the 643 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously 644 */ 645 646 void swsusp_set_page_free(struct page *page) 647 { 648 if (free_pages_map) 649 memory_bm_set_bit(free_pages_map, page_to_pfn(page)); 650 } 651 652 static int swsusp_page_is_free(struct page *page) 653 { 654 return free_pages_map ? 655 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0; 656 } 657 658 void swsusp_unset_page_free(struct page *page) 659 { 660 if (free_pages_map) 661 memory_bm_clear_bit(free_pages_map, page_to_pfn(page)); 662 } 663 664 static void swsusp_set_page_forbidden(struct page *page) 665 { 666 if (forbidden_pages_map) 667 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page)); 668 } 669 670 int swsusp_page_is_forbidden(struct page *page) 671 { 672 return forbidden_pages_map ? 673 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0; 674 } 675 676 static void swsusp_unset_page_forbidden(struct page *page) 677 { 678 if (forbidden_pages_map) 679 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page)); 680 } 681 682 /** 683 * mark_nosave_pages - set bits corresponding to the page frames the 684 * contents of which should not be saved in a given bitmap. 685 */ 686 687 static void mark_nosave_pages(struct memory_bitmap *bm) 688 { 689 struct nosave_region *region; 690 691 if (list_empty(&nosave_regions)) 692 return; 693 694 list_for_each_entry(region, &nosave_regions, list) { 695 unsigned long pfn; 696 697 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n", 698 region->start_pfn << PAGE_SHIFT, 699 region->end_pfn << PAGE_SHIFT); 700 701 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++) 702 if (pfn_valid(pfn)) { 703 /* 704 * It is safe to ignore the result of 705 * mem_bm_set_bit_check() here, since we won't 706 * touch the PFNs for which the error is 707 * returned anyway. 708 */ 709 mem_bm_set_bit_check(bm, pfn); 710 } 711 } 712 } 713 714 /** 715 * create_basic_memory_bitmaps - create bitmaps needed for marking page 716 * frames that should not be saved and free page frames. The pointers 717 * forbidden_pages_map and free_pages_map are only modified if everything 718 * goes well, because we don't want the bits to be used before both bitmaps 719 * are set up. 720 */ 721 722 int create_basic_memory_bitmaps(void) 723 { 724 struct memory_bitmap *bm1, *bm2; 725 int error = 0; 726 727 BUG_ON(forbidden_pages_map || free_pages_map); 728 729 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 730 if (!bm1) 731 return -ENOMEM; 732 733 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY); 734 if (error) 735 goto Free_first_object; 736 737 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL); 738 if (!bm2) 739 goto Free_first_bitmap; 740 741 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY); 742 if (error) 743 goto Free_second_object; 744 745 forbidden_pages_map = bm1; 746 free_pages_map = bm2; 747 mark_nosave_pages(forbidden_pages_map); 748 749 pr_debug("PM: Basic memory bitmaps created\n"); 750 751 return 0; 752 753 Free_second_object: 754 kfree(bm2); 755 Free_first_bitmap: 756 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 757 Free_first_object: 758 kfree(bm1); 759 return -ENOMEM; 760 } 761 762 /** 763 * free_basic_memory_bitmaps - free memory bitmaps allocated by 764 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary 765 * so that the bitmaps themselves are not referred to while they are being 766 * freed. 767 */ 768 769 void free_basic_memory_bitmaps(void) 770 { 771 struct memory_bitmap *bm1, *bm2; 772 773 BUG_ON(!(forbidden_pages_map && free_pages_map)); 774 775 bm1 = forbidden_pages_map; 776 bm2 = free_pages_map; 777 forbidden_pages_map = NULL; 778 free_pages_map = NULL; 779 memory_bm_free(bm1, PG_UNSAFE_CLEAR); 780 kfree(bm1); 781 memory_bm_free(bm2, PG_UNSAFE_CLEAR); 782 kfree(bm2); 783 784 pr_debug("PM: Basic memory bitmaps freed\n"); 785 } 786 787 /** 788 * snapshot_additional_pages - estimate the number of additional pages 789 * be needed for setting up the suspend image data structures for given 790 * zone (usually the returned value is greater than the exact number) 791 */ 792 793 unsigned int snapshot_additional_pages(struct zone *zone) 794 { 795 unsigned int res; 796 797 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK); 798 res += DIV_ROUND_UP(res * sizeof(struct bm_block), PAGE_SIZE); 799 return 2 * res; 800 } 801 802 #ifdef CONFIG_HIGHMEM 803 /** 804 * count_free_highmem_pages - compute the total number of free highmem 805 * pages, system-wide. 806 */ 807 808 static unsigned int count_free_highmem_pages(void) 809 { 810 struct zone *zone; 811 unsigned int cnt = 0; 812 813 for_each_populated_zone(zone) 814 if (is_highmem(zone)) 815 cnt += zone_page_state(zone, NR_FREE_PAGES); 816 817 return cnt; 818 } 819 820 /** 821 * saveable_highmem_page - Determine whether a highmem page should be 822 * included in the suspend image. 823 * 824 * We should save the page if it isn't Nosave or NosaveFree, or Reserved, 825 * and it isn't a part of a free chunk of pages. 826 */ 827 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn) 828 { 829 struct page *page; 830 831 if (!pfn_valid(pfn)) 832 return NULL; 833 834 page = pfn_to_page(pfn); 835 if (page_zone(page) != zone) 836 return NULL; 837 838 BUG_ON(!PageHighMem(page)); 839 840 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) || 841 PageReserved(page)) 842 return NULL; 843 844 return page; 845 } 846 847 /** 848 * count_highmem_pages - compute the total number of saveable highmem 849 * pages. 850 */ 851 852 static unsigned int count_highmem_pages(void) 853 { 854 struct zone *zone; 855 unsigned int n = 0; 856 857 for_each_populated_zone(zone) { 858 unsigned long pfn, max_zone_pfn; 859 860 if (!is_highmem(zone)) 861 continue; 862 863 mark_free_pages(zone); 864 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 865 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 866 if (saveable_highmem_page(zone, pfn)) 867 n++; 868 } 869 return n; 870 } 871 #else 872 static inline void *saveable_highmem_page(struct zone *z, unsigned long p) 873 { 874 return NULL; 875 } 876 #endif /* CONFIG_HIGHMEM */ 877 878 /** 879 * saveable_page - Determine whether a non-highmem page should be included 880 * in the suspend image. 881 * 882 * We should save the page if it isn't Nosave, and is not in the range 883 * of pages statically defined as 'unsaveable', and it isn't a part of 884 * a free chunk of pages. 885 */ 886 static struct page *saveable_page(struct zone *zone, unsigned long pfn) 887 { 888 struct page *page; 889 890 if (!pfn_valid(pfn)) 891 return NULL; 892 893 page = pfn_to_page(pfn); 894 if (page_zone(page) != zone) 895 return NULL; 896 897 BUG_ON(PageHighMem(page)); 898 899 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page)) 900 return NULL; 901 902 if (PageReserved(page) 903 && (!kernel_page_present(page) || pfn_is_nosave(pfn))) 904 return NULL; 905 906 return page; 907 } 908 909 /** 910 * count_data_pages - compute the total number of saveable non-highmem 911 * pages. 912 */ 913 914 static unsigned int count_data_pages(void) 915 { 916 struct zone *zone; 917 unsigned long pfn, max_zone_pfn; 918 unsigned int n = 0; 919 920 for_each_populated_zone(zone) { 921 if (is_highmem(zone)) 922 continue; 923 924 mark_free_pages(zone); 925 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 926 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 927 if (saveable_page(zone, pfn)) 928 n++; 929 } 930 return n; 931 } 932 933 /* This is needed, because copy_page and memcpy are not usable for copying 934 * task structs. 935 */ 936 static inline void do_copy_page(long *dst, long *src) 937 { 938 int n; 939 940 for (n = PAGE_SIZE / sizeof(long); n; n--) 941 *dst++ = *src++; 942 } 943 944 945 /** 946 * safe_copy_page - check if the page we are going to copy is marked as 947 * present in the kernel page tables (this always is the case if 948 * CONFIG_DEBUG_PAGEALLOC is not set and in that case 949 * kernel_page_present() always returns 'true'). 950 */ 951 static void safe_copy_page(void *dst, struct page *s_page) 952 { 953 if (kernel_page_present(s_page)) { 954 do_copy_page(dst, page_address(s_page)); 955 } else { 956 kernel_map_pages(s_page, 1, 1); 957 do_copy_page(dst, page_address(s_page)); 958 kernel_map_pages(s_page, 1, 0); 959 } 960 } 961 962 963 #ifdef CONFIG_HIGHMEM 964 static inline struct page * 965 page_is_saveable(struct zone *zone, unsigned long pfn) 966 { 967 return is_highmem(zone) ? 968 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn); 969 } 970 971 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 972 { 973 struct page *s_page, *d_page; 974 void *src, *dst; 975 976 s_page = pfn_to_page(src_pfn); 977 d_page = pfn_to_page(dst_pfn); 978 if (PageHighMem(s_page)) { 979 src = kmap_atomic(s_page, KM_USER0); 980 dst = kmap_atomic(d_page, KM_USER1); 981 do_copy_page(dst, src); 982 kunmap_atomic(src, KM_USER0); 983 kunmap_atomic(dst, KM_USER1); 984 } else { 985 if (PageHighMem(d_page)) { 986 /* Page pointed to by src may contain some kernel 987 * data modified by kmap_atomic() 988 */ 989 safe_copy_page(buffer, s_page); 990 dst = kmap_atomic(d_page, KM_USER0); 991 memcpy(dst, buffer, PAGE_SIZE); 992 kunmap_atomic(dst, KM_USER0); 993 } else { 994 safe_copy_page(page_address(d_page), s_page); 995 } 996 } 997 } 998 #else 999 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn) 1000 1001 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn) 1002 { 1003 safe_copy_page(page_address(pfn_to_page(dst_pfn)), 1004 pfn_to_page(src_pfn)); 1005 } 1006 #endif /* CONFIG_HIGHMEM */ 1007 1008 static void 1009 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm) 1010 { 1011 struct zone *zone; 1012 unsigned long pfn; 1013 1014 for_each_populated_zone(zone) { 1015 unsigned long max_zone_pfn; 1016 1017 mark_free_pages(zone); 1018 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1019 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1020 if (page_is_saveable(zone, pfn)) 1021 memory_bm_set_bit(orig_bm, pfn); 1022 } 1023 memory_bm_position_reset(orig_bm); 1024 memory_bm_position_reset(copy_bm); 1025 for(;;) { 1026 pfn = memory_bm_next_pfn(orig_bm); 1027 if (unlikely(pfn == BM_END_OF_MAP)) 1028 break; 1029 copy_data_page(memory_bm_next_pfn(copy_bm), pfn); 1030 } 1031 } 1032 1033 /* Total number of image pages */ 1034 static unsigned int nr_copy_pages; 1035 /* Number of pages needed for saving the original pfns of the image pages */ 1036 static unsigned int nr_meta_pages; 1037 /* 1038 * Numbers of normal and highmem page frames allocated for hibernation image 1039 * before suspending devices. 1040 */ 1041 unsigned int alloc_normal, alloc_highmem; 1042 /* 1043 * Memory bitmap used for marking saveable pages (during hibernation) or 1044 * hibernation image pages (during restore) 1045 */ 1046 static struct memory_bitmap orig_bm; 1047 /* 1048 * Memory bitmap used during hibernation for marking allocated page frames that 1049 * will contain copies of saveable pages. During restore it is initially used 1050 * for marking hibernation image pages, but then the set bits from it are 1051 * duplicated in @orig_bm and it is released. On highmem systems it is next 1052 * used for marking "safe" highmem pages, but it has to be reinitialized for 1053 * this purpose. 1054 */ 1055 static struct memory_bitmap copy_bm; 1056 1057 /** 1058 * swsusp_free - free pages allocated for the suspend. 1059 * 1060 * Suspend pages are alocated before the atomic copy is made, so we 1061 * need to release them after the resume. 1062 */ 1063 1064 void swsusp_free(void) 1065 { 1066 struct zone *zone; 1067 unsigned long pfn, max_zone_pfn; 1068 1069 for_each_populated_zone(zone) { 1070 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1071 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1072 if (pfn_valid(pfn)) { 1073 struct page *page = pfn_to_page(pfn); 1074 1075 if (swsusp_page_is_forbidden(page) && 1076 swsusp_page_is_free(page)) { 1077 swsusp_unset_page_forbidden(page); 1078 swsusp_unset_page_free(page); 1079 __free_page(page); 1080 } 1081 } 1082 } 1083 nr_copy_pages = 0; 1084 nr_meta_pages = 0; 1085 restore_pblist = NULL; 1086 buffer = NULL; 1087 alloc_normal = 0; 1088 alloc_highmem = 0; 1089 } 1090 1091 /* Helper functions used for the shrinking of memory. */ 1092 1093 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN) 1094 1095 /** 1096 * preallocate_image_pages - Allocate a number of pages for hibernation image 1097 * @nr_pages: Number of page frames to allocate. 1098 * @mask: GFP flags to use for the allocation. 1099 * 1100 * Return value: Number of page frames actually allocated 1101 */ 1102 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask) 1103 { 1104 unsigned long nr_alloc = 0; 1105 1106 while (nr_pages > 0) { 1107 struct page *page; 1108 1109 page = alloc_image_page(mask); 1110 if (!page) 1111 break; 1112 memory_bm_set_bit(©_bm, page_to_pfn(page)); 1113 if (PageHighMem(page)) 1114 alloc_highmem++; 1115 else 1116 alloc_normal++; 1117 nr_pages--; 1118 nr_alloc++; 1119 } 1120 1121 return nr_alloc; 1122 } 1123 1124 static unsigned long preallocate_image_memory(unsigned long nr_pages) 1125 { 1126 return preallocate_image_pages(nr_pages, GFP_IMAGE); 1127 } 1128 1129 #ifdef CONFIG_HIGHMEM 1130 static unsigned long preallocate_image_highmem(unsigned long nr_pages) 1131 { 1132 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM); 1133 } 1134 1135 /** 1136 * __fraction - Compute (an approximation of) x * (multiplier / base) 1137 */ 1138 static unsigned long __fraction(u64 x, u64 multiplier, u64 base) 1139 { 1140 x *= multiplier; 1141 do_div(x, base); 1142 return (unsigned long)x; 1143 } 1144 1145 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1146 unsigned long highmem, 1147 unsigned long total) 1148 { 1149 unsigned long alloc = __fraction(nr_pages, highmem, total); 1150 1151 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM); 1152 } 1153 #else /* CONFIG_HIGHMEM */ 1154 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages) 1155 { 1156 return 0; 1157 } 1158 1159 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages, 1160 unsigned long highmem, 1161 unsigned long total) 1162 { 1163 return 0; 1164 } 1165 #endif /* CONFIG_HIGHMEM */ 1166 1167 /** 1168 * free_unnecessary_pages - Release preallocated pages not needed for the image 1169 */ 1170 static void free_unnecessary_pages(void) 1171 { 1172 unsigned long save_highmem, to_free_normal, to_free_highmem; 1173 1174 to_free_normal = alloc_normal - count_data_pages(); 1175 save_highmem = count_highmem_pages(); 1176 if (alloc_highmem > save_highmem) { 1177 to_free_highmem = alloc_highmem - save_highmem; 1178 } else { 1179 to_free_highmem = 0; 1180 to_free_normal -= save_highmem - alloc_highmem; 1181 } 1182 1183 memory_bm_position_reset(©_bm); 1184 1185 while (to_free_normal > 0 || to_free_highmem > 0) { 1186 unsigned long pfn = memory_bm_next_pfn(©_bm); 1187 struct page *page = pfn_to_page(pfn); 1188 1189 if (PageHighMem(page)) { 1190 if (!to_free_highmem) 1191 continue; 1192 to_free_highmem--; 1193 alloc_highmem--; 1194 } else { 1195 if (!to_free_normal) 1196 continue; 1197 to_free_normal--; 1198 alloc_normal--; 1199 } 1200 memory_bm_clear_bit(©_bm, pfn); 1201 swsusp_unset_page_forbidden(page); 1202 swsusp_unset_page_free(page); 1203 __free_page(page); 1204 } 1205 } 1206 1207 /** 1208 * minimum_image_size - Estimate the minimum acceptable size of an image 1209 * @saveable: Number of saveable pages in the system. 1210 * 1211 * We want to avoid attempting to free too much memory too hard, so estimate the 1212 * minimum acceptable size of a hibernation image to use as the lower limit for 1213 * preallocating memory. 1214 * 1215 * We assume that the minimum image size should be proportional to 1216 * 1217 * [number of saveable pages] - [number of pages that can be freed in theory] 1218 * 1219 * where the second term is the sum of (1) reclaimable slab pages, (2) active 1220 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages, 1221 * minus mapped file pages. 1222 */ 1223 static unsigned long minimum_image_size(unsigned long saveable) 1224 { 1225 unsigned long size; 1226 1227 size = global_page_state(NR_SLAB_RECLAIMABLE) 1228 + global_page_state(NR_ACTIVE_ANON) 1229 + global_page_state(NR_INACTIVE_ANON) 1230 + global_page_state(NR_ACTIVE_FILE) 1231 + global_page_state(NR_INACTIVE_FILE) 1232 - global_page_state(NR_FILE_MAPPED); 1233 1234 return saveable <= size ? 0 : saveable - size; 1235 } 1236 1237 /** 1238 * hibernate_preallocate_memory - Preallocate memory for hibernation image 1239 * 1240 * To create a hibernation image it is necessary to make a copy of every page 1241 * frame in use. We also need a number of page frames to be free during 1242 * hibernation for allocations made while saving the image and for device 1243 * drivers, in case they need to allocate memory from their hibernation 1244 * callbacks (these two numbers are given by PAGES_FOR_IO and SPARE_PAGES, 1245 * respectively, both of which are rough estimates). To make this happen, we 1246 * compute the total number of available page frames and allocate at least 1247 * 1248 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2 + 2 * SPARE_PAGES 1249 * 1250 * of them, which corresponds to the maximum size of a hibernation image. 1251 * 1252 * If image_size is set below the number following from the above formula, 1253 * the preallocation of memory is continued until the total number of saveable 1254 * pages in the system is below the requested image size or the minimum 1255 * acceptable image size returned by minimum_image_size(), whichever is greater. 1256 */ 1257 int hibernate_preallocate_memory(void) 1258 { 1259 struct zone *zone; 1260 unsigned long saveable, size, max_size, count, highmem, pages = 0; 1261 unsigned long alloc, save_highmem, pages_highmem; 1262 struct timeval start, stop; 1263 int error; 1264 1265 printk(KERN_INFO "PM: Preallocating image memory... "); 1266 do_gettimeofday(&start); 1267 1268 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY); 1269 if (error) 1270 goto err_out; 1271 1272 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY); 1273 if (error) 1274 goto err_out; 1275 1276 alloc_normal = 0; 1277 alloc_highmem = 0; 1278 1279 /* Count the number of saveable data pages. */ 1280 save_highmem = count_highmem_pages(); 1281 saveable = count_data_pages(); 1282 1283 /* 1284 * Compute the total number of page frames we can use (count) and the 1285 * number of pages needed for image metadata (size). 1286 */ 1287 count = saveable; 1288 saveable += save_highmem; 1289 highmem = save_highmem; 1290 size = 0; 1291 for_each_populated_zone(zone) { 1292 size += snapshot_additional_pages(zone); 1293 if (is_highmem(zone)) 1294 highmem += zone_page_state(zone, NR_FREE_PAGES); 1295 else 1296 count += zone_page_state(zone, NR_FREE_PAGES); 1297 } 1298 count += highmem; 1299 count -= totalreserve_pages; 1300 1301 /* Compute the maximum number of saveable pages to leave in memory. */ 1302 max_size = (count - (size + PAGES_FOR_IO)) / 2 - 2 * SPARE_PAGES; 1303 size = DIV_ROUND_UP(image_size, PAGE_SIZE); 1304 if (size > max_size) 1305 size = max_size; 1306 /* 1307 * If the maximum is not less than the current number of saveable pages 1308 * in memory, allocate page frames for the image and we're done. 1309 */ 1310 if (size >= saveable) { 1311 pages = preallocate_image_highmem(save_highmem); 1312 pages += preallocate_image_memory(saveable - pages); 1313 goto out; 1314 } 1315 1316 /* Estimate the minimum size of the image. */ 1317 pages = minimum_image_size(saveable); 1318 if (size < pages) 1319 size = min_t(unsigned long, pages, max_size); 1320 1321 /* 1322 * Let the memory management subsystem know that we're going to need a 1323 * large number of page frames to allocate and make it free some memory. 1324 * NOTE: If this is not done, performance will be hurt badly in some 1325 * test cases. 1326 */ 1327 shrink_all_memory(saveable - size); 1328 1329 /* 1330 * The number of saveable pages in memory was too high, so apply some 1331 * pressure to decrease it. First, make room for the largest possible 1332 * image and fail if that doesn't work. Next, try to decrease the size 1333 * of the image as much as indicated by 'size' using allocations from 1334 * highmem and non-highmem zones separately. 1335 */ 1336 pages_highmem = preallocate_image_highmem(highmem / 2); 1337 alloc = (count - max_size) - pages_highmem; 1338 pages = preallocate_image_memory(alloc); 1339 if (pages < alloc) 1340 goto err_out; 1341 size = max_size - size; 1342 alloc = size; 1343 size = preallocate_highmem_fraction(size, highmem, count); 1344 pages_highmem += size; 1345 alloc -= size; 1346 pages += preallocate_image_memory(alloc); 1347 pages += pages_highmem; 1348 1349 /* 1350 * We only need as many page frames for the image as there are saveable 1351 * pages in memory, but we have allocated more. Release the excessive 1352 * ones now. 1353 */ 1354 free_unnecessary_pages(); 1355 1356 out: 1357 do_gettimeofday(&stop); 1358 printk(KERN_CONT "done (allocated %lu pages)\n", pages); 1359 swsusp_show_speed(&start, &stop, pages, "Allocated"); 1360 1361 return 0; 1362 1363 err_out: 1364 printk(KERN_CONT "\n"); 1365 swsusp_free(); 1366 return -ENOMEM; 1367 } 1368 1369 #ifdef CONFIG_HIGHMEM 1370 /** 1371 * count_pages_for_highmem - compute the number of non-highmem pages 1372 * that will be necessary for creating copies of highmem pages. 1373 */ 1374 1375 static unsigned int count_pages_for_highmem(unsigned int nr_highmem) 1376 { 1377 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem; 1378 1379 if (free_highmem >= nr_highmem) 1380 nr_highmem = 0; 1381 else 1382 nr_highmem -= free_highmem; 1383 1384 return nr_highmem; 1385 } 1386 #else 1387 static unsigned int 1388 count_pages_for_highmem(unsigned int nr_highmem) { return 0; } 1389 #endif /* CONFIG_HIGHMEM */ 1390 1391 /** 1392 * enough_free_mem - Make sure we have enough free memory for the 1393 * snapshot image. 1394 */ 1395 1396 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem) 1397 { 1398 struct zone *zone; 1399 unsigned int free = alloc_normal; 1400 1401 for_each_populated_zone(zone) 1402 if (!is_highmem(zone)) 1403 free += zone_page_state(zone, NR_FREE_PAGES); 1404 1405 nr_pages += count_pages_for_highmem(nr_highmem); 1406 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n", 1407 nr_pages, PAGES_FOR_IO, free); 1408 1409 return free > nr_pages + PAGES_FOR_IO; 1410 } 1411 1412 #ifdef CONFIG_HIGHMEM 1413 /** 1414 * get_highmem_buffer - if there are some highmem pages in the suspend 1415 * image, we may need the buffer to copy them and/or load their data. 1416 */ 1417 1418 static inline int get_highmem_buffer(int safe_needed) 1419 { 1420 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed); 1421 return buffer ? 0 : -ENOMEM; 1422 } 1423 1424 /** 1425 * alloc_highmem_image_pages - allocate some highmem pages for the image. 1426 * Try to allocate as many pages as needed, but if the number of free 1427 * highmem pages is lesser than that, allocate them all. 1428 */ 1429 1430 static inline unsigned int 1431 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem) 1432 { 1433 unsigned int to_alloc = count_free_highmem_pages(); 1434 1435 if (to_alloc > nr_highmem) 1436 to_alloc = nr_highmem; 1437 1438 nr_highmem -= to_alloc; 1439 while (to_alloc-- > 0) { 1440 struct page *page; 1441 1442 page = alloc_image_page(__GFP_HIGHMEM); 1443 memory_bm_set_bit(bm, page_to_pfn(page)); 1444 } 1445 return nr_highmem; 1446 } 1447 #else 1448 static inline int get_highmem_buffer(int safe_needed) { return 0; } 1449 1450 static inline unsigned int 1451 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; } 1452 #endif /* CONFIG_HIGHMEM */ 1453 1454 /** 1455 * swsusp_alloc - allocate memory for the suspend image 1456 * 1457 * We first try to allocate as many highmem pages as there are 1458 * saveable highmem pages in the system. If that fails, we allocate 1459 * non-highmem pages for the copies of the remaining highmem ones. 1460 * 1461 * In this approach it is likely that the copies of highmem pages will 1462 * also be located in the high memory, because of the way in which 1463 * copy_data_pages() works. 1464 */ 1465 1466 static int 1467 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm, 1468 unsigned int nr_pages, unsigned int nr_highmem) 1469 { 1470 int error = 0; 1471 1472 if (nr_highmem > 0) { 1473 error = get_highmem_buffer(PG_ANY); 1474 if (error) 1475 goto err_out; 1476 if (nr_highmem > alloc_highmem) { 1477 nr_highmem -= alloc_highmem; 1478 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem); 1479 } 1480 } 1481 if (nr_pages > alloc_normal) { 1482 nr_pages -= alloc_normal; 1483 while (nr_pages-- > 0) { 1484 struct page *page; 1485 1486 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD); 1487 if (!page) 1488 goto err_out; 1489 memory_bm_set_bit(copy_bm, page_to_pfn(page)); 1490 } 1491 } 1492 1493 return 0; 1494 1495 err_out: 1496 swsusp_free(); 1497 return error; 1498 } 1499 1500 asmlinkage int swsusp_save(void) 1501 { 1502 unsigned int nr_pages, nr_highmem; 1503 1504 printk(KERN_INFO "PM: Creating hibernation image:\n"); 1505 1506 drain_local_pages(NULL); 1507 nr_pages = count_data_pages(); 1508 nr_highmem = count_highmem_pages(); 1509 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem); 1510 1511 if (!enough_free_mem(nr_pages, nr_highmem)) { 1512 printk(KERN_ERR "PM: Not enough free memory\n"); 1513 return -ENOMEM; 1514 } 1515 1516 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) { 1517 printk(KERN_ERR "PM: Memory allocation failed\n"); 1518 return -ENOMEM; 1519 } 1520 1521 /* During allocating of suspend pagedir, new cold pages may appear. 1522 * Kill them. 1523 */ 1524 drain_local_pages(NULL); 1525 copy_data_pages(©_bm, &orig_bm); 1526 1527 /* 1528 * End of critical section. From now on, we can write to memory, 1529 * but we should not touch disk. This specially means we must _not_ 1530 * touch swap space! Except we must write out our image of course. 1531 */ 1532 1533 nr_pages += nr_highmem; 1534 nr_copy_pages = nr_pages; 1535 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE); 1536 1537 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n", 1538 nr_pages); 1539 1540 return 0; 1541 } 1542 1543 #ifndef CONFIG_ARCH_HIBERNATION_HEADER 1544 static int init_header_complete(struct swsusp_info *info) 1545 { 1546 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname)); 1547 info->version_code = LINUX_VERSION_CODE; 1548 return 0; 1549 } 1550 1551 static char *check_image_kernel(struct swsusp_info *info) 1552 { 1553 if (info->version_code != LINUX_VERSION_CODE) 1554 return "kernel version"; 1555 if (strcmp(info->uts.sysname,init_utsname()->sysname)) 1556 return "system type"; 1557 if (strcmp(info->uts.release,init_utsname()->release)) 1558 return "kernel release"; 1559 if (strcmp(info->uts.version,init_utsname()->version)) 1560 return "version"; 1561 if (strcmp(info->uts.machine,init_utsname()->machine)) 1562 return "machine"; 1563 return NULL; 1564 } 1565 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */ 1566 1567 unsigned long snapshot_get_image_size(void) 1568 { 1569 return nr_copy_pages + nr_meta_pages + 1; 1570 } 1571 1572 static int init_header(struct swsusp_info *info) 1573 { 1574 memset(info, 0, sizeof(struct swsusp_info)); 1575 info->num_physpages = num_physpages; 1576 info->image_pages = nr_copy_pages; 1577 info->pages = snapshot_get_image_size(); 1578 info->size = info->pages; 1579 info->size <<= PAGE_SHIFT; 1580 return init_header_complete(info); 1581 } 1582 1583 /** 1584 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm 1585 * are stored in the array @buf[] (1 page at a time) 1586 */ 1587 1588 static inline void 1589 pack_pfns(unsigned long *buf, struct memory_bitmap *bm) 1590 { 1591 int j; 1592 1593 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1594 buf[j] = memory_bm_next_pfn(bm); 1595 if (unlikely(buf[j] == BM_END_OF_MAP)) 1596 break; 1597 } 1598 } 1599 1600 /** 1601 * snapshot_read_next - used for reading the system memory snapshot. 1602 * 1603 * On the first call to it @handle should point to a zeroed 1604 * snapshot_handle structure. The structure gets updated and a pointer 1605 * to it should be passed to this function every next time. 1606 * 1607 * On success the function returns a positive number. Then, the caller 1608 * is allowed to read up to the returned number of bytes from the memory 1609 * location computed by the data_of() macro. 1610 * 1611 * The function returns 0 to indicate the end of data stream condition, 1612 * and a negative number is returned on error. In such cases the 1613 * structure pointed to by @handle is not updated and should not be used 1614 * any more. 1615 */ 1616 1617 int snapshot_read_next(struct snapshot_handle *handle) 1618 { 1619 if (handle->cur > nr_meta_pages + nr_copy_pages) 1620 return 0; 1621 1622 if (!buffer) { 1623 /* This makes the buffer be freed by swsusp_free() */ 1624 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 1625 if (!buffer) 1626 return -ENOMEM; 1627 } 1628 if (!handle->cur) { 1629 int error; 1630 1631 error = init_header((struct swsusp_info *)buffer); 1632 if (error) 1633 return error; 1634 handle->buffer = buffer; 1635 memory_bm_position_reset(&orig_bm); 1636 memory_bm_position_reset(©_bm); 1637 } else if (handle->cur <= nr_meta_pages) { 1638 memset(buffer, 0, PAGE_SIZE); 1639 pack_pfns(buffer, &orig_bm); 1640 } else { 1641 struct page *page; 1642 1643 page = pfn_to_page(memory_bm_next_pfn(©_bm)); 1644 if (PageHighMem(page)) { 1645 /* Highmem pages are copied to the buffer, 1646 * because we can't return with a kmapped 1647 * highmem page (we may not be called again). 1648 */ 1649 void *kaddr; 1650 1651 kaddr = kmap_atomic(page, KM_USER0); 1652 memcpy(buffer, kaddr, PAGE_SIZE); 1653 kunmap_atomic(kaddr, KM_USER0); 1654 handle->buffer = buffer; 1655 } else { 1656 handle->buffer = page_address(page); 1657 } 1658 } 1659 handle->cur++; 1660 return PAGE_SIZE; 1661 } 1662 1663 /** 1664 * mark_unsafe_pages - mark the pages that cannot be used for storing 1665 * the image during resume, because they conflict with the pages that 1666 * had been used before suspend 1667 */ 1668 1669 static int mark_unsafe_pages(struct memory_bitmap *bm) 1670 { 1671 struct zone *zone; 1672 unsigned long pfn, max_zone_pfn; 1673 1674 /* Clear page flags */ 1675 for_each_populated_zone(zone) { 1676 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1677 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1678 if (pfn_valid(pfn)) 1679 swsusp_unset_page_free(pfn_to_page(pfn)); 1680 } 1681 1682 /* Mark pages that correspond to the "original" pfns as "unsafe" */ 1683 memory_bm_position_reset(bm); 1684 do { 1685 pfn = memory_bm_next_pfn(bm); 1686 if (likely(pfn != BM_END_OF_MAP)) { 1687 if (likely(pfn_valid(pfn))) 1688 swsusp_set_page_free(pfn_to_page(pfn)); 1689 else 1690 return -EFAULT; 1691 } 1692 } while (pfn != BM_END_OF_MAP); 1693 1694 allocated_unsafe_pages = 0; 1695 1696 return 0; 1697 } 1698 1699 static void 1700 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src) 1701 { 1702 unsigned long pfn; 1703 1704 memory_bm_position_reset(src); 1705 pfn = memory_bm_next_pfn(src); 1706 while (pfn != BM_END_OF_MAP) { 1707 memory_bm_set_bit(dst, pfn); 1708 pfn = memory_bm_next_pfn(src); 1709 } 1710 } 1711 1712 static int check_header(struct swsusp_info *info) 1713 { 1714 char *reason; 1715 1716 reason = check_image_kernel(info); 1717 if (!reason && info->num_physpages != num_physpages) 1718 reason = "memory size"; 1719 if (reason) { 1720 printk(KERN_ERR "PM: Image mismatch: %s\n", reason); 1721 return -EPERM; 1722 } 1723 return 0; 1724 } 1725 1726 /** 1727 * load header - check the image header and copy data from it 1728 */ 1729 1730 static int 1731 load_header(struct swsusp_info *info) 1732 { 1733 int error; 1734 1735 restore_pblist = NULL; 1736 error = check_header(info); 1737 if (!error) { 1738 nr_copy_pages = info->image_pages; 1739 nr_meta_pages = info->pages - info->image_pages - 1; 1740 } 1741 return error; 1742 } 1743 1744 /** 1745 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set 1746 * the corresponding bit in the memory bitmap @bm 1747 */ 1748 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm) 1749 { 1750 int j; 1751 1752 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) { 1753 if (unlikely(buf[j] == BM_END_OF_MAP)) 1754 break; 1755 1756 if (memory_bm_pfn_present(bm, buf[j])) 1757 memory_bm_set_bit(bm, buf[j]); 1758 else 1759 return -EFAULT; 1760 } 1761 1762 return 0; 1763 } 1764 1765 /* List of "safe" pages that may be used to store data loaded from the suspend 1766 * image 1767 */ 1768 static struct linked_page *safe_pages_list; 1769 1770 #ifdef CONFIG_HIGHMEM 1771 /* struct highmem_pbe is used for creating the list of highmem pages that 1772 * should be restored atomically during the resume from disk, because the page 1773 * frames they have occupied before the suspend are in use. 1774 */ 1775 struct highmem_pbe { 1776 struct page *copy_page; /* data is here now */ 1777 struct page *orig_page; /* data was here before the suspend */ 1778 struct highmem_pbe *next; 1779 }; 1780 1781 /* List of highmem PBEs needed for restoring the highmem pages that were 1782 * allocated before the suspend and included in the suspend image, but have 1783 * also been allocated by the "resume" kernel, so their contents cannot be 1784 * written directly to their "original" page frames. 1785 */ 1786 static struct highmem_pbe *highmem_pblist; 1787 1788 /** 1789 * count_highmem_image_pages - compute the number of highmem pages in the 1790 * suspend image. The bits in the memory bitmap @bm that correspond to the 1791 * image pages are assumed to be set. 1792 */ 1793 1794 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) 1795 { 1796 unsigned long pfn; 1797 unsigned int cnt = 0; 1798 1799 memory_bm_position_reset(bm); 1800 pfn = memory_bm_next_pfn(bm); 1801 while (pfn != BM_END_OF_MAP) { 1802 if (PageHighMem(pfn_to_page(pfn))) 1803 cnt++; 1804 1805 pfn = memory_bm_next_pfn(bm); 1806 } 1807 return cnt; 1808 } 1809 1810 /** 1811 * prepare_highmem_image - try to allocate as many highmem pages as 1812 * there are highmem image pages (@nr_highmem_p points to the variable 1813 * containing the number of highmem image pages). The pages that are 1814 * "safe" (ie. will not be overwritten when the suspend image is 1815 * restored) have the corresponding bits set in @bm (it must be 1816 * unitialized). 1817 * 1818 * NOTE: This function should not be called if there are no highmem 1819 * image pages. 1820 */ 1821 1822 static unsigned int safe_highmem_pages; 1823 1824 static struct memory_bitmap *safe_highmem_bm; 1825 1826 static int 1827 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1828 { 1829 unsigned int to_alloc; 1830 1831 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE)) 1832 return -ENOMEM; 1833 1834 if (get_highmem_buffer(PG_SAFE)) 1835 return -ENOMEM; 1836 1837 to_alloc = count_free_highmem_pages(); 1838 if (to_alloc > *nr_highmem_p) 1839 to_alloc = *nr_highmem_p; 1840 else 1841 *nr_highmem_p = to_alloc; 1842 1843 safe_highmem_pages = 0; 1844 while (to_alloc-- > 0) { 1845 struct page *page; 1846 1847 page = alloc_page(__GFP_HIGHMEM); 1848 if (!swsusp_page_is_free(page)) { 1849 /* The page is "safe", set its bit the bitmap */ 1850 memory_bm_set_bit(bm, page_to_pfn(page)); 1851 safe_highmem_pages++; 1852 } 1853 /* Mark the page as allocated */ 1854 swsusp_set_page_forbidden(page); 1855 swsusp_set_page_free(page); 1856 } 1857 memory_bm_position_reset(bm); 1858 safe_highmem_bm = bm; 1859 return 0; 1860 } 1861 1862 /** 1863 * get_highmem_page_buffer - for given highmem image page find the buffer 1864 * that suspend_write_next() should set for its caller to write to. 1865 * 1866 * If the page is to be saved to its "original" page frame or a copy of 1867 * the page is to be made in the highmem, @buffer is returned. Otherwise, 1868 * the copy of the page is to be made in normal memory, so the address of 1869 * the copy is returned. 1870 * 1871 * If @buffer is returned, the caller of suspend_write_next() will write 1872 * the page's contents to @buffer, so they will have to be copied to the 1873 * right location on the next call to suspend_write_next() and it is done 1874 * with the help of copy_last_highmem_page(). For this purpose, if 1875 * @buffer is returned, @last_highmem page is set to the page to which 1876 * the data will have to be copied from @buffer. 1877 */ 1878 1879 static struct page *last_highmem_page; 1880 1881 static void * 1882 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1883 { 1884 struct highmem_pbe *pbe; 1885 void *kaddr; 1886 1887 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) { 1888 /* We have allocated the "original" page frame and we can 1889 * use it directly to store the loaded page. 1890 */ 1891 last_highmem_page = page; 1892 return buffer; 1893 } 1894 /* The "original" page frame has not been allocated and we have to 1895 * use a "safe" page frame to store the loaded page. 1896 */ 1897 pbe = chain_alloc(ca, sizeof(struct highmem_pbe)); 1898 if (!pbe) { 1899 swsusp_free(); 1900 return ERR_PTR(-ENOMEM); 1901 } 1902 pbe->orig_page = page; 1903 if (safe_highmem_pages > 0) { 1904 struct page *tmp; 1905 1906 /* Copy of the page will be stored in high memory */ 1907 kaddr = buffer; 1908 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm)); 1909 safe_highmem_pages--; 1910 last_highmem_page = tmp; 1911 pbe->copy_page = tmp; 1912 } else { 1913 /* Copy of the page will be stored in normal memory */ 1914 kaddr = safe_pages_list; 1915 safe_pages_list = safe_pages_list->next; 1916 pbe->copy_page = virt_to_page(kaddr); 1917 } 1918 pbe->next = highmem_pblist; 1919 highmem_pblist = pbe; 1920 return kaddr; 1921 } 1922 1923 /** 1924 * copy_last_highmem_page - copy the contents of a highmem image from 1925 * @buffer, where the caller of snapshot_write_next() has place them, 1926 * to the right location represented by @last_highmem_page . 1927 */ 1928 1929 static void copy_last_highmem_page(void) 1930 { 1931 if (last_highmem_page) { 1932 void *dst; 1933 1934 dst = kmap_atomic(last_highmem_page, KM_USER0); 1935 memcpy(dst, buffer, PAGE_SIZE); 1936 kunmap_atomic(dst, KM_USER0); 1937 last_highmem_page = NULL; 1938 } 1939 } 1940 1941 static inline int last_highmem_page_copied(void) 1942 { 1943 return !last_highmem_page; 1944 } 1945 1946 static inline void free_highmem_data(void) 1947 { 1948 if (safe_highmem_bm) 1949 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR); 1950 1951 if (buffer) 1952 free_image_page(buffer, PG_UNSAFE_CLEAR); 1953 } 1954 #else 1955 static inline int get_safe_write_buffer(void) { return 0; } 1956 1957 static unsigned int 1958 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; } 1959 1960 static inline int 1961 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p) 1962 { 1963 return 0; 1964 } 1965 1966 static inline void * 1967 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca) 1968 { 1969 return ERR_PTR(-EINVAL); 1970 } 1971 1972 static inline void copy_last_highmem_page(void) {} 1973 static inline int last_highmem_page_copied(void) { return 1; } 1974 static inline void free_highmem_data(void) {} 1975 #endif /* CONFIG_HIGHMEM */ 1976 1977 /** 1978 * prepare_image - use the memory bitmap @bm to mark the pages that will 1979 * be overwritten in the process of restoring the system memory state 1980 * from the suspend image ("unsafe" pages) and allocate memory for the 1981 * image. 1982 * 1983 * The idea is to allocate a new memory bitmap first and then allocate 1984 * as many pages as needed for the image data, but not to assign these 1985 * pages to specific tasks initially. Instead, we just mark them as 1986 * allocated and create a lists of "safe" pages that will be used 1987 * later. On systems with high memory a list of "safe" highmem pages is 1988 * also created. 1989 */ 1990 1991 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe)) 1992 1993 static int 1994 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm) 1995 { 1996 unsigned int nr_pages, nr_highmem; 1997 struct linked_page *sp_list, *lp; 1998 int error; 1999 2000 /* If there is no highmem, the buffer will not be necessary */ 2001 free_image_page(buffer, PG_UNSAFE_CLEAR); 2002 buffer = NULL; 2003 2004 nr_highmem = count_highmem_image_pages(bm); 2005 error = mark_unsafe_pages(bm); 2006 if (error) 2007 goto Free; 2008 2009 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE); 2010 if (error) 2011 goto Free; 2012 2013 duplicate_memory_bitmap(new_bm, bm); 2014 memory_bm_free(bm, PG_UNSAFE_KEEP); 2015 if (nr_highmem > 0) { 2016 error = prepare_highmem_image(bm, &nr_highmem); 2017 if (error) 2018 goto Free; 2019 } 2020 /* Reserve some safe pages for potential later use. 2021 * 2022 * NOTE: This way we make sure there will be enough safe pages for the 2023 * chain_alloc() in get_buffer(). It is a bit wasteful, but 2024 * nr_copy_pages cannot be greater than 50% of the memory anyway. 2025 */ 2026 sp_list = NULL; 2027 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */ 2028 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2029 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE); 2030 while (nr_pages > 0) { 2031 lp = get_image_page(GFP_ATOMIC, PG_SAFE); 2032 if (!lp) { 2033 error = -ENOMEM; 2034 goto Free; 2035 } 2036 lp->next = sp_list; 2037 sp_list = lp; 2038 nr_pages--; 2039 } 2040 /* Preallocate memory for the image */ 2041 safe_pages_list = NULL; 2042 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages; 2043 while (nr_pages > 0) { 2044 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC); 2045 if (!lp) { 2046 error = -ENOMEM; 2047 goto Free; 2048 } 2049 if (!swsusp_page_is_free(virt_to_page(lp))) { 2050 /* The page is "safe", add it to the list */ 2051 lp->next = safe_pages_list; 2052 safe_pages_list = lp; 2053 } 2054 /* Mark the page as allocated */ 2055 swsusp_set_page_forbidden(virt_to_page(lp)); 2056 swsusp_set_page_free(virt_to_page(lp)); 2057 nr_pages--; 2058 } 2059 /* Free the reserved safe pages so that chain_alloc() can use them */ 2060 while (sp_list) { 2061 lp = sp_list->next; 2062 free_image_page(sp_list, PG_UNSAFE_CLEAR); 2063 sp_list = lp; 2064 } 2065 return 0; 2066 2067 Free: 2068 swsusp_free(); 2069 return error; 2070 } 2071 2072 /** 2073 * get_buffer - compute the address that snapshot_write_next() should 2074 * set for its caller to write to. 2075 */ 2076 2077 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca) 2078 { 2079 struct pbe *pbe; 2080 struct page *page; 2081 unsigned long pfn = memory_bm_next_pfn(bm); 2082 2083 if (pfn == BM_END_OF_MAP) 2084 return ERR_PTR(-EFAULT); 2085 2086 page = pfn_to_page(pfn); 2087 if (PageHighMem(page)) 2088 return get_highmem_page_buffer(page, ca); 2089 2090 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) 2091 /* We have allocated the "original" page frame and we can 2092 * use it directly to store the loaded page. 2093 */ 2094 return page_address(page); 2095 2096 /* The "original" page frame has not been allocated and we have to 2097 * use a "safe" page frame to store the loaded page. 2098 */ 2099 pbe = chain_alloc(ca, sizeof(struct pbe)); 2100 if (!pbe) { 2101 swsusp_free(); 2102 return ERR_PTR(-ENOMEM); 2103 } 2104 pbe->orig_address = page_address(page); 2105 pbe->address = safe_pages_list; 2106 safe_pages_list = safe_pages_list->next; 2107 pbe->next = restore_pblist; 2108 restore_pblist = pbe; 2109 return pbe->address; 2110 } 2111 2112 /** 2113 * snapshot_write_next - used for writing the system memory snapshot. 2114 * 2115 * On the first call to it @handle should point to a zeroed 2116 * snapshot_handle structure. The structure gets updated and a pointer 2117 * to it should be passed to this function every next time. 2118 * 2119 * On success the function returns a positive number. Then, the caller 2120 * is allowed to write up to the returned number of bytes to the memory 2121 * location computed by the data_of() macro. 2122 * 2123 * The function returns 0 to indicate the "end of file" condition, 2124 * and a negative number is returned on error. In such cases the 2125 * structure pointed to by @handle is not updated and should not be used 2126 * any more. 2127 */ 2128 2129 int snapshot_write_next(struct snapshot_handle *handle) 2130 { 2131 static struct chain_allocator ca; 2132 int error = 0; 2133 2134 /* Check if we have already loaded the entire image */ 2135 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) 2136 return 0; 2137 2138 handle->sync_read = 1; 2139 2140 if (!handle->cur) { 2141 if (!buffer) 2142 /* This makes the buffer be freed by swsusp_free() */ 2143 buffer = get_image_page(GFP_ATOMIC, PG_ANY); 2144 2145 if (!buffer) 2146 return -ENOMEM; 2147 2148 handle->buffer = buffer; 2149 } else if (handle->cur == 1) { 2150 error = load_header(buffer); 2151 if (error) 2152 return error; 2153 2154 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY); 2155 if (error) 2156 return error; 2157 2158 } else if (handle->cur <= nr_meta_pages + 1) { 2159 error = unpack_orig_pfns(buffer, ©_bm); 2160 if (error) 2161 return error; 2162 2163 if (handle->cur == nr_meta_pages + 1) { 2164 error = prepare_image(&orig_bm, ©_bm); 2165 if (error) 2166 return error; 2167 2168 chain_init(&ca, GFP_ATOMIC, PG_SAFE); 2169 memory_bm_position_reset(&orig_bm); 2170 restore_pblist = NULL; 2171 handle->buffer = get_buffer(&orig_bm, &ca); 2172 handle->sync_read = 0; 2173 if (IS_ERR(handle->buffer)) 2174 return PTR_ERR(handle->buffer); 2175 } 2176 } else { 2177 copy_last_highmem_page(); 2178 handle->buffer = get_buffer(&orig_bm, &ca); 2179 if (IS_ERR(handle->buffer)) 2180 return PTR_ERR(handle->buffer); 2181 if (handle->buffer != buffer) 2182 handle->sync_read = 0; 2183 } 2184 handle->cur++; 2185 return PAGE_SIZE; 2186 } 2187 2188 /** 2189 * snapshot_write_finalize - must be called after the last call to 2190 * snapshot_write_next() in case the last page in the image happens 2191 * to be a highmem page and its contents should be stored in the 2192 * highmem. Additionally, it releases the memory that will not be 2193 * used any more. 2194 */ 2195 2196 void snapshot_write_finalize(struct snapshot_handle *handle) 2197 { 2198 copy_last_highmem_page(); 2199 /* Free only if we have loaded the image entirely */ 2200 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) { 2201 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR); 2202 free_highmem_data(); 2203 } 2204 } 2205 2206 int snapshot_image_loaded(struct snapshot_handle *handle) 2207 { 2208 return !(!nr_copy_pages || !last_highmem_page_copied() || 2209 handle->cur <= nr_meta_pages + nr_copy_pages); 2210 } 2211 2212 #ifdef CONFIG_HIGHMEM 2213 /* Assumes that @buf is ready and points to a "safe" page */ 2214 static inline void 2215 swap_two_pages_data(struct page *p1, struct page *p2, void *buf) 2216 { 2217 void *kaddr1, *kaddr2; 2218 2219 kaddr1 = kmap_atomic(p1, KM_USER0); 2220 kaddr2 = kmap_atomic(p2, KM_USER1); 2221 memcpy(buf, kaddr1, PAGE_SIZE); 2222 memcpy(kaddr1, kaddr2, PAGE_SIZE); 2223 memcpy(kaddr2, buf, PAGE_SIZE); 2224 kunmap_atomic(kaddr1, KM_USER0); 2225 kunmap_atomic(kaddr2, KM_USER1); 2226 } 2227 2228 /** 2229 * restore_highmem - for each highmem page that was allocated before 2230 * the suspend and included in the suspend image, and also has been 2231 * allocated by the "resume" kernel swap its current (ie. "before 2232 * resume") contents with the previous (ie. "before suspend") one. 2233 * 2234 * If the resume eventually fails, we can call this function once 2235 * again and restore the "before resume" highmem state. 2236 */ 2237 2238 int restore_highmem(void) 2239 { 2240 struct highmem_pbe *pbe = highmem_pblist; 2241 void *buf; 2242 2243 if (!pbe) 2244 return 0; 2245 2246 buf = get_image_page(GFP_ATOMIC, PG_SAFE); 2247 if (!buf) 2248 return -ENOMEM; 2249 2250 while (pbe) { 2251 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf); 2252 pbe = pbe->next; 2253 } 2254 free_image_page(buf, PG_UNSAFE_CLEAR); 2255 return 0; 2256 } 2257 #endif /* CONFIG_HIGHMEM */ 2258